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1 Introduction

The aim of this paper is to prove the following

Theorem 1 The system of diophantine equations

x2 − 6y2 = −5 and x = 2z2 − 1 (1)

has only the solutions (x, y, z) = (16561,±6761,±91); (71,±29,±6); (17,±7,±3);
(7,±3,±2); (1,±1,±1) and (−1,±1, 0).

Our system of equations is a quartic model of an elliptic curve. It has
only finitely many integer solutions by a well known result of Siegel [11],
moreover they are effectively computable by Baker [1]. It is still interesting
to solve it, because the elementary method of J.H.E. Cohn [3], which was
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further developed by McDaniel and Ribenboim [4] failed. The Siegel-Baker
method, which is the combination of algebraic and transcendental number
theoretical tools is complicated. It requires detailed knowledge of certain
quartic number fields and the solution of several quartic Thue equations.

There are two crucial points in our proof:

1. We prove in section 2. that under general conditions a diophantine
equation x2 − dy2 = m with the side condition x = az2 − b can be
’homogenized’, i.e. can be transformed to finitely many equations
x2 − dy2 = mi with x = aiz

2. In this step we use an idea of Mordell
[8].

2. After the ’homogenization’ we get mixed exponential-polynomial equa-
tions in n, z ∈ ZZ of type

aαn − bβn = cz2. (2)

This can be solved theoretically by using results of transcendental
number theory, see Pethő [9] and Shorey and Stewart [10]. Unfortu-
nately none of these methods is applicable in practice. Generalizing
the argument of Mignotte [5] and Mignotte and Pethő [6], [7] we are
able to reformulate (2) directly enough into linear forms in logarithms
of suitable algebraic numbers to use efficiently the known reduction
techniques.

2 Homogenization of the problem

In the first step toward the proof of our main theorem we use an idea of
Mordell [8] to translate (1) into finitely many ’homogeneous’ equations.

Theorem 2 Let a, b, d, m∈ZZ, d square–free. Assume that (x0 = −b, y0, z0)∈ZZ3

satisfies
x2 − dy2 = m and x = az2 + b. (3)

Then there exist for all solutions (x, y, z)∈ZZ3 of (3) integers e, f, ∆ with
(e, f) = 1, f2 − de2 = ∆, where ∆ divides 2dm, if d is odd, and dm, if d is
even,

x = 2ed
fy0 − ex0

∆
− x0,
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y = 2e
dey0 − fx0

∆
+ y0;

az2 = 2ed
fy0 − ex0

∆
.

Proof: Let (x, y, z)∈ZZ3 be a solution of (3). If x = x0 then the choice
∆ = −d, f = 0, e = 1 satisfies the assertion. In the sequel we may assume
x 6= x0. Let e and f be coprime integers with

y − y0 =
e

f
(x− x0).

Inserting this formula for y into (3) and using x2
0 − dy2

0 = m we get

x + x0 − d
e2

f2
(x− x0) = 2

e

f
dy0,

which proves the stated parametrized form of x and y.

As (e, f) = 1 and x and y are integers, the numbers 2d
fy0 − ex0

∆
and

2
dey0 − fx0

∆
are integers too and ∆ is coprime with e. We have further

2dx0
fy0 − ex0

∆
+ 2dy0

dey0 − fx0

∆
= −2dem

∆
.

Thus ∆ divides 2dm. If d is even then 4 does not divide f2 − de2 because d
is square–free and (e, f) = 1. Thus ∆|dm in this case.

Inserting the paremetrized formula for x into the second equation of (3) we
get the equation for z and the proof of the theorem is completed. 2

Corollary 1 All integer solutions x, y, z of (1) have the form x = 12e
f − e

∆
−

1, y = 2e
6e− f

∆
+ 1, z2 = 6e

f − e

∆
, where ∆ = 1,−2, 3,−6 and

f2 − 6e2 = ∆. (4)

Proof: We apply Theorem 1. with d = 6, m = −5, a = 2, b = −1,
(x0, y0, z0) = (1, 1, 1). Then there exist e, f∈ZZ, wich satisfy (4) with a ∆|30.
The only values of ∆ with these conditions are 1,−2, 3,−6,−5, 10,−15 and

3



30.
Assume that 5|∆ and there exist e, f∈ZZ with (4) and

6e(f − e) = ∆z2. (5)

As by (4) 5 does not divide e, we have 5|(f − e) by (5). We can rewrite (4)
and (5) as follows

−∆
5

=
(

6e− f

5

)2

− 6
(

e− f

5

)2

and − 6e
f − e

5
= −∆

5
z2.

Put E1 =
e− f

5
and F1 =

6e− f

5
, then E1, F1∈ZZ and they satisfy F 2

1 −

6E2
1 = −∆

5
and 6E1(F1 − E1) = −∆

5
z2. Thus it is enough to solve (4) and

(5) for those values of ∆ which are not divisible by 5. 2

Lemma 1 Let ∆ = 1,−2, 3 or 6 and e, f∈ZZ e 6 .= 0 be a solution of (4) and
(5). Put α = 5 + 2

√
6 and β = 5− 2

√
6. Then there exist n,w∈ZZ such that

e

2
=

α2n+1 − β2n+1

4
√

6
= w2, if ∆ = 1,

e =
(2 +

√
6)α2n − (2−√6)β2n

2
√

6
= w2, if ∆ = −2,

e =
(3 +

√
6)α2n − (3−√6)β2n

2
√

6
= w2, if ∆ = 3, and

e =
α2n + β2n

2
= w2, if ∆ = −6.

Proof: We way assume e ≥ 0 without loss of generality. In the sequel 2

denotes an unspecified square.
(i) Let ∆ = 1. We have e even and f odd, hence f − e odd by (4). Hence
e = 22 or e = 62. By the theory of Pellian equations there exist m∈ZZ and
ε∈{−1, 1} such that

e = ε
αm − βm

2
√

6
.

Let am =
αm − βm

4
√

6
for m∈ZZ. As a−m = −am we may assume ε = 1 and

m ≥ 0. Thus we get the equations

am =
αm − βm

4
√

6
= δ12 (6)
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with δ1 = 1 or 3. It is easy to see that 3|am holds iff 3|m. Let m = 3k and
a′k =

a3k

3
. We have a′0 = 0, a′1 = 33 and a′k+2 = 970a′k+1 − a′k for k ≥ 0.

The sequence {a′k mod 5}∞k=0 is periodic, and its period is (0, 3, 0, 2). As
(2
5) = (3

5) = −1 we see that if (6) holds with δ1 = 3, then 6|m. Let m = 6k,
and for n∈ZZ put bn = αn + βn. Then

a′2k =
a6k

3
=

a3k

3
b3k. (7)

We have also (
bk

2

)2

−
(

α− β

2

)2

a2
k = 1,

hence (ak, bk) =
{

2 for k even
1 for k odd

.

Assume that m > 0 is the smallest even integer with a′m = x2. Then, by
(7) a′mb3m = x2, hence m must be even, say m = 2m1 and a′2m1

= 2x2
1, and

b6m1 = 2x2
2. Continuing this process, assume that 2mk is the smallest even

divisor of m such that a′2mk
= 2x2

k with an integer xk. Then a′2mk
b3mk

= 2x2
k.

Let mk odd. Then a′mk
is odd, and a square, which is a contradiction. Hence

mk is even and either a square or 22 in contradiction with the choice of m
and mk.
This means, that in (6) δ1 = 3 is not possible.

Now we claim, that if a positive even integer m satisfies (6), then there exists
an odd divisor of m, which satisfies (6) too.

Let m = 2m1 > 0 be the smallest even solution of (6). Then as a2m1 =

am1bm1 = 2 and (am1 , bm1) =
{

1, if m1 odd
2, if m1 even

, either m1 is odd and

am1 = 2 or m1 is even and am1 = 22. Continuing this argument we get the
proof of the claim and the lemma in the present case.

(ii) Let ∆ = −2. We have e = 2 or 32 by (5) and

e = ε
(2 +

√
6)αm − (2−√6)βm

2
√

6
= am

with a suitable ε∈{−1, 1} and m∈ZZ by (4). It is easy to see that a−m =
am−1, hence we may assume again ε = 1 and m ≥ 0. We have 3|am if and
only if m ≡ 1 (mod 3).
Let bm =

a3m+1

3
for m ≥ 0. Then b0 = 3, b1 = 2907 and bm+2 = 970bm+1 −

bm for m ≥ 0. The period of the sequence {bm mod 5}∞m=0 is (3, 2, 2, 3)
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which means that e = 32 is not possible.
If e = 2, then f − e = −32 this implies that m has to be even.

(iii) Let ∆ = 3. In this case e is odd, hence a square by (5). Let

am =
(3 +

√
6)αm − (3−√6)βm

2
√

6

for m∈ZZ. Then e = am for a suitable m. Considering am modulo 4 we see
that am = 2 is only possible if m is even.

(iv) Let ∆ = −6. Now e = 2 by (5) and

e =
√

6
αm + βm

2
√

6
=

αm + βm

2
= am

for a suitable m∈ZZ. Considering am modulo 3 we see that am = 2 is only
possible if m is even. 2

3 Application of linear forms

Let the algebraic number β be a zero of the irreducible polynomial p(x) =
anxn + ... + a0 ∈ ZZ[x], where (an, ..., a0) = 1. Denote β1 = β, . . . , βn the
zeros of p(x). The absolute logarithmic height of β is defined by

h(β) =
1
n

log

(
n∏

i=1

max{1, |βi|}
)

.

In this section we will use the following theorem of Waldschmidt [12].

Theorem 3 Let α1, ..., αn be non-zero algebraic numbers; for i = 1, ..., n, let
log αi be a determination of the logarithm of αi. Suppose that the numbers
log α1, ..., log αn are Q-linearly independent. Put

D = [Q(α1, ..., αn) : Q] and g = [IR(log α1, ..., log αn) : IR].

Let A1, ..., An, A,E and f be positive real numbers such that

log Ai ≥ h(αi), (1 ≤ i ≤ n), A = max{A1, ..., An}
and

e ≤ E ≤ min



AD

1 , ..., AD
n ,

nD

f

(
n∑

i=1

| log αi|
log Ai

)−1


 .
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Let b1, ..., bn be rational integers with bn 6= 0. Put

M = max
1≤j≤n

{
|bn|

log Aj
+

|bj |
log An

}
,

Z0 = max
{

7 + 3 log n,
g

D
log E, log

(
D

log E

)}
, G0 = max{4nZ0; log M}

and

U0 = max{D2 log A,Dn+2G0Z0 log A1 · · · log An(log E)−n−1}.

Then the linear form

Λ = b1 log α1 + . . . + bn log αn.

satisfies

|Λ ≥ exp

{
−1500g−n−222nn3n+5

(
1 +

g

f

)n

U0

}
.

Let α be a real quadratic unit and IK = Q(α). Let γ′ denotes the conjugate
of γ∈IK. Take β = α′ and assume that α > |β|. Let a, b and c∈ZZIK. Assume
that the integers m,x≥0 satisfy the equation

aα2m − b2β2m = cx2.

Our aim in this section is to prove an upper bound for m.
Let IL = IK(

√−c) and assume that IL is a quadratic extension of IK, i.e.
[IL : Q] = 4. Then our equation implies

NIL/Q(bβm +
√−cx) = NIL/Q(a) = A, (8)

with an integer A.
Choose in ZZIL units η2, ..., ηr; r = 1, 2 or 3 such that the group U generated
by η1 = α, η2, ..., ηr has finite index in the group of units of ZZIL. There exists
in ZZIL a maximal finite set of, with respect to U , non–associated elements
of norm A. This set will be denoted by A. Then there exist for all m,x∈ZZ
with (8) a γ∈A and ε∈U such that

bβm +
√−cx = γε. (9)
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Let order the conjugates IL(i), i = 1, 2, 3, 4 of IL according the following
ordering of the conjugates of

√−c :
√−c,−√−c,

√−c′,−√−c′.
It is easy to see that if m > m0 then

1
2

√|a|
|γ(i)|α

m < |ε(i)| < 2
√|a|
|γ(i)| αm (10)

for i = 1, 2; and if b′ > 0, which we may assume without loss of generality,
then

b′

2|γ(3)|α
m < |ε(3)| < 2

b′

|γ(3)|α
m (11)

and
|a′|

2b′|γ(4)|α
−3m < |ε(4)| < 2|a′|

b′|γ(4)|α
−3m (12)

hold. We remark that if b′ < 0 than only the role of ε(3) and ε(4) changes.
The last inequalities imply that if c′ > 0 then (8) has only finitely many
solutions and they are very easy to compute. In fact ε(3) and ε(4) are in this
case conjugate complex numbers, hence

b′

2|γ(3)|α
m < |ε(3)| = |ε(4)| < 2|a′|

b′|γ(4)|α
−3m,

i.e m <
1
4

log

∣∣∣∣∣
4a′γ(3)

b′2γ(4)

∣∣∣∣∣ .

The situation is more interesting when c′ < 0. Then ε(3) and ε(4) are real
numbers and we will use estimations on linear forms in logarithms of alge-
braic numbers to establish an upper bound for m.
Let first c > 0 (and c′ < 0). Then IL has two nonreal and two real con-
jugates, and there exist u1, u2 ∈ ZZ with ε = ηu1

1 ηu2
2 . The estimations (10)

with i = 2 and (11) yield

|u1| < 2m log α| log |η(3)
2 | − log |η(2)

2 ||
R

+ c1

and

|u2| < 4m log2 α

R
+ c1,

where R denotes the regulator of U and

c1 = 2 log

(
3|a||b2|

∣∣∣∣
1
γ

∣∣∣∣
)

max{log α, log |η2|}/R.
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We have
γ(1)ε(1) + γ(2)ε(2) = 2bβm,

hence ∣∣∣∣∣∣
1 +

γ(2)

γ(1)

(
η

(2)
2

η
(1)
2

)u2
∣∣∣∣∣∣
<

4b√|a|α
−2m.

If m > m0, then
4b√|a|α

−2m <
1
2

and so

|Λ1| =
∣∣∣∣∣arg

(
−γ(2)

γ(1)

)
+ u2 arg

(
η

(2)
2

η
(1)
2

)
+ u0π

∣∣∣∣∣ <
4.1|b|√|a| α

−2m,

with u0∈ZZ and −π ≤ arg(z) ≤ π for every z ∈ C. The last inequality yields
|u0| < |u2|+ 2.

We can set in Theorem 3
n = 3, D = 4, g = 1

log A1 = h

(
γ(2)

γ(1)

)
, log A2 = h

(
η

(2)
2

η
(1)
2

)
, log A3 =

1
2

E = e, M = 4(|u2|+ 1)
Z0 = 7 + 3 log 3, G0 = log M

U0 = 45(7 + 3 log 3)
1
2
h

(
γ(2)

γ(1)

)
h

(
η

(2)
2

η
(1)
2

)
log M,

and get

|Λ1| > exp

{
−2 · 1016h

(
γ(2)

γ(1)

)
h

(
η

(2)
2

η
(1)
2

)
log M

}
.

Comparing the lower and upper bounds for |Λ1| we conclude

2m log α−log
4.1|b|√|a| < 2·1016h

(
γ(2)

γ(1)

)
h

(
η

(2)
2

η
(1)
2

)
log

(
16m log2 α

R
+ 4c1 + 4

)
.

(13)
This inequality yields an upper bound for m, which we shall only compute
knowing the actual values of the accouring parameters.

Let now c < 0 (and c′ < 0). Then all conjugates of IL are real and there
exist u1, u2, u3 ∈ ZZ with ε = ηu1

1 ηu2
2 ηu3

3 . We recall η1 = α. The estimations
(10) with i = 1, 2 and (11) yield

|ui| < 4m log2 α log h

R
+ c2, i = 2, 3
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with c2 = 3
√

3 log(3|a||b2|| 1γ |) log α log |η2| log |η3|/R and h = max{|η2|, |η3|}.
Similarly to the above case, but working with real instead of complex loga-
rithms we get

|Λ2| =
∣∣∣∣∣log

∣∣∣∣∣
γ(2)

γ(1)

∣∣∣∣∣ + u2 log

∣∣∣∣∣
η

(2)
2

η
(1)
2

∣∣∣∣∣ + u3 log

∣∣∣∣∣
η

(2)
3

η
(1)
3

∣∣∣∣∣

∣∣∣∣∣ <
5.6|b|√|a| α

−2m.

The parameters in the application of Waldschmidt’s theorem are the same

as earlier except that log A3 = h

(
η

(2)
3

η
(1)
3

)
, M = 2|u2| and

U0 = 45(7 + 3 log 3)h

(
γ(2)

γ(1)

)
h

(
η

(2)
2

η
(1)
2

)
h

(
η

(2)
3

η
(1)
3

)
log M. Hence Theorem 3

implies

2m log α−log
5.6|b|√|a| < 4.1016h

(
γ(2)

γ(1)

)
h

(
η

(2)
2

η
(1)
2

)
h

(
η

(2)
3

η
(1)
3

)
log

(
8m log2 α log h

R
+ 2c2

)
.

(14)

Remark 1 The argument of this section can be easily generalized to the
case when α is not a unit. Then we have to apply lower bounds for linear
forms in p-adic logarithms.

4 Proof of Theorem 1

In table 1. we are listing the data necessary for the application of the method
of section 3 to the equations given in Lemma 1. We are using the notations
α = 5 + 2

√
6, β = 5− 2

√
6 and ϑ =

√−c.

∆ a b c r η2 η3 γ

1 1 β2 −12 + 5
√

6 2 5− 2ϑ− 2
√

6 1
-2 -α 1 −(6 + 2

√
6) 3 1 + ϑ 2 + ϑ− ϑ

2 1
3 α 1 4 + 2

√
6 2 1 + ϑ 1

-6 -1 1 -2 3
√

2 +
√

3 (1+
√

3)(2+
√

2)
2

√
2 +

√
3

Table 1.

We are giving the details of the proof only for the case ∆ = 1, when our
equation has by Lemma 1 the form

α2m − β2β2m = 4β
√

6w2 = 4(5
√

6− 12)w2.
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It is easy to see that it has only one solution (m, w) = (0, 1) in the range
0 ≤ m ≤ 10. If m > 10 then (10) is obviously true. Thus we may assume

in the sequel m > 10. The algebraic number field IL = Q(
√

6,
√

12− 5
√

6),
has two real and two non-real conjugates. Its regulator is R = 6.83836 and
we get

|u2| < 3.07398m + 8.95847.

As γ = 1 there are only two summands in Λ1, actually it has the form

Λ1 =

∣∣∣∣∣∣
u2 arg


5− 2

√
6 + 2

√
12− 5

√
6

5− 2
√

6− 2
√

12− 5
√

6


 + u0π

∣∣∣∣∣∣
< 0.042α−2m.

As we proved, there are generaly three logarithms in Λ1, but in the actual
example we have only two, therefore in the, to (14) analogous inequality we
get a much better constant. More precisely we have

4.58486m + 3.17387 < 6.81595 · 1011 log(12.4m + 40),

which implies m < 5 · 1012 and |u2| < 1.55 · 1013. Dividing the inequality for
Λ1 by u2π we see that, as m > 10, u0/u2 is a convergent of

arg

(
η

(2)
2

η
(1)
2

)
/π = δ = .93557845273700309088141600367180617252445255312155.

The denominator of the 26-th convergent of δ,
51706546491839
55266927472061

, is larger

then 1014, hence

|u0 − u2γ| ≥ |51706546491839− 55266927472061γ| > .16132 · 10−13,

which implies m ≤ 5. Thus our equation has only the trivial solution.

The proof Theorem 1 is similair in the other cases. We may always set
m0 = 10 and the upper bound for m computed from (13) or (14) depending
on the value of r is in all cases less then 1020. To fill the gap between 10
and 1020 we can use the above reduction procedure, originally due to Baker
and Davenport [2].

The solution (−1,±1, 0) of (1) comes from the equation
αm − βm

4
√

6
= w2

for even exponents, and is n = w = e = 0. The other solutions given in
Theorem 1 follow from the solutions of the equations in Lemma 1, which
are (∆, n, e) = (1, 0, 2); (−2, 0, 1); (3, 0, 1); (−6, 0, 1) and (−6, 1, 49).
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(1993), 176–224.

12


