Multiple common expansions in non-integer bases

Vilmos Komornik • Marco Pedicini .
Attila Pethő

Version of January 23, 2016

Abstract

We investigate the existence of simultaneous representations of real numbers x in bases $1<q_{1}<\cdots<q_{r}, r \geq 2$ with a finite digit set $A \subset \mathbb{R}$. We prove that if A contains both positive and negative digits, then each real number has infinitely many common expansions. In general the bases depend on x. If A contains the digits $-1,0,1$, then there exist two non-empty open intervals I, J such that for any fixed $q_{1} \in I$ each $x \in J$ has common expansions for some bases $q_{1}<\cdots<q_{r}$.

Keywords simultaneous Rényi expansions • interval filling sequences
Mathematics Subject Classification (2000) 11A63 • 11B83

1 Introduction

Given a finite alphabet or digit set A of real numbers and a real base $q>1$, by an expansion of a real number x we mean a sequence $\left(c_{i}\right) \in A^{\infty}$ satisfying

The third author was partially supported by the OTKA grants No. 100339 and 104208.

[^0]the equality
$$
\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}}=x .
$$

This concept was introduced by Rényi [16] as a generalization of the familiar integer base expansions.

In order to have an expansion x must belong to the interval

$$
J_{A, q}:=\left[\frac{\min A}{q-1}, \frac{\max A}{q-1}\right],
$$

and the endpoints of $J_{A, q}$ always have unique expansions.
In the familiar integer base case any number has at most two expansions. The general case is much more complex. Consider for example the two-letter alphabet $A=\{0,1\}$:

- If $q \in(1, \varphi)$, where $\varphi:=(1+\sqrt{5}) / 2 \approx 1.618$ denotes the Golden Ratio, then each interior element of $J_{A, q}$ has $2^{\aleph_{0}}$ expansions by [8, Theorem 3].
- If $q \in[\varphi, 2)$, then almost all $x \in J_{A, q}$ have $2^{\aleph_{0}}$ expansions by Sidorov [17], Dajani and de Vries [4] (see also [7, Theorem 2.3.2]), and infinitely many numbers have \aleph_{0} expansions by [6 , Theorem 1.4 (iii)].
- If $q=2$, then the diadically rational interior elements of $J_{A, q}$ have two expansions, and all other elements have a unique expansion.
- If $q>2$, then no number has more than one expansion.

Turning back to the general case, we may ask whether certain numbers may have the same expansions in different bases, say

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{c_{i}}{q_{1}^{i}}=\sum_{i=1}^{\infty} \frac{c_{i}}{q_{2}^{i}}=x \tag{1}
\end{equation*}
$$

Except the trivial case $x=0$ if $0 \in A$, this may only occur for alphabets having both positive and negative elements:

- If $A=\{-1,0,1\}, 1<q_{1}<q_{2}$ and $q_{1} \leq 2$, then (1) holds for infinitely many numbers x. This is a special case of [14, Theorem 1].
- If $A=\{-1,1\}$ and $1<q_{1}<q_{2}<1+\sqrt[3]{\sqrt{10}-2} \approx 1.05$, then (1) holds for all $x \in[-\delta, \delta]$ for some $\delta=\delta\left(q_{1}, q_{2}\right)>0$. This is a special case of $[5$, Theorem 1.1] of Dajani et al.
In this paper we investigate the existence of non-trivial common expansions in more than two bases. For this we need a different approach.

If no base is fixed in advance, then a very general result holds for all alphabets containing both positive and negative digits:

Theorem 1 Given two real numbers $a<0<b$, there exist $2^{\aleph_{0}}$ sequences $\left(c_{i}\right) \in\{a, b\}^{\infty}$ such that for each $x \in \mathbb{R}$ the equality

$$
\sum_{i=1}^{\infty} \frac{c_{i}}{q_{j}^{i}}=x
$$

holds for infinitely many bases q_{j}.

The problem is more difficult if the bases are prescribed. Given an alphabet A and an integer $r \geq 2$, a finite set of bases

$$
\begin{equation*}
q_{1}<\cdots<q_{r} \tag{2}
\end{equation*}
$$

is said to have the simultaneous expansion property if the relations

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{c_{i}}{q_{1}^{i}}=\cdots=\sum_{i=1}^{\infty} \frac{c_{i}}{q_{r}^{i}}=x \tag{3}
\end{equation*}
$$

hold for all numbers x belonging to some non-degenerate interval, with $\left(c_{i}\right) \in$ A^{∞} depending on x.

Conjecture 1 If the alphabet contains both positive and negative digits, then there exists $\delta_{r}>0$ such that all sets of bases (2) in $\left(1,1+\delta_{r}\right)$ have the simultaneous expansion property.

In the following theorem we may fix one base.
Theorem 2 We consider the alphabet $A=\{-1,0,1\}$ and an integer $r \geq 2$. There exist two non-empty open intervals I, J such that for any fixed $q_{1} \in I$ and $x \in J$ there exist bases q_{2}, \ldots, q_{r} satisfying the relations (2) and (3).

The proof will provide intervals I arbitrarily close to 1 and intervals J containing 1.

The next two sections are devoted to the proofs of the theorems. We conclude our paper with some comments and open questions.

2 Proof of Theorem 1

We will construct a sequence of integers $0<n_{1}<n_{2}<\cdots$ and a sequence $p_{1}>p_{2}>\cdots$ of real numbers converging to 1 such that setting

$$
\left(c_{i}\right):=a^{n_{1}} b^{n_{2}-n_{1}} a^{n_{3}-n_{2}} b^{n_{4}-n_{3}} \cdots
$$

the following inequalities are satisfied:

$$
\begin{align*}
& \sum_{i=1}^{n_{k}} \frac{c_{i}}{p_{k}^{i}}+\sum_{i=n_{k}+1}^{\infty} \frac{b}{p_{k}^{i}}<-k \text { for } k=1,3,5, \ldots \tag{4}\\
& \sum_{i=1}^{n_{k}} \frac{c_{i}}{p_{k}^{i}}+\sum_{i=n_{k}+1}^{\infty} \frac{a}{p_{k}^{i}}>k \quad \text { for } \quad k=2,4,6, \ldots \tag{5}
\end{align*}
$$

Observe that setting

$$
f(q):=\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}}
$$

the left side of (4) is greater than $f\left(p_{k}\right)$, and the left side of (5) is smaller than $f\left(p_{k}\right)$; therefore

$$
\begin{equation*}
\liminf _{q \rightarrow 1+} f(q)=-\infty \quad \text { and } \quad \limsup _{q \rightarrow 1+} f(q)=\infty \tag{6}
\end{equation*}
$$

Since f is continuous in $(1, \infty)$ (the defining series is locally uniformly convergent), hence f takes each real value x infinitely many times.

Now we turn to the construction. Choose $n_{0} \geq 1$ and $p_{0}>1$ arbitrarily. Assume that $n_{0}<\cdots<n_{k-1}$ and $p_{0}>\cdots>p_{k-1}$ have already been defined for some $k \geq 1$.

If k is odd, then choose $p_{k} \in\left(1, p_{k-1}\right)$ satisfying $p_{k}<(k+1) / k$ such that

$$
\sum_{i=1}^{n_{k-1}} \frac{c_{i}}{p_{k}^{i}}+\sum_{i=n_{k-1}+1}^{\infty} \frac{a}{p_{k}^{i}}<-k
$$

(this is possible because the left side tends to $-\infty$ as $p_{k} \rightarrow 1+$), and then choose a sufficiently large $n_{k}>n_{k-1}$ such that

$$
\sum_{i=1}^{n_{k-1}} \frac{c_{i}}{p_{k}^{i}}+\sum_{i=n_{k-1}+1}^{n_{k}} \frac{a}{p_{k}^{i}}+\sum_{i=n_{k}+1}^{\infty} \frac{b}{p_{k}^{i}}<-k
$$

This inequality coincides with (4).
If k is even, then choose $p_{k} \in\left(1, p_{k-1}\right)$ satisfying $p_{k}<(k+1) / k$ such that

$$
\sum_{i=1}^{n_{k-1}} \frac{c_{i}}{p_{k}^{i}}+\sum_{i=n_{k-1}+1}^{\infty} \frac{b}{p_{k}^{i}}>k
$$

(this is possible because the left side tends to ∞ as $p_{k} \rightarrow 1+$), and then choose a sufficiently large $n_{k}>n_{k-1}$ such that

$$
\sum_{i=1}^{n_{k-1}} \frac{c_{i}}{p_{k}^{i}}+\sum_{i=n_{k-1}+1}^{n_{k}} \frac{b}{p_{k}^{i}}+\sum_{i=n_{k}+1}^{\infty} \frac{a}{p_{k}^{i}}>k
$$

This inequality coincides with (5).
Finally we observe that during the construction of the sequence $\left(n_{k}\right)$ we had in each step more than one choice (in fact, infinitely many choices). Hence there are $2^{\aleph_{0}}$ such sequences.

3 Proof of Theorem 2

Let h be a polynomial with coefficients in $\{-1,0,1\}$ and having a unique, simple zero ψ in $(0,1)$. For example, if $p \in(1,2)$ is a Pisot number, then by [9, Theorem 1] (see also [10] and [1] for the converse statements) there exists a polynomial g with coefficients in $\{-1,0,1\}$ whose unique zero in $(1,2)$ is p. Then we may take

$$
h(t):=t^{\operatorname{deg} g} g(1 / t) .
$$

For the Golden Ratio $p=\varphi$ we may take $g(t)=t^{2}-t-1$ and $h(t)=1-t-t^{2}$.
Changing h to $-h$ if necessary, we may assume that $h(0)=1$. Fix an integer $D>\operatorname{deg} h$, choose a sufficiently large integer $n \geq-1$ satisfying

$$
\begin{equation*}
\psi^{D^{-n-r}}>\frac{1}{3} \tag{7}
\end{equation*}
$$

and introduce the polynomial

$$
f(t):=-\prod_{k=n+1}^{n+r} h\left(t^{D^{k}}\right)=\sum_{i=0}^{\operatorname{deg} f} c_{i} t^{i}
$$

Then f has r simple roots in $(0,1)$:

$$
0<\psi^{D^{-n-1}}<\cdots<\psi^{D^{-n-r}}<1
$$

and all other roots of f belong to $\mathbb{C} \backslash(0,1)$.
Observe that $c_{0}=f(0)=-1$, and $\left(c_{i}\right) \subset\{-1,0,1\}$. Indeed, developing the product all terms have different degrees by our assumption $D>\operatorname{deg} h$.

Write

$$
\alpha_{k}:=\psi^{D^{-n-k}}
$$

for brevity, and fix real numbers β_{k} satisfying the inequalities

$$
\begin{equation*}
0<\beta_{0}<\alpha_{1}<\beta_{1}<\alpha_{2}<\cdots<\beta_{r-1}<\alpha_{r}<\beta_{r}<1 \tag{8}
\end{equation*}
$$

Since each root α_{k} is simple,

$$
\begin{equation*}
f\left(\beta_{0}\right), \ldots, f\left(\beta_{r}\right) \text { have alternating non-zero signs. } \tag{9}
\end{equation*}
$$

Now set

$$
\varepsilon:=\frac{1}{2} \min \left\{\left|f\left(\beta_{0}\right)\right|, \ldots,\left|f\left(\beta_{r}\right)\right|\right\}(>0)
$$

choose a large positive integer $N \geq \operatorname{deg} f$ satisfying the inequality

$$
\sum_{i=N+1}^{\infty} \beta_{r}^{i}<\varepsilon
$$

and define

$$
\varepsilon_{N}:=\sum_{i=N+1}^{\infty}\left(\frac{\alpha_{r}}{2}\right)^{i}(<\varepsilon)
$$

Since f is continuous and $f\left(\alpha_{r}\right)=0$, we may fix a small positive number δ such that

$$
\begin{equation*}
\left|t-\alpha_{r}\right|<\delta \Longrightarrow|f(t)|<\frac{\varepsilon_{N}}{2} \tag{10}
\end{equation*}
$$

We may assume (using also (7)) that

$$
0<\delta<\frac{\alpha_{r}}{2}, \quad \beta_{r-1}<\alpha_{r}-\delta<\alpha_{r}+\delta<\beta_{r} \quad \text { and } \quad \alpha_{r}-\delta \geq \frac{1}{3}
$$

Now fix two arbitrary real numbers

$$
x \in\left(1-\frac{\varepsilon_{N}}{2}, 1+\frac{\varepsilon_{N}}{2}\right) \quad \text { and } \quad \gamma_{r} \in\left(\alpha_{r}-\delta, \alpha_{r}+\delta\right) .
$$

Then there exists a sequence $\left(c_{i}\right)_{i=N+1}^{\infty} \in\{-1,0,1\}^{\infty}$ satisfying

$$
f\left(\gamma_{r}\right)+1+\sum_{i=N+1}^{\infty} c_{i} \gamma_{r}^{i}=x
$$

Indeed, using (10) we have

$$
\left|x-1-f\left(\gamma_{r}\right)\right| \leq|x-1|+\left|f\left(\gamma_{r}\right)\right|<\frac{\varepsilon_{N}}{2}+\frac{\varepsilon_{N}}{2}=\varepsilon_{N}
$$

and

$$
\sum_{i=N+1}^{\infty} \gamma_{r}^{i} \geq \sum_{i=N+1}^{\infty}\left(\alpha_{r}-\delta\right)^{i} \geq \sum_{i=N+1}^{\infty}\left(\frac{\alpha_{r}}{2}\right)^{i}=\varepsilon_{N}
$$

so that

$$
x-1-f\left(\gamma_{r}\right) \in\left[-\sum_{i=N+1}^{\infty} \gamma_{r}^{i}, \sum_{i=N+1}^{\infty} \gamma_{r}^{i}\right] .
$$

It remains to observe that

$$
\left\{\sum_{i=N+1}^{\infty} c_{i} \gamma_{r}^{i}:\left(c_{i}\right) \in\{-1,0,1\}^{\infty}\right\}=\left[-\sum_{i=N+1}^{\infty} \gamma_{r}^{i}, \sum_{i=N+1}^{\infty} \gamma_{r}^{i}\right] .
$$

This follows from a classical theorem of Kakeya [12], [13] (see also [15, Part 1, Exercise 131] or [14, Proposition 3]), because

$$
\gamma_{r}>\alpha_{r}-\delta \geq \frac{1}{3}
$$

and therefore the sequence $\left(\gamma_{r}^{i}\right)$ satisfies Kakeya's condition: each element is less than or equal to the sum of the smaller elements.

Now let us introduce the function

$$
\begin{equation*}
g(t):=-x+\sum_{i=1}^{\operatorname{deg} f} c_{i} t^{i}+\sum_{i=N+1}^{\infty} c_{i} t^{i}=-x+1+f(t)+\sum_{i=N+1}^{\infty} c_{i} t^{i} . \tag{11}
\end{equation*}
$$

We have $g\left(\gamma_{r}\right)=0$ by definition. Furthermore, the following estimates hold for each $k=0, \ldots, r$:

$$
\begin{aligned}
\left|g\left(\beta_{k}\right)-f\left(\beta_{k}\right)\right| & \leq|x-1|+\sum_{i=N+1}^{\infty} \beta_{k}^{i} \\
& \leq|x-1|+\sum_{i=N+1}^{\infty} \beta_{r}^{i} \\
& <\frac{\varepsilon_{N}}{2}+\varepsilon \\
& <\frac{3 \varepsilon}{2} \\
& <\left|f\left(\beta_{k}\right)\right|
\end{aligned}
$$

Therefore $g\left(\beta_{k}\right) \neq 0$, and $g\left(\beta_{k}\right)$ and $f\left(\beta_{k}\right)$ have equal signs for each k. Using (9) it follows that

$$
g\left(\beta_{0}\right), \ldots, g\left(\beta_{r}\right) \quad \text { have alternating non-zero signs. }
$$

Applying Bolzano's theorem and using (8) we conclude that there exist real numbers $\gamma_{1}, \ldots, \gamma_{r-1}$ satisfying the inequalities

$$
0<\beta_{0}<\gamma_{1}<\beta_{1}<\gamma_{2}<\cdots<\beta_{r-1}<\gamma_{r}<\beta_{r}<1
$$

and the equalities

$$
g\left(\gamma_{1}\right)=\cdots=g\left(\gamma_{r}\right)=0
$$

Setting $c_{i}:=0$ for $i=(\operatorname{deg} f)+1, \ldots, N, q_{k}:=1 / \gamma_{r+1-k}$ for $k=1, \ldots, r$, and using the definition (11) of $g(t)$, these equalities may be rewritten in the form (3), and the theorem follows with

$$
I=\left(\frac{1}{\alpha_{r}+\delta}, \frac{1}{\alpha_{r}-\delta}\right) \quad \text { and } \quad J=\left(1-\frac{\varepsilon_{N}}{2}, 1+\frac{\varepsilon_{N}}{2}\right)
$$

4 Concluding remarks and open questions

Concerning Theorem 1 the following natural questions can be asked:
(i) How slowly may the sequence $\left(q_{j}\right)$ converge to 1 ?
(ii) How large is the set of sequences $\left(c_{i}\right)$ in $\{-1,0,1\}^{\infty}$ for which the corresponding function f satisfies the relations (6)?

Concerning Theorem 2 we may ask whether we may choose $I=(1, p)$ with some $p=p_{r}>1$ (depending on r). One way to prove this would be to generalize the construction of the polynomial f in the proof of Theorem 2. We started with a polynomial $h(t)$ with coefficients in $\{-1,0,1\}$, equal to 1 in zero, and having a unique, simple root in $(0,1)$. Instead of the last property it is sufficient to assume that h has $n \geq 1$ roots of odd multiplicity in $(0,1)$.

Then for any integers $r \geq 1$ and $D>\operatorname{deg} h$ the coefficients of the polynomial $f(t)=\prod_{k=1}^{r} h\left(t^{D^{k}}\right)$ belong to $\{-1,0,1\}$. Furthermore, if D is sufficiently large, then it has at least $r n$ simple real roots in $(0,1)$. Indeed, if $0<m<M<1$ are two numbers such that all roots of odd multiplicity of h in $(0,1)$ lie in $[m, M]$, then it suffices to choose $D>\operatorname{deg} h$ satisfying $M^{D}<m$ by an elementary computation.

The Fekete polynomials

$$
F_{p}(t)=\sum_{j=1}^{p-1}\left(\frac{j}{p}\right) t^{j}
$$

where p is an odd prime and $\left(\frac{j}{p}\right)$ denotes the Legendre symbol, are well known examples of polynomials with coefficients in $\{-1,0,1\}$. Baker and Montgomery [2], see also [3], proved that $F_{p}(t)$ may have arbitrary many real roots, provided p is large enough. Dividing them by $\pm t$ they will be equal to 1 in zero. Unfortunately, we have no information about the multiplicity of their real roots.

However, some concrete examples may be found. The polynomial $F_{163}(t)$ has two simple real roots in $(0,1)$ by Exercise 46 in [15, Section 5]. Furthermore, a straightforward computation with MAPLE shows that the same holds for $F_{43}(t)$, too, and that $F_{547}(t)$ has four simple real roots in the same interval. Hence these polynomials can be chosen for $h(t)$ in the construction of $f(t)$.

Acknowledgements. We are grateful to the referee for his suggestions leading to the present strengthened form of Theorem 1.

References

1. S. Akiyama, V. Komornik, Discrete spectra and Pisot numbers, J. Number Theory 133 (2013), no. 2, 375-390.
2. R. C. Baker, H. L. Montgomery, Oscillations of quadratic L-functions. Analytic number theory (Allerton Park, IL, 1989), 23-40, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990.
3. B. Conrey, A. Granville, B. Poonen, K. Soundararajan, Zeros of Fekete polynomials, Ann. Inst. Fourier (Grenoble) 50 (2000), 865-889.
4. K. Dajani, M. de Vries, Invariant densities for random β-expansions, J. Eur. Math. Soc. 9 (2007), no. 1, 157-176.
5. K. Dajani, K. Jiang, T. Kempton, Self-affine sets with positive Lebesgue measure, Indag. Math. (N.S.) 25 (2014), no. 4, 774-784.
6. M. de Vries, V. Komornik, Unique expansions of real numbers, Adv. Math. 221 (2009), 390-427.
7. M. de Vries, V. Komornik, Expansions in non-integer bases, in Combinatorics, Words and Symbolic Dynamics, ed. Valérie Berté and Michel Rigo, to appear in 2016.
8. P. Erdôs, I. Joó, V. Komornik, Characterization of the unique expansions $1=\sum q^{-n_{i}}$ and related problems, Bull. Soc. Math. France 118 (1990), 377-390.
9. P. Erdôs, I. Joó, V. Komornik, On the sequence of numbers of the form $\varepsilon_{0}+\varepsilon_{1} q+\cdots+$ $\varepsilon_{n} q^{n}, \varepsilon_{i} \in\{0,1\}$, Acta Arithmetica 83 (1998), 3, 201-210.
10. P. Erdős, V. Komornik, Developments in noninteger bases, Acta Math. Hungar. 79 (1998), 1-2, 57-83.
11. P. Glendinning, N. Sidorov, Unique representations of real numbers in noninteger bases, Math. Res. Lett. 8 (2001), no. 4, 535-543.
12. S. Kakeya, On the set of partial sums of an infinite series, Proc. Tokyo Math.-Phys. Soc (2) 7 (1914), 250-251.
13. S. Kakeya, On the partial sums of an infinite series, Tôhoku Sc. Rep. 3 (1915), 159-163.
14. V. Komornik, A. Pethő, Common expansions in non-integer bases, Publ. Math. Debrecen, 85 (2014), 489-501.
15. G. Pólya, G. Szegő, Problems and Exercises in Analysis I-II, Springer-Verlag, Berlin, New York, 1972.
16. A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Hungar. 8 (1957), 477-493.
17. N. Sidorov, Almost every number has a continuum of β-expansions, Amer. Math. Monthly 110 (2003), 9, 838-842.
18. N. Sidorov, A. Vershik, Ergodic properties of Erdös measure, the entropy of the goldenshift, and related problems, Monatsh. Math. 126 (1998), 215-261.

[^0]: V. Komornik

 Département de mathématique
 Université de Strasbourg
 7 rue René Descartes
 67084 Strasbourg Cedex, France E-mail: vilmos.komornik@math.unistra.fr
 M. Pedicini

 Dipartimento di Matematica e Fisica
 Università Roma Tre
 Via della Vasca Navale 84
 00146 Roma, Italy E-mail: marco.pedicini@uniroma3.it
 A. Pethő

 Department of Computer Science
 University of Debrecen
 H-4010 Debrecen P.O. Box 12
 Hungary E-mail: petho.attila@inf.unideb.hu

