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Hannusch and Jörg Thuswaldner.



1. CNS and SRS

Let p = pnXn + . . . + p1X + p0 ∈ Z[X], pn = 1, |p0| > 1 and
D = {0,1, . . . , |p0|−1}. The pair (p,D) is called canonical number
system polynomial - CNS - if there exist for all 0 6= a ∈ Z[X]
integers ` and a0, . . . , a` ∈ D such that

a ≡ a0 + . . .+ a`X
` (mod p).

• This is a generalization of radix representation of integers. It
was initiated by D. Knuth, and developed further by Penney, I.
Kátai, J. Szabó, B. Kovács, etc.

• Not all (p,D) is a CNS! For example
(
X2 + 2X + 2, {0.1}

)
is,

but
(
X2 − 2X + 2, {0.1}

)
is not a CNS. Characterization of CNS

is a hard problem.



To r ∈ Rn associate the nearly linear mapping τr Zn 7→ Zn such

that if (a1, . . . , an) = a ∈ Zn then

τr(a) = (a2, . . . , an,−[ar]),

where [.] denotes the integer part, and ar the inner product.

Akiyama et al., 2005, called τr a shift radix system - SRS - if the

orbit τkr (a), k = 0,1, . . . is eventually zero for all a ∈ Zn.

They proved: (p,D) is a CNS iff for r =
(

1
p0
,
pn−1
p0

, . . . , pnp0

)
the

mapping τr is a SRS.

Found relation between SRS and β-expansions too.



2. Generalized number system - GNS

Let O denote an order, that is a commutative ring with 1 whose

additive group is free abelian of rank d. Identify m ∈ Z with m ·1,

and thus assume Z ⊂ O.

The order O may be given explicitly by a basis {1 = ω1, ω2 . . . ωd}
and a multiplication table

ωiωj =
d∑
l=1

aijlωl (i, j = 2 . . . d) with aijl ∈ Z, (1)

satisfying the commutativity and associativity rules.



A generalized number system over O (GNS over O for short) is a
pair (p,D), where p ∈ O[X] is a monic polynomial such that p(0)
is not a zero divisor of O, and where D is a (necessarily finite)
complete residue system of O modulo p(0) containing 0.

An element a ∈ O[X] is representable in (p,D) if there exist an
integer L ≥ 0 and a0, . . . , aL ∈ D such that

a ≡
L∑
j=0

ajX
j (mod p). (2)

The set of in (p,D) representable elements is R(p,D). If R(p,D) =
O then (p,D) is called GNS with finiteness property.

A GNS (p,D) over O may be viewed as a matrix number system
introduced by Vince, 1993, with lattice Λ = O[x]/(p), the linear
mapping ϕ : f (mod p) 7→ x · f (mod p), and digit set D = D.



We may view O[X] as a free Z[X]-module of finite rank, and

a 7→ p · a as a Z[X]-linear map from O[X] to itself. The deter-

minant of this Z[X]-linear map is a monic polynomial in Z[X],

which we denote by Np.

Theorem 1 (Evertse, Győry, Pethő, Thuswaldner, 2019). Let

(p,D) be a GNS over O with deg p = n ≥ 1. Then there is an

effectively computable number C′′, depending on O, p and D,

such that the following are equivalent:

(i) (p,D) has the finiteness property;

(ii) the polynomial Np is expansive, and every a ∈ O[X] with

‖a‖ ≤ C′′, deg a < n belongs to R(p,D).



3. Families of GNS

We view O as a full rank sublattice of the R-algebra O⊗ZR. We

recall that θ ∈ O is not a zero divisor of O if and only if it is

invertible in O⊗ZR.

A fundamental domain for O⊗ZR/O is a subset of O⊗ZR containing

precisely one element from every residue class of O⊗ZR modulo

O. For a fundamental domain F for O⊗ZR/O with 0 ∈ F and

θ ∈ O which is not a zero divisor, we define

DF ,θ := θF ∩O = {α ∈ O : θ−1α ∈ F}.

Lemma 1. Let F be a fundamental domain for O⊗ZR/O with

0 ∈ F and θ ∈ O not a zero divisor. Then DF ,θ is a complete

residue system for O modulo θ containing 0.



If F is a fundamental domain for O⊗ZR/O with 0 ∈ F and

p ∈ O[X] runs through the monic polynomials such that p(0) is

not a zero divisor then (p,DF ,p(0)) is a family of GNS over O.

For example put O = Z, F = [0,1) and p ∈ Z[X] with p(0) > 1

then DF ,p(0) = {0,1, . . . , p(0)−1}, thus (p,D) is exactly the CNS.



4. Generalization of SRS

Let 0 ∈ F be a fundamental domain for Rd. For any v ∈ Rd there

exist a unique a ∈ Zd, such that v− a ∈ F, which will be denoted

by bvcF .

For fixed matrices R1, . . . , Rn ∈ Rd×d define the sequence of in-

teger vectors by the initial terms a1, . . . an ∈ Zd and for m > n by

the nearly linear recursive relation

am = −

 n∑
`=1

R`am−n+`−1


F
. (3)



With the n-tuple R = (R1, . . . , Rn) of matrices define the map-

ping τR : Zd×n 7→ Zd×n such that if A = (a1, . . . , an) ∈ Zd×n

then

τR(A) = (a2, . . . , an, an+1), (4)

where an+1 is defined by (3) with m = n + 1. The mapping τR
is called generalized SRS, or short GSRS.

For k = 1 identify the matrices R1, . . . , Rn, with their real entries

and R with a n-dimensional real vector. Similarly A can be

identified with a n-dimensional integer vector. Further in (3) in

the bracket stays the inner product of R and A. Choosing finally

F = [0,1) we get the familiar definition of SRS.



5. Relation between GNS and GSRS

We show similar relation between GNS and GSRS as between

CNS and SRS.

Let p ∈ O[X] of degree n be monic, such that p(0) is not a zero

divisor and consider the GNS (p,D), where D = DF ,p(0). Let

a ∈ On[X], where On[X] denotes the elements of O[X] of degree

at most n− 1.



Let Tp : On[x] 7→ On[x] be the backward division mapping, which

is defined as

Tp(a)(X) =
a(X)− qp(X)− d

X
,

where d ∈ D is the unique element of D with d ≡ a(0) (mod p0)

and q = a(0)−d
p0

. This means q =
⌊
a(0)
p0

⌋
F

.

Iterating Tp for h-times we obtain d0, . . . , dh−1 ∈ D, and r ∈ O[X]

such that

a(X) =
h−1∑
j=0

djX
j +XhThp (a)(X) + r(X)p(X). (5)

Clearly, a ∈ R(p,D) if and only if there exists h0 such that Thp (a) =

0 for all h ≥ h0.



The mapping Tp acts essentially on the coefficient vector a =

(a0, . . . , an−1) of a =
∑n−1
i=0 aiX

i by the rule

Tp(a) = (a1 − qp1, . . . , an−1 − qpn−1,−qpn) = Ta− qp,

where q =
⌊
a(0)
p0

⌋
F

, p = (p1, . . . , pn) and T = (tij)i,j=1,...,n is the

matrix with ti,i+1 = 1, i = 1, . . . , n − 1 and all other entries are

zero.



Choosing a different basis for On[x], as in Brunotte (2001) or

Scheicher and Thuswaldner (2003)

wj =
j∑

m=1

pn−j+mX
m−1, j = 1, . . . , n

we get a different form of this transformation. Writing

a =
n−1∑
j=0

ajX
j =

n∑
j=1

cjwj

then

Tp(c) =
(
c2, . . . , cn,−

⌊
cp′

⌋
F

)
,

where c = (c1, . . . , cn) and p′ =
(
pn
p0
, . . . , p1

p0

)
.



Now we prove that Tp is a special case of τR.

Write cj = cj(ω1, . . . , ωd) with cj ∈ Zd, j = 1, . . . , d

The multiplication with any fixed element of O is a linear map-

ping of O into itself. As p(0) is not a zero divisor, 1/p(0) is

a well defined element of O⊗ZR/O. One can extend the mul-

tiplication to 1/p(0) such that it is again a linear mapping on

O⊗ZR/O. Thus there exist M1, . . . ,Mn ∈ Qd×d associated to the

multiplication by pn/p0, . . . , p1/p0. Thus

cp′ =
n∑

j=1

Mjcj, i.e, Tp(c) = τM1,...,Mn(c1, . . . , cn).

which proves the claim.



Theorem 2. Let p ∈ O[X] be monic and such that p(0) is not

a zero divisor. Let F be, a fundamental domain for Rd. Then

aO[X] is representable in (p,DF ,p(0)) if and only if the orbit of

τk(M1,...,Mn)(c1, . . . , cn) is ultimately zero.



An example

Let O =
√
−7, ω1 = 1, ω2 = 1+

√
−7

2 , ω = (ω1, ω2) and F = [0,1)2.

Then

ω1

(
ω1
ω2

)
=

(
1 0
0 1

)
and ω2

(
ω1
ω2

)
=

(
0 1
−2 1

)
.

Let p = X + −1+
√
−7

2 . Then

1

p(0)
= −

1 +
√
−7

4
= −

ω2

2
.



Hence D = {0,−1} and the matrix associated to the multiplica-

tion by 1/p(0) is M =

(
0 −1/2
1 −1/2

)
.

Finally the searched dynamical system is(
a1
a2

)
7→
(
b−a2/2c
ba1 − a2/2c

)
,

where a1, a2 ∈ Z.



6. Closer look at the case n = 1

In the case n = 1 the GSRS simplifies to

am = τR(am−1) = −bRam−1cF , for m ≥ 1,

where R ∈ Rd×d and a0 ∈ Zd.
Theorem 3. If all orbits of τR are periodic then the spectral

radius of R is at most 1, consequently |detR| ≤ 1.

Theorem 4. If the spectral radius of R is less than 1 then all

orbits of τR are periodic.

Notice that the above properties are independent from F. In the

sequel F = [0,1)d.

What happens when all eigenvalues of R lie on the unit circle?



6.1. Discrete rotation on the plane

We consider the case n = 1, d = 2 and R ∈ R2×2, which has two

different eigenvalues on the unit circle. (Only ±1 can be multiple

eigenvalues.) A convenient representation of R is

R = TAϕT
−1, Aϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)

where T ∈ R2×2 is an invertible matrix and 0 ≤ ϕ < 2π.

The points Rk(a, b)T , (a, b) ∈ Z2 form a bounded set; generally

they lie on an ellipse, in the case T = E, i.e., R = Aϕ on the unit

circle.



Akiyama, Brunotte, Pethő and Steiner (2006) studied the case

n = 2, d = 1, when am+1 = −bλam + am−1c with |λ| < 2.

We can write

am+1 = −bλam + am−1c
am = −b−amc.

Putting R =

(
λ 1
−1 0

)
we obtain

(
am+1
am

)
= −

⌊
R

(
am
am−1

)⌋
.

Thus n = 2, d = 1 is a special case of n = 1, d = 2.



Akiyama et al. conjecture that the sequence (am) is always

periodic.

In 2008 they verified this conjecture for λ = ±
√

2,±1±
√

5
2 .

Akiyama and Pethő proved (2013) that for any λ there are in-

finitely many starting values a0, a1 such that (am) is periodic.



Staring value (10,9), ϕ = 0.001.



Staring value (0,910), ϕ = 0.001.



Staring value (1904,0), ϕ = 0.11.



Theorem 5. There are infinitely many (a, b) ∈ Z2 such that the

sequence x0 = (a, b),xm+1 = bAπ/4xm,m = 0,1, . . . is periodic of

length 8.

The proof is tiering computation with the integer part function.

Its essence is:

Lemma 2. Let a ∈ N, ω = b 1√
2
ac and suppose b

√
2ωc = a − 1. If

{ 1√
2
a} ∈

[
1− 1√

2
, 1√

2

]
, and {

√
2ω} ∈

[
1− 1√

2
, 1√

2

]
, then A8

ϕ(a,0) =

(a,0).



Thank you for the attention!


