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Abstract We investigate the existence of simultaneous representations of real
numbers x in bases 1 < q1 < · · · < qr, r ≥ 2 with a finite digit set A ⊂ R.
We prove that if A contains both positive and negative digits, then each real
number has infinitely many common expansions. In general the bases depend
on x. If A contains the digits −1, 0, 1, then there exist two non-empty open
intervals I, J such that for any fixed q1 ∈ I each x ∈ J has common expansions
for some bases q1 < · · · < qr.
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1 Introduction

Given a finite alphabet or digit set A of real numbers and a real base q > 1,
by an expansion of a real number x we mean a sequence (ci) ∈ A∞ satisfying
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the equality
∞∑
i=1

ci
qi

= x.

This concept was introduced by Rényi [16] as a generalization of the familiar
integer base expansions.

In order to have an expansion x must belong to the interval

JA,q :=

[
minA

q − 1
,
maxA

q − 1

]
,

and the endpoints of JA,q always have unique expansions.
In the familiar integer base case any number has at most two expansions.

The general case is much more complex. Consider for example the two-letter
alphabet A = {0, 1}:
– If q ∈ (1, ϕ), where ϕ := (1 +

√
5)/2 ≈ 1.618 denotes the Golden Ratio,

then each interior element of JA,q has 2ℵ0 expansions by [8, Theorem 3].
– If q ∈ [ϕ, 2), then almost all x ∈ JA,q have 2ℵ0 expansions by Sidorov [17],

Dajani and de Vries [4] (see also [7, Theorem 2.3.2]), and infinitely many
numbers have ℵ0 expansions by [6, Theorem 1.4 (iii)].

– If q = 2, then the diadically rational interior elements of JA,q have two
expansions, and all other elements have a unique expansion.

– If q > 2, then no number has more than one expansion.
Turning back to the general case, we may ask whether certain numbers

may have the same expansions in different bases, say
∞∑
i=1

ci
qi1

=

∞∑
i=1

ci
qi2

= x. (1)

Except the trivial case x = 0 if 0 ∈ A, this may only occur for alphabets
having both positive and negative elements:
– If A = {−1, 0, 1}, 1 < q1 < q2 and q1 ≤ 2, then (1) holds for infinitely

many numbers x. This is a special case of [14, Theorem 1].
– If A = {−1, 1} and 1 < q1 < q2 < 1 +

3
√√

10− 2 ≈ 1.05, then (1) holds
for all x ∈ [−δ, δ] for some δ = δ(q1, q2) > 0. This is a special case of [5,
Theorem 1.1] of Dajani et al.
In this paper we investigate the existence of non-trivial common expansions

in more than two bases. For this we need a different approach.
If no base is fixed in advance, then a very general result holds for all

alphabets containing both positive and negative digits:

Theorem 1 Given two real numbers a < 0 < b, there exist 2ℵ0 sequences
(ci) ∈ {a, b}∞ such that for each x ∈ R the equality

∞∑
i=1

ci
qij

= x

holds for infinitely many bases qj.
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The problem is more difficult if the bases are prescribed. Given an alphabet
A and an integer r ≥ 2, a finite set of bases

q1 < · · · < qr (2)

is said to have the simultaneous expansion property if the relations

∞∑
i=1

ci
qi1

= · · · =
∞∑
i=1

ci
qir

= x (3)

hold for all numbers x belonging to some non-degenerate interval, with (ci) ∈
A∞ depending on x.

Conjecture 1 If the alphabet contains both positive and negative digits, then
there exists δr > 0 such that all sets of bases (2) in (1, 1 + δr) have the
simultaneous expansion property.

In the following theorem we may fix one base.

Theorem 2 We consider the alphabet A = {−1, 0, 1} and an integer r ≥ 2.
There exist two non-empty open intervals I, J such that for any fixed q1 ∈ I
and x ∈ J there exist bases q2, . . . , qr satisfying the relations (2) and (3).

The proof will provide intervals I arbitrarily close to 1 and intervals J con-
taining 1.

The next two sections are devoted to the proofs of the theorems. We con-
clude our paper with some comments and open questions.

2 Proof of Theorem 1

We will construct a sequence of integers 0 < n1 < n2 < · · · and a sequence
p1 > p2 > · · · of real numbers converging to 1 such that setting

(ci) := an1bn2−n1an3−n2bn4−n3 · · ·

the following inequalities are satisfied:

nk∑
i=1

ci
pik

+

∞∑
i=nk+1

b

pik
< −k for k = 1, 3, 5, . . . , (4)

nk∑
i=1

ci
pik

+

∞∑
i=nk+1

a

pik
> k for k = 2, 4, 6, . . . . (5)

Observe that setting

f(q) :=

∞∑
i=1

ci
qi
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the left side of (4) is greater than f(pk), and the left side of (5) is smaller than
f(pk); therefore

lim inf
q→1+

f(q) = −∞ and lim sup
q→1+

f(q) =∞. (6)

Since f is continuous in (1,∞) (the defining series is locally uniformly
convergent), hence f takes each real value x infinitely many times.

Now we turn to the construction. Choose n0 ≥ 1 and p0 > 1 arbitrarily.
Assume that n0 < · · · < nk−1 and p0 > · · · > pk−1 have already been defined
for some k ≥ 1.

If k is odd, then choose pk ∈ (1, pk−1) satisfying pk < (k + 1)/k such that

nk−1∑
i=1

ci
pik

+

∞∑
i=nk−1+1

a

pik
< −k

(this is possible because the left side tends to −∞ as pk → 1+), and then
choose a sufficiently large nk > nk−1 such that

nk−1∑
i=1

ci
pik

+

nk∑
i=nk−1+1

a

pik
+

∞∑
i=nk+1

b

pik
< −k.

This inequality coincides with (4).
If k is even, then choose pk ∈ (1, pk−1) satisfying pk < (k+ 1)/k such that

nk−1∑
i=1

ci
pik

+

∞∑
i=nk−1+1

b

pik
> k

(this is possible because the left side tends to∞ as pk → 1+), and then choose
a sufficiently large nk > nk−1 such that

nk−1∑
i=1

ci
pik

+

nk∑
i=nk−1+1

b

pik
+

∞∑
i=nk+1

a

pik
> k.

This inequality coincides with (5).
Finally we observe that during the construction of the sequence (nk) we

had in each step more than one choice (in fact, infinitely many choices). Hence
there are 2ℵ0 such sequences.
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3 Proof of Theorem 2

Let h be a polynomial with coefficients in {−1, 0, 1} and having a unique,
simple zero ψ in (0, 1). For example, if p ∈ (1, 2) is a Pisot number, then by
[9, Theorem 1] (see also [10] and [1] for the converse statements) there exists
a polynomial g with coefficients in {−1, 0, 1} whose unique zero in (1, 2) is p.
Then we may take

h(t) := tdeg gg(1/t).

For the Golden Ratio p = ϕ we may take g(t) = t2− t−1 and h(t) = 1− t− t2.
Changing h to −h if necessary, we may assume that h(0) = 1. Fix an

integer D > deg h, choose a sufficiently large integer n ≥ −1 satisfying

ψD−n−r

>
1

3
, (7)

and introduce the polynomial

f(t) := −
n+r∏

k=n+1

h
(
tD

k
)
=

deg f∑
i=0

cit
i.

Then f has r simple roots in (0, 1):

0 < ψD−n−1

< · · · < ψD−n−r

< 1,

and all other roots of f belong to C \ (0, 1).
Observe that c0 = f(0) = −1, and (ci) ⊂ {−1, 0, 1}. Indeed, developing

the product all terms have different degrees by our assumption D > deg h.
Write

αk := ψD−n−k

for brevity, and fix real numbers βk satisfying the inequalities

0 < β0 < α1 < β1 < α2 < · · · < βr−1 < αr < βr < 1. (8)

Since each root αk is simple,

f(β0), . . . , f(βr) have alternating non-zero signs. (9)

Now set
ε :=

1

2
min {|f(β0)| , . . . , |f(βr)|} (> 0),

choose a large positive integer N ≥ deg f satisfying the inequality
∞∑

i=N+1

βi
r < ε,

and define

εN :=

∞∑
i=N+1

(αr

2

)i
(< ε).
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Since f is continuous and f(αr) = 0, we may fix a small positive number
δ such that

|t− αr| < δ =⇒ |f(t)| < εN
2
. (10)

We may assume (using also (7)) that

0 < δ <
αr

2
, βr−1 < αr − δ < αr + δ < βr and αr − δ ≥

1

3
.

Now fix two arbitrary real numbers

x ∈
(
1− εN

2
, 1 +

εN
2

)
and γr ∈ (αr − δ, αr + δ) .

Then there exists a sequence (ci)
∞
i=N+1 ∈ {−1, 0, 1}

∞ satisfying

f(γr) + 1 +

∞∑
i=N+1

ciγ
i
r = x.

Indeed, using (10) we have

|x− 1− f(γr)| ≤ |x− 1|+ |f(γr)| <
εN
2

+
εN
2

= εN

and

∞∑
i=N+1

γir ≥
∞∑

i=N+1

(αr − δ)i ≥
∞∑

i=N+1

(αr

2

)i
= εN ,

so that

x− 1− f(γr) ∈

[
−

∞∑
i=N+1

γir,

∞∑
i=N+1

γir

]
.

It remains to observe that{ ∞∑
i=N+1

ciγ
i
r : (ci) ∈ {−1, 0, 1}∞

}
=

[
−

∞∑
i=N+1

γir,

∞∑
i=N+1

γir

]
.

This follows from a classical theorem of Kakeya [12], [13] (see also [15, Part 1,
Exercise 131] or [14, Proposition 3]), because

γr > αr − δ ≥
1

3
,

and therefore the sequence (γir) satisfies Kakeya’s condition: each element is
less than or equal to the sum of the smaller elements.

Now let us introduce the function

g(t) := −x+

deg f∑
i=1

cit
i +

∞∑
i=N+1

cit
i = −x+ 1 + f(t) +

∞∑
i=N+1

cit
i. (11)
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We have g(γr) = 0 by definition. Furthermore, the following estimates hold
for each k = 0, . . . , r:

|g(βk)− f(βk)| ≤ |x− 1|+
∞∑

i=N+1

βi
k

≤ |x− 1|+
∞∑

i=N+1

βi
r

<
εN
2

+ ε

<
3ε

2
< |f(βk)| .

Therefore g(βk) 6= 0, and g(βk) and f(βk) have equal signs for each k. Using
(9) it follows that

g(β0), . . . , g(βr) have alternating non-zero signs.

Applying Bolzano’s theorem and using (8) we conclude that there exist real
numbers γ1, . . . , γr−1 satisfying the inequalities

0 < β0 < γ1 < β1 < γ2 < · · · < βr−1 < γr < βr < 1

and the equalities
g(γ1) = · · · = g(γr) = 0.

Setting ci := 0 for i = (deg f) + 1, . . . , N , qk := 1/γr+1−k for k = 1, . . . , r,
and using the definition (11) of g(t), these equalities may be rewritten in the
form (3), and the theorem follows with

I =

(
1

αr + δ
,

1

αr − δ

)
and J =

(
1− εN

2
, 1 +

εN
2

)
.

4 Concluding remarks and open questions

Concerning Theorem 1 the following natural questions can be asked:

(i) How slowly may the sequence (qj) converge to 1?
(ii) How large is the set of sequences (ci) in {−1, 0, 1}∞ for which the corre-

sponding function f satisfies the relations (6)?

Concerning Theorem 2 we may ask whether we may choose I = (1, p)
with some p = pr > 1 (depending on r). One way to prove this would be to
generalize the construction of the polynomial f in the proof of Theorem 2.
We started with a polynomial h(t) with coefficients in {−1, 0, 1}, equal to 1 in
zero, and having a unique, simple root in (0, 1). Instead of the last property
it is sufficient to assume that h has n ≥ 1 roots of odd multiplicity in (0, 1).
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Then for any integers r ≥ 1 and D > deg h the coefficients of the polynomial
f(t) =

∏r
k=1 h(t

Dk

) belong to {−1, 0, 1}. Furthermore, ifD is sufficiently large,
then it has at least rn simple real roots in (0, 1). Indeed, if 0 < m < M < 1 are
two numbers such that all roots of odd multiplicity of h in (0, 1) lie in [m,M ],
then it suffices to choose D > deg h satisfying MD < m by an elementary
computation.

The Fekete polynomials

Fp(t) =

p−1∑
j=1

(
j

p

)
tj

where p is an odd prime and
(

j
p

)
denotes the Legendre symbol, are well known

examples of polynomials with coefficients in {−1, 0, 1}. Baker and Montgomery
[2], see also [3], proved that Fp(t) may have arbitrary many real roots, pro-
vided p is large enough. Dividing them by ±t they will be equal to 1 in zero.
Unfortunately, we have no information about the multiplicity of their real
roots.

However, some concrete examples may be found. The polynomial F163(t)
has two simple real roots in (0, 1) by Exercise 46 in [15, Section 5]. Furthermore,
a straightforward computation with MAPLE shows that the same holds for
F43(t), too, and that F547(t) has four simple real roots in the same interval.
Hence these polynomials can be chosen for h(t) in the construction of f(t).

Acknowledgements.We are grateful to the referee for his suggestions leading
to the present strengthened form of Theorem 1.
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