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1. Introduction

Let A0, . . . , Ad−1 ∈ C. Let (an) be a sequence of complex numbers

and define the error sequence (en) by the initial terms e0 = · · · =
ed−1 = 0 and by the equations

en+d = an+d +Ad−1an+d−1 + · · ·+A0an

for n ≥ 0. We call (an) a nearly linear recursive sequence, in

shortcut nlrs, if the sequence (|en|) is bounded.

Homogenous and inhomogenous linear recursive sequences, and

srs are examples for nlrs.



Two aspects:

1) (Masculine) (an) is given, find A0, . . . , Ad−1 ∈ C and (en).

Classify the nlrs’s. Topic of the first part.

2) (Feminine) A0, . . . , Ad−1 ∈ C and (en) or a rule for the

generation of (en) is given. Find all (an) satisfying these

requirements. Topic of the second part.

Let an = 1 and bn = 2n for all n. en+1 = an+1 + 0 · an = 1 as

well as 0 = en+1 = an+1 − 2an show that (an), (bn) are nlrs, but

they have different ”characteristic” polynomials.

Both (an), (bn) satisfy the recursion 0 = an+2 − 3an+1 + 2an.



2. Characteristic polynomial of nlrs

Let (an) be a nlrs. The set of polynomials
∑l
j=0Bjx

j ∈ C[x] such

that the sequence (
∑l
j=0Bjan+j) is bounded is an ideal of C[x]

called the ideal of (an). There is a unique, monic polynomial

generating the ideal of (an), called the characteristic polynomial

of (an).

The characteristic polynomial of a linear recurrence sequence

(lrs) (an) may be different from the characteristic polynomial of

(an) when viewed as an nlrs.



For instance, the Fibonacci sequence (Fn) given by

F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for n ≥ 0 has

characteristic polynomial x2 − x − 1 when viewed as an lrs, but

characteristic polynomial x − θ with θ = 1+
√

5
2 when viewed as

an nlrs.

Lemma 1. Suppose (an) is an nlrs with characteristic polynomial

P (x). Then

(i) the roots of P (x) all have modulus ≥ 1.

(ii) Assume further that an = O(n) holds. Then the roots of

P (x) all lie on the unit circle.



3. The Binet-like formula for nlrs

Define the function

c(z) =
∞∑
j=1

ed+j−1z
−j.

Since (en) is bounded, c(z) is convergent for all complex z with
|z| > 1.

Denote (ân) the lrs having the initial terms â0 = · · · = âd−2 =
0, âd−1 = 1 and satisfying the recursion

ân+d +Ad−1ân+d−1 + · · ·+A0ân = 0. (1)

The lrs (ãn) is defined by the same recursion (1) with the initial
terms ãj = aj (j = 0, . . . , d− 1).



Denote

P (x) = xd +Ad−1x
d−1 + · · ·+A0

the common characteristic polynomial of (ân), (ãn) and of (an).

Assume that P (x) has d distinct roots α1, . . . , αd. Then there

exists uniquely defined complex numbers ĝj, j = 1, . . . , d with

ân = ĝ1α
n
1 + · · ·+ ĝdα

n
d (2)

for all n.



Theorem 2. Assume that the zeroes of P (x) are ordered as

|α1| ≥ · · · ≥ |αr1| > 1 = |αr1+1| = · · · = |αr1+r2
|, r1 + r2 = d.

Denote by g̃j, ĝj the (constant) coefficients of αnj , j = 1, . . . , d in

the expression (2) of ãn and ân respectively. Then

(i) if r1 > 0 and r2 = 0 then

an = (g̃1 + ĝ1c(α1))αn1 + · · ·+ (g̃r1 + ĝr1c(αr1))αnr1
+O(1),

(ii) if r1 > 0 and r2 > 0 then

an = (g̃1 + ĝ1c(α1))αn1 + · · ·+ (g̃r1 + ĝr1c(αr1))αnr1
+O(n),

and in both cases (g̃j + ĝjc(αj)) 6= 0, j = 1 . . . , r1.

(iii) if r1 = 0 and r2 > 0 then

an = O(n),



The proof combines the identity

an = ãn +
n−d+1∑
j=1

ân−jed−1+j

with Binet-formulae for (ãn) and (ân).

• The assertions (iii) of Theorem 2 remains true with simple

modifications for nlrs with inseparable characteristic polynomial.

• The error term in (ii) and (iii) is best possible.

• The converse of (i) is also true.



4. On the growth of nlrs

Theorem 3. Assume that r ≥ 2.
(i) Let η1, . . . , ηr be any pairwise distinct complex numbers lying
on the unit circle, and γ1, . . . , γr any non-zero complex numbers.
Then there exists a constant d1 > 0 such that

|γ1η
n
1 + · · ·+ γrη

n
r | > d1 (3)

holds for infinitely many positive integers n.
(ii) Let η1, . . . , ηr be any pairwise distinct complex numbers lying
on the unit circle such that at least one of ηj/ηr, 1 ≤ j < r is not
a root of unity. Let γ1, . . . , γr−1 6= 0 complex numbers. Then for
all d2 > 1 there exists γr such that the inequality

|γ1η
n
1 + · · ·+ γrη

n
r | < d−n2 (4)

holds for infinitely many positive integers n.



Theorem 3 implies that general linear recursive sequences may

have surprising big fluctuation.

Corollary 1. Let r ≥ 2 be an integer and d > 1 be a real number.

There exists a non zero lrs un of degree r such that |un| � dn

for infinitely many n and |un| � d−n for infinitely many n.

Remark that as a consequence of the p-adic Subspace Theorem

of Schmidt and Schlickewei, if γ1, . . . , γr, η1, . . . , ηr are all alge-

braic, non-zero and ηj/ηr is not a root of unity for at least one

1 ≤ j < r, then

|γ1η
n
1 + · · ·+ γrη

n
r | � d−n

holds for every d > 1 for only finitely many positive integers n.



The Skolem-Mahler Lech theorem asserts that if (an) is a

lrs, then the set of n with an = 0 is either finite or contains

an infinite arithmetic progression. We show that there is no

analogue for nlrs.

Theorem 4. There exist nlrs with integer terms (an) such that

lim sup(an) =∞, but having infinitely many zero terms. Moreover

the set of indices of the zero terms does not contain infinite

arithmetic progressions.

Let P (x) = x2 + A1x + A2 ∈ Z[x] with roots α, ᾱ such that

|α| = |ᾱ| > 1, and α/ᾱ is not a root of unity. Denote p > 3, p ≡ −1

(mod 4) an odd prime. Setting A1 = 1, A2 = p+1
4 we get such

polynomials.



Choosing d2 = 2 there exists by Theorem 3 (ii) a complex num-

ber γ such that if a1,n = αn + γᾱn, n = 0,1, . . . then

|a1,n| < 2−n

holds for infinitely many n. If a1,n ∈ R for all n then let a2,n = a1,n,

otherwise let

a2,n = a1,n + ā1,n = (1 + γ̄)αn + (1 + γ)ᾱn.

Plainly the sequence (a2,n) contains only real numbers, it satisfies

the recursion

a2,n+2 +A1a2,n+1 +A2a2,n = 0, n = 0,1, . . . (5)

and there are infinitely many n such that |a2,n| < 2−(n−1). Further

we have lim sup a2,n =∞ by Theorem 3 (i).



For a real number x let bxe := [x+ 1/2]. With this notation let

an = ba2,ne, n = 0,1, . . .

and e2,n = a2,n − an. Then (an) is a sequence of integers and as

|e2,n| ≤ 1/2 we have lim sup an = ∞. Moreover, for those n > 2

with |a2,n| < 2−(n−1) we have an = 0, i.e. (an) has infinitely many

zero terms.

Finally it is easy to prove that (an) is a nlrs such that the set

of indices of its zero terms does not contain infinite arithmetic

progressions.



Now we compare the nlrs (an) and its corresponding lrs analogue

(ãn). Although an = ãn for 0 ≤ n < d, the difference can not be

bounded under a mild condition:

Corollary 2. Under the same assumptions as in Theorem 2 set

R = {αi | i = 1, . . . , r1 and c(αi) 6= 0}.

Assume that R 6= ∅. If among the elements of R there is exactly

one of maximal modulus, then limn→∞ |an − ãn| = ∞, otherwise

lim supn→∞ |an − ãn| =∞.



The last corollary deals with shift radix systems.

Corollary 3. If the dominating root of the characteristic polyno-

mial of the nlrs (sn) is real, greater than one and not an algebraic

integer, then the sequence (sn − s̃n) diverges.



5. Common values of nlrs

Common values of lrs’s with algebraic terms are quite well in-

vestigated. Thanks to the theory of S-unit equations, Laurent

(1989) characterized those sequences, which may have infinitely

many common terms. These results are not effective.

If the characteristic polynomials of the sequences have domi-

nating simple roots, which are multiplicatively independent then

Mignotte (1978) gave an effective upper bound for the index

of possible common values. In the above mentioned results the

Binet formula plays central role.



The next result implies that the situation for nlrs is quite

different from that of lrs.

Theorem 5. Let α, β be two multiplicatively independent real

numbers > 1. Then there exist nlrs (an), (bn) with integer terms,

having characteristic polynomials with dominating roots α, β,

respectively, such that there are infinitely many pairs of non-

negative integers (k,m) with ak = bm. This set of pairs (k,m)

has finite intersection with every rational line.



Something remains true from the diophantine theory of lrs.

Theorem 6. Let (an) be an nlrs. Assume that its characteristic

polynomial is separable, and has a dominant root α with |α| > 1.

Then the equation

ak = am (6)

has only finitely many solutions with k 6= m.



6. On bounded nlrs

Theorem 7. Let d ∈ N and β1, . . . , βd ∈ C such that |β1| ≤ · · · ≤
|βr| < 1 <

∣∣∣βr+1

∣∣∣ ≤ · · · ≤ |βd|. Furthermore, let (an)n∈N, (en)n∈N ∈
CN with |en| ≤ E for all n ∈ N, such that

an+d + pd−1an+d−1 + · · ·+ p0an = en (7)

for all n ∈ N, where
∏d
j=1(x−βj) = xd+pd−1x

d−1 + · · ·+p1x+p0.

• If r = d, or

• if r < d and (an)n∈N is bounded, then for each ε > 0 there is

n0 ∈ N such that

|an| <
E∏d

j=1(1−
∣∣∣βj∣∣∣) + ε

for n ≥ n0.



7. Bounded orbits of expansive srs

If r = (p0, . . . , pd−1) ∈ Rd and a = (a0, . . . , ad) ∈ Zd and τnr (a) =

(an+d−1, . . . , an) then

an+d + pd−1an+d−1 + · · ·+ p0an = en

with en ∈ [0,1], i.e. (an) is an nlrs associated to the srs τr. For

such sequences Theorem 7 implies



Corollary 4. Assume that the sequence of integers (an)n∈N is

associated to the srs τr. Order β1, . . . , βd as in Theorem 7. Then,

(i) if r = d, or

(ii) if r < d and (an)n∈N is bounded,

then (an)n∈N is ultimately periodic and

|an| ≤
1∏d

j=1

∣∣∣1− ∣∣∣βj∣∣∣∣∣∣
holds for all elements of the cycle.



7. Bounded orbits of expansive 2-dim. srs

For all r = (r0, r1) ∈ R2 the zero sequence is an orbit of the

srs τr. It is called trivial. If x2 + r1x + r0 is expansive then by

Theorem 2 the orbits of τr grow exponentially. In some cases

there are bounded non-trivial orbits as well.

• If −2 ≤ r0 + r1 < −1 then (1),

• if −1 ≤ r0 + r1 < 0 then (−1),

• if r0 − r1 = 1 then (1,−1),

• if −2 < r0 ≤ −1 and −1 < r1 ≤ 0 then (0,−1), and

• if −1 ≤ r0 < 0 and 0 ≤ r1 < 1 then (0,1)

are non-trivial orbits.
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Theorem 8. If r1 > r0 + 1 or r1 < −r0 − 2 or r0 >
3
2 +
√

2 and
r = (r0, r1) does not lie in one of the boxes −2 < r0 ≤ −1,−1 <
r1 ≤ 0 and −1 ≤ r0 < 0,0 ≤ r1 < 1, then τr has no non-trivial
orbit.




