Probability Theory and Mathematical Statistics Applied Statistics
 Retake1+2

1. In an urn we have three red balls. Find the minimal number of white balls to be added to have the probability of choosing a white ball be greater than 0.9. [5 points]
2. We know that at least one of the two kids in a family is a girl. Find the probability of having also a boy in the family.
3. 75% of the products produced in a factory are first class products, the rest are of second class. Later all products are double checked. The probability that a first class product is evaluated as a second class one is 0.02 , while the probability that a second class product is found to be a first class one is 0.05 . Find the probability that a product evaluated as a first class product is really a first class one.
[5 points]
4. The joint cdf of (ξ, η) equals:

$$
F(x)=\left\{\begin{array}{cc}
1+e^{-x-y}-e^{-x}-e^{-y} & \text { if } x>0, y>0, \\
0, & \text { otherwise } .
\end{array}\right.
$$

a. Find the marginal distribution functions of ξ and η.

Are ξ and η independent?
[10 points]
5. The joint pdf of (ξ, η) equals:

$$
\mathrm{f}(\mathrm{x}, \mathrm{y}):=\left\{\begin{array}{cl}
\frac{4}{5}(\mathrm{x}+\mathrm{xy}+\mathrm{y}), & \text { ha } 0<\mathrm{x}<1,0<\mathrm{y}<1 \\
0, & \text { otherwise } .
\end{array}\right.
$$

b. Find the marginal density functions of ξ and η.
c. Are ξ and η independent?
[10 points]
6. Check whether the following function is a probability density function or not. If it is a pdf find the mean and standard deviation of the random variable specified by the following probability density function:

$$
f(x)=\left\{\begin{array}{c}
\frac{1}{x}, \text { if } 1<x<e \tag{5points}\\
0, \text { otherwise }
\end{array}\right.
$$

7. Write down the cdf, pdf, expected value and variance of the Uniform distribution!
8. Write down the cdf, pdf, expected value and variance of the Exponential distribution!
9. Write down the Bayes' theorem!
10. Write down the definition of independence!
