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Abstract. In this paper we use the generalisation of Mason’s inequal-
ity due to Brownawell and Masser (cf. [8]) to prove effective upper
bounds for the zeros of a linear recurring sequence defined over a field
of functions in one variable.

Moreover, we study similar problems in this context as the equation
Gn(x) = Gm(P (x)), (m,n) ∈ N2, where (Gn(x)) is a linear recurring
sequence of polynomials and P (x) is a fixed polynomial. This problem
was studied earlier in [14, 15, 16, 17, 32].
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1. Introduction

Let K be an algebraically closed field of zero characteristic and K be a
function field in one variable over K.

Let A0, . . . , Ad−1, G0, . . . , Gd−1 ∈ K and (Gn)∞n=0 be a sequence defined
by the d-th order linear recurring relation

(1) Gn+d = Ad−1Gn+d−1 + . . . + A0Gn, for n ≥ 0.

Denote by

G(T ) = T d − Ad−1T
d−1 − . . . − A0 ∈ K[T ]

the characteristic polynomial of the sequence (Gn)∞n=0 and by D the discrimi-
nant of G(T ). We let α1, . . . , αr denote the distinct roots of the characteristic
polynomial G(T ) in the splitting field L of G(T ). So, L is a finite algebraic
extension of K and therefore again a function field over K of genus g, say.
It is well known that (Gn)∞n=0 has a nice “analytic” representation. More
precisely, there exist polynomials P1(T ), . . . , Pr(T ) ∈ L[T ] such that

(2) Gn = P1(n)αn
1 + . . . + Pr(n)αn

r ,
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holds for all n ≥ 0. Assuming that G(T ) has no multiple roots, i.e. D 6= 0,
we have that the functions Pi(T ) = πi are all constant for i = 1, . . . , r = d.
Then (Gn)∞n=0 is called a simple recurring sequence.

Many diophantine equations involving the recurrence (Gn)∞n=0 were stud-
ied previously. One of the most well-known problems is to estimate the
number of zeros appearing in such a sequence or more generally to estimate
the number of solutions of the following exponential-polynomial equation

(3) Gn = a,

where a ∈ L is given. We denote by N(a) the number of integers n for which
(3) holds (this number is called the a-multiplicity of (Gn)). This problem
has been widely investigated (not only in the classical case of number fields
as base field) (cf. [2, 4, 7, 11, 3, 12, 26, 22, 23, 25, 27, 29]). For recurrences
over function fields similar results are available (see [5, 28]).

Recently, Zannier [32] considered exponential-polynomial equations in
several variables and he obtained upper bounds which substantially improve
the known estimates over number fields. His results imply that for a linear
recurrence sequence (Gn) for which no ratio αi/αj , i 6= j lies in K∗ we have
that there are at most

deg P1 + . . . + deg Pr +

(
r

2

)

integers n such that Gn = 0 with P1(n) · · ·Pr(n) 6= 0. So, altogether we
have

N(0) ≤ 2(deg P1 + . . . + deg Pr) +

(
r

2

)

.

If we additionally assume that α1, . . . , αr are not in K∗, then the same bound
holds for N(a) for every a ∈ L. Moreover, for simple linear recurrences
(Gn), (Hm) Zannier proved a good upper bound for the number of solutions
of Gn = Hm and Gn = cHm, c = c(n,m) ∈ K∗ and he classified all possible
solutions. Furthermore generalising earlier results due to the authors and
Tichy [14, 15, 16], Zannier gave a good upper bound for the integer solutions
(m,n) of Gn(x) = cGm(P (x)), c = c(n,m) ∈ K∗, where (Gn(x)) is a linear
recurring sequence of polynomials and P is a fixed polynomial.

However, for equations which are “truly” defined over functions fields
other tools seem to give even more. In this paper we will use the Brownawell-
Masser inequality to give effective upper bounds for the solutions themselves,
which seems to be impossible for the classical number field case. Such re-
sults were already obtained earlier (see [20, 21]), where other problems from
number theory were successfully transferred to the function field case.

The paper is organized as follows: in the next section we state and dis-
cuss our main result which will deal with K-linear dependence of certain
expressions in a function field. This can be compared with the main result
(Theorem 1) in [32]. In Section 3 we will discuss applications to equation (3)
and we will give effective upper bounds for the solutions n of this equation.
In Section 4 we will discuss applications to intersections of linear recurring
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sequences and we will give effective results in this case also. Section 5 is
devoted to our main tool which is the Brownawell-Masser inequality. In the
last three sections we will give the proofs of our results.

2. Main Result

As mentioned in the Introduction it is more convenient to deal with linear
dependence of certain elements in a function field first rather than dealing
directly with equations as (3).

We denote by H the usual projective height on Pn−1(K). For a repetition
of valuations ν and the height H we refer to the first paragraph of Section
5. Then, our main result is the following theorem:

Theorem 1. Let α
(1)
1 , . . . , α

(1)
d1

, . . . , α
(k)
1 , . . . , α

(k)
dk

∈ L∗, d1, . . . , dk ≥ 1 be

such that α
(j)
i /α

(j)
l /∈ K∗ for each j ∈ {1, . . . , k} with dj ≥ 2 and each pair

of subscripts i, l with 1 ≤ i < l ≤ dj. Moreover, for every i = 1, . . . , dj , j =

1, . . . , k let π
(j)
i1 , . . . , π

(j)
iri

∈ L be ri linearly independent elements over K.
Put

d =

k∑

j=1

dj∑

i=1

ri.

Then for every (n1, . . . , nk) ∈ Nk such that
{

π
(j)
il α

(j)
i

nj

: l = 1, . . . , ri, i = 1, . . . , dj , j = 1, . . . , k
}

is linearly dependent over K, but no proper subset of this set is linearly
dependent over K, we have

nj ≤ C(j) := C
(

d, g, π
(j)
il , α

(j)
i ; l = 1, . . . , ri, i = 1, . . . , dj

)

,

for all j ∈ {1, . . . , k} with dj ≥ 2, where

C(j) := max







0, max
(i, l) 6= (u, v)
1 ≤ i, u ≤ dj

1 ≤ l, v ≤ ri

max
ν with

ν(α
(j)
i

) < ν(α(j)
u )

(

−ν(π
(j)
il ) + ν(π

(j)
uv )

ν(α
(j)
i ) − ν(α

(j)
u )

)

,

1

max
i 6= u

1 ≤ i, u ≤ dj

H
(

α
(j)
i , α(j)

u

) ·











(d − 1)(d − 2)

2





















∑

ν with

ν(α
(j)
i

) 6= 0 or

ν(π
(j)
il

) 6= 0

1











+ 2g − 2











+

+ max
(i, l) 6= (u, v)
1 ≤ i, u ≤ dj

1 ≤ l, v ≤ ri

∑

ν with

ν(α
(j)
i

) < ν(α(j)
u )

ν

(

π
(j)
il

π
(j)
uv

)














,
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where the maximum is/the sums are taken over all absolute values ν of the
function field L/K, respectively.

The upper bound in the theorem is quite involved. Some remarks are in
order.

Remark 1. Let us remark that the above upper bound is sharp. For
example, it is clear that two elements π1α

n
1 , π2α

n
2 with π1, π2, α1, α2 ∈ L∗

and α1/α2 /∈ K∗ are linearly dependent for at most one n. This n is given
by

n =
−ν(π1) + ν(π2)

ν(α1) − ν(α2)
,

for every absolute value ν where the denominator is not zero. But this value
is exactly C(d, g, π1, π2, α1, α2) from Theorem 1.

Remark 2. The constants C (j) (j = 1, . . . , k, dj ≥ 2) are well-defined.
Indeed, for each j under consideration there are pairs of subscripts i, l with
1 ≤ i < l ≤ dj , and for each such pair we have

H
(

α
(j)
i , α

(j)
l

)

= H

(

α
(j)
i

α
(j)
l

)

> 0

since α
(j)
i /α

(j)
l does not lie in K∗.

Remark 3. In the special situation when the π
(j)
il are all equal to 1 the

upper bound becomes much easier. Assume that d1, . . . , dk ≥ 2. In this
situation we can show that if for (n1, . . . , nk) ∈ Nk the set

{

α
(1)
1

n1
, . . . , α

(1)
d1

n1
, . . . , α

(k)
1

nk

, . . . , α
(k)
dk

nk
}

is linearly dependent over K, but no proper subset is linearly dependent
over K, then

max{n1, . . . , nk} ≤

(d − 1)(d − 2)

2
(s + 2g − 2)

max
j=1,...,k

H
(

α
(j)
i : i = 1, . . . , dj

) ,

where s is the number of zeros and poles of the α
(j)
i and

d =

k∑

i=1

di.

In fact we can prove the following upper bound, which of course is no
longer sharp:
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Corollary 1. Let d1, . . . , dk ≥ 2. Then, in the situation of Theorem 1 we
have:

max{n1, . . . , nk} ≤ C̃ :=

H
(

π
(j)
il : l = 1, . . . , ri, i = 1, . . . , dj , j = 1, . . . , k

)

+

max

{
(d − 1)(d − 2)

2
(s + 2g − 2), 0

}

,

where s is the number of zeros and poles of the π
(j)
il , α

(j)
i for l = 1, . . . , ri, i =

1, . . . , dj , j = 1, . . . , k and

d =
k∑

j=1

dj∑

i=1

ri.

We also want to mention that the dependency on the coefficients π
(j)
il

clearly cannot be removed as the following example shows: in the function
field C(x) the set

{1, xn}

is linearly dependent over C only for n = 0, whereas the set

{1, x−n0xn}

for an arbitrary integer n0 ∈ N is linearly dependent over C only for n = n0.
This shows that depending on the coefficient the size of the (only) solution
can be arbitrarily large.

Now we turn our discussion to the case of linear recurring sequences in
function fields.

3. Applications to the multiplicity of linear recurring

sequences

In this section we want to give effective upper bounds for the solutions of
the equation Gn = 0 and Gn ∈ K, where Gn is a linear recurring sequence
in a function field. The big unanswered question of course is whether this is
possible for linear recurring sequences in number fields.

Corollary 2. Let α1, . . . , αr ∈ L∗ and P1, . . . , Pr ∈ L[T ]. Assume that
for all i 6= j no ratio αi/αj lies in K∗. Then there exists an effectively
computable constant C1 such that for all n ∈ N with

Gn = P1(n)αn
1 + . . . + Pr(n)αn

r = 0

we have
n ≤ C1.

Of course this upper bound depends on all data which is given. Especially,
it also depends on L (for instance one has to consider those n for which
P1(n), . . . , Pr(n) are all 0). For the effectivity to make sense the field L
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must therefore be defined in such a way that each element of L can be
represented by a finite string of integers. This applies also to the effective
bounds appearing in the corollaries below.

Moreover, in the same way as at the end of the last section it is easy
to give examples which show that the upper bound clearly depends on the
polynomials P1, . . . , Pr, e.g. look at

Gn = xn − 1 = 0 and Gn = x−n0xn − 1 = 0

with n0 ∈ N.

Remark 4. In special cases it is possible to give quite a simple explicit
formula for the bound C1. For example assume that (Gn) is a simple recur-
ring sequence of polynomials (where A1, . . . , Ad, G0, . . . , Gd−1 ∈ K[x]) and
let R = Rd(A1, . . . , Ad, G0, . . . , Gd−1) ∈ Q[A1, . . . , Ad, G0, . . . , Gd−1] be as
introduced in [16, p. 4660], which was

R =

d∏

j=1

πjαj

d∏

i=1
i6=j

(αi − αj).

Moreover, we assume that gcd(R,D) = 1, then Gn = 0 implies

n ≤ H(π1, . . . , πd) + d3d2
(deg R + deg A0 + 1)

where D is the discriminant of G[T ]. This immediately follows from Corol-
lary 1, together with the same ideas from the proofs of [16, Lemma 6.1] and
[16, Lemma 6.2].

The method of proof even gives more. The following result is also a
corollary of Theorem 1.

Corollary 3. Let α1, . . . , αr ∈ L∗ and P1, . . . , Pr ∈ L[T ]. Assume that no
αi and no ratio αi/αj , i 6= j lies in K∗. Then there exists an effectively
computable constant C2 such that for all n ∈ N with

Gn = P1(n)αn
1 + . . . + Pr(n)αn

r ∈ K

we have

n ≤ C2.

This corollary gives an effective upper bound for the solutions of the
equation Gn = a for given a ∈ K, which is independent of a. Let us mention
that we can also give effective upper bounds for the solutions of Gn = a for
every a ∈ L by applying Corollary 2 with αr+1 = 1, Pr+1(T ) = −a.

4. Intersection of linear recurring sequences

In this section we come to equations of the type Gn = Hm, where
(Gn), (Hm) are linear recurring sequences in the function field L. We will
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always assume that the recurring sequences are simple, i.e.

Gn = a1α
n
1 + . . . + apα

n
p ,

Hm = b1β
m
1 + . . . + bqβ

m
q ,

with p, q ≥ 1 and ai, bj , αi, βj ∈ L∗ for i = 1, . . . , p, j = 1, . . . , q.
In the classical number field case such equations were investigated by

Laurent [18, 19] and Schlickewei and Schmidt [24]. Quantitative results
for function fields were already obtained by Zannier in [32]. He proved

that there are at most
(
p+q
2

)3
solutions (m,n) ∈ Z2 with Gn = Hm or

Gn = cHm, c = c(n,m) ∈ K∗, unless there are infinitely many solutions
coming from a trivial identity. We will give effective analogues of these
results.

Corollary 4. Assume that no αi or βj and no ratio αi/αj or βi/βj , i 6= j
lies in K∗. Then there exists an effectively computable constant C3 such that
for all (n,m) ∈ N2 with Gn = Hm we have

max{n,m} ≤ C3,

unless there are integers n0,m0, r, s with rs 6= 0 such that the pairs (aiα
n0
i , αr

i )
coincide in some order with the pairs (biβ

m0
i , βs

i ). In this case we have in-
finitely many solutions.

It would be interesting to generalize this result to the equation

(4) G(1)
n1

+ G(2)
n2

+ . . . + G(k)
nk

= 0,

where G
(1)
n , . . . , G

(k)
n are simple linear recurring sequences in the function

field L. This is interesting in view of a conjecture due to Cerlienco, Mignotte
and Piras [7], which says that (in the classical number field case) there are
a k and linear recurring sequences as above such that the algorithmic (i.e.
effective) solvability of equation (4) in integers (n1, . . . , nk) ∈ Nk is unde-
cidable. The above corollary disproves this conjecture for two simple linear
recurring sequences in a function field.

The next corollary is an effective version of [32, Corollary 2(b)]. We will
apply it to a more special problem below.

Corollary 5. Assume that no αi or βj and no ratio αi/αj or βi/βj , i 6= j
lies in K∗. Then there exists an effectively computable constant C4 such that
for all (n,m) ∈ N2 with Gn = cHm, c = c(n,m) ∈ K∗ we have

max{n,m} ≤ C4,

unless there are integers n0,m0, r, s with rs 6= 0 and elements ξ, η ∈ K∗ such
that the pairs (aiα

n0
i , αr

i ) coincide in some order with the pairs (ηbiβ
m0
i , ξβs

i ).
In this case we have infinitely many solutions.
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As announced above we will apply this to a problem investigated earlier
in [14, 15, 16, 32]. Let A0(x), . . . , Ad(x) ∈ K[x] and let (Gn(x)) be a linear
recurring sequence of polynomials defined by

Gn+d(x) = Ad(x)Gn+d−1(x) + . . . + A0(x)Gn(x), n ∈ N.

Assuming the corresponding characteristic polynomial has only simple roots
we get

Gn(x) = a1α
n
1 + . . . + adα

n
d ,

where ai ∈ L and L is the splitting field of G(T ). Furthermore, let P (x) ∈
K[x]. We study the intersection of the sequences Gn(x) and Gn(P (x)). This
problem is motivated e.g. by the Chebyshev polynomials (Tn(x)) given by
Tn(x) = cos(n arccos x) and which satisfy

Tnp(x) = Tn(Tp(x)).

We have the following result which is an effective analogue of [32, Corollary
4].

Corollary 6. Suppose that deg P ≥ 2 and that no αi and no ratio αi/αj , i 6=
j lies in K. Then there is an effectively computable constant C5 such that,
if there are only finitely many solutions (n,m) ∈ N2 for

Gn(x) = cGm(P (x)), c = c(n,m) ∈ K∗,

then

max{n,m} ≤ C5.

We remark that since this follows immediately from Corollary 5 the char-
acterisation of the cases when the equation has infinitely many solutions
stays as it was obtained by Zannier in [32]. Such solutions come from a triv-
ial identity which essentially can appear only when either Gn(x) = Tn(x)
and P (x) = Tp(x) (as already mentioned above; the so-called Chebyshev
case) or Gn(x) = xn and P (x) = xp (the cyclic case). For details we refer
to [32, pp. 4-5].

5. The Brownawell-Masser inequality

Let us begin by recalling the definitions of the discrete valuations on the
field K(x) where x is transcendental over K. For ξ ∈ K define the valuation

νξ such that for Q ∈ K(x) we have Q(x) = (x − ξ)νξ(Q)A(x)/B(x), where
A,B are polynomials with A(ξ)B(ξ) 6= 0. Further, for Q = A/B with
A,B ∈ K[x], we put deg Q := deg A− deg B; thus ν∞ := −deg is a discrete
valuation on K(x). These are all discrete valuations on K(x). Now let L be
a finite extension of K(x). Each of the valuations νξ, ν∞ can be extended
in at most [L : K(x)] =: d ways to a discrete valuation on L and in this way
one obtains all discrete valuations on L (normalized so that ν(L∗) = Z). A
valuation on L is called finite if it extends νξ for some ξ ∈ K and infinite if
it extends ν∞.
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We need the following generalization of the degree from K[x] to L. We
define the projective height of u1, . . . , un ∈ L, n ≥ 2 not all zero, as usual by

H(u1, . . . , un) := −
∑

ν

min{ν(u1), . . . , ν(un)},

where ν runs over all places of L/K. Observe that by the product formula
this is really a height on Pn−1(K). For a single element f ∈ L we define

H(f) := H(1, f) = −
∑

ν

min{0, ν(f)},

where the sum is taken over all valuations on L; thus for f ∈ K(x) the height
H(f) is just the number of poles of f counted according to multiplicity. We
note that if f lies in K[x] then H(f) = ddeg f . Moreover, it is easy to see
that we have

H(u1, . . . , un, 1) ≥ max
i=1,...,n

{H(ui)}.

Let S be a set of absolute values of L containing all infinite ones. Then
f ∈ L is called an S-unit, if ν(f) = 0 for all ν /∈ S.

Now we are able to state the following theorem, which gives an effective
finiteness result for the solutions of a so-called S-unit equation over function
fields, which is a generalisation of a result due to Mason (see [20, 21]) and
which was proved by Brownawell and Masser in [8]. Let us remark that
the same result was independently obtained (but not stated explicitly) by
Voloch in [30]. We mention that Mason [20] used his result to solve effectively
certain classical Diophantine equations over function fields.

Theorem 2 (Brownawell and Masser). Let u1, . . . , un ∈ L (n ≥ 3) be such
that u1 + . . . + un = 0 but no proper nonempty subset of the ui’s is made of
elements linearly dependent over K. Then

H(u1, . . . , un) ≤
(n − 1)(n − 2)

2
(#S + 2g − 2),

where S is the set of places of L where some ui is not a unit.

Let us note that this bound varies only as a linear function in #S and g
and as a quadratic function in n in contrast with the exponential bounds for
the classical case obtained by Bugeaud and Győry [6] for n = 2. Moreover,
for n > 2 no effective results for the S-unit equation over number fields
is known. The best results concern the number of solutions of such an
equation (cf. [11]). The most recent result in this context is due to Evertse,
Schlickewei and Schmidt [12] and it generalises earlier results (see [11]) to
arbitrary fields of characteristic zero. This shows that the fundamental
inequality due to Brownawell and Masser which is the function field analog
of Baker’s method of linear forms in logarithms (cf. [1]) is very sharp.

We mention that there exist results for the number of subspaces in which
all solutions (which do not contain K-linearly dependent subsets) of an S-
unit equation over function fields lie: earlier results can be found in [9, 10],
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but these results were very recently significantly improved by Evertse and
Zannier [13].

Let us mention that a further sharpening of the Brownawell-Masser in-
equality was obtained by Zannier in [31]. In this paper we will use the result
from above.

6. Proof of the Main Theorem and Corollary 1

First we give the proof of the main theorem. So, let us assume that the
set

V :=
{

π
(j)
il α

(j)
i

nj

: l = 1, . . . , ri, i = 1, . . . , dj , j = 1, . . . , k
}

is linearly dependent over K. In this case we have an equation

k∑

j=1

dj∑

i=1

ri∑

l=1

cjilπ
(j)
il α

(j)
i

nj

= 0,

for some cjil ∈ K, not all of them equal to zero. Now we apply the
Brownawell-Masser inequality (Theorem 2) to this equation. Observe that
we cannot apply it in the case k = 1 and d1 = 2, r1 = r2 = 1. But this case
is trivially included in the argumentation below. Namely, in this case we
have at most one n, which is given by

n1 =
−ν
(

π
(1)
11

)

− ν
(

π
(1)
21

)

ν
(

α
(1)
1

)

− ν
(

α
(1)
2

)

for every ν for which the denominator is not zero.
Therefore, we get that for every (n1, . . . , nk) ∈ Nk for which the above

equation holds, but no proper subset of V is linearly dependent over K, we
have

H (V) ≤
(d − 1)(d − 2)

2





















∑

ν with

ν(α
(j)
i

) 6= 0 or

ν(π
(j)
il

) 6= 0

1











+ 2g − 2











,

where

d =

k∑

j=1

dj∑

i=1

ri.

On the other side we trivially have that

H (V) ≥ max
(i, l) 6= (u, v)
1 ≤ i, u ≤ dj

1 ≤ l, v ≤ ri

{

H

(

π
(j)
il α

(j)
i

nj

π
(j)
uv α

(j)
u

nj

)}

for every j ∈ {1, . . . , k} with dj ≥ 2.
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For fixed (i, l) 6= (u, v), i, u ∈ {1, . . . , dj}, l, v ∈ {1, . . . , ri} we consider

H

(

π
(j)
il α

(j)
i

nj

π
(j)
uv α

(j)
u

nj

)

= H

(

π
(j)
il

π
(j)
uv

(

α
(j)
i

α
(j)
u

)nj
)

=

= −
∑

ν

min

{

0, ν

(

π
(j)
il

π
(j)
uv

(

α
(j)
i

α
(j)
u

)nj
)}

=

−
∑

ν with

ν
“

α
(j)
i

”

= ν
“

α(j)
u

”

min

{

0, ν

(

π
(j)
il

π
(j)
uv

)}

−nj

∑

ν with

ν
“

α
(j)
i

”

< ν
“

α(j)
u

”

ν

(

α
(j)
i

α
(j)
u

)

−
∑

ν with

ν
“

α
(j)
i

”

< ν
“

α(j)
u

”

ν

(

π
(j)
il

π
(j)
uv

)

= njH
(

α
(j)
i , α(j)

u

)

+ C,

which is true if nj is large enough, because in this case the minimum with
0 is either always the second element or 0, to be more precise the above
equation holds for

nj ≥ −
ν
(

π
(j)
il

)

− ν
(

π
(j)
uv

)

ν
(

α
(j)
i

)

− ν
(

α
(j)
u

)

which is equivalent to

ν

(

π
(j)
il

π
(j)
uv

(

α
(j)
i

α
(j)
u

)nj
)







≥ 0 if ν
(

α
(j)
i

)

> ν
(

α
(j)
u

)

,

≤ 0 if ν
(

α
(j)
i

)

< ν
(

α
(j)
u

)

,

and where the constant C from above is given by

C :=

−
∑

ν with

ν
“

α
(j)
i

”

= ν
“

α(j)
u

”

min

{

0, ν

(

π
(j)
il

π
(j)
uv

)}

−
∑

ν with

ν
“

α
(j)
i

”

< ν
“

α(j)
u

”

ν

(

π
(j)
il

π
(j)
uv

)

≥ −
∑

ν with

ν
“

α
(j)
i

”

< ν
“

α(j)
u

”

ν

(

π
(j)
il

π
(j)
uv

)

.
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Observe that for fixed j (with dj ≥ 2) there are valuations ν for which

ν
(

α
(j)
i

)

6= ν
(

α(j)
u

)

⇐⇒ ν

(

α
(j)
i

α
(j)
u

)

6= 0,

since we have assumed that these quotients are not in K∗.
Now by taking the maximum over all pairs (i, l), (u, v) we get the upper

bound
nj ≤ C(j)

for every j ∈ {1, . . . , k} with dj ≥ 2 as claimed in our theorem. �

Let us mention that in the case that

π
(j)
il = 1 for all l = 1, . . . , ri, i = 1, . . . , dj , j = 1, . . . , k

by applying the Brownawell-Masser inequality we immediately get

H (V) ≥ H
(

α
(j)
1

nj

, . . . , α
(j)
dj

nj
)

= −
∑

ν

min
{

ν
(

α
(j)
1

nj
)

, . . . , ν
(

α
(j)
dj

nj
)}

= njH
(

α
(j)
1 , . . . , α

(j)
dj

)

.

By taking the maximum over j = 1, . . . , k, we get the better upper bound
mentioned in Remark 3.

Proof of Corollary 1.

Now, we give the easy proof of Corollary 1. First of all it is plain that

H
(

α
(j)
i , α(j)

u

)

≥ 0

and that its value is always an integer. Since by our assumptions α
(j)
i /α

(j)
u /∈

K∗ for fixed j, we conclude that

H
(

α
(j)
i , α(j)

u

)

≥ 1

for all i, u, j with i 6= u. Moreover, we have the following estimate

max
(i, l) 6= (u, v)
1 ≤ i, u ≤ dj

1 ≤ l, v ≤ ri

max
ν with

ν
“

α
(j)
i

”

< ν
“

α(j)
u

”





ν
(

π
(j)
il

)

− ν
(

π
(j)
uv

)

ν
(

α
(j)
u

)

− ν
(

α
(j)
i

)



 ≤

max
(i, l) 6= (u, v)
1 ≤ i, u ≤ dj

1 ≤ l, v ≤ ri

∑

ν

max

{

0, ν

(

π
(j)
il

π
(j)
uv

)}

︸ ︷︷ ︸

=H

“

π
(j)
il

,π
(j)
uv

”

≤ H (p) ,

where

p =
(

π
(j)
il : 1 ≤ j ≤ k, 1 ≤ i ≤ dj, 1 ≤ l ≤ ri

)

.

Now plugging this into the upper bound obtained in Theorem 1, we get what
we have claimed in the corollary. �
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7. Proof of Corollaries 2 and 3.

Proof of Corollary 2.

First we handle Corollary 2. We write

Pi(x) =

ui∑

l=1

πilQil(x),

where for fixed i, the πil ∈ L∗, l = 1, . . . , ui are linearly independent over K

and the Qil(x) ∈ K[x]. It is clear that we have deg Qil = ui ≤ deg Pi, for
every i = 1, . . . , r. Now, if for n ∈ N

(5) P1(n)αn
1 + . . . + Pr(n)αn

r = 0

holds, we have an identity of the form

r∑

i=1

ui∑

l=1

Qil(n)πilα
n
i = 0

This means that the set

V := {π11α
n
1 , . . . , π1u1α

n
1 , . . . , πr1α

n
r , . . . , πrurα

n
r }

is linearly dependent over K. First, we mention that there are at most
finitely many n for which all the Pi(n) = 0. Of course the zeros of P1(n) · · ·
Pr(n) = 0 can be effectively bounded in terms of the coefficients and the
degrees of the polynomials Pi, i = 1, . . . , r. Therefore, we may assume that
not all the Pi(n) vanish. Consequently, not all the Qil(n) vanish either. We
may assume that r ≥ 2, since for r = 1 no additional solutions can appear.

For a given subset W ⊆ V, we consider the set ΣW of those n ∈ N for
which the elements in W are linearly dependent, but no proper subset is lin-
early dependent over K. Observe that the sets ΣW ,ΣW ′ for different subsets
W,W ′ of V are not necessarily disjoint. Moreover, we remark that for any
singleton W we have ΣW = ∅ since a single element from L cannot be lin-
early dependent and for sets W consisting of precisely two elements of course
no subset can be linearly dependent. Furthermore, a set W cannot contain
only elements of the form παn

i for one and the same i, because the elements
πi1, . . . , πiui

are linearly independent over K. For the elements in ΣW , we
can therefore give an effectively computable number CW with n ≤ CW by
Theorem 1. Since there are most 2d subset of V, where d =

∑r
i=1 ui, we get

an upper bound for all n satisfying (5) just by taking the maximum of the
bounds obtained in this way. From this the corollary follows. �

Proof of Corollary 3.

In Corollary 3 we have to consider those n ∈ N for which

P1(n)αn
1 + . . . + Pr(n)αn

r ∈ K.
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As above this is equivalent to the equation
r∑

i=1

ui∑

l=1

Qil(n)πilα
n
i − c · 1n = 0, c = c(n) ∈ K.

Since we will apply Theorem 1 and since the “coefficients” from K do not
play any role the same arguments as above lead to an effectively computable
upper bound for those n. Therefore, the assertion follows. �

8. Proof of Corollaries 4, 5 and 6.

Proof of Corollaries 4 and 5.

As in the proof of Corollaries 2 and 3 we consider the set

V := {a1α
n
1 , . . . , apα

n
p , b1β

m
1 , . . . , bqβ

m
q }.

A solution (n,m) ∈ N of the equation

Gn = Hm or Gn = cHm, c = c(n,m) ∈ K∗

implies that the set V is linearly dependent over K. We consider for each
partition V = W1 ∪ . . . ∪ Wr the set of solutions (m,n) of the above men-
tioned equations such that for i = 1, . . . , r, the elements of Wi are linearly
dependent over K, whereas each proper subset of Wi is linearly independent
over K. Assuming this set of solutions is non-empty, we have that each set
Wi contains at least two elements, since no single element of V vanishes.

Suppose first there is a set W ∈ {W1, . . . ,Wr} containing two distinct
elements aiα

n
i , ajα

n
j . Applying Theorem 1 to the set W implies an upper

bound C1,W for n. It may happen that W contains at most one element of
the form blβ

m
l ; then Theorem 1 does not provide an upper bound for m. To

estimate m from above we consider for every n0 ≤ C1,W the equations

Hm = Gn0 or Hm = c−1Gn0 , c = c(n0,m) ∈ K∗,

respectively. By Corollary 2 we get an effectively computable number C2,W

such that m ≤ C2,W for every solution of these equations. Observe that the
varying constant c may be disregarded in an application of the corollary.
The same arguments works if W contains two distinct elements biβ

m
i , bjβ

m
j .

Suppose now that each set among W1, . . . ,Wr contains precisely two el-
ements aiα

n
i , bjβ

m
j . Then p = q and there exists a permutation ρ of the set

{1, . . . , p} such that V = W1 ∪ . . . ∪Wr with Wi = {aiα
n
i , bρ(i)β

m
ρ(i)} for all

i = 1, . . . , p.
In this case, we have equations of the form

(6) c1aiα
n
i = c2bjβ

m
j

with c1, c2 ∈ K∗. This equation can only hold for one pair (n0,m0) ∈ N

unless the set of zeros and poles of αi and βj coincide. Let ν be one of these
zeros and poles. Then (6) implies that n = rm + s for the integers

r =
ν(βj)

ν(αi)
, s =

ν(bj) − ν(ai)

ν(αi)
.
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Putting this into (6) we get

−
c1ai

c2bj
=

(
βj

αr
i

)m

.

This equation holds for one m = m0 only, unless βj/α
r
i is a root of unity

and c1ai/(c2bj) is also a root of unity. Then the equation holds for all m in
an arithmetic progression.

Thus, we conclude that the equation holds just for one (n0,m0) ∈ N2,
unless we have p = q and there exist integers n0,m0, r, s, rs 6= 0 such that
we have to consider

Gn0+rm = Hm0+sm or Gn0+rm = cHm0+sm, c = c(m) ∈ K∗,

respectively and there exists a permutation ρ such that αr
i /β

s
ρ(i) = δi is a

root of unity. Therefore the equation from above can be rewritten as

p
∑

i=1

(

aiα
n0
i − bρ(i)β

m0

ρ(i)
δm
i

)

βsm
ρ(i) = 0

or
p
∑

i=1

(

aiα
n0
i − cbρ(i)β

m0

ρ(i)δ
m
i

)

βsm
ρ(i) = 0,

respectively.
Now, we get by Theorem 1 an effectively computable upper bound for m

in both cases unless all coefficients vanish. In the first case this can happen
only for one m (which can be computed explicitly), unless aiα

n0
i /(bjβ

m0
j )

is also a root of unity and in this case the coefficient vanishes in an arith-
metic progression. Since the intersection of these arithmetic progressions
(for varying i = 1, . . . , p) is either empty or again an arithmetic progression,
the conclusion follows. In the second case (Corollary 5) the situation is a
little bit more involved since c = c(m) may depend on m. Here we see that
the vanishing of all coefficients implies that

c =
aiα

n0
i

bρ(i)β
m0

ρ(i)δ
m
i

for all i = 1, . . . , p. Therefore, the ratios on the right hand side are indepen-
dent of i. This gives

aiα
n0
i bρ(1)β

m0

ρ(1)

bρ(i)β
m0

ρ(i)a1α
n0
1

=

(
δi

δ1

)m

for i = 2, . . . , p. As above, this may hold either for at most a single m, which
can be calculated explicitly, or in a whole arithmetic progression. In both
cases we have the conclusion as claimed in the corollary. �

Proof of Corollary 6.

Corollary 6 is an immediate consequence of Corollary 5. �
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