Seminar 5

Infinite series.

1. Find the sum of the following series:
a $\sum_{n=0}^{\infty} 100 \cdot(0.9)^{n}$
c $\sum_{n=0}^{\infty}\left(\frac{1}{2^{n}}+\frac{1}{5^{n}}\right)$
b $\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{1}{3^{n}}$
d $\sum_{n=2}^{\infty} \frac{n-1}{n!}$
2. Prove that the following series are divergent.
a $\sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n})$
b $\sum_{n=1}^{\infty} \sqrt[n]{0.2}$
3. Which of the following series are convergent?
a $\sum_{n=1}^{\infty} \frac{1}{10 n+3}$
c $\sum_{n=1}^{\infty} \frac{n}{(n+1)^{3}}$
b $\sum_{n=1}^{\infty} \frac{1}{3 n-1}$
$\mathrm{d} \sum_{n=1}^{\infty} \frac{1}{(n+1) \sqrt{n}}$
4. Which of the following series are divergent, conditionally convergent or absolute convergent?
a $\sum_{n=1}^{\infty}(-1)^{n+1} \cdot \frac{2^{n}}{n^{2}}$
b $\sum_{n=1}^{\infty}(-1)^{n} \cdot \frac{n+1}{3^{n}}$
5. Prove that $\lim _{n \rightarrow \infty} \frac{3 n+1}{-2 n+3}=-\frac{3}{2}$.
