
ON THE DIOPHANTINE EQUATION Gn(x) = Gm(P (x)):
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Abstract. Let K be a field of characteristic 0 and let (Gn(x))∞n=0 be a
linear recurring sequence of degree d in K[x] defined by the initial terms
G0, . . . , Gd−1 ∈ K[x] and by the difference equation

Gn+d(x) = Ad−1(x)Gn+d−1(x) + . . . + A0(x)Gn(x), for n ≥ 0,

with A0, . . . , Ad−1 ∈ K[x]. Let finally P (x) be an element of K[x]. In
this paper we are giving fairly general conditions depending only on
G0, . . . , Gd−1, on P , and on A0, . . . , Ad−1 under which the Diophantine
equation

Gn(x) = Gm(P (x))

has only finitely many solutions (n, m) ∈ Z2, n, m ≥ 0. Moreover, we
are giving an upper bound for the number of solutions, which depends
only on d. This paper is a continuation of the work of the authors on
this equation in the case of second order linear recurring sequences (cf.
[11]).

1. Introduction

Let K denote a field of characteristic 0. Without loss of gen-
erality we may assume that this field is algebraically closed. Let
A0, . . . , Ad−1, G0, . . . , Gd−1 ∈ K[x] and let the sequence of polynomials
(Gn(x))∞n=0 be defined by the d-th order linear recurring sequence

(1) Gn+d(x) = Ad−1(x)Gn+d−1(x) + . . . + A0(x)Gn(x), for n ≥ 0.

Let
Q(T ) = T d −Ad−1(x)T d−1 − . . .−A0(x) ∈ K[x][T ]

denote the characteristic polynomial of the sequence (Gn(x))∞n=0 and D(x)
be the discriminant of Q(T ). It is clear that D(x) ∈ K[x]. Moreover, let
α1(x), . . . , αd(x) denote the roots of the characteristic polynomial Q(T ) in
the splitting field K(x) of Q(T ). The field K(x) is a finite extension of K(x)
of degree at most d!.
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Assuming that Q(T ) has no multiple roots, i.e. D(x) 6= 0, it is well known
that (Gn(x))∞n=0 has a nice “analytic” representation. More precisely, there
exist elements g1(x), . . . , gd(x) ∈ K(x) such that

(2) Gn(x) = g1(x)α1(x)n + . . . + gd(x)αd(x)n,

holds for all n ≥ 0.

(Gn(x))∞n=0 is called nondegenerate, if no quotient αi(x)/αj(x), 1 ≤ i <
j ≤ d is equal to a root of unity and it is called degenerate otherwise.

Many diophantine equations involving the recurrence (Gn(x))∞n=0 were
studied previously. For example, let us consider the equation

(3) Gn(x) = s(x),

where s(x) ∈ K[x] is given. We denote by N(s(x)) the number of integers
n for which (3) holds. From the Theorem of Skolem-Mahler-Lech [12] it
follows that N(s(x)) is finite for every s(x) provided that the sequence is
nondegenerate and that also α1(x), . . . , αd(x) are not equal to a root of unity.
Evertse, Schlickewei and Schmidt [9] proved that

(4) N(s(x)) ≤ e(6d)3d

under the same conditions as before. This is a direct consequence of the
Main Theorem on S-unit Equations over fields of characteristic 0 which we
will state later on.

We mention that for d = 2, Schlickewei [17] had previously established
an absolute bound for N(s(x)). His bound was substantially improved by
Beukers and Schlickewei [3] who showed that N(s(x)) ≤ 61. Very recently,
Schmidt [18] obtained the remarkable result that for arbitrary nondegener-
ate complex recurrence sequences of order d one has N(a) ≤ C(d), where
a ∈ C and C(d) depends only (and in fact triply exponentially) on d.

Recently, the authors used new developments on S-unit Equations over
fields of characteristic 0 due to Evertse, Schlickewei and Schmidt (cf. [9])
to handle the equation Gn(x) = Gm(P (x)) for sequences (Gn(x))∞n=0 of
polynomials satisfying a second order linear recurring sequence. Our result
was: Let p, q, G0, G1, P ∈ K[x], deg P ≥ 1 and (Gn(x))∞n=0 be defined by the
second order linear recurrence

Gn+2(x) = p(x)Gn+1(x) + q(x)Gn(x), n ≥ 0.

Assume that the following conditions are satisfied: 2 deg p > deg q ≥ 0 and

deg G1 > deg G0 + deg p ≥ 0, or
deg G1 < deg G0 + deg q − deg p.

Then there are at most e1018
pairs of integers (n,m) with n,m ≥ 0 with

n 6= m such that
Gn(x) = Gm(P (x))
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holds. We showed a second result in our paper: Let ∆(x) = p(x)2 + 4q(x).
Assume that

(1) deg ∆ 6= 0,
(2) deg P ≥ 2,
(3) gcd(p, q) = 1 and
(4) gcd(2G1 −G0p, ∆) = 1.

Then there are at most e1018
pairs of integers (n,m) with n,m ≥ 0 such that

Gn(x) = Gm(P (x))

holds.

The motivation for this equation was the following observation which
shows that the problem is non-trivial: Consider the Chebyshev polynomials
of the first kind, which are defined by

Tn(x) = cos(n arccos x).

It is well known that they satisfy the following second order recurring rela-
tion:

T0(x) = 1, T1(x) = x,

Tn+2(x) = 2xTn+1(x)− Tn(x).

It is also well known and in fact easy to prove that

T2n(x) = Tn(2x2 − 1).

This example shows that some further conditions are needed.

By using function field analogs of S-unit equations, we were also able to
give an upper bound for the cardinality of the set

{(n,m) ∈ N |n 6= m, ∃c ∈ K∗ such thatGn(x) = cGm(P (x))}.
(Here c may vary with n,m). Under the same assumptions as above we
showed: The number of pairs of integers (n,m) with n,m ≥ 0, n 6= m for
which there exists c ∈ K∗ with

Gn(x) = cGm(P (x))

is at most

C(p, q, P ) = 1028 · log(2C1 deg P ) · (4e)8C1 deg q · 74C1 deg q,

where C1 = 2(deg P + 1).

The first author gave suitable extensions of the above results
for third order linear recurring sequences (cf. [10]). He proved: Let
a, b, c,G0, G1, G2, P ∈ K[x], deg P ≥ 1 and (Gn(x))∞n=0 be defined by the
third order linear recurring sequence

(5) Gn+3(x) = a(x)Gn+2(x) + b(x)Gn+1(x) + c(x)Gn(x), for n ≥ 0.
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Assume that the following conditions are satisfied: 3 deg a > deg c ≥
0, 2 deg a > deg b and deg a + deg c > 2 deg b. Moreover, assume

deg G2 > deg G1 + deg a ≥ 0, and

deg G1 > deg G0 +
1
2
(deg c− deg a).

Then there are at most e1024
pairs of integers (n,m) with n,m ≥ 0 with

n 6= m such that
Gn(x) = Gm(P (x))

holds.

Moreover, we have: Let a, b, c, G0, G1, G2, P ∈ K[x] and (Gn(x))∞n=0 be
defined by (5). Assume that

(1) deg D 6= 0, deg q 6= 0
(2) deg P ≥ 2,
(3) gcd(c,D) = 1, gcd(p, q) = 1,
(4) gcd(G2 − 2

3aG1 − 2
9a2G0 − bG0, q) = 1,

gcd(G2
2 − 4

3bG2G0 − 1
3bG2

1 + 4
9b2G2

0, D) = 1 and
(5) gcd(a, 27c2 − 4b3) > 1,

where p, q are the coefficients of the characteristic polynomial of (5) in re-
duced form and D is the discriminant. Then there are at most e1024

pairs of
integers (n,m) with n,m ≥ 0 such that

Gn(x) = Gm(P (x))

holds.

It is the aim of this paper to present extensions of the results for linear
recurrences of arbitrary order.

2. General Results

To establish our first main result we need some preparations. By con-
sidering the initial terms of the recurrence we obtain the system of linear
equations

(6) Gj(x) = g1(x)α1(x)j + · · ·+ gd(x)αd(x)j , j = 0, . . . , d− 1

for the algebraic functions g1(x), . . . , gd(x). Let ∆(x) denote the determinant
of this system. Then ∆(x) =

∏
1≤i<j≤d(αj(x)−αi(x)), hence D(x) = ∆(x)2.

Define ~A = (A0, . . . , Ad−1), ~G = (G0, . . . , Gd−1) and ~αj =
(1, αj , . . . , α

d−1
j )T , j = 1, . . . , d. Applying Cramer’s rule for the system of

equations (6) we obtain

∆(x)g1(x) = det(~GT (x), ~α2(x), . . . , ~αd(x)).
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It is easy to see by induction that

det(~GT , ~α2, . . . , ~αd) =

=

(
d−1∑

i=0

(−1)d−1−iGd−1−iSi(α2, . . . , αd)

) ∏

2≤i<j≤d

(αj − αi),

where Si(α2, . . . , αd), i = 0, . . . , d− 1 denotes the i-th elementary symmet-
rical polynomial. Using Vieta’s formulae we obtain

(7) g1(x)α1(x)
d∏

i=2

(αi(x)− α1(x)) =
d−1∑

i=0

Li( ~A, ~G)αi
1(x),

with some polynomial Li( ~A, ~G) ∈ Q[ ~A, ~G], i = 0, . . . , d − 1. As (6) is sym-
metrical in α1(x), . . . , αd(x) the same relation holds if we replace the index
1 with another index 1 ≤ j ≤ d.

Let now

R = Rd( ~A, ~G) =
d∏

j=1

(
d−1∑

i=0

Li( ~A, ~G)αi
j

)
.

By the theorem on symmetrical polynomials R( ~A, ~G) ∈ Q[ ~A, ~G]. To have
some impression how complicated R is we computed it for d = 3:

R3( ~A, ~G) = −G3
2 + (−A1G0 + 2A2G1)G2

2 +
((A1 −A2

2)G
2
1 + (−3A0 + A1A2)G0G1 −A0G

2
0A2)G2

+(−A0 −A1A2)G3
1 + (A0A2 + A2

1)G0G
2
1 − 2A0G1A1G

2
0 +

+A2
0G

3
0.

Now we are in the position to state our first main result, which is a suitable
analog of the theorems in [11] for the number of solutions of

(8) Gn(x) = cGm(P (x)),

where c ∈ K∗ = K\{0} is variable, for linear recurring sequence (Gn(x))∞n=0

of arbitrary large order.

Theorem 1. Assume that the d-th order (d ≥ 2) linear recurring sequence
(Gn(x))∞n=0 and the polynomial P (x) ∈ K[x] satisfy the following conditions:

(i) None of the roots and the quotients of distinct roots of the charac-
teristic polynomial of (Gn(x))∞n=0 is an element of K∗,

(ii) deg P (x) ≥ 2 and deg D(x) ≥ 1,
(iii) gcd(D(x), A0(x)) = 1 and
(iv) gcd(D(x), R( ~A, ~G)) = 1.

Then equation (8) has at most

C(d,A0, P ) = e(6d)4d
(2ed)30d2d!2 deg A0 deg P

solutions (n,m) ∈ Z2 with n 6= m,n, m ≥ 0.
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Remark 1. Observe that the conditions in Theorem 1 are suitable
generalizations of the conditions of Theorem 3 in [11].

It is also possible to get the conclusions from above for other kind of
assumptions.

Theorem 2. Assume that the d-th order (d ≥ 2) linear recurring sequence
(Gn(x))∞n=0 and the polynomial P (x) ∈ K[x] satisfy the following conditions:

(i) None of the roots and the quotients of distinct roots of the charac-
teristic polynomial of (Gn(x))∞n=0 is an element of K∗,

(ii) deg P (x) ≥ 1, and deg D(x) ≥ 1,
(iii) deg A0 ≥ 1, R( ~A, ~G) 6= 0, and
(iv) the symmetric difference of the zeroes of A0 and A0(P ) is not empty.

Then equation (8) has at most

C(d,A0, P ) = e(6d)4d
(2ed)30d2d!2 deg A0 deg P

solutions (n,m) ∈ Z2 with n 6= m,n, m ≥ 0.

The following proposition characterizes those polynomials A0, P for which
condition (iv) of the last theorem does not hold.

Proposition 1. Let A0 and P be non-constant elements in K[x]. Assume
that A0 and A0(P ) have the same roots and let k be the number of different
roots of A0. Then there exist a, b, c ∈ K, a, c 6= 0 such that:
if k = 1 then

A0(x) = a(x− b)deg A0 and P (x) = c(x− b)deg P + b;

if k ≥ 2 then either P (x) = x or P (x) = ax + b, a 6= 1 and in this case

A0(x) = c

(
x +

b

a− 1

)s r∏

i=1

`−1∏

j=0

(
x− ajxi − b

aj − 1
a− 1

)
,

where x1, . . . xr ∈ K are all different and ` is the multiplicative order of a.

For the special case of the equation

(9) Gn(x) = Gm(P (x))

we can even show more.

Theorem 3. Assume that the d-th order (d ≥ 2) linear recurring sequence
(Gn(x))∞n=0 and the polynomial P (x) ∈ K[x] satisfy the following conditions:

(i) None of the roots and the quotients of distinct roots of the charac-
teristic polynomial of (Gn(x))∞n=0 is a root of unity,

(ii) deg P (x) ≥ 2 and deg D(x) ≥ 1,
(iii) gcd(D(x), A0(x)) = 1 and
(iv) gcd(D(x), R( ~A, ~G)) = 1.
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Then equation (9) has at most

e(12d)6d
,

solutions (n,m) ∈ Z2 with n 6= m,n, m ≥ 0.

Remark 2. Observe that we can prove an upper bound for the number of
solutions of (9) which does only depend on d.

Moreover, as an analog of Theorem 2, we get:

Theorem 4. Assume that the d-th order (d ≥ 2) linear recurring sequence
(Gn(x))∞n=0 and the polynomial P (x) ∈ K[x] satisfy the following conditions:

(i) None of the roots and the quotients of distinct roots of the charac-
teristic polynomial of (Gn(x))∞n=0 is a root of unity,

(ii) deg P (x) ≥ 1, and deg D(x) ≥ 1,
(iii) deg A0 ≥ 1, R( ~A, ~G) 6= 0, and
(iv) the symmetric difference of the zeroes of A0 and A0(P ) is not empty.

Then equation (9) has at most

e(12d)6d
,

solutions (n,m) ∈ Z2 with n 6= m,n, m ≥ 0.

Finally, we want to study a special instance of the above problem. Let
(Gn(x))∞n=0 be defined by (1) and let the initial polynomials be given by

G0(x) = . . . = Gd−2(x) = 0, and Gd−1(x) = 1.

Then we have

Gn(x) =
d∑

i=1

αn
i (x)

Q′(αi(x))
,

where
Q(T ) = T d −Ad−1(x)T d−1 − . . .−A0(x)

denotes the characteristic polynomial and ′ means differentiation with re-
spect to T . Observe that the discriminant D(x) in this case is given by

D(x) =
d∏

i=1

Q′(αi(x)) =
d∏

j=1

d∏

i=1

(αi(x)− αj(x)).

Applying Theorem 1 we get the following consequence:

Corollary. Let (Gn(x))∞n=0 be defined as above. Assume that (Gn(x))∞n=0

and the polynomial P (x) ∈ K[x] satisfy the following conditions:
(i) None of the roots and the quotients of distinct roots of the charac-

teristic polynomial of (Gn(x))∞n=0 is an element of K∗,
(ii) deg P (x) ≥ 2 and deg D(x) ≥ 1, and
(iii) gcd(D(x), A0(x)) = 1.

Then we have:
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(1) Equation (8) has at most

C(d,A0, P ) = e(6d)4d
(2ed)30d2d!2 deg A0 deg P

solutions (n,m) ∈ Z2 with n 6= m,n, m ≥ 0,
(2) Equation (9) has at most

min{e(12d)6d
, C(d,A0, P )}

solutions (n,m) ∈ Z2 with n 6= m,n, m ≥ 0.

Observe that also Theorems 2 and 4 can be applied to this situation (but
without any simplification of the assumption in general).

3. Auxiliary Results

In this section we collect some important theorems which we will need in
our proofs.

Let K be an algebraically closed field of characteristic 0, n ≥ 1 an integer,
α1, . . . , αn elements of K∗ and Γ a finitely generated multiplicative subgroup
of K∗. A solution (x1, . . . , xn) of the so called weighted unit equation

(10) α1x1 + · · ·+ αnxn = 1 in x1, . . . , xn ∈ Γ

is called non-degenerate if

(11)
∑

j∈J

αjxj 6= 0 for each non-empty subset J of {1, . . . , n}

and degenerate otherwise. It is clear that if Γ is infinite and if (10) has
a degenerate solution then (10) has infinitely many degenerate solutions.
For non-degenerate solutions we have the following result, which is due to
Evertse, Schlickewei and Schmidt [9].

Theorem 5 (Evertse, Schlickewei and Schmidt). Let K be a field of
characteristic 0, let α1, . . . , αn be non-zero elements of K and let Γ be a
multiplicative subgroup of (K∗)n of rank r. Then the equation

α1x1 + . . . + αnxn = 1

has at most
e(6n)3n(r+1)

non-degenerate solutions (x1, . . . , xn) ∈ Γ.

This theorem is the Main Theorem on S-unit Equations over fields of
characteristic 0. It is a generalization and refinement of earlier results due
to Evertse and Győry [6], Evertse [4] and van der Poorten and Schlickewei
[14] on the finiteness of the number of non-degenerate solutions of (10).
For a general survey on these equations and their applications we refer to
Evertse, Győry, Stewart and Tijdeman [7].
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For the readers convenience, we state once more the consequence to the
multiplicity of linear recurring sequences (see introduction, cf. [9]).

Theorem 6 (Evertse, Schlickewei and Schmidt). Let (um)m∈Z be a
recurring sequence satisfying

um = g1α
m
1 + . . . + gnαm

n for m ∈ Z,

where α1, . . . , αn ∈ K∗ are distinct such that neither α1, . . . , αn, nor any of
the quotients αi/αj (1,≤ i < j ≤ n) is a root of unity and where g1, . . . , gn

are non-zero elements of K. Then for every a ∈ K we have

N(a) ≤ e(6n)3n
.

Next we will consider equation (10) also over function fields. Let F be
an algebraic function field in one variable with algebraically closed constant
field K of characteristic 0. Thus F is a finite extension of K(t), where t is a
transcendental element of F over K. The field F can be endowed with a set
MF of additive valuations with value group Z for which

K = {0} ∪ {z ∈ F | ν(z) = 0 for each ν in MF }
holds. Let S be a finite subset of MF . An element z of F is called an S-unit
if ν(z) = 0 for all ν ∈ MF \S. The S-units form a multiplicative group which
is denoted by US . The group US contains K∗ as a subgroup and US/K∗ is
finitely generated. For function fields we have the following result:

Theorem 7 (Evertse and Győry). Let F,K, S be as above. Let g be the
genus of F/K, s the cardinality of S, and n ≥ 2 an integer. Then for every
α1, . . . , αn ∈ F ∗, the set of solutions of

α1x1 + . . . + αnxn = 1 in x1, . . . , xn ∈ US(12)
with α1x1, . . . , αnxn not all in K(13)

is contained in the union of at most

log(g + 2) · (e(n + 1))(n+1)s+2

(n− 1)-dimensional linear subspaces of Fn.

For deriving this upper bound an effective upper bound of Brownawell
and Masser [2] for the heights of solutions of (12) is used. For n = 2 the
theorem gives the upper bound

log(g + 2)(3e)3s+2

for the number of solutions of (12). We note that for the case n = 2 Evertse
[5] established an upper bound, which is better and independent of g.

Theorem 8 (Evertse). Let F,K, S be as above. For each pair λ, µ in F ∗,
the equation

λx + µy = 1 in x, y ∈ US

has at most 2 · 72s solutions with λx/µy /∈ K. As above, s denotes the
cardinality of S.
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We will use the results from above to prove the following proposition:

Proposition 2. Let F,K, S be as above. Let g be the genus of F/K, s
the cardinality of S, n ≥ 2 an integer, and α1, . . . , αn ∈ F ∗. Moreover, let
Γ ⊂ US. We assume that any given pair (xi, xj) ∈ Γ2 with 1 ≤ i < j ≤ n
gives rise to at most k solutions (x1, . . . , xn) of

α1x1 + . . . + αnxn = 1 in x1, . . . , xn ∈ Γ,(14)

where
∑

j∈J

αjxj 6= 0 for each non-empty subset J of {1, . . . , n},(15)

and that for arbitrary γ1, γ2 ∈ F ∗ there are at most k solutions (x1, . . . , xn) ∈
Γn such that there exist indices i 6= j with γ1xi, γ2xj ∈ K∗. Then the number
of solutions of (14) with (15) can by bounded by

A(n, k) = knen2
[log(g + 2)]n−2 (e(n + 1))(n−1)(n+1)(s+1).

Finally, we need some results from the theory of algebraic function fields,
which can be found for example in the monograph

of Stichtenoth [19]. We will need the following estimate for the genus of
a function field F/K (cf. [19], page 130 and 131).

Theorem 9 (Castelnuovo’s Inequality). Let F/K be a function field
with constant field K. Suppose there are given two subfields F1/K and F2/K
of F/K satisfying

(1) F = F1F2 is the compositum of F1 and F2,
(2) [F : Fi] = ni, and Fi/K has genus gi (i = 1, 2).

Then the genus g of F/K is bounded by

g ≤ n1g1 + n2g2 + (n1 − 1)(n2 − 1).

We mention that Castelnuovo’s Inequality is often sharp, and that in
general it cannot be improved.

Moreover, we will use the Hurwitz Genus Formula (cf. [19], page 88).

Theorem 10 (Hurwitz Genus Formula). Let F/K be an algebraic func-
tion field of genus g and F ′/F be a finite separable extension. Let K ′ denote
the constant field of F ′ and g′ the genus of F ′/K. Then we have

2g′ − 2 =
[F ′ : F ]
[K ′ : K]

(2g − 2) + deg Diff(F ′/F ).

The Hurwitz Genus Formula is a powerful tool that allows determi-
nation of the genus of F/K in terms of the different of F/K(x) as any
function field can be regarded as a finite extension of a rational function field.

Last we mention some basic fact about the valuation theory in function
fields: Let K be an algebraically closed field of characteristic 0. Let K be a fi-
nite extension of K(x) where x is transcendental over K. For ξ ∈ K define the
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valuation νξ such that for Q ∈ K(x) we have Q(x) = (x− ξ)νξ(Q)A(x)/B(x)
where A,B are polynomials with A(ξ)B(ξ) 6= 0. Further, for Q = A/B with
A,B ∈ K[x] we put deg Q := deg A− deg B; thus ν∞ := −deg is a discrete
valuation on K(x). Each of the valuations νξ, ν∞ can be extended in at most
[K : K(x)] ways to a discrete valuation on K and in this way one obtains all
discrete valuations on K. A valuation on K is called finite if it extends νξ for
some ξ ∈ K and infinite if it extends ν∞. Let us mention that the valuations
can equivalently described by the concepts of places and valuation rings (cf.
[19]).

4. Proof of Proposition 1

For the proof of Proposition 1 we need the following theorem due to
Mason (cf. [13], page 156), which is usually referred to the abc Theorem for
polynomials. We thank Ákos Pintér for calling our attention to this result
and helping us in its application to the present situation.

Theorem 11 (abc Theorem, Mason). Let f, g and h be coprime polyno-
mials, not all three constant, in K[x] with f + g = h. Then

max{deg f, deg g,deg h} ≤ n0(fgh)− 1,

where n0(fgh) denotes the number of distinct roots of fgh in K.

Proof of Proposition 1. The case when P is linear was treated in Remark 7
of our preceding paper [11]. This is exactly the second part of our assertion.
Thus we assume in the sequel deg P ≥ 2.

Assume that

A0(x) = a

k∏

i=1

(x− ai)ni ,

with pairwise different a1, . . . , ak and with positive n1, . . . , nk. As the roots
of A0 and of A0(P ) are the same we have

A0(P (x)) = a

k∏

i=1

(P (x)− ai)ni = a lc(P )deg A0

k∏

j=1

(x− aj)mj

with nonzero m1, . . . , mk and where lc(P ) denotes the leading coefficient of
P . From this we get

P (x)− ai = lc(P )
k∏

j=1

(x− aj)mij ,

for all i = 1, . . . , k, where the mij are non-negative integers. If we assume
that there exist indices u 6= v with muj ,mvj both > 0, then we get that
av − au = const has a nontrivial divisor, namely x − aj , contradicting the
fact that av − au is constant and different from zero.
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Now we proceed as follows: Assume that we have

P (x)− a1 = lc(P )
k∏

j=1

(x− aj)m1j .

There exists j1 such that m1j1 > 0 since deg P > 0. From the discussion
above this implies that mij1 = 0 for all i = 1, . . . , k. Now look at

P (x)− a2 = lc(P )
k∏

j=1
j 6=j1

(x− aj)m2j .

Now it exists m2j2 > 0 and we have mij2 = 0 for i = 1, 3, . . . , k, especially
m1j2 = 0. Continuing this we get, because there are k different roots, that
there exists a permutation π of {1, . . . , k} such that

(16) P (x)− ai = lc(P )(x− aπ(i))
deg P , for i = 1, . . . , k.

If k = 1 then A0 = a(x− a1)deg A0 and π(1) = 1, hence

P (x) = lc(P )(x− a1)deg P + a1

and we obtain the first assertion of the proposition.
It remains to prove that there are no more possibilities if the degree of P

and the number of distinct zeros of A0 is at least 2. Indeed, if k ≥ 2 then
(16) implies

a2 − a1

lc(P )
= (x− aπ(1))

deg P − (x− aπ(2))
deg P .

The relation aπ(1) = aπ(2) can not hold because a2 6= a1. Thus aπ(1) 6= aπ(2)

and the polynomials (x− aπ(1))deg P , (x−aπ(2))deg P and (a2−a1)/lc(P ) are
obviously coprime. Hence by Theorem 11 deg P can be at most one. ¤

5. Proof of Proposition 2

We prove the assertion by induction on n. The case n = 2 follows easily
from Theorem 7 for n = 2. Observe that by our assumptions there are at
most k solutions with α1x1, α2x2 both in K. Therefore, we have at most

log(g + 2)(3e)3s+2 + k ≤ A(2, k)

solutions x1, x2 ∈ US .

Now suppose n > 2 and our claim to be shown for n′ < n. Again by
Theorem 7, either α1x1, . . . , αnxn all belong to K∗, which by our assumption
is possible for at most k solutions (x1, . . . , xn), or (x1, . . . , xn) lies in one of
at most

log(g + 2) · (e(n + 1))(n+1)s+2

proper linear subspaces of Fn.
Let V be one of these subspaces, defined by an equation

γ1x1 + . . . + γnxn = 0
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where γi ∈ F for i = 1, . . . , n. Observe that at least two of the coefficients are
different from zero. Without loss of generality we may assume that γ1 6= 0
and that γ1 = 1, i.e.

x1 + γ2x2 + . . . + γnxn = 0.

Subtracting this equation from our S-unit equations (14) under considera-
tion gives

(α2 − γ2α1)x2 + . . . + (αn − γnα1)xn = 1.

This is again an S-unit equation but now with n− 1 variables. We write for
the above equation ∑

i∈I

δixi = 1

where I is a subset of {2, . . . , n} of cardinality |I| ≥ 1, because otherwise we
would have

α1x1 + . . . + αnxn = 0,

a contradiction to (14), and where δi 6= 0 for i ∈ I. Let J be a non-empty
subset of I and consider those solutions in Γn ∩ V for which

(17)
∑

i∈J

δixi = 0,

but no proper non-empty subsum of (17) vanishes. Thus 1 ≤ |J | ≤ n − 1.
We have to distinguish two cases, depending on whether |J | = 1 or |J | ≥ 2.

Case 1.
Let J = {u} with 2 ≤ u ≤ n. In this case the above equation reduces to

(αu − γuα1)xu = 1,

with αu 6= γuα1. Therefore, we get

xu = (αu − γuα1)−1,

and substituting this into (14) finally yields

(18)
n∑

i=1
i 6=u

αi

(1− (αu − γuα1)−1αu)
xi = 1.

Observe that the denominator is different from 0, because otherwise we
would have

n∑
i=1
i6=u

αixi = 0,

leading to a contradiction to assumption (15). Equation (18) is an S-unit
equations with n − 1 variables. By induction, we can conclude that this
equation has at most A(n− 1, k) solutions such that no non-trivial subsum
vanishes, and since each of this solutions gives rise to at most k solutions
of (14) we conclude that we get at most kA(n− 1, k) solutions (x1, . . . , xn)
in this case. Observe that any vanishing subsum of equation of (18) would
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immediately lead to a vanishing subsum of our original equation, and thus
we do not have to take them into account.

Case 2.
Now we can assume that |J | ≥ 2 and in this situation we can at once use

the induction hypothesis. Thus we conclude that (17) has at most A(n−1, k)
solution, where no subsum vanishes. Observe that the vanishing subsums of

∑

i∈I

δixi = 1,

are taken into account by the different choices of J . Since we know by our
assumptions that each of this solutions gives rise to at most k solutions of
our original problem, we get at most kA(n−1, k) solutions (x1, . . . , xn) also
in this case.

By consideration of the possible subsets J of I, we see that each subspace
V contains at most 2nkA(n − 1, k) solutions. We still have to multiply this
by the number of subspaces. In this way we obtain a bound

2nkA(n− 1, k) log(g + 2)(e(n + 1))(n+1)s+2 + k.

This is

2n+1kkn−1e(n−1)2 [log(g + 2)]n−3 (en)(n−2)n(s+1) ·
· log(g + 2)(e(n + 1))(n+1)s+2 ≤ knen2−n+2 [log(g + 2)]n−2 ·
·(e(n + 1))(n−2)(n+1)(s+1)(e(n + 1))(n+1)(s+1) ≤ A(n, k),

and therefore Proposition 2 follows. ¤

6. Preliminaries and properties of the field of definition

Let (Pn(x))∞n=0 be defined by (1). Moreover, let α1(x), . . . , αd(x) as well
as α1(P (x)), . . . , αd(P (x)) denote the roots of the characteristic polyno-
mial of (Gn(x))∞n=0 and (Gn(P (x))∞n=0 respectively. We will always assume
that D(x) 6= 0 (which follows from condition (ii) in all theorems), thus
α1(x), . . . , αd(x) are pairwise distinct. Replacing P (x) by another - over K
- transcendental element we conclude the same for α1(P (x)), . . . , αd(P (x)).

Let us define

F = K(x, α1(x), . . . , αd(x), α1(P (x)), . . . , αd(P (x))).

Then F is a finite extension of K(x), i.e. we have an algebraic function field
in one variable over the constant field K. Furthermore, we set

Γ = 〈α1(x), . . . , αd(x), α1(P (x)), . . . , αd(P (x))〉(F ∗,·),
so Γ is a subgroup of the multiplicative group of F . It is generated by the
characteristic roots of (Gn(x))∞n=0 and (Gn(P (x)))∞n=0.

It is obvious that Γ can be seen as a finitely generated subgroup of C∗,
because we can embed F ∗ into C∗ by sending the transcendental elements
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which appear in the coefficients of A0, . . . , Ad−1, G0, . . . , Gd−1 and the
variable x to linearly independent transcendental elements of C. Moreover,
it is clear that the rank r of Γ is at most 2d.

F and Γ will be the field of definition for our problem, because we will
reduce the equations under consideration to linear equations over F , where
we look for solutions in Γ. First, we will deduce some more information
about these sets and we will do this in the following lemmas.

First, we calculate the genus of the function field F/K.

Lemma 1. We denote by g the genus of the function field F/K. Then we
have

g ≤ d!3 − d!2 + 1 ≤ d!3 − 3 ≤ d6d − 2.

Proof. First observe that we have

F = K(x)(α1(x), . . . , αd(x)) ·K(x)(α1(P (x)), . . . , αd(P (x))).

Let us denote

F1 = K(x, α1(x), . . . , αd(x)), F2 = K(x, α1(P (x)), . . . , αd(P (x))).

Furthermore, we denote by gi the genus of Fi/K (i = 1, 2). We have

n1 = [F : F1] ≤ d! and n2 = [F : F2] ≤ d!.

Next, we calculate bounds for g1, g2. We apply the Hurwitz Genus Formula
(Theorem 10) to K(x)/K and F1/K(x). Observe that the constant field of
F1 is K and that the genus of the rational function field K(x) is zero (cf.
[19], page 22). Therefore, we get

2g1 − 2 = −2[F1 : K(x)] + deg Diff (F1/K(x)).

We have to calculate the different:

Diff (F1/K(x)) =
∑

P∈PK(x)

∑

P ′|P
d(P ′|P )P ′,

where PK(x) denotes the set of places of K(x) and P ′|P means that P ′ ∈ PF1

lies over P . The second sum is extended over all extensions of P . Because
of charK = 0, we conclude by Dedekind’s Different Theorem (cf. [19], page
89) that

d(P ′|P ) = e(P ′|P )− 1 ≤ e(P ′|P ),
for all places P of K(x) and for all places P ′ in F lying over P and where
e(P ′|P ) denotes the ramification index. Observe that α1(x), . . . , αd(x) are
integral over K[x] since they are the roots of a monic polynomial with coeffi-
cients in K[x] (namely the characteristic polynomial). Therefore there exists
an - over K(x) - irreducible polynomial H(T ) with coefficients in K[x] which
generates F1/K(x). For ξ ∈ K let Pξ denote the place in K(x) correspond-
ing to x − ξ. We have e(P |Pξ) = 1 fo all extensions P of Pξ with P ∈ PF1 .
Indeed, by a theorem of Kummer (cf. [19], page 80) only at the poles of
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the coefficients of the polynomial H(T ) ramified extensions can appear (and
the coefficients are polynomials and thus do not have poles at finite places).
Therefore, we have to calculate

deg Diff (F1/K(x)) =
∑

P |P∞
d(P |P∞) deg P ≤

∑

P |P∞
e(P |P∞) deg P,

where P∞ denotes the infinite valuation (corresponding to 1/x) in K(x). We
use

deg P = [FP : K] = [FP : K(x)P∞ ] · [K(x)P∞ : K] = f(P |P∞) · deg P∞,

where FP ,K(x)P∞ are the residue class fields of P, P∞ respectively and
f(P |P∞) is the relative degree of P over P∞. Thus

deg Diff (F1/K(x)) ≤ deg P∞
∑

P |P∞
e(P |P∞)f(P |P∞) = deg P∞ · [F1 : K(x)],

where we have used Theorem III.1.11 in [19] to get the last equation. Finally,
we use

deg P∞ ≤ [F1 : K(x−1)] = [F1 : K(x)] ≤ d!,

(e.g. cf. Proposition I.1.14 in [19]) which implies degDiff (F1/K(x)) ≤ d!2

and finally

g1 ≤ 1
2
d!2 − d! + 1.

In totally the same way, we can conclude

g2 ≤ 1
2
d!2 − d! + 1.

Now using Castelnuovo’s Inequality (Theorem 9) we get

g ≤ 2d!(
1
2
d!2 − d! + 1) + (d!− 1)(d!− 1) = d!3 − d!2 + 1 ≤ d!3 − 3,

since d ≥ 2 and therefore our proof is finished. ¤

Next, we prove the following lemma:

Lemma 2. We assume deg A0 ≥ 1 and deg P ≥ 1. Then there exists a finite
subset S ⊂ MF of valuations of the function field F such that Γ is contained
in the group of S-units US and such that

|S| ≤ d!2(deg A0(deg P + 1) + 1) ≤ 6d!2 deg A0 deg P − 1.

Proof. Let S∞ be the set of infinite valuations of F and S0 the set of finite
valuations of F . Note that for every ν ∈ S0 we have ν(α1) ≥ 0, . . . , ν(αd) ≥
0, ν(α1(P )) ≥ 0, . . . , ν(αd(P )) ≥ 0 since these functions are integral over
K[x]. Take

S = S∞ ∪
2d⋃

i=1

Si,
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where

Si = {ν ∈ S0 | ν(αi) > 0},
Sd+i = {ν ∈ S0 | ν(αi(P )) > 0}

for i = 1, . . . , d. Then clearly Γ is a subgroup of US . Since [F : K(x)] ≤ d!2,
we have |S∞| ≤ d!2. Further,

α1(x) · · ·αd(x) · α1(P (x)) · · ·αd(P (x)) = A0(x) ·A0(P (x)) =: Q(x).

Therefore,
2d⋃

i=1

Si =: S̃ := {ν ∈ S0 | ν(Q) > 0}.

Each of the valuations in S̃ is an extension to F of some valuation νξ on
K(x) corresponding to a zero ξ of Q(x). The polynomial Q(x) has at most
deg Q = deg A0(deg P +1) zeros, and for each of these zeros ξ, the valuation
νξ can be extended in at most d!2 ways to a valuation on F . Therefore,
|S̃| ≤ d!2 deg A0(deg P + 1). This implies

|S| ≤ d!2(deg A0(deg P + 1) + 1) ≤
≤ d!2(2 deg A0 deg P + 1) ≤ 6d!2 deg A0 deg P − 1,

since deg A0 ≥ 1 and deg P ≥ 1, which was our assertion. ¤

Finally, we need the following properties:

Lemma 3. Assume that none of the roots and the quotient of distinct roots
of the characteristic polynomial of (Gn(x))∞n=0 is an element of K∗. Let γ1, γ2

be non-zero elements of F . Then there is at most one pair of integers n, m
such that

(19) γ1
αi(x)n

αk(P (x))m
∈ K∗ and γ2

αj(x)n

αk(P (x))m
∈ K∗

or

(20) γ1
αi(x)n

αk(P (x))m
∈ K∗ and γ2

αj(P (x))m

αk(P (x))m
∈ K∗

respectively, where 1 ≤ i, j, k ≤ d are different integers.

Proof. First we prove equation (19). Suppose there are two such pairs
(n1,m1), (n2,m2). Let n = n1 − n2,m = m1 − m2. Then, by dividing the
first equations (equ. (19) with n1,m1) by the second equations (equ. (19)
with n2,m2) we get

(21)
αi(x)n

αk(P (x))m
∈ K∗ and

αj(x)n

αk(P (x))m
∈ K∗,

hence αi(x)n/αj(x)n ∈ K∗. But this can only hold if αi(x)/αj(x) ∈ K∗,
which contradicts our assumption, or if n = 0, whence n1 = n2 and so by
(21) we get also m1 = m2.
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In the same way, if we assume that (20) holds for two such pairs, we
conclude that

(22)
αi(x)n

αk(P (x))m
∈ K∗ and

αj(P (x))m

αk(P (x))m
∈ K∗.

But now we can conclude that m = 0 or m1 = m2 by using the second part
of (22) and then by the first part of (22), we get also n1 = n2. Observe that
we have used our assumption twice to get this. ¤

In the next section, we will reduce the solvability of our equation (8) to
the solvability of a system of critical exponential equations in n,m.

7. Reduction to a system of equations

First observe that by (7) we have gi(x), gi(P (x)) ∈ F for i = 1, . . . , d. The
same equation and the definition of R implies

d∏

j=1

gj(x)αj(x)
d∏

i=1
i 6=j

(αi(x)− αj(x)) = R.

As we have assumed R 6= 0 (this follows from condition (iv) in Theorems 1
and 3 and from condition (iii) in Theorems 2 and 4), hence gj(x) 6= 0 for
j = 1, . . . , d. This ensures gj(P (x)) 6= 0 for j = 1, . . . , d.

Assume that n,m ≥ 0, n 6= m are integers satisfying Gn(x) = cGm(P (x))
for some c ∈ K∗. It follows that

(23)
d∑

i=1

gi(x)αi(x)n = c
d∑

i=1

gi(P (x))αi(P (x))m.

We have already seen that gd(P (x)) 6= 0. We have A0 6= 0 by (ii) and (iii)
in Theorems 1 and 3 and by (iii) in Theorems 2 and 4 respectively, hence
αd(P (x)) 6= 0 holds too. Dividing by gd(P (x))αi(P (x))m and sorting the
summands we obtain the weighted equation

(24)
d∑

i=1

gi(x)
gd(P (x))

xi −
d−1∑

i=1

gi(P (x))
gd(P (x))

xd+i = 1

in the unknowns

xj = c−1 αj(x)n

αd(P (x))m
for j = 1, . . . , d,

xd+j =
αj(P (x))m

αd(P (x))m
for j = 1, . . . , d− 1.

Observe that x1, . . . , x2d−1 are elements of the set US which exists by
Lemma 2. This is because of the fact that Γ is contained in US and c ∈ K∗.
Lemma 3 implies that any given pair of elements (xi, xj) or (xi, xd+j)
for 1 ≤ i < j ≤ d gives rise to at most one pair (n,m), especially any
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tuple (x1, . . . , x2d−1) induces at most one solution (n,m) of the equation in
consideration. Because of the fact that α1(x), . . . , αd(x) are not in K∗ (and
therefore also α1(P (x)), . . . , αd(P (x)) are not in K∗) it follows that a given
pair (xd+i, xd+j) (1 ≤ i < j ≤ d) induces at most one m. We will show that
this in turn induces (via our equation Gn(x) = cGm(P (x)) at most finitely
many pairs (n,m).

We set

βi =
gi(x)

gd(P (x))
and βd+i =

gi(P (x))
gd(P (x))

for i = 1, . . . , d.

Now let us assume that we can bound the number of solutions of the equation

β1x1 + . . . + βdxd + βd+1xd+1 + . . . + β2d−1x2d−1 = 1,

where no nontrivial subsum vanishes, by a constant W (2d − 1). This is of
course true in the special case that c is always equal to 1 by the theorem
of Evertse, Schlickewei and Schmidt (Theorem 5). In the more general case
we will deduce this later (see Section 9) using Proposition 2.

Let J be a non-empty subset of {1, . . . , 2d− 1} with 1 ≤ |J | ≤ 2d− 2 and
consider those solutions (x1, . . . , x2d−1) ∈ U2d−1

S of the above equation (24)
for which

(25)
∑

i∈J

βixi = 1,

but no proper non-empty subsum of (25) vanishes. We have to distinguish
three cases:

Case 1.
First we assume that |J | = 2d − 2. In this case we must have βjxj = 0

for the single j not belonging to J . But this cannot hold since βj 6= 0 for
j = 1, . . . , d and 0 /∈ Γ ⊂ US .

Case 2.
The second case is that J ⊆ {d+1, . . . , 2d−1}. This case is special because

the components of (25) now depend only on m. By Theorem 6 we obtain
that (25) has at most

e(6(d−1))3(d−1)

solutions. This implies that we have at most that much possibilities for m.
For fixed m the right hand side of

d∑

i=1

gi(x)c−1αi(x)n =
d∑

i=1

gi(P (x))αi(P (x))m
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is a fixed element, namely Gm(P (x)) of K[x]. If Gm(P (x)) = 0 then we
obtain Gn(x) = 0 which can hold by Theorem 6 for at most

e(6d)3d

many n too. Otherwise dividing by Gm(P (x)) we get
d∑

i=1

gi(x)
Gm(P (x))

yi = 1,

where
yi = c−1αi(x)n for i = 1, . . . , d.

This is again a weighted S-unit equation, whose number of solutions we can
bound by W (d− 1), which we will again show later. Taking account of the
possible subsets J , we see that we have at most

2d max
{
W (d− 1), e(6d)3d}

e(6(d−1))3(d−1)

pairs of solutions (n,m) in this case.

Case 3.
The remaining case is J ∩ {1, . . . , d} 6= ∅. We consider two subcases:

The first subcase is 1 < |J | ≤ 2d− 3. In this case we can bound the number
of solutions (n,m) by W (2d − 3) since (25) is a weighted S-unit equation
with 2d− 3 variables. The number of cases can be bounded by 4d. Thus we
have

4dW (2d− 3)
possible solutions.
The last subcase is |J | = 1. Since we have J ∩ {1, . . . , d} 6= ∅, we conclude
that βuxu = 1 for some 1 ≤ u ≤ d, i.e. we have

gu(x)αu(x)n = c gd(P (x))αd(P (x))m.

If this is true then the following equation
d∑

i=1
i 6=u

gi(x)αi(x)n = c

d∑
j=1
j 6=d

gj(P (x))αj(P (x))m

must simultaneously holds. But this is essentially the same equation as (23)
with one summand less at both sides of the equation. Thus, we can continue
this process and ultimately obtain:
The equation (23) has at most

d · (W (2d− 1) + 2d max
{
W (d− 1), e(6d)3d}

e(6(d−1))3(d−1)
+

+4dW (2d− 3)
)

solutions (n,m) ∈ Z2, n, m ≥ 0, n 6= m or it is a solution of a system of
equations of form

gu(x)αu(P (x))n = c gπ(u)(P (x))απ(u)(P (x))m, u = 1, . . . , d,
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where π is a permutation of the set {1, . . . , d}.

To handle this exceptional systems of equations, we will need most of the
assumptions in our theorems. We will handle these cases in the next chapter.

8. Handling the exceptional cases

We start with the system of equations

(26) gu(x)αu(P (x))n = c gπ(u)(P (x))απ(u)(P (x))m, u = 1, . . . , d,

where π is a permutation of the set {1, . . . , d}. We will show that this
system has only finitely many solutions (n,m).

First we assume the conditions of Theorems 1 and 3.
Indeed, in this case we have deg D(P ) = deg D deg P > deg D ≥ 1, since

deg P > 1 by assumption (ii). On the other hand we have

D(P (x)) =
d∏

j=1

Q(P )′(αj(P (x)) and D(x) =
d∏

j=1

Q′(αj(x)),

where ′ denotes differentiation with respect to the variable T . Hence there
exists a pair (u, v) = (u, π(u)) and a finite valuation ν of F such that

ν(Q(P )′(αv(P ))) > ν(Q′(αu)) ≥ 0.

Before continuing we state the following useful lemma.

Lemma 4. Let A,B, P ∈ K[x]. Then gcd(A,B) = 1 if and only if
gcd(A(P ), B(P )) = 1.

This lemma is a special case of a lemma in the monograph of Schinzel
[16], page 16. It was originally proved in [15].

Now assumption (iii) of Theorem 1 together with Lemma 4 implies

ν(αv(P )) = 0,

since ν(D(P )) > 0, while assumption (iv) that

ν

(
d−1∑

i=0

Li( ~A, ~G)αv(P )i

)
= 0.

Hence (7) implies (with v instead of 1) that

ν(gv(P )) = −ν

(
d∏

i=2

(αi(P )− αv(P ))

)
= −ν(Q(P )′(αv(P ))).

Therefore (26) implies

(27) ν(gu) + nν(αu) = −ν(Q(P )′(αv(P ))),

where we have used ν(c) = 0 since c ∈ K∗. Observe that α1(x), . . . , αd(x)
are integral over K[x], as they are zeros of the monic characteristic equation
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Q(T ) = 0 with coefficients in K[x]. The integral closure of K[x] in F consists
of those elements f such that ν(f) ≥ 0 for every finite valuation ν of F . So
in particular, ν(αu) ≥ 0.

Using (7) once again (with u instead of 1), we get

ν(gu) + ν(αu) + ν(Q′(αu)) = ν

(
d−1∑

i=0

Lu( ~A, ~G)αi
u

)
≥ 0,

since the remark from above and the fact that Lu( ~A, ~G)(x) ∈ Q[ ~A, ~G] and the
components of ~A and ~G are (as polynomials) integral elements. Therefore,
we conclude

ν(gu) + ν(αu) ≥ −ν(Q′(αu)),

which yields together with (27)

nν(αu) = −ν(Q(P )′(αv(P )))− ν(gu) ≤
≤ −ν(Q(P )′(αv(P ))) + ν(Q′(αu)) + ν(αu) < ν(αu).

Since ν(αu) ≥ 0, we conclude n = 0. Thus, equation (26) induces only
solutions of the kind (0,m) with m > 0.

Now we have to distinguish between the assumptions of Theorems 1 and
3. First let us assume (i) of Theorem 1. We investigate for n = 0

gu(x) = c gv(P (x))αv(P (x))m.

Assume that there are two solutions m1 and m2. Then we have

c1αv(P (x))m1 = c2αv(P (x))m2

(c ∈ K∗ depends on m) or

αv(P (x))m1−m2 ∈ K∗,

which is a contradiction unless m1 = m2. Therefore, we get for each system
(26) at most one solution (n,m).

Now assume that we have assumption (i) of Theorem 3. Then we can look
at the equation

Gm(P (x)) = G0(x),

which has by Theorem 6 at most e(6d)3d
solutions.

We consider now the assumptions of Theorems 2 and 4.
From condition (iv) (together with (ii) and (iii)) we get that there is a

valuation ν of F with

ν(A0) > 0 and ν(A0(P )) = 0 or ν(A0) = 0 and ν(A0(P )) > 0.

¿From this we can conclude (observe that α1(x), . . . , αd(x) are integral over
K[x]) that there exists an index u (1 ≤ u ≤ d) with either

ν(αu) > 0 and ν(αi(P )) = 0 for i = 1, . . . , d,
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or
ν(αu(P )) > 0 and ν(αi) = 0 for i = 1, . . . , d.

In the first case we look at the equation

gu(x)αu(x)n = c gπ(u)(P (x))απ(u)(P (x))m

of the system (26). We get

ν(gu) + nν(αu) = ν(gπ(u)).

But this can hold for at most one n, namely

n0 =
ν(gπ(u))− ν(gu)

ν(αu)
.

In the second case we look at

gπ−1(u)(x)απ−1(u)(x)n = c gu(P (x))αu(P (x))m.

Similar as above we get

ν(gπ−1(u)) = ν(gu(P )) + mν(αu(P ))

and this can only hold for at most one m, namely

m0 =
ν(gπ−1(u))− ν(gu(P ))

ν(αu(P ))
.

Let us first assume the conditions of Theorem 2. The case that there is
at most one n = n0 implies as above that we have

c απ(u)(P (x))m =
gu(x)αu(x)n0

gπ(u)(P (x))
.

¿From this we can again conclude that there is at most one m too. The case
that there is at most one m = m0 runs the same line and gives by

c−1απ−1(u)(x)n =
gu(P (x))αu(P (x))m0

gπ−1(u)(x)

and condition (i) that there is at most one n. So in this case each system
(26) gives at most one solution (n,m).

Finally, we assume the hypotheses of Theorem 4. Again as above we get
via the equations

Gm(P (x)) = Gn0(x) or Gn(x) = Gm0(P (x))

and Theorem 6 that there are at most e(6d)3d
solutions (n,m) respectively.

To sum up we can bound the number of solutions (n, m) ∈ Z2, n, m ≥
0, n 6= m which come from systems of equations (26) by

d!e(6d)3d
.
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Using this bound and the other bound calculated in the previous chapter we
will be able to complete our proof and we will do this for Theorems 1 and 2
and Theorems 3 and 4 in separate sections.

9. Calculation of the bounds for Theorems 1 and 2

It is left to show that the equation
d∑

i=1

gi(x)
gd(P (x))

xi −
d−1∑

i=1

gi(P (x))
gd(P (x))

xd+i = 1

where x1, . . . , x2d−1 are elements of the set KΓ ⊂ US where S is a set
of absolute values of F , which exists by Lemma 2, has at most W (2d −
1) solutions where no nontrivial subsum vanishes. We want to do this by
applying Proposition 2. Therefore, we first have to show that each pair
(xi, xj) gives rise to at most k solutions of the above equation. Lemma 3
implies that any given pair of elements (xi, xj) or (xi, xd+j) for 1 ≤ i < j ≤ d
gives rise to at most one pair (n,m). Because of the fact that α1(x), . . . , αd(x)
are not in K∗ (and therefore also α1(P (x)), . . . , αd(P (x)) are not in K∗) it
follows that a given pair (xd+i, xd+j) (1 ≤ i < j ≤ d) induces at most one
m. But this implies that we have to calculate the number of solutions n of
Gn(x) = cGm(P (x)). If Gm(P (x)) = 0 this equation reduces to Gn(x) = 0,
which can happen by Theorem 6 for at most

e(6d)3d

many n. Now, if Gm(P (x)) is different from 0 we have to consider the equa-
tion

(28)
g1(x)

Gm(P (x))
z1 + . . . +

gd(x)
Gm(P (x))

zd = 1,

where
z1 = c−1α1(x)n, . . . , zd = c−1αd(x)n.

But we can apply Proposition 2 to this equation once more: each pair (zi, zj)
gives rise to at most one n, because otherwise we have αi(x)/αj(x) ∈ K∗,
which contradicts assumption (i) in Theorems 1 and 2; moreover, assume
that we have

γc−1αi(x)n1 ∈ K∗, γc−1αi(x)n2 ∈ K∗,
where γ ∈ F ∗, then we get a contradiction unless n1 = n2. Thus we can
bound the number of solutions of (28), where no subsum vanishes, by A(d−
1, 1). Since all nontrivial subsums are of the same shape and there are at
most 2d subsums, we get that there are at most

2de(d−1)2 [log(g + 2)]d−3 (ed)(d−2)d(s+1)

pairs (n,m) in this case. Altogether, we get at most

ed2+(6d)3d
[log(g + 2)]d−3 (ed)(d−2)d(s+1)

solutions (n,m) of (23).
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Now let γ1, γ2 ∈ F ∗ be given. In exactly the same way as above, Lemma
3 implies that γ1xi, γ2xj ∈ K∗ or γ1xi, γ2xd+j ∈ K∗ for 1 ≤ i < j ≤ d gives
rise to at most one pair (n,m). Because of the fact that α1(x), . . . , αd(x)
are not in K∗ (and therefore also α1(P (x)), . . . , αd(P (x)) are not in K∗) it
follows that γ1xd+i, γ2xd+j ∈ K∗ (1 ≤ i < j ≤ d) induces at most one m
and we can use the arguments from above to get an upper bound for the
number of (n,m) with this property.

¿From this it follows that we may take

k = ed2+(6d)3d
[log(g + 2)]d−3 (ed)(d−2)d(s+1).

Now Proposition 2 implies that equation (23) has at most

W (2d− 1) =

= e(d2+(6d)3d)(2d−1)e(2d−1)2 [log(g + 2)]3d−6 (2ed)[(2d−2)2d+(d−2)d](s+1) ≤
≤ e(d2+2d−1+(6d)3d)(2d−1) [log(g + 2)]3(d−1) (2ed)5d2(s+1)

solutions (n,m), where no subsum vanishes.
By using the bound for the genus g of F/K (Lemma 1), we get

[log(g + 2)]3(d−1) ≤ [6d log d]3(d−1) ≤ ed6
.

Combing this bound with the upper bounds calculated in Section 7 and
Section 8, which was in sum

d · (W (2d− 1) + 2d max
{
W (d− 1), e(6d)3d}

e(6(d−1))3(d−1)
+

+4dW (2d− 3)
)

+ d!e(6d)3d

and using the bound for the cardinality of S (Lemma 2), we get the following
bound

C(d,A0, P ) = e(6d)4d
(2ed)30d2d!2 deg A0 deg P

for the number of pairs (n,m) of integers with n 6= m such that Gn(x) =
Gm(P (x)).

10. Calculation of the bounds for Theorems 3 and 4

We first have to show that (23), which we have written shorter by

β1x1 + . . . + βdxd + βd+1xd+1 + . . . + β2d−1x2d−1 = 1,

where x1, . . . , x2d−1 ∈ Γ ⊂ US has at most W (2d − 1) nondegenerate solu-
tions (n, m), i.e. solutions where no non-trivial subsum of the left hand side
of (23) vanishes. This follows from the Main Theorem of S-unit equations
over fields of characteristic zero due to Evertse, Schlickewei and Schmidt
(Theorem 5). But instead of applying it directly to the group Γn, which
would yield W (2d− 1) = e(6(2d−1))3(2d−1)(2d+1), we apply it to the subgroup
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Γ̃ of (F ∗)2d−1 generated by

(α1(x), . . . , αd(x), 1, . . . , 1) and(
αd(P (x))−1, . . . , αd(P (x))−1,

α1(P (x))
αd(P (x))

, . . . ,
αd−1(P (x))
αd(P (x))

)
.

Thus the rank of Γ̃ is at most 2. Therefore, we get

W (2d− 1) = e(6(2d−1))3(2d−1)·3)

for the number of nondegenerate solutions of (23). In the same way we obtain

W (2d− 3) = e(6(2d−3))3(2d−3)·3)

and
W (d− 1) = e(6(d−1))3(d−1)·3).

Combining these bounds with the upper bounds calculated in Section 7 and
Section 8, yields

d · (W (2d− 1) + 2d max
{
W (d− 1), e(6d)3d}

e(6(d−1))3(d−1)
+

+4dW (2d− 3)
)

+ d!e(6d)3d

and therefore we get the following bound

C(d) = e(12d)6d

for the number of pairs (n,m) of integers with n 6= m such that Gn(x) =
Gm(P (x)).
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