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1. Introduction

In the last century mainly through the work of Grünwald, Knuth,

Penney, Kátai, Gilbert, Júlia Szabó, B. Kovács, Körmendi, Környei

evolved the notation of number systems or equivalently the radix

representations in Z[x] and in algebraic number fields.

Generalizations to larger ground rings:

• Jacob and Reveilles (1995), Brunotte, Kirschenhofer and Thuswald-

ner (2011): Z[i]

• Scheicher, Surer, Thuswaldner and van de Woestijne (2014):

commutative rings

• Pethő and Varga (2017): Euclidean imaginary quadratic num-

ber fields.



We generalize here the number system concept in two directions:

• Allow orders of algebraic number fields as ground rings. (Radix

representation in relative extensions.)

• The digit set is defined on a uniform way, which allow the inves-

tigation of families of polynomials. We show that the canonical

digit set is extraordinary, it has very special properties.



2. Definitions and basic properties

Notations:

• K number field of degree k,

• α(1), . . . , α(k) the conjugates of α ∈ K,

• O an order in K, i.e., a ring which is a full Z-module in K.

• 1 = ω1, ω2, . . . , ωk a Z-basis of O,

• H(a) = max{|a(j)
l |, l = 0, . . . , n, j = 1, . . . , k} the height of a,

provided a(x) =
∑n
l=0 alx

l ∈ O[x].

A generalized number system over O (GNS for short) is a pair

(p,D), where p ∈ O[x] is monic, p0 6= 0 and D ⊂ O is a complete

residue system modulo p(0). The polynomial p is called basis of

this number system, D is called its set of digits.



For the GNS (p,D) denote R(p,D) the set of a ∈ O[x] for which

there exists b ∈ D[x] such that

a ≡ b (mod p).

The GNS (p,D) has the finiteness property, if R(p,D) = O[x].



Let F be a bounded fundamental domain for the action of Zk on

Rk, i.e., a set that satisfies Rk = F + Zk without overlaps. For

α ∈ O define

DF = DF ,α =
{
τ ∈ O :

τ

α
=

k∑
j=1

rjωj, (r1, . . . , rk) ∈ F
}
. (1)

Lemma 1. DF ,α is a complete residue system modulo α.

Lemma 2. Let (p,D) be a GNS over O. Then there is a bounded

fundamental domain F for the action of Zk on Rk such that

D = DF ,p(0).

A fixed fundamental domain F defines a whole class of GNS,

namely,

GF := {(p,DF) : p ∈ O[x]}.



Examples:

• Classical CNS Let K = Q and O = Z. Choose F = [0,1) which

obviously is a fundamental domain of Z acting on R. We look

at the class GF := {(p,DF) : p ∈ Z[x]}. For an integer α ≥ 2 we

have

DF ,α =
{
τ ∈ Z :

τ

α
= r, r ∈ [0,1)

}
= {0, . . . , |α| − 1},

which is the digit set of a canonical number system.

If, however, α ≤ −2 then

DF ,α =
{
τ ∈ Z :

τ

α
= r, r ∈ [0,1)

}
= {α+1, . . . ,0, } = −{0, . . . , |α|−1}.



• Symmetric CNS (p,D) is a symmetric CNS if p ∈ Z[x] and

D =
[
−
|p(0)|

2
,
|p(0)| − 1

2

)
∩ Z.

These number systems were studied for instance by Akiyama and

Scheicher (2007), Brunotte (2009), Kátai (1995) and Scheicher,

Surer, Thuswaldner and van de Woestijne (2014). They are

equal to the class GF := {(p,DF) : p ∈ Z[x]} with F = [−1
2,

1
2)

of GNS.



Proposition 3. Let (p,D) be a GNS with finiteness property.

Then all roots of each conjugate polynomial p(j)(x), j ∈ {1, . . . , k},
lie outside the closed unit disk.

Adapting the proof of Akiyama and Rao (2004) or Pethő (2006)

to orders one can prove the following algorithmic criterion for

checking the finiteness property of a given GNS (p,D).

Theorem 4. Let K be a number field of degree k and let O be

an order in K. Let (p,D) be a GNS over O. There exists a

computable constant C = C(p,D) such that (p,D) is a GNS with

finiteness property if and only if the polynomial
∏k
i=1 p

(i)(x) is

expansive and

{a ∈ O[x] : deg a < deg p and H(a) ≤ C} ⊂ R(p,D).



3. General criterion for the finiteness property

Theorem 5 (B. Kovács (1981)). Let p = xn + an−1x
n−1 +

. . . + a0 ∈ Z[x] such that 1 ≤ an−1 ≤ . . . ≤ a0, a0 ≥ 2. Then

(p, {0,1, . . . , a0 − 1}) is a GNS.

Generalizations: Akiyama and Pethő (2002), Scheicher and Thuswald-

ner (2004), or Pethő and Varga (2017).

In each of these results |p(0)| dominates over the other coef-

ficients of p. In general, O does not have a natural ordering.

However, inclusion properties of some sets can be used to ex-

press dominance of coefficients in O.



For p(x) = xn + pn−1x
n−1 + · · ·+ p0 ∈ O[x] let (p,D) be a GNS

and let F be an associated fundamental domain.

We call z′ ∈ Zk a neighbor of z ∈ Zk if F + z “touches” F + z′,
i.e., if (F+ z)∩ (F+ z′) 6= ∅. Let N be the set of neighbors of 0.

Set (letting pn = 1)

∆ =

{ k∑
j=1

ηjωj : (η1, . . . , ηk) ∈ N
}

and Z =

{ n∑
j=1

δjpj : δj ∈∆

}
, (2)

and note that, since F is bounded, these sets are finite.



Theorem 6. Let p(x) = xn+pn−1x
n−1+· · ·+p0 ∈ O[x] and (p,D)

be a GNS. Let F be an associated fundamental domain and

define ∆ and Z as in (2). Assume that the following conditions

hold:

(i) Z +D ⊂
⋃
δ∈∆(D+ p0δ),

(ii) Z ⊂ D ∪ (D − p0),

(iii)
{∑

j∈J pj : J ⊆ {1, . . . , n}
}
⊆ D.

Then (p,D) has the finiteness property.



4. The finiteness property for large constant terms

Notations:

• (M)ε ε-neighborhood of a set M ⊂ Rk,

• int+ is the interior taken w.r.t. the subspace topology on

{(r1, . . . , rk) ∈ Rk : r1 ≥ 0}. The symbol int− is defined by

replacing r1 ≥ 0 with r1 ≤ 0.



Theorem 7. Let K be a number field of degree k and let O be

an order in K. Let a monic polynomial p ∈ O[x] and a bounded

fundamental domain F for the action of Zk on Rk be given. Sup-

pose that

• 0 ∈ int(F ∪ (F − e1)), where e1 = (1,0, . . . ,0) and

• 0 ∈ int+(F).

Then there is η > 0 such that (p(x + α), DF) has the finite-

ness property whenever α = m1ω1 + · · · + mkωk ∈ O satisfies

max{1, |m2|, . . . , |mk|} < ηm1.

If F satisfies the conditions of Theorem 7 the set {(p,DF ,p(0)}
contains infinitely many GNS with finiteness property.



Theorem 7 immediately admits the following corollary.

Corollary 8. Let K be a number field of degree k and let O be

an order in K. Let a monic polynomial p ∈ O[x] and a bounded

fundamental domain F for the action of Zk on Rk be given. If

0 ∈ int(F) then there is η > 0 such that (p(x + α), DF) has the

finiteness property whenever α = m1ω1 + · · ·+mkωk ∈ O satisfies

max{1, |m2|, . . . , |mk|} < η|m1|.



Under the conditions of Theorem 7

∃M ∈ N : (p(x+m),F) is a GNS with finiteness property for m ≥M,

while under the more restrictive conditions of Corollary 8

∃M ∈ N : (p(x±m),F) is a GNS with finiteness property for m ≥M.



The next Corollary answers partially a question of Akiyama.

Corollary 9. Let K be a number field of degree k and let O be

an order in K. Let a monic polynomial p ∈ O[x] and a bounded

fundamental domain F for the action of Zk on Rk be given.

Suppose that 0 ∈ int(F) then there is η > 0 such that (p(x) ±
α,DF) has the finiteness property whenever α = m1ω1 + · · · +
mkωk ∈ O satisfies max{1, |m2|, . . . , |mk|} < η|m1|.



If k = 1, and 0 < ε < 1 then Fε = [−ε,1 − ε) satisfies the con-

ditions of Corollary 9, hence for any p ∈ Z[x] there exists M ∈ Z
such that (p(x)±m,Fε) is a GNS with finiteness property in Z[x].

The assumptions of Theorem 7 hold for Fε even if ε = 0. Hence,

if all coefficients of p are non-negative, then we can conclude

(p(x) +m,F0) is a GNS with finiteness property in Z[x].

However, if some of the coefficients of p are negative, then our

method fails and, we do not have similar statement. The exam-

ple p = x2− 2x+ 2 shows that (p(x) +m,F0) is not a GNS with

finiteness property in Z[x] for any m ≥ 0.



If there are infinitely many units in O then for all p ∈ O[x] there

exist infinitely many α ∈ O such that the constant term of p(x)+

α, i.e., p(0)+α is a unit, hence p(x)+α is not GNS with finiteness

property. Notice that Condition (iii) of Theorem 6 holds under

the assumptions of Corollary 9 only if the norm of p(0) + α is

large.



5. GNS without finiteness property

We start with a partial generalization of a Theorem of Kovács

and Pethő (1991) to polynomials with coefficients of O.

Lemma 10. Let (p,D) be a GNS. If there exist h ∈ N, d0, d1, . . . , dh−1 ∈
D not all equal to 0 and q1, q2 ∈ O[x] with

h−1∑
j=0

djx
j = (xh − 1)q1(x) + q2(x)p(x). (3)

then (p,D) doesn’t have the finiteness property.



Our main result in this section is the following theorem.

Theorem 11. Let K be a number field of degree k and let O be

an order in K. Let a monic polynomial p ∈ O[x] and a bounded

fundamental domain F for the action of Zk on Rk be given.

Suppose that 0 ∈ int−(F − e1). There exists M ∈ N such that

(p(x−m), DF) doesn’t have the finiteness property for m ≥M .



6. GNS in number fields

Let α ∈ OL and let N be a complete residue system modulo α.

The pair (α,N ) is called a number system in OL. If for each

γ ∈ OL there exist integers ` ≥ 0, d0, . . . , d`−1 ∈ N such that

γ =
`−1∑
j=0

djα
j

then we say that (α,N ) has the finiteness property. If the digit

set is chosen to be N = {0,1, . . . , |NL/Q(α)| − 1} then (α,N ) is

called a canonical number system in OL.



Kovács (1981) proved that there exists a canonical number sys-

tem with finiteness property in OL if and only if OL admits a

power integral bases. Later Kovács and Pethő (1991) proved

the stronger result.

Proposition 12. Let O be an order in the algebraic number field

L. There exist α1, . . . , αt ∈ O, n1, . . . , nt ∈ Z, and N1, . . . , Nt finite

subsets of Z, which are all effectively computable, such that

(α,N (α)) is a canonical number system with finiteness property

in O if and only if α = αi− h for some integers i, h with 1 ≤ i ≤ t
and either h ≥ ni or h ∈ Ni.



From Corollary 8 we derive that for number systems the relation

is usually stronger, the theorem of Kovács and Pethő describes

a kind of “boundary case” viz. a case where 0 ∈ ∂F.

Theorem 13. Let L be a number field of degree l and let O
be an order in L. Let F be a bounded fundamental domain for

the action of Z on R. If 0 ∈ int(F) then all but finitely many

generators of power integral bases of O form a basis for a number

system with finiteness property. Moreover, the exceptions are

effectively computable.

The proof combines a deep result of Győry (1978) with Corol-

lary 8.



The assumption 0 ∈ int(F) implies that {−1,0,1} ⊆ DF ,pj(δm)
for all m large enough. Of course −1 /∈ N0(α + m), hence, the

proof of Theorem 13 does not work in the case of canonical

number systems. Győry’s theorem holds for relative extensions

as well. To generalize Theorem 13 to this situation would require

the generalization of Corollary 8 to all m ∈ O, such that all

conjugates of m are large enough. We have no idea how to

prove such a result.



Thank you for your attention!


