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Polynomial values in linear recurrences

L NEMES and A. PETHO (Debrecen)

1. Introduction

Let 4y, ..., 4, and G,, G,, ... » Gy be integers. We have for the n-th term
of a k-order linear recurrence

) " G=4G, ot ..+ 4G, for n=k k+1,...

Let oy, ..., be the distinct roots of the characteristic polynomial of the
recurrence

©) X A XL g

Throughout this paper we assume that o has multiplicity one. Then for n=0 we
have

3) Gy = Eyof+Py(n)o+ ...+ P, (n)oc,

where Py(n) is a polynomial with degree less than the multiplicity of o; in the charac-
teristic polynomial of G,, and where E; and the coefficients of Py(n) are elements
of the field Q(ay, ..., ).

Finally let T(x)=B,x"+...+B, be a polynomial with integer coefficients.
Its degree will be denoted by deg T, while its height, max {|B,|; i=0, ..., m} by
H(T).

The Diophantine equation

@ G, = ExX*+T(x)E # 0, integer

was investigated by several authors. Naturally, most of the results are known for
T(x)=0.

SHOREY and STEWART [4] proved for general linear recurrences that (4) has
finitely many solutions in g, assuming loa|>]o;|, j=2,...,¢. Under some other
restriction on G,, recently P. Kiss [2] was able to generalize their result when deg
T< 1 q .

For nondegenerate second order linear recurrences SHOREY and STEWART [4]
derived much more, namely (4) has finitely many solutions in integers [x|>1, ¢=2, n.
The second author investigated in [3] for nondegenerate second order linear recurren-
ces the slightly more general equation

%) G, = wx?
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with wesS, where S is the set of nonzero integers composed solely of primes from
some fixed finite set. He showed assuming yet (4;, 45)=1 that (5) has finitely many
solutions in integers |x|>1, ¢=2, n and weS.

STEWART [7] was dealing with the case T(x)=c, where c is a fixed integer.
For nondegenerate second order recurrences with |4s]=1 he proved the finiteness
of the solution in integers |x|>=1, ¢=>2, ¢, n of (4).

All the above mentioned results are effective.

In the present paper we shall derive some results for (4), when T(x) is a poly-
nomial with some restriction.

2. Main results

Theorem 1. Let G, satisfy (3), o1, %1, |oty| = |otel = |otl, F=35 - 2 and
G,—Eai#0 for n=>c,. Further let H (T)<H, and deg T=qcs, where H;=0
real number. Then all integer solutions n, |x|>=1, q=2 of the equation (4) satisfy
g<ca, where cy,c; and cq are effectively computable constants depending on E,G,
and H;.

For second order linear recurrences we prove a more precise result.

Theorem 2. Let G, be a nondegenerate second order linear recurrence Wwith
|As|=1. Further let # (T)<H, and deg T=min {g(1—7), g—3} where H, and
y<1 are positive real numbers. T hen all integer solutions n,|x|>1, ¢=2 of (4)

satisfy
max {n, |x|, ¢} < cs,

where cs is an effectively computable constant depending on E, G,, y and H,.

Remark. Theorem 2 is in the restriction of deg T best possible. Let L, denote
a Lucas sequence, i.e. Ly=2, Ly=a+p and L,=(a+pB)Ly_1+L,—s, Where aff= —1
and o+p integer. Then, as is well known, L,=o"+p". Further it is easy to see
that L,,=L2+(—1)"2. This means that both equations L,=x*+2 and Li=x2=2
have infinitely many integer solutions n, x. Therefore in Theorem 2 the assumption
deg T=qg—3 is necessary.

3. Auxiliary results

The most important result we use is Lemma 6 of [4].

Lemma. Let o be a real algebraic number larger than one from the field k. Let
[K:Q]=D, E, A and B be elements of K, EAB#0, finally 6 a positive real number.
If Exi=Ax«"+B with |B|<a"@=9 and n,x,q integers larger than one then q<cg
is a constant, effectively computable in terms of D, E, A, o and 9.

The following theorem was proved by C. L. SIEGEL [5] for the first time but in
noneffective form. Using the upper estimate for linear forms of logarithms of algeb-
raic numbers A. BAKER [1] proved it in effective form.
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Theorem A. Let F(x) be a monic polynomial of degree n and with integer
coefficients. Let it have at least three simple zeros. Then the integer solutions x,y of
the equation Ay*=F(x) where A is an integer, satisfy max {|x|, |y|}<c,; a constant
effectively computable in terms of A and the coefficients of F(x).

4. Proofs

In the sequel cs, ¢y, ... Will denote positive numbers effectively computable in
terms of E, G,, H; and y.

PROOF OF THEOREM 1. We may assume «; to be positive by changing if necessary
the sign of E;. Further since o, is an algebraic integer with absolute value strictly
larger then all its conjugates, on taking norm we see that either a;>1 or o, is one
of 0 or 1. But these two cases were excluded so we may assume o;>1. Put

By (n) = Py(n)og+...+ P (n)oy
D, = max {deg P;(n); i =2, ..., t}.
It is easy to show that
(6) 2|By| < cgn™ CALS

Assume that for a polynomial T'(x) with #(T)=H, and deg T<qcs, n, |x|>
>1, g is a solution of (4). We shall give an estimate for ¢, in the proof.
Write (4) in the form

Exq - E]_aq + B]_ (n) = T(x).
Assume first that

@ B(n)—T(x)=0
in which case
®) Eaf = Ext

also holds. We distinguish two cases.
If 1>|ag|=]ay], j=3,...,¢ then lir{loBl(n)zo which means |B,(n)|<1
for n>cg. Further T(x) is a polynomial with integer coefficients, therefore @)

has for n>cs no solutions. By (8) qzcgﬁ <cyp because of |x|=2.

, |x|
If |op|>1, then write

¢, P;(n) [oc- "]
B, (n)=P noc"[1+ —— —'—) :
1( ) 2( ) 2 = Pg(n) o, ;
The quantity in the brackets tends to 1 if » tends to infinity, so for n>c,; |B;(n)|>

>|Py(n)|[ote|"(1 —&) >|ao["*~. On the other hand T(x)=m H,|x|". From (8)
we have |x|=(|E/E|l0;|")*9, hence |T(x)|=cipm |og|™9<|ay|s™/2, By (7)

: WA s 1
lotg|" =9 < | By (n)|=|T'(x)| < |y |***™/9. This implies m>cy, 12§ {22][ Therefore
:
if ies=cy5 —i%i-{%ll then (7) and (8) have only finitely many solutions in n, ¢, |x|>1
1

which are effectively computable.
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In the sequel we assume that B;(n)—T(x)=0. Put 6=(1 —9)/2, where 9=0
sty gnds B A0S 05
log o
for n>cy,. We choose cy; such that |E||x|s>2E;+1. If g is large enough then

T _ 1. Write (4) in the form

lle—Cu

. ; 1
otherwise. Since a;>1 we have by (6) |Bi|< 505'1'(1”"‘)

kS E o+ By (n) _ T(x)

x1~ %5 x1C15 "

Ex‘s

Taking absolute values, and applying the above estimates we have

E, o+ B;(n)|

x1 15

2|E|+1 < |Ex‘s| = +1.

Hence 2|E;||x|a—s=|E; o + By (n)| =2|Ey e}, so |x|*"“s<of. Further |T(x)|=
=m Hy|x|"<|x|w9, with ce<1. Hence }T(x)]<oc{w‘1"/(‘1“cls<%ocﬁ‘l'“") when

§ is small enough. So we have [B;(n)+T(x)|=aj"?.
Note that if n<cy; and (4) holds then g<cys as required. Of course since

|x|™(Ext—"—mHy) = |E||x|1—|T()| = |[Ex'+T(x)| = |G| = eroi

the required inequality for g holds.
Finally by the Lemma if n=c,, and (4) holds then g—<c¢, as was stated.

PROOF OF THEOREM 2. The assumption |4,|=1 means |o; ap|=1. We show
that a; and o, are real numbers. Of course if one of them had a nonzero immaginary
part then |o;|=|os| would hold since they are roots of a polynomial with integer
coefficients. This imply o] =8| =1.

But /o, cannot be a root of unity by nondegeneracy. Thus o, o, are real
numbers and |a;|=1=|ap| holds since |, ap|=1. Furtherthe equation 4, a3=T (x)
has only finitely many solutions, since with » large enough 0<|T(x)|=|4, as|<1.
Therefore n<c,,, which implies g, |X|<ca;.

In the sequel we assume A3 T(x). Now we shall prove g<cs;. Assume

loggH, v

that (4) has a solution 7,q, |x|>1 such that g=cy, with —m—z—<—2—, and

P s
q4>1+4.Then

log Hym loggH,

m q(1—y)+
ITX)| < mH,|x < |x| %% <] >

Applying the assumption we have

log gH, _ Y _ [_v] B
g(1—p+ T <q(-D+ez=q|l-5)=4 L

Hence ilfigi)li<1. From this follows as in the proof of Theorem 1 |x|?"*<oj,
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and |T(x)|<a{=® with 5=%. Finally it is abvious that P,(n)|ay|"<o21-9,

Now applying the Lemma we conclude that g is bounded by an effectively computable
constant.
Now let ¢ and T'(x) be fixed with deg T<q(1—v) and consider the equation

G, = Ex"4+-T(x) = Ty (x).

It is well known that G}.,—4,G,,G,+4,G3=CA%, with C=G%2—A4,G,G,+
+4,G§ (see for example [3] Lemma 1). From this follows DG2+4CA5=2z?, with
D=47—44,70 and z an integer. Replacing G by Ex?+T(x), and taking [4,|=1
into account we have

R(x) = D(Ex*+T(x))?+4C = DT?(x)+4C = 22.

This is an elliptic ‘equation, and by means of Theorem A it has finitely many
solutions in x, z when R(x) has at least three simple zeros. Let (R(x), R (x))=0(x).
It is well known that a root @ of R(x) has multiplicity at least two if and only if w
is a root of Q(x). Further (R(x), Ty(x))=1 because of c¢0, and R (x)=
=2D Ty(x) T1(x) so deg Q(x)=g—1. This means that if either deg O(x)<g—1
or it has at least one multiple root then R(x) has at least three simple zeros and we
are ready.

Hence the only wrong case is when Q(x)=Tj(x), and R(x)=T1(x)*S (x)
with a polynomial S (x) with rational coefficients of degree two with not any multiple
roots. Let S(x)=s.x*+s1x+s5, and consider the equation

D(Ex'+T(x)P+4C = (2qEx2-1+ T’ (%)) (2 %%+ 5, x+ 55).

The coefficient of x**=1 and that of x2¢—2 on the left hand side is 0, because of
deg T(x)<q—3, while the coefficient of x2¢~1 on the right hand side is 44%E3s, ,
and that of x*~2 is 4¢%E%5,. This means s,=s,=0, and S(x)=s,x*> wich is a
contradiction.
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