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1. Prolog

On January 6, 2016 the Great Mersenne Prime Search, GIMPS,

announced that Curtis Cooper found the actually largest known

prime number: 274,207,281−1. It has 22,338,618 decimal digits.

To store such a big number one needs a bit less then 10 MB

memory.

The pdf version of the 640 pages book Unit equations and discri-

minant equations of Jan-Hendrik Evertse and Kálmán Győry is

2.6 MB.

The scanned version of the 439 pages Number Theory by Z.I.

Borevich and I. R. Shafarevich is 14,3 MB!



How is it possible to prove the primality of such
a large number?

Why we will prove the primality of such a large
number?

I concentrate mainly to the first question.



2. Perfect numbers and results before 1876

An integer is called perfect, if the sum of its proper divisors is

equal to it. For example 6 and 28 are perfect, because their

proper divisors are 1,2,3, and 1,2,4,7,14 respectively, and 1 +

2 + 3 = 6, and 1 + 2 + 4 + 7 + 14 = 28.

Still not known whether odd perfect numbers exist.

Euklid-Euler: an even number is perfect if and only if it has the

form 2p−1(2p − 1) such that both p and 2p − 1 are primes.

In the sequel I use the notation M(n) = 2n − 1.



Marin Mersenne (1588-1648) claimed: M(p) with p ≤ 257 is a

prime if and only if p = 2,3,5,7,13,17,19,31,67,127,257!

The list is not correct: M(p) is not a prime for p = 67 and 257,

but is prime for p = 61,89 and 107.

Before 1876 only for the primes p = 2,3,5,7,13,17,19 and 31

was proved that M(p) is a prime.



They used congruence considerations and hand computation:

Theorem 1. If p is an odd prime and the prime q divides M(p),

then q ≡ 1 (mod 2p) and q ≡ ±1 (mod 8).

Theorem 2. [L. Euler(1772)] Let p = 4k + 3 be a prime. The

number q = 2p+ 1 is a prime if and only if q|M(p).

For example if p = 251 = 4 · 62 + 3, then q = 503 is a prime,

thus M(251) is not a prime.

L. Euler: 231 − 1 = 2147483647 is a prime.



Peter Barlow (1776-1862) was an influential mathematician and

physicist of his time. In 1823, he was made a fellow of the Royal

Society. His book New Mathematical Tables became known as

Barlow’s Tables and were regularly reprinted until 1965.

He wrote in 1811 about Euler’s discovery:” [it] is the greatest

perfect number known at present, and probably the greatest that

ever will be discovered; for, as they are merely curious without

being useful, it is not likely that any person will attempt to find

one beyond it.”



Barlow went wrong, because:

• Édouard Lucas discovered in 1876 a very powerful method
for the test of primality of Mersenne numbers;

• from the middle of the 20th century many efficient computer
implementation of the Lucas test appeared;

• A. Schönhage and V. Strassen (1971) found an algorithm for
multiplication of integers, which is practically linear (but is
useful only for extremely large numbers);

• the supercomputers and the millions of computers connected
to the web give enormous computing capacity.



People like to do useless thinks.

A reporter asked Edmund Hillery, why he climbed Mount Everest.

He answered: ”because it is there”.

By my opinion climbing the Mount Everest is as useful as sear-

ching for very big Mersenne primes.



3. The Lucas-Lehmer test and its history before 1952

Theorem 3. Let p be a prime. Set u1 = 4 and un+1 = u2
n−2, n ≥

1. The number M(p) = 2p−1 is a prime if and only if M(p)|up−1.

Sufficiency: E. Lucas (1876), necessity: D.H. Lehmer (1930).

The Lucas-Lehmer test combined with hand computation proved

that the following numbers are primes:

p year discoverer

61 1883 I.M. Pervushin
89 1911 R. E. Powers
107 1914 R. E. Powers
127 1876 E. Lucas



4. The Lucas-Lehmer test+computer 1952-1979

The Lucas-Lehmer test can be implemented on a digital com-
puter easily. One has to compute the sequence un only modulo
M(p)! Moreover, one has to implement multiprecision arithme-
tic, i.e. addition, subtraction, multiplication and division with
remainder with arbitrary large integers. The growth of the size
of the known Mersenne primes depended only of the growth of
the speed and memory size of the computers.

Raphael M. Robinson (5), Hans Riesel (1), Alexander Hurwitz
(2), Donald B. Gillies (3), Bryant Tuckerman (1), Landon Curt
Noll & Laura Nickel (1), Landon Curt Noll (1) discovered new
Meersenne primes.

The values of the exponent was: 521,607,1279,2203,2281,3217,
4253,4423,9689,9941,11213,19937,21701,23209.



R.M. Robinson, 1954: At that time, the total memory of the

SWAC consisted of 256 words of 36 binary digits each, exclusive

of the sign. For the Mersenne test, half of this memory was

reserved for commands. Since successive squarings of numbers

less than the modulus 2n − 1 are required, this modulus was

restricted to 64 words, so that the condition n < 64 · 36 = 2304

was imposed.

D.B. Gillies, 1963: As an indication of the speed of Illiac II, the

residue for M(8191) took 100 hours on Illiac I (D. J. Wheeler),

5.2 hours on an IBM 7090 (Hurwitz [2]) and 49 minutes on Illiac

II. The three values agree.



Conjecture. (D.B. Gillies, 1963). If A < B ≤
√
M(p) and B/A

and M(p)→∞, then the number of prime divisors of M(p) lying

in the interval [A,B] Poisson distribution with mean

mean ∼
{

log(logB/ logA), if A ≥ 2p
log(logB/ log 2p), if A < 2p

paraméterrel.

Corollary.

• The number of Mersenne primes, which are less than x is

∼ 2
log 2 log logx.

• There are in average two primes p in the interval [x,2x], for

which M(p) is a prime.

• The probability that M(p) is a prime is ∼ 2 log 2p
p log 2 .



The post stamp of the University of Illinois with the discovery

of D.B. Gillies in 1963.

 



C. Noll and L. Nickel, 1979: The amount of computation needed

to check the primality of M(p) is 0(p3). Here, the major comp-

utational effort is in squaring the uk since division by 2n − 1 is

readily accomplished by shifting. It may be possible to implement

a faster multiplication method. For example, Schoenhage and

Strassen [2] have an algorithm, based on fast Fourier transforms,

which may be promising.



5. The Lucas-Lehmer test+supercomputers until 1996

Supercomputer = a computer with several processor units. It

can perform computations parallel. At that time Cray and NEC

computers.

p year disccoverer

44497 1979 H.L. Nelson and D. Slowinski
86243 1982 D. Slowinski
110503 1988 W Colquitt and L. Welsh
132049 1983 D. Slowinski
216091 1985 D. Slowinski
756839 1992 D. Slowinski and P. Gage
859433 1994 D. Slowinski and P. Gage
1257787 1996 D. Slowinski and P. Gage



David Slowinski was a software engineer for Cray Research Inc.,

and used his codes for Mersenne primes to test the Cray super-

computers. Few input and very complex and long computation

detect bugs in the hardware quickly.

In 1985 2216091 − 1 was printed in the Sunday edition of the

Haarlem Dagbladet. There was an error in the printing. Next

Sunday in Haarlem Daagbladet appeared the correct value.



D. Slowinski used at the beginning the following, Karatsuba type

identity to speed up the squaring: if U = U22n + U1, then

U2 = (22n + 2n)U2
2 − 2n(U1 − U2)2 + (2n + 1)U2

1 .

It has the advantage against the usual method:

U2 = 22nU2
2 + 2n+1U1U2 + U2

1

that one can iterate the squaring.



W Colquitt and L. Welsh: A Fast Fourier Transform (FFT) was

used to accelerate the squaring operation, which is the most

time-consuming step of the Lucas-Lehmer test... The use of

the FFT speeds up the asymptotic time for the Lucas-Lehmer

test for M(p) from 0(p3) to 0(p2 log p log log p) bit operations. An

FFT containing 8192 complex elements, which was the minimum

size required to test M(110503), ran approximately 11 minutes

on the SX-2.



A. Schönhage and V. Strassen, 1971: fast multiplication bas-

ed on FFT. Let uj = (uj,0, . . . , uj,k−1) ∈ Ck, j = 1,2 and ω =

exp(2πi/k). Then F (uj) = (ûj,0, . . . , ûj,k−1)-t, where

ûj,h =
k−1∑
t=0

uj,tω
ht

is called the finite Fourier transform of uj, j = 1,2. In this case

we have

F−1(F (u1)F (u2))` = F−1(û1,0û2,0, . . . , û1,k−1û2,k−1)` =
∑̀
h=0

u1,hu2,`−h.

If k = 2K, then F (u1), F (u2), F−1(û1û2) can easily be computed.



Let g = 2n, u1, u2 ∈ N and uj =
∑k−1
`=0 uj,`g

`, j = 1,2.

Goal: the computation of the g-ary digits of U1U2:

1) Computation of F (u1), F (u2),

2) Computation of F (u1)F (u2),

3) Computation of F−1(F (u1)F (u2))

4) Reconstruction of the g-ary digits of u1u2.

The complexity of the algorithm is O(k log k log log k).



6. Lucas-Lehmer test+distributed computing since 1996

GIMPS, the Great Internet Mersenne Prime Search, was formed

in January 1996 to discover new world-record-size Mersenne pri-

mes. GIMPS harnesses the power of thousands of small compu-

ters like yours to search for these ”needles in a haystack”.

GIMPS was founded in 1996 by George Woltman. The software

ran on Intel i386 systems using hand-tuned assembly code for the

critical calculations, resulting in highly optimized Lucas-Lehmer

code.

In the past twenty years only this group found new Mersenne

primes, altogether 15.



p year p year

1996 1,398,269 1997 2,976,221
1998 3,021,377 1999 6,972,593
2001 13,466,917 2003 20,996,011
2004 24,036,583 2005 25,964,951
2005 30,402,457 2006 32,582,657
2008 37,156,667 2009 *42,643,801
2008 *43,112,609 2013 *57,885,161
2016 *74,207,281

At the beginning GIMPS used for squaring the FFT.



R. Crandall and B. Fagin, 1994, Discrete Wighted Transforma-

tion (DWT).

Let a = (a0, . . . , ak−1), u = (u0, . . . , uk−1), then DWT (k, a)u =

(û0, . . . , ûk−1) = F (a · x), i.e.

û` =
k−1∑
h=0

ahuhω
`h.

If q = 2p − 1 is a Mersenne prime and k ≥ p, then

uj =
k−1∑
h=0

uj,h2dph/ke, 0 ≤ uj,h−1 < 2dph/ke−dp(h−1)/ke, j = 1,2,

the coordinates of the weigh vector: ah = 2dph/ke−ph/k, h =

0, . . . , k − 1.



The Crandall-Fagin algoritm:

1) ûj := DWT (k, a)uj, j = 1,2,

2) ẑ := û1û2,

3) z := DWT−1(k, a)ẑ,

4) z := Round(z),

5) Reconstruction of the digits of u1u2.

The DWT based multiplication is faster than the FFT based.



The inventions of GIMPS

1) Careful analysis of the procedure to find new Mersenne pri-
mes:

• Prove as early and cheep as possible that M(p) is composite.

• Collect and store intermediate data, like divisors, the numbers
un mod M(p).

• Starts the Lucas-Lehmer test only if all elementary considera-
tions failed.

• Check, double- and triple check the results. Compare the data
of the later trial with that of the earlier running.

Most of these principle were used by R.M. Robinson, later be-
came more sophisticated.



2) Implementation of the distributed procedure

• Implementation of algorithms for different kind of computation

and for many possible platforms.

• Distribution of the software, which is capable to send the re-

sults automatically to the right place.

• Automatic collection, ordering and storing the received data.

• Automatic signal if the system finds an interesting result.

(What is interesting?)

• Motive the community. Less powerful computers do important

work concerning the early abort.



Today’s (May 25, 2017) Numbers

Teams 1,105
Users 173,519
CPUs 1,491,605
TFLOP/s 316.258
GHz-Days 158,129



7. Uniformly distributed sequences

R.P. Brent and P. Zimmermann, 2011, gave an efficient algo-

rithm for the determination of F2[x]-irreducible trinoms of degree

p provided M(p) is a Mersenne prime.

In 2016 they proved that there exist exactly three such polynoms

for p = 74,207,281:

x74207281 + x9156813 + 1,

x74207281 + x9999621 + 1, and

x74207281 + x30684570 + 1.



Tamás Herendi, 2016, determined uniformly distributed pseudo-

random number generators, which produce 64 bit numbers and

have period length 274207345.

The characteristic polynomials of the generators are:

x74207283 − x74207281 − x9156815 − x9156813 − x2 − 2 · x+ 1

x74207283 − x74207281 − x9999623 − x9999621 − x2 − 2 · x+ 1

x74207283 − x74207281 − x30684572 − x30684570 − x2 − 1

One has big freedom in the choice of the initial values.



7. Future

The search for even larger Mersenne primes ”must go on.” Are

such innovations in mathematics, in computer science or in com-

puter technology, which can considerably push forward the size

of the known Mersenne primes?

The possibilities of the mentioned form of the Lucas-Lehmer

test seems to be exhausted. There are variants, for the test of

numbers of form h ·2n±1, h ·3n±1 and for h ·5n±1 as well, where

h is small. The 7th largest known prime is 10223 ·231172165 + 1.

I expect that in the future the primality tests of the above and

similar numbers will evolve. It is possible that the largest known

prime will be not a Mersenne prime. In 1951 his happened alre-

ady, Aimé Ferrier: 2148+1
17 .



The better understanding the location of Mersenne primes would

help considerably. After Google DeepMind’s AlphaGo program

beat the Chinese Go word champion, The New York Times wrote

on May 23, 2017: ”In the future, computer scientists hope to

use similar techniques to do many things, including improving

fundamental scientific research and diagnosing illnesses.” Can

AI better predict the position of the next Mersenne prime as HI?


