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1 Introduction

The aim of this paper is to prove the following
Theorem 1 The system of diophantine equations
r? —6y* = -5 and =221 (1)

has only the solutions (x,y, z) = (16561, £6761,+91); (71, £29, +6); (17, £7, £3);
(7,43, 42); (1,+1,£1) and (—1,+1,0).

Our system of equations is a quartic model of an elliptic curve. It has
only finitely many integer solutions by a well known result of Siegel [11],
moreover they are effectively computable by Baker [1]. It is still interesting
to solve it, because the elementary method of J.H.E. Cohn [3], which was
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further developed by McDaniel and Ribenboim [4] failed. The Siegel-Baker
method, which is the combination of algebraic and transcendental number
theoretical tools is complicated. It requires detailed knowledge of certain
quartic number fields and the solution of several quartic Thue equations.

There are two crucial points in our proof:

1. We prove in section 2. that under general conditions a diophantine
equation 22 — dy?> = m with the side condition z = az? — b can be
’homogenized’, i.e. can be transformed to finitely many equations
22 — dy? = m; with z = @;2%. In this step we use an idea of Mordell
[8].

2. After the ’homogenization’ we get mixed exponential-polynomial equa-
tions in n, z € 7 of type

aa™ — bp" = ¢z (2)

This can be solved theoretically by using results of transcendental
number theory, see Pethé [9] and Shorey and Stewart [10]. Unfortu-
nately none of these methods is applicable in practice. Generalizing
the argument of Mignotte [5] and Mignotte and Pethé [6], [7] we are
able to reformulate (2) directly enough into linear forms in logarithms
of suitable algebraic numbers to use efficiently the known reduction
techniques.

2 Homogenization of the problem

In the first step toward the proof of our main theorem we use an idea of
Mordell [8] to translate (1) into finitely many 'homogeneous’ equations.

Theorem 2 Leta,b,d, meZ, d square—free. Assume that (xo = —b,yo, 20) EZ>
satisfies
2 —dy? =m and r = az® +b. (3)

Then there exist for all solutions (x,y,z)EZ> of (3) integers e, f, A with
(e, f) =1, f2 —de* = A, where A divides 2dm, if d is odd, and dm, if d is

even,

fyo —exo

r = 2ed A xo,



edeyo — fxo
A

Jyo — exo

=

y = 2 + Yo;

az’> = 2ed

Proof: Let (z,y,2)€Z? be a solution of (3). If 2 = x( then the choice
A = —d, f = 0,e = 1 satisfies the assertion. In the sequel we may assume
x # xg9. Let e and f be coprime integers with

Yy —yo = Z(z — o).
Inserting this formula for y into (3) and using x3 — dy2 = m we get

2

e e
x+1‘o—dﬁ(a¢—xo):2—

f

which proves the stated parametrized form of x and y.

dyo,

fyogexo and

are integers too and A is coprime with e. We have further

As (e,f) = 1 and z and y are integers, the numbers 2d

2d€y0 — fxo
A

— deyy — 2d
Jyo €T0 4 9y 2V fro _ 2dem

2
dx() A A

Thus A divides 2dm. If d is even then 4 does not divide f? — de? because d
is square—free and (e, f) = 1. Thus A|dm in this case.

Inserting the paremetrized formula for x into the second equation of (3) we
get the equation for z and the proof of the theorem is completed. O

Corollary 1 Allinteger solutions x,y, z of (1) have the form x = IQef; °_

1, y= 2666A_ / +1, 22 = Gef; 6, where A =1,-2,3,—6 and
f2—6e? =A. (4)
Proof: We apply Theorem 1. with d = 6, m = =5, a = 2, b = —1,

(0,90, 20) = (1,1,1). Then there exist e, f€ZZ, wich satisfy (4) with a A[30.
The only values of A with these conditions are 1, —2,3, —6,—5,10, —15 and



30.
Assume that 5|A and there exist e, f€ZZ with (4) and

6e(f —e) = AZ>. (5)

As by (4) 5 does not divide e, we have 5|(f —e) by (5). We can rewrite (4)
and (5) as follows

A 6e — f\2 e— f\?2 f—e A,
—5—< 3 >—6< 5) and — 6Ge 3 ——gz.

6e — f

Put B = ¢ ; / and 7 = , then Ey, F1€Z and they satisfy F12 —

A A
6% = 3 and 6F,(F; — Ep) = —322. Thus it is enough to solve (4) and
(5) for those values of A which are not divisible by 5. O

Lemma 1 Let A =1,-2,3 or6 and e, f€ZL e # 0 be a solution of (4) and
(5). Put o =5+2v6 and 3 =5 —2v/6. Then there exist n, weZ such that

a2n+1 _ ﬁ2n+1

e o ‘ B

5— j}\/é _w7 Zf A_17

_ 2+Ve)ar —(2-VE)F _

= 22\/6 2 =w, if A=-2,

:(3—1—\/6)& ~(3-0)p =w", if A=3, and
2n 2n 2\/6

Y N

Proof: We way assume e¢ > 0 without loss of generality. In the sequel O
denotes an unspecified square.

(i) Let A = 1. We have e even and f odd, hence f — e odd by (4). Hence
e = 20 or e = 60. By the theory of Pellian equations there exist meZ and
ee{—1,1} such that

m __ am
e = E\Q.
2v/6
a™ — ﬁm
Let a,, = W for meZZ. As a_,, = —a,, we may assume £ = 1 and
m > 0. Thus we get the equations
a™ — ﬁm
am = ——— = 60O 6



with d; = 1 or 3. It is easy to see that 3|a,, holds iff 3|m. Let m = 3k and

a, = agﬁ. We have ag = 0,a7 = 33 and a}_ 5, = 970aj_ ; — aj, for k > 0.
The sequence {aj, mod 5}, is periodic, and its period is (0,3,0,2). As
(2) = (2) = —1 we see that if (6) holds with &; = 3, then 6|m. Let m = 6k,
and for neZ put b, = o™ + ™. Then

/ agk asgk
QAo 3 3 3k (7)

(8- (52

2 fork
hence (ag,br) = { 1 fZ; " e(\flg .

Assume that m > 0 is the smallest even integer with a/ = x2. Then, by
(7) al,bsm = x%, hence m must be even, say m = 2my and ah,,, = 227, and
bem, = 2z3. Continuing this process, assume that 2my, is the smallest even
divisor of m such that as,, = 227 with an integer zj. Then Ay, D3my, = 227,
Let my odd. Then a;nk is odd, and a square, which is a contradiction. Hence
my, is even and either a square or 20 in contradiction with the choice of m
and my.

This means, that in (6) d; = 3 is not possible.

We have also

Now we claim, that if a positive even integer m satisfies (6), then there exists

an odd divisor of m, which satisfies (6) too.

Let m = 2m; > 0 be the smallest even solution of (6). Then as agy,, =
1 if mp odd

by = 0 and (amy, bny) = {2 o

am, = O or my is even and a,,, = 20. Continuing this argument we get the

proof of the claim and the lemma in the present case.

(ii) Let A = —2. We have e = O or 30 by (5) and

(2 4+ v6)a™ — (2 — v6)8™
e=c¢ = am
2v/6
with a suitable ee{—1,1} and meZ by (4). It is easy to see that a_,, =
am—1, hence we may assume again € = 1 and m > 0. We have 3|a,, if and
only if m =1 (mod 3).

Let b,, = % for m > 0. Then by = 3,b; = 2907 and by, 2 = 970641 —

by, for m > 0. The period of the sequence {b,, mod 5}2°_, is (3,2,2,3)

, either m; is odd and




which means that e = 30 is not possible.
If e = O, then f — e = —30 this implies that m has to be even.

(iii) Let A = 3. In this case e is odd, hence a square by (5). Let
LB VB)a™ — (3 —\/6)pm

for meZZ. Then e = a,, for a suitable m. Considering a,, modulo 4 we see
that a,, = O is only possible if m is even.

(iv) Let A = —6. Now e = 0O by (5) and

6:\/6 = :am
2v/6 2

for a suitable meZZ4. Considering a,, modulo 3 we see that a,, = O is only
possible if m is even. O

3 Application of linear forms

Let the algebraic number  be a zero of the irreducible polynomial p(x) =
anx™ + ... + a9 € Z[z], where (an,...,ap) = 1. Denote 51 = 3,..., [, the
zeros of p(z). The absolute logarithmic height of 3 is defined by

h(o) = log (H max(1, |&|}> .
=1

In this section we will use the following theorem of Waldschmidt [12].

Theorem 3 Let o, ..., ay be non-zero algebraic numbers; fori=1,....n, let
log o; be a determination of the logarithm of «;. Suppose that the numbers
log ay, ..., log au, are Q-linearly independent. Put

D =[Q(a1,....a) : Q] and g=[R(logay,...,loga,) : R].

Let Ay, ..., An, A, E and f be positive real numbers such that

logA; > h(e;), (1<i<n), A=max{A1,.., A}

. -1
' D p nD | log oy
eSESmln{A1v-"7An’f<Z log A; '

and

=1



Let by, ..., by be rational integers with b, # 0. Put
‘bn| |bj|
M pu—
1255 { log A; + log A, |’

D
Zp = max {7 + 3logn, % log E, log (logE)} ,  Go =max{4nZy;log M }

and
Uy = maX{D2 log A, D""2GyZylog A; - - - log Ay (log E)*"*l}.
Then the linear form
A=bilogay +...+byloga,.

satisfies

n
|A > exp {—1500g_"_222"n3"+5 (1 + ?) Uo} :
Let « be a real quadratic unit and IK = Q(«). Let 7/ denotes the conjugate
of yeIK. Take 3 = o' and assume that o > |3|. Let a,b and c€Zk. Assume
that the integers m, x>0 satisfy the equation

ac®™ — b2 = cx?.

Our aim in this section is to prove an upper bound for m.
Let I. = K(y/—c) and assume that IL is a quadratic extension of KK, i.e.
[IL : Q] = 4. Then our equation implies

Ni, (0™ + v/ —cx) = Ny jq(a) = A, (8)

with an integer A.

Choose in Zy, units 12, ...,n-; 7 = 1,2 or 3 such that the group U generated
by m1 = a, 19, ..., n, has finite index in the group of units of Zy,. There exists
in Zy, a maximal finite set of, with respect to I, non—associated elements
of norm A. This set will be denoted by A. Then there exist for all m,x€ZZ
with (8) a y€A and e€lf such that

b3™ + \/—cx = 7e. 9)



Let order the conjugates ][J(i),i = 1,2,3,4 of I according the following
ordering of the conjugates of v/—c: \/—c,—v/—c, v/ —c, —/—('.

It is easy to see that if m > mg then

1 la]

2 |'y(i)|

a < |E < .
a [y ®]

for 1 = 1,2; and if ¥’ > 0, which we may assume without loss of generality,
then

/ %
72|7(3)|a <|e¥] < 27|7(3)|a (11)
. |/l 2’|
a —3m (4) a —3m
@ << g (12)

hold. We remark that if b < 0 than only the role of e® and é® changes.
The last inequalities imply that if ¢ > 0 then (8) has only finitely many
solutions and they are very easy to compute. In fact ¢® and e® are in this
case conjugate complex numbers, hence

b 2|d’|
72|7(3)|04 <|e¥] =1e"¥| < 7b’|7(4)|a ,
_ 1 4a/~(3)
iem < 1 log b2 @

The situation is more interesting when ¢ < 0. Then ¢®) and ™ are real
numbers and we will use estimations on linear forms in logarithms of alge-
braic numbers to establish an upper bound for m.

Let first ¢ > 0 (and ¢/ < 0). Then IL has two nonreal and two real con-
jugates, and there exist uy,ug € Z with € = ny"'1n5?. The estimations (10)
with ¢ = 2 and (11) yield

3 2
_ 2mlogallog |ny”| — log n”|

|u1] R +c1

and
4mlog? a

R
where R denotes the regulator of &/ and

‘u2’ < +Cla

— 1] —
c1 = 2log <3|ay|b2| D max{log , log 2|}/ R.
v




We have

hence
2)\ ¥2
1+ ﬁ <77§)> < ﬂa—%n
1) (1) ’
AN/} lal
4b 1
m > my, then a “7 < — and so
If h a 2m 5 and
a
@) ) 4.10b
|A1] = |arg (—7(1)> + ug arg (%) + upm| < ALY o
v Up)

o
Vlal ’

with ug€Z and —7 < arg(z) < = for every z € C. The last inequality yields
lug| < |uz| + 2.

We can set in Theorem 3
n=3D=4g9g=1

(2) (2) 1
A —nl 2 _ -
logAl—h<fy(1)>,logA2—h< (1)>,1ogA3—2

T2
E=e, M =4(luz| + 1)
Zo =T+ 3log3,Go =log M

1, [+ 05
T2

(2) (2)

|A1] > exp{ —2-10'%h 7 b2 log M .
(1) (1)
Uy

and get

Comparing the lower and upper bounds for |A;| we conclude

4.1|b &) (2) 16mlog? a
2mlog a—log \/% <2106 <7y(1)> h (Z%l) log Tg +4c1+4].
(13)

2
This inequality yields an upper bound for m, which we shall only compute
knowing the actual values of the accouring parameters.

Let now ¢ < 0 (and ¢/ < 0). Then all conjugates of IL are real and there
exist uy, ug, uz € Z with € = nj" n3?ns*. We recall n; = . The estimations
(10) with i = 1,2 and (11) yield

4mlog® alogh

lug| < R +c2, 1=2,3



with cp = 3\/§log(3|a||b2||%\) log alog [n2] log [n3] /R and h = maz{|na|, [n3]}-
Similarly to the above case, but working with real instead of complex loga-
rithms we get

(2) )

() DN 5.6
|A2| = |log % + ug log % + uglog 77?1) < 1 —m,
v T2 T3 lal
The parameters in the application of Waldschmidt’s theorem are the same
(2)
as earlier except that log A3 = h (%) , M = 2|ug| and
3
~(2) 77(2) 77(2)
Uy = 4°(7 + 3log3)h <(1)> h <%1)> h <?1)> log M. Hence Theorem 3
v 72 "3

implies

(2) (2) (2) )
2mlog a—log 5610 < 4.10'°n <7> h (772> h (773> log <87”10g‘3‘10gh +

(1)

O R (D

M3 R

(14)

lal

Remark 1 The argument of this section can be easily generalized to the
case when « is not a unit. Then we have to apply lower bounds for linear
forms in p-adic logarithms.

4 Proof of Theorem 1

In table 1. we are listing the data necessary for the application of the method
of section 3 to the equations given in Lemma 1. We are using the notations

a=5+2V6,=5—2V6 and ¥ = /—c.

A a b c r 2 3 Y

1 1 p%2 —1245V6 2 5—20—-2V6 1

2 -a 1 —(6+2V6) 3 1+ 249 -2 1

3 a 1 44+2V6 2 1+9 1

6 1 1 -2 3 24v3  OURBERD 5003
Table 1.

We are giving the details of the proof only for the case A = 1, when our
equation has by Lemma 1 the form

o?™ — 323%™ = 48V6w? = 4(5V6 — 12)w?.

10

202) .



It is easy to see that it has only one solution (m,w) = (0,1) in the range
0 < m < 10. If m > 10 then (10) is obviously true. Thus we may assume

in the sequel m > 10. The algebraic number field I. = Q(v/6, /12 — 5v/6),

has two real and two non-real conjugates. Its regulator is R = 6.83836 and
we get
lug| < 3.07398m + 8.95847.

As v =1 there are only two summands in A1, actually it has the form

5—2v6+21/12 — 56
Ug arg + upm
5—2v6 —21/12 — 5v6

As we proved, there are generaly three logarithms in Ay, but in the actual
example we have only two, therefore in the, to (14) analogous inequality we
get a much better constant. More precisely we have

A = < 0.042a72™,

4.58486m + 3.17387 < 6.81595 - 101! log(12.4m + 40),

which implies m < 5-10'2 and |ug| < 1.55-10'3. Dividing the inequality for
A1 by ugm we see that, as m > 10, ug/us is a convergent of

(1)

(2)
arg (772) /T =9 = .93557845273700309088141600367180617252445255312155.
M2

51706546491839
55266927472061°

The denominator of the 26-th convergent of 4,

then 10'4, hence

is larger

lug — ugy| > |51706546491839 — 55266927472061~| > .16132 - 10713,

which implies m < 5. Thus our equation has only the trivial solution.

The proof Theorem 1 is similair in the other cases. We may always set
mo = 10 and the upper bound for m computed from (13) or (14) depending
on the value of 7 is in all cases less then 10%°. To fill the gap between 10
and 10%° we can use the above reduction procedure, originally due to Baker
and Davenport [2].

= w
46
for even exponents, and is n = w = e = 0. The other solutions given in
Theorem 1 follow from the solutions of the equations in Lemma 1, which
are (A, n,e) =(1,0,2);(-2,0,1);(3,0,1); (—=6,0,1) and (-6, 1,49).

The solution (—1,+1,0) of (1) comes from the equation

11
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