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VILMOS KOMORNIK AND ATTILA PETH�

Dedicated to Professor Zoltán Daróczy on his 75th birthday.

Abstract. In this paper we study the existence of simultaneous
representations of real numbers in bases p > q > 1 with the digit
set A = {−m, . . . , 0, . . . ,m}. Among other results, we prove if
m = 1 and q < 2, then there is a continuum of sequences (ci) ∈ A∞

satisfying
∑∞

i=1 ciq
−i =

∑∞
i=1 cip

−i. On the other hand, if m = 1
and q ≥ 2 +

√
2, then only the trivial sequence (ci) = 0∞ satis�es

the former equality.

1. Introduction

Given a �nite alphabet or digit set A of real numbers and a real
base q > 1, by an expansion of a real number x we mean a sequence
c = (ci) ∈ A∞ satisfying the equality

∞∑
i=1

ci

qi
= x.

This concept was introduced by Rényi [10] as a generalization of the
radix representation of integers.
Given two di�erent bases p, q we wonder whether there exist real

numbers having the same expansions in both bases:

(1)
∞∑
i=1

ci

qi
= x =

∞∑
i=1

ci

pi
.

In case 0 ∈ A a trivial example is x = 0 with (ci) = 0∞. If the alphabet
A contains no pair of digits with opposite signs, then this is the only
such example. Indeed, if for instance all digits are nonnegative and
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0∞ 6= (ci) ∈ A∞, then for p > q we have

∞∑
i=1

ci

pi
<
∞∑
i=1

ci

qi

by an elementary monotonicity argument.
Even if the alphabet A contains digits of opposite signs, the existence

of common expansions (1) seems to be a rare event.
Similar phenomena appears with the common radix representation.

Indlekofer, Kátai and Racskó [4] called a ∈ Zd simultaneously repre-
sentable by q ∈ Zd, if there exist integers 0 ≤ m0, . . . ,m` < Q :=
|q1 · · · qd| such that

ai =
∑̀
j=0

mjq
j
i , i = 1, . . . , d.

If q1, . . . , qd > 0 then apart from the zero vector no integer vectors
are simultaneously representable by q. If, however, some of the base
numbers are negative, then simultaneous representations may appear.
For example take q1 = −2 and q2 = −3 then we have (101)10 =
(1431335045)−2 = (1431335045)−3. Changing the sign of the �dig-
its� with odd position we get a common representation of 101 in bases
2 and 3 with digits from {−6, . . . , 0, . . . , 6}. Peth® [8] gave a crite-
rion of simultaneous representability on the one hand with the Chinese
reminder theorem and, on the other hand with CNS polynomials. A
similar result was proved by Kane [7].
No results on simultaneous representability of real numbers in non-

integer bases seem to have appeared in the literature. In this paper
we start such a study by investigating the case of the special alphabets
A = {−m, . . . , 0, . . . ,m} for some given integer m ≥ 1. Let us denote
by C(p, q) the set of sequences (ci) ∈ A∞ satisfying

(2)
∞∑
i=1

ci

qi
=
∞∑
i=1

ci

pi
.

We call C(p, q) trivial if its only element is the null sequence.
Our main result is the following:

Theorem 1. Let p > q > 1.

(i) If q < (1 +
√

8m + 1)/2, then C(p, q) has the cardinality of the
continuum.

(ii) If (1 +
√

8m + 1)/2 ≤ q ≤ m + 1, then C(p, q) is in�nite.
(iii) Let m + 1 < q ≤ 2m + 1.
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(a) If

(3) p ≤ (m + 1)(q − 1)

q −m− 1
,

then C(p, q) is nontrivial.
(b) If

(4) p >
(m + 1)(q − 1)

q −m− 1
,

then C(p, q) is trivial.

(iv) Let 2m + 1 < q < m + 1 +
√

m(m + 1).
(a) C(p, q) is a �nite set.
(b) There is a continuum of values p > q for which C(p, q) is

nontrivial.
(c) If p > q satis�es (4), then C(p, q) is trivial.

(v) If q ≥ m + 1 +
√

m(m + 1), then C(p, q) is trivial.

Remark 2.

(i) The proof of (iii) (a) will also show that if m+1 < q ≤ 2m+1,
and

(5)
1

m
≤ 1

q − 1
+

(
1

q − 1
− 1

p− 1

)
qn

pn − qn

for some positive integer n, then C(p, q) has at least n + 1
elements. For n = 1 this condition reduces to (3).
Furthermore, we show in Remark 7 that the right side of this

inequality is a decreasing function of p, so that the solutions
p of the inequality form a half-closed interval, say (q, pn]. (We
have clearly p1 > p2 > · · · .)

(ii) The proof of (iv) (a) will show more precisely that if q > 2m+1
and

1

2m
>

1

q − 1
+

(
1

q − 1
− 1

p− 1

)
qn

pn − qn

for some positive integer n, then C(p, q) has at most (2m + 1)n

elements.

2. Proofs

We begin by establishing some auxiliary results.
Interval �lling sequences play an important role in establishing the

existence of various kinds of representations of real numbers; see, e.g.,
Daróczy, Járai and Kátai [1], Daróczy and Kátai [2]. We also need
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such a result here: a variant of a classical theorem of Kakeya [5], [6]
(see also [9, Part 1, Exercise 131]).

Proposition 3. Let A = {−m, . . . , 0, . . . ,m} and let
∑∞

k=1 rk be a
convergent series of positive numbers, satisfying the inequalities

(6) rn ≤ 2m
∞∑

k=n+1

rk

for all n = 1, 2, . . . . Then the sums

(7)
∞∑

k=1

ckrk, (ck) ∈ A∞

�ll the interval

(8)

[
−m

∞∑
k=1

rk, m
∞∑

k=1

rk

]
.

Proof. It is clear that all sums (7) belong to the interval (8). Conversely,
for each given x in this interval we de�ne a sequence (ck) ∈ A∞ by
the following greedy algorithm. If c1, . . . , cn−1 are already de�ned (no
assumption if n = 1), then let cn be the largest element of A such that(

n∑
k=1

ckrk

)
−m

(
∞∑

k=n+1

rk

)
≤ x.

Letting n→∞ it follows that
∑∞

k=1 ckrk ≤ x. It remains to prove the
converse inequality. This is obvious if ck = m for all k ∈ N because
then

∞∑
k=1

ckrk = m
∞∑

k=1

rk ≥ x

by the choice of x.
If cn < m for in�nitely many indices, then(

n−1∑
k=1

ckrk

)
+ mrn −m

(
∞∑

k=n+1

rk

)
> x

for all such indices, and letting n→∞ we conclude that
∑∞

k=1 ckrk ≥ x.
The proof will be complete if we show that (ck) cannot have a last

term cn < m, i.e., an index n such that cn = j < m, and ck = m for
all k > n. Assume on the contrary that there exists such an index n.
Then we have (

n−1∑
k=1

ckrk

)
+ jrn + m

(
∞∑

k=n+1

rk

)
≤ x
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and (
n−1∑
k=1

ckrk

)
+ (j + 1)rn −m

(
∞∑

k=n+1

rk

)
> x

by construction. Hence

rn > 2m
∞∑

k=n+1

rk,

contradicting (6). �

We also need two technical lemmas.

Lemma 4. If 1 < q < (1 +
√

8m + 1)/2 and p > q, then the sequence
(rk)k∈N := (q−i−p−i)i∈N\nN satis�es (6) for all su�ciently large integers
n.

Proof. Fix a su�ciently large integer n such that

1

2m
<

1

q(q − 1)
− 1

q(qn − 1)
.

This is possible by our assumption on q, because we have the following
equivalences for m > 0 and q > 1:

1

2m
<

1

q(q − 1)
⇐⇒ 4q(q − 1) < 8m

⇐⇒ (2q − 1)2 < 8m + 1

⇐⇒ 2q − 1 <
√

8m + 1

⇐⇒ q <
(
1 +
√

8m + 1
)

/2.

Now, if

rh′ = q−h − p−h = q−h
(
1− (q/p)h

)
for some h′ ≥ 1, then

∞∑
k=h′+1

rk =
∑

i∈N\nN,i>h

(q−i − p−i) =
∑

i∈N\nN,i>h

q−i
(
1− (q/p)i

)
.
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Since (1− (q/p)i) >
(
1− (q/p)h

)
for all i > h, it follows that (we use

the choice of n in the last step)∑∞
k=h′+1 rk

rh′
≥

∑
i∈N\nN,i>h

qh−i

=

(
∞∑
i=1

q−i

)
−

∑
i> h

n

qh−in


≥

(
∞∑
i=1

q−i

)
−

(
∞∑
i=0

q−1−in

)

=

(
∞∑
i=2

q−i

)
−

(
∞∑
i=1

q−1−in

)
=

1

q(q − 1)
− 1

q(qn − 1)
>

1

2m
. �

Lemma 5. Let p > q > 1. The sequence(∑∞
i=n+1(q

−i − p−i)

q−n − p−n

)∞
n=1

is strictly decreasing, and tends to 1/(q − 1).

Proof. Since 1 > (q/p)n ↘ 0, the results follow from the identity

(9)

∑∞
i=n+1(q

−i − p−i)

q−n − p−n
=

1

q − 1
+

p− q

(q − 1)(p− 1)

(q/p)n

1− (q/p)n
.

Setting x = q/p for brevity, the identity is proved as follows:∑∞
i=n+1(q

−i − p−i)

q−n − p−n
=

q−n

(q − 1)(q−n − p−n)
− p−n

(p− 1)(q−n − p−n)

=
1

(q − 1) (1− xn)
− xn

(p− 1) (1− xn)

=
1− xn + xn

(q − 1) (1− xn)
− xn

(p− 1) (1− xn)

=
1

q − 1
+

xn

1− xn

(
1

q − 1
− 1

p− 1

)
=

1

q − 1
+

p− q

(q − 1)(p− 1)

xn

1− xn
. �
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Remark 6. Let us note for further reference the following equivalent
form of (9), obtained during the proof:

(10)

∑∞
i=n+1(q

−i − p−i)

q−n − p−n
=

1

q − 1
+

(
1

q − 1
− 1

p− 1

)
qn

pn − qn
.

Now we are ready to prove our theorem.

Proof of Theorem 1 (i). We adapt the proof of Theorem 3 in [3], which
states that if 1 < q < (1 +

√
5)/2, then every x satisfying q < x <

1/(q − 1) has a continuum of expansions in base q with digits 0 or 1.
Applying Lemma 4 we �x a large positive integer n such that the

sequence (rk)k∈N := (q−i − p−i)i∈N\nN satis�es (6). Next we �x a large
positive integer N such that

(11)

[
−m

∞∑
i=N

(q−in − p−in), m
∞∑

i=N

(q−in − p−in)

]

⊂

−m
∑

i∈N\nN

(q−in − p−in), m
∑

i∈N\nN

(q−in − p−in)

 .

This is possible because the right side interval contains 0 in its interior.
The sets

B := N \ nN,

C := {in : i = N, N + 1, . . .} ,

D := {in : i = 1, . . . , N − 1}

form a partition of N.
Choose an arbitrary sequence (ci)i∈C ∈ AC ; there is a continuum of

such sequences because C is an in�nite set. Since

−
∑
i∈C

ci(q
−i − p−i)

belongs to the left side interval in (11), applying Proposition 3 there
exists a sequence (ci)i∈B ∈ AB such that∑

i∈B∪C

ci(q
−i − p−i) = 0.

Setting ci = 0 for i ∈ D we obtain a sequence (ci)i∈N ∈ C(p, q). �

Proof of Theorem 1 (ii). We show that for each positive integer n there
exists a sequence (ci) ∈ C(p, q), beginning with c1 = · · · = cn−1 = 0
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and cn = −1. Indeed, since q ≤ m + 1, by Lemma 5 we have

0 < q−n − p−n < (q − 1)
∞∑

i=n+1

(q−i − p−i) ≤ m

∞∑
i=n+1

(q−i − p−i).

Since q ≤ 2m + 1, Lemma 5 also shows that the condition (6) of
Proposition 3 is satis�ed for the alphabet A = {−m, . . . ,m} and the
sequence rk := q−k−n − p−k−n, k = 1, 2, . . . . Hence there exists a se-
quence (ci)

∞
i=n+1 ∈ A∞ satisfying

q−n − p−n =
∞∑

i=n+1

ci(q
−i − p−i);

setting c1 = · · · = cn−1 = 0 and cn = −1 this yields (2). �

Proof of Theorem 1 (iii) (a). We show that there is a sequence (ci) ∈
C(p, q), beginning with c1 = −1. Since q ≤ 2m + 1, by Proposition 3
and Lemma 5 it is su�cient to show that

(0 <)q−1 − p−1 ≤ m
∞∑
i=2

(q−i − p−i).

By (9) this is equivalent to the inequality

1

m
≤ 1

q − 1
+

p− q

(p− 1)(q − 1)

q
p

1− q
p

=
1

q − 1
+

q

(p− 1)(q − 1)
,

i.e., to p ≤ (m+1)(q− 1)/(q−m− 1). Indeed, since m > 0, q > 1 and
p > m + 1, we have

1

m
≤ 1

q − 1
+

q

(p− 1)(q − 1)
⇐⇒ (p− 1)(q − 1) ≤ m(p− 1) + mq

⇐⇒ p(q −m− 1) ≤ (m + 1)(q − 1)

⇐⇒ p ≤ (m + 1)(q − 1)

q −m− 1
. �

Remark 7. Now we prove our statement in Remark 2 (i). If m + 1 <
q ≤ 2m + 1 and p > q is closer to q so that

(0 <)q−n − p−n ≤ m
∞∑

i=n+1

(q−i − p−i)

or equivalently (see (10))

1

m
≤ 1

q − 1
+

(
1

q − 1
− 1

p− 1

)
qn

pn − qn
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for some positive integer n, then the adaptation of the preceding proof
shows that for each k = 1, . . . , n there exists a sequence (ci) ∈ C(p, q),
beginning with c1 = · · · = ck−1 = 0 and ck = −1.
The right side of the above inequality is a decreasing function of p

because the function

f(p) :=

(
1

q − 1
− 1

p− 1

)
1

pn − qn

has a negative derivative for all p > q.
Indeed, we have

f ′(p) =
1

(p− 1)2(pn − qn)
−
(

1

q − 1
− 1

p− 1

)
npn−1

(pn − qn)2
,

whence

(p− 1)2(pn − qn)2

p− q
f ′(p) =

pn − qn

p− q
− npn−1p− 1

q − 1
<

pn − qn

p− q
− npn−1.

We conclude by noticing that pn−qn

p−q
= nrn−1 by the Lagrange mean

value theorem for some q < r < p and therefore

pn − qn

p− q
− npn−1 = n

(
rn−1 − pn−1

)
≤ 0.

Proof of Theorem 1 (iv) (a). Since 1/(q − 1) < 1/2m, by Lemma 5 we
have

q−n − p−n > 2m
∞∑

i=n+1

(q−i − p−i)

for all su�ciently large integers n, say for all n > N .1 This implies that
if two di�erent sequences (ci), (c

′
i) ∈ A∞ satisfy ci = c′i for i = 1, . . . , N ,

then

∞∑
i=1

ci(q
−i − p−i) 6=

∞∑
i=1

c′i(q
−i − p−i).

1If this inequality holds for some n, then it also holds for all larger integers by
the monotonicity property of Lemma 5.
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Indeed, if n is the �rst index for which cn 6= c′n, then n > N , and
therefore∣∣∣∣∣

∞∑
i=1

(ci − c′i)(q
−i − p−i)

∣∣∣∣∣
≥ |cn − c′n| (q−n − p−n)−

∞∑
i=n+1

|ci − c′i| (q−i − p−i)

≥ (q−n − p−n)− 2m
∞∑

i=n+1

(q−i − p−i)

> 0.

It follows that if two di�erent sequences (ci), (c
′
i) ∈ A∞ satisfy

∞∑
i=1

ci

qi
−
∞∑
i=1

ci

pi
=
∞∑
i=1

c′i
qi
−
∞∑
i=1

c′i
pi

= 0,

then already their beginning words c1 . . . cN and c′1 . . . c′N must di�er.
We conclude that there are at most (2m + 1)N sequences (ci) ∈ A∞

satisfying (2). �

Proof of Theorem 1 (iv) (b). Thanks to (a) it is su�cient to exhibit a
continuum of sequences (ci) ∈ A∞ such that each sequence satis�es (2)
for at least one base p > q.
Our assumption q < m + 1 +

√
m(m + 1) implies the inequality

(12)
1

q2
< m

∞∑
i=2

i

qi+1
.

Indeed, di�erentiating the identity
∞∑
i=1

1

qi
=

1

q − 1

we get
∞∑
i=1

i

qi+1
=

1

(q − 1)2
,

so that, since m > 0 and q > 1, (12) is equivalent to

m + 1

q2
<

m

(q − 1)2
.

This inequality can be rewritten as

(13) q2 − 2q(m + 1) + m + 1 < 0.
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The polynomial x2− 2x(m + 1) + m + 1 has exactly one root, which is

larger than one, namely x = m + 1 +
√

m(m + 1). Thus (12) holds if

and only if q < m + 1 +
√

m(m + 1).
In view of (12) we may choose a su�ciently large positive integer N

such that

(14)
1

q2
< m

N∑
i=2

i

qi+1
.

Now �x an arbitrary sequence (ci) ∈ A∞ satisfying

(15) c1 = −1, c2 = · · · = cN = m and ci ≥ 0 for all i > N.

(There is a continuum of such sequences.) We are going to prove that
(2) holds for at least one base p > q.
It is su�cient to show that

∞∑
i=1

ci(q
−i − p−i) < 0

if p > q is large enough, and
∞∑
i=1

ci(q
−i − p−i) > 0

if p > q is close enough to q. Indeed, then we will have equality for
some intermediate value of p by continuity.
The �rst property will follow from the stronger relation

lim
p→∞

∞∑
i=1

ci(q
−i − p−i) < 0, i.e.,

∞∑
i=1

ci

qi
< 0.

The proof is straightforward: since c1 = −1 and q > m + 1, we have
∞∑
i=1

ci

qi
≤ −1

q
+
∞∑
i=2

m

qi
=
−1

q
+

m

q(q − 1)
<
−1

q
+

1

q
= 0.

Since ci ≥ 0 for all i > N , the second property is weaker than the
inequality

N∑
i=1

ci(q
−i − p−i) > 0

for all p > q close enough to q, and this is weaker than the relation

lim
p→q

1

p− q

N∑
i=1

ci(q
−i − p−i) > 0.
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The last property follows by using (14) and (15):

lim
p→q

1

p− q

N∑
i=1

ci(q
−i − p−i) =

N∑
i=1

ici

qi+1
= − 1

q2
+ m

N∑
i=2

i

qi+1
> 0. �

Proof of Theorem 1 (iii) (b), (iv) (c) and (v). If p > q > m+1 satisfy
(4), then the proof of (iii) (a) shows that

q−1 − p−1 > m

∞∑
i=2

(q−i − p−i).

Then by Lemma 5 we also have, more generally,

q−n − p−n > m

∞∑
i=n+1

(q−i − p−i)

for all positive integers n.
Now if a sequence (ci) ∈ A∞ has a �rst nonzero term cn, then∣∣∣∣∣
∞∑

i=n+1

ci(q
−i − p−i)

∣∣∣∣∣ ≤
∞∑

i=n+1

m(q−i − p−i)

< q−n − p−n ≤
∣∣cn(q−n − p−n)

∣∣ ,
so that (2) cannot hold. This completes the proof of (iii) (b) and (iv)
(c).
For the proof of (v) it remains to check that in case q ≥ m + 1 +√
m(m + 1) the condition (4) holds for all p > q. This is equivalent to

q ≥ (m + 1)(q − 1)

q −m− 1
,

which can be rewritten as

q2 − 2q(m + 1) + m + 1 ≥ 0.

By our observation after (13) this inequality holds if and only if q ≥
m + 1 +

√
m(m + 1). �

We end this paper by formulating some open questions:

(1) Find the optimal conditions on p and q in Theorem 1. In par-
ticular,
(a) Can C(p, q) be in�nite for some p > q > m + 1?

(b) In case 2m + 1 < q < m + 1 +
√

m(m + 1) is C(p, q)
nontrivial for all p > q su�ciently close to q?
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(2) Construct an alphabet and three (or more) di�erent bases such
that a continuum of (or in�nitely many) real numbers have
identical expansions in all three bases.

(3) Given two bases p > q > 1 investigate the set of points of the
form

∞∑
i=1

ci(p
−i − q−i), (ci) ∈ A∞.

Acknowledgement. The authors thank the referees for their sugges-
tions to improve the presentation of the paper.
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