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Abstract

Let Q1, Q2 ∈ ZZ[X, Y, Z] be quadratic forms, u1, u2 ∈ ZZ. In the present
paper we consider the problem of solving the system of equations

Q1(x, y, z) = u1 (1)

Q2(x, y, z) = u2 in x, y, z ∈ ZZ .

Using a method of Mordell [10] the coprime solution of Q0(x, y, z) =
u1Q2(x, y, z) − u2Q1(x, y, z) = 0 are given by finitely many expressions
of the form x = fx(p, q), y = fy(p, q), z = fz(p, q) where fx, fy, fz ∈
ZZ[P, Q] are quadratic forms and p, q are integer parameters. Substituting
these expressions into Q1(x, y, z) = u1 or Q2(x, y, z) = u2 we obtain a
quartic homogeneous equation in two variables. In case it is irreducible,
then it is a quartic Thue equation, otherwise it can be dealt with easier.
The solutions p, q of this equation allow us to determine the solutions
x, y, z of ( 1).

We apply these results to index form equations in quartic fields. In
[7] we showed, that the problem of solving index form equations in quar-
tic number fields can be reduced to the resolution of a cubic equation
F (u, v) = i and a corresponding system of quadratic equations Q1(x, y, z) =
u, Q2(x, y, z) = v where F is a binary cubic form and Q1, Q2 are ternary
quadratic forms. We show, that in this case the application of the above
method for the resolution of ( 1) leads to quartic Thue equations that
split over the same quartic field.
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1 Introduction

Let Q1, Q2 ∈ ZZ[X, Y, Z] be quadratic forms, u1, u2 given integers. In this
paper we consider the problem of representation of u1 by the quadratic form Q1

and u2 by the quadratic form Q2 simultaneously, by the same x, y, z ∈ ZZ, that
is we want to solve the system of equations

Q1(x, y, z) = u1

Q2(x, y, z) = u2 in x, y, z ∈ ZZ . (2)

We assume without restricting the generality, that (x, y, z) = 1 and the forms
Q1 and Q2 are not proportional (specially, non of them is identically 0). We
build the quadratic form

Q0(X,Y, Z) = u1Q2(X, Y, Z)− u2Q1(X,Y, Z) . (3)

Obviously, if (x, y, z) is a solution of ( 2) then as a consequence we obtain

Q0(x, y, z) = 0 . (4)

Using an idea of Mordell [10] we can represent all coprime solutions of ( 4)
in a parametric form. More precisely, there are finitely many quadratic forms
fx, fy, fz ∈ ZZ[P,Q] in two variables such that if the parameters p, q run through
the coprime integers, then fx(p, q), fy(p, q), fz(p, q) run through the coprime
solutions of ( 4). If we substitute the parametric forms of x, y, z into the first
or second equation of ( 2), according as u1 6= 0 or u2 6= 0 then we obtain a
homogeneous quartic equation in two variables of the form

Fi(p, q) = Qi(fx(p, q), fy(p, q), fz(p, q)) = ui in p, q ∈ ZZ (5)

where i = 1 or 2. This equation is either a quartic Thue equation if Fi is
irreducible, or Fi is reducible, in both cases we can solve ( 5) by using known
methods. Its solutions allow us to determine the solutions of the original system
of equations ( 2).

As an application of the above method we give an algorithm for the complete
resolution of index form equations in arbitrary quartic number fields. In a
series of papers [1], [2], [4], [5], [6] the authors have considered methods for
the resolution of index form equations in certain types of quartic fields. These
methods depent highly on the Galois structure of the field. In [7] we showed,
that the index form equation in any quartic field K can be reduced to a cubic
equation

F (u, v) = i in u, v ∈ ZZ (6)

and a corresponding system of quadratic equations

Q1(x, y, z) = u

Q2(x, y, z) = v (7)
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where F is a binary cubic form and Q1, Q2 are ternary quadratic forms. Equa-
tion ( 6) is either a cubic Thue equation, or (if F is reducible) it is trivial to
solve. We show, that in this case the application of the above method for the
resolution of ( 7) leads to quartic Thue equations that split over the same quar-
tic field K. Thus, we obtain a general algorithm for the complete resolution of
index form equation in arbitrary quartic fields, which reduces the problem to the
resolution of a cubic equation ( 6) and some quartic Thue equations. This way
we establish a basically new approach to index form equations in quartic fields,
entirely different from the known methods, of Nagell [9] or of [8]. We have to
emphasize, that from an algorithmical point of view our approach is much more
preferable, because there exist already easily applicable computational methods
for the resolution of Thue equations, which is not the case e.g. for unit equations
(cf. [8]).

2 Simultaneous quadratic forms

Let Q1, Q2 ∈ ZZ[X,Y, Z] be non–proportional quadratic forms, u1, u2 ∈ ZZ be
given integers, and consider the solutions of

Q1(x, y, z) = u1

Q2(x, y, z) = u2 in x, y, z ∈ ZZ with (x, y, z) = 1. (8)

Set
Q0(X, Y, Z) = u1Q2(X, Y, Z)− u2Q1(X, Y, Z) . (9)

If x, y, z is a solution of ( 8), then obviously it is also a solution of

Q0(x, y, z) = 0 in x, y, z ∈ ZZ . (10)

To parametrize all solutions of ( 10) we use Theorem 4 of Chapter 7 of [10]:

Lemma 1 If Q0(X, Y, Z) is a quadratic form with integer coefficients, then
there exist finitely many quadratic forms fx(P, Q), fy(P, Q), fz(P, Q) with inte-
ger coefficients, such that all solutions with (x, y, z) = 1 of ( 10) can be repre-
sented in the form

x = fx(p, q) (11)
y = fy(p, q) (12)
z = fz(p, q) (13)

where p, q ∈ ZZ are parameters with (p, q) = 1.

In order to determine the forms fx, fy, fz we need to find a non–trivial solu-
tion of ( 10). For this purpose one can reduce the quadratic form Q0(X, Y, Z)
to the sum of three squares and apply Theorems 3 or 5 of Chapter 7 of [10]:
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Lemma 2 Let a, b, c be square–free integers with (a, b) = 1, (b, c) = 1,(c, a) = 1.
Assume, that a, b, c do not have the same sign and consider the form

ax2 + by2 + cz2 = 0 . (14)

(i) ( 14) has a non–trivial integer solution if and only if −bc is a quadratic
residue modulo a, −ac is a quadratic residue modulo b, −ab is a quadratic residue
modulo c and moreover the congruence

ax2 + by2 + cz2 = 0 (mod8)

has a non–trivial solution.

(ii) If ( 14) is solvable, then it has a non–trivial integer solution with

|x| ≤
√
|bc|, |y| ≤

√
|ac|, |z| ≤

√
|ab| .

Using Lemma 2 we can decide if ( 10) has a non–trivial solution, and if so,
we can find such a solution (xQ, yQ, zQ):

Q0(xQ, yQ, zQ) = 0 . (15)

Following the proof given in [10] of Lemma 1 we write now x, y, z in a parametric
form. Depending on the non–zero values among xQ, yQ, zQ we perform one of
the following transformations:

if xQ 6= 0 then





x = rxQ

y = ryQ + p
z = rzQ + q

(16)

if yQ 6= 0 then





x = rxQ + p
y = ryQ

z = rzQ + q
(17)

if zQ 6= 0 then





x = rxQ + p
y = ryQ + q
z = rzQ

(18)

with some rational parameters r, p, q. If among xQ, yQ, zQ there are more non–
zero values, then we have more choices. In the following we make some remarks
on how we can make a better choice at this point.

Our purpose is now to represent x, y, z as quadratic forms with integer co-
efficients in two coprime integer variables. We may assume, that in ( 16), ( 17),
( 18) r 6= 0, since otherwise we should get a linear form representation of x, y, z

5



and we could proceed easier (we get two quadratic equations in p, q). We sub-
stitute x, y, z of ( 16), ( 17) or ( 18) into ( 10) and we conclude

r2Q0(xQ, yQ, zQ)− r(c1p + c2q) + (c3p
2 + c4pq + c5q

2) = 0 (19)

with some rational integers c1, . . . , c5 the values of which are easily calculated.

Since Q0(xQ, yQ, zQ) = 0 from ( 19) we get a linear equation for r. We have
to test separately the case, when the coefficient (c1p + c2q) of r disappears. In
all these cases we get a linear representation of x, y, z in two parameters and we
reach our purpose much easier.

As a consequence of ( 19) we obtain

r =
c3p

2 + c4pq + c5q
2

c1p + c2q
.

We substitute now this expression into the original formula ( 16), ( 17) or
( 18) and multiply with the common denominator. In addition, we can also
change p and q with coprime integer parameters by multiplying with their com-
mon denominator. These new parameters we denote again by p, q for sim-
plicity. Then we have represented a multiple of x, y, z as quadratic forms
fx(p, q), fy(p, q), fz(p, q) in coprime integer parameters p and q and with co-
efficients cij ∈ ZZ:

k · x = fx(p, q) = c11p
2 + c12pq + c13q

2

k · y = fy(p, q) = c21p
2 + c22pq + c23q

2 (20)
k · z = fz(p, q) = c31p

2 + c32pq + c33q
2

Denote by C the matrix with entries (cij)1≤i,j≤3.

Lemma 3 Let

Q0(X, Y, Z) = a1X
2 + a2Y

2 + a3Z
2 + a4XY + a5Y Z + a6ZX .

For the determinant of the matrix C we have

|det (C)| = |xQ|3A in case of substitution ( 16)
|det (C)| = |yQ|3A in case of substitution ( 17)
|det (C)| = |zQ|3A in case of substitution ( 18)

where
A = |a1a

2
5 + a2a

2
6 + a3a

2
4 − 4a1a2a3 − a4a5a6|.
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The proof of the lemma is direct calculation, using ( 15). Lemma 3 implies
that C is a regular matrix if and only if A 6= 0. If C is singular, then it means,
that one of x, y, z depends linearly on the other two, whence from ( 2) we get a
system of two quadratic equations in two variables. In this case we can proceed
easier. In the following we assume, that C is regular.

We remark, that in case all entries of the matrix C have a non–trivial greatest
common divisor d, then at this step we can divide all entries of C with it, by
changing k with k/d.

Consider ( 20) as a system of linear equations in p2, pq, q2. Let C−1 =
(c̄ij/det(C))1≤i,j≤4 with some integer c̄ij . Solving this equation system by
Cramer’s rule we obtain

det(C) · p2 = k · (c̄11x + c̄12y + c̄13z)
det(C) · q2 = k · (c̄31x + c̄32y + c̄33z) .

We obtain, that k divides both terms on the left sides above, and using that p, q
are integers with (p, q) = 1 we conclude, that k|det(C).

In the following we have to consider all possible values for k. We remark,
that if there are more non–zero values among x0, y0, z0, then in view of Lemma
3 we have to choice that substitution, which makes the determinant of C smaller
in absolute value.

In order to reduce the number of possibilities for k, we can check, if the
system

c11p
2 + c12pq + c13q

2 ≡ 0 (mod k)
c21p

2 + c22pq + c23q
2 ≡ 0 (mod k) (21)

c31p
2 + c32pq + c33q

2 ≡ 0 (mod k)

is solvable in p, q such that the gcd of the residue classes of p and q modulo k is
coprime to k.

Now for all possible values of k we substitute the representation ( 20) ob-
tained for x, y, z into the first or second equation of ( 2) according as u1 6= 0 or
u2 6= 0, respectively. Then we get

Fi(p, q) = Qi(fx(p, q), fy(p, q), fz(p, q)) = k2ui in p, q ∈ ZZ , (22)

where i = 1 or 2. This is a homogeneous quartic equation in p, q. Fi can be one
of the following types:

• If Fi is irreducible, then ( 22) is a quartic Thue equation, that can be
solved by the known methods (see.e.g.[11], [12]).
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• If it is a product of two irreducible quadratic forms, then it can be reduced
to a system of two quadratic equations in two variables

• If Fi has one or more linear factors, then ( 22) can be solved trivial

For all solution p, q of ( 22) we calculate the corresponding values of x, y, z and
we test if ( 2) holds. We remark, that it can also happen, that ( 2) admits
infinitely many solutions.

3 Index form equations in quartic fields

Let K = Q(ξ) be a quartic number field and f(x) = x4 + a1x
3 + a2x

2 +
a3x + a4 ∈ ZZ[x] the minimal polynomial of ξ. Let ω1 = 1, ω2, ω3, ω4 be an
integral basis of K and denote by li(X, Y, Z) (i = 1, . . . , 4) the conjugates of
the linear form l(X,Y, Z) = Xω2 +Y ω3 +Zω4 over Q. The discriminant of this
linear form can be written as

DK/Q(Xω2+Y ω3+Zω4) =
∏

1≤i<j≤4

(li(X, Y, Z)− lj(X,Y, Z))2 = (I(X,Y, Z))2DK

where DK is the discriminant of K and I(X,Y, Z) ∈ ZZ[X,Y, Z] is the index
form corresponding to the integral basis ω1, . . . , ω4.

As an application of the method described in Section 2, our purpose is now
to determine all solutions of the index form equation

I(x0, y0, z0) = ±m (x0, y0, z0 ∈ ZZ) (23)

where m is a positive integer. The smallest m, for which ( 23) is solvable, is the
minimal index of K, and the solutions of ( 23) make it possible to determine all
integers in K with index m. In case the minimal index is 1, this way we get all
power integral bases of K.

The problem of the resolution of index form equations in quartic fields we
have already considered in a series of papers [1], [2], [4], [5], [6]. The applicability
of these methods depend on the Galois group of the field.

We assume as in [7], that the integral basis of K is presented in the form

ωi =
1
d

4∑

j=1

wijξ
j−1 (i = 1, . . . , 4)

with ω1 = 1, ωij , d ∈ ZZ.
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Suppose, that (x0, y0, z0) is a solution of ( 23). We rewrite α = x0ω2 +
y0ω3 + z0ω4 in the form

α =
aα + x1ξ + y1ξ

2 + z1ξ
3

d

where aα, x1, y1, z1 ∈ ZZ are determined by



aα

x1

y1

z1


 =




w11 w21 w31 w41

w12 w22 w32 w42

w13 w23 w33 w43

w14 w24 w34 w44







0
x0

y0

z0


 (24)

We make use of Theorem 1 of [7]:

Lemma 4 Let im = d6m/n, where n = I(ξ). The element α = x0ω2 + y0ω3 +
z0ω4 is a solution of ( 23) if and only if there is a solution (u, v) of the cubic
equation

F (u, v) = u3 − a2u
2v + (a1a3 − 4a4)uv2 + (4a2a4 − a2

3 − a2
1a4)v3 = ±im (25)

such that (x1, y1, z1) of ( 24) satisfy

Q1(x1, y1, z1) = x2
1 − x1y1a1 + y2

1a2 + x1z1(a2
1 − 2a2) + y1z1(a3 − a1a2)

+z2
1(−a1a3 + a2

2 + a4) = u

Q2(x1, y1, z1) = y2
1 − x1z1 − a1y1z1 + z2

1a2 = v . (26)

The form F (U, V ) of ( 25) can be either reducible (if the Galois group of K
is solvable, that is C4, V4 or D8, see the remarks in [7]) or irreducible (if the
Galois group is S4 or A4). In the reducible case the resolution of ( 25) is trivial,
in the irreducible case ( 25) is a cubic Thue equation that can be solved easily
(cf. e.g. the methods in [11], [12]).

For every solution (u, v) of ( 25) we want to determine the corresponding
solutions (x1, y1, z1) ( 26). The method described in Section 2 is applicable
only if in ( 26) the variables x1, y1, z1 are coprime. For this purpose we set
d1 = (x1, y1, z1). It follows from ( 25) and ( 26) that d2

1 divides (u, v) and
further it d6

1 divides im. Usually there are only very few possible values of d1.
The following procedures should be performed for all these values. Put

x2 =
x1

d1

y2 =
y1

d1
(27)

z2 =
z1

d1
.
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Now we have (x2, y2, z2) = 1 for the new variables, and by ( 26)

Q1(x2, y2, z2) =
u

d2
1

Q2(x2, y2, z2) =
v

d2
1

(28)

hold. We build the quadratic form

Q0(X, Y, Z) = uQ2(X, Y, Z)− vQ1(X, Y, Z) (29)

where

Q0(X,Y, Z) = (−v)X2 + (−a2v + u)Y 2 + (a1a3v − a2
2v − a4v + a2u)Z2

+(a1v)XY + (−a3v + a1a2v − a1u)Y Z + (−a2
1v + 2a2v − u)ZX .

Obviously, we have
Q0(x2, y2, z2) = 0 . (30)

Following the method of Section 2 we find a non–trivial solution (xQ, yQ, zQ) of
( 30), that is

Q0(xQ, yQ, zQ) = 0, (31)

and depending on the non–zero values among xQ, yQ, zQ we perform one of the
following substitutions:

if xQ 6= 0 then





x2 = rxQ

y2 = ryQ + p
z2 = rzQ + q

(32)

if yQ 6= 0 then





x2 = rxQ + p
y2 = ryQ

z2 = rzQ + q
(33)

if zQ 6= 0 then





x2 = rxQ + p
y2 = ryQ + q
z2 = rzQ

(34)

with some rational parameters r, p, q, to get the analogue of ( 19), that is

r(c1p + c2q) = c3p
2 + c4pq + c5q

2 . (35)

As in Section 2 we must consider separately the case when c1p + c2q = 0. Oth-
erwise we express r from ( 35) and replace p, q with coprime integer parameters,
and we obtain (cf. ( 20))

k · x2 = fx(p, q) = c11p
2 + c12pq + c13q

2

k · y2 = fy(p, q) = c21p
2 + c22pq + c23q

2 (36)
k · z2 = fz(p, q) = c31p

2 + c32pq + c33q
2

where k, cij are integers. Denote by C the matrix with entries (cij)1≤i,j≤3. The
analogue of Lemma 2 in this case is
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Lemma 5 For the determinant of the matrix C we have

|det (C)| = |xQ|3 im in case of substitution ( 32)
|det (C)| = |yQ|3 im in case of substitution ( 33)
|det (C)| = |zQ|3 im in case of substitution ( 34)

where im is the constant of Lemma 4.

An important consequence of this lemma is that det(C) 6= 0.

As it is shown in Section 2, k|det(C), moreover, k must survive the test
( 21). Now for all possible values of k and of d1 from ( 26) ( 27) and ( 36) we
obtain the equations

F1(p, q) = Q1(fx(p, q), fy(p, q), fz(p, q)) = u1 (37)
F2(p, q) = Q2(fx(p, q), fy(p, q), fz(p, q)) = v1 . (38)

with integer right hand sides

u1 =
k2u

d2
1

, v1 =
k2v

d2
1

.

We want to determine the possible values of p, q ∈ ZZ. In case u 6= 0 and v 6= 0
the two equations ( 37), ( 38) are equivalent in view of ( 29). If v = 0, we solve
equation ( 37), otherwise equation ( 38).

The main goal of the following considerations is to show, that the equations
we get are quartic Thue equations over the same field K. That means, by the
resolution of several quartic Thue equations (corresponding to different values
of k, d1) we do not have to deal with different quartic fields, it sufficies to
know the basic data (integral basis, fundamental units) of the original field K.
We remark, that these quartic Thue equations can be solved by applying the
Baker–Davenport method (see e.g. [11]) or the method described in [12].

Substitute X = Y − a1 in the polynomial f(X) and build a quadratic form
from it to get

g(Y, Z) = Z4f(Y − a1) = NK/Q(Y − a1Z − ξZ) . (39)

This form has played an important role already in [7]. Our proof bases on the
observation, that in case v = 0 the form F1(p, q) and in case v 6= 0 the form
F2(p, q) divides the form G(p, q) = g(fy(p, q), fz(p, q)) in Q[p, q]. We first discuss
some lemmas that we need in our proof, then we consider the cases v = 0 and
v 6= 0 separately.
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3.1 Some lemmas

Lemma 6 If (xQ, yQ, zQ) 6= (0, 0, 0) then Q1(xQ, yQ, zQ) and Q2(xQ, yQ, zQ)
can not both vanish.

Proof. Assume indirect, that both of them vanish. If zQ = 0 then Q2(xQ, yQ, zQ) =
0 implies yQ = 0 and from that by Q1(xQ, yQ, zQ) = 0 we get xQ = 0 which is
a contradiction. If zQ 6= 0 then by Q2(xQ, yQ, zQ) = 0

xQ =
y2

Q − a1yQzQ + a2z
2
Q

zQ
. (40)

Substituting it into Q1(xQ, yQ, zQ) = 0 we obtain

y4
Q−3a1y

3
QzQ+(a2+3a2

1)y
2
Qz2

Q+(a3−2a1a2−a3
1)yQz3

Q+(a2
1a2+a4−a1a3)z4

Q = 0

which yields

f

(
yQ

zQ
− a1

)
= 0

which is agian a contradiction, because f has no rational roots. 2

We shall also make use of the following consequences of the above lemma:

Lemma 7 Assume that (u, v) is a solution of ( 25) and (xQ, yQ, zQ) is a non–
trivial solution of ( 31).
(i) If yQ = 0 and zQ = 0 then v = 0.
(ii) If v 6= 0 then Q2(xQ, yQ, zQ) 6= 0.

Proof of (i). Under the conditions yQ = 0 and zQ = 0 we have Q2(xQ, yQ, zQ) =
0 whence Q1(xQ, yQ, zQ) 6= 0 by Lemma 6. These imply at once v = 0 by ( 31)
which can be written as

uQ2(xQ, yQ, zQ) = vQ1(xQ, yQ, zQ) .

Proof of (ii) If we had v 6= 0 and Q2(xQ, yQ, zQ) = 0 then by ( 31) (see the
above equation) we would have Q1(xQ, yQ, zQ) = 0 which is a contradiction by
Lemma 6. 2
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3.2 The case v=0

Now we proceed to the easier case, when in ( 26) we have v = 0.

Theorem 1 Assume that in ( 26) v = 0 and we use substitution ( 32), ( 33) or
( 34) to obtain the forms fx(p, q), fy(p, q), fz(p, q) as described in ( 36). Then
equation ( 37) is a quartic Thue equation over K.

Proof. For simplicity we prove our assertion in case of the substitution
( 34). It can be proved similarly also for ( 32), or ( 33).

Using substitution ( 34) in case v = 0 we obtain

fy(p, q)− a1fz(p, q)− ξfz(p, q) = −uq(zQp− (yQ + zQξ)q) .

Let now
h(p, q) = zQp− (yQ + zQξ)q

and compute
H(p, q) = NK/Q(h(p, q)) .

Using the connection between the roots of f(x) and its coefficients we can express
the coefficients of H(p, q) by yQ, zQ, a1, . . . , a4.

On the other hand consider

F1(p, q) = Q1(fx(p, q), fy(p, q), fz(p, q)).

In case v = 0 ( 31) reduces to Q2(xQ, yQ, zQ) = 0 (obviously u 6= 0). Express
now xQ in the form ( 40) and substitute it into F1(p, q). We obtain

z2
Q

u2
F1(p, q) = H(p, q) .

Finally, remark that a root of H(p, 1) = 0 is ξ + yQ/zQ which is a primitive
element of K, that means, the form F1(p, q) is irreducible and has a root in K,
that is ( 37) is a Thue equation over K. 2
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3.3 The general case v 6= 0

For simplicity we restrict ourselves in the following to the substitutions ( 33),
( 34). If both yQ = 0 and zQ = 0 then by Lemma 7 (i) we have v = 0 and the
problem reduces to the easier case of Theorem 1.

Theorem 2 Assume that in ( 26) v 6= 0 and we use substitution ( 33) or
( 34) to obtain the forms fx(p, q), fy(p, q), fz(p, q) as described in ( 36). Then
equation ( 38) is a quartic Thue equation over K.

Proof We prove the assertion in case of the substitution ( 34). The case
( 33) can be dealt with similarly.

I. First we prove that a root of F2(p, q) is in K. Consider again

fy(p, q)− a1fz(p, q)− ξfz(p, q) = t2p
2 + t1pq + t0q

2 (41)

where in the present case

t2 = v(yQ − zQa1 − zQξ)
t1 = −2vxQ + 2va2zQ − uzQ + va1zQξ

t0 = va1xQ − va2yQ + uyQ − va3zQ + uzQξ − va2zQξ

We remark, that here obviously t2 6= 0. Our purpose is to factorize the above
form ( 41) over K. We have to show, that the discriminant of the second degree
equation in ( 41) is a square in K. The discriminant is

D = t21 − 4t2t0 .

By adding 4vQ0(xQ, yQ, zQ) = 0 to D we can eliminate from it not only the
term containing x2

Q, but also all other terms containing xQ or yQ or y2
Q and we

obtain

D = z2
Q((v2a2

1 − 4v2a2 + 4uv)ξ2 + (2uva1 − 4v2a3)ξ + u2 − 4v2a4) .

Add now 4v2z2
Qf(ξ) = 0 to D to have

D = (zQ(2vξ2 + va1ξ + u))2

as we wanted to show. We conclude, that the form in ( 41) can be factorized
over K as

t2p
2 + t1pq + t0q

2 = t2(p− ρ1q)(p− ρ2q) (42)

14



where

ρ1 =
−t1 −

√
D

2t2
ρ2 =

−t1 +
√

D

2t2
.

Let now

h(p, q) =
1
v
t2(p− ρ1q) =

1
v

(
t2p +

t1 +
√

D

2
q

)
=

= zQqξ2 + (−zQp + zQa1q)ξ + yQp− zQa1p− xQq + zQa2q .

Our next purpose is to demonstrate, that the form

H(p, q) = NK/Q(h(p, q))

is up to a constant factor the same as F2(p, q) in ( 38). Using the connection
between the roots and the coefficients of f(x) we calculate the coefficients of
H(p, q). These coefficients do not depend on u, v only on xQ, yQ, zQ, a1, . . . , a4.

On the other hand consider F2(p, q). By Lemma 7 (ii) in case v 6= 0 we have
Q2(xQ, yQ, zQ) 6= 0, hence from ( 31) we can express v in the form

v = u
Q1(xQ, yQ, zQ)
Q2(xQ, yQ, zQ)

.

Substitute it into F2(p, q), multiply it with Q2(xQ, yQ, zQ) and divide by v2.
The result is just H(p, q). That means, F2(p, q) has a root in K.

II. Finally, we have to show, that the root ρ1 of F2(p, q) is a primitive
element of K, which would imply that F2(p, q) is irreducible, that is ( 38) is a
Thue equation over K.

We have

ρ1 =
xQ − zQa2 − zQa1ξ − zQξ2

yQ − zQa1 − zQξ
.

This element can not be rational, because then ξ would be a root of a second
degree polynomial, which is impossible. We also have to exclude the possibility,
that it were a second degree element.

Assume indirect, that it is a second degree element. Then there must be
rational numbers b, c such that

ρ2
1 + bρ1 + c = 0 .

Multiplying with the square of the dominator of ρ1 we get a polynomial equation
of degree 4 for ξ. We can eliminate the coefficient of ξ4 by using f(ξ) = 0. Then
the remainding cubic polynomial in ξ must be trivial, that is all coefficients
must be 0. We eliminate the variable b by using the coefficient of ξ3 and c by
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using the coefficient of ξ2. There remaind two more equations, the coefficient
C1 of ξ and the constant term C0 must also vanish. C1 is a quadratic form, C0

is a cubic form in xQ, yQ, zQ, that depend also on the coefficients a1, . . . , a4 of
f(x). Moreover, we can also make use of the equation ( 31).

In the following we denote by R(f1, f2, X) the resultant of two polynomials
f1, f2 with respect to the variable X.

We build T1 = R(C1, C0, xQ), T2 = R(C1, Q0, xQ), finally T3 = R(T1, T2, yQ).
Factorizing the result we obtain

T3 = −z20
Q (−a3

1 − 8a3 + 4a1a2)4D(f)F (u, v) .

Here zQ 6= 0, the discriminant D(f) of f(x) and F (u, v) are also obviously
non–zero.

We still have to consider the case, when

a3 =
−a3

1 + 4a1a2

8
(43)

We remark, that in this case

F (u, v) = 2−6(4u + va2
1− 4va2)(16u2− 4a2

1uv + 4a2
1a2v

2− a4
1v

2− 64a4v
2) (44)

which, in view of our remarks in [7] yields, that K has a quadratic subfield. In
this case, proceeding in the same way as above we get

C1 = (3a1zQ − 4yQ)(3a2
1zQ − 4a2zQ − 4a1yQ + 8xQ) = 0 . (45)

(A) Now if in ( 45) the first factor is 0, that is

yQ =
3a1zQ

4

then

R(C0, Q0, xQ) = 2−12z6
Q(16a2

1a2−5a4
1−256a4)(16u2−4a2

1uv+4a2
1a2v

2−a4
1v

2−64a4v
2)

Here the last factor is the second factor of ( 44) which is non–zero. If

a4 =
16a2

1a2 − 5a4
1

256

then this condition together with ( 43) results a reducible polynomial f , which
is impossible.

(B) Now if in ( 45) the second factor is 0, that is

xQ =
4a1yQ + 4a2zQ − 3a2

1zQ

8
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then C0 = 0 implies

a4 =
a4
1 + 16a2

2 − 8a2
1a2

64
which together with ( 43) gives again a reducible polynomial f , which is impos-
sible. 2

Remarks

(i) In the proofs of Theorem 1 and Theorem 2 we used the computer alge-
bra system MAPLE. Especially in the proof of Theorem 2 it would have been
hardly possible to compute the resultants T1, T2, T3 and to factorize T3 without
MAPLE.

(ii) The assertion of Theorem 2 holds very probably also in case ( 32), but
the formulas became much more complicated. Part I of the above proof can also
be performed in case of ( 32), but in Part II it is impossible even with MAPLE
to build the final resultant T3 because of the complicated formulas.

4 Numerical examples

We illustrate our method by computing the minimal index and all elements of
minimal index in some quartic fields. In [7] we have already given extensive lists
of minimal indices and elements of minimal index in quartic fields of different
signatures. Our purpose here is to make an impresson on what kind of Thue
equations are to be solved by applying our method described in Section 3. In
our examples we deal with totally real fields with Galois group S4 or A4, as they
are considered as the most interesting examples.

In the following we make use of the field index I(K) of K, which is the
greatest common divisor of the indices of all primitive integral elements in K.
I(K) is easy to calculate (cf. [3]) and the minimal index must be divisible by
it, which makes the calculations often faster.

In our examples we list the discriminant DK of the field K = Q(ξ), the
defining polynomial f(x) of ξ, the signature, the Galois group, the integral
basis of K, the index n of ξ and the field index I(K) of K. Then we consider
the values of m divisable by I(K). The minimal index is the smallest value of
m for which we obtain solutions of the index form equation ( 23). For each m
we give the cubic equation F (u, v) = im ( 25) and for all solutions (u, v) of it we
list a non–trivial solution (xQ, yQ, zQ) of ( 31). We indicate which substitution
of ( 32), ( 33), ( 34) we applied, and we display the determinant det(C) (cf.
Lemma 5). Then follows either the form F1(p, q) or F2(p, q) (( 37) or ( 38)), the
possible values of k and d1 (cf. ( 27)). For all possible pair k, d1 we give the
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right hand side u1 or v1 of ( 37) or ( 38), respectively, and we list the solutions
of the equation together with the corresponding solutions of ( 23) in the form
(p, q) : (x0, y0, z0).
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[3] I.Gaál, A.Pethő and M.Pohst, On the indices of biquadratic number fields
having Galois group V4 , Arch. Math. 57 (1991), 357–361.
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DK = 1957, f(x) = x4 − 4x2 − x + 1, totally real, Galois group S4

integral basis {1, ξ, ξ2, ξ3}, n = 1, I(K) = 1
m = 1, F (u, v) = u3 + 4u2v − 4uv2 − 17v3 = ±1

(u, v) = (1, 0), (xQ, yQ, zQ) = (1, 0, 0), substitution ( 16), det(C) = 1
F1(p, q) = p4 − 4p2q2 − pq3 + q4

possible values: k = 1, d1 = 1
k = 1, d1 = 1, u1 = ±1 (1,0):(1,0,0), (–1,1):(–3,–1,1), (0,1):(–4,0,1),
(2,1):(0,2,1)

(u, v) = (−4, 1), (xQ, yQ, zQ) = (0,−1, 0), substitution ( 17), det(C) = 1
F2(p, q) = p4 + 8p3q + 18p2q2 + 7pq3 − 3q4

possible values: k = 1, d1 = 1
k = 1, d1 = 1, v1 = ±1 (1,0):(0,1,0), (–4,1):(–4,1,1), (–1,1):(–1,–2,1),

(–7,2):(–14,–3,4), (1,4):(4,33,16)
(u, v) = (−2, 1), (xQ, yQ, zQ) = (2, 1,−1), substitution ( 17), det(C) = 1
F2(p, q) = p4 + 15p3q + 76p2q2 + 154pq3 + 101q4

possible values: k = 1, d1 = 1
k = 1, d1 = 1, v1 = ±1 (1,0):(–4,–1,1), (–3,1):(3,0,–1), (–7,2):(–2,–1,1),

(–10,3):(8,–1,–2)
(u, v) = (2, 1), (xQ, yQ, zQ) = (5, 0,−1), substitution ( 18), det(C) = 1
F2(p, q) = p4 − p3q − 12p2q2 + 6pq3 + 37q4

possible values: k = 1, d1 = 1
k = 1, d1 = 1, v1 = ±1 (1,0):(–5,0,1), (–2,1):(8,1,–2), (3,1):(–12,1,3),

(–7,3):(4,9,-5)

EXAMPLE 2

DK = 2777, f(x) = x4 − x3 − 4x2 + x + 2, totally real, Galois group S4

integral basis {1, ξ, ξ2, ξ3}, n = 1, I(K) = 1
m = 1, F (u, v) = u3 + 4u2v − 9uv2 − 35v3 = ±1

(u, v) = (1, 0), (xQ, yQ, zQ) = (1, 0, 0), substitution ( 16), det(C) = 1
F1(p, q) = p4 + 3p3q − p2q2 − 6pq3 − q4

possible values: k = 1, d1 = 1
k = 1, d1 = 1, u1 = ±1 (1,0):(1,0,0), (–2,1):(–2,–2,1), (0,1):(–4,0,1),
(–5,2):(–1,–10,4)

(u, v) = (−4, 1), (xQ, yQ, zQ) = (0,−1, 0), substitution ( 17), det(C) = 1
F2(p, q) = p4 + 8p3q + 19p2q2 + 13pq3 + 2q4

possible values: k = 1, d1 = 1
k = 1, d1 = 1, v1 = ±1 (1,0):(–1,1,0), (–3,1):(–6,–3,2), (–1,1):(0,–1,0)

(u, v) = (−3, 1), (xQ, yQ, zQ) = (1,−1,−1), substitution ( 16), det(C) = 1
F2(p, q) = −p4 + 3p3q + 9p2q2 − 38pq3 + 31q4

possible values: k = 1, d1 = 1
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k = 1, d1 = 1, v1 = ±1 (1,0):(1,2,–1), (2,1):(–3,–1,1), (5,2):(–3,–2,1),
(8,3):(1,–1,–1)

(u, v) = (3, 1), (xQ, yQ, zQ) = (5, 1,−1), substitution ( 17), det(C) = 1
F2(p, q) = 2p4 + 47p3q + 393p2q2 + 1372pq3 + 1697q4

possible values: k = 1, d1 = 1
k = 1, d1 = 1, v1 = ±1 (–8,1):(5,1,–1), (–4,1):(21,1,–5)

(u, v) = (−33, 8), (xQ, yQ, zQ) = (0,−4, 1),substitution ( 18),det(C) = 1
F2(p, q) = 8(71p4 + 185p3q + 144p2q2 + 31pq3 + 2q4)
possible values: k = 1, d1 = 1

k = 1, d1 = 1, v1 = ±8 (–1,1):(6,–2,–1), (–1,7):(0,4,–1)

EXAMPLE 3

DK = 15188, f(x) = x4 − x3 − 7x2 + x + 2, totally real, Galois group S4

integral basis {1, ξ, ξ2, (ξ + ξ3)/2}, n = 2, I(K) = 1
m = 1, F (u, v) = u3 + 7u2v − 9uv2 − 59v3 = ±32

(u, v) = (−14, 2), (xQ, yQ, zQ) = (0,−1, 0), substitution ( 17), det(C) = 4
F2(p, q) = p4 + 14p3q + 52p2q2 + 22pq3 − q4

possible values: k = 1, 2, 4, d1 = 1
k = 1, d1 = 1, v1 = ±2 no solutions
k = 2, d1 = 1, v1 = ±8 (–7,1):(–12,–1,3)
k = 4, d1 = 1, v1 = ±32 no solutions

(u, v) = (−6, 2), (xQ, yQ, zQ) = (3, 2,−1), substitution ( 18), det(C) = 4
F2(p, q) = 2(p4 + 11p3q + 33p2q2 + 19pq3 − 26q4)
possible values: k = 1, 2, d1 = 1

k = 1, d1 = 1, v1 = ±2 (1,0):(–4,–1,1), (–5,2):(2,1,–1)
k = 2, d1 = 1, v1 = ±8 (–2,1):(no corresponding solution)

(u, v) = (6, 2), (xQ, yQ, zQ) = (3,−4, 1), substitution ( 18), det(C) = 4
F2(p, q) = 2(11p4 + 119p3q + 447p2q2 + 649pq3 + 248q4)
possible values: k = 1, 2, d1 = 1

k = 1, d1 = 1, v1 = ±2 (–37,10):(1,–2,1)
k = 2, d1 = 1, v1 = ±8 (–4,1):(no corresponding solution)

EXAMPLE 4

DK = 157609, f(x) = x4 − 13x2 − 2x + 19, totally real, Galois group A4

integral basis {1, ξ, (1 + ξ + ξ2)/2, (1 + ξ3)/2}, n = 4, I(K) = 2
m = 2, F (u, v) = u3 + 13u2v − 76uv2 − 992v3 = ±32

(u, v) = (−26, 2), (xQ, yQ, zQ) = (0,−1, 0),substitution ( 17),det(C) = 4
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