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1. Introduction

In the last century mainly through the work of Grunwald, Knuth,
Penney, Katai, Gilbert, Julia Szabo, B. Kovacs, Kormendi, Kornyei
evolved the notation of number systems or equivalently the radix
representations in Z[x] and in algebraic number fields.

Generalizations to larger ground rings:

e Jacob and Reveilles (1995), Brunotte, Kirschenhofer and Thuswald-
ner (2011): Zli]

e Scheicher, Surer, Thuswaldner and van de Woestijne (2014):
commutative rings

e Peth® and Varga (2017): Euclidean imaginary quadratic num-

ber fields.



We generalize here the number system concept in two directions:

e Allow orders of algebraic number fields as ground rings. (Radix
representation in relative extensions.)

e [ he digit set is defined on a uniform way, which allow the inves-
tigation of families of polynomials. We show that the canonical
digit set is extraordinary, it has very special properties.



2. Definitions and basic properties

Notations:

e K number field of degree k,

e o1 ... al®) the conjugates of a € K,

e O an order in K, i.e., a ring which is a full Z-module in K.

e 1 =wi,wo,... {{ a Z-basis of O,

e H(a) = max{|a ) , 1 =20,...,n, j=1,...,k} the height of a,
provided a(z) = leo ajzt € Ox].

A generalized number system over O (GNS for short) is a pair
(p, D), where p € O[z] is monic, pg 70 and D C O is a complete
residue system modulo p(0). The polynomial p is called basis of
this number system, D is called its set of digits.



For the GNS (p, D) denote R(p,D) the set of a € O[x] for which
there exists b € D[x] such that

a=b (mod p).

The GNS (p,D) has the finiteness property, if R(p, D) = O[x].



Let F be a bounded fundamental domain for the action of ZF on
RF j.e., a set that satisfies R¥ = F 4+ Z* without overlaps. For
a € O define

k
Df:DF’a:{TEO : Z: erwj, (’I“]_,...,’I“k)éf}. (1)
o :
=1

Lemma 1. D;,a iIs a complete residue system modulo «.
Lemma 2. Let (p, D) be a GNS over ©O. Then there is a bounded
fundamental domain F for the action of Z*¥ on RF such that

P=Drp0):

A fixed fundamental domain F defines a whole class of GNS,
namely,

Gr :={,Dr) : peOlz]}.



Examples:

e Classical CNS Let K= Q and O =Z. Choose F = [0,1) which
obviously is a fundamental domain of Z acting on R. We |look
at the class Gr :={(p,Dr) : p € Z[x]}. For an integer a > 2 we
have

D]:’QZ{TEZ : Izr,re[O,l)}Z{O,...,|a|—l},
(8

which is the digit set of a canonical number system.

If, however, a < —2 then

D;,az{Tez T=rre [O,l)}={a—l—l,...,O,}=—{O,...,|a|—1}.



e Symmetric CNS (p,D) is a symmetric CNS if p € Z[x] and

_ Ol p@I =1y
2 2

These number systems were studied for instance by Akiyama and

Scheicher (2007), Brunotte (2009), Katai (1995) and Scheicher,

Surer, Thuswaldner and van de Woestijne (2014). They are

equal to the class G := {(p, D) : p € Z[z]} with F = [-3,3)

of GNS.

o= |



Proposition 3. Let (p,D) be a GNS with finiteness property.
Then all roots of each conjugate polynomial pU)(z), j € {1,...,k},
lie outside the closed unit disk.

Adapting the proof of Akivama and Rao (2004) or Pethd (2006)
to orders one can prove the following algorithmic criterion for
checking the finiteness property of a given GNS (p, D).

Theorem 4. Let K be a number field of degree k and let O be
an order in K. Let (p,D) be a GNS over O. There exists a
computable constant C = C(p, D) such that (p,D) is a GNS with
finiteness property if and only if the polynomial Hlep(i)(a:) is
expansive and

{a € O[z] : dega < degp and H(a) < C} C R(p,D).



3. General criterion for the finiteness property

Theorem 5 (B. Kovacs (1981)). Let p =
...+ ag € Z[x] such that 1 < a,_1 < ... < apg,ag > 2. Then
(p,{0,1,...,a0—1}) is a GNS.

Generalizations: Akiyama and Pethd (2002), Scheicher and Thuswald-
ner (2004), or Peth® and Varga (2017).

In each of these results [p(0)| dominates over the other coef-
ficients of p. In general, O does not have a natural ordering.
However, inclusion properties of some sets can be used to ex-
press dominance of coefficients in O.



For p(z) = 2™ 4+ p,,_ 12" 1 + ... 4+ pg € O[z] let (p,D) be a GNS
and let F be an associated fundamental domain.

We call z' € Z¥ a neighbor of z € ZF if F +z “touches’” F + 7/,
ie., if (F+z)N(F+2z) #0. Let N be the set of neighbors of 0.

Set (letting p, = 1)

n

k
Az{anwj : (nl,...,nk)GN} and Z:{Z(Sjpj : 5jEA}, (2)
=1

=1

and note that, since F is bounded, these sets are finite.



Theorem 6. Let p(z) = z"+p,,_12" 14 -4+pg € O[z] and (p, D)
be a GNS. Let F be an associated fundamental domain and

define A and Z as in (2). Assume that the following conditions
hold:

(i) Z+4 D C Usea(D + pod),

(i) ZCc DU (D —pg),

i) {Sjesp; 0 JC{1,...,n}} CD.
Then (p,D) has the finiteness property.



4. The finiteness property for large constant terms

Notations:
e (M) e-neighborhood of a set M C R¥,

° int_|_ IS the interior taken w.r.t. the subspace topology on
{(ri,...,r) € R¥ : r; > 0}. The symbol int_ is defined by
replacing r1 > 0 with 1 < 0.



Theorem 7. Let K be a number field of degree k and let O be
an order in K. Let a monic polynomial p € O[x] and a bounded
fundamental domain F for the action of Z¥ on R* be given. Sup-
pose that

e 0cint(FU(F —eq)), wheree; = (1,0,...,0) and
o 0c int+(]-").
Then there is n > 0 such that (p(x + «),Dx) has the finite-

ness property whenever a = miwi + --- + mpwp € O satisfies
max{1,|mal,...,|mgl} <nmq.

If F satisfies the conditions of Theorem 7 the set {(p,Dr ,0)}
contains infinitely many GNS with finiteness property.



Theorem 7 immediately admits the following corollary.

Corollary 8. Let K be a number field of degree k and let O be
an order in K. Let a monic polynomial p € O[x] and a bounded
fundamental domain F for the action of Zk on R* be given. If
0 € int(F) then there is n > 0 such that (p(x + «), Dr) has the
finiteness property whenever o = miwi + - - +mpwp € O satisfies
max{l, |m2|7 U |mk|} < 77|m1|-



Under the conditions of Theorem 7
3M e N: (p(xz+m),F) is a GNS with finiteness property for m > M,

while under the more restrictive conditions of Corollary 8

IM e N: (p(em),F) is a GNS with finiteness property form > M.



The next Corollary answers partially a question of Akiyama.

Corollary 9. Let K be a number field of degree k and let O be
an order in K. Let a monic polynomial p € O[x] and a bounded
fundamental domain F for the action of Z*¥ on RF be given.
Suppose that 0 € int(F) then there is n > 0 such that (p(x) *+
o, Dr) has the finiteness property whenever a = mjwi + - +
mpwi, € O satisfies max{1l, |mo|,...,|mg|} < n|lm1|.



Ifk=1, and 0 < e <1 then F. = [—¢,1 — ¢) satisfies the con-
ditions of Corollary 9, hence for any p € Z[x] there exists M € 7Z
such that (p(x)+m, F:) is a GNS with finiteness property in Z[x].

The assumptions of Theorem 7 hold for F: even ife = 0. Hence,
if all coefficients of p are non-negative, then we can conclude
(p(x) +m, Fg) is a GNS with finiteness property in Z[x].

However, if some of the coefficients of p are negative, then our
method fails and, we do not have similar statement. The exam-
ple p = z2 — 2z + 2 shows that (p(z) +m, Fy) is not a GNS with
finiteness property in Z[x] for any m > 0.



If there are infinitely many units in O then for all p € Olx] there
exist infinitely many o € O such that the constant term of p(x) +
a, i.e., p(0)4+« is a unit, hence p(x)+« is not GNS with finiteness
property. Notice that Condition (iii) of Theorem 6 holds under

the assumptions of Corollary 9 only if the norm of p(0) 4+ « is
large.



5. GNS without finiteness property

We start with a partial generalization of a Theorem of Kovacs
and Peth6 (1991) to polynomials with coefficients of O.

Lemma 10. Let (p, D) be a GNS. If there existh € N, dg,dq,...,d,_1 €
D not all equal to 0 and q1,qg> € Olx] with

h—1
S dja? = (2" — 1D)g1(x) + q2(2)p(w). (3)

=0
then (p, D) doesn’t have the finiteness property.



Our main result in this section is the following theorem.

Theorem 11. Let K be a number field of degree k and let O be
an order in K. Let a monic polynomial p € O[x] and a bounded
fundamental domain F for the action of ZF on RF be given.
Suppose that 0 € int_(F —eq). There exists M € N such that
(p(x — m), Dx) doesn’t have the finiteness property for m > M.



6. GNS in number fields

Let o € Op, and let N/ be a complete residue system modulo a.
The pair (a,N) is called a number system in Op. If for each
~ € Op, there exist integers £ > 0, dg,...,dy_1 € N such that

—1
v= 2 djc’
j=0

then we say that («, N) has the finiteness property. If the digit
set is chosen to be N'={0,1,...,|Ny g(a)| — 1} then (o, N) is
called a canonical number system in Of,.



Kovacs (1981) proved that there exists a canonical number sys-
tem with finiteness property in Op if and only if Op admits a

power integral bases. Later Kovacs and Pethd (1991) proved
the stronger result.

Proposition 12. Let O be an order in the algebraic number field
L. There exist a1,..., 04 € O, ny,...,ns € Z, and Nq,..., Ny finite
subsets of 7, which are all effectively computable, such that
(a, N(a)) is a canonical number system with finiteness property
in O if and only if « = a; — h for some integers i,h with 1 <1<t
and either h > n; or h € N;.



From Corollary 8 we derive that for number systems the relation
is usually stronger, the theorem of Kovacs and Pethd describes
a kind of “boundary case” viz. a case where 0 € OF.

Theorem 13. Let L be a number field of degree | and let O
be an order in .. Let F be a bounded fundamental domain for
the action of Z on R. If O € int(F) then all but finitely many
generators of power integral bases of O form a basis for a number
system with finiteness property. Moreover, the exceptions are
effectively computable.

The proof combines a deep result of Gydry (1978) with Corol-
lary 8.



The assumption 0 € int(F) implies that {—1,0,1} C Dz (5m)
for all m large enough. Of course —1 ¢ No(a+ m), hence, the
proof of Theorem 13 does not work in the case of canonical
number systems. Gyory’s theorem holds for relative extensions
as well. To generalize Theorem 13 to this situation would require
the generalization of Corollary 8 to all m € O, such that all
conjugates of m are large enough. We have no idea how to

prove such a result.



Thank you for your attention!



