Perfect Powers in Second Order Linear Recurrences

Attila Pethö

Mathematical Institut, Kossuth Lajos University, Debrecen, Pf. 12, 4010, Hungary

Communicated by P. Erdös

Received September 8, 1980; revised December 22, 1980

IN MEMORY OF MY MOTHER

Let A, B, G_0 , G_1 be integers, and $G_n = AG_{n-1} - BG_{n-2}$ for $n \ge 2$. Let further S be the set of all nonzero integers composed of primes from some fixed finite set. In this paper we shall prove that natural conditions for A, B, G_0 and G_1 imply, that the diophantine equation $G_n = wx^q$ has only finitely many solutions in integers |x| > 1, $q \ge 2$, n and $w \in S$.

1. INTRODUCTION

Let A, B, G_0 , G_1 be integers. We define a sequence $\{G_n\}$ by the recurrence relation

$$G_n = AG_{n-1} - BG_{n-2}, \qquad n = 2, 3,....$$
 (1)

These sequences play an important role in various branches of number theory. Of particular interest are the Fibonacci and the Lucas sequences, which are defined with the initial terms $A = -B = G_1 = 1$, $G_0 = 0$ and $A = -B = G_1 = 1$, $G_0 = 2$. Their *n*th term will be denoted by F_n and L_n , respectively.

Let S be the set of all nonzero integers composed of primes from some fixed finite set. In this paper we deal with the solvability of the Diophantine equation

$$G_n = w x^q \tag{2}$$

in integers $w \in S$, $q \ge 2$, x, n.

Equation (2) was completely solved for F_n and L_n with w = 1, q = 2 by Wylie [12] and Cohn [2]—further with w = q = 2 by Cohn [3]. Bumby [1] and Cohn [4] have applied these results to solve Diophantine equations. In his book [10] Mordell gave a review of the results mentioned above.

ATTILA PETHÖ

Recently Györy *et al.* [6], and Györy [5] have established the finiteness of the number of solutions of (2) for $G_0 = 0$, $G_1 = 1$ and x = 1, independently from A and B.

Put $C = G_1^2 - AG_0G_1 + BG_0^2$ and $D = A^2 - 4B$. We can now formulate the main result.

THEOREM. Suppose $A \neq 0$, $|G_0| + |G_1| \neq 0$, (A, B) = 1, $A^2 \neq iB$, where i = 1, 2, 3 or 4. Suppose further that D is not a perfect square if BC = 0. Then Eq. (2) in integers $w \in S$, $q \ge 2$, x, n implies

$$\begin{split} \max \{ |w|, |x|, n, q \} &< C_1, & \text{if } |x| > 1, \\ \max \{ |w|, n \} &< C_2, & \text{if } |x| = 1, \\ n &< C_3, & \text{if } x = 0, \end{split}$$

where C_1 , C_2 , C_3 are effectively computable constants depending only on A, B, G_0 , G_1 and S.

Let α and β be the roots of the equation

$$X^2 - AX + B = 0. (3)$$

Put $a = G_1 - G_0 \alpha$ and $b = G_1 - G_0 \beta$. Then

$$G_n = \frac{a\alpha^n - b\beta^n}{\alpha - \beta} \qquad (\alpha \neq \beta).$$

An immediate consequence of the Theorem is the following:

COROLLARY. Let $A \neq 0, B, G_0, G_1$ be integers such that (A, B) = 1, $A^2 \neq iB$, where i = 1, 2, 3 or 4, and $B(G_1^2 - AG_0G_1 + BG_0^2) \neq 0$. Let further α and β be the roots of (3) and let a, b be defined as above. Then

$$(a\alpha^n - b\beta^n)/(\alpha - \beta) = wx^q,$$

in integers $w \in S, q \ge 2, x, n$ implies

$$\max \{ |w|, |x|, n, q \} < C_4, \quad if \quad |x| > 1,$$
$$\max \{ |w|, n \} < C_5, \quad if \quad |x| = 1,$$
$$n < C_6, \quad if \quad x = 0,$$

where C_4 , C_5 , C_6 are effectively computable constants depending only on A, B, G_0, G_1 and S.

If α and β are integers, this is a special case of Theorem 3 [11].

Remarks. From the hypothesis of the Theorem it follows, that α/β , where α and β are the roots of (3), is not a root of unity and that $ab \neq 0$.

In fact if D > 0, then α and β are real and α/β is a root of unity if and only if $\alpha = \pm \beta$. On the other hand $\alpha + \beta = -A$ and $\alpha\beta = B$. Now $\alpha \neq -\beta$ because $A \neq 0$, while $\alpha \neq \beta$ because $A^2 \neq 4B$.

If D < 0, then α and β are conjugate complex numbers. Let $\alpha/\beta = \varepsilon$ be a root of unity. α and β are quadratic algebraic numbers, so ε is a quadratic integer. But these are only $\varepsilon = \pm i$ and $\varepsilon = (\pm 1 \pm i\sqrt{3})/2$. From $\varepsilon = \pm i$ follows $A^2 = 2B$; from $\varepsilon = (-1 \pm i\sqrt{3})/2$ follows $A^2 = B$, finally from $\varepsilon = (1 \pm i\sqrt{3})/2$ follows $A^2 = B$. But these are not allowed in the Theorem.

Finally a = 0 means $G_1 - G_0 \alpha = 0$. G_0 can not be zero, so $\alpha = G_1/G_0$. Now (3) yields $(G_1/G_0)^2 - AG_1/G_0 + B = 0$ or $C = G_1^2 - AG_1G_0 + BG_0^2 = 0$. Further α is rational, therefore D must be a perfect square.

2. AUXILIARY RESULTS

We base the proof of the Theorem on the following results, which were all proved by Baker's method.

THEOREM A. Let $f(x, y) \in Q[x, y]$ be a binary form with $f(1, 0) \neq 0$ such that among the linear factors in the factorisation of f at least two are distinct. Let d be a positive integer. Then the equation

$$f(x, y) = wz^{\alpha}$$

in integers $w \in S, y \in S, q \ge 3, x, z$ with (x, y) = d, |z| > 1 implies that

$$\max\{|w|, |x|, |y|, |z|, q\} < C_{\gamma},$$

where C_{γ} is an effectively computable constant depending only on f, d and S.

This is due to Schinzel et. al. [11].

THEOREM B. Let $f(x) \in Q[x]$ be a quadratic polynomial with distinct roots and for integral x let P(x) denote the greatest positive prime factor of f(x). Then there exists an effectively computable constant C_8 depending only on f such that

$$P(x) > C_8 \log \log |x|.$$

This was proved by Keates [7]. It has many generalisations. In this connection see also [11].

THEOREM C. Let $A \neq 0$, (A, B) = 1, $|G_1| + |G_0| \neq 0$, $A^2 \neq iB$ with i = 1, 2, 3 or 4, and $C \neq 0$. Then the sequence G_n defined by (1) has at most

ATTILA PETHÖ

one zero term. Further there is an effectively computable constant C_9 depending only on A, B, G_0 and G_1 such that $G_n \neq 0$ for any $n > C_9$.

If D < 0, then (3) has conjugate complex roots. They have equal absolute values. A lower bound for G_n is therefore more difficult to obtain than in the case D > 0.

THEOREM D. Suppose $A \neq 0$, D < 0, (A, B) = 1, $|G_0| + |G_1| \neq 0$. Further let α , β be the roots of (3) and let α , β be defined as above. Finally suppose that α/β is not a root of unity. Then there is an effectively computable constant C_{10} depending only on A, B, G_0, G_1 such that for any $n > C_9$

$$\frac{|a|}{2\sqrt{|D|}} |\alpha^n| n^{-C_{10}} < |G_n| \leq \frac{2|a|}{\sqrt{|D|}} |\alpha^n|$$

is satisfied.

Theorems C and D were proved by Kiss [8]. He shows there explicitly, how the constants C_9 and C_{10} depend on A, B, G_0, G_1 .

3. LEMMAS ON SECOND ORDER LINEAR RECURRENCES

In this section we shall use the notations, defined in the Introduction.

LEMMA 1. Let A, B, G_0, G_1 be integers, and let G_n for $n \ge 2$ be defined by (1). Then for any $n \ge 0$

$$G_{n+1}^2 - AG_{n+1}G_n + BG_n^2 = CB^n.$$
 (4)

This was proved in the special case $G_0 = 0$, $G_1 = |B| = 1$ by Kiss [9].

Proof. We prove the Lemma by induction. For n = 0 (4) is obviously true. Further by (1)

$$G_{n+2}^2 - AG_{n+2}G_{n+1} + BG_{n+1}^2$$

= $(AG_{n+1} - BG_n)^2 - A(AG_{n+1} - BG_n)G_{n+1} + BG_{n+1}^2$
= $B(G_{n+1}^2 - AG_{n+1}G_n + BG_n^2) = BCB^n = CB^{n+1}$

is satisfied for n > 0.

LEMMA 2. Let A, B, G_1 be nonzero integers. If the prime number p divides B, but does not divide AG_1 , then it does not divide G_n for $n \ge 1$.

Proof. For n = 1 the Lemma is obviously true. Suppose p/G_n for some $n \ge 1$. Then by (1)

$$G_{n+1} + BG_{n-1} = AG_n.$$

This shows, that p/G_{n+1} can not be true, and so the Lemma is proved.

LEMMA 3. Let $A, B \neq 0, G_0, G_1$ be integers with $(A, B) = 1, C \neq 0,$ $|G_0| + |G_1| \neq 0.$ Let p be a prime divisor of $(G_1, B) > 1.$ Put $G_n = p^{\alpha_n} \overline{G}_n,$ $C = p^{\gamma} \overline{C}, B = p^{\beta} \overline{B},$ with $(\overline{G}_n, p) = (\overline{C}, p) = (\overline{B}, p) = 1$ for $n \ge 0, G_n \neq 0.$ If $G_n = 0$ for some n, then put $\alpha_n = \alpha_{n+1}$ and $\overline{G}_n = 0.$ Finally take $N_1 = (\gamma - 2\alpha_0)/\beta.$ Then

$$\alpha_n = \alpha_N \tag{5}$$

is satisfied for any $n \ge N$, with $N = \max\{[N_1] + 3, 2\}$, where $[N_1]$ denotes the greatest integer $\le N_1$.

Proof. It follows from (1), that for any $n \ge 2$

$$\alpha_n \ge \min\{\alpha_{n-1}, \beta + \alpha_{n-2}\} \tag{6}$$

and > is possible only if $\alpha_{n-1} = \beta + \alpha_{n-2}$.

(i) If for some $m \alpha_m \ge \alpha_{m+1}$, then

 $\alpha_{m+2} \ge \min\{\alpha_{m+1}, \alpha_m + \beta\} = \alpha_{m+1}, \quad \text{thus } \alpha_{m+1} = \alpha_{m+2} = \cdots.$

If $a_0 \ge a_1$, then (5) follows immediately from (i) with N = 2. Furthermore $a_0 < a_1$ implies $G_0 \ne 0$, $\gamma \ge 2a_0$ and $N_1 \ge 0$.

In the sequel we shall assume that $[N_1] \ge 1$. It suffices to prove that the assumption of (i) are satisfied for some $m \le [N_1] + 2$. Suppose, on the contrary, that $\alpha_0 < \alpha_1 < \cdots < \alpha_{|N_1|+2}$. Then $\alpha_k = \alpha_0 + k\beta$ for $k = 0, 1, \dots, [N_1] + 1$ can be easily proved by the application of (6). This implies $G_k \ne 0$ for $k = 0, 1, \dots, [N_1] + 1$.

Consider (4) with $n = [N_1]$. The right-hand side is divisible exactly by the $\gamma + [N_1]\beta$ th power of p. At the same time the left-hand side is divisible at least by the $2\alpha_0 + (2[N_1] + 1)\beta$ th power of p. Thus

$$\gamma + [N_1] \beta \ge 2\alpha_0 + (2[N_1] + 1)\beta.$$

But this means that

$$[N_1] \leqslant \frac{\gamma - 2\alpha_0}{\beta} - 1 < \left[\frac{\gamma - 2\alpha_0}{\beta}\right] = [N_1].$$

This is a contradiction, and the proof is completed.

In the following C_{11} , C_{12} ,..., will denote effectively computable constants depending only on A, B, G_0 , G_1 and S.

LEMMA 4. Under the assumptions of the Theorem

$$|G_n| < C_{11} \tag{7}$$

implies $n < C_{12}$

Proof. First we observe, that the assumptions imply $B \neq 0$. Let α and β be the roots of

$$X^2 - AX + B = 0.$$

 α/β cannot be a root of unity because of the hypothesis of the Theorem, as was pointed out in the Remarks. Put $a = G_1 - G_0\beta$ and $b = G_1 - G_0\alpha$. In the Remarks it was shown, that ab = 0 yields C = 0 and D is a perfect square. So ab cannot be zero. Further it is well known, that

$$G_n=\frac{a\alpha^n-b\beta^n}{\alpha-\beta}.$$

If D < 0, then by Theorem D

$$\frac{|a|}{2\sqrt{|D|}} |\alpha^n| n^{-C_{10}} < |G_n|$$

is satisfied for any $n > C_9$. Therefore by (7)

$$\frac{|a|}{2\sqrt{|D|}} |\alpha^n| n^{-C_{10}} < C_{11}.$$

The function on the left-hand side tends to infinity with *n*. So there exists a constant C_3 with $n < C_{13}$. Put $C_{12} = \max\{C_9, C_{13}\}$. This is the required constant if D < 0.

If D > 0, then α and β are both real. We may assume $|\beta| < |\alpha|$ which implies $\lim_{n \to \infty} (|\beta|/|\alpha|)^n = 0$, so there exists a constant C_{14} with

$$|\alpha|^n < \frac{C_{11}|\alpha-\beta|}{C_{14}}.$$

Hence $n < C_{12} = \log(C_{11}|\alpha - \beta|/C_{14})(\log|\alpha|)^{-1}$, and this completes the proof.

4. PROOF OF THE THEOREM

Suppose that the integers $w \in S$, $q \ge 2$, n, x are solutions of (2). If we replace in (4) G_n with wx^q then we obtain the Diophantine equation

$$G_{n+1}^2 - AG_{n+1}wx^q + B(wx^q)^2 = CB^n$$

in integers G_{n+1} , w, x, q. This is solvable in G_{n+1} if and only if there exists an integer z with

$$Dw^2 x^{2q} = z^2 - 4CB^n. ag{8}$$

Assume C = 0. Then by the hypothesis of Theorem D cannot be a perfect square. On the other hand (8) yields

$$z^2 = Dw^2 x^{2q}.$$

This Diophantine equation has the only integer solution x = z = 0. Therefore $G_n = 0$, and by Theorem C there exists a constant C_{15} , with $n < C_{15}$.

In the sequel we shall assume $C \neq 0$. First we observe that the assumptions of the Theorem imply $B \neq 0$. By Lemmas 2 and 3 $(G_n, B^n) = (wx^q, B^n) < C_{16}$. Furthermore (D, B) = 1, so we have $(z, B^n) < C_{17}$.

Let S_1 be the set of the prime divisors of D and B. Put $S_0 = S \cup S_1$. (8) can be written in the form

$$vx^{2q} = f_1(z, t),$$
 if *n* even (9)

$$vx^{2q} = f_2(z, t), \qquad \text{if} \quad n \text{ odd}, \tag{10}$$

with $v = Dw^2$, $h = \lfloor n/2 \rfloor$, $t = B^h$, $f_1(z, t) = z^2 - 4Ct^2$, $f_2(z, t) = z^2 - 4CBt^2$. One sees that $f_i(1, 0) = 1$ for i = 1, 2 and in the factorization of f_1 and f_2 the two linear factors are distinct. We note finally that $2q \ge 4$.

It follows from Theorem A, that there exists an effectively computable constant C_{18} depending only on f_1 , f_2 , d and S_0 such that for any integer solution $t \in S_0$, $v \in S_0$, |x| > 1, $q \ge 2$, z with $(z, t) = d < C_{17}$ of (9) and (10)

$$\max\{|t|, |v|, |x|, |z|, q\} < C_{18}$$

is satisfied. But f_1, f_2, S_0 and d, therefore C_{18} also, depend only on A, B, G_0 , G_1 and S. Moreover we have

$$|w| = \sqrt{v/D} < C_{18}^{1/2}/\sqrt{|D|}$$

and

$$|G_n| = |w||x|^q < C_{18}^{q+1/2}/\sqrt{|D|}.$$

ATTILA PETHÖ

This yields in combination with Lemma 4 $n < C_{19}$. C_{18} and C_{19} depend on d. Now we can choose C_1 to be the maximum of C_{18} and C_{19} as d runs over its finitely many possible values.

In the sequel we shall prove the Theorem for $|x| \leq 1$. First we shall study the case x = 0. Then $G_n = 0$ and by Theorem C there is a constant C_3 with $n < C_3$.

It remains to study the case |x| = 1. Now from (8) we obtain

$$4CB^n = z^2 - D_1 w^2, (11)$$

with $D_1 = D$ or $D_1 = -D$ according as x = 1 or x = -1. The function on the right-hand side of (11) satisfies obviously the hypothesis of Theorem A. So if $|B| \neq 1$ and n > 2, we have for any integer solution $w \in S$, n > 2, z of (11)

$$\max\{|w|, |z|, n\} < C_{20}$$

If we choose C_{20} large enough, the last inequality remains true for $0 \le n \le 2$ also.

For |B| = 1 we put $C_1 = C$ or $C_1 = -C$ according as B = 1 or B = -1. With this notation if follows from (11) that

$$z^2 - 4C_1 = D_1 w^2. (12)$$

The quadratic polynomial $z^2 - 4C_1$ has two distinct zeros. Hence we obtain from Theorem B

$$|G_n| = |w| < C_{21}.$$

This implies again by Lemma 4, that $n < C_{22}$. Putting C_2 to be the maximum of C_{21} and C_{22} we complete the proof of the Theorem.

Note added in proof. A result similar to our Theorem has been proved by T. N. Shorey and C. L. Stewart, On the Diophantine equation $ax^{2t} + bx'y + cy^2 = d$ and pure powers in recurrence sequences, to appear. They proved that (2) has finitely many, effectively computable solutions for any fixed integer d under the hypothesis of our Theorem except (A, B) = 1.

References

- 1. R. T. BUMBY, The Diophantine equation $3x^4 2y^2 = 1$, Math. Scand. 21 (1967), 144-148.
- 2. J. H. E. COHN, On square Fibonacci numbers, J. London Math. Soc, 39 (1964), 537-540.
- 3. J. H. E. COHN, Lucas and Fibonacci numbers and some Diophantine equations, Proc. Glasgow Math. Assoc. 7 (1965), 24-28.
- 4. J. H. E. COHN, Eight Diophantine equations, *Proc. London Math. Soc.* 16 (1966), 153-166. Addendum, *ibid*, 17 (1967), 381.

- 5. K. Györy, On some arithmetical properties of Lucas and Lehmer numbers, Acta Arith., in press.
- 6. K. GYÖRY, P. KISS AND A. SCHINZEL, A note on Lucas and Lehmer sequences and their application to Diophantine equations, *Coll. Math.*, in press.
- 7. M. KEATES, On the greates prime factor of a polynomial, *Proc. Edinburgh Math. Soc.* 16 (1969), 301-303.
- 8. P. Kiss, Zero terms in second order linear recurrences, Math. Sem. Notes Kobe Univ. 7 (1979), 145-152.
- 9. P. Kiss, Diophantine representation of generalized Fibonacci numbers, *Elem. Math.* 34 (1979), 129-132.
- 10. L. J. MORDELL, "Diophantine Equations," Academic Press, New York, 1969.
- 11. T. N. SHOREY, A. VAN DER POORTEN, R. TIJDEMAN AND A. SCHINZEL, Applications of the Gel'fond-Baker Method to Diophantine equations, *in* "Transcendence Theory: Advances and Applications," Academic Press, New York, 1977.
- 12. O. WYLIE, Solution of the problem. In the Fibonacci series $F_1 = 1$, $F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ the first, second and twelfth terms are squares. Are there any others? Amer. Math. Monthly 71 (1964), 220-222.