Perfect Powers in Second Order Linear Recurrences

Attila Реthö
Mathematical Institut, Kossuth Lajos University, Debrecen, Pf. 12, 4010. Hungary
Communicated by P. Erdös

Received September 8, 1980; revised December 22, 1980
IN MEMORY OF MY MOTHER

Let A, B, G_{0}, G_{1} be integers, and $G_{n}=A G_{n-1}-B G_{n-2}$ for $n \geqslant 2$. Let further S be the set of all nonzero integers composed of primes from some fixed finite set. In this paper we shall prove that natural conditions for A, B, G_{0} and G_{1} imply, that the diophantine equation $G_{n}=w x^{a}$ has only finitely many solutions in integers $|x|>1, q \geqslant 2, n$ and $w \in S$.

1. Introduction

Let A, B, G_{0}, G_{1} be integers. We define a sequence $\left\{G_{n}\right\}$ by the recurrence relation

$$
\begin{equation*}
G_{n}=A G_{n-1}-B G_{n-2}, \quad n=2,3, \ldots . \tag{1}
\end{equation*}
$$

These sequences play an important role in various branches of number theory. Of particular interest are the Fibonacci and the Lucas sequences, which are defined with the initial terms $A=-B=G_{1}=1, G_{0}=0$ and $A=-B=G_{1}=1, G_{0}=2$. Their nth term will be denoted by F_{n} and L_{n}, respectively.

Let S be the set of all nonzero integers composed of primes from some fixed finite set. In this paper we deal with the solvability of the Diophantine equation

$$
\begin{equation*}
G_{n}=w x^{q} \tag{2}
\end{equation*}
$$

in integers $w \in S, q \geqslant 2, x, n$.
Equation (2) was completely solved for F_{n} and L_{n} with $w=1, q=2$ by Wylie [12] and Cohn [2]-further with $w=q=2$ by Cohn [3]. Bumby [1] and Cohn [4] have applied these results to solve Diophantine equations. In his book |10| Mordell gave a review of the results mentioned above.

Recently Györy et al. [6], and Györy $|5|$ have established the finiteness of the number of solutions of (2) for $G_{0}=0, G_{1}=1$ and $x=1$, independently from A and B.

Put $C=G_{1}^{2}-A G_{0} G_{1}+B G_{0}^{2}$ and $D=A^{2}-4 B$. We can now formulate the main result.

Theorem. Suppose $A \neq 0,\left|G_{0}\right|+\left|G_{1}\right| \neq 0,(A, B)=1, A^{2} \neq i B$, where $i=1.2 .3$ or 4 . Suppose further that D is not a perfect square if $B C=0$. Then Eq. (2) in integers $w \in S, q \geqslant 2, x, n$ implies

$$
\begin{aligned}
\max \{|w|,|x|, n, q\}<C_{1}, & \text { if } \quad|x|>1, \\
\max \{|w|, n\}<C_{2}, & \text { if }|x|=1, \\
n<C_{3}, & \text { if } \quad x=0,
\end{aligned}
$$

where C_{1}, C_{2}, C_{3} are effectively computable constants depending only on A, B, G_{0}, G_{1} and S.

Let α and β be the roots of the equation

$$
\begin{equation*}
X^{2}-A X+B=0 . \tag{3}
\end{equation*}
$$

Put $a=G_{1}-G_{0} \alpha$ and $b=G_{1}-G_{0} \beta$. Then

$$
G_{n}=\frac{a \alpha^{n}-b \beta^{n}}{\alpha-\beta} \quad(\alpha \neq \beta)
$$

An immediate consequence of the Theorem is the following:

Corollary. Let $A \neq 0, B, G_{0}, G_{1}$ be integers such that $(A, B)=1$, $A^{2} \neq i B$, where $i=1,2,3$ or 4 , and $B\left(G_{1}^{2}-A G_{0} G_{1}+B G_{0}^{2}\right) \neq 0$. Let further α and β be the roots of (3) and let a, b be defined as above. Then

$$
\left(a \alpha^{n}-b \beta^{n}\right) /(\alpha-\beta)=w x^{q},
$$

in integers $w \in S, q \geqslant 2, x, n$ implies

$$
\begin{aligned}
\max \{|w|,|x|, n, q\}<C_{4}, & \text { if }|x|>1, \\
\max \{|w|, n\}<C_{5}, & \text { if }|x|=1, \\
n<C_{6}, & \text { if } x=0,
\end{aligned}
$$

where C_{4}, C_{3}, C_{6} are effectively computable constants depending only on A, B, G_{0}, G_{1} and S.

If α and β are integers, this is a special case of Theorem $3\{11\}$.

Remarks. From the hypothesis of the Theorem it follows, that α / β, where α and β are the roots of (3), is not a root of unity and that $a b \neq 0$.

In fact if $D>0$, then α and β are real and α / β is a root of unity if and only if $\alpha= \pm \beta$. On the other hand $\alpha+\beta=-A$ and $\alpha \beta=B$. Now $\alpha \neq-\beta$ because $A \neq 0$, while $\alpha \neq \beta$ because $A^{2} \neq 4 B$.

If $D<0$, then α and β are conjugate complex numbers. Let $\alpha / \beta=\varepsilon$ be a root of unity. α and β are quadratic algebraic numbers, so ε is a quadratic integer. But these are only $\varepsilon= \pm i$ and $\varepsilon=(\pm 1 \pm i \sqrt{3}) / 2$. From $\varepsilon= \pm i$ follows $A^{2}=2 B$; from $\varepsilon=(-1 \pm i \sqrt{3}) / 2$ follows $A^{2}=B$, finally from $\varepsilon=(1 \pm i \sqrt{3}) / 2$ follows $A^{2}=3 B$. But these are not allowed in the Theorem.

Finally $a=0$ means $G_{1}-G_{0} \alpha=0 . G_{0}$ can not be zero, so $\alpha=G_{1} / G_{0}$. Now (3) yields $\left(G_{1} / G_{0}\right)^{2}-A G_{1} / G_{0}+B=0$ or $C=G_{1}^{2}-A G_{1} G_{0}+B G_{0}^{2}=0$. Further α is rational, therefore D must be a perfect square.

2. Auxiliary Results

We base the proof of the Theorem on the following results, which were all proved by Baker's method.

Theorem A. Let $f(x, y) \in Q|x, y|$ be a binary form with $f(1,0) \neq 0$ such that among the linear factors in the factorisation of f at least two are distinct. Let d be a positive integer. Then the equation

$$
f(x, y)=w z^{q}
$$

in integers $w \in S, y \in S, q \geqslant 3, x, z$ with $(x, y)=d,|z|>1$ implies that

$$
\max \left\{\left|w^{\prime}\right|,|x|,|y|,|z|, q\right\}<C_{7},
$$

where C_{7} is an effectively computable constant depending only on f, d and S.
This is due to Schinzel et.al. [11].
Theorem B. Let $f(x) \in Q \mid x]$ be a quadratic polynomial with distinct roots and for integral x let $P(x)$ denote the greatest positive prime factor of $f(x)$. Then there exists an effectively computable constant C_{8} depending only on f such that

$$
P(x)>C_{8} \log \log |x|
$$

This was proved by Keates $|7|$. It has many generalisations. In this connection see also $|11|$.

Theorem C. Let $A \neq 0,(A, B)=1, \quad\left|G_{1}\right|+\left|G_{0}\right| \neq 0, \quad A^{2} \neq i B$ with $i=1,2,3$ or 4 , and $C \neq 0$. Then the sequence G_{n} defined by (1) has at most
one zero term. Further there is an effectively computable constant C_{9} depending only on A, B, G_{0} and G_{1} such that $G_{n} \neq 0$ for any $n>C_{9}$.

If $D<0$, then (3) has conjugate complex roots. They have equal absolute values. A lower bound for G_{n} is therefore more difficult to obtain than in the case $D>0$.

Theorem D. Suppose $A \neq 0, \quad D<0, \quad(A, B)=1 . \quad\left|G_{0}\right|+\left|G_{1}\right| \neq 0$. Further let α, β be the roots of (3) and let a, b be defined as above. Finally suppose that α / β is not a root of unity. Then there is an effectively computable constant C_{10} depending only on A, B, G_{0}, G_{1} such that for any $n>C_{9}$

$$
\frac{|a|}{2 \sqrt{|D|}}\left|\alpha^{n}\right| n \quad c_{11}<\left|G_{n}\right| \leqslant \frac{2|a|}{\sqrt{|D|}}\left|\alpha^{n}\right|
$$

is satisfied.
Theorems C and D were proved by Kiss $|8|$. He shows there explicitly, how the constants C_{9} and C_{10} depend on A, B, G_{0}, G_{1}.

3. Lemmas on Second Order Linear Recurrences

In this section we shall use the notations, defined in the Introduction.
Lemma 1. Let A, B, G_{0}, G_{1} be integers, and let G_{n} for $n \geqslant 2$ be defined by (1). Then for any $n \geqslant 0$

$$
\begin{equation*}
G_{n+1}^{2}-A G_{n+1} G_{n}+B G_{n}^{2}=C B^{n} \tag{4}
\end{equation*}
$$

This was proved in the special case $G_{0}=0, G_{1}=|B|=1$ by Kiss [9].
Proof. We prove the Lemma by induction. For $n=0$ (4) is obviously true. Further by (1)

$$
\begin{aligned}
G_{n+2}^{2} & -A G_{n+2} G_{n+1}+B G_{n+1}^{2} \\
& =\left(A G_{n+1}-B G_{n}\right)^{2}-A\left(A G_{n+1}-B G_{n}\right) G_{n+1}+B G_{n+1}^{2} \\
& =B\left(G_{n+1}^{2}-A G_{n+1} G_{n}+B G_{n}^{2}\right)=B C B^{n}=C B^{n+1}
\end{aligned}
$$

is satisfied for $n>0$.
Lemma 2. Let A, B, G_{1} be nonzero integers. If the prime number p divides B, but does not divide $A G_{1}$, then it does not divide G_{n} for $n \geqslant 1$.

Proof. For $n=1$ the Lemma is obviously true. Suppose $p \nmid G_{n}$ for some $n \geqslant 1$. Then by (1)

$$
G_{n+1}+B G_{n-1}=A G_{n}
$$

This shows, that p / G_{n+1} can not be true, and so the Lemma is proved.
Lemma 3. Let $A, B \neq 0, G_{0}, G_{1}$ be integers with $(A, B)=1, C \neq 0$. $\left|G_{0}\right|+\left|G_{1}\right| \neq 0$. Let p be a prime divisor of $\left(G_{1}, B\right)>1$. Put $G_{n}=p^{\alpha_{n}} \bar{G}_{n}$, $C=p^{\gamma} \bar{C}, B=p^{\beta} \bar{B}$, with $\left(\bar{G}_{n}, p\right)=(\bar{C}, p)=(\bar{B}, p)=1$ for $n \geqslant 0, G_{n} \neq 0$. If $G_{n}=0$ for some n, then put $\alpha_{n}=\alpha_{n+1}$ and $\bar{G}_{n}=0$. Finally take $N_{1}=\left(\gamma-2 \alpha_{0}\right) / \beta$. Then

$$
\begin{equation*}
\alpha_{n}=\alpha_{N} \tag{5}
\end{equation*}
$$

is satisfied for any $n \geqslant N$, with $N=\max \left\{\left[N_{1}\right]+3,2\right\}$, where $\left[N_{1}\right]$ denotes the greatest integer $\leqslant N_{1}$.
Proof. It follows from (1), that for any $n \geqslant 2$

$$
\begin{equation*}
\alpha_{n} \geqslant \min \left\{\alpha_{n-1}, \beta+\alpha_{n-2}\right\} \tag{6}
\end{equation*}
$$

and $>$ is possible only if $\alpha_{n-1}=\beta+\alpha_{n-2}$.
(i) If for some $m \alpha_{m} \geqslant \alpha_{m+1}$, then

$$
\alpha_{m+2} \geqslant \min \left\{\alpha_{m+1}, \alpha_{m}+\beta\right\}=\alpha_{m+1}, \quad \text { thus } \alpha_{m+1}=\alpha_{m+2}=\cdots .
$$

If $\alpha_{0} \geqslant \alpha_{1}$, then (5) follows immediately from (i) with $N=2$. Furthermore $\alpha_{0}<\alpha_{1}$ implies $G_{0} \neq 0, \gamma \geqslant 2 \alpha_{0}$ and $N_{1} \geqslant 0$.

In the sequel we shall assume that $\left[N_{1}\right] \geqslant 1$. It suffices to prove that the assumption of (i) are satisfied for some $m \leqslant\left[N_{1}\right]+2$. Suppose, on the contrary, that $\alpha_{0}<\alpha_{1}<\cdots<\alpha_{\left|w_{1}\right|+2}$. Then $\alpha_{k}=\alpha_{0}+k \beta$ for $k=0,1 \ldots .,\left|N_{1}\right|+1$ can be easily proved by the application of (6). This implies $G_{k} \neq 0$ for $k=0,1, \ldots,\left|N_{1}\right|+1$.

Consider (4) with $n=\left|N_{1}\right|$. The right-hand side is divisible exactly by the $\gamma+\left|N_{1}\right| \beta$ th power of p. At the same time the left-hand side is divisible at least by the $2 \alpha_{0}+\left(2\left|N_{1}\right|+1\right) \beta$ th power of p. Thus

$$
\gamma+\left|N_{1}\right| \beta \geqslant 2 \alpha_{0}+\left(2\left|N_{1}\right|+1\right) \beta .
$$

But this means that

$$
\left|N_{\mathrm{t}}\right| \leqslant \frac{\gamma-2 \alpha_{0}}{\beta}-1<\left[\frac{\gamma-2 \alpha_{0}}{\beta}\right]=\left|N_{1}\right| .
$$

This is a contradiction, and the proof is completed.

In the following C_{11}, C_{12}, \ldots, will denote effectively computable constants depending only on A, B, G_{0}, G_{1} and S.

Lemma 4. Under the assumptions of the Theorem

$$
\begin{equation*}
\left|G_{n}\right|<C_{11} \tag{7}
\end{equation*}
$$

implies $n<C_{12}$
Proof. First we observe, that the assumptions imply $B \neq 0$. Let α and β be the roots of

$$
X^{2}-A X+B=0
$$

α / β cannot be a root of unity because of the hypothesis of the Theorem, as was pointed out in the Remarks. Put $a=G_{1}-G_{0} \beta$ and $b=G_{1}-G_{0} \alpha$. In the Remarks it was shown, that $a b=0$ yields $C=0$ and D is a perfect square. So ab cannot be zero. Further it is well known, that

$$
G_{n}=\frac{a \alpha^{n}-b \beta^{n}}{\alpha-\beta}
$$

If $D<0$, then by Theorem D

$$
\frac{|a|}{2 \sqrt{|D|}}\left|\alpha^{n}\right| n^{-c_{11}}<\left|G_{n}\right|
$$

is satisfied for any $n>C_{9}$. Therefore by (7)

$$
\begin{gathered}
|a| \\
2 \sqrt{|D|}\left|\alpha^{n}\right| n^{-C_{10}}<C_{11} .
\end{gathered}
$$

The function on the left-hand side tends to infinity with n. So there exists a constant C_{3} with $n<C_{13}$. Put $C_{12}=\max \left\{C_{9}, C_{13}\right\}$. This is the required constant if $D<0$.

If $D>0$, then α and β are both real. We may assume $|\beta|<|\alpha|$ which implies $\lim _{n \rightarrow \infty}(|\beta| /|\alpha|)^{n}=0$, so there exists a constant C_{14} with

$$
|\alpha|^{n}<\frac{C_{11}|\alpha-\beta|}{C_{14}} .
$$

Hence $n<C_{12}=\log \left(C_{11}|\alpha-\beta| / C_{14}\right)(\log |\alpha|)^{1}$, and this completes the proof.

4. Proof of the Theorem

Suppose that the integers $w \in S, q \geqslant 2, n, x$ are solutions of (2). If we replace in (4) G_{n} with $w x^{q}$ then we obtain the Diophantine equation

$$
G_{n+1}^{2}-A G_{n+1} w x^{q}+B\left(w x^{q}\right)^{2}=C B^{n}
$$

in integers G_{n+1}, w, x, q. This is solvable in G_{n+1} if and only if there exists an integer z with

$$
\begin{equation*}
D w^{2} x^{2 q}=z^{2}-4 C B^{n} \tag{8}
\end{equation*}
$$

Assume $C=0$. Then by the hypothesis of Theorem D cannot be a perfect square. On the other hand (8) yields

$$
z^{2}=D w^{2} x^{24}
$$

This Diophantine equation has the only integer solution $x=z=0$. Therefore $G_{n}=0$, and by Theorem C there exists a constant C_{15}, with $n<C_{15}$.

In the sequel we shall assume $C \neq 0$. First we observe that the assumptions of the Theorem imply $B \neq 0$. By Lemmas 2 and $3\left(G_{n}, B^{n}\right)=$ $\left(w x^{q}, B^{n}\right)<C_{16}$. Furthermore $(D, B)=1$, so we have $\left(\mathrm{z}, B^{n}\right)<C_{17}$.

Let S_{1} be the set of the prime divisors of D and B. Put $S_{0}=S \cup S_{1}$. (8) can be written in the form

$$
\begin{array}{ll}
v x^{2 q}=f_{1}(z, t), & \text { if } \quad n \text { even } \\
v x^{2 q}=f_{2}(z, t), & \text { if } n \text { odd } \tag{10}
\end{array}
$$

with $v=D w^{2}, h=[n / 2\rceil, t=B^{h}, f_{1}(z, t)=z^{2}-4 C t^{2}, f_{2}(z, t)=z^{2}-4 C B t^{2}$. One sees that $f_{i}(1,0)=1$ for $i=1,2$ and in the factorization of f_{1} and f_{2} the two linear factors are distinct. We note finally that $2 q \geqslant 4$.

It follows from Theorem A, that there exists an effectively computable constant C_{18} depending only on f_{1}, f_{2}, d and S_{0} such that for any integer solution $t \in S_{0}, v \in S_{0},|x|>1, q \geqslant 2, z$ with $(z, t)=d<C_{17}$ of (9) and (10)

$$
\max \{|t|,|v|,|x|,|z|, q\}<C_{18}
$$

is satisfied. But f_{1}, f_{2}, S_{0} and d, therefore C_{18} also, depend only on A, B, G_{0}, G_{1} and S. Moreover we have

$$
|w|=\sqrt{v / D}<C_{18}^{1 / 2} / \sqrt{|D|}
$$

and

$$
\left|G_{n}\right|=\left|w \||x|^{4}<C_{18}^{q+1 / 2} / \sqrt{|D|}\right.
$$

This yields in combination with Lemma $4 n<C_{19} . C_{18}$ and C_{19} depend on d. Now we can choose C_{1} to be the maximum of C_{18} and C_{19} as d runs over its finitely many possible values.

In the sequel we shall prove the Theorem for $|x| \leqslant 1$. First we shall study the case $x=0$. Then $G_{n}=0$ and by Theorem C there is a constant C_{3} with $n<C_{3}$.

It remains to study the case $|x|=1$. Now from (8) we obtain

$$
\begin{equation*}
4 C B^{n}=z^{2}-D_{1} w^{2} \tag{11}
\end{equation*}
$$

with $D_{1}=D$ or $D_{1}=-D$ according as $x=1$ or $x=-1$. The function on the right-hand side of (11) satisfies obviously the hypothesis of Theorem A. So if $|B| \neq 1$ and $n>2$, we have for any integer solution $w \in S, n>2, z$ of (11)

$$
\max \{|w|,|z|, n\}<C_{20}
$$

If we choose C_{20} large enough, the last inequality remains true for $0 \leqslant n \leqslant 2$ also.

For $|B|=1$ we put $C_{1}=C$ or $C_{1}=-C$ according as $B=1$ or $B=-1$. With this notation if follows from (11) that

$$
\begin{equation*}
z^{2}-4 C_{1}=D_{1} w^{2} . \tag{12}
\end{equation*}
$$

The quadratic polynomial $z^{2}-4 C_{1}$ has two distinct zeros. Hence we obtain from Theorem B

$$
\left|G_{n}\right|=|w|<C_{21} .
$$

This implies again by Lemma 4 , that $n<C_{22}$. Putting C_{2} to be the maximum of C_{21} and C_{22} we complete the proof of the Theorem.

Note added in proof. A result similar to our Theorem has been proved by T. N. Shorey and C. L. Stewart, On the Diophantine equation $a x^{2 t}+b x^{4} y+c y^{2}=d$ and pure powers in recurrence sequences, to appear. They proved that (2) has finitely many, effectively computable solutions for any fixed integer d under the hypothesis of our Theorem except $(A, B)=1$.

References

1. R. T. Bumby, The Diophantine equation $3 x^{4}-2 y^{2}=1$, Math. Scand. 21 (1967), 144 . 148.
2. J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc, 39 (1964), 537-540.
3. J. H. E. Cohn, Lucas and Fibonacci numbers and some Diophantine equations, Proc. Glasgow Math. Assoc. 7 (1965), 24-28.
4. J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. 16 (1966). 153-166. Addendum, ibid, 17 (1967), 381.
5. K. Györy, On some arithmetical properties of Lucas and Lehmer numbers, Acta Arith., in press.
6. K. Györy, P. Kiss and A. Scuinzel, A note on Lucas and Lehmer sequences and their application to Diophantine equations, Coll. Math., in press.
7. M. Keates, On the greates prime factor of a polynomial, Proc. Edinburgh Math. Soc. 16 (1969), 301-303.
8. P. Kiss, Zero terms in second order linear recurrences, Math. Sem. Notes Kobe Univ. 7 (1979), 145-152.
9. P. Kiss, Diophantine representation of generalized Fibonacci numbers, Elem. Math. 34 (1979), 129-132.
10. L. J. Mordell, "Diophantine Equations," Academic Press, New York. 1969.
11. T. N. Shorey, A. van der Poorten, R. Tisdeman and A. Schinzel, Applications of the Gelfond-Raker Method to Diophantine equations, in "Transcendence Theory: Advances and Applications," Academic Press, New York, 1977.
12. O. Wylie, Solution of the problem. In the Fibonacci series $F_{1}=1, F_{2}=1, F_{n+1}=$ $F_{n}+F_{n-1}$ the first, second and twelfth terms are squares. Are there any others? Amer. Math. Monthly 71 (1964), 220-222.
