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Abstract. Let k ≥ 3 be an odd integer. Consider the k-generalized
Fibonacci sequence backward. The characteristic polynomial of this
sequence has no dominating zero, therefore the application of Baker
method becomes more difficult. In this paper, we investigate the co-
incidence of the absolute values of two terms. The principal theorem
gives a lower bound for the difference of two terms (in absolute value)
if the larger subscript of the two terms is large enough. A corollary
of this theorem makes possible to bound the coincidences in the se-
quence. The proof essentially depends on the structure of the zeros of
the characteristic polynomial, and on the application of linear forms in
the logarithms of algebraic numbers. Then we reduced the theoretical
bound in practice for 3 ≤ k ≤ 99, and determined all the coincidences
in the corresponding sequences. Finally, we explain certain patterns of
pairwise occurrences in each sequence depending on k if k exceeds a
suitable entry value associated to the pair.
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1. Introduction

Let k ≥ 2 be a positive integer. The k-generalized Fibonacci sequence

(F
(k)
n )n∈Z has initial values

(1) F
(k)
−k+2 = · · · = F

(k)
0 = 0, F

(k)
1 = 1,

and satisfies the recurrence

(2) F (k)
n = F

(k)
n−1 + · · ·+ F

(k)
n−k for all n ∈ Z.

The case k = 2 gives the Fibonacci sequence. There exist several results
in the literature related to Diophantine equations with members of the se-

quences (F
(k)
n ) with positive indices n but not many results deal with prob-

lems in which negative subscripts are considered.

In this paper, we look at repeated values of F
(k)
n for n ≤ 0. For our

convenience we introduce the sequence (H
(k)
n ) by H

(k)
n := F

(k)
−n for n ≥

0. It means the reverse-direction interpretation of k-generalized Fibonacci

sequences, such that H
(k)
n = 0 holds for n = 0, . . . , k − 2, further H

(k)
k−1 = 1,

and if n ≥ k, then

(3) H(k)
n = −H(k)

n−1 − · · · −H
(k)
n−k+1 +H

(k)
n−k.

The characteristic polynomial of this sequence has no dominating zero if k
is odd, therefore, as we will see, the application of Baker method becomes
more difficult. Since we provide now a short survey on the related literature

here in the introduction, we will use the notation H
(k)
n , and analyze the

properties later when it is really favourable.
In fact, we look at the slightly more general Diophantine equation

(4) |F (k)
n | = |F (k)

m |, where (m,n) ∈ Z2, n 6= m, |n| ≥ |m|.

For k even Pethő and Szalay [16] gave an explicit upper bound on |n|
in terms of k provided both m and n are negative. Their method uses
classical algebraic number theory but does not use transcendental methods
(i.e., Baker’s theory of linear forms in logarithms). The case k = 3 has been
handled by Bravo et al. [2]. Their paper [2] together with the earlier paper
[1] determined the “total multiplicity of Tribonacci sequence”, namely all

the integer solutions (m,n) of the Diophantine equation F
(3)
n = F

(3)
m with

n 6= m. They did not study the more general equation |F (3)
n | = |F (3)

m | (i.e.,

they did not include the situation F
(3)
n = −F (3)

m ), although their methods
based on Baker’s theory clearly allow for the study of this similar equation
as well. In this paper, we also fill in this gap. Thus, we assume that
k ≥ 3. By Theorem 4.2 of [17] equation (4) has only finitely many effectively
computable solutions. However, that theorem does not give an explicit upper
bound on |n| in terms of k. Our main result gives an explicit lower bound

on ||F (k)
n | − |F (k)

m || for n < m ≤ 0, when |n| ≥ C(k), where C(k) is an
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explicit constant depending on k. In particular, if (4) holds then the above
expression is zero, so |n| < C(k).

Bravo and Luca [4] found all the solutions of the equation F
(k)
n = F

(`)
m

when (n, k) 6= (m, `), k ≥ ` and n, m are both non–negative. There are

parametric trivial solutions arising from the fact that F
(k)
1 = 1 and F

(k)
n =

2n−2 for all n ∈ [2, k + 1]. In particular, every power of 2, say 2a, is a

term of (F
(k)
n )n∈N for all k ≥ a + 2. There is a “nontrivial” power of 2

sitting in the Fibonacci sequence, namely F
(2)
6 = 8, which is nontrivial in

the sense that it is not part of the initial string of powers of 2 as described
above. Aside from these trivial solutions and the nontrivial power of 2
mentioned above, the only other solutions of the equation are (m,n, k, `) =
(7, 6, 3, 2), (12, 11, 7, 3). The particular case (k, `) = (3, 2) was worked out
earlier by Marques in [12]. When (m,n) are allowed to vary in the set of
all integers (so, one or both of them are allowed to be negative), Pethő [15]
proved that if k, ` are fixed then the Diophantine equation

F (k)
n = F (`)

m

possesses only finitely many solutions (n,m) ∈ Z2. This result is ineffective
and the proof is based on the theory of S-unit equations. An effective
finiteness result from [15] states that if k, ` are given positive even integers
and the integers n and m satisfy

|F (k)
n | = |F (`)

m |

then max{|m|, |n|} < C(k, `), where C(k, `) is a constant which is effectively
computable and depends only on k and `.

Our main result is the following. Recall that H
(k)
n = F

(k)
−n with non-

negative integers n.

Theorem 1. Assume that k ≥ 3 is an odd integer. If n > m ≥ 0 then

(5)
∣∣∣∣∣∣H(k)

n

∣∣∣− ∣∣∣H(k)
m

∣∣∣∣∣∣ >
∣∣∣H(k)

n

∣∣∣
exp(7 · 1030 · k16(log k)5(log n)2)

provided

n ≥ C(k) := 1032 · 1.454k
3
k22(log k)5.

Our theorem immediately implies

Corollary 1. Assume that k ≥ 3 is an odd integer. Then there is no integer
solution 0 < m < n to the equation∣∣∣H(k)

n

∣∣∣ =
∣∣∣H(k)

m

∣∣∣
with n > C(k).
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2. Preliminaries

The main problem with Diophantine equations with members of (H
(k)
n )n∈N

with fixed k is that while the characteristic polynomial

Tk(x) = xk − xk−1 − · · · − x− 1

of (F
(k)
n )n∈N has a positive real dominating zero, the characteristic polyno-

mial

T̃k(x) := −xkTk
(

1

x

)
= xk + xk−1 + · · ·+ x− 1

of (H
(k)
n ) has no dominating root when k is odd. When k is even, T̃k(x) pos-

sesses a dominating zero which is a negative real number but its dominance
over the remaining roots is not strong. So, in this section we collect some
estimates pertaining to the roots of Tk(x) as well as estimates concerning

the values of F
(k)
n in terms of these roots.

It is known that the polynomial Tk(x) has simple zeros and the largest
one in absolute value is a positive real number denoted by α1 and is greater
than 1. Furthermore, Tk(x) is a Pisot polynomial, i.e. all zeros but α1 lie
inside the unit circle. The other zeros are complex non-real numbers when
k is odd. When k is even, Tk(x) has an additional real zero which is in the
interval (−1, 0). If two zeros have common absolute value then they form a
complex conjugate pair. This was proved in [15] but it also follows rather
easily from a result of Mignotte [14] which states that there are no nontrivial
multiplicative relations among the conjugates of a Pisot number. Recalling
that k ≥ 3 is odd, the zeros of the characteristic polynomial Tk(x) can be
ordered by

|αk| = |αk−1| < |αk−2| = |αk−3| < · · · < |α3| = |α2| < α1,

where αk−1 = αk, αk−3 = αk−2, . . . , etc. For brevity, put % := |αk|, and
%2 := |αk−2|. The explicit Binet formula

(6) F (k)
n =

k∑
j=1

gk(αj)α
n−1
j for all n ≥ 0,

where

gk(x) =
x− 1

2 + (k + 1)(x− 2)

was given by Dresden and Du in [5]. It remains true when negative indices
n are allowed. For simplicity, we put

aj := gk(αj)α
−1
j for all j = 1, . . . , k.

Thus F
(k)
n =

∑k
j=1 ajα

n
j is a simpler than but equivalent form to (6).

In the sequel, we list a few estimates which are used later. The next three
lemmata do not depend on the parity of k.
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Lemma 1. For k ≥ 2 the following inequalities hold.

2− 1

2k−1
< α1 < 2− 1

2k
.

Proof. This is Lemma 3.6, and a consequence of Theorem 3.9 in [20]. �

Lemma 2. If j 6= 1, then

1

31/k
< |αj | < 1− 1

28k3
.

Proof. See Lemma 2.1 in [10] for the left-hand side. The right-hand side
can be found in Theorem 2 in [9]. �

The next statement is Corollary 3 in [6].

Lemma 3. If |αj | > |αi|, then

|αj |
|αi|

> ck := 1 +
1

1.454k3
.

An essential part of the proof of the main theorem depends on Baker
method. Here we describe the principal tool due to Matveev. Let K be an
algebraic number field of degree dK and let η1, η2, . . . , ηt ∈ K not 0 or 1, and
b1, . . . , bt be nonzero integers. Put

B := max{|b1|, . . . , |bt|, 3} and Γ :=

t∏
i=1

ηbii − 1.

Let A1, . . . , At be positive integers such that

Aj ≥ h′(ηj) := max{dKh(ηj), | log ηj |, 0.16}, for j = 1, . . . t,

where for an algebraic number η with minimal polynomial

f(X) = a0(X − η(1)) · · · (X − η(u)) ∈ Z[X]

with positive a0 we write h(η) for its Weil height given by

h(η) :=
1

u

log a0 +

u∑
j=1

max{0, log |η(j)|}

 .

Under these circumstances Matveev [13] proved

Lemma 4. If Γ 6= 0, then

log |Γ| > −3 · 30t+4(t+ 1)5.5d2K(1 + log dK)(1 + log tB)A1A2 · · ·At.

We next list some well known properties of the logarithmic height func-
tion. For the proof see e.g. [19], Ch. 3.2.

Lemma 5. The properties

(i) h(µ+ ν) ≤ h(µ) + h(ν) + log 2,
(ii) h(µν±1) ≤ h(µ) + h(ν),
(iii) h(µ`) ≤ |`|h(µ)
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are valid for all algebraic numbers µ, ν, and integers `.

We also refer the Baker-Davenport reduction method of Dujella and Pethő
(see [7, Lemma 5a]). Let ‖ c ‖ denote the distance of c from the nearest
integer.

Lemma 6. Let κ 6= 0 and µ be real numbers. Assume that M is a positive
integer. Let P/Q be the convergent of the continued fraction expansion of κ
such that Q > 6M , and put

ξ := ‖µQ‖ −M · ‖κQ‖.

If ξ > 0, then there is no solution of the inequality

0 < |mκ− n+ µ| < AB−k

for positive integers m, n, and k with

log (AQ/ξ)

logB
≤ k and m ≤M.

The final result of this section is Lemma 7 in [11].

Lemma 7. If s ≥ 1, T ≥ (4s2)s, and x/(log x)s < T , then

x < 2sT (log T )s.

3. Preparation

The proof of the main theorem requires a result concerning the size of

|H(k)
n |. This is Lemma 9 for which we need the following preparation.

Lemma 8. If n > dk := 2 · 1015 · 1.454k
3
k11(log k)3, then

(i) |H(k)
n | > 1

2

∣∣akα−nk + ak(αk)
−n∣∣;

(ii) |H(k)
n | > 3%−n2 .

Proof. First we prove (i). It is sufficient to show that for n large enough
we have

(7)
1

2

∣∣akα−nk + ak(αk)
−n∣∣ ≥

∣∣∣∣∣∣
k−2∑
j=1

ajα
−n
j

∣∣∣∣∣∣ .
Indeed, then

|H(k)
n | =

∣∣∣∣∣∣
k∑
j=1

ajα
−n
j

∣∣∣∣∣∣ ≥ ∣∣akα−nk + ak(αk)
−n∣∣−

∣∣∣∣∣∣
k−2∑
j=1

ajα
−n
j

∣∣∣∣∣∣ ,
and now we conclude the statement (i) of the lemma from (7).
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Assume n > 2k2 log(4k). We first bound the left-hand side (in short LHS)
of (7) from below as follows:

LHS :=
1

2
|ak|%−n

∣∣∣∣1− (−akak
)(

αk
αk

)n∣∣∣∣
>

1

2
|ak|%−n exp(−4.74 · 1014k8(log k)3 log n)

>
1

211k4
%−n exp(−4.74 · 1014k8(log k)3 log n).(8)

Here we used the following two observations. The lower bound on∣∣∣∣1− (−akak
)(

αk
αk

)n∣∣∣∣
comes from inequality (4.4) in [10]. It assumes that n > 2k2 log(4k), which
we are also assuming. Furthermore,

|ak| =

∣∣∣∣g(αk)

αk

∣∣∣∣ =
1

|2 + (k + 1)(αk − 2)|

∣∣∣∣ 1

αk
− 1

∣∣∣∣
≥ 1

2 + (k + 1)(|αk|+ 2)

(
1

|αk|
− 1

)
>

1

(3k + 5)(28k3 − 1)

>
1

210k4
.

For k ≥ 5, the above inequality follows from Lemma 2 and the fact that
1/(3k+ 5) ≥ 1/(4k) which holds when k ≥ 5. For k = 3, one checks directly
that |a3| > 0.35 > 1/(210 · 34).

For the right-hand side (in short RHS) of (7), we see that for k ≥ 5 we
have ∣∣∣∣∣∣

k−2∑
j=1

ajα
−n
j

∣∣∣∣∣∣ ≤
k−2∑
j=1

|aj ||αj |−n

= |αk−2|−n
k−2∑
j=1

|aj |
∣∣∣∣ αjαk−2

∣∣∣∣−n ≤ %−n2

k−2∑
j=1

|aj |

< %−n2 (|a1|+ (k − 3) max
2≤j≤k−2

|aj |) < 3%−n2 .(9)

The above inequality also holds for k = 3 since in that case the left-hand
side only has one term which is real and positive, namely a1α

−n
1 and a1 ∈

(0.18, 0.19), so a1 < 3. We need to justify upper bounds for |aj | for j =
1, . . . , k − 1. For k ≥ 5, j ∈ {2, . . . , k} we have

|aj | =

∣∣∣∣gk(αj)αj

∣∣∣∣ ≤ 1

|2 + (k + 1)(αj − 2)|

∣∣∣∣ 1

αj
− 1

∣∣∣∣
<

1

(k + 1)(2− |αj |)− 2

(
1 +

1

|αj |

)
<

1 + 31/k

k − 1
<

2.5

k − 1
,(10)
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where we used Lemma 2, and for j = 1 we have

|a1| =
1

2 + (k + 1)(α1 − 2)

(
α1 − 1

α1

)
<

1

(2− (k + 1)/2k−1)(2− 1/2k−1)
< 0.5(11)

since k ≥ 5, where we used Lemma 1. By inspection, as we have done
already, these bounds also hold for k = 3. Hence, (i) of the lemma follows
for n > 2k2 log(4k) such that

(12)
1

211k4
exp(−4.74 · 1014k8(log k)3 log n)%−n > 3%−n2 ,

holds. The above inequality is implied by

(13)

(
%2
%

)n
> 213k4 exp(4.74 · 1014k8(log k)3 log n).

We have
%2
%
> 1 +

1

1.454k3

by Lemma 3 and

log

(
1 +

1

1.454k3

)
>

1

2 · 1.454k3
.

Thus, in order for (13) to hold it is enough for n to satisfy
n

2 · 1.454k3
> log(213k4) + 4.74 · 1014k8(log k)3 log n.

For k = 3, ρ2/ρ > α1 > 1.8, so log(ρ2/ρ) > log(1.8) > 1/2, so we can

ignore the factor 1.454k
3

from the denominator on the left-hand side. The
first member on the right-hand side above is small. That is, log(213k4) <
0.26 ·1014k8(log k)3 log n for all k ≥ 3 and n > 2k2 log(4k). Hence, it suffices
that

(14) n > δk · 1015k8(log k)3 log n, where δk :=

{
1.454k

3
if k ≥ 5;

1 if k = 3.

Thus, n > nk, where nk is the largest solution of the inequality
n

log n
≤ 1015δkk

8(log k)3.

Assume k ≥ 5. To bound nk, we use Lemma 7 with s = 1. We take

T := 1015 · 1.454k
3
k8(log k)3.

Then

log T = k3
(

log 1.454 +
15 log 10 + 8 log k + 3 log log k

k3

)
< k3

since k ≥ 5. Hence,

nk < 2T log T < 2 · 1.454k
3 · 1015k11(log k)3 = dk,
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subsequently (i) holds if n > dk. Note that dk exceeds 2k2 log(4k) so such n
also satisfy that n > 2k2 log(4k) and this last inequality holds for k = 3 as
well. Finally, for k = 3, a computation shows that

n3 < 5 · 1020 < 1025 < d3,

and the inequality nk < dk fulfils for k = 3 as well.

Now we turn to the proof of (ii). Using (i), we get that (ii) is true provided

1

2

∣∣akα−nk + ak(αk)
−n∣∣ > 3%−n2 .

Our previous computation (8) shows that the left-hand side of this inequality
is larger than

1

211k4
%−n exp(−4.74 · 1014k8(log k)3 log n),

while inequality (12) shows that the above expression exceeds 3%−n2 provided

n > 2 · 1.454k
3 · 1015k11(log k)3, which implies the desired conclusion. �

Now we are able to bound |H(k)
n | as follows.

Lemma 9. Let k ≥ 3. The inequality

|H(k)
n | < 3%−n

holds for all n ≥ 0. Furthermore,

%−n+1.3·1017k11(log k)3 logn < |H(k)
n |

is valid for all n > dk.

Proof. The lower bound follows from (8), the observation that 211 < k9

holds for k ≥ 3 together with the fact that % < 1− 1/(28k3).
For the upper bound, we go back to (9). The only difference that the sum

is up to k instead of k− 2 and we factor out % = |αk| instead of %2 = |αk−2|.
Thus, ∣∣∣∣∣∣

k∑
j=1

ajα
−n
j

∣∣∣∣∣∣ ≤ %−n(|a1|+ (k − 1) max
1≤j≤k−1

{|aj |}) < 3%−n,

where we used (10) and (11). �

4. Proof of Theorem 1

Set

(15) An,m :=
∣∣∣∣∣∣H(k)

n

∣∣∣− ∣∣∣H(k)
m

∣∣∣∣∣∣ .
We assume n > m and n > dk. Suppose first that

(16) 6%−m < %−n+4.4·1014k9(log k)3 logn.
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It then follows by Lemma 9 that

|H(k)
m | < 3%−m <

1

2
%−n+4.4·1014k9(log k)3 logn <

1

2
|H(k)

n |,

so that

An,m =
∣∣∣∣∣∣H(k)

n | − |H(k)
m

∣∣∣∣∣∣ > 0.5|H(k)
n |,

which is a better inequality than (5). Thus, let us assume that (16) does
not hold. Then

m− n > −4.4 · 1014k9(log k)3 log n− (log 6)/ log

(
1

%

)
> −Gk log n,

where Gk := 4.45 · 1014k9(log k)3.
Next equation (15) can be rewritten as

H(k)
n = ±H(k)

m ±A, where A := Am,n,

and yields
(17)

akα
−n
k (1∓α−(m−n)k )+ak(αk)

−n(1∓(αk)
−(m−n)) = ±A−

k−2∑
j=1

aj(α
−n
j ∓α

−m
j ).

The absolute value of the second term of the right-hand side of (17) satisfies∣∣∣∣∣∣−
k−2∑
j=1

aj(α
−n
j ∓ α

−m
j )

∣∣∣∣∣∣ ≤
k−2∑
j=1

|aj |(|αj |−n + |αj |−m)

≤ 3%−n2 + 3%−m2 < 6%−n2 ,(18)

by a previous argument.
We now turn our attention to the left-hand side of (17). Put αk := %z

with z := eiϑ, where |z| = 1 and ϑ := argαk. Obviously, αk = %z−1. Using
this notation the absolute value of the left-hand side of (17) equals

(19) %−n
∣∣∣akz−n(1∓ %n−mzn−m) + akz

n(1∓ %n−mz−(n−m))
∣∣∣

= %−n
∣∣∣akzn(1∓ %n−mz−(n−m))

∣∣∣ ∣∣∣∣akak z−2n 1∓ %n−mzn−m

1∓ %n−mz−(n−m)
− 1

∣∣∣∣ .
Now we provide lower bounds for two factors of the product in the in-

equality above. The first bound is analytical, the second one is coming from
the theorem of Matveev with t = 3. Hence,∣∣∣akzn(1∓ %n−mz−(n−m))

∣∣∣ = |ak||z|n|1∓ %n−mz−(n−m)|

≥ 1

210k4

(
1− %n−m|z|−(n−m)

)
≥ 1

210k4
(1− %) ≥ 1

218k7
,(20)
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by Lemma 2. In order to prepare the application of Lemma 4, let

η1 := −ak
ak
, η2 := z−2, η3 :=

1∓ %n−mzn−m

1∓ %n−mz−(n−m)
.

Thus, b1 = 1, b2 = −n, b3 = 1, so B = n. Moreover, all three numbers
η1, η2, η3 are in K := Q(αk, αk), therefore D = dK ≤ k2. In the forthcom-
ing calculations we use the properties of the heights of algebraic numbers
(Lemma 5). Clearly, h(η1) ≤ 2h(ak), and then

h(ak) ≤ 3h(αk) + 5 log 2 + log(k + 1) < 8 log 2 + log(k + 1).

In the above, we used that 3h(αk) < 3 logα1)/k < 3 log 2/k < 1. So,
h(η1) ≤ 2 log(28(k+1)), and then we take A1 = 2k2 log(28(k+1)). Secondly,

h(η2) = h(z2) = h

(
αk
αk

)
≤ 2h(αk) ≤

2 log 2

k
,

so we can take A2 = 2(log 2)k. Furthermore,

h(η3) ≤ (h(%n−mzn−m) + log 2) + (h(%n−mz−(n−m)) + log 2)

= 2 log 2 + h(αn−mk ) + h((αk)
n−m)

≤ 2 log 2 + 2(n−m)
log 2

k
.

So we can take A3 = 2k(k + n − m) log 2. With the above ingredients,
Matveev’s theorem provides

log |Γ| > −3 · 307 · 45.5(k2)2(1 + log(k2))(1 + log(3n))

· 2k2 log(28(k + 1)) · 2(log 2)k · 2k(k + n−m) log 2

> −7.5 · 1014k8 · 3 log k · 6.4 log k · 1.04 log n

· (4.5 · 1014k8(log k)3 log n)

> −6.9 · 1030k16(log k)5(log n)2.(21)

In the above calculations we used that 1 + log(3n) < 1.04 log n provided
n > 1023, together with 1 + log(k2) < 3 log k and log(28(k + 1)) < 6.4 log k
both valid for k ≥ 3. Moreover,

k + n−m < k +Gk log n < 4.5 · 1014k9(log k)3 log n.

At this point we return to (17) which, together with the estimates (18),
(19), (20) and (21) above, provides

A ≥ %−n

218k7
exp(−6.9 · 1030k16(log k)5(log n)2)− 6%−n2

≥ %−n

218k7
exp(−6.9 · 1030k16(log k)5(log n)2)

·
(

1− 6 · 218k7 exp(6.9 · 1030k16(log k)5(log n)2)

(%2/%)n

)
.(22)
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To finish, using Lemma 9, we want that the last factor on the right-hand
side above is greater than 1/2, and

(23) 12 · 218k7 < exp(1029k16(log k)5(log n)2).

Taking logarithms (23) is obvious for all k ≥ 3 and n > max{dk, 1023}. So,
it remains to deal with the condition that the last factor on the right-hand
side of (22) exceeds 1/2. This is equivalent to

(24) 12 · 218k7 exp(6.9 · 1030k16(log k)5(log n)2) <

(
%2
%

)n
.

By Lemma 3, the last inequality holds provided

7 · 1030k16(log k)5(log n)2 < n log

(
1 +

1

1.454k3

)
for k ≥ 5. As in the proof of Lemma 8, the right-hand side above can be
replaced by 1/2 when k = 3. The last inequality above is satisfied provided

n > 1.4δk · 1031k16(log k)5(log n)2,

where δk has the same meaning as in (14). Thus, we want n > C(k), where
now C(k) is the largest solution of

(25)
n

(log n)2
< 1.4δk · 1031k16(log k)5.

Let k ≥ 5 and let T be the right-hand side above. By Lemma 7 with s = 2,
we get

C(k) < 4T (log T )2.

Now

log T < k3
(

log(1.454) +
log(1.4 · 1031) + 16 log k + 5 log log k

k3

)
< 1.2k3.

Thus, we can take

4 · 1.4 · 1.454k
3 · 1031k16(log k)5(1.2k3)2

< 1032 · 1.454k
3
k22(log k)5 := C(k),

which is what we wanted. When k = 3, the largest solution of (25) is smaller
than 1043 < 1047 < C(3). Finally, let us note that at some point we did
make the assumption that n > 1023, which now is justified in light of the
fact that C(k) > 1023 holds for all k ≥ 3. �
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5. Computations

First we computed the approximate values of αk, αk−2, %, %2, %2/% and
|ak| in the range k = 5, 7, . . . , 99 with 200 digits precision. We found that

0.8187 < % < 0.9891, 0.8710 < %2 < 0.9891,

1.000008 <
%2
%
< 1.0639, 0.0067 < |ak| < 0.1483.

Now follow Lemma 8, supposing n ≥
⌊
2 · 992 log(4 · 99)

⌋
= 50921, and in

this case for (8) we have

LHS >
1

300
· exp(−6 · 1032 log n)%−n.

Comparing this with RHS < 3%−n2 , finally we obtain that statement (i) of
Lemma 8 is true if n > 6·1039. In the next step, we return to (24), and using
the numerical estimates we conclude n < 4.2 ·1075. This upper bound makes
it possible to jump back to the left-hand side of (7), and apply Dujella-Pethő
reduction for each odd k in [5, 99]. These procedures provide, in summary,

1

2

∣∣akα−nk + ak(αk)
−n∣∣ > 1

2

∣∣akα−nk ∣∣ · 10−82.

Suppose now that |H(k)
n | = |H(k)

m |, which leads to

1

2

∣∣akα−nk ∣∣ · 10−82 < 3%−m < %−m−100,

and then we get n−m < 17300.
Consider now again (19). In the third term we have finitely many positive

integer values for k and n − m, and an upper bound on n. We target to
reduce this bound by the application of Dujella-Pethő reduction. It means
approximately 2 · 48 · 17298 reductions as follows. Put δ := n−m and

(26) eiνk,δ :=
ak
ak
· 1∓ %n−mzn−m

1∓ %n−mz−(n−m)
,

where −π < νk,δ < π. Note that in (26) we used the fact that the right-hand

side has absolute value 1. Recall that z = eiϑ. Then∣∣∣∣akak z−2n 1∓ %n−mzn−m

1∓ %n−mz−(n−m)
− 1

∣∣∣∣ =
∣∣∣ei(−2nϑ+νk,δ) − 1

∣∣∣ > | sin(−2nϑ+ νk,δ)|.

Put

`k,n,δ :=

⌊
−2nϑ+ νk,δ

π

⌉
,

where bce means the nearest integer to c. Obviously, we have that −π/2 ≤
−2nϑ+ νk,δ − `k,n,δ ≤ π/2, and

| sin(−2nϑ+ νk,δ)| = | sin(−2nϑ+ νk,δ − `k,n,δπ)|

≥ 2

∣∣∣∣(−2ϑ

π

)
n− `k,n,δ +

νk,δ
π

∣∣∣∣ .
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Now we are ready to apply Lemma 6 together with∣∣∣∣(−2ϑ

π

)
n− `k,n,δ +

νk,δ
π

∣∣∣∣ < 3

b

(
%2
%

)−n
,

via (18) and (19), where

b =
∣∣∣akzn(1∓ %n−mz−(n−m))

∣∣∣ = |ak|
∣∣∣(1∓ %n−mz−(n−m))

∣∣∣ ≥ |ak| · |1− %|.
Now the brief summary on the application of the reduction method is

presented. First we mention that the description here refers the two cases
± together. The upper bounds on n we obtained by the first reduction were
not sufficiently small for larger values k. Thus we applied Lemma 6 as many
times as it essentially reduced the bound, and this resulted a quasi-optimal
range for n.

Suppose that the final bound on n is denoted by bn(k). The experimental
formula bn(k) ≈ 4.72k3 shows the approximate behavior of bn(k). We note
that the inequality bn(k) < 4.72k3 holds for all k ≤ 75. The largest value ap-
pears when k = 99, namely bn(99) = 4597520. In comparison, in the middle
of the range bn(51) = 3144305. On the other hand, a brute force search
indicated that there is no repetition (in absolute value) in the sequences if
n > 12000.

The algorithm which verified the possible cases of n (for fixed k) can be
split into two parts. The first part is a direct verification of the equality
between the terms (in absolute value) of the sequence for n ≤ 13000. For
k = 5, . . . , 15 this was sufficient. From k = 17, after the threshold 13000
the terms of the sequence were generated modulo M , a suitable modulus
larger then the first 13000 terms (in absolute value) of the sequence. M is
constructed as a product of an initial interval of primes. Then the checking of
the coincidence happened modulo M . We expected no coincidences by this
way. If it might have occurred, then the procedure chose a new modulus
M , and started again the verification from n = 13000. The check of the
largest value k = 99 took approximately 8 and half days on an average desk
computer.

In the sequel, we give a survey of the results provided by the algorithm.

• Occurrence of 0, and ±1. The large number of coincidences of 0, and ±1,
respectively makes it not possible to list them up. Thus we restrict ourselves
to give the number of occurrences ok(0), and ok(±1). It is very interesting
that they can be given by polynomial functions of k if 5 ≤ k ≤ 99. The last
occurrence lk(.) can also be described by quadratic functions. The exact
expressions are ok(0) = k(k − 1)/2, ok(±1) = k, lk(0) = (k − 2)(k + 1),
lk(±1) = k2−2. We remark that a very recent paper [8] has proved ok(0) =
k(k−1)/2 for k ≤ 500. We think it would be a challenging problem to prove
the correctness of these formulae for arbitrary k ≥ 5. In case of k = 3 we
found o3(0) = 4, o3(±1) = 3, l3(0) = 17, l3(±1) = 7.
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• Occurrence of pairs. It is also interesting that if an integer not equal to
0,±1 appears twice (in absolute value) for some k = k0, then it appears twice
for all k0 < k ≤ 99 if the appearance of the first pair is fast enough. In addi-
tion, the subscripts of the terms of such pairs can be given by linear functions
of k. This phenomenon is summarized briefly in Table 1. Let ek stand for the

entry value k such that a pair appears in (H
(k)
n ), moreover put V0 := 84480,

V1 := 131072, V2 := 17179869184, V3 := 147573952589676412928, V4 :=
111926018800798233019262132075027171269671785594880. Note that only
−1568 is the integer which occurs twice, in the other cases the coincidence is
valid for only the absolute values. Legend of Table 1: for instance, the row

of ∓8 indicates that first −8 occurs at H
(k)
3k , and then 8 at H

(k)
4k+1, moreover

it is true for k ≥ 5.

value ek subscripts value ek subscripts
∓8 5 (3k, 4k + 1) ±32 7 (5k + 2, 6k − 1)

±128 9 (8k − 1, 9k + 6) ∓256 9 (7k, 9k − 1)
±512 17 (10k − 1, 17k + 14) −1568 29 (9k + 4, 29k + 26)
±2048 33 (12k − 1, 33k + 30) ±2816 9 (9k + 1, 10k)
±8192 65 (14k − 1, 65k + 62) ±V0 9 (12k + 3, 13k + 6)
∓V1 19 (15k, 18k − 1) ∓V2 35 (31k, 35k − 1)
∓V3 69 (63k, 68k − 1) ∓V4 97 (114k + 19, 115k + 18)

Table 1. Repetition formulae.

In the next section, we will show that these formulae of subscripts hold
for all k ≥ ek.
• Exceptional occurrences. There are two cases when a matching appears,

but it does not appear later. For k = 3, H
(3)
16 = 56, and H

(3)
20 = −56. We

note that if k = 3 this is the only coincidence which differs from 0 and ±1.

For k = 5, H
(5)
26 = H

(5)
39 = 56.

6. Regularities in the sequence (H(k)
n )

During the computation of multiple values in the sequence (H
(k)
n ) we

observed certain regularities. For example, we mentioned above that if an
integer not equal to 0,±1 appears twice (in absolute value) for some k = k0,
then it appears twice for all k0 < k ≤ 99 if the appearance of the first pair
is fast enough. In addition, the subscripts of the terms of such pairs can
be given by linear functions of k. In this part, we prove that this is not
an accidental coincidence, but follows from the fact that the beginning of

(H
(k0)
n ) is repeated with minor modification in (H

(k)
n ) for all k ≥ k0.

The main tool is to split the sequence (H
(k)
n ) into consecutive blocks with

length k + 1, and write the blocks in a top-down list. Assume that k ≥ 2,
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and
n = j(k + 1) + i

holds with the condition 0 ≤ i ≤ k. This division with remainders admits

that the term H
(k)
n is located on the place i in the jth block. Thus the

arrangement of the blocks yields a rectangular table with width k+1, where
one row is one block, and a column is belonging to a given value i. The
principal result of this section is

Theorem 2. Assume j = 0, . . . , k − 2 and i = 0, . . . , k − 2 − j. Then

H
(k)
j(k+1)+i = 0. Furthermore if either j = 0, . . . , k − 2, i = k − 1 − j, . . . , k

or j = k − 1, . . . , 2k − 2, i = 0, . . . , 2k − 2− j, then

(27) H
(k)
j(k+1)+i = (−1)j+i+1−k · 2k−1−i

[(
j + 1

j + i+ 1− k

)
+

(
j

j + i− k

)]
.

A direct application of this theorem shows a connection between the first

few terms of the two sequences (H
(k)
n ) and (H

(k+1)
n ).

Corollary 2. If either j = 0, . . . , k−2 and i = 0, . . . , k or j = k−1, . . . , 2k−
2 and i = 0, . . . , 2k − 2− j, then

H
(k)
j(k+1)+i = H

(k+1)
j(k+2)+i+1.

This corollary proves that if |H(k)
n1 | = |H(k)

n2 | 6∈ {0, 1} such that the loca-
tions (j1, i1) and (j2, i2) are in the range of Corollary 2, then the coincidence
appears for all larger k values, of course with other subscripts. This also ex-
plains the so called exceptional solutions in the previous section, for instance

why 56 = H
(5)
26 = H

(5)
39 is not repeated later. Indeed, 26 = 4 ·6+2 is possible,

but 39 = 6 · 6 + 3 is out of the range (k = 5, j = 6, but i = 3 > 2k − 2− j).
Similarly, there is no guaranteed repetition associated to 56 = H

(3)
16 = |H(3)

20 |.
It is well known that the k-generalized Fibonacci sequences start in the

positive direction with powers of 2. Moreover Bravo and Luca [3] established
all powers of 2 in these sequences. Our final statement shows that many
powers of 2 appear regularly in the negative direction, too.

Corollary 3. If k ≥ 2 and j = 0, . . . , k − 1, then H
(k)
(j+1)k−1 = 2j.

Proof of Theorem 2. The combination of two consecutive terms in (3),
together with the new notation provides

H(k)
n = 2H

(k)
n−k −H

(k)
n−k−1.

1

The table arrangement of the blocks shows that an entry of the table located
not in the right-most column is the double of the upper right neighbor
element minus the upper neighbor element. The last entry of a row can be
given as the double of the first entry of the row minus the upper neighbor.
We can unify the two cases if construct a virtual (k+ 1)th column as a copy
of the 0th column lifted by one unit (see Figure 1).

1This relation appeared in Garcia, Gómez, and Luca [8], equation (19).
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Figure 1. Construction rule of the table.

By this rule we can easily fill the table for a given value k. But this
approach works also in case of a general k for 0 ≤ j ≤ k − 2, and partially
for k − 1 ≤ j ≤ 2k − 2.

First deal with the cases 0 ≤ j ≤ k − 2. It is illustrated by Table 2.

j \i 0 1 2 . . . k− 3 k− 2 k− 1 k
0 0 0 0 . . . 0 0 1 −1
1 0 0 0 . . . 0 2 −3 1
2 0 0 0 . . . 4 −8 5 −1
...

...
...

...
. . .

...
...

...
...

k− 2 0 2k−2 . . . (−1)k−1

Table 2. The block scheme of (H
(k)
n ), rows 0, . . . , k − 2.

The 0th block is
k−1︷ ︸︸ ︷

0, 0, . . . , 0, 1,−1,

and the zeros ensure that there are k − 2 zeros at the beginning of the first
block. Clearly, the number of the zeros are decreasing block by block. Hence

H
(k)
j(k+1)+i = 0 if j = 0, . . . , k − 2; i = 0, . . . , k − 2− j.

Recall the construction rule sketched in Figure 1. The non-zero parts of
the blocks are gradually widening in a truncated triangular shape: 1,−1
in row 0, and 2,−3, 1 in row 1, etc. While the virtual column (the (k +
1)th) contains 0 values then the non-zero triangle in the table coincides
the triangle A118800 of OEIS [18]. No wonder since A118800 possesses the
same construction rule. Thanks to this coincidence we see that (27) holds if
0 ≤ j ≤ k − 2. In particular, the left leg of the triangle contains increasing
powers of 2, more precisely if i = k−1−j, then n = j(k+1)+i = (j+1)k−1

and H
(k)
n = 2j . This proves Corollary 3. We explain why formula (27) is

descending from row by row. This will be useful if we study the cases
k − 1 ≤ j ≤ 2k − 2. Put Ca,b :=

(
a
b

)
+
(
a−1
b−1
)

(if the lower subscript is
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negative, then the binomial coefficient takes value 0). First observe that in
row 0 we have

1 = (−1)0 · 20 · C1,0, −1 = (−1)1 · 2−1 · C1,1.

Then, introducing τj,r := (−1)s ·2t ·Cr,j for some integers s and −1 ≤ t, one
can easily verify τj+1,r = 2τj,r+1 − τj,r.

Examine now the rows k − 1 ≤ j ≤ 2k − 2. The main difference is that
in these blocks, starting with block k − 1, the left-most elements are non-
zero. Thus the table is perturbed by the virtual column, and the influence is
growing from right by one additional entry, row by row. This is the reason
that (27) is conditioned by 0 ≤ i ≤ 2k− 2− j when k− 1 ≤ j ≤ 2k− 2. �
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