On Mordell's Equation

Josef Gebel ${ }^{1 *}$, Attila Pethő ${ }^{2 \dagger}$, Horst G. Zimmer ${ }^{3}$

November 28, 2009
${ }^{1}$ Department of Computer Science and Engineering, Concordia University, Montréal PQ H5G 1M8, Canada. e-mail: sebp@cs.concordia.ca
${ }^{2}$ University of Medicine, Laboratory of Informatics, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary. e-mail: pethoe@peugeot.dote.hu
${ }^{3}$ Universität des Saarlandes, Fachbereich 9 Mathematik, D-66041 Saarbrücken, Germany. e-mail: zimmer@math.uni-sb.de

Summary

In an earlier paper we developed an algorithm for computing all integral points on elliptic curves over the rationals \mathbb{Q}. Here we illustrate our method by applying it to Mordell's equation $y^{2}=x^{3}+k$ for $0 \neq k \in \mathbb{Z}$ and draw some conclusions from our numerical findings. In fact we solve Mordell's equation in \mathbb{Z} for all integers k within the range $0<|k| \leq 10000$ and partially extend the computations to $0<|k| \leq 100000$. For these values of k, the constant in Hall's conjecture turns out to be $C=5$. Some other interesting observations are made concerning large integer points, large generators of the Mordell-Weil group and large Tate-Shafarevič groups. Three graphs illustrate the distribution of integer points in dependence on the parameter k. One interesting feature is the occurrence of lines in the graphs.

[^0]
1 Introduction

Mordell's equation

$$
\begin{equation*}
E: y^{2}=x^{3}+k, \quad 0 \neq k \in \mathbb{Z}, \tag{1}
\end{equation*}
$$

has a long history. Various methods have been applied to solve it or to prove some assertions about its number of solutions. An illuminating account of these endeavors is given in Mordell's book [Mo].
We are interested in finding all integer solutions of Mordell's equation for a large range of parameters k. The numerical results obtained are then used to estimate the constant in Hall's conjecture and to illustrate in three graphs the distribution of integer points.

Until recently, Mordell's equation could be completely solved in rational integers only for parameters $k \in \mathbb{Z}$ within the range (see [LF])

$$
|k| \leq 100
$$

and - with certain exceptions - within the range (see [SM])

$$
100<k \leq 200
$$

as well as for some special higher values of k, e.g. $k=-999$ (see [Ste]). "Small" solutions, i.e. solutions with $|y| \leq 10^{10}$ were computed for the much larger range

$$
|k| \leq 10000
$$

(see [LJB]).
However, recent progress in the theory, the availability of very efficient algorithms based on the theory and advanced computer technology enable us meanwhile to completely solve Mordell's equation in rational integers for

$$
|k| \leq 10000
$$

and for almost all $k \in \mathbb{Z}$ within the interval

$$
|k| \leq 100000 .
$$

Here 'almost all' means for all but about 1000 curves for which we could not find any integer point with first coordinate less than 10^{28} in absolute value.

This range of the parameter k is already large enough to provide suitable data to test the constants in Hall's conjecture [Ha]. Our theoretical findings lead to a bound for the coordinates of integer points which is exponentially worse than the bound established by Stark ([Sta], cf. also [Sp]). That is why we do not elaborate on this topic here.

The method for determining all integer points on elliptic curves over the rationals is based on ideas of Lang and Zagier [Za] and was described already in our paper [GPZ1]. In this article, we use Mordell's equation to illustrate our method, and we briefly explain the point search by sieving, not explained in [GPZ1]. The determination of all integer points has two ingredients. The first is an efficient and unconditional algorithm for computing the rank and a basis of the group of rational points $E(\mathbb{Q})$ of an elliptic curve E over the rationals \mathbb{Q} developed in $[\mathrm{GZi}]$. The second is an explicit lower bound for linear forms in elliptic logarithms established by David [Dav]. We mention that essentially the same method was also used by Stroeker and Tzanakis [STz]. However, they do not employ Manin's conditional algorithm described in [GZi].

The numerical results obtained include curves with large Tate-Shafarevič groups, curves with large generators and curves with large integer points. In his review of the paper [LJB] (see MR 33\#91), Cassels claims that the largest integer solutions within the range $|k| \leq 10000$ are (for $k>0$ or $k<0$, respectively)

$$
\begin{aligned}
1775104^{3}-2365024826^{2} & =-5412 \\
939787^{3}-911054064^{2} & =307
\end{aligned}
$$

However, we found the larger solutions

$$
\begin{gathered}
6369039^{3}-16073515093^{2}=-7670 \\
110781386^{3}-1166004406095^{2}=8569
\end{gathered}
$$

One experimental observation derived from the tables is that the rank r of Mordell's curves grows according to

$$
r=O\left(\log |k| /|\log \log | k| |^{\frac{2}{3}}\right)
$$

Three graphs illustrate the distribution of integer points for different parameters k. The graphs give rise to some interesting theoretical observations.

For lack of space, not all of the numerical data we obtained could be reproduced here ${ }^{1}$.

We have extended our algorithm and calculations to S-integral points on Mordell's equation. A preliminary report on this is given in [GPZ2]. (See also [G].)

Acknowledgment. We wish to thank the referee for many valuable suggestions.

2 Determination of a Basis

In this section we will introduce an algorithm to determine the torsion group, the rank and a basis of the free part of the Mordell-Weil group $E(\mathbb{Q})$. The algorithm is conditional in that it is based on the truth of the conjecture of Birch and Swinnerton-Dyer [BSD].

However, by the work of Coates-Wiles, Greenberg, Gross-Zagier, Rubin and Kolyvagin (see [CW], [Gre] [GZa], [Ru1], [Ru2], [Ko1], [Ko2]) for ranks $r=0$ and $r=1$, the conjecture is a theorem provided the curve in question is modular. The Mordell curves have complex multiplication by the ring of integers of $\mathbb{Q}(\sqrt{-3})$ and thus are, a fortiori, modular. On the other hand, Cremona [Cr] has developed a method to determine the rank of an elliptic curve over \mathbb{Q}, if the 2-part of the Tate-Shafarevič group is trivial. With these results, we were able to show that the ranks conjecturally obtained by our algorithm are the true ranks for all parameters k within the range $|k| \leq 10000$ with the exception of two curves. The exceptions are the curves (1) for $k=-7954$ and 8206 . In these cases, the conjectured rank of E / \mathbb{Q} is 2 and the order of the Tate-Shafarevič group is conjectured to be 4. However, in these two cases, a 3-descent yields the correctness of the ranks (and the Tate-Shafarevič groups as well). Therefore, our numerical results for $|k| \leq 10000$ are in fact independent of any conjecture.
We will use an example (see section 2.1) taken from [BMG] to illustrate the execution of our algorithm. In the example we shall use throughout the type sans serif. The floating point values will be given with an accuracy of eight decimal digits.

[^1]For an arbitrary elliptic curve E over \mathbb{Q} we denote by
\mathcal{N} the conductor,
R the regulator,
Ш the Tate-Shafarevič group,
ω_{1} the real period,
c_{p} the p-th Tamagawa number.

Conjecture of Birch and Swinnerton-Dyer

(i) The rank r of E / \mathbb{Q} is equal to the order of the zero of the L-series $L(E, s)$ of E / \mathbb{Q} at the argument $s=1$.
(ii) The first non-zero term in the Taylor-expansion of the L-series is

$$
\lim _{s \rightarrow 1} \frac{L(E, s)}{(s-1)^{r}}=\frac{\Omega \cdot \# \amalg \cdot R}{\left(\# E_{\mathrm{tors}}(\mathbb{Q})\right)^{2}} \cdot \prod_{p \mid \mathcal{N}} c_{p}
$$

where $\Omega=c_{\infty} \cdot \omega_{1}$ with $c_{\infty}:=$ number of connected components of $E(\mathbb{R})$.

2.1 The Torsion Group

For computing the torsion subgroup of $E(\mathbb{Q})$ for Mordell's curve, we use the following proposition which is due to Fueter [Fu].

Proposition 1 Let $k=m^{6} \cdot k_{0}$, where $m, k_{0} \in \mathbb{Z}$ and k_{0} is free of sixth power prime factors. Then the torsion subgroup of $E: y^{2}=x^{3}+k$ over \mathbb{Q} is

$$
E_{\mathrm{tors}}(\mathbb{Q}) \cong \begin{cases}\mathbb{Z} / 6 \mathbb{Z} & \text { if } k_{0}=1 \\ \mathbb{Z} / 3 \mathbb{Z} & \text { if } k_{0} \text { is a square different from } 1, \text { or } k_{0}=-432 \\ \mathbb{Z} / 2 \mathbb{Z} & \text { if } k_{0} \text { is a cube different from } 1, \\ \{\mathcal{O}\} & \text { otherwise }\end{cases}
$$

the points of order 2 being $(-a, 0)$ if $k=a^{3}$ and the points of order 3 being $(0, \pm b)$ if $k=b^{2}$ and $\left(12 m^{2}, \pm 36 m^{3}\right)$ if $k=-432 m^{6}$.

Hence, the order of the torsion subgroup $E_{\text {tors }}(\mathbb{Q})$ is

$$
g \leq 6
$$

Example: Let

$$
\begin{equation*}
E: y^{2}=x^{3}-66688704 \tag{2}
\end{equation*}
$$

We have the factorization

$$
-66688704=-2^{6} \cdot 3^{3} \cdot 38593
$$

and thus, by Proposition 1, the torsion subgroup is $E_{\text {tors }}(\mathbb{Q})=\{\mathcal{O}\}$.

2.2 The Rank

From the first part of the Birch and Swinnerton-Dyer conjecture we conclude that the rank r of E / \mathbb{Q} can be determined as

$$
r=\min \left\{\rho \geq 0 \mid L^{(\rho)}(E, 1) \neq 0\right\}
$$

In order to compute the L-series and its derivatives at $s=1$, we need to know the $\operatorname{sign} C= \pm 1$ of the functional equation of E / \mathbb{Q}. It can be computed either by means of the Fricke involution (see [Cr]) or by evaluating the Hecke equation

$$
F(z)=-\frac{C}{\mathcal{N} z^{2}} F\left(-\frac{1}{\mathcal{N} z}\right)
$$

of the inverse Mellin transform

$$
F(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i z}
$$

of the L-series of E / \mathbb{Q}. If

$$
F\left(\frac{i}{\sqrt{\mathcal{N}}}\right) \neq 0
$$

then $C=1$; otherwise we evaluate the Hecke equation at a point $z \neq \frac{i}{\sqrt{\mathcal{N}}}$ and derive the value of C. Conjecturally,

$$
C=(-1)^{r}
$$

(cf. [BSt]).

Example: First, we determine the conductor

$$
\mathcal{N}=214476429456
$$

by an algorithm of Tate [Ta]. After having evaluated 360000 coefficients of the Fourier series $F(z)$ in our example we find the approximation

$$
\tilde{F}\left(\frac{i}{\sqrt{\mathcal{N}}}\right)=37647.904
$$

of $F\left(\frac{i}{\sqrt{\mathcal{N}}}\right)$ so that the sign of the functional equation must be $C=+1$ (since $F\left(\frac{i}{\sqrt{\mathcal{N}}}\right)=$ 0 if $C=-1$).

We also get the approximation \tilde{L} of the L-series of E / \mathbb{Q} at $s=1$

$$
\tilde{L}(E, 1)=0.00000009
$$

and we 'conclude' (see the remark below) that $L(E, 1)=0$.
For the first, second and third derivative of the L-series at $s=1$ we obtain the approximations

$$
\begin{aligned}
& \tilde{L}^{(1)}(E, 1)=0.00000018 \\
& \tilde{L}^{(2)}(E, 1)=0.00000003 \\
& \tilde{L}^{(3)}(E, 1)=0.00000005
\end{aligned}
$$

and, again, we conclude that $L^{(\rho)}(E, 1)=0$ for $\rho=1,2,3$.
Our approximation of the fourth derivative of the L-series at $s=1$ is

$$
\tilde{L}^{(4)}(E, 1)=11576.437
$$

Thus we conjecture that the rank of E over \mathbb{Q} is $r=4$. We then prove by general 2 -descent that the rank is indeed $r=4$.

Remark: In order to prove that the ρ-th derivative of the L-series of E / \mathbb{Q} at $s=1$ is zero we assume that $r=\rho$ is the rank of E / \mathbb{Q} and insert the values for r and $L^{(r)}(E, 1)$ into the estimate (4) given below for the regulator R. With this upper bound for R we try to compute a basis of $E(\mathbb{Q})$. If we are not able to find a basis, the rank must be larger than ρ and thus $L^{(\rho)}(E, 1)=0$.
In general, we use three different methods for computing the rank: the first part of the Birch and Swinnerton-Dyer conjecture, general 2-descent or 3descent via isogeny. Our results are unconditional for $|k| \leq 10.000$. (For details, see [G]).

2.3 Determining a Basis of the Free Part

In the former section, we showed how to determine the rank r of E / \mathbb{Q}. Therefore, in the sequel, we may suppose that r is known. From the second
part of the Birch and Swinnerton-Dyer conjecture, we derive an upper bound R^{\prime} for the regulator R of E / \mathbb{Q}, assuming that \amalg is finite.

Now, the algorithm for determining a basis of the Mordell-Weil group is based on the following fundamental theorem.

Theorem 1 (Manin)

Let

$$
B:=\frac{2^{r}}{\gamma_{r}} R^{\prime} /\left(\mu_{1} \ldots \mu_{r-1}\right) \leq \frac{2^{r}}{\gamma_{r}} R^{\prime} / \mu_{1}^{r-1},
$$

where γ_{r} denotes the volume of the r-dimensional unit ball and

$$
0<\mu_{1}<\ldots<\mu_{r-1}
$$

are the first $r-1$ successive minima of the lattice $E(\mathbb{Q})$ in $E(\mathbb{Q}) \otimes_{Z} \mathbb{R}$ (see [Ma]). Then the set

$$
\left\{P \in E(\mathbb{Q}) \backslash E_{\text {tors }}(\mathbb{Q}) \mid \hat{h}(P)<B\right\}
$$

generates a subgroup $\tilde{E}(\mathbb{Q})$ of $\hat{E}(\mathbb{Q}):=E(\mathbb{Q}) / E_{\text {tors }}(\mathbb{Q})$ of finite index.
Proof: See [Ma].
Note that μ_{1} can be replaced by a lower bound $0<\mu_{1}^{\prime} \leq \mu_{1}$ defined by

$$
\mu_{1}^{\prime}=\left\{\begin{array}{l}
\delta, \text { if } M_{\delta}:=\left\{P \in E(\mathbb{Q}) \backslash E_{\text {tors }}(\mathbb{Q}) \mid h(P)<2 \delta\right\} \text { is empty } \\
\mu_{1}=\min \left\{\hat{h}(P) \mid P \in M_{\delta}\right\} \text { otherwise },
\end{array}\right.
$$

where δ is an upper bound for the difference between the Weil height h and the Néron-Tate height \hat{h} on $E(\mathbb{Q})$, i.e. (cf. [GPZ1])

$$
|h(P)-\hat{h}(P)|<\delta \quad \forall P \in E(\mathbb{Q})
$$

The symmetric bilinear form associated with the Néron-Tate height on $E(\mathbb{Q})$ will also be denoted by \hat{h}.

If we want to apply the above theorem, we have to find all points of bounded Néron-Tate height $\hat{h}(P)<B$ on E / \mathbb{Q}. At first sight, this seems to be impossible since we do not know where to search for these points nor when we have found them all. This is where the ordinary Weil height $h(P)$ defined below comes into play. It is very easy to find all the points of bounded (ordinary) Weil height and, since the difference between the two height functions
is bounded by a constant δ which does not depend on $P \in E(\mathbb{Q})$, we are also able to find all points of bounded Néron-Tate height $\hat{h}(P)<B$ and thus a generating set of $\tilde{E}(\mathbb{Q})$:

- We find (by a sieving procedure, cf. section 4) all the points

$$
P=\left(\frac{\xi}{\zeta^{2}}, \frac{\eta}{\zeta^{3}}\right)
$$

such that

$$
h(P)=\log \left(\max \left\{|\xi|, \zeta^{2}\right)<B+\delta .\right.
$$

- We keep those points P with

$$
h(P)<B+\delta \quad \text { and } \quad \hat{h}(P)<B
$$

The bound δ can be computed by using a method of Zimmer ([Zi1], [Zi2], [Zi3]) or Silverman ([Si]). For Mordell's equation, we derive from [Zi2], [Zi3]) the estimate

$$
\begin{equation*}
\delta \leq \frac{1}{3} \log |k|+\frac{10}{3} \log 2 \tag{3}
\end{equation*}
$$

which is slightly better than Silverman's bound cf. [Si]

$$
\delta \leq \frac{1}{3} \log |k|+2.96
$$

Note that the Néron-Tate height \hat{h} that we use is twice the Néron-Tate height in Silverman's paper.

In order to compute the bound B we need to know an upper bound R^{\prime} for the regulator R of E / \mathbb{Q}. To this end, we apply the second part of the Birch and Swinnerton-Dyer conjecture. Assuming $\infty>\# Ш \geq 1$, we have

$$
\begin{equation*}
R^{\prime}=\frac{L^{(r)}(E, 1) \cdot\left(\# E_{\text {tors }}(\mathbb{Q})\right)^{2}}{r!\cdot \Omega \cdot \prod_{p \mid \mathcal{N}} c_{p}} \geq R . \tag{4}
\end{equation*}
$$

The real period ω_{1} of E / \mathbb{Q} can be computed by a very efficient method developed by D. Grayson [Gra] using the Gaussian arithmetic-geometric
mean. The Tamagawa numbers c_{p} are also obtained by Tate's algorithm [Ta] for determining the conductor \mathcal{N} of E / \mathbb{Q}.

Example: By Tate's algorithm we get

$$
\mathcal{N}=214476429456=2^{4} \cdot 3^{2} \cdot 38593^{2}
$$

and

$$
c_{2}=1, c_{3}=2, c_{38593}=1
$$

The algorithm also returns a global minimal equation

$$
E^{\prime}: \quad y^{\prime 2}=x^{3}-1042011
$$

for E which is different from our model (2). Since, in the course of the algorithm, it is more convenient to work with a minimal model of E, we will continue our computations with the model E^{\prime} of our curve. When we have a basis on the minimal model, we only need to transform the basis points back to the original model via the birational transformation $x^{\prime}=\left(\frac{1}{2}\right)^{2} x, y^{\prime}=\left(\frac{1}{2}\right)^{3} y$.

By (3) we compute

$$
\delta=6.92937829
$$

whereas the method of Silverman yields $\delta=7.57888769$ for the difference between the Néron-Tate height and the Weil height on the minimal model E^{\prime}.

By the method of Grayson, we compute the real period

$$
\omega_{1}=0.24120501
$$

Since the discriminant $\Delta=-469059951220272$ of (the minimal model of) our curve is negative, $E(\mathbb{R})$ has only one connected component and thus

$$
\Omega=\omega_{1} .
$$

We insert all these values in (4) and obtain

$$
R^{\prime}=\frac{11576.437 \cdot 1^{2}}{4!\cdot 0.241 \cdot 1 \cdot 2 \cdot 1}=999.879
$$

By a sieving procedure we find the point $P_{1} \in E(\mathbb{Q})$ listed below and hence

$$
\mu_{1}=\mu_{1}^{\prime}=\hat{h}((255,3942))=4.13154139
$$

Combining these results yields

$$
B:=\frac{2^{4} \cdot 999.879}{\frac{\pi^{2}}{2} \cdot 4.13^{3}}=46.02
$$

and

$$
B+\delta:=6.93+46.02=52.95
$$

Of course, this is only an upper bound for our search region. As soon as we have found r linearly independent points on the curve we stop the search procedure. The first four linearly independent points (and their Néron-Tate heights) that we find are

$$
\begin{aligned}
& P_{1}=(255,3942), \quad \hat{h}\left(P_{1}\right)=4.1315413974 \\
& P_{2}=(115,692), \quad \hat{h}\left(P_{2}\right)=5.2383463867 \\
& P_{3}=(409 / 4,1315 / 8), \quad \hat{h}\left(P_{3}\right)=6.5590924826 \\
& P_{4}=(25275 / 169,3334176 / 2197), \quad \hat{h}\left(P_{4}\right)=8.8809956275 .
\end{aligned}
$$

Next, we determine the regulator of the four points $P_{1}, P_{2}, P_{3}, P_{4}$

$$
\operatorname{Reg}\left(P_{1}, P_{2}, P_{3}, P_{4}\right)=\operatorname{det} \hat{h}\left(P_{\mu}, P_{\nu}\right)_{1 \leq \mu, \nu \leq 4}=999.879
$$

which is equal to the upper bound R^{\prime} for the regulator R obtained by the conjecture of Birch and Swinnerton-Dyer. If $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ were not a basis of $E(\mathbb{Q})$, then the size of regulator R of $E(\mathbb{Q})$ would be at most $R^{\prime} / 4=249.96970665$. By inserting this new upper bound for R and the values $\mu_{i}=\hat{h}\left(P_{i}\right), 1 \leq i \leq 3$, into formula (4) we find

$$
B=5.71 ;
$$

but there are only 2 linearly independent points with Néron-Tate height less than 5.71 which is a contradiction to $\operatorname{rank}(E / \mathbb{Q})=4$. Thus, $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ must be a basis of $E(\mathbb{Q})$.
We still have to transform the basis points back to the original model (2) of our curve:

$$
\begin{aligned}
& P_{1} \rightarrow(1020,31536) \\
& P_{2} \rightarrow(460,5536) \\
& P_{3} \rightarrow(409,1315) \\
& P_{4} \rightarrow(101100 / 169,26673408 / 2197) .
\end{aligned}
$$

Note that the Néron-Tate height \hat{h} is invariant under birational transformations.

Remark: We use the second part of the Birch and Swinnerton-Dyer conjecture to obtain an upper bound for the regulator, but once we have found a basis we can prove that these points really form a basis. Thus our calculations are eventually unconditional.

3 A bound for integer points

Let E / \mathbb{Q} be an elliptic curve with rank r and basis $\left\{P_{1}, \ldots, P_{r}\right\}$ of the infinite part of $E(\mathbb{Q})$. Then, any point $P \in E(\mathbb{Q})$ can be represented as

$$
\begin{equation*}
P=\sum_{i=1}^{r} n_{i} P_{i}+P_{r+1} \quad\left(n_{i} \in \mathbb{Z}\right) \tag{5}
\end{equation*}
$$

where $P_{r+1} \in E_{\text {tors }}(\mathbb{Q})$ is a torsion point. Our aim is to find an upper bound $N \in \mathbb{N}$ such that

$$
P \text { is integral } \quad \Longrightarrow \quad\left|n_{i}\right| \leq N \quad(\forall 1 \leq i \leq n)
$$

3.1 Finding an initial bound

In this section we briefly describe the method presented in [GPZ1]. It is based on an explicit estimation of linear forms in elliptic logarithms.
Let r be the rank, P_{1}, \ldots, P_{r} be a basis and g be the order of the torsion subgroup of the elliptic curve E / \mathbb{Q} defined by Mordell's equation (1).
Denote by ω_{1} and ω_{2} the real and complex period of E, respectively, define $\tau= \pm \frac{\omega_{2}}{\omega_{1}}$ such that $\operatorname{Im} \tau>0$, and take λ_{1} to be the smallest eigenvalue of the regulator matrix $\left(\hat{h}\left(P_{\mu}, P_{\nu}\right)\right)_{1 \leq \mu, \nu \leq r}$ associated with the basis P_{1}, \ldots, P_{r}. We designate by $\left.\left.u_{i} \in\right]-\frac{1}{2}, \frac{1}{2}\right]$ the elliptic logarithm of the point P_{i}.

Then, according to [GPZ1], we define

$$
\xi_{0}=\left\{\begin{aligned}
2|k|^{\frac{1}{3}} & \text { if } k<0 \\
c k^{\frac{1}{3}} & \text { if } k>0, \text { where } c=5.85 .
\end{aligned}\right.
$$

Let

$$
P=(\xi, \eta)=\left(\wp(u), \wp^{\prime}(u)\right)=\sum_{i=1}^{r} n_{i} P_{i}+P_{r+1} \in E(\mathbb{Q})
$$

be any integer point on E / \mathbb{Q} parameterized by the Weierstrass \wp-function and

$$
u=n_{0}+\sum_{i=1}^{r} n_{i} u_{i}+u_{r+1} \quad\left(n_{i} \in \mathbb{Z}\right)
$$

be its elliptic logarithm. In order to get rid of the torsion point, we consider the point $P^{\prime}=g \cdot P$ and its elliptic logarithm $u^{\prime}=g u$ in the corresponding representation

$$
u^{\prime}=n_{0}^{\prime}+\sum_{i=1}^{r} n_{i}^{\prime} u_{i} \quad\left(n_{i}^{\prime}=g \cdot n_{i}\right)
$$

The following proposition from [GPZ1] gives us lower and upper estimates for the elliptic logarithm of an integer point.

Proposition 2 Let $P=(\xi, \eta)=\left(\wp(u), \wp^{\prime}(u)\right)$ with $\xi>\xi_{0}$ be an integer point on E / \mathbb{Q} and put $P^{\prime}=g P$. The elliptic logarithm $u^{\prime}=g u$ of P^{\prime} satisfies the estimate

$$
\begin{aligned}
\exp \{ & \left.-C h^{r+1}\left(\log \left(\frac{r+1}{2} g N\right)+1\right)\left(\log \log \left(\frac{r+1}{2} g N\right)+1\right)^{r+1} \prod_{i=1}^{r} \log V_{i}\right\} \\
& \leq|g \cdot u| \\
& <\exp \left\{-\lambda_{1} N^{2}+\log \left(g \cdot c_{1}^{\prime}\right)\right\},
\end{aligned}
$$

where the constant C (see [Dav]) is given by ${ }^{2}$

$$
C=2.9 \cdot 10^{6 r+6} \cdot 4^{2 r^{2}} \cdot(r+1)^{2 r^{2}+9 r+12.3}
$$

and

$$
\begin{aligned}
& h=\log 4|k|, \\
& V_{i}=\exp \max \left\{\hat{h}\left(P_{i}\right), h, \frac{3 \pi u_{i}^{2}}{\omega_{1}^{2} \operatorname{Im} \tau}\right\} \quad(1 \leq i \leq r), \\
& V=\max _{1 \leq i \leq r}\left\{V_{i}\right\}, \\
& c_{1}^{\prime}=\frac{2^{\frac{7}{3}}}{\omega_{1}} .
\end{aligned}
$$

The following theorem, also from [GPZ1], enables us to find an initial upper bound for N.

[^2]Theorem 2 Let

$$
P=(\xi, \eta)=\sum_{i=1}^{r} n_{i} P_{i}+P_{r+1} \in E(\mathbb{Q})
$$

be an integer point on E / \mathbb{Q} as in (5) with first coordinate $\xi>\xi_{0}$. Then, the number

$$
N=\max _{1 \leq i \leq n}\left\{\left|n_{i}\right|\right\}
$$

satisfies the inequality

$$
N \leq N_{2}:=\max \left\{N_{1}, \frac{2 V}{r+1}\right\}
$$

where

$$
N_{1}=2^{r+2} \sqrt{c_{1} c_{2}} \log ^{\frac{r+2}{2}}\left(c_{2}(r+2)^{r+2}\right)
$$

for

$$
c_{1}=\max \left\{\frac{\log \left(g c_{1}^{\prime}\right)}{\lambda_{1}}, 1\right\}
$$

and

$$
c_{2}=\max \left\{\frac{C}{\lambda_{1}}, 10^{9}\right\}\left(\frac{h}{2}\right)^{r+1} \prod_{i=1}^{r} \log V_{i}
$$

Example: Also by a method of Grayson, we compute the complex period

$$
\omega_{2}=0.12060251+0.20888326 i \quad \text { and the imaginary part } \quad \operatorname{Im} \tau=0.86603868
$$

The smallest eigenvalue of the regulator matrix is

$$
\lambda_{1}=3.20488705
$$

The elliptic logarithms of the basis points are

$$
\begin{aligned}
& u_{1}=0.26081931, \\
& u_{2}=0.41475763, \\
& u_{3}=0.47802466, \\
& u_{4}=0.34771489 .
\end{aligned}
$$

Then, we have

$$
\xi_{0}=2 \cdot 66688704^{\frac{1}{3}}=811.04961324
$$

We will need ξ_{0} to carry out an extra search for points with x-coordinate less than or equal to ξ_{0}, since the theorem is only valid for those points $P=(\xi, \eta)$ with $\xi>\xi_{0}$.
David's constant is

$$
C=2.9 \cdot 10^{6 r+6} \cdot 4^{2 r^{2}} \cdot(r+1)^{2 r^{2}+9 r+12.3} \sim 2.5 \cdot 10^{105}
$$

We also compute the values

$$
\begin{aligned}
& h=\log (4 \cdot 66688704) \sim 19.40184050, \\
& V_{1}=\exp (h)=\exp (19.40184050) \sim 2.7 \cdot 10^{8}, \\
& V_{2}=\exp \left\{\frac{3 \pi u_{2}^{2}}{\omega_{1}^{2} \operatorname{Im} \tau}\right\}=\exp (32.17732563) \sim 9.4 \cdot 10^{13}, \\
& V_{3}=\exp \left\{\frac{3 \pi u_{3}^{2}}{\omega_{1}^{2} \operatorname{Im} \tau}\right\}=\exp (42.75259814) \sim 3.7 \cdot 10^{19}, \\
& V_{4}=\exp \left\{\frac{3 \pi u_{4}^{2}}{\omega_{1}^{2} \operatorname{Im} \tau}\right\}=\exp (22.61558126) \sim 6.6 \cdot 10^{9}, \\
& V=V_{3} \\
& c_{1}=\max \{0.93035703,1\}=1, \\
& c_{2} \sim 4.0 \cdot 10^{115}
\end{aligned}
$$

Our initial bound N_{2} can now be determined. We have

$$
N_{1}=2^{6} \cdot \sqrt{c_{1} \cdot c_{2}} \cdot \log ^{3}\left(c_{2} \cdot 6^{6}\right) \sim 8.6 \cdot 10^{66}
$$

and obtain

$$
N_{2}=\max \left\{N_{1}, 2 \cdot \frac{V}{5}\right\}=\max \left\{N_{1}, 1.5 \cdot 10^{19}\right\}=N_{1} \sim 8.6 \cdot 10^{66}
$$

3.2 Reduction of the initial bound

Since, in general, the bound $N_{2} \geq N$ is very large, we have to reduce it to an appropriate size. This is done by a method of de Weger ([dW]) which is based on LLL-reduction (see [LLL]).
In order to reduce the bound for N, we consider the two inequalities

$$
\begin{equation*}
\left|n_{0}^{\prime}+\sum_{i=1}^{r} n_{i}^{\prime} u_{i}\right|<g c_{1}^{\prime} \exp \left\{-\lambda_{1} N^{2}\right\} \tag{6}
\end{equation*}
$$

and

$$
N \leq N_{2}
$$

as a homogeneous diophantine approximation problem. We will only give a brief description of de Weger's method and refer the reader to [GPZ1] or [dW] for more details .
Let C_{0} be a suitable positive integer, viz. $C_{0} \sim N_{2}^{r+1}$, and Γ be the lattice spanned by the $r+1$ vectors

$$
\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0 \\
\left\lfloor C_{0} u_{1}\right\rfloor
\end{array}\right), \cdots,\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1 \\
\left\lfloor C_{0} u_{r}\right\rfloor
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0 \\
C_{0}
\end{array}\right)
$$

where $\left\lfloor C_{0} u_{i}\right\rfloor$ denotes the largest integer less than or equal to $C_{0} u_{i}(1 \leq i \leq$ $r)$. The Euclidean length of the shortest non-zero vector of Γ is denoted by $l(\Gamma)$. Lemma 3.7 of $[\mathrm{dW}]$ states that if \tilde{N} is a positive integer such that

$$
l(\Gamma) \geq \sqrt{r^{2}+5 r+4} \cdot \tilde{N}
$$

then (6) cannot hold for N within the range

$$
\begin{equation*}
\sqrt{\frac{1}{\lambda_{1}} \log \frac{2^{\frac{7}{3}} \cdot C_{0}}{\omega_{1} \tilde{N}}}<N \leq \tilde{N} \tag{7}
\end{equation*}
$$

If $\left\{\underline{b}_{1}, \ldots, \underline{b}_{r+1}\right\}$ is an LLL-reduced basis for Γ, then we have

$$
l(\Gamma) \geq 2^{-\frac{r}{2}}\left\|\underline{b}_{1}\right\|
$$

where $\left\|\underline{b}_{1}\right\|$ is the Euclidean length of the shortest vector \underline{b}_{1}. We take

$$
\tilde{N}=2^{-\frac{r}{2}}\left\|\underline{b}_{1}\right\|\left(\sqrt{r^{2}+5 r+4}\right)^{-1}
$$

Then we replace N_{2} by the left hand side of (7) and repeat this procedure recursively until no further reduction can be achieved.

The task remains to compute all linear combinations

$$
\sum_{i=1}^{r} n_{i} P_{i}+P_{r+1}
$$

for $\left|n_{i}\right| \leq N$ and $P_{r+1} \in E_{\text {tors }}(\mathbb{Q})$.

Example: Starting with $N_{2}=8.6 \cdot 10^{66}$ and $C_{0}=10^{335} \sim N_{2}^{5}$, we compute an LLL-reduced basis of Γ with

$$
\left\|\underline{b}_{1}\right\|=9.1 \cdot 10^{66} .
$$

We also determine

$$
\tilde{N} \sim 4.5 \cdot 10^{65}
$$

and find the new upper bound $N_{2}=13$ for N.
Note that, since $C_{0}=10^{335}$, we have to approximate the elliptic logarithms u_{i} of the basis points P_{i} with an accuracy up to at least 335 digits.

A second reduction yields $N=N_{2}=2$ which cannot be reduced any further.
Since the torsion group is trivial, we only have to test all linear combinations

$$
\sum_{i=1}^{4} n_{i} P_{i} \quad \text { for }\left|n_{i}\right| \leq 2(1 \leq i \leq 4)
$$

We find the following 8 integer points

$$
\begin{aligned}
&(409,1315)=P_{3}, \\
&(409,-1315)=-P_{3}, \\
&(460,5536)=P_{2}, \\
&(460,-5536)=-P_{2}, \\
&(1020,31536)=P_{1}, \\
&(1020,-31536)=-P_{1}, \\
&(606365857,14931454281967)=2 \cdot P_{1}+P_{3}, \\
&(606365857,-14931454281967)=-2 \cdot P_{1}-P_{3} .
\end{aligned}
$$

The extra search procedure for points (ξ, η) with $\xi \leq \xi_{0}=811.04961324$ yields the four points

$$
(409, \pm 1315) \quad \text { and } \quad(460, \pm 5536)
$$

already found previously. Thus, the 8 points listed above are the only integer points on E over the rationals.

4 Sieving

The sieving procedure is not explained in [GPZ1]. That is why we discuss it briefly here.

In order to find a basis of the Mordell-Weil group, we have to determine all points

$$
P=(x, y)=\left(\frac{\xi}{\zeta^{2}}, \frac{\eta}{\zeta^{3}}\right), \quad \xi, \eta, \zeta \in \mathbb{Z},(\xi, \zeta)=1=(\eta, \zeta)
$$

on the curve (1) such that ${ }^{3}$

$$
\begin{equation*}
d(P)=\log \max \left\{|\xi|,\left|\zeta^{6} k\right|^{\frac{1}{3}}\right\}<B^{\prime} \tag{8}
\end{equation*}
$$

where

$$
B^{\prime}:=B+\delta+\frac{1}{3} \log 4|k|
$$

Similarly, to find all integer points on E by the method presented we have to test for all pairs $(\xi, \eta) \in \mathbb{Z}^{2}$ with $|\xi|<\xi_{0}$ whether or not they lie on E.

After this remark we come back to equation (1) with the extra condition (8).

First, we change the rational equation

$$
E:\left(\frac{\eta}{\zeta^{3}}\right)^{2}=\left(\frac{\xi}{\zeta^{2}}\right)^{3}+k
$$

into an equation over the integers

$$
\begin{equation*}
E_{\zeta}: \eta^{2}=\xi^{3}+\zeta^{6} k=: f_{\zeta}(\xi) \tag{9}
\end{equation*}
$$

by multiplying the equation for E with ζ^{6}.
From (8) and (9), we see that we have to consider the equation

$$
E_{\zeta}: \eta^{2}=f_{\zeta}(\xi)
$$

for each integer $\zeta \in\left[1,\left\lfloor\exp \left\{B^{\prime} / 2\right\}\right\rfloor\right]$ subject to the condition

$$
\xi \in\left[\max \left\{\left\lfloor-\zeta^{2}|k|^{\frac{1}{3}}\right\rfloor,-\left\lfloor\exp B^{\prime}\right\rfloor\right\},\left\lfloor\exp B^{\prime}\right\rfloor\right]
$$

Note that, by regarding (9) as an equation in the field of real numbers (i.e. 'modulo the infinite place'), we find that

$$
f_{\zeta}(x)<0
$$

[^3]for $x<-\zeta^{2}|k|^{\frac{1}{3}}$.
We will now show how the sieving of the equation
\[

$$
\begin{equation*}
y^{2}=x^{3}+K, \quad K \in \mathbb{Z} \tag{10}
\end{equation*}
$$

\]

in the interval $I=\left[x_{0}, x_{1}\right] \subseteq \mathbb{Z}$ is carried out. Here, for the sake of readability, we write K instead of $\zeta^{6} k$ and keep this number fixed.
It is obvious that if $(x, y) \in \mathbb{Z}^{2}$ satisfies (10), then (\tilde{x}, \tilde{y}) is a solution of the congruence

$$
Y^{2} \equiv X^{3}+K \quad(\bmod m)
$$

for every positive integer m, where \tilde{x}, \tilde{y} each denotes the smallest nonnegative residue of the integers x, y modulo m.

Choose some integers m_{1}, \ldots, m_{t} composed of small powers of the first few prime numbers. (In our implementation we used $m_{1}=6624=2^{5} \cdot 3^{2}$. $23, m_{2}=8075=5^{2} \cdot 17 \cdot 19, m_{3}=7007=7^{2} \cdot 11 \cdot 13$.) If $x^{3}+k$ is a square, then it is a square modulo each m_{i}. Hence, for each m_{i} we precompute the residue classes x for which $x^{3}+k$ is not a square modulo m_{i} and remove from the interval under consideration all integers in any of these classes. With the above-mentioned choices of m_{i}, this eliminates about 99.9% of all numbers in any long interval, and for the remaining small fraction we simply check directly whether $x^{3}+k$ is a square.

Remark: Of course, this sieving procedure can be applied to any equation of the form

$$
y^{2}=f(x, z) \in \mathbb{Q}[x, z]
$$

where we look only for solutions $x, y, z \in \mathbb{Z}$. For example, we applied a similar method to find points on the quartics

$$
Q: y^{2}=a x^{4}+b x^{3} z+c x^{2} z^{2}+d x z^{3}+e z^{4}, \quad a, b, c, d, e \in \mathbb{Z}
$$

which are the 2-coverings of elliptic curves E / \mathbb{Q} in the method of general 2-descent (cf. [Cr]). We used these quartics to find large basis points (of Néron-Tate height larger than 20).

5 Tables

In this section we display some tables that result from our computations based on the above method.

We first applied this method to the Mordell curves

$$
E: y^{2}=x^{3}+k, \quad 0<|k| \leq 10000
$$

Then, for $10000<|k| \leq 100000$, we proceeded as follows. Whenever we were able to compute a basis of E / \mathbb{Q}, we applied our algorithm for determining all integer points. For some curves, however, we were not able to find a basis. These curves have rank $r=1$ and a large generator. Here 'large' means that the Néron-Tate height is larger than 70.

If there were any integer point $P=(x, y)$ on one of these curves, its NéronTate height must be at least as large as the height (≥ 70) of the (missing) generator.

Since, from (3), the upper bound for the difference between the Weil height and the Néron-Tate height on E / \mathbb{Q} is
$\delta=\frac{1}{3} \log |k|+\frac{10}{3} \log 2 \leq \frac{1}{3} \log 100000+\frac{10}{3} \log 2 \leq 7 \quad($ for all $|k| \leq 100000)$
such a point must have first coordinate of absolute value

$$
|x|>\exp \{70-7\}=\exp \{63\}>10^{28}
$$

But this is very unlikely since the x-coordinate of the largest integer point that we have found within the range $|k| \leq 100000$ is less than $4 \cdot 10^{10}$.

An alternative approach for finding a generator is the method of Heegner points. Once this method is implemented all integer points will be found.

5.1 Conjectures and conclusions

The large amount of data obtained from our computations gives rise to some speculations.

From Tables 3 and 7 below, we see that the maximal rank of the Mordell curves E / \mathbb{Q} for $|k|<10000$ is 4 , and 5 for $|k|<100000$. Furthermore, for $|k|<10,100,1000$ we find $\operatorname{rk}(E / \mathbb{Q}) \leq 1,2,3$, respectively. This suggests that the rank of E / \mathbb{Q} grows according to

$$
\operatorname{rk}(E / \mathbb{Q})=O(\log |k|)
$$

Mestre [Me] found that the rank of any elliptic curve E / \mathbb{Q} behaves like

$$
\operatorname{rk}(E / \mathbb{Q})=O\left(\frac{\log \mathcal{N}}{\log \log \mathcal{N}}\right)
$$

where \mathcal{N} denotes the conductor of E / \mathbb{Q} (for Mordell's curves, we have $\mathcal{N}=$ $\left.O\left(k^{2}\right)\right)$. For each rank $r>0$ occurring in our tables we took the smallest positive and the greatest negative integer k such that $E: y^{2}=x^{3}+k$ has rank r :

r	$k>0$	$k<0$	$\min \|k\|$
1	2	-2	2
2	15	-11	11
3	113	-174	113
4	2089	-2351	2089
5	66265	-28279	28279

In order to find the approximate rate of growth for the rank we applied several functions to these values.

r	$\|k\|$	$\log \|k\|$	$\log \|k\| / \log \log \|k\|$	$\log 4 k^{2} / \log \log 4 k^{2}$
1	2	0.693	-1.891	2.719
2	11	2.398	2.742	3.394
3	113	4.727	3.043	4.549
4	2089	7.644	3.758	5.926
5	28279	10.250	4.404	7.092

However, none of these functions seems to describe the growth rate. The most suitable function that we found is

r	$\|k\|$	$\log \|k\| /\left.\|\log \log \| k\right\|^{\frac{2}{3}}$
1	2	1.353
2	11	2.622
3	113	3.525
4	2089	4.762
5	28279	5.836

Also, from these tables, we see that the average number of integer points

$$
\Phi(r)=\frac{\# \text { integer points on all } E / \mathbb{Q} \text { with } \operatorname{rk}(E / \mathbb{Q})=r}{\# \text { curves } E / \mathbb{Q} \text { with } \operatorname{rk}(E / \mathbb{Q})=r}
$$

on a Mordell curve E of rank r seems grow exponentially in r.

Another observation that we made concerns the distribution of the ranks of the Mordell curves. Until recently, the common opinion among specialists was that half of all elliptic curves have rank 0 and half rank 1, with higher ranks occurring asymptotically for only 0% of all curves. However, numerical work of Zagier and Kramarz [ZK] calls this belief into question. They examined the family of elliptic curves

$$
x^{3}+y^{3}=m, \quad m \in \mathbb{Z} \text { cubefree. }
$$

These curves are birationally equivalent to the Mordell curves

$$
y^{2}=x^{3}-432 m^{2} .
$$

For $0<m \leq 70000$, and m cubefree, Zagier and Kramarz computed the value of $L(E, 1)$, and, for $0<m \leq 20000, m$ cubefree, also $L^{\prime}(E, 1)$ when the sign of the functional equation was negative. They point out that

$$
\begin{aligned}
& 6347 \text { curves }(38.145 \%) \text { have rank } 0 \\
& 8141 \text { curves }(48.927 \%) \text { have rank } 1 \\
& 1972 \text { curves }(11.852 \%) \text { have even rank } \geq 2 \\
& 179 \text { curves }(1.076 \%) \text { have odd rank } \geq 3 \text {. }
\end{aligned}
$$

For this family of elliptic curves, the number of curves with rank 1 is considerably higher than the number of curves of rank 0 , and the proportion of curves with rank greater than 1 is rather large.

Moreover, they detected a constancy of the proportion of curves with ranks larger than 1 over a large range of values of m, suggesting that these curves occur with positive density. Our computations for the Mordell curves E / \mathbb{Q} in the range $|k| \leq 100000$ confirm their observation. We even found that the proportion of curves with ranks greater than 1 is still larger, especially for even ranks. The corresponding results are exhibited in tables 1^{-}and 1^{+}.
In tables 1^{-}and 1^{+}we list the numbers (\#) and percentages (\%) of curves of ranks $0,1,2,3,4$, and 5 for values of k ranging over growing intervals and we display them separately for negative and positive values of k.

Table 1^{-}

$0>k \geq$		$r=0$	$r=1$	$r=2$	$r=3$	$r=4$	$r=5$
	$\#$	3625	4435	1702	228	10	0
-10000	$\%$	36.250	44.350	17.020	2.280	0.100	0.000
	$\#$	7211	8831	3437	494	27	0
-20000	$\%$	36.055	44.155	17.185	2.470	0.135	0.000
	$\#$	10851	13222	5121	757	48	1
-30000	$\%$	36.170	44.073	17.070	2.523	0.160	0.003
	$\#$	14450	17615	6858	1002	74	1
-40000	$\%$	36.125	44.038	17.145	2.505	0.185	0.003
	$\#$	18050	22008	8601	1243	96	2
-50000	$\%$	36.100	44.016	17.202	2.486	0.192	0.004
	$\#$	21694	26390	10266	1521	127	2
-60000	$\%$	36.157	43.983	17.110	2.535	0.212	0.003
	$\#$	25324	30758	11969	1799	148	2
-70000	$\%$	36.177	43.940	17.099	2.570	0.211	0.003
	$\#$	28966	35122	13654	2082	174	2
-80000	$\%$	36.208	43.903	17.067	2.603	0.215	0.003
	$\#$	32653	39489	15296	2363	197	2
-90000	$\%$	36.281	43.877	16.996	2.626	0.219	0.002
	$\#$	36278	43857	17010	2635	217	3
-	36.278	43.857	17.010	2.635	0.217	0.003	

Table 1^{+}

$0<k \leq$		$r=0$	$r=1$	$r=2$	$r=3$	$r=4$	$r=5$
	$\#$	2907	5111	1724	250	8	0
10000	$\%$	29.07	51.11	17.24	2.25	0.08	0.00
	$\#$	5889	10147	3398	531	35	0
20000	$\%$	29.445	50.735	16.990	2.655	0.175	0.000
	$\#$	8822	15224	5071	828	55	0
30000	$\%$	29.407	50.747	16.903	2.760	0.183	0.000

Table 1^{+}
(continued)

$0<k \leq$		$r=0$	$r=1$	$r=2$	$r=3$	$r=4$	$r=5$
40000	\#	11755	20290	6754	1118	83	0
	\%	29.387	50.725	16.885	2.795	0.207	0.000
50000	\#	14702	25360	8428	1412	98	0
	\%	29.404	50.720	16.856	2.824	0.196	0.000
60000	\#	17641	30411	10119	1706	123	0
	\%	29.402	50.685	16.865	2.843	0.205	0.000
70000	\#	20636	35495	11752	1999	153	1
	\%	29.480	50.656	16.789	2.856	0.219	0.001
80000	\#	23557	40550	13439	2276	177	1
	\%	29.446	50.688	16.799	2.845	0.221	0.001
90000	\#	26573	45601	15079	2580	201	2
	\%	29.486	50.668	16.754	2.867	0.223	0.002
100000	\#	29523	50659	16706	2874	235	3
	\%	29.523	50.659	16.706	2.874	0.235	0.003

As pointed out already, this statistics supports the observations made by Zagier and Kramarz.

Some other interesting observations can be made. Whereas for negative values of k the number of rank 0 curves is considerably higher than the number for positive values of k, the converse is true for rank 1 curves. This asymmetry remains true if we consider the distribution of even and odd ranks only for those k which are 6 -th power free. We display the data in table 2.

Table 2

$k<0$	$r=0$	$r=1$	$r=2$	$r=3$	$r=4$	$r=5$	r even	r odd
$\#$	35642	43085	16739	2611	217	3	52598	45699
$\%$	36.259	43.831	17.029	2.656	0.221	0.003	53.509	46.491
$k>0$								
$\#$	29003	49780	16436	2840	235	3	45674	52623
$\%$	29.505	50.642	16.721	2.889	0.239	0.003	46.465	53.535

We also mention that Brumer [Br] has recently proved that the average rank of an elliptic curve, ordered accordingly to its Faltings height, is at most 2.3. This result is conditional in that it depends on the conjecture of Birch and Swinnerton-Dyer, the conjecture of Shimura, Taniyama and Weil and the Riemann hypothesis for the L-function of an elliptic curve. From Table 7 below the average rank of Mordell's curves with $|k| \leq 100000$ turns out to be 0.9.

Furthermore, Stewart and Top [StT] showed that there exist positive numbers C_{1} and C_{2} such that, if T is a real number larger than C_{1}, then the number of sixth- power-free integers k with $|k| \leq T$ for which Mordell's curve has rank at least 6 is at least

$$
C_{2} T^{1 / 27} / \log ^{2} T
$$

5.2 Mordell's equation for $|k| \leq 10000$

Tables 3 and 7 below reveal that rank 0 curves have at most 5 integral points. This is, of course, a consequence of Proposition 1 from which we know that $\# E_{\text {tors }}(\mathbb{Q}) \leq 6$. It is remarkable that, in Tables 3 and 7 , Mordell's curves of rank 1 with k free of 6 -th powers have at most 12 integral points and equality is attained only for the curve with $k=100$. If k is not free of 6 -th powers the corresponding curves have up to 14 integer points in the range considered.

Table 3 summarizes the results of our computations with the Mordell curves

$$
E: y^{2}=x^{3}+k \quad \text { for } 0<|k| \leq 10000
$$

Table 3: Summary $|k| \leq 10000$

number of integer points	number of curves of rank					total number of curves
	0	1	2	3	4	
0	6459	6884	997	22		14362
1	24	3				27
2	45	2503	1462	108	1	4119
3		4				4
4		99	535	126		760
5	4	3				7
6		24	277	103	6	410
7		2				2
8		12	94	41	1	148
9		2				2
10		8	28	29	1	66
12		1	17	16	2	36
14		1	6	10	1	18
16			5	9		14
18			3	5	1	9
20				4	1	5
22			1	3	2	6
24				1	1	2
26			1			1
28					1	1
32				1		1
\sum	6532	9546	3426	478	18	20000

The total and average number of integer points

rank	0	1	2	3	4	all
\sum	134	5810	8228	2724	228	17124
$\Phi(r)$	0.021	0.609	2.402	5.699	12.722	0.856

5.2.1 Some curves with large generators

In this table we list the largest generators of rank 1 curves that we have found (for $|k| \leq 10000$). The points are represented in the following way:

$$
P=(x, y)=\left(\frac{\xi}{\zeta^{2}}, \frac{\eta}{\zeta^{3}}\right), \quad \xi, \eta, \zeta \in \mathbb{Z}, \zeta>0, \quad(\xi, \zeta)=(\eta, \zeta)=1
$$

We also exhibit the Néron-Tate heights $\hat{h}(P)$ of the points P.

Table 4: Large generators

$k=-9353$	$h(P)$
$\begin{aligned} \xi= & 13634551625582851252479616373723356341083952865891 \backslash \\ & 946306347473 \end{aligned}$	
$\begin{aligned} \eta= & 49215901424304585672781522820272883342461091583362 \backslash \\ & 774789106258579533483727671785124888387815 \end{aligned}$	
$\zeta=47864$	

| $k=$ | $-8417 \quad \hat{h}(P)=120.5297630755$ |
| ---: | :--- | ---: |
| $\xi=$ | $12814285925642095091367277624391093765095489632437 \backslash$ |
| | 721 |
| $\eta=$ | $16260886235617336373369419121919585278443520836700 \backslash$ |
| | 8500060099029062117903609856 |
| $\zeta=$ | 25046034789240123314885845 |

continued	
$k=-7969$	$\hat{h}(P)=111.8099458689$
$\begin{aligned} \xi= & 2291157583928969147760088047142360067139443658017 \\ \eta= & 23900475080633011267703823446959367517030263821145 \backslash \\ & 75661401665649622076433 \\ \zeta= & 304200723106110379993654 \end{aligned}$	
$k=-4530$	$\hat{h}(P)=110.3580688067$
$\begin{aligned} \hline \xi= & 847029141256762518733763780964312268229839867531 \\ \eta= & 77955637625350263810470790602942158496257479823491 \backslash \\ & 8280830708255133471239 \\ \zeta= & 613551056925673863477 \end{aligned}$	
$k=-3881$	$\hat{h}(P)=89.6692019429$
$\begin{aligned} \hline \xi= & 813326642479596225558992634322666199785 \\ \eta= & 23173930488614936556981151794837639882707489217277 \backslash \\ & 709463851 \\ \zeta= & 2516095125742235478 \end{aligned}$	

5.2.2 Order of the Tate-Shafarevič group

In Table 5 we list all orders of the Tate-Shafarevič groups that occurred for $|k| \leq 10000$ and the corresponding number of curves. In Table 6 we list those k for which the order of \amalg is at least 16 .

Table 5: Order of Ш

\#Ш	total	$k<0$	$k>0$	$r=0$	$r=1$	$r=2$	$r=3$	$r=4$
1	17704	8522	9182	4662	9129	3417	478	18
4	1499	835	664	1210	287	2	-	-
9	703	568	135	566	130	7	-	-
16	74	57	17	74	-	-	-	-
25	12	10	2	12	-	-	-	-
36	8	8	-	8	-	-	-	-
Σ	20000	10000	10000	6532	9546	3426	478	18

Table 6: Curves with large order of $Ш$

\#Ш = 16	k						
-9941	-9649	-9565	-9458	-9410	-9262	-9086	-9054
-8872	-8781	-8566	-8529	-8438	-8170	-8169	-8080
-7773	-7729	-7542	-7458	-7169	-7045	-6981	-6945
-6854	-6757	-6506	-6373	-6170	-6117	-6009	-5869
-5830	-5693	-5505	-5461	-5442	-5218	-4929	-4749
-4560	-4469	-4462	-4329	-4102	-3949	-3893	-3713
-3390	-3013	-2374	-2194	-1753	-1494	-1221	3686
4010	4631	4694	5730	6395	6467	6493	7221
7683	8222	8726	8950	9237	9762	9951	9965
-4910	-8206						
\#Ш = 25				k			
-9789	-7745	-7638	-7134	-6702	-6674	-5090	-4777
-4686	-3930	8798	9834				
\#Ш = 36				k			
-9978	-9740	-9227	-9194	-9185	-8053	-5414	-2957

In all cases, the structure of the Tate-Shafarevič groups is

$$
Ш \simeq \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}, \quad \text { where } \# Ш=n^{2},
$$

with the two exceptions

$$
Ш \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \quad \text { for } k=-4910 \text { and }-8206
$$

Note that for $r \geq 2$, the orders of the Tate-Shafarevič groups are conjectural.

5.3 Mordell's equation for $|k| \leq 100000$

Table 7 summarizes the results of our computations with the Mordell curves

$$
E: y^{2}=x^{3}+k \text { for } 0<|k| \leq 100000 .
$$

Here we assume that those rank 1 curves for which we were unable to find a generator (see the introductory remarks of this section) do not have any integer points. This is the case for about 1800 rank 1 curves.

Table 7: Summary $|k| \leq 100000$

number of int. points	number of curves with rank						total number of curves
	0	1	2	3	4	5	
0	65620	77357	14859	723	3		158562
1	45	9					54
2	130	16723	13471	1783	51		32157
3		16					16
4		297	3344	1393	78		5112
5	6	7	1				14
6		55	1519	726	83		2383
7		2	1				3
8		29	346	386	64	1	826
9		4	1				5
10		13	95	204	46		358
12		2	37	115	32		186
14		2	18	77	20		117
16			10	41	23	1	75
18			5	33	14		52
20			3	12	15	1	31
22			4	10	9		23
24				3	6		9
26			1		3	1	5
28					1		1
30			1	1	2		4
32				1			1
36				1		1	2
38					1		1
42						1	1
48					1		1
\sum	65801	94516	33716	5509	452	6	200000

The total and average number of integer points							
rank	0	1	2	3	4	5	all
\sum	335	35522	54319	22960	4062	148	117346
$\Phi(r)$	0.005	0.376	1.611	4.168	8.987	24.667	0.587

5.3.1 Some large integer points

In this table we list all integer points $P=(x, y)$ on

$$
E: y^{2}=x^{3}+k \quad \text { for } 0<|k| \leq 100000
$$

with $x \geq 5 \cdot 10^{7}$.

Table 8: Large integer points			
k	rank	x_{P}	$\pm y_{P}$
28024	4	3790689201	233387325399875
-64 432	4	3171881612	178638660622364
91017	3	1979757358	88088243191777
99207	2	1303201029	47045395221186
-88688	3	1053831624	34210296678956
-63604	2	912903445	27582731314539
-44678	3	890838663	26588790747913
30788	2	428895712	8882343339054
14857	3	390620082	7720258643465
14668	4	384242766	7531969451458
-71873	2	227449469	3430262778906
79721	2	189024034	2598816054105
-37071	3	184151166	2498973838515
11492	2	154319269	1917035856801
55441	4	144185972	1731348576567
-22 189	3	140292677	1661699554612
78454	1	136918715	1602116974677
46747	1	133566713	1543644740562
-43084	3	128694365	1459954419179
-98084	3	121603794	1340975019110
21689	3	115716430	1244779822617
-58295	3	114932466	1232151436201
69760	3	112749404	1197212884968
8569	2	110781386	1166004406095

continued			
k	rank	x_{P}	$\pm y_{P}$
20961	3	108997072	1137947555953
-93664	2	107994529	1122283639935
92962	3	106999199	1106804177919
20513	2	106011056	1091507542127
25895	3	103289609	1049747744368
34721	4	86493730	804409034061
64809	3	79948698	714853574601
88538	2	77371607	680569411759
-57059	3	70078487	586647298662
28676	2	69830432	583535246338
89750	3	61429931	481470897421
-54312	2	53519722	391535164856
50948	2	52219621	377355403503

6 Graphs

In this section we give three graphical reproductions of the computations of the Mordell curves for $k=-10000$ to $10000 .{ }^{4}$ We ran a simple C-program on our files converting the values for k and the x-coordinates of the integer points into $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$-commands. For the sake of readability, we left out the very large integer points.

6.1 Mordell curves for $|k| \leq 10000$

In the first graph we put the values for k and x of all integer points $P=(x, y)$ on the curves $E: y^{2}=x^{3}+k$ for $-10,000 \leq k \leq 10,000$ into a coordinate system.
For lack of space, we had to limit the size of the x-coordinates of the integer points to 13000 ; there are 136 points with $x>13000$ which do not appear in the graph.

[^4]
Graph 1

We observed at first sight that, for negative values of k, there are several series of points which appear to be placed on a line whereas this phenomenon does not seem to occur for positive k.

We shall show that there are indeed lines in the negative half plane of the graph. To this end, let us assume that in Mordell's equation x, y and k are polynomials in a variable z over the reals:

$$
x, y, k \in \mathbb{R}[z]
$$

If

$$
k=k_{1} x+k_{2}^{\prime} \quad\left(k_{1}, k_{2}^{\prime} \in \mathbb{R}\right)
$$

is linear in x, then, as polynomials in z, x has even degree and y has degree divisible by 3 . Let us assume that x is quadratic in z. Without loss of generality, we may take

$$
x=z^{2}+a \quad(a \in \mathbb{R})
$$

Then

$$
k=k_{1} z^{2}+k_{2} \quad\left(k_{1}, k_{2} \in \mathbb{R}\right)
$$

and we put

$$
y=z^{3}+y_{1} z^{2}+y_{2} z+y_{3} \quad\left(y_{1}, y_{2}, y_{3} \in \mathbb{R}\right)
$$

Inserting these expressions for x, y and k in Mordell's equation (1) and comparing coefficients of z^{ν} for $\nu=5,4,3,2,0$ yields

$$
y_{1}=0, y_{2}=\frac{3}{2} a, y_{3}=0, k_{1}=-\frac{3}{4} a^{2} \quad \text { and } \quad k_{2}=-a^{3}
$$

Hence, we obtain the quantities x, y and k as polynomials over \mathbb{Q} in two variables a and z :

$$
\begin{equation*}
x=z^{2}+a, k=-a^{2}\left(\frac{3}{4} z^{2}+a\right), y=z\left(z^{2}+\frac{3}{2} a\right) \tag{11}
\end{equation*}
$$

On specifying $a \in \mathbb{Z}$ as a fixed integer, we see that x depends linearly on k, namely $x=-\frac{4}{3 a^{2}}\left(k+\frac{1}{4} a^{3}\right)$, and x, k and y attain integer values for all $z \in \mathbb{Z}$ if a is even, and for all $z \in 2 \mathbb{Z}$, if a is odd. Moreover, k is negative for all sufficiently large values $|z|$.

However, for negative values of a, the constant k, as a function of z, attains positive values for (finitely many) parameters z of small absolute value $|z|$. In this case, there are lines which start in the positive half plane and go up to the negative half plane. However, they cannot be visualized in our graph.

The relation (11) reflects the general situation if x is a quadratic polynomial. By a more involved calculation, we obtain a similar result if x is a quartic rather than a quadratic polynomial in z.

Graph 2

In the above graph we depicted the lines

$$
\begin{array}{ll}
\alpha: \quad a=1, k=-\frac{1}{4}(3 x+1) ; & \beta: \quad a=2, k=-3 x-2 \\
\gamma: \quad a=3, k=-\frac{9}{4}(3 x+3) ; & \delta: \quad a=4, k=-12 x-4
\end{array}
$$

6.2 Hall's conjecture

We tried to illustrate M. Hall's conjecture [Ha] graphically. The conjecture states that, for any integer point $P=(x, y)$ on a Mordell curve $E: y^{2}=$ $x^{3}+k$, the estimate

$$
|x|^{\frac{1}{2}}<C|k|
$$

holds with an absolute constant C. Lang [La] refers to the Hall conjecture in a weaker form, namely

$$
|x|^{\frac{1}{2}}<C_{\varepsilon}|k|^{1+\varepsilon}
$$

for any $\varepsilon>0$, with C_{ε} depending only on ε.
In its original form, the Hall conjecture is best possible since Danilov [Dan] proved the existence of infinitely many integers x and y such that

$$
\left|x^{3}-y^{2}\right|<216 \sqrt{2|x|}-1080 .
$$

In the following table we listed all Mordell curves for which $|x|^{\frac{1}{2}} /|k|>1$.

Table 9: Hall's conjecture for $\|k\| \leq 100000$					
k	x	$x^{\frac{1}{2}} /\|k\|$	k	x	$x^{\frac{1}{2}} /\|k\|$
1090	28187351	4.87	14668	384242766	1.34
17	5234	4.26	14857	390620082	1.33
225	720114	3.77	8569	110781386	1.23
24	8158	3.76	11492	154319269	1.08
-307	939787	3.16	618	421351	1.05
-207	367806	2.93	297	93844	1.03
28024	3790689201	2.20			

Hence, for the Mordell curves with $|k| \leq 100000$, Hall's conjecture is true for $C=5$.

For our graphical illustration of Hall's conjecture, we used the Mordell curves with $-10000 \leq k \leq 10000$. We put the values for k on the vertical axis
of the coordinate system (with a linear growth rate) and the values for $|x|$ with a quadratic rate of growth on the horizontal axis.

Graph 3

References

[BSt] B.J. Birch, N.M. Stephens: The parity of the rank of the Mordell-Weil group. Topology 5 (1966) 295-299.
[BSD] B.J. Birch, H.P.F. Swinnerton-Dyer: Notes on elliptic curves I and II. J. Reine Angew. Math., 212 (1963) 7-15, 218 (1965) 79-208.
[Br] A. Brumer: The average rank of elliptic curves I. Invent. Math. 109 (1992) 445-472.
[BMG] A. Brumer, O. McGuiness: The behavior of the Mordell-Weil group of elliptic curves. Bull. Amer. Math. Soc. (N.S.) 23 (1990) 375-382.
[Ca] J.W.S. Cassels: An introduction to the geometry of numbers. Die Grundlehren der mathematischen Wissenschaften Band 99, SpringerVerlag, Berlin und New York.
[CW] J. Coates, A. Wiles: On the conjectures of Birch and SwinnertonDyer. Invent. Math. 39 (1977) 233-251.
[Cr] J.E. Cremona: Algorithms for modular elliptic curves. Cambridge University Press (1992).
[Dav] S. David: Minorations de formes linéaires de logarithmes elliptiques. Me'moires de la Societe' Mathe'matique de France Nume'ro 62, Nouvelle se'rie 1995. Supple'ment au Bulletin de la S.M.F. Tome 123, 1995, fascicule 3.
[Dan] L.V. Danilov: The diophantine equation $y^{2}-x^{3}=k$ and a conjecture of M. Hall. (Russian), Mat. Zametki 32 (1982) 273-275. Corr. 36 (1984) 457-458. Engl. transl.: Math. Notes 32 617-618, 36726.
[EEPSS] W.J. Ellison, F. Ellison, F. Pesek, C.E. Stahl, D.S. Stall: The diophantine equation $y^{2}+k=x^{3}$. J. Number Theory 2 (1970) 310-321.
[Fu] R. Fueter: Über kubische diophantische Gleichungen. Comm. Math.Helv., 2 (1930) 69-89.
[G] J. Gebel: Bestimmung aller ganzen und S-ganzen Punkte auf elliptischen Kurven über den rationalen Zahlen mit Anwendung auf die Mordellschen Kurven. PhD Thesis, Universität des Saarlandes, Saarbrücken 1996.
[GPZ1] J. Gebel, A. Pethő, H.G. Zimmer: Computing integral points on elliptic curves. Acta Arith. 68 (1994) 171-192.
[GPZ2] J. Gebel, A. Pethő, H.G. Zimmer: Computing S-integral points on elliptic curves. To appear in Proceedings ANTS-II, Bordeaux 1996, Lecture Notes in Comp. Sci., Springer-Verlag.
[GZi] J. Gebel, H.G. Zimmer: Computing the Mordell-Weil group of an elliptic curve over \mathbb{Q}. CRM Proc. \& Lect. Notes, Vol. 4 (1994) 61-83.
[GM] B. Gordon, S.P. Mohanty: On a theorem of Delannay and some related results. Pacific J. Math. 68 (1977) 399-409.
[Gra] D.R. Grayson: The arithmetic-geometric mean. Arch. Math. 52 (1989) 507-512.
[Gre] R. Greenberg: On the Birch and Swinnerton-Dyer conjecture. Invent. Math. 72 (1983) 241-265.
[GZa] B. Gross, D. Zagier: Heegner points and derivatives of L-series. Invent. Math. 84 (1986) 225-320.
[Ha] M. Hall: The diophantine equation $x^{3}-y^{2}=k$. Computers in Number Theory, A.O.L. Atkin and B.J. Birch eds., Academic Press (1971) 173198.
[Ko1] V.A. Kolyvagin: Finiteness of $E(\mathbb{Q})$ and \amalg for a subclass of Weil curves. (Russian) Izv. Acad. Nauk USSR 52 (1988) 522-540.
[Ko2] V.A. Kolyvagin: Euler Systems. The Grothendieck Festschrift, vol. 2. Progr. in Math. 87, (1990) 474-499, Birkhäuser Boston.
[LJB] M. Lal, M.F. Jones, W.J. Blundon: Numerical solutions of $y^{3}-x^{2}=$ k. Math. Comp. 20 (1966), 322-325.
[La] S. Lang: Conjectured diophantine estimates on elliptic curves. Progr. in Math. 35 (1983) 155-171, Birkhäuser, Basel.
[LLL] A.K. Lenstra, H.W. Lenstra, L. Lovász: Factoring polynomials with rational coefficients. Math. Ann. 261 (1982) 515-534.
[LF] J. London, M. Finkelstein: On Mordell's equation $y^{2}-k=x^{3}$. Bowling Green State University, Bowling Green, Ohio (1973).
[Ma] Y.I. Manin: Cyclotomic fields and modular curves. Russian Math. Surveys 26 (1971) no. 6, 7-78.
[Me] J.F. Mestre, Formules explicites et minorations de conducteurs de variétés algébriques. Compos. Math. 58 (1986), 209-232.
[Mo] L.J. Mordell: Diophantine equations. Academic Press (1969) 238-254.
[Ru1] K. Rubin: Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 64 (1981) 455-470.
[Ru2] K. Rubin: The work of Kolyvagin on the arithmetic of elliptic curves. Arith. of Compl. Manifolds, Proc., Lect. Notes in Math. 1399 (1988) 128-136, Springer-Verlag, Berlin und New York.
[Si] J.H. Silverman: The Difference between the Weil height and the canonical height on elliptic curves. Math. Comp. 55 (1990) 723-743.
[Sp] V.G. Sprindžuk: Classical diophantine equations. Lect. Notes in Math. 1559 (1993) p. 113, Springer-Verlag, Berlin und New York.
[Sta] H.M. Stark: Effective estimates of solutions of some diophantine equations, Acta Arith. 24 (1973) 251-259.
[Ste] R.P. Steiner: On Mordell's equation $y^{2}-k=x^{3}$: a problem of Stolarsky. Math. Comp. 46 (1986) 703-714.
[SM] R.P. Steiner, S.P. Mohanty: On Mordell's equation $y^{2}-k=x^{3}$. Indian J. Pure Appl. Math. 22 (1991) 13-21.
[StT] C.L. Stewart, J. Top: On ranks of twists of elliptic curves and powerfree values of binary forms. J. Amer. Math. Soc. 8 (1995) 943-973.
[STz] R.J. Stroeker, N. Tzanakis: Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. Acta Arith. 67 (1994), 177-196.
[dW] B.M.M. de Weger: Algorithms for diophantine equations. Ph. D. Thesis, Centrum voor Wiskunde en Informatica, Amsterdam (1987).
[Ta] J. Tate: Algorithm for determining the type of a singular fiber in an elliptic pencil. Modular Functions in One Variable IV, Lect. Notes in Math. Vol. 476 (1975) 33-52, Springer-Verlag, Berlin und New York.
[Za] D. Zagier: Large integral points on elliptic curves. Math. Comp. 48 (1987) 425-436.
[ZK] D. Zagier, G. Kramarz: Numerical investigations related to the L series of certain elliptic curves. J. Indian Math. Soc. 52 (1987), 51-60, (Ramanujan Centennary volume).
[Zi1] H.G. Zimmer: On Manin's conditional algorithm. Bull. Soc. Math. France, Mémoire N^{o} 49-50 (1977) 211-224.
[Zi2] H.G. Zimmer: Generalization of Manin's conditional algorithm. SYMSAC 76. Proc. ACM Sympos. Symbolic Alg. Comp., Yorktown Heights, N.Y. (1976) 285-299.
[Zi3] H.G. Zimmer: A limit formula for the canonical height of an elliptic curve and its application to height computations. Number Theory. Ed. R.A. Mollin, W. de Gruyter Verlag, Berlin and New York (1990) 641-659.

[^0]: *Research partly supported by the DFG
 ${ }^{\dagger}$ Research supported in part by Hungarian National Foundation for Scientific Research Grant No. 16791/95.

[^1]: ${ }^{1}$ Additional data can be obtained via ftp under the address ftp.math.uni-sb.de in /pub/simath/mordell

[^2]: ${ }^{2}$ This expression for C is a correction of the value of C used in [GPZ1]

[^3]: ${ }^{3}$ Note that we have replaced the ordinary Weil height $h(P)$ by the modified Weil height $d(P)$ which is more convenient for our purposes.

[^4]: ${ }^{4}$ This was suggested to us by Barry Mazur.

