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1 Introduction

By a famous theorem of Siegel [S], the number of integral points on an elliptic
curve E over an algebraic number field K is finite. A conjecture of Lang and
Demjanenko [L3] states that, for a quasiminimal model of E over K, this number
is bounded by a constant depending only on the rank of E over K and on K
(see also [HSi], [Zi4]). This conjecture was proved by Silverman [Si1] for elliptic
curves E with integral modular invariant j over K and by Hindry and Silverman
[HSi] for algebraic function fields K. On the other hand, beginning with Baker
[B], bounds for the size of the coefficients of integral points on E have been
found by various authors (see [L4]). The most recent bound was exhibited by
W. Schmidt [Sch, Th. 2]. However, the bounds are rather large and therefore
can be used only for soloving some particular equations (see [TdW], [St]) or for
treating a special model of elliptic curves, namely Thue curves of degree 3 (see
[GSch]).

The Siegel-Baker method for the computation for integer points on elliptic
curves E over K = Q requires some detailed information about certain quartic
number fields. Computing these fields often represents a hard problem and this
approach does not seem to be adaquate. That is why in general all these results
cannot be used for the actual calculation of all integral points on an elliptic
curve E over Q. another method was suggested by Lang [L1], [L3]. His idea
was further developed by Zagier [Za].

We shall work out the Lang-Zagier algorithm for the determination of all
integral points on elliptic curves E over Q employing elliptic logarithms. The
algorithm requires the knowledge of abasis of the Mordell-Weil group E(Q) and
of an explicit lower bound for linear forms in elliptic logarithms. Compared to
the Siegel-Baker method, it thus appears to be more natural and adaquate to
the problem under consideration. The examples given at the end of the paper
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show that our algorithm is also very efficient: We were able to compute all
integer points of elliptic curves of ranks up to at least six.

As mentioned above, or method requires the knowledge of a basis of the
Mordell-Weil group E(Q). Actually this is the only disadvantage of the Lang-
Zagier method. However, an algorithm providing such a basis was developed
by the first and the last author [GZ]. It is based on ideas of Manin [M] and
depends on the truth of the conjectures of Birch and Swinnerton-Dyer (see e.g.
[F]). We are planning to make it independent of this conjecture. The second
ingredient is an explicit lower bound for linear forms in elliptic logarithms of
algebraic numbers. It was only recently that S. David [D] established such an
explicit bound, thus proving a conjecture of Lang. This meant a breakthrough
in our endeavor concerning integral points. Analogous estimates for linear forms
in complex and p -adic logarithms had been successfully used for the complete
resolution of Thue-, Thue-Mahler- and index form equations (see [PS], [TdW],
[GPP]). The reduction procedure, based on numerical diophantine approxima-
tion techniques, is the third important ingredient of our method. We shall use
here a variant given by de Weger [dW].

2 Heights

The elliptic curve E over Q is assumed to be given in short Weierstrass normal
form

E : y2 = x3 + ax + b (a, b ∈ Z)

with integral rational coefficients a, b. The discriminant of E over Q is

∆ = 4a3 + 27b2 6= 0

and the modular invariant

j = 123 4a3

∆
.

By the Mordell-Weil Theorem, the group E(Q) is finitely generated, hence is
the product

E(Q) ∼= Etors(Q)× Zr

of the finite torsion group Etors(Q) and an infinite part isomorphic to r copies
of the rational integers Z, where r denotes the rank of E over Q.

Let us recall the notion of height on E(Q). For a rational point P = ( ξ
ζ2 , η

ζ3 ) ∈
E(Q), where ξ, η, ζ ∈ Z and gcd(ξ, ζ) = gcd(η, ζ) = 1, the ordinary height or
Weil height is

h(P ) =

{
1
2 log max{ζ2, |ξ|} if P 6= O

0 if P = O

}
,
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where O is the point at infinity. The canonical height or Néron-Tate height of
P then is the limit

ĥ(P ) := lim
n→∞

h(2nP )
22n

.

Note that ĥ is a positive semidefinite quadratic form on E(Q) and that the null
space of ĥ is simply the torsion group Etors(Q). Hence, ĥ is a positive definite
quadratic form on the factor group

E(Q) := E(Q)/Etors(Q).

By embedding E(Q) into the r-dimensional real space E(R) := E(Q)⊗ZZ R, it is
clear that ĥ extends to a positive definite quadratic form ĥ on E(R) ∼= Rr and
thus gives rise to a Euclidean norm on E(R). In the Euclidean space E(R) with
respect to this norm a basis of the Mordell-Weil group E(Q) can be found by
methods from geometry of numbers, (see [M], [GZ]).

Let P1, . . . , Pr ∈ E(Q) denote such a basis (of the infinite part) of E(Q). Then
an arbitrary rational point P ∈ E(Q) has a unique representation of the form

P =
r∑

i=1

niPi + Pr+1 (ni ∈ Z), (1)

where Pr+1 ∈ Etors(Q) is a torsion point.

We want to get rid of Pr+1 in (1). To this end, we multiply both sides of (1) by
the order g ∈ N of Pr+1. This yields for the multiple P ′ = gP of P the relation

P ′ =
r∑

i=1

n′iPi, (n′i = g · ni). (1′)

Note that, by a famous theorem of Mazur [Mz], we have

g ≤ 12. (2)

Of course, in practise we can precompute g and use it instead of the upper
bound 12. In particular, if E over Q has no torsion we take g = 1.

In order to compute all integral points

P = (ξ, η) ∈ E(Z) (where ζ = 1)

on E, we must find an upper bound for the coefficients ni in the representation
(1) of P by the basis points Pi (for i = 1, . . . , r). Put

N := max
1≤i≤r

{|ni|}. (3)
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Let us look at the representation (1) modulo torsion, viz.

P =
r∑

i=1

niP i, (1)

and consider the embedding

E(Q) ↪→ E(R) ∼= Rr.

Since ĥ is a positive definite quadratic form on the Euclidean space E(R), we
obtain the lower estimate (cf. [G], Th. 10, p. 319)

ĥ(P ) ≥ λ1 ·N2 (4)

on non-torsion points P ∈ E(Q), where 0 < λ1 ∈ R is the smallest eigenvalue
of the matrix associated with ĥ and the given basis P1, . . . , Pr of E(Q).

Next we are going to replace in (4) the canonical height ĥ by a modified or-
dinary height d to be used in place of h. This is carried out by means of an
estimate between ĥ and d on E(Q). The modified ordinary height of a point
P = ( ξ

ζ2 , η
ζ3 ) ∈ E(Q) is defined as (cf. [Zi1], [Zi5])

d(P ) :=

{
1
2 max

{
µ∞ + 2 log ζ, log max{|ξ|, 1}} if P 6= O

1
2µ∞ if P = O

}
,

with the “height” of E

µ∞ := log max{|a| 12 , |b| 13 }
given in terms of the coefficients a, b ∈ Z of the elliptic curve E. The following
estimate for the difference ĥ−d on E(Q) was established in [Zi2], [Zi3] (cf. also
[Zi1], [Si2]):

− 2
3α ≤ d(P )− ĥ(P ) ≤ 3

2µ∞ + 5
3α, (5)

where α = log 2. In fact on combining the height estimates obtained in [Zi2],
[Zi3] with those from [Zi5], one ends up with the slightly stronger estimates

− 7
12α ≤ d(P )− ĥ(P ) ≤ 2

3µ∞ + 19
12α. (5′)

For the sake of simplicity, however, we shall use (5) rather than (5′). (Note that
the height d in [Zi2], [Zi3] differs from the above-defined d by a factor of 3.)

From (5) we derive
d(P ) ≥ ĥ(P )− 2

3 log 2.

Hence, for sufficiently large integral points P = (ξ, η) ∈ E(Q), i.e. for points P
such that ζ = 1 and log |ξ| > µ∞, we have

1
2 log |ξ| ≥ ĥ(P )− 3

2 log 2. (6)
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Combining (4) and (6) yields

1
2 log |ξ| ≥ λ1N

2 − 2
3 log 2. (7)

We remark that if µ∞ is large, e.g. exp(µ∞) > 106, and if 0 ≤ log |ξ| ≤ µ∞, we
must refine the estimates (5) - (7) as follows. It is easy to see that, for integral
points P ∈ E(Q), we have

0 ≤ d(P )− h(P ) ≤ 1
2µ∞.

Combining these inequalities with (5) yields

− 2
3α− 1

2µ∞ ≤ h(P )−ĥ(P ) ≤ 3
2µ∞+ 5

3α. (5′′)

From (5′′) we get the lower estimate

h(P ) ≥ ĥ(P )− 2
3α− 1

2µ∞

and hence

1
2 log |ξ| ≥ ĥ(P )− 2

3 log 2− 1
2µ∞. (6′)

Therefore, in the case of 0 ≤ log |ξ| ≤ µ∞, (7) is to be replaced by the weaker
inequality

1
2 log |ξ| ≥ λ1N

2− 2
3 log 2− 1

2µ∞. (7′)

This case requires an extra search procedure.

We confine ourselves to explaining the search procedure for large integral points
P = (ξ, η) ∈ E(Q) for which therefore the stronger bound in (7) may be taken.

3 Elliptic logarithms

The next step consists in inserting in (7) the elliptic logarithm of P . To this
end, we use the Weierstrass-parametrization of our elliptic curve E (see, e.g.,
[L2]). There exists a lattice Ω ⊆ C such that the group of complex points is

E(C) ∼= C/Ω,

where Ω = < ω1, ω2 > is generated by two fundamental periods ω1 and ω2 of
which ω1 is real and ω2 complex. We put τ = ω2

ω1
and assume without loss of

generality that Im (τ) > 0. The above isomorphism is defined by Weierstrass’
℘-function with respect to Ω and its derivative ℘′ according to the assignment

P = (℘(u), ℘′(u)) ←−a u mod Ω,
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so that the coordinates of an integral point P = (ξ, η) ∈ E(Q) are given by

ξ = ℘(u), η = ℘′(u).

Let α ∈ R be the largest real root of the right hand side of the Weierstrass
equation, i.e. of

p(x) := x3 + ax + b. (8)

Then the real period ω1 of E is (cf. [Za])

ω1 = 2

∞∫

α

dx√
x3 + ax + b

. (9)

The elliptic logarithm of P = (ξ, η) ∈ E(Q) is (cf. [Za])

u ≡ 1
ω1

∞∫

ξ

dx√
x3 + ax + b

(mod Z). (10)

Let β, γ ∈ C be the other roots of p(x). Put

M :=





0 if α ≥ 0
exp(µ∞)

3
√

2− 1
if α < 0



 (11)

and choose a real number

ξ0 ≥
{

2α + M if β, γ ∈ R
2max

{
α,

β + γ

2

}
+ M if β, γ ∈ C\R

}
. (12)

In order to estimate the elliptic logarithm of the point P = (ξ, η) ∈ E(Q), we
require the following auxiliary result.

Lemma 1 Suppose that the first coordinate of the integral point P = (ξ, η) ∈
E(Q) satisfies

ξ > max{0, ξ0}.
Then ∞∫

ξ

dx√
x3 + ax + b

<

√
8√
ξ
. (13)

Remark If ξ < 0 it must be bounded in absolute value since otherwise p(ξ)
could not be a square. This case must be included in the extra search procedure.
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We shall prove this lemma later and proceed instead in our task of estimating
elliptic logarithms. Normalizing the value of u in (10) to

0 < |u| ≤ 1
2
,

we obtain from (10) and (13) the estimate

|u| <
√

8
ω1

· 1√
|ξ| . (14)

We shall work with (7) rather than with (7′) remembering that in (7′) we may
drop the term − 1

2µ∞ if |ξ| is sufficiently large, i.e. if log |ξ| > µ∞. On combining
(7) and (14), we arrive at

log |u| < log
√

8− log ω1 − λ1N
2 + 2

3 log 2.

Exponentiating leads to

|u| < exp{−λ1N
2 + c′1} (15)

for

c′1 := log
√

8 · 3
√

4
ω1

. (16)

Now we are going to utilize the crucial Theorem 2.1 of David ([D]). Written in
terms of elliptic logarithms, equation (1) reads

u ≡
r∑

i=1

niui + ur+1 (mod Z).

where ur+1 is the elliptic logarithm of the torsion point Pr+1 ∈ Etors(Q) and,
for 1 ≤ i ≤ r, the ui are the elliptic logarithms of the basis points Pi ∈ E(Q).
Rewritten as an equality, this congruence becomes

u = n0 +
r∑

i=1

niui + ur+1 (17)

for some integer n0 ∈ Z. If we replace (1) by (1′) we obtain for the elliptic
logarithm u′ = gu of the point P ′ = gP ∈ E(Q) the representation

u′ = n′0+
r∑

i=1

n′iui+ur+1 (n′i = gni ∈ Z) (17′)

which we shall use instead of (17). Of course, (15) is then to be replaced by

|u′| < exp{−λ1N
2+c′1+log g} (15′)
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Here again we assume the elliptic logarithms normalized to

0 < |ui| ≤ 1
2 (1 ≤ i ≤ r). (18)

Since David works with the classical Weierstrass form

E : y2 = 4x3 − g2x− g3,

we have to rearrange it to get

E : ( 1
2y)2 = x3 − 1

4g2x− 1
4g3

so that we have
g2 = −4a, g3 = −4b.

Hence, the height h in [D] becomes

h = h(1, g2, g3, j)

= h(1, −4a, −4b, j)

=
∑

p

log max{1, |4a|p, |4b|p, |j|p}+ log max{1, |4a|, |4b|, |j|},

where the summation is over all rational primes p of Q and infinity, and | |p de-
notes the normalized multiplicative p-adic valuation and | | the ordinary absolute
value of Q. On writing the modular invariant in simplest fraction representation
j = j1

j2
for j1, j2 ∈ Z such that gcd(j1, j2) = 1 and using the sum formula

∑
p

log |x|p + log |x| = 0 (0 6= x ∈ Q),

we obtain for h the expression

h = h(1, −4a, −4b,
j1
j2

)

=
∑

p

max{0, log |4a|p, log |4b|p, log |j1|p − log |j2|p}

+max{0, log |4a|, log |4b|, log |j1| − log |j2|}
= −

∑
p

min{− log |j2|p, − log |4aj2|p, − log |4bj2|p, − log |j1|p}

+ log max{4|aj2|, 4|bj2|, |j1|, |j2|}
= log max{4|aj2|, 4|bj2|, |j1|, |j2|}

(19)

since a, b, j1, j2 are integers and j1, j2 are relatively prime. Therefore, we take
the latter expression as the value h in David’s Theorem 2.1. Furthermore, we
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choose D := 1 and real numbers V1, . . . , Vr and B such that, in accordance with
(1) and (1′),

log Vi ≥ max
{

ĥ(Pi), h,
3π|ui|2

ω2
1Im (τ)

}
for 1 ≤ i ≤ r (20)

and, a fortiori,
B ≥ max

1≤i≤r
{Vi}. (21)

It turns out to be necessary to impose another condition on B. To this end,
note that by the definition (3) of N , we have for the coefficients n′i in (1′) the
estimates

|n′i| ≤ gN for 1 ≤ i ≤ r.

On the other hand, the integer n′0 in (17) can be estimated as follows: Applying
(15) to u′ = gu we get from (17′)

∣∣∣n′0 +
r∑

i=1

n′iui

∣∣∣ < exp{−λ1N
2 + c′1 + log g},

and the right hand side can be made ≤ 1
2 for sufficiently large N , namely for

N ≥
√

log(2g) + c′1
λ1

. (22)

Hence, we obtain

|n′0| =
∣∣∣n′0 +

r∑

i=1

n′iui −
( r∑

i=1

n′iui)
∣∣∣

≤
∣∣∣n′0 +

r∑

i=1

n′iui

∣∣∣ +
∣∣∣

r∑

i=1

n′iui

∣∣∣

≤ 1
2 +

r∑

i=1

|n′i| |ui|

≤ 1
2 + r

2gN ≤ r=1
2 gN

by the normalization (18) of the ui.

Therefore, assuming (22) and N > ee, we choose

B :=
r + 1

2
gN, (23)

keeping in mind that condition (21) must be fulfilled, too.
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Finally, we define the constant (see [D])

C := 1.1 · 109 · 107r ·
(2

e

)2r2

· (r + 1)4r2+10r. (24)

On combining the estimate (15′) with David’s Theorem 2.1 and observing the
relations (20) - (24), we arrive at the following important result.

Proposition. The elliptic logarithm

u = n0 +
r∑

i=1

niui + ur+1

of an integral point P = (ξ, η) = (℘(u), ℘′(u)) ∈ E(Q) such that

ξ > max{eµ∞ , ξ0}

satisfies the estimates

exp
{
− Chr+1

(
log( r+1

2 gN) + 1
) (

log log( r+1
2 gN) + 1

)r+1
r∏

i=1

log Vi

}

≤ |gu|

< exp
{
− λ1N

2 + c′1 + log g
}

,

where N = max
1≤i≤r

{|ni|}.

Taking logarithms and omitting the middle term log |gu|, we conclude that the
following inequality holds.

Corollary. Under the hypothesis of the proposition,

Chr+1(log( r+1
2 gN) + 1) (log log( r+1

2 gN) + 1)r+1

r∏

i=1

log Vi + c′1 + log g > λ1N
2.

(25)

4 A bound for integral points

Of course, the inequality (25) can hold only for a finite set of positive integers
N . We wish to determine a bound for those numbers N and hence for the
coefficients ni in the representation (1) of integral points P ∈ E(Q). For this
purpose, we first prove another lemma.
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Lemma 2 Let ρ, σ and h be real numbers satisfying

ρ ≥ 1, h ≥ 1 and σ > max
{(e2

h

)h

, 1
}

.

Then the largest solution x0 ∈ R of the equation

x = ρ + σ logh x

satisfies the inequality
x0 < 22hρσ logh(hhσ).

Again we postpone the proof of Lemma 2 and instead apply it to our situation.

If
N > max{ee, (6r + 6)2}, (26)

we have in (25) the inequality
(
log( r+1

2 gN) + 1
) (

log log( r+1
2 gN) + 1

)r+1
< 2 logr+2 N

= 2−(r+1) logr+2 N2.
(27)

Put

c1 := max
{c′1 + log g

λ1
, 1

}
and c2 := max

{ C

λ1
, 109

}(h

2

)
r+1

r∏

i=1

log Vi. (28)

On replacing in (25) the middle term by the right hand side of (27), we derive
from (25) the inequality

N2 < c1 + c2 logr+2 N2. (29)

Now we apply Lemma 2 to (29). Let N0 ∈ R be the largest solution of the
equation obtained by equating both sides of (29). Then the inequality (29)
cannot hold for N > N0. Taking

ρ := c1, σ := c2 and h := r + 2

and observing that the hypothesis of Lemma 2 is fulfilled, we infer from Lemma
2 for N0 the estimate

N0 < N1 :=
√

c1c2 · 2r+2 · log
r+2
2 (c2 · (r + 2)r+2). (30)

It is clear that the positive integers N satisfying (29) also satisfy (30) since, as
we noted, (29) implies N ≤ N0. of course, by (22) and (25) we also have

N1 > max{ee, (6r + 6)2},
√

log(2g) + c′1
λ1

. (31)
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On combining the relations (21), (24) and (30), we thus arrive at the following
fundamental theorem.

Theorem. Let

P =
r∑

i=1

niPi + Pr+1 ∈ E(Q)

be an integral point on the elliptic curve E over Q, where P1, . . . , Pr ∈ E(Q)
form a basis of the infinite part of E(Q) and Pr+1 ∈ Etors(Q) is a torsion point.
Then the maximum

N = max
1≤i≤r

{|ni|}

satisfies the inequality

N ≤ max{N1,
V

r
} =: N2,

where N1 is defined by (30) and V is given by

V := max
1≤i≤r

{Vi}

with the Vi’s subject to (20).

Based on this theorem, we have developed an algorithm which computes all
integral points on any elliptic curve E over Q of not too high rank. As pointed
out already, the algorithm works well for curves E of ranks up to six over Q.
However, any improvement of David’s bound in [D] would make it possible to
treat elliptic curves of still higher ranks.

It remains to prove the two lemmata, to explain how to calculate the elliptic
logarithms ui of the basis points Pi and the real and complex period ω1 and ω2,
respectively, so that the Vi can be determined in accordance with (20) and to
show, how the bound in the Theorem can be used to compute all integral points
in E(Q).

5 Proofs

Proof of Lemma 1. We may assume without loss of generality that the largest
real root α ∈ R of the polynomial p(x) = x3 + ax+ b in (8) is non-negative. For
if α is negative, we translate p by a suitable positive number M as follows. By
the estimate given by Zassenhaus [Zs], we have

|α| ≤ |p|
3
√

2− 1
≤ eµ∞

3
√

2− 1
,
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since

|p| = max
{√

|a|
3

, 3
√
|b|

}
≤ max

{√
|a|, 3

√
|b|

}
= eµ∞ .

Then the polynomial in y := x + M with M as in (12)

q(y) := p(y −M)

has the largest root α + M ≥ 0. Put

ξ0 :=





2α + M if β, γ ∈ R

2 ·max
{

α,
β + γ

2

}
+ M if β, γ ∈ C\R





and choose ξ ∈ R according to

ξ > max{ξ0, 0}. (32)

Our integral becomes
∞∫

ξ

dx√
p(x)

=

∞∫

ξ+M

dy√
q(y)

.

Next we move the root α + M of q(y) to zero by introducing the polynomial in
z := y − (α + M)

r(z) := q(z + (α + M)) = z(z + β1) (z + γ1)

for
β1 := α− β > 0, γ1 := α− γ > 0.

The integral becomes
∞∫

ξ

dx√
p(x)

=

∞∫

ξ−α

dz√
r(z)

=

∞∫

ξ−α

dz√
z (z + β1) (z + γ1)

.

We consider two cases:

1. Suppose that either β, γ ∈ R or β + γ = β + β < 2α. Then we have
β1 > 0, γ1 > 0 under the first condition and β1 + β1 = 2α − β − β > 0
under the second. Under both conditions we gather that, for z > 0 ⇐⇒
y > α + M ⇐⇒ x > α,

r(z) > z3

and hence conclude that
∞∫

ξ−α

dz√
r(z)

<

∞∫

ξ−α

dz

z
3
2

=
2√

ξ − α
. (33)
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Now if β, γ ∈ R, we conclude from
1
2ξ > α + M

2

by (12) and (32) that

2√
ξ − α

<

√
8√

ξ + M
≤
√

8√
ξ

since M ≥ 0, which yields the assertion of Lemma 1. If β, γ ∈ C\R but
β + γ = β + β < 2α the same conclusion holds since ξ > 2α + M by (12)
and (32).

2. Suppose now that β, γ ∈ C\R but β + γ = β + β ≥ 2α. Then we have

β1 + β1 = 2α− β − β ≤ 0,

hence

z ≥ z +
β1 + β1

2
and furthermore,

(z + β1) (z + β1) = z2 + (β1 + β1)z + β1β1

=
(
z +

β1 + β1

2

)2

−
(β1 − β1

2

)2

>
(
z +

β1 + β1

2

)2

.

Altogether, for z > 0 ⇐⇒ x > α, this leads to the inequality

r(z) = z (z + β1) (z + γ1) >
(
z +

β1 + β1

2

)3

.

The integral (33) can therefore be estimated as follows:
∞∫

ξ−α

dz√
r(z)

<

∞∫

ξ−α

dz

(z + β1+β1
2 )

3
2

=
2√

ξ − α + β1+β1
2

.

But in this case, since by (12) and (32)

1
2
ξ >

β + β

2
+

M

2
= α− β1 + β1

2
+

M

2
,

we infer
2√

ξ − α + β1+β1
2

<

√
8√

ξ + M
≤
√

8√
ξ

as before, and this completes the proof of Lemma 1.

14



Proof of Lemma 2. By Lemma 2.2 of [PdW], the largest solution x0 ∈ R of
the equation

x = A + B · logh x

satisfies
x0 < 2h

(
A

1
h + B

1
h log(hhB)

)h

.

Since A and B are at least 1, we have

A
1
h + B

1
h log(hhB) ≤ 2A

1
h B

1
h log(hhB),

and this implies the asserted inequality

x0 < 22hAB logh(hhB),

thus proving Lemma 2.

In the above Proposition, we need to determine the numbers Vi ∈ R in ac-
cordance with the estimates (20). This requires the calculation of the elliptic
logarithms ui of the points Pi ∈ E(Q) and of the real and complex period ω1

and ω2, respectively, giving τ = ω2
ω1

. To calculate ω1 and ω2, we choose for our
elliptic curve the above equation

v2 = r(z) = z (z + β1) (z + γ1)

and apply the method of arithogeometric mean of Gauss as described by Grayson
[Gr]. For the computation of the elliptic logarithms ui of the points Pi (1 ≤
i ≤ r + 1) we use the fast-converging series given by Zagier [Za], formula (10).
Of course, the Néron-Tate height of the basis points P1, . . . , Pr of E(Q), also
required in (20), is calculated by the well-known procedure already employed in
[GZ].

6 Reduction of the initial bound

The upper bound for N obtained in the Theorem in general is too large for
computing all integral points on our elliptic curve E over Q. However, by
numerical diophantine approximation techniques the bound can be considerably
reduced. In this way it turns out to be possible to eventually solve the elliptic
equation in rational integers. The inequality

∣∣∣n′0 +
r∑

i=1

n′iui

∣∣∣ < exp{−λ1N
2 + c′1 + log g} (34)

obtained in the Proposition for u′ = gu in accordance with (16′), together with
the inequallity N ≤ N2 established in the Theorem may be considered as a ho-
mogeneous diophantine approximation problem. Analogous inequaltities occur
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in the resolution of exponential diophantine equations, and methods for solving
them have been studied by de Weger [dW]. We remark that in the applications
mentioned above inhomogeneous diophantine approximation problems had to be
solved. In the present situation however, by Mazur’s theorem on the torsion, it
is more adequate to utilize homogeneous diophantine approximation techniques.
Actually, this is true only if the group of rational points E(Q) is torsion-free or
if the upper bound N2 for the coefficients of the basis points is large.

In the sequel, we are going to give an outline of de Weger’s method [dW] applied
to the present situation. Let C0 be a suitable positive integer and Γ be the lattice
spanned by the rows of the matrix




1 0 . . . 0 0

. . .

0 . . . 0 1 0

bC0 · u1c . . . bC0 · ur−1c bC0 · urc C0




.

Denote by l(Γ) the Euclidean length of the shortest non-zero vector of Γ. By
Lemma 3.7 of [dW], we conclude that, if Ñ is a positive integer such that

l(Γ) ≥
√

r2 + 5r + 4 · Ñ ,

then (34) has no solution satisfying
√

1
λ1

log
C0(c′1 + log g)

Ñ
≤ N ≤ Ñ . (35)

To find an Ñ enjoying these properties, one chooses C0 in the order the magni-
tude of Nr+1

1 and computes the LLL-reduced basis [LLL] b1, . . . br+1 of Γ. By
proposition (1.11) of [LLL], we have

l(Γ) ≥ 2−
r
2 ‖b1‖,

where ‖b1‖ is the Euclidean length of the vector b1. Now we take

Ñ := ‖b1‖ · 2− r
2

√
r2 + 5r + 4.

If Ñ ≥ N , we obtain the estimate

N ≤
√

1
λ1

log
C0(c′1 + log g)

Ñ
.

This process is iterated until the upper bound cannot be reduced further. Let
N ′

1 be the result of the last iteration. In the range we are left left with after the
reductions, i.e. for the vectors

(n0, . . . , nr) ∈ Zr+1
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such that
max
1≤i≤r

{|ni|} ≤ N ′
1,

we now test all points
n1P1 + . . . + nrPr + Pr+1

in (1) for integrality.

Most of the procedures used in our calculations are part of the computer algebra
system SIMATH. It is planned to incorporate in SIMATH the whole algorithm
for calculating integral points on elliptic curves over the rationals. 1

7 Examples

We take the elliptic curve from Mestre [Me]

y2 + 351y = x3 − 63x2 + 56x + 22

and consider the quasiminimal model in short Weierstrass form

y2 = x3 − 1642032x + 628747920

with discriminant

∆ = 112571102923779428352 = 212 ∗ 312 ∗ 51714450757,

modular invariant
j =

j1
j2

=
224933197418496

51714450757

and height of E

µ∞ = log max{|a| 12 , |b| 13 } = 7.1557225286.

E has rank
r = 6

and torsion group
Etors(Q) = {O},

1After we had finished writing this paper, we learned about a lecture of Tzanakis delivered
in October 1993 at Oberwolfach in which he also reported on an algorithm for computing
integral points on elliptic curves by means of elliptic logarithms.
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The following six points form a basis of the Mordell-Weil group E(Q), where
we exhibit also their canonical height ĥ

P1 = (432, 108), ĥ(P1) = 3.3637106425

P2 = (396, 6372), ĥ(P2) = 3.3888408529

P3 = (360, 9180), ĥ(P3) = 3.4129391620

P4 = (1044, 7236), ĥ(P4) = 3.5302197591

P5 = (108, 21276), ĥ(P5) = 3.5591324536

P6 = (36, 23868), ĥ(P6) = 3.5952919707

The symmetric matrix of the bilinear from associated with the quadratic form
ĥ on E(Q) with respect to the points P1, . . . , P6 is

A =




3.36371 −0.01723 −0.35870 1.41713 1.09316 −1.20380

−0.01723 3.38884 −0.87466 0.78051 0.71168 0.86176

−0.35870 −0.87466 3.41294 1.51057 −1.45781 0.67460

1.41713 0.78051 1.51057 3.53022 −0.87592 −0.21851

1.09316 0.71168 −1.45781 −0.87592 3.55913 −1.76537

−1.20380 0.86176 0.67460 −0.21851 −1.76537 3.59529




.

The matrix A has the characteristic polynomial

χA(x) = x6 − 20.85013503 x5 + 164.9142957 x4 − 618.6663540 x3

+1125.293711 x2 − 906.8522386 x + 226.2807738.

The eigenvalues of A are

λ1 = 0.4323724011

λ2 = 1.5647578466

λ3 = 1.9944764779

λ4 = 4.3502898759

λ5 = 5.5014070699

λ6 = 7.0068311531

of which λ1 is needed in (4).

The real period appearing in (10) is

ω1 = 1.0582679843
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and the complex period
ω2 = 0.4067231150 i

giving
τ =

ω2

ω1
= 0.3843290367 i.

Hence the constant in (16) becomes

c′1 = 1.4451852966

thus yielding the constant in (28)

c1 = max
{c′1 + log 1

λ1
, 1

}
= 1.4451852966

In (14) we need the elliptic logarithms of the basis points P1, . . . , P6:

u1 = 0.0011316844

u2 = 0.0649588423

u3 = 0.0912606341

u4 = 0.4447562185

u5 = 0.1867017663

u6 = 0.2047900792

and the quantity

h = log max{4|aj2|, 4|bj2|, |j1|, |j2|} = 46.3145384235

whence

max
{

ĥ(Pi), h,
3πu2

i

ω2
1Im (τ)

}
= h for i = 1, . . . , 6.

Therefore we may choose

Vi = eh = 130061413389624701760 (i = 1, . . . , 6)

in accordance with (20). It turns out that (21) is automatically satisfied if we
take

B = 6N

according to (23). The constant C in (24) is

C ∼ 7 ∗ 10213

and therefore, the constant c2 in (29) becomes

c2 = max
{ C

λ1
, 109

}(h

2

)r+1 r∏

i=1

log Vi =
C

2r+1λ
· h2r+1 ∼ 2.5 · 10233.
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Finally in (30) we get
N1 = 1.1 ∗ 10126

and the Theorem shows that

N ≤ max
{

N1,
eh

6

}
= N1.

Now we apply de Weger reduction to the (r + 1)× (r + 1) matrix



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

C0 · u1 C0 · u2 C0 · u3 C0 · u4 C0 · u5 C0 · u6 C0




starting with the value
C0 = 10890.

After the first reduction, the length of the shortest vector b1 of the lattice is at
least

‖b1‖ ≥ 3.6 ∗ 10−653

and we obtain the new upper bound

N ≤ 59.

A second application of de Weger reduction with the startng value

C0 = 1017

reduces the length of the shortest vector b1 of the lattice to at least

‖b1‖ ≥ 1.7 ∗ 10−16

and yields
N ≤ 9.

The third de Weger reduction with the starting value

C0 = 1014

yields the length of b1 at least

‖b1‖ ≥ 7.5 ∗ 10−14

and improves the upper bound to

N ≤ 8.
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A fourth reduction leads to the same upper bound for N so that we stop here.

It remains therefore to test all the points

P = n1P1 + n2P2 + n3P3 + n4P4 + n5P5

with respect to integrality.

In addition we have to test all points P = (ξ, η) ∈ E(Q) such that

ξ ∈ Z and 0 ≤ log |ξ| ≤ µ∞ = 7.1557225286

in order to take care of the case in which (7′) rather than (7) is valid. In this
extra search procedure we did not find any new points.

Altogether we obtain the following 70 integral points (and their additive inverses,
of course) on E over Q:

Table

No. P n1 n2 n3 n4 n5 n6 ĥ(P )

1 (−1440, 2700) 0 −1 −1 1 0 1 4.0860684

2 (−1431, 6939) 0 0 1 0 1 1 5.4701995

3 (−1388, 15292) 1 0 1 −1 −1 0 6.2707058

4 (−1332, 21276) −1 0 0 1 0 0 4.0596804

5 (−1296, 24084) 1 1 0 −1 −1 0 4.0506693

6 (−1031, 35011) 0 2 1 −1 −1 −1 7.5641857

7 (−999, 35667) 0 −1 0 1 0 0 5.3580305
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Table (suite)

No. P n1 n2 n3 n4 n5 n6 ĥ(P )

8 (−927, 36801) 0 0 0 −1 −1 0 5.3375206

9 (−828, 37692) 0 0 −1 1 0 0 3.9220270

10 (−648, 37692) 0 −1 0 0 1 1 3.8656383

11 (−612, 37476) 1 1 1 −1 −1 −1 3.8537954

12 (−396, 34884) −1 −1 −1 1 0 0 3.7781382

13 (−332, 33724) −1 0 1 0 1 0 5.9512406

14 (−72, 27324) 0 1 0 −1 −1 −1 3.6459771

15 (36, 23868) 0 0 0 0 0 1 3.5952920

16 (108, 21276) 0 0 0 0 1 0 3.5591325

17 (184, 18244) 1 0 0 −1 −1 −1 5.7158004

18 (297, 12933) −1 −1 −1 2 1 1 4.8391918

19 (360, 9180) 0 0 1 0 0 0 3.4129392

20 (396, 6372) 0 1 0 0 0 0 3.3888409

21 (412, 4708) 0 −1 −1 0 0 1 5.5750298

22 (432, 108) 1 0 0 0 0 0 3.3637106

23 (1017, 3267) −1 −1 −1 1 1 0 4.8913920

24 (1044, 7236) 0 0 0 1 0 0 3.5302198

25 (1048, 7676) 0 0 1 −1 0 −1 5.7311012

26 (1060, 8900) 0 1 0 −1 −1 0 5.7419748

27 (1152, 16308) 0 0 0 0 1 1 3.6236835

28 (1192, 19108) −1 −1 0 1 0 0 5.8530373

29 (1224, 21276) 1 0 0 −1 −1 0 3.6806690

30 (1296, 26028) −1 0 −1 1 0 0 3.7340954

31 (1441, 35423) −1 −1 0 0 1 1 7.4161825

32 (1476, 37692) 0 1 1 −1 −1 −1 3.8548934
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Table (suite)

No. P n1 n2 n3 n4 n5 n6 ĥ(P )

33 (1728, 54324) 0 −1 −1 1 0 0 4.0005237

34 (1836, 61668) 0 0 1 0 1 0 4.0564499

35 (2385, 101385) −1 0 0 1 0 −1 5.6843920

36 (2556, 114588) 1 1 0 −1 −1 −1 4.3622713

37 (3132, 161892) 1 0 0 0 0 1 4.5514029

38 (3816, 223452) −1 0 0 0 1 0 4.7365309

39 (4689, 309879) 0 0 −1 1 −1 0 6.3173694

40 (4860, 327780) 0 0 0 −1 −1 −1 4.9650524

41 (5328, 378324) 0 1 1 0 0 0 5.0524660

42 (6624, 529524) 0 −1 0 0 0 1 5.2606033

43 (8296, 746972) 0 −1 −1 2 1 1 7.6745398

44 (8712, 804708) 0 −1 0 0 1 0 5.5246168

45 (10008, 993276) 0 0 −1 0 0 1 5.6590325

46 (15084, 1846044) 1 0 1 0 0 0 6.0592576

47 (15849, 1988901) −1 0 1 0 0 0 7.4940421

48 (18856, 2583388) −1 −1 −1 1 0 −1 8.4755779

49 (19548, 2727324) 1 1 1 −2 −1 0 6.3138077

50 (29448, 5048676) 1 1 0 0 0 0 6.7180976

51 (31572, 5605308) −1 1 0 0 0 0 6.7870054

52 (32356, 5815612) 1 1 1 −2 0 −1 9.0085106

53 (37332, 7208892) −1 −2 −1 2 1 1 6.9530002

54 (45328, 9646676) 0 0 0 1 −1 −1 9.3427541

55 (52056, 11873412) 1 −1 −1 0 0 1 7.2829869

56 (72864, 19665396) 0 1 0 −1 −2 −1 7.6174453

57 (83988, 24337476) 1 0 1 −1 1 1 7.7589192
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Table (suite)

No. P n1 n2 n3 n4 n5 n6 ĥ(P )

58 (113233, 38100599) 2 2 2 −2 −1 −1 11.6401838

59 (122544, 42895764) −1 −1 −2 2 1 1 8.1354623

60 (149260, 57663260) −1 −1 −1 0 1 0 10.5294159

61 (185868, 80130276) 0 −1 1 0 0 0 8.5510941

62 (224712, 106520292) 0 1 0 −1 −1 −2 8.7405633

63 (270108, 140378724) −1 0 0 1 2 1 8.9243130

64 (392985, 246355155) 0 0 0 0 −1 1 10.6851654

65 (429129, 281112309) 2 0 1 −2 −1 0 10.7730789

66 (1149912, 1233095292) 0 −1 −2 1 −1 0 10.3719724

67 (1590228, 2005344324) −2 −1 0 2 1 0 10.6960827

68 (4361004, 9107091684) −1 −2 −1 1 2 2 11.7047719

69 (13895892, 51799986108) 0 0 −1 2 0 1 12.8636093

70 (25099236, 125745007932) 2 0 0 0 0 0 13.4548426
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