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IN MEMORY OF MY MOTHER 

Let A, B, G,, G, be integers, and G, = AG,- , - BG,-? for n > 2. Let further S 
be the set of all nonzero integers composed of primes from some fixed finite set. In 
this paper we shall prove that natural conditions for A. B. G, and G, imply. that 
the diophantine equation G, = WY ’ has only finitely many solutions in integers 
l.u/> I.q>2.nand~‘ES. 

1. INTRODUCTION 

Let A. B, G,, G, be integers. We define a sequence (G,} by the recurrence 
relation 

G, =AG,-, - BG,-,, n = 2, 3,.... (1) 

These sequences play an important role in various branches of number 
theory. Of particular interest are the Fibonacci and the Lucas sequences, 
which are defined with the initial terms A = -B = G, = 1, G, = 0 and 
A = -B = G, = 1, G, = 2. Their n th term will be denoted by F, and L,, , 
respectively. 

Let S be the set of all nonzero integers composed of primes from some 
fixed finite set. In this paper we deal with the solvability of the Diophantine 
equation 

G, = wxq (2) 

in integers MI E S, q > 2, x, n. 
Equation (2) was completely solved for F, and L, with 11’ = 1, q = 2 by 

Wylie [ 121 and Cohn [ 2]-further with w = q = 2 by Cohn [ 3 1. Bumby ] 1) 
and Cohn [4] have applied these results to solve Diophantine equations. In 
his book ] lo] Mordell gave a review of the results mentioned above. 
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Recently Gyiiry et al. [ 6 ], and Gyliry 15 1 have established the finiteness of 
the number of solutions of (2) for G, = 0. G, = 1 and x = 1, independently 
from A and B. 

Put C = Gf - AG,G, + BG: and D = A’ - 4B. We can now formulate the 
main result. 

THEOREM. Suppose AfO, /G,/+IG,I#O, (A,B)= 1, A’fiB, where 
i = I, 2, 3 or 4. Suppose further that D is not a perfect square if BC = 0. 
Then Eq. (2) in integers w E S, q > 2, x, n implies 

max I~II, I-xl,n,q) < C,, if Ix/ > 1, 

max{lwl, n} < C,, if Ix/ = 1, 

n < c,. if .Y = 0, 

$ectivelj computable constants depending only on A, where C,, C,, C, are 6 
B, G,, G, and S. 

Le;a and ,LI be the roots of the equation 

X2-AX+B=O. (3) 

Put a = G, - G,a and b = G, - G,,4. Then 

G,= aan - b/3” 
a-P 

(a f 8). 

An immediate consequence of the Theorem is the following: 

COROLLARY. Let A #O, B. G,, G, be integers such that (A, B) = 1, 
A’ # iB, where i = 1,2,3 or 4, and B(G: - AG,G, + BG,?,) # 0. Let further 
a and /I be the roots of (3) and let a, b be defined as above. Then 

(aa” - b/?“)/(a -p) = wx“, 

in integers w E S, q > 2, x, n implies 

maxilwl, I.ul,n,qj < C,, if 1 x / > 1, 

max(lb2~1, n} < C,, if 1x1=1, 

n c C,, lj- x=0, 

where C,, C,, C, are effectively computable constants depending only on 
A,B,G,.G, andS. 

If u and ,B are integers, this is a special case of Theorem 3 1 1 11. 



PERFECT POWERS IN LINEAR RECURRENCES / 

Remarks. From the hypothesis of the Theorem it follows, that a//I, 
where a and /3 are the roots of (3), is not a root of unity and that ab # 0. 

In fact if D > 0, then a and p are real and a//I is a root of unity if and 
only if a = k/3. On the other hand a +/I = --A and a/l = B. Now a # - /? 
because A # 0, while a #tp because A2 # 4B. 

If D < 0, then a and p are conjugate complex numbers. Let a//I := F be a 
root of unity. a and /I are quadratic algebraic numbers, so E is a quadratic 
integer. But these are only E = fi and 6 = (+ 1 f ifl)/2. From E = fi 
follows A2 = 2B; from F = (-1 f i $?)/2 follows A’ = B, finally from 
F = (1 Jo id)/2 follows A* = 3B. But these are not allowed in the Theorem. 

Finally a = 0 means G, - G,a = 0. G, can not be zero, so a =: G,/G,. 
Now (3) yields (G,/G,)* -AG,/G, + B = 0 or C = Gf -AC, G, + BG: = 0. 
Further a is rational, therefore D must be a perfect square. 

2. AUXILIARY RESULTS 

We base the proof of the Theorem on the following results, which were all 
proved by Baker’s method. 

THEOREM A. Let f(x, y) E Q1x.y ] be a birtary form with f( 1.0) # 0 
such that among the linear factors in the factorisation off at least two are 
distinct. Let d be a positive integer. Then the equation 

f (x, 4’) = wz4 

in integers w E S, y E S, q > 3, x. z with (x, y) = d, /z 1 > 1 implies that 

maxil++~l, lxI,l~/, lzl,q1 < C,, 

where C, is an effective& computable constant depending only OH f, d and S. 

This is due to Schinzel et. al. [ 11 I. 

THEOREM B. Let f(x) E Qlxl b e a quadratic po!ynomial with distinct 
roots and for integral x let P(x) denote the greatest positive prime factor of 
f(x). Then there exists an effectively computable constant C, depending on!\ 
011 f such that 

P(x)> C,loglog~x~. 

This was proved by Keates 171. It has many generalisations. In this 
connection see also Ill]. 

THEOREM C. Let A#O,(A,B)=l, /G,~+/G,~#O, A’fiB with 
i = 1.2. 3 or 4, and C # 0. Then the sequence G, defined by (1) has at most 
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one zero term. Further there is an effectively computable constant C, 
depending only on A, B, G, and G, such that G, # 0 for any n > C,. 

If D < 0, then (3) has conjugate complex roots. They have equal absolute 
values. A lower bound for G, is therefore more difficult to obtain than in the 
case D > 0. 

THEOREM D. Suppose A #O, D < 0, (A, B)= 1, IG,( + /G,/ ~0. 
Further let a, p be the roots of (3) and let a, b be defined as above. Finally 
suppose that a//l is not a root of unity. Then there is an effectively 
computable constant C,, depending only on A, B, G,, G, such that for an) 
I1 > c, 

is satisfied. 

Theoi’ems C and D were proved by Kiss 18 I. He shows there explicitly, 
how the constants C, and C,, depend on A, B, G,, G,. 

3. LEMMAS ON SECOND ORDER LINEAR RECURRENCES 

In this section we shall use the notations, defined in the Introduction. 

LEMMA 1. Let A, B, G,, G, be integers, and let G, for II > 2 be defined 
b-v (1). Then for any n > 0 

Gi,, -AC,+, G, + BG:, = CB”. (4) 

This was proved in the special case G, = 0, G, = I B / = 1 by Kiss [9 1. 

Proof. We prove the Lemma by induction. For n = 0 (4) is obviously 
true. Further by (1) 

G2,+, -AG,+zG,+, +BGf,+, 

= VG,,, - BG,)* - A(AG,+, - BG,) G,, , + BG;, , 

=W;+I -AC,+, G, + BG;) = BCB” = CB”’ ’ 

is satisfied for n > 0. 

LEMMA 2. Let A, B, G, be nonzero integers. If the prime number p 
divides B, but does not divide AC,, then it does not divide G, for n > 1, 
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Proof: For n = 1 the Lemma is obviously true. Suppose plG, for some 
n > 1. Then by (1) 

G n+, +BG,-, =AG,. 

This shows, that p/G,+ 1 can not be true, and so the Lemma is proved. 

LEMMA 3. Let A,B#O,G,,G, be integers with (A,B)=l, C#O. 
1 G,/ + LG, 1 # 0. Let p be a prime divisor of (G, , B) > 1. Put G, =p”” c,, 
C=pyC, B=p4& with (G,,p)=(C,p)=(B,p)= 1 for n>O, G,#O. Zj 
G, = 0 for some n, then put a,, = a,,+, and G,, = 0. Finally take 
N, = (y - 2a,)/P. Then 

a, = a,V (5) 

is satisfied for any n > N, with N = max( [N,] + 3, 2). where [N,] denotes 
the greatest integer ,cY,. 

Proof: It follows from (1) that for any n > 2 

a, >min{a,_,,P + a,-z) (6) 

and > is possible only if a,, _, = /I + an+*. 

(i) If for some m a,,, > a,,, + , , then 

a m+Z~min(a,+,,a,+p)=a,+,, thus a,,,+, =a,+,= ... . 

If a0 > a,, then (5) follows immediately from (i) with N = 2. Furthermore 
a0 < a1 implies G, # 0, y > 2a, and N, > 0. 

In the sequel we shall assume that (N,] > 1. It suffices to prove that the 
assumption of (i) are satisfied for some m < [N, ] + 2. Suppose, on the 
contrary, that a0 < a, < ... < a,,y,,+z. Then ak = a, + kP for 
k = 0, l,..., [N, ] + 1 can be easily proved by the application of (6). This 
implies G, # 0 for k = 0, l,..., [N, ] + 1. 

Consider (4) with n = [N,]. The right-hand side is divisible exactly by the 
1’ + IN, ] /?th power of p. At the same time the left-hand side is divisible at 
least by the 2a, + (2 [N, ] + 1) Pth power of p. Thus 

Y+ IN,I~>%+(21N,l+ l)P. 

But this means that 

,N&+l< [y]=[N,I. 

This is a contradiction, and the proof is completed. 
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In the following C’,, , C,, ,.... will denote effectively computable constants 
depending only on A, B, G,, G, and S. 

LEMMA 4. Under the assumptions of the Theorem 

implies n < C, z 

ProoJ First we observe, that the assumptions imply B # 0. Let a and p 
be the roots of 

X2-AX+B=O. 

u//? cannot be a root of unity because of the hypothesis of the Theorem, as 
was pointed out in the Remarks. Put a = G, - G,P and b = G, - G,a. In the 
Remarks it was shown, that ab = 0 yields C = 0 and D is a perfect square. 
So ab cannot be zero. Further it is well known, that 

G, = aan 
- bp” 

a-P 

If D ( 0, then by Theorem D 

is satisfied for any n > C,. Therefore by (7) 

Id 2 Ian/ 6’” < c,,. 

The function on the left-hand side tends to infinity with n. So there exists a 
constant C, with n < C,,. Put C,,=max(C,, C,,). This is the required 
constant if D < 0. 

If D > 0, then (I and p are both real. We may assume IpI < Iu/ which 
implies Em,,,, (ipI/ arl)” = 0, so there exists a constant C,, with 

,q < c,,/a -PI 
Cl, 

Hence fz < C,, = log(C,, ((L -pi/C,,)(loglul) ‘. and this completes the 
proof. 
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4. PROOF OF THE THEOREM 

Suppose that the integers w E S, 9 > 2, n. x are solutions of (2). If we 
replace in (4) G, with MV? then we obtain the Diophantine equation 

Gi+, -AG,+, wxq + B(wxq)’ = CB” 

in integers G,, , , ~1, X, q. This is solvable in G, + , if and only if there exists 
an integer z with 

Dfij2.y2q zz z2 - 4CB”. 63) 

Assume C = 0. Then by the hypothesis of Theorem D cannot be a perfect 
square. On the other hand (8) yields 

This Diophantine equation has the only integer solution x = z = 0. Therefore 
G, = 0. and by Theorem C there exists a constant C,, , with n < C,, . 

In the sequel we shall assume C # 0. First we observe that. the 
assumptions of the Theorem imply B # 0. By Lemmas 2 and 3 (G,,, B”) = 
(wxq, B”) < c,,. Furthermore (D, B) = 1, so we have (z, B”) < C,, . 

Let S, be the set of the prime divisors of D and B. Put S, = S IJ S, . (8) 
can be written in the form 

L’X2~ =f, (z, t), if n even (9) 

L’XQ =f2(z, t), if n odd, (10) 

with 11 = Dw’, h = [n/2], t = Bh, f,(z, t) = z2 - 4Ct2, f2(z, t) = z2 - 4CBt’. 
One sees that fi( 1, 0) = 1 for i = 1, 2 and in the factorization off, and f2 the 
two linear factors are distinct. We note finally that 2q > 4. 

It follows from Theorem A, that there exists an effectively computable 
constant C,, depending only on f,, f2, d and S, such that for any integer 
solution t E S,, u E S,, 1x1 > 1. q > 2, z with (z, t) = d < C,, of (9) and (10) 

is satisfied. But f,, fi, S, and d, therefore C,, also, depend only on ri, B, G,, 
G, and S. Moreover we have 

and 
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This yields in combination with Lemma 4 n < C,,. C,, and C,, depend on d. 
Now we can choose C, to be the maximum of C,, and C,, as d runs over its 
finitely many possible values. 

In the sequel we shall prove the Theorem for 1x1 < 1. First we shall study 
the case x = 0. Then G, = 0 and by Theorem C there is a constant C, with 
n<C,. 

It remains to study the case 1x1 = 1. Now from (8) we obtain 

4CB” = z2 - D, w2, (11) 

with D, = D or D, = -D according as x = 1 or x = - 1. The function on the 
right-hand side of (11) satisfies obviously the hypothesis of Theorem A. So if 
1 B I# 1 and n > 2, we have for any integer solution w E S, n > 2, z of (11) 

max{lwl, 1~1, n) < Czo. 

If we choose C,, large enough, the last inequality remains true for 0 < n < 2 
also. 

For I\Bl=l we put C,=C or C,=-C according as B=l or B=-1. 
With this notation if follows from (11) that 

z2 - 4C, = D, iv’. (12) 

The quadratic polynomial z2 - 4C, has two distinct zeros. Hence we obtain 
from Theorem B 

/Gn/ = Iwl < C2,. 

This implies again by Lemma 4, that n < C,,. Putting C, to be the maximum 
of C,, and C,, we complete the proof of the Theorem. 

Nofe added in prooJ A result similar to our Theorem has been proved by T. N. Shorey and 
C. L. Stewart, On the Diophantine equation ax” + 6x’J~ + cJl’= d and pure powers in 
recurrence sequences, to appear. They proved that (2) has finitely many, effectively 
computable solutions for any fixed integer d under the hypothesis of our Theorem except 
(A.B)= I. 
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