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To the memory of our friend Béla Brindza

1. Introduction

Buchmann and Pethő [3] found by chance that in the field K := Q(α)

with α7 = 3, the integer

10 + 9α + 8α2 + 7α3 + 6α4 + 5α5 + 4α6

is a unit. This means that the diophantine equation

(1.1) NK/Q(x0 + x1α + · · ·+ x6α) = 1

has a solution (x0, . . . , x6) ∈ Z7 such that the coordinates form an arithmetic

progression. In this note we generalize (1.1) in three directions: first, we

consider arbitrary number fields, second the integer on the right hand side

of equation (1.1) is not restricted to 1, and finally it is allowed that the

solutions form only nearly an arithmetic progression.

2. Results

To be more precise, let K := Q(α) be an algebraic number field of degree

n and m ∈ Z an integer. Consider the equation

(2.2) NK/Q(x0 + x1α + x2α
2 + · · ·+ xn−1α

n−1) = m in x0, . . . , xn−1 ∈ Z.
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First we are interested in solutions of equation (2.2) which form nearly

an arithmetic progression. To define what is meant by this notion, let

X = max{|x0|, . . . , |xn−1|}. The sequence {x0, . . . , xn−1} forms nearly an

arithmetic progression if there exists d ∈ Z and 0 < δ ∈ R such that

(2.3) |(xi − xi−1)− d| < X1−δ, i = 1, . . . , n− 1.

Our main result is the following theorem.

Theorem 2.1. Let α be an algebraic integer of degree n ≥ 3 over Q and

put K := Q(α). Suppose that the algebraic number β := nαn

αn−1
− α

α−1
is

of degree at least 3, over Q. Then there exists an effectively computable

constant c1 > 0 depending only on n,m and the regulator of K such that

for any 0 < δ < c1 and any solution of equation (2.2) with property (2.3)

we have

|xi| < B for i = 0, . . . , n− 1,

where B is again an effectively computable constant depending only on

n,m, δ, the regulator of K, and on the height of α.

In the special case when δ = 1 we get a finiteness result concerning

solutions of equation (2.2) which form an arithmetic progression.

Theorem 2.2. Let α be an algebraic integer of degree n ≥ 3 over Q
and put K := Q(α). Equation (2.2) has only finitely many solutions in

x0, . . . , xn−1 ∈ Z such that x0, . . . , xn−1 are consecutive terms of an arith-

metic progression, provided that non of the following two cases hold

(i) α has minimal polynomial of the form

xn − bxn−1 − · · · − bx + (bn + b− 1)

with b ∈ Z;

(ii) β := nαn

αn−1
− α

α−1
is a real quadratic number.

Remark. In the example of Buchmann and Pethő [3] the minimal poly-

nomial of α is x7 − 3, which does not fit into case (i). Moreover Q(α) is

primitive, which excludes case (ii). Hence (1.1) has only finitely many so-

lutions, the coordinates of which form an arithmetic progression. Later we
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will show, that the only solution of (1.1) such that the coordinates form an

arithmetic progression is (10, 9, 8, 7, 6, 5, 4).

Remark. Case (i) appears quite often. Indeed, elementary computation

shows that the polynomial xn− bxn−1−· · ·− bx+(bn+ b− 1) is irreducible

for n = 2 if b 6∈ {−3, 0, 12, 15} and is irreducible for n = 3 if b 6∈ {−14, 0}.
In contrast we found only one quartic integral α with defining polynomial

x4 + 2x3 + 5x2 + 4x + 2 such that the corresponding β is a real quadratic

number. It is a root of x2 − 4x + 2. Allowing however α not to be integral

we can obtain a lot of examples.

Corollary 2.1. Let α and K be as in Theorem 2.2, and suppose that (i) of

Theorem 2.2 holds. Then there are infinitely many integers m such that

equation (2.2) has infinitely many solutions x0, . . . , xn−1 ∈ Z such that

x0, . . . , xn−1 are consecutive terms of an arithmetic progression.

Corollary 2.2. Let α and K be as in Theorem 2.2, and suppose that (ii) of

Theorem 2.2 holds. Then there are infinitely many integers m such that

equation (2.2) has infinitely many solutions x0, . . . , xn−1 ∈ Z such that

x0, . . . , xn−1 are consecutive terms of an arithmetic progression.

Theorem 2.3. For any n ∈ N (n ≥ 3) there exists an algebraic integer α

of degree n over Q such that the equation

(2.4) NK/Q(x0 +x1α +x2α
2 + · · ·+xn−1α

n−1) = ±1 in x0, . . . , xn−1 ∈ Z,

where K := Q(α), has a solution (x0, . . . , xn−1) having coordinates which

are consecutive terms in an arithmetic progression. More precisely, the

following statements are true:

(i) If α is a root of the polynomial xn − 2 (n ≥ 3) then for odd n ∈ N
the n-tuples (2n − 1, 2n − 2, . . . , n), (−2n + 1,−2n + 2, . . . ,−n),

(−1,−1, . . . ,−1) and (1, 1, . . . , 1) and for even n ∈ N the n-tuples

(2n−1, 2n−2, . . . , n), (−2n+1,−2n+2, . . . ,−n), (−1,−1, . . . ,−1),

(1, 1, . . . , 1), (−4n + 1,−4n + 3, . . . ,−2n + 1) and (4n − 1, 4n −
3, . . . , 2n − 1) are the only solutions of equation (2.4) which form

an arithmetic progression.

(ii) If α is a root of the polynomial xn − 3 (n ≥ 3) then for each odd

n ∈ N the n-tuples (−3n+1
2

, −3n+3
2

, . . . , −n−1
2

), (3n−1
2

, 3n−3
2

, . . . , n+1
2

)
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are the only solutions of equation (2.4) which form an arithmetic

progression, and for even n ∈ N there are no such solutions at all.

The last theorem means that there exists for any n ≥ 3 a unit ε of degree

n such that there exists a Q-basis ω1, . . . , ωn of Q(ε) with the property that

if ε =
∑n

i=1 xiωi then the sequence x1, . . . , xn is an arithmetic progression

with positive difference. This answers partially problem CNTA 88:14 of [4].

In the cited problem there was asked for not a Q-basis, but an integral basis,

which is usually not the case in our examples.

3. Proof of Theorems 2.1 and 2.2 and Corollaries 2.1 and 2.2

Put ci := (xi−xi−1)− d. Then using (2.3), equation (2.2) can be written

in the form

NK/Q

(
(1 + α + α2+ · · ·+ αn−1)x0

+ (α + 2α2 + · · ·+ (n− 1)αn−1)d + µ
)

= m,
(3.5)

where µ = c1α+c2α
2+· · ·+cn−1α

n−1. Using that x+2x2+· · ·+(n−1)xn−1 =

x
(

xn−1
x−1

)′
from (3.5) we get

(3.6) NK/Q

((
αn − 1

α− 1

)
x0 +

(
nαn+1 − nαn − αn+1 + α

(α− 1)2

)
d + µ

)
= m,

which can be transformed to

(3.7) NK/Q

(
αn − 1

α− 1

)
NK/Q(x0 + βd + λ) = m,

where β := nαn

αn−1
− α

α−1
and λ := µ α−1

αn−1
. Put M = NK/Q(αn − 1) and

multiply (3.7) by Mn. Then β′ = Mβ and λ′ = Mλ are integrals in K

because αn − 1 divides M in ZK . Thus we obtain

(3.8) NK/Q(Mx0 + β′d + λ′) = m1,

with m1 = Mnm/NK/Q
(

αn−1
α−1

) ∈ Z.

For γ ∈ K let γ = max{|γ(1)|, . . . , |γ(n)|}, the height of γ. To prove

Theorem 2.1 we need the following:
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Lemma 3.1. Let K be an algebraic number field of degree n ≥ 3 over Q.

Let β′ ∈ ZK be of degree at least three. Consider the equation

(3.9) NK/Q(x + β′y + λ′) = m

in x, y ∈ Z and λ′ ∈ ZK with λ′ < max{|x|, |y|}1−δ, 0 < δ < 1. Then there

exist effectively computable constants c1, c2 > 0 depending only on n and the

regulator of K such that for the solutions of equation (3.9) with 0 < δ < c1

we have

max{|x|, |y|} < B
c21/δ log(1/δ)
0 ,

where the effectively computable constant B0 depends only on n,m and on

the height of β′.

Proof. This is Theorem 1 of [5] except that there is assumed that K = Q(β′).
However analyzing the proof it is clear that it works in the slightly modified

form too. ¤

Proof of Theorem 2.1. Let us assume that x0, . . . , xn−1 ∈ Z with X =

max{|x0|, . . . , |xn−1|} are solution of (2.2), which form a nearly arithmetic

progression, i.e. there exist d ∈ Z with (2.3). Then choosing e.g. i = 1 we

get |d| < 3X. Clearly,

µ = c1α + c2α
2 + · · ·+ cn−1α

n−1 ≤ X1−δ · ( α + α
2
+ · · ·+ α

n−1
),

so we get that in equation (3.8) the height of the unknown λ′ is bounded

by a constant times X1−δ. Further, by assumption β has degree at least 3

over Q, thus so does β′, too. For equation (3.8) the assumptions of Lemma

3.1 are fulfilled, and so there exist effectively computable constants c1, c2

depending only on n and the regulator of K such that if 0 ≤ δ < c1 the

inequality max{|Mx0|, |d|} < B
c21/δ log(1/δ)
0 holds, which implies

|xi| < B for i = 0, . . . , n− 1,

where B is an effectively computable constant depending only on n,m, δ,

the regulator of K, and on the height of α. ¤
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Proof of Theorem 2.2. The assumptions of Theorem 2.1 are fulfilled with

any δ. Further, (3.7) holds with λ = 0, and we have

(3.10) NK/Q

(
αn − 1

α− 1

)
NK/Q(x0 + βd) = m,

where β := nαn

αn−1
− α

α−1
.

If deg β ≥ 3 by Theorem 2.2 there are only finitely many solutions. Fur-

ther, if β is an imaginary quadratic number, then the finiteness of the

number of solutions follows trivially. So there are two more cases, to be

considered.

First, if β is a real quadratic number, then we have exactly case (ii) of

Theorem 2.2.

Second, if β is a rational number, then there are a, b ∈ Z gcd(a, b) = 1,

such that β = a
b
. Then we have

nαn

αn − 1
− α

α− 1
=

a

b

and thus

(n− a

b
− 1)αn − αn−1 − · · · − α +

a

b
= 0

which leeds to

(3.11) (nb− a− b)αn − bαn−1 − · · · − bα + a = 0.

Since α is an algebraic integer of degree n, we have nb − a − b | a and

nb− a− b | b. However, since gcd(a, b) = 1, we get nb− a− b = ±1. Now

equation (3.11) leads to

±αn − bαn−1 − · · · − bα + nb− b∓ 1 = 0.

By changing b to −b if necessary, this means that the minimal polynomial

of α is of the form

xn − bxn−1 − · · · − bx + (bn− b− 1)

with b ∈ Z, and this means that we are in case (i) of Theorem 2.2. This

concludes the proof of Theorem 2.2. ¤

Proof of Corollary 2.1. Suppose that (i) of Theorem 2.2 holds, i.e.

αn − bαn−1 − · · · − bα + nb− b− 1 = 0,
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and put a := nb− b− 1. Then clearly gcd(a, b) = 1, and

(nb− a− b)αn − b · αn − α

α− 1
+ a = 0,

so we have

(n− a

b
− 1)αn − αn − α

α− 1
+

a

b
= 0,

which implies

nαn − α(αn − 1)

α− 1
= (αn − 1)

a

b
.

Thus we have
nαn

αn − 1
− α

α− 1
=

a

b
∈ Q,

which means that equation (3.10) takes the form

(3.12) NK/Q

(
αn − 1

α− 1

)
(x0 +

a

b
d)n = m.

Now put m := mn
0 ·NK/Q

(
αn−1
α−1

)
. Clearly, there are infinitely many m0 ∈ Z

such that m ∈ Z, and in each such case (3.12) is equivalent to

x0 +
a

b
d = m0.

Multiplying by b this leads to the linear diophantine equation

bx0 + ad = bm0,

which has infinitely many solutions in x0, d ∈ Z. ¤

Proof of Corollary 2.2. The situation is similar to that of Corollary 2.1.

More precisely, if β is a real quadratic number, then (3.10) leads to a Pellian

equation, so we can choose m from an infinite set such that (3.10) has

infinitely many solutions. ¤

4. Proof of Theorem 2.3

Lemma 4.1. If n ≥ 3 is an odd integer, then the pairs (1, 0), (−1, 0), (1, 1)

and (−1,−1), and if n ≥ 3 is an even integer then the pairs (1, 0), (−1, 0),

(1, 1), (−1,−1), (−1, 1) and (1,−1) are the only solutions of the equation

(4.13) Xn − 2Y n = ±1 X, Y ∈ Z.
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Proof of Lemma 4.1. Note that (1, 1) is a solution of (4.13) for any n ≥ 3.

By Theorem 1.1 of Bennett [1] equation (4.13) has at most 1 solution in

positive integers X, Y . In the case when n is odd, there are no solutions

X,Y with different signs. Thus any solution of equation (4.13) which is

distinct from those listed in Lemma 4.1 would induce a solution of (4.13)

with X,Y positive and (X, Y ) 6= (1, 1), but this is indeed impossible by

Bennett’s Theorem. ¤

Lemma 4.2. The pairs (−1, 1) and (1,−1) are the only solutions of the

equation

Xn − 3Y n = ±4 X,Y ∈ Z
where n ≥ 3 is an odd integer. For even integers n ≥ 3 the above equation

has no solutions.

Proof of Lemma 4.2. For n = 3 and n = 4 the result can be checked easily

using the computer algebra package Magma. For n ≥ 5 this is a simple

consequence of Theorem 1.5 of [2]. ¤

If the minimal polynomial of α is xn − a, then equation (2.4) via (3.6)

can be transformed to the form

NK/Q

(
1

(α− 1)2

)
·

·NK/Q (x0(a− 1)(α− 1) + d(an(α− 1)− (a− 1)α)) = ±1,

(4.14)

which can be rewritten as
1

(a− 1)2
NK/Q

(
(−x0(a− 1)− dan)

+ α(x0(a− 1) + dan− d(a− 1))
)

= ±1.

(4.15)

Using again that the defining polynomial of α is xn − a, from (4.15) we get
(
− x0(a− 1)− dan

)n

+(−1)n+1a
(
x0(a− 1) + dan− d(a− 1)

)n

= ±(a− 1)2.
(4.16)

Put X := −x0(a− 1)− dan and Y := −x0(a− 1)− dan + d(a− 1). So we

get the equation

(4.17) Xn − aY n = ±(a− 1)2.
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Now consider the case a = 2. Then by Lemma 4.1 (X, Y ) = (1, 0),

(−1, 0), (1, 1) and (−1,−1) are the only solutions of (4.17) when n is odd.

From this we get (x0, d) = (2n − 1,−1), (−2n + 1, 1), (−1, 0) and (1, 0),

respectively. This means that the n-tuples (2n− 1, 2n− 2, . . . , n), (−2n +

1,−2n+2, . . . ,−n), (−1,−1, . . . ,−1) and (1, 1, . . . , 1) are the only solutions

of the equation (2.4) which form an arithmetic progression, for each odd

n ∈ N, (n ≥ 3).

When n is even, then by Lemma 4.1 equation (4.17) has two more so-

lutions, namely (X, Y ) = (−1, 1) and (1,−1). In these cases we have

(x0, d) = (−4n + 1, 2), (4n − 1,−2), respectively. This means that in

this case the only solutions of the equation (2.4) which form an arith-

metic progression, are those listed in the case of odd n, and the n-tuples

(−4n + 1,−4n + 3, . . . ,−2n + 1) and (4n − 1, 4n − 3, . . . , 2n − 1). This

concludes the proof of (i) of Theorem 2.3.

Now take a = 3. By Lemma 4.2 equation (4.17) with a = 3 has no so-

lution for n even. Thus the equation (2.4) has no solutions which form an

arithmetic progression for n ∈ N even. Further, for each odd n ∈ N (n ≥ 3)

the pairs (X, Y ) = (−1, 1) and (1,−1) are the only solutions of (4.17). From

this we get (x0, d) = (−3n+1
2

, 1) and (3n−1
2

,−1), respectively. This in turn

means that the n-tuples (−3n+1
2

, −3n+3
2

, . . . , −n−1
2

), (3n−1
2

, 3n−3
2

, . . . , n+1
2

) are

the only solutions of the equation (2.4) which form an arithmetic progres-

sion, for each odd n ∈ N, (n ≥ 3). This concludes the proof of (ii) of

Theorem 2.3.

Remark. From the proof of Theorem 2.3 it is clear that equation (1.1)

has the only solution (10, 9, 8, 7, 6, 5, 4) the coordinates of which form an

arirhmetic progression.
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