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Summary

In an earlier paper we developed an algorithm for computing all integral
points on elliptic curves over the rationals Q. Here we illustrate our method
by applying it to Mordell’s equation y2 = x3+k for 0 6= k ∈ Z and draw some
conclusions from our numerical findings. In fact we solve Mordell’s equation
in Z for all integers k within the range 0 < |k| ≤ 10 000 and partially
extend the computations to 0 < |k| ≤ 100 000. For these values of k, the
constant in Hall’s conjecture turns out to be C = 5. Some other interesting
observations are made concerning large integer points, large generators of
the Mordell-Weil group and large Tate-Shafarevič groups. Three graphs
illustrate the distribution of integer points in dependence on the parameter
k. One interesting feature is the occurrence of lines in the graphs.
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1 Introduction

Mordell’s equation

E : y2 = x3 + k, 0 6= k ∈ Z, (1)

has a long history. Various methods have been applied to solve it or to prove
some assertions about its number of solutions. An illuminating account of
these endeavors is given in Mordell’s book [Mo].

We are interested in finding all integer solutions of Mordell’s equation for a
large range of parameters k. The numerical results obtained are then used
to estimate the constant in Hall’s conjecture and to illustrate in three graphs
the distribution of integer points.

Until recently, Mordell’s equation could be completely solved in rational
integers only for parameters k ∈ Z within the range (see [LF])

|k| ≤ 100

and – with certain exceptions – within the range (see [SM])

100 < k ≤ 200

as well as for some special higher values of k, e.g. k = −999 (see [Ste]).
“Small” solutions, i.e. solutions with |y| ≤ 1010 were computed for the much
larger range

|k| ≤ 10 000

(see [LJB]).

However, recent progress in the theory, the availability of very efficient al-
gorithms based on the theory and advanced computer technology enable us
meanwhile to completely solve Mordell’s equation in rational integers for

|k| ≤ 10 000

and for almost all k ∈ Z within the interval

|k| ≤ 100 000.

Here ‘almost all’ means for all but about 1000 curves for which we could not
find any integer point with first coordinate less than 1028 in absolute value.
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This range of the parameter k is already large enough to provide suitable
data to test the constants in Hall’s conjecture [Ha]. Our theoretical findings
lead to a bound for the coordinates of integer points which is exponentially
worse than the bound established by Stark ([Sta], cf. also [Sp]). That is why
we do not elaborate on this topic here.

The method for determining all integer points on elliptic curves over the
rationals is based on ideas of Lang and Zagier [Za] and was described already
in our paper [GPZ1]. In this article, we use Mordell’s equation to illustrate
our method, and we briefly explain the point search by sieving, not explained
in [GPZ1]. The determination of all integer points has two ingredients.
The first is an efficient and unconditional algorithm for computing the rank
and a basis of the group of rational points E(Q) of an elliptic curve E
over the rationals Q developed in [GZi]. The second is an explicit lower
bound for linear forms in elliptic logarithms established by David [Dav]. We
mention that essentially the same method was also used by Stroeker and
Tzanakis [STz]. However, they do not employ Manin’s conditional algorithm
described in [GZi].

The numerical results obtained include curves with large Tate-Shafarevič
groups, curves with large generators and curves with large integer points.
In his review of the paper [LJB] (see MR 33#91), Cassels claims that the
largest integer solutions within the range |k| ≤ 10 000 are (for k > 0 or
k < 0, respectively)

1 775 1043 − 2 365 024 8262 = −5 412,
939 7873 − 911 054 0642 = 307.

However, we found the larger solutions

6 369 0393 − 16 073 515 0932 = −7 670,
110 781 3863 − 1 166 004 406 0952 = 8569.

One experimental observation derived from the tables is that the rank r of
Mordell’s curves grows according to

r = O(log |k|/| log log |k|| 23 ).

Three graphs illustrate the distribution of integer points for different para-
meters k. The graphs give rise to some interesting theoretical observations.
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For lack of space, not all of the numerical data we obtained could be repro-
duced here1.

We have extended our algorithm and calculations to S-integral points on
Mordell’s equation. A preliminary report on this is given in [GPZ2]. (See
also [G].)

Acknowledgment. We wish to thank the referee for many valuable sug-
gestions.

2 Determination of a Basis

In this section we will introduce an algorithm to determine the torsion group,
the rank and a basis of the free part of the Mordell–Weil group E(Q). The
algorithm is conditional in that it is based on the truth of the conjecture of
Birch and Swinnerton-Dyer [BSD].

However, by the work of Coates-Wiles, Greenberg, Gross-Zagier, Rubin and
Kolyvagin (see [CW], [Gre] [GZa], [Ru1], [Ru2], [Ko1], [Ko2]) for ranks
r = 0 and r = 1, the conjecture is a theorem provided the curve in question
is modular. The Mordell curves have complex multiplication by the ring of
integers of Q(

√−3) and thus are, a fortiori, modular. On the other hand,
Cremona [Cr] has developed a method to determine the rank of an elliptic
curve over Q, if the 2-part of the Tate-Shafarevič group is trivial. With
these results, we were able to show that the ranks conjecturally obtained
by our algorithm are the true ranks for all parameters k within the range
|k| ≤ 10 000 with the exception of two curves. The exceptions are the
curves (1) for k = −7 954 and 8 206. In these cases, the conjectured rank of
E/Q is 2 and the order of the Tate-Shafarevič group is conjectured to be 4.
However, in these two cases, a 3-descent yields the correctness of the ranks
(and the Tate-Shafarevič groups as well). Therefore, our numerical results
for |k| ≤ 10 000 are in fact independent of any conjecture.

We will use an example (see section 2.1) taken from [BMG] to illustrate the
execution of our algorithm. In the example we shall use throughout the type
sans serif. The floating point values will be given with an accuracy of eight
decimal digits.

1Additional data can be obtained via ftp under the address ftp.math.uni-sb.de in
/pub/simath/mordell
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For an arbitrary elliptic curve E over Q we denote by

N the conductor,
R the regulator,
X the Tate–Shafarevič group,
ω1 the real period,
cp the p-th Tamagawa number.

Conjecture of Birch and Swinnerton-Dyer

(i) The rank r of E/Q is equal to the order of the zero of the L-series
L(E, s) of E/Q at the argument s = 1.

(ii) The first non-zero term in the Taylor-expansion of the L-series is

lim
s→1

L(E, s)
(s− 1)r

=
Ω ·#X ·R

(#Etors(Q))2
·
∏

p|N
cp,

where Ω = c∞ · ω1 with c∞ := number of connected components of E(R).

2.1 The Torsion Group

For computing the torsion subgroup of E(Q) for Mordell’s curve, we use the
following proposition which is due to Fueter [Fu].

Proposition 1 Let k = m6 · k0, where m, k0 ∈ Z and k0 is free of sixth
power prime factors. Then the torsion subgroup of E : y2 = x3 + k over Q
is

Etors(Q) ∼=





Z/6Z if k0 = 1,
Z/3Z if k0 is a square different from 1, or k0 = −432,
Z/2Z if k0 is a cube different from 1,
{O} otherwise,

the points of order 2 being (−a, 0) if k = a3 and the points of order 3 being
(0, ±b) if k = b2 and (12m2, ±36m3) if k = −432m6.

Hence, the order of the torsion subgroup Etors(Q) is

g ≤ 6.
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Example: Let
E : y2 = x3 − 66 688 704. (2)

We have the factorization

−66 688 704 = −26 · 33 · 38 593

and thus, by Proposition 1, the torsion subgroup is Etors(Q) = {O}.

2.2 The Rank

From the first part of the Birch and Swinnerton–Dyer conjecture we conclude
that the rank r of E/Q can be determined as

r = min{ρ ≥ 0 | L(ρ)(E, 1) 6= 0}.
In order to compute the L-series and its derivatives at s = 1, we need to know
the sign C = ±1 of the functional equation of E/Q. It can be computed
either by means of the Fricke involution (see [Cr]) or by evaluating the Hecke
equation

F (z) = − C

N z2
F

(
− 1
N z

)

of the inverse Mellin transform

F (z) =
∞∑

n=1

ane2πiz

of the L-series of E/Q. If

F

(
i√N

)
6= 0,

then C = 1; otherwise we evaluate the Hecke equation at a point z 6= i√
N

and derive the value of C. Conjecturally,

C = (−1)r

(cf. [BSt]).

Example: First, we determine the conductor

N = 214 476 429 456
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by an algorithm of Tate [Ta]. After having evaluated 360 000 coefficients of the Fourier
series F (z) in our example we find the approximation

F̃ (
i√N ) = 37 647.904,

of F ( i√
N ) so that the sign of the functional equation must be C = +1 (since F ( i√

N ) =
0 if C = −1).

We also get the approximation L̃ of the L-series of E/Q at s = 1

L̃(E, 1) = 0.00000009.

and we ‘conclude’ (see the remark below) that L(E, 1) = 0.

For the first, second and third derivative of the L-series at s = 1 we obtain the
approximations

L̃(1)(E, 1) = 0.00000018
L̃(2)(E, 1) = 0.00000003
L̃(3)(E, 1) = 0.00000005

and, again, we conclude that L(ρ)(E, 1) = 0 for ρ = 1, 2, 3.

Our approximation of the fourth derivative of the L-series at s = 1 is

L̃(4)(E, 1) = 11 576.437

Thus we conjecture that the rank of E over Q is r = 4. We then prove by general

2-descent that the rank is indeed r = 4.

Remark: In order to prove that the ρ-th derivative of the L-series of E/Q at
s = 1 is zero we assume that r = ρ is the rank of E/Q and insert the values
for r and L(r)(E, 1) into the estimate (4) given below for the regulator R.
With this upper bound for R we try to compute a basis of E(Q). If we are not
able to find a basis, the rank must be larger than ρ and thus L(ρ)(E, 1) = 0.

In general, we use three different methods for computing the rank: the first
part of the Birch and Swinnerton-Dyer conjecture, general 2-descent or 3-
descent via isogeny. Our results are unconditional for |k| ≤ 10.000. (For
details, see [G]).

2.3 Determining a Basis of the Free Part

In the former section, we showed how to determine the rank r of E/Q.
Therefore, in the sequel, we may suppose that r is known. From the second
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part of the Birch and Swinnerton-Dyer conjecture, we derive an upper bound
R′ for the regulator R of E/Q, assuming that X is finite.

Now, the algorithm for determining a basis of the Mordell-Weil group is
based on the following fundamental theorem.

Theorem 1 (Manin)
Let

B :=
2r

γr
R′/(µ1 . . . µr−1) ≤ 2r

γr
R′/µr−1

1 ,

where γr denotes the volume of the r-dimensional unit ball and

0 < µ1 < . . . < µr−1

are the first r − 1 successive minima of the lattice E(Q) in E(Q)⊗Z R (see
[Ma]). Then the set

{P ∈ E(Q)\Etors(Q) | ĥ(P ) < B}
generates a subgroup Ẽ(Q) of Ê(Q) := E(Q)/Etors(Q) of finite index.

Proof: See [Ma].

Note that µ1 can be replaced by a lower bound 0 < µ′1 ≤ µ1 defined by

µ′1 =

{
δ, if Mδ := {P ∈ E(Q)\Etors(Q) | h(P ) < 2δ} is empty
µ1 = min{ĥ(P ) | P ∈ Mδ} otherwise,

where δ is an upper bound for the difference between the Weil height h and
the Néron–Tate height ĥ on E(Q), i.e. (cf. [GPZ1])

|h(P )− ĥ(P )| < δ ∀P ∈ E(Q).

The symmetric bilinear form associated with the Néron-Tate height on E(Q)
will also be denoted by ĥ.

If we want to apply the above theorem, we have to find all points of bounded
Néron-Tate height ĥ(P ) < B on E/Q. At first sight, this seems to be im-
possible since we do not know where to search for these points nor when we
have found them all. This is where the ordinary Weil height h(P ) defined
below comes into play. It is very easy to find all the points of bounded (ordi-
nary) Weil height and, since the difference between the two height functions
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is bounded by a constant δ which does not depend on P ∈ E(Q), we are also
able to find all points of bounded Néron–Tate height ĥ(P ) < B and thus a
generating set of Ẽ(Q):

• We find (by a sieving procedure, cf. section 4) all the points

P = (
ξ

ζ2
,

η

ζ3
)

such that
h(P ) = log(max{|ξ|, ζ2) < B + δ.

• We keep those points P with

h(P ) < B + δ and ĥ(P ) < B.

The bound δ can be computed by using a method of Zimmer ([Zi1], [Zi2],
[Zi3]) or Silverman ([Si]). For Mordell’s equation, we derive from [Zi2], [Zi3])
the estimate

δ ≤ 1
3

log |k|+ 10
3

log 2 (3)

which is slightly better than Silverman’s bound cf. [Si]

δ ≤ 1
3

log |k|+ 2.96.

Note that the Néron-Tate height ĥ that we use is twice the Néron-Tate
height in Silverman’s paper.

In order to compute the bound B we need to know an upper bound R′ for
the regulator R of E/Q. To this end, we apply the second part of the Birch
and Swinnerton–Dyer conjecture. Assuming ∞ > #X ≥ 1, we have

R′ =
L(r)(E, 1) · (#Etors(Q))2

r! · Ω ·∏p|N cp
≥ R. (4)

The real period ω1 of E/Q can be computed by a very efficient method
developed by D. Grayson [Gra] using the Gaussian arithmetic-geometric
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mean. The Tamagawa numbers cp are also obtained by Tate’s algorithm
[Ta] for determining the conductor N of E/Q.

Example: By Tate’s algorithm we get

N = 214 476 429 456 = 24 · 32 · 38 5932

and
c2 = 1, c3 = 2, c38 593 = 1.

The algorithm also returns a global minimal equation

E′ : y′2 = x′3 − 1 042 011

for E which is different from our model (2). Since, in the course of the algorithm, it is
more convenient to work with a minimal model of E, we will continue our computations
with the model E′ of our curve. When we have a basis on the minimal model, we
only need to transform the basis points back to the original model via the birational
transformation x′ = ( 1

2 )2x, y′ = ( 1
2 )3y.

By (3) we compute
δ = 6.92937829

whereas the method of Silverman yields δ = 7.57888769 for the difference between the
Néron-Tate height and the Weil height on the minimal model E′.

By the method of Grayson, we compute the real period

ω1 = 0.24120501.

Since the discriminant ∆ = −469 059 951 220 272 of (the minimal model of) our curve
is negative, E(R) has only one connected component and thus

Ω = ω1.

We insert all these values in (4) and obtain

R′ =
11 576.437 · 12

4! · 0.241 · 1 · 2 · 1 = 999.879

By a sieving procedure we find the point P1 ∈ E(Q) listed below and hence

µ1 = µ′1 = ĥ((255, 3 942)) = 4.13154139.

Combining these results yields

B :=
24 · 999.879

π2

2 · 4.133
= 46.02
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and

B + δ := 6.93 + 46.02 = 52.95.

Of course, this is only an upper bound for our search region. As soon as we have found
r linearly independent points on the curve we stop the search procedure. The first four
linearly independent points (and their Néron-Tate heights) that we find are

P1 = (255, 3 942), ĥ(P1) = 4.1315413974
P2 = (115, 692), ĥ(P2) = 5.2383463867
P3 = (409/4, 1 315/8), ĥ(P3) = 6.5590924826
P4 = (25 275/169, 3 334 176/2197), ĥ(P4) = 8.8809956275.

Next, we determine the regulator of the four points P1, P2, P3, P4

Reg(P1, P2, P3, P4) = det ĥ(Pµ, Pν)1≤µ,ν≤4 = 999.879

which is equal to the upper bound R′ for the regulator R obtained by the conjecture
of Birch and Swinnerton-Dyer. If {P1, P2, P3, P4} were not a basis of E(Q), then the
size of regulator R of E(Q) would be at most R′/4 = 249.96970665. By inserting this

new upper bound for R and the values µi = ĥ(Pi), 1 ≤ i ≤ 3, into formula (4) we find

B = 5.71;

but there are only 2 linearly independent points with Néron-Tate height less than 5.71
which is a contradiction to rank(E/Q) = 4. Thus, {P1, P2, P3, P4} must be a basis
of E(Q).

We still have to transform the basis points back to the original model (2) of our curve:

P1 → (1 020, 31 536)

P2 → (460, 5 536)

P3 → (409, 1 315)

P4 → (101 100/169, 26 673 408/2 197).

Note that the Néron-Tate height ĥ is invariant under birational transformations.

Remark: We use the second part of the Birch and Swinnerton-Dyer con-
jecture to obtain an upper bound for the regulator, but once we have found
a basis we can prove that these points really form a basis. Thus our calcu-
lations are eventually unconditional.
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3 A bound for integer points

Let E/Q be an elliptic curve with rank r and basis {P1, . . . , Pr} of the
infinite part of E(Q). Then, any point P ∈ E(Q) can be represented as

P =
r∑

i=1

niPi + Pr+1 (ni ∈ Z), (5)

where Pr+1 ∈ Etors(Q) is a torsion point. Our aim is to find an upper bound
N ∈ N such that

P is integral =⇒ |ni| ≤ N (∀ 1 ≤ i ≤ n).

3.1 Finding an initial bound

In this section we briefly describe the method presented in [GPZ1]. It is
based on an explicit estimation of linear forms in elliptic logarithms.

Let r be the rank, P1, . . . , Pr be a basis and g be the order of the torsion
subgroup of the elliptic curve E/Q defined by Mordell’s equation (1).

Denote by ω1 and ω2 the real and complex period of E, respectively, define
τ = ±ω2

ω1
such that Im τ > 0, and take λ1 to be the smallest eigenvalue of

the regulator matrix (ĥ(Pµ, Pν))1≤µ,ν≤r associated with the basis P1, . . . , Pr.
We designate by ui ∈ ]− 1

2 , 1
2 ] the elliptic logarithm of the point Pi.

Then, according to [GPZ1], we define

ξ0 =

{
2|k| 13 if k < 0
ck

1
3 if k > 0, where c = 5.85.

Let

P = (ξ, η) = (℘(u), ℘′(u)) =
r∑

i=1

niPi + Pr+1 ∈ E(Q)

be any integer point on E/Q parameterized by the Weierstrass ℘-function
and

u = n0 +
r∑

i=1

niui + ur+1 (ni ∈ Z)
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be its elliptic logarithm. In order to get rid of the torsion point, we consider
the point P ′ = g · P and its elliptic logarithm u′ = gu in the corresponding
representation

u′ = n′0 +
r∑

i=1

n′iui (n′i = g · ni).

The following proposition from [GPZ1] gives us lower and upper estimates
for the elliptic logarithm of an integer point.

Proposition 2 Let P = (ξ, η) = (℘(u), ℘′(u)) with ξ > ξ0 be an integer
point on E/Q and put P ′ = gP . The elliptic logarithm u′ = gu of P ′ satisfies
the estimate

exp

{
−Chr+1(log(

r + 1
2

gN) + 1)(log log(
r + 1

2
gN) + 1)r+1

r∏

i=1

log Vi

}

≤ |g · u|

< exp
{−λ1N

2 + log(g · c′1)
}

,

where the constant C (see [Dav]) is given by 2

C = 2.9 · 106r+6 · 42r2 · (r + 1)2r2+9r+12.3

and
h = log 4|k|,

Vi = exp max

{
ĥ(Pi), h,

3πu2
i

ω2
1Im τ

}
(1 ≤ i ≤ r),

V = max
1≤i≤r

{Vi},

c′1 =
2

7
3

ω1
.

The following theorem, also from [GPZ1], enables us to find an initial upper
bound for N .

2This expression for C is a correction of the value of C used in [GPZ1]
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Theorem 2 Let

P = (ξ, η) =
r∑

i=1

niPi + Pr+1 ∈ E(Q)

be an integer point on E/Q as in (5) with first coordinate ξ > ξ0. Then, the
number

N = max
1≤i≤n

{|ni|}

satisfies the inequality

N ≤ N2 := max
{

N1,
2V

r + 1

}
,

where
N1 = 2r+2√c1c2 log

r+2
2 (c2(r + 2)r+2)

for

c1 = max
{

log(gc′1)
λ1

, 1
}

and

c2 = max
{

C

λ1
, 109

} (
h

2

)r+1 r∏

i=1

log Vi.

Example: Also by a method of Grayson, we compute the complex period

ω2 = 0.12060251 + 0.20888326 i and the imaginary part Im τ = 0.86603868.

The smallest eigenvalue of the regulator matrix is

λ1 = 3.20488705.

The elliptic logarithms of the basis points are

u1 = 0.26081931,
u2 = 0.41475763,
u3 = 0.47802466,
u4 = 0.34771489.

Then, we have

ξ0 = 2 · 66 688 704
1
3 = 811.04961324.
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We will need ξ0 to carry out an extra search for points with x-coordinate less than or
equal to ξ0, since the theorem is only valid for those points P = (ξ, η) with ξ > ξ0.

David’s constant is

C = 2.9 · 106r+6 · 42r2 · (r + 1)2r2+9r+12.3 ∼ 2.5 · 10105.

We also compute the values

h = log(4 · 66688704) ∼ 19.40184050,

V1 = exp(h) = exp(19.40184050) ∼ 2.7 · 108,

V2 = exp
{

3πu2
2

ω2
1Im τ

}
= exp(32.17732563) ∼ 9.4 · 1013,

V3 = exp
{

3πu2
3

ω2
1Im τ

}
= exp(42.75259814) ∼ 3.7 · 1019,

V4 = exp
{

3πu2
4

ω2
1Im τ

}
= exp(22.61558126) ∼ 6.6 · 109,

V = V3,

c1 = max{0.93035703, 1} = 1,

c2 ∼ 4.0 · 10115.

Our initial bound N2 can now be determined. We have

N1 = 26 · √c1 · c2 · log3(c2 · 66) ∼ 8.6 · 1066

and obtain

N2 = max{N1, 2 · V

5
} = max{N1, 1.5 · 1019} = N1 ∼ 8.6 · 1066.

3.2 Reduction of the initial bound

Since, in general, the bound N2 ≥ N is very large, we have to reduce it to
an appropriate size. This is done by a method of de Weger ([dW]) which is
based on LLL-reduction (see [LLL]).

In order to reduce the bound for N , we consider the two inequalities
∣∣∣∣∣n
′
0 +

r∑

i=1

n′iui

∣∣∣∣∣ < gc′1 exp{−λ1N
2} (6)
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and
N ≤ N2

as a homogeneous diophantine approximation problem. We will only give
a brief description of de Weger’s method and refer the reader to [GPZ1] or
[dW] for more details .

Let C0 be a suitable positive integer, viz. C0 ∼ N r+1
2 , and Γ be the lattice

spanned by the r + 1 vectors



1
0
...
0
0

bC0u1c




, . . . ,




0
0
...
0
1

bC0urc




,




0
0
...
0
0
C0




,

where bC0uic denotes the largest integer less than or equal to C0ui (1 ≤ i ≤
r). The Euclidean length of the shortest non-zero vector of Γ is denoted by
l(Γ). Lemma 3.7 of [dW] states that if Ñ is a positive integer such that

l(Γ) ≥
√

r2 + 5r + 4 · Ñ ,

then (6) cannot hold for N within the range
√√√√ 1

λ1
log

2
7
3 · C0

ω1Ñ
< N ≤ Ñ . (7)

If {b1, . . . , br+1} is an LLL-reduced basis for Γ, then we have

l(Γ) ≥ 2−
r
2 ‖b1‖,

where ‖b1‖ is the Euclidean length of the shortest vector b1. We take

Ñ = 2−
r
2 ‖b1‖(

√
r2 + 5r + 4)−1.

Then we replace N2 by the left hand side of (7) and repeat this procedure
recursively until no further reduction can be achieved.

The task remains to compute all linear combinations
r∑

i=1

niPi + Pr+1
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for |ni| ≤ N and Pr+1 ∈ Etors(Q).

Example: Starting with N2 = 8.6 · 1066 and C0 = 10335 ∼ N5
2 , we compute an

LLL-reduced basis of Γ with
‖b1‖ = 9.1 · 1066.

We also determine
Ñ ∼ 4.5 · 1065

and find the new upper bound N2 = 13 for N .

Note that, since C0 = 10335, we have to approximate the elliptic logarithms ui of the
basis points Pi with an accuracy up to at least 335 digits.

A second reduction yields N = N2 = 2 which cannot be reduced any further.

Since the torsion group is trivial, we only have to test all linear combinations

4∑

i=1

niPi for |ni| ≤ 2 (1 ≤ i ≤ 4).

We find the following 8 integer points

(409, 1 315) = P3,
(409, −1 315) = −P3,

(460, 5 536) = P2,
(460, −5 536) = −P2,
(1 020, 31 536) = P1,

(1 020, −31 536) = −P1,
(606 365 857, 14 931 454 281 967) = 2 · P1 + P3,

(606 365 857, −14 931 454 281 967) = −2 · P1 − P3.

The extra search procedure for points (ξ, η) with ξ ≤ ξ0 = 811.04961324 yields the
four points

(409, ±1 315) and (460, ±5 536)

already found previously. Thus, the 8 points listed above are the only integer points on

E over the rationals.

4 Sieving

The sieving procedure is not explained in [GPZ1]. That is why we discuss
it briefly here.
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In order to find a basis of the Mordell-Weil group, we have to determine all
points

P = (x, y) =
(

ξ

ζ2
,

η

ζ3

)
, ξ, η, ζ ∈ Z, (ξ, ζ) = 1 = (η, ζ),

on the curve (1) such that3

d(P ) = log max{|ξ|, |ζ6k| 13 } < B′, (8)

where
B′ := B + δ +

1
3

log 4 |k|.
Similarly, to find all integer points on E by the method presented we have
to test for all pairs (ξ, η) ∈ Z2 with |ξ| < ξ0 whether or not they lie on E.

After this remark we come back to equation (1) with the extra condition
(8).

First, we change the rational equation

E :
(

η

ζ3

)2

=
(

ξ

ζ2

)3

+ k

into an equation over the integers

Eζ : η2 = ξ3 + ζ6k =: fζ(ξ) (9)

by multiplying the equation for E with ζ6.

From (8) and (9), we see that we have to consider the equation

Eζ : η2 = fζ(ξ)

for each integer ζ ∈ [1, bexp{B′/2}c] subject to the condition

ξ ∈ [max
{
b−ζ2|k| 13 c, −bexpB′c

}
, bexpB′c].

Note that, by regarding (9) as an equation in the field of real numbers
(i.e. ‘modulo the infinite place’), we find that

fζ(x) < 0

3Note that we have replaced the ordinary Weil height h(P ) by the modified Weil height
d(P ) which is more convenient for our purposes.
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for x < −ζ2|k| 13 .

We will now show how the sieving of the equation

y2 = x3 + K, K ∈ Z, (10)

in the interval I = [x0, x1] ⊆ Z is carried out. Here, for the sake of read-
ability, we write K instead of ζ6k and keep this number fixed.

It is obvious that if (x, y) ∈ Z2 satisfies (10), then (x̃, ỹ) is a solution of the
congruence

Y 2 ≡ X3 + K (mod m)

for every positive integer m, where x̃, ỹ each denotes the smallest non-
negative residue of the integers x, y modulo m.

Choose some integers m1, . . . , mt composed of small powers of the first few
prime numbers. (In our implementation we used m1 = 6624 = 25 · 32 ·
23, m2 = 8075 = 52 · 17 · 19, m3 = 7007 = 72 · 11 · 13.) If x3 + k is a square,
then it is a square modulo each mi. Hence, for each mi we precompute the
residue classes x for which x3 + k is not a square modulo mi and remove
from the interval under consideration all integers in any of these classes.
With the above-mentioned choices of mi, this eliminates about 99.9 % of all
numbers in any long interval, and for the remaining small fraction we simply
check directly whether x3 + k is a square.

Remark: Of course, this sieving procedure can be applied to any equation
of the form

y2 = f(x, z) ∈ Q[x, z],

where we look only for solutions x, y, z ∈ Z. For example, we applied a
similar method to find points on the quartics

Q : y2 = ax4 + bx3z + cx2z2 + dxz3 + ez4, a, b, c, d, e ∈ Z,

which are the 2-coverings of elliptic curves E/Q in the method of general
2-descent (cf. [Cr]). We used these quartics to find large basis points (of
Néron-Tate height larger than 20).

5 Tables

In this section we display some tables that result from our computations
based on the above method.
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We first applied this method to the Mordell curves

E : y2 = x3 + k, 0 < |k| ≤ 10 000.

Then, for 10 000 < |k| ≤ 100 000, we proceeded as follows. Whenever we
were able to compute a basis of E/Q, we applied our algorithm for deter-
mining all integer points. For some curves, however, we were not able to
find a basis. These curves have rank r = 1 and a large generator. Here
‘large’ means that the Néron-Tate height is larger than 70.

If there were any integer point P = (x, y) on one of these curves, its Néron-
Tate height must be at least as large as the height (≥ 70) of the (missing)
generator.

Since, from (3), the upper bound for the difference between the Weil height
and the Néron-Tate height on E/Q is

δ =
1
3

log |k|+10
3

log 2 ≤ 1
3

log 100 000+
10
3

log 2 ≤ 7 (for all |k| ≤ 100 000)

such a point must have first coordinate of absolute value

|x| > exp{70− 7} = exp{63} > 1028.

But this is very unlikely since the x-coordinate of the largest integer point
that we have found within the range |k| ≤ 100 000 is less than 4 · 1010.

An alternative approach for finding a generator is the method of Heegner
points. Once this method is implemented all integer points will be found.

5.1 Conjectures and conclusions

The large amount of data obtained from our computations gives rise to some
speculations.

From Tables 3 and 7 below, we see that the maximal rank of the Mordell
curves E/Q for |k| < 10 000 is 4, and 5 for |k| < 100 000. Furthermore, for
|k| < 10, 100, 1000 we find rk(E/Q) ≤ 1, 2, 3, respectively. This suggests
that the rank of E/Q grows according to

rk(E/Q) = O(log |k|).
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Mestre [Me] found that the rank of any elliptic curve E/Q behaves like

rk(E/Q) = O

(
logN

log logN
)

,

where N denotes the conductor of E/Q (for Mordell’s curves, we have N =
O(k2)). For each rank r > 0 occurring in our tables we took the smallest
positive and the greatest negative integer k such that E : y2 = x3 + k has
rank r:

r k > 0 k < 0 min |k|
1 2 −2 2
2 15 −11 11
3 113 −174 113
4 2089 −2351 2089
5 66265 −28279 28279

In order to find the approximate rate of growth for the rank we applied
several functions to these values.

r |k| log |k| log |k|/ log log |k| log 4k2/ log log 4k2

1 2 0.693 −1.891 2.719
2 11 2.398 2.742 3.394
3 113 4.727 3.043 4.549
4 2089 7.644 3.758 5.926
5 28279 10.250 4.404 7.092

However, none of these functions seems to describe the growth rate. The
most suitable function that we found is

r |k| log |k|/| log log |k|| 23
1 2 1.353
2 11 2.622
3 113 3.525
4 2089 4.762
5 28279 5.836

Also, from these tables, we see that the average number of integer points

Φ(r) =
#integer points on all E/Q with rk(E/Q) = r

#curves E/Q with rk(E/Q) = r
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on a Mordell curve E of rank r seems grow exponentially in r.

Another observation that we made concerns the distribution of the ranks of
the Mordell curves. Until recently, the common opinion among specialists
was that half of all elliptic curves have rank 0 and half rank 1, with higher
ranks occurring asymptotically for only 0 % of all curves. However, numer-
ical work of Zagier and Kramarz [ZK] calls this belief into question. They
examined the family of elliptic curves

x3 + y3 = m, m ∈ Z cubefree.

These curves are birationally equivalent to the Mordell curves

y2 = x3 − 432m2.

For 0 < m ≤ 70 000, and m cubefree, Zagier and Kramarz computed the
value of L(E, 1), and, for 0 < m ≤ 20 000, m cubefree, also L′(E, 1) when
the sign of the functional equation was negative. They point out that

6 347 curves (38.145%) have rank 0
8 141 curves (48.927%) have rank 1
1 972 curves (11.852%) have even rank ≥ 2
179 curves ( 1.076 %) have odd rank ≥ 3.

For this family of elliptic curves, the number of curves with rank 1 is con-
siderably higher than the number of curves of rank 0, and the proportion of
curves with rank greater than 1 is rather large.

Moreover, they detected a constancy of the proportion of curves with ranks
larger than 1 over a large range of values of m, suggesting that these curves
occur with positive density. Our computations for the Mordell curves E/Q
in the range |k| ≤ 100 000 confirm their observation. We even found that
the proportion of curves with ranks greater than 1 is still larger, especially
for even ranks. The corresponding results are exhibited in tables 1− and 1+.

In tables 1− and 1+ we list the numbers (#) and percentages (%) of curves
of ranks 0, 1, 2, 3, 4, and 5 for values of k ranging over growing intervals
and we display them separately for negative and positive values of k.
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Table 1−

0 > k ≥ r = 0 r = 1 r = 2 r = 3 r = 4 r = 5
# 3 625 4 435 1 702 228 10 0

−10 000 % 36.250 44.350 17.020 2.280 0.100 0.000
# 7 211 8 831 3 437 494 27 0

−20 000 % 36.055 44.155 17.185 2.470 0.135 0.000
# 10 851 13 222 5 121 757 48 1

−30 000 % 36.170 44.073 17.070 2.523 0.160 0.003
# 14 450 17 615 6 858 1 002 74 1

−40 000 % 36.125 44.038 17.145 2.505 0.185 0.003
# 18 050 22 008 8 601 1 243 96 2

−50 000 % 36.100 44.016 17.202 2.486 0.192 0.004
# 21 694 26 390 10 266 1 521 127 2

−60 000 % 36.157 43.983 17.110 2.535 0.212 0.003
# 25 324 30 758 11 969 1 799 148 2

−70 000 % 36.177 43.940 17.099 2.570 0.211 0.003
# 28 966 35 122 13 654 2 082 174 2

−80 000 % 36.208 43.903 17.067 2.603 0.215 0.003
# 32 653 39 489 15 296 2 363 197 2

−90 000 % 36.281 43.877 16.996 2.626 0.219 0.002
# 36 278 43 857 17 010 2 635 217 3

−100 000 % 36.278 43.857 17.010 2.635 0.217 0.003

Table 1+

0 < k ≤ r = 0 r = 1 r = 2 r = 3 r = 4 r = 5
# 2 907 5 111 1 724 250 8 0

10 000 % 29.07 51.11 17.24 2.25 0.08 0.00
# 5 889 10 147 3 398 531 35 0

20 000 % 29.445 50.735 16.990 2.655 0.175 0.000
# 8 822 15 224 5 071 828 55 0

30 000 % 29.407 50.747 16.903 2.760 0.183 0.000
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Table 1+ (continued)

0 < k ≤ r = 0 r = 1 r = 2 r = 3 r = 4 r = 5
# 11 755 20 290 6 754 1 118 83 0

40 000 % 29.387 50.725 16.885 2.795 0.207 0.000
# 14 702 25 360 8 428 1 412 98 0

50 000 % 29.404 50.720 16.856 2.824 0.196 0.000
# 17 641 30 411 10 119 1 706 123 0

60 000 % 29.402 50.685 16.865 2.843 0.205 0.000
# 20 636 35 495 11 752 1 999 153 1

70 000 % 29.480 50.656 16.789 2.856 0.219 0.001
# 23 557 40 550 13 439 2 276 177 1

80 000 % 29.446 50.688 16.799 2.845 0.221 0.001
# 26 573 45 601 15 079 2 580 201 2

90 000 % 29.486 50.668 16.754 2.867 0.223 0.002
# 29 523 50 659 16 706 2 874 235 3

100 000 % 29.523 50.659 16.706 2.874 0.235 0.003

As pointed out already, this statistics supports the observations made by
Zagier and Kramarz.

Some other interesting observations can be made. Whereas for negative
values of k the number of rank 0 curves is considerably higher than the
number for positive values of k, the converse is true for rank 1 curves. This
asymmetry remains true if we consider the distribution of even and odd
ranks only for those k which are 6−th power free. We display the data in
table 2.

Table 2

k < 0 r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r even r odd
# 35 642 43 085 16 739 2 611 217 3 52 598 45 699
% 36.259 43.831 17.029 2.656 0.221 0.003 53.509 46.491

k > 0
# 29 003 49 780 16 436 2 840 235 3 45 674 52 623
% 29.505 50.642 16.721 2.889 0.239 0.003 46.465 53.535
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We also mention that Brumer [Br] has recently proved that the average rank
of an elliptic curve, ordered accordingly to its Faltings height, is at most 2.3.
This result is conditional in that it depends on the conjecture of Birch and
Swinnerton-Dyer, the conjecture of Shimura, Taniyama and Weil and the
Riemann hypothesis for the L-function of an elliptic curve. From Table 7
below the average rank of Mordell’s curves with |k| ≤ 100 000 turns out to
be 0.9.

Furthermore, Stewart and Top [StT] showed that there exist positive num-
bers C1 and C2 such that, if T is a real number larger than C1, then the
number of sixth- power-free integers k with |k| ≤ T for which Mordell’s
curve has rank at least 6 is at least

C2T
1/27/ log2 T.

5.2 Mordell’s equation for |k| ≤ 10 000

Tables 3 and 7 below reveal that rank 0 curves have at most 5 integral points.
This is, of course, a consequence of Proposition 1 from which we know that
#Etors(Q) ≤ 6. It is remarkable that, in Tables 3 and 7, Mordell’s curves
of rank 1 with k free of 6-th powers have at most 12 integral points and
equality is attained only for the curve with k = 100. If k is not free of 6-th
powers the corresponding curves have up to 14 integer points in the range
considered.

Table 3 summarizes the results of our computations with the Mordell curves

E : y2 = x3 + k for 0 < |k| ≤ 10 000.
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Table 3: Summary |k| ≤ 10 000

number of number of curves of rank total
integer number
points 0 1 2 3 4 of curves

0 6459 6884 997 22 14362
1 24 3 27
2 45 2503 1462 108 1 4119
3 4 4
4 99 535 126 760
5 4 3 7
6 24 277 103 6 410
7 2 2
8 12 94 41 1 148
9 2 2

10 8 28 29 1 66
12 1 17 16 2 36
14 1 6 10 1 18
16 5 9 14
18 3 5 1 9
20 4 1 5
22 1 3 2 6
24 1 1 2
26 1 1
28 1 1
32 1 1∑

6532 9546 3426 478 18 20000

The total and average number of integer points

rank 0 1 2 3 4 all∑
134 5810 8228 2724 228 17124

Φ(r) 0.021 0.609 2.402 5.699 12.722 0.856
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5.2.1 Some curves with large generators

In this table we list the largest generators of rank 1 curves that we have
found (for |k| ≤ 10 000). The points are represented in the following way:

P = (x, y) =
(

ξ

ζ2
,

η

ζ3

)
, ξ, η, ζ ∈ Z, ζ > 0, (ξ, ζ) = (η, ζ) = 1.

We also exhibit the Néron-Tate heights ĥ(P ) of the points P .

Table 4: Large generators

k = −9353 ĥ(P ) = 140.9808419298

ξ = 13634551625582851252479616373723356341083952865891\
946306347473

η = 49215901424304585672781522820272883342461091583362\
774789106258579533483727671785124888387815

ζ = 478647123279291655007853483752

k = −7365 ĥ(P ) = 121.3392142866

ξ = 49767793853829496168364984255047234929742727976545\
161

η = 11102546074544548368664684599551401577404717041573\
939878410384242505241628396986

ζ = 164152949278457509107753

k = −8417 ĥ(P ) = 120.5297630755

ξ = 12814285925642095091367277624391093765095489632437\
721

η = 16260886235617336373369419121919585278443520836700\
8500060099029062117903609856

ζ = 25046034789240123314885845
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continued

k = −7969 ĥ(P ) = 111.8099458689

ξ = 2291157583928969147760088047142360067139443658017
η = 23900475080633011267703823446959367517030263821145\

75661401665649622076433
ζ = 304200723106110379993654

k = −4530 ĥ(P ) = 110.3580688067

ξ = 847029141256762518733763780964312268229839867531
η = 77955637625350263810470790602942158496257479823491\

8280830708255133471239
ζ = 613551056925673863477

k = −3881 ĥ(P ) = 89.6692019429

ξ = 813326642479596225558992634322666199785
η = 23173930488614936556981151794837639882707489217277\

709463851
ζ = 2516095125742235478

5.2.2 Order of the Tate-Shafarevič group

In Table 5 we list all orders of the Tate-Shafarevič groups that occurred for
|k| ≤ 10 000 and the corresponding number of curves. In Table 6 we list
those k for which the order of X is at least 16.

Table 5: Order of X

#X total k < 0 k > 0 r = 0 r = 1 r = 2 r = 3 r = 4
1 17704 8522 9182 4662 9129 3417 478 18
4 1499 835 664 1210 287 2 − −
9 703 568 135 566 130 7 − −

16 74 57 17 74 − − − −
25 12 10 2 12 − − − −
36 8 8 − 8 − − − −
Σ 20000 10000 10000 6532 9546 3426 478 18
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Table 6: Curves with large order of X

#X = 16 k

-9941 -9649 -9565 -9458 -9410 -9262 -9086 -9054
-8872 -8781 -8566 -8529 -8438 -8170 -8169 -8080
-7773 -7729 -7542 -7458 -7169 -7045 -6981 -6945
-6854 -6757 -6506 -6373 -6170 -6117 -6009 -5869
-5830 -5693 -5505 -5461 -5442 -5218 -4929 -4749
-4560 -4469 -4462 -4329 -4102 -3949 -3893 -3713
-3390 -3013 -2374 -2194 -1753 -1494 -1221 3686
4010 4631 4694 5730 6395 6467 6493 7221
7683 8222 8726 8950 9237 9762 9951 9965

-4910 -8206
#X = 25 k

-9789 -7745 -7638 -7134 -6702 -6674 -5090 -4777
-4686 -3930 8798 9834

#X = 36 k

-9978 -9740 -9227 -9194 -9185 -8053 -5414 -2957

In all cases, the structure of the Tate-Shafarevič groups is

X ' Z/nZ× Z/nZ, where #X = n2,

with the two exceptions

X ' Z/2Z× Z/2Z× Z/2Z× Z/2Z for k = −4910 and − 8206.

Note that for r ≥ 2, the orders of the Tate-Shafarevič groups are conjectural.

5.3 Mordell’s equation for |k| ≤ 100 000

Table 7 summarizes the results of our computations with the Mordell curves

E : y2 = x3 + k for 0 < |k| ≤ 100 000.

Here we assume that those rank 1 curves for which we were unable to find
a generator (see the introductory remarks of this section) do not have any
integer points. This is the case for about 1800 rank 1 curves.
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Table 7: Summary |k| ≤ 100 000

number number of curves with rank total
of int. number
points 0 1 2 3 4 5 of curves

0 65 620 77 357 14 859 723 3 158 562
1 45 9 54
2 130 16 723 13 471 1 783 51 32 157
3 16 16
4 297 3 344 1 393 78 5 112
5 6 7 1 14
6 55 1 519 726 83 2 383
7 2 1 3
8 29 346 386 64 1 826
9 4 1 5

10 13 95 204 46 358
12 2 37 115 32 186
14 2 18 77 20 117
16 10 41 23 1 75
18 5 33 14 52
20 3 12 15 1 31
22 4 10 9 23
24 3 6 9
26 1 3 1 5
28 1 1
30 1 1 2 4
32 1 1
36 1 1 2
38 1 1
42 1 1
48 1 1∑

65 801 94 516 33 716 5 509 452 6 200 000

The total and average number of integer points
rank 0 1 2 3 4 5 all∑

335 35 522 54 319 22 960 4 062 148 117 346
Φ(r) 0.005 0.376 1.611 4.168 8.987 24.667 0.587
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5.3.1 Some large integer points

In this table we list all integer points P = (x, y) on

E : y2 = x3 + k for 0 < |k| ≤ 100 000,

with x ≥ 5 · 107.

Table 8: Large integer points

k rank xP ±yP

28 024 4 3 790 689 201 233 387 325 399 875
-64 432 4 3 171 881 612 178 638 660 622 364
91 017 3 1 979 757 358 88 088 243 191 777
99 207 2 1 303 201 029 47 045 395 221 186

-88 688 3 1 053 831 624 34 210 296 678 956
-63 604 2 912 903 445 27 582 731 314 539
-44 678 3 890 838 663 26 588 790 747 913
30 788 2 428 895 712 8 882 343 339 054
14 857 3 390 620 082 7 720 258 643 465
14 668 4 384 242 766 7 531 969 451 458

-71 873 2 227 449 469 3 430 262 778 906
79 721 2 189 024 034 2 598 816 054 105

-37 071 3 184 151 166 2 498 973 838 515
11 492 2 154 319 269 1 917 035 856 801
55 441 4 144 185 972 1 731 348 576 567

-22 189 3 140 292 677 1 661 699 554 612
78 454 1 136 918 715 1 602 116 974 677
46 747 1 133 566 713 1 543 644 740 562

-43 084 3 128 694 365 1 459 954 419 179
-98 084 3 121 603 794 1 340 975 019 110
21 689 3 115 716 430 1 244 779 822 617

-58 295 3 114 932 466 1 232 151 436 201
69 760 3 112 749 404 1 197 212 884 968
8 569 2 110 781 386 1 166 004 406 095
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continued
k rank xP ±yP

20 961 3 108 997 072 1 137 947 555 953
-93 664 2 107 994 529 1 122 283 639 935
92 962 3 106 999 199 1 106 804 177 919
20 513 2 106 011 056 1 091 507 542 127
25 895 3 103 289 609 1 049 747 744 368
34 721 4 86 493 730 804 409 034 061
64 809 3 79 948 698 714 853 574 601
88 538 2 77 371 607 680 569 411 759
-57 059 3 70 078 487 586 647 298 662
28 676 2 69 830 432 583 535 246 338
89 750 3 61 429 931 481 470 897 421
-54 312 2 53 519 722 391 535 164 856
50 948 2 52 219 621 377 355 403 503

6 Graphs

In this section we give three graphical reproductions of the computations of
the Mordell curves for k = −10 000 to 10 000.4 We ran a simple C-program
on our files converting the values for k and the x-coordinates of the integer
points into LATEX-commands. For the sake of readability, we left out the
very large integer points.

6.1 Mordell curves for |k| ≤ 10 000

In the first graph we put the values for k and x of all integer points P = (x, y)
on the curves E : y2 = x3 + k for −10, 000 ≤ k ≤ 10, 000 into a coordinate
system.

For lack of space, we had to limit the size of the x-coordinates of the integer
points to 13 000; there are 136 points with x > 13 000 which do not appear
in the graph.

4This was suggested to us by Barry Mazur.
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Graph 1

We observed at first sight that, for negative values of k, there are several
series of points which appear to be placed on a line whereas this phenomenon
does not seem to occur for positive k.
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We shall show that there are indeed lines in the negative half plane of the
graph. To this end, let us assume that in Mordell’s equation x, y and k are
polynomials in a variable z over the reals:

x, y, k ∈ R[z].

If
k = k1x + k′2 (k1, k′2 ∈ R)

is linear in x, then, as polynomials in z, x has even degree and y has degree
divisible by 3. Let us assume that x is quadratic in z. Without loss of
generality, we may take

x = z2 + a (a ∈ R).

Then
k = k1z

2 + k2 (k1, k2 ∈ R),

and we put
y = z3 + y1z

2 + y2z + y3 (y1, y2, y3 ∈ R).

Inserting these expressions for x, y and k in Mordell’s equation (1) and
comparing coefficients of zν for ν = 5, 4, 3, 2, 0 yields

y1 = 0, y2 = 3
2a, y3 = 0, k1 = −3

4a2 and k2 = −a3.

Hence, we obtain the quantities x, y and k as polynomials over Q in two
variables a and z:

x = z2 + a, k = −a2(3
4z2 + a), y = z(z2 + 3

2a). (11)

On specifying a ∈ Z as a fixed integer, we see that x depends linearly on k,
namely x = − 4

3a2 (k+ 1
4a3), and x, k and y attain integer values for all z ∈ Z

if a is even, and for all z ∈ 2Z, if a is odd. Moreover, k is negative for all
sufficiently large values |z|.
However, for negative values of a, the constant k, as a function of z, attains
positive values for (finitely many) parameters z of small absolute value |z|.
In this case, there are lines which start in the positive half plane and go up
to the negative half plane. However, they cannot be visualized in our graph.
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The relation (11) reflects the general situation if x is a quadratic polynomial.
By a more involved calculation, we obtain a similar result if x is a quartic
rather than a quadratic polynomial in z.

Graph 2

In the above graph we depicted the lines

α : a = 1, k = −1
4(3x + 1); β : a = 2, k = −3x− 2;

γ : a = 3, k = −9
4(3x + 3); δ : a = 4, k = −12x− 4.
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6.2 Hall’s conjecture

We tried to illustrate M. Hall’s conjecture [Ha] graphically. The conjecture
states that, for any integer point P = (x, y) on a Mordell curve E : y2 =
x3 + k, the estimate

|x| 12 < C|k|
holds with an absolute constant C. Lang [La] refers to the Hall conjecture
in a weaker form, namely

|x| 12 < Cε|k|1+ε

for any ε > 0, with Cε depending only on ε.

In its original form, the Hall conjecture is best possible since Danilov [Dan]
proved the existence of infinitely many integers x and y such that

|x3 − y2| < 216
√

2|x| − 1080.

In the following table we listed all Mordell curves for which |x| 12 /|k| > 1.

Table 9: Hall’s conjecture for |k| ≤ 100 000

k x x
1
2 /|k| k x x

1
2 /|k|

1 090 28 187 351 4.87 14 668 384 242 766 1.34
17 5 234 4.26 14 857 390 620 082 1.33

225 720 114 3.77 8 569 110 781 386 1.23
24 8 158 3.76 11 492 154 319 269 1.08

−307 939 787 3.16 618 421 351 1.05
−207 367 806 2.93 297 93 844 1.03

28 024 3 790 689 201 2.20

Hence, for the Mordell curves with |k| ≤ 100 000, Hall’s conjecture is true
for C = 5.

For our graphical illustration of Hall’s conjecture, we used the Mordell curves
with −10 000 ≤ k ≤ 10 000. We put the values for k on the vertical axis
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of the coordinate system (with a linear growth rate) and the values for |x|
with a quadratic rate of growth on the horizontal axis.

Graph 3
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