Juhész Istvan

MAGAS SZINTU PROGRAMOZASI NYELVEK 1

mobiDIAK konyvtar

Juhész Istvan

MAGAS SZINTU PROGRAMOZASI NYELVEK 1

mobiDIAK konyvtar

SOROZATSZERKESZTO
Fazekas Istvan

Juhész Istvan

MAGAS SZINTU PROGRAMOZASI NYELVEK 1

Egyetemi jegyzet
Harmadik kiadas

mobiDIAK konyvtar

Debreceni Egyetem
Informatikai Kar

Lektor

Panovics Janos
Debreceni Egyetem

Copyright © Juhasz Istvan 2008
Copyright © elektronikus kozlés mobiDIAK kényvtar, 2008

mobiDIAK konyvtar
Debreceni Egyetem
Informatikai Kar

4010 Debrecen, Pf. 12
http://mobidiak.inf.unideb.hu

A mil egyéni tanulmanyozas céljara szabadon let6ltheté. Minden egyéb felhasznalas
csak a szerz6 elézetes irdsbeli engedélyével torténhet.

A mi A mobiDIAK dnszervez 6 mobil portal (IKTA, OMFB-00373/2003) és a GNU
Iterator, a legUjabb generacios portal szoftver (ITEM, 50/2003) projektek
keretében keésziilt.

TARTALOMJEGYZEK

ELOSZO ..ottt ettt 9
1. BEVEZETES ...ootioiettiieie ettt ettt ettt ettt nan st ne s ne s 10
I O 1Y [To (=11 1= 4= PP 10
1.2, AlaPfOgalMakccoooiiiie e 11
1.3. A programnyelvek 0SZtAlYOZASA...........cceueeiiiiiiiiiiiiiiiieeeeee e 14
1.4. A jegyzetben alkalmazott formalis JelOIESIEBS................uvviiiiiiiiiiiiiiieee e 15
S N =T | V74 = B =1 0 |- U UPURURRPR 15
2. ALAPELEMEK ...ttt ettt e — 17
2.1, KaraKtErKESZIBL. .. . uuuiiieeiiiiiii et e e e a e e e e e e aaeeeas 17
2.2. LEXIKANIS EQYSEOEKuuuuiiiiiiiiiiiiiieiae e ettt e e e e e e ea e e e bbb eeeees 18
2.2.1. TObbkarakteres SZimDOIUMOK o« eerrrnniiiiiiiiiiiriirieeeeeeeeee s ssssneeeeees 18
2.2.2. SZIMDOIKUS NEVEK ...t ee e e e e e e e eeeenenees 19
2.2.3. CIMKE e e e e e ettt r et e e e e e e e e e e e e aa it rraa ittt e raaaaaaaaaaaaas 20
2.2.4. MEQJEAYZES ..o e e e ee et eeeeeee e e e e ettt e e e e e aaaa et ppran e rreees 20
2.2.6. Liter@lok (KONSLANSOK)ceiiiieeiiscccceiiiiiiiiiiiicieeee et e s mnnnne e e n e e e e 21
2.3. A forrdsszoveg 0sszedllitdsanak altalanoAbzah............evevvvvvviiiiiiiiii, 27
2.4, AQAIPUSOK ...ttt et e e e e e e e ettt aeeeaae e e e s s nnnnnnnrerneenees 28
2.4. 1. EQYSZEITIPUSOK ...ttt e e sttt e e e e e e e e e e eneeenes 29
2.4.2. OSSZELELt tIPUSOKveiveeieieieceeeeeee e etee et ee et e e te et eeaeeaeenaeeaeesreeee e, 31
P2 T V11 = Lo I] 10 3ROSR 33
2.5. A NEVESILELt KONSTANSvvieiiiiiiiiiceeeeeeiiiiitietee ettt e e e e e errree e e e e e e e e e e e e e n e 34
2.6. AVAIOZO ... ————————— 35
2.7. Alapelemek az egyes nyelvekben...... .o 39
3. KIFEJEZESEKviiiiiitiitsteie ettt ettt sttt sn s ene ettt ene e 46
3.1, KIfEJEZES @ C-DBN ...ttt e e e e e e 50
A, UTASITASOKoiuiiiiiiiteietestete sttt ettt sttt se st ese st ese st esessesaanssesessesessenessenens 56
O I 1 =Y = Yo (O I U L =TT 7 L= 57
4.2, UIES ULASTIASeoveeeveeveeeie et eemeee et ete e teeee e eeteeeteeneeeteeeteeseessesteeeteeneesneesseeeens 57
G T Lo | (o I U = Y1 = 3PP PPPRRPRR 57
4.4, EIAgaztatd UtaSitASOK.........coooiieeeeieee e 58
4.4.1. Kétiranyu elagaztatd utasitas (feltetel@SUAS)uuvvvvvviieiiiieeiiiieiice s 58
4.4.2. Tobbiranyl eldgaztatd UtaSitascceeeeviiieeeeeiii e e e 59
4.5. CiKIUSSZErvaZULASITASOKcccciiiiiiiiiiiiicccee e e e e e e 62
4.5.1. FERELEIES CIKIUS ..uvviiiiiiiiiiiiee et 63
4.5.2. EBirt 1EPESSZAMU CIKIUSuvviviiieiiiiee sttt e e e e e e e e e e e e e e e e 64
4.5.3. FEISOrOIASOS CIKIUSceviiiiiiiieeeeiieieeeecitt ettt a e e e e e 66

4.5.4. VEGLEIEN CIKIUS ..o ettt e e e e e e e e e e e e aeas 67

4.5.5, OSSZELELE CIKIUSt eeee e e e e e e e e e e e e e e e et e e e e e e e eaaaaaseeen s nnnnreeeeees 67
4.6. Ciklusszervezutasitdsok az egyes nyelvekbencccccoeveeeieiiiiiiiiccccciiii 67
4.7.Vezemd UtaSitASOK @ C-DEN.....c.oeee e 71

5. APROGRAMOK SZERKEZETE ..ottt e e ennes 72
5.1, AIPIOGrAMOK ... et reee ettt e e e e e e e e e e e e e eaeeeaeeeeeaeeeeeeesnnnnnnnns 73
B.2. HIVASI JANC, TEKUIZIOo e e 77
5.3. M&sodlagos belépési PONOK ..o 78
B5.4. Parame@terki@rtEKEIESooneeeeee e 78
B . ParameterAtatas.ceneee e e e e 80
BB, A DIOKK ... e e e 82
BT HALASKOK .. e e e e 83
IR S I o] 0 [7= LTI =T0 VA= o [SPPPPPRERR 86
5.9. AZ egyes NYEIVEK @SZKOZEI........uuuuuiiiieeiiiiiiiieee e 86

B. ABSZTRAKT ADATTIPUS .. ettt ettt eeeaaiaaae s 98

T A CSOMAG ..o e e 99

8. AZ ADA FORDITASROL ..ottt ettt ee e, 105
S I o = Vo | . =1 PP 105
8.2. FOrditaSi €QYSEUEKceiiiiie e 106

9. KIVETELKEZELES ...ttt ettt ettt et et e et e et e eemeeeaeeeeee e, 112
O0.1. A PL/LKIVELIEIKEZEIESE ... e 113
0.2. AZ AdA KIVELEIKEZEIBSE e 117

10. GENERIKUS PROGRAMOZASottt eeeeee e eeiaen 121

11. PARHUZAMOS PROGRAMOZAS ...ttt 124

A N NS VA (G 126

R 1\ 2 U (@ 10 I I =1 U I IR 135
13.1. Az egyes NYeIVEK /O €SZKOZEI. ..o 138

14. IMPLEMENTACIOS KERDESEK ...t eeeeeee et eeee e 140

IRODALOMUIEGYZEK ...ttt e e e et e e e e et e e e e e e e e e e e 142

ELOSZO

Jelen jegyzet a Debreceni Egyetem Informatikai KaogramterveZ informatikus és
Mérndkinformatikuszakan alapoz6 targy,Magas szinti programozasi nyelvek lelméleti
anyagat tartalmazza. A tantarggfeltételeBevezetés az informatikabdargy. Ez a jegyzet is
sok helyen tAmaszkodik az ott elsajatitott alapiste&re. Az ajanlott tantervi halo szerint a
targgyal parhuzamosan keril meghirdetésré®peracios rendszerek 1(illetve Operacios
rendszerel és azAdatszerkezetek és algoritmusolcimii targy. Ezekkel nagyon szoros a
kapcsolat, gyakoriak az athivatkozasokMagas szinti programozasi nyelvek 1targyhoz
kozvetlenll kapcsolédik Blagas szinti programozasi nyelvek 2argy, ezek egyiitt alkotnak

szerves egészet.

A jegyzet megirdsanakdgontjaban a targy gyakorlatan a C a kétéleygelv. Ez magyarazza,

hogy ezzel a nyelvvel részletesebben foglalkozunk.

A tantargy gyakorlatdn Késa Méark és Panovics J&#ddatar a Programozas 1argyhoz

cimi elektronikus jegyzete hasznalhato.

1. BEVEZETES

1.1. Modellezés

Az ember mar igen régota torekszik a valos vilagismerésére. A valos vilagban mindenféle
objektumok (személyek, targyak, intézmények, szzggjtes programok) vannak — nevezzik
ezeketegyedeknekAz egyedeknek egyrészt rajuk jelletnzilajdonsagaikvannak, masrészt
kozottik bonyolult kapcsolatrendszer all fenn. Agexrlek reagalnak a korulottik tevwnas
egyedek hatasaira, kapcsolatba lIépnek egymas&ainiaciot cserélnek — vagyigselkednek
Az egyes konkrét egyedeket egymastol tulajdonsagjedié ertékei, vagy eltérviselkedésik
alapjan kulonboztetjik meg. Ugyanakkor viszont Bbsvailag egyedeikdzostulajdonsagaik

esviselkedésmodjuk alapjdategorizalhatokosztalyozhatak

A valods vilag tulsagosan dsszetett ahhoz, hogy ganteljességében megragadjuk, éppen ezért
a human gondolkodads az absztrakcion alapszik éskersegitségével modellekben
gondolkodunk. Az absztrakcié Iényege, hogy kiemkehik6zos Iényegegulajdonsagokat és
viselkedésmoddokat, az eléé@ket, lényegteleneket pedig elhanyagoljuk. Ezdk#dejon a
valés vilag modellje, amely mar nem az egyes edyae hanem az egyedek egy

csoportjavalpsztalyavafoglalkozik.

Az ember modelleket hasznal, amikor egy megoldapdibléman gondolkodik, amikor
beszélget valakivel, amikor eszkozt tervez, amtloit, amikor tanul és amikor megprobalja

megérteni az itt leirtakat.

A modellalkotas képessége vellink sziletik. Amikogyarmek megismerkedik a vilaggal,
akkor igazdban azt tanulja meg, hogy a szamtalgadegroblémat hogyan lehet kezelhet

szamu problémaosztalyra |é&#eni.
Egy modellel szemben harom kévetelményt szoktalasamani:

1. Leképezes kovetelményeteznie kell olyan egyednek, amelynek a modélér

végezzik. Ez az ,eredeti egyed”.

10

2. Leszikités kovetelményéz eredeti egyed nem minden tulajdonsaga jelergk a

modellben, csak bizonyosak.

3. Alkalmazhatésag kovetelmény® modellnek hasznélhatonak kell lennie, azaz a
benne levont kovetkeztetéseknek igaznak kell ldgriiéd azokat visszavetitjik az

eredeti egyedre.

Az 1. kovetelmény nem jelenti szikségsieer az eredeti egyed aktualis |étezését, az lehet
megtervezett (pl. egy legyartando6 gép), kitaldlt €gy regényalak), vagy feltételezett (pl. egy

baktérium a Marson).

A 2. kdvetelmény miatt a modell mindig szegényelifizont kezelhét (mig az eredeti egyed

gyakran nem).

A 3. kdvetelmény az, amiért az egész modellt eghiit elkészitjik. Az eredeti egyed igen

gyakran nem is elérheszamunkra, ezért vizsgalatainkat csak a modellbgezhetjik.

A szamitogépek megjelenése Idévet tette az emberi gondolkodds bizonyos elemeinek
automatizalasat. Az informatika a modellezés testmlapved jelentsegre tett szert. Az
egyedek tulajdonsagait szamitogépadatokka] a viselkedésmddot pedigrogramokkal
tudjuk kezelni — ezzel természetesen szintén dgyfmjodellt megadva. igy beszélhetiink
adatmodellsl ésfunkcionalis modellil (eljarasmodellél). Ez a megkilonbodztetés azonban
csak szamitdégépes kornyezetben lehetséges, hiszmodall maga egy é€s oszthatatlan.
Ugyancsak ebben a kozelitésben emlithetjik aamlatabsztrakcidétés a proceduralis

absztrakcigtmint az absztrakcid megjelenési formait az infatikaban.

1.2. Alapfogalmak

A szamitogépek programozasara kialakult nyelveldglm szintjét kilonboztetjik meg:

— gépi nyelv
— assembly szifitnyelv

— magas szifitnyelv

11

A Magas szinti programozasi nyelvek 1ésMagas szinti programozasi nyelvek 2argyak
szini nyelven megirt programdirrasprogramnak vagy forrasszévegnekevezzik. A
forrasszoveg Osszedllitdsara vonatkoz6 formai,lytgei” szabalyok 6sszesséegtintaktikai
szabdalyoknak hivjuk. A tartalmi, értelmezési, j¢émeli szabélyok alkotjak szemantikai
szabalyokat. Egy magas sZirgrogramozasi nyelvet szintaktikai és szemantikabalyainak

egylttese hataroz meg.

Minden processzor rendelkezik sajat gépi nyelvsd, csak az adott gépi nyelven irt
programokat tudja végrehajtani. A magas szimyelven megirt forrasszévegbtehat
valamilyen modon gépi nyelvprogramokhoz kell eljutni. Erre kétféle technilé&elzik, a

forditoprogramos aznterpreteres

A forditoprogram egy specialis program, amely a a&sagszini nyelven megirt
forrasprogrambol gépi kéduatargyprogramot allit els. A forditoprogram a teljes
forrasprogramot egyetlen egységként kezeli, ésdmese kozben a kdvetkelepéseket hajtja

végre:

— lexikalis elemzés
— szintaktikai elemzés
— szemantikai elemzés

— kédgeneréalas

A lexikalis elemzés soran a forrasszoveget felddjalbexikalis egységekre (l. 2.2. alfejezet),
a szintaktikai elemzés folyamén elbeni, hogy teljesiinek-e az adott nyelv szintaktikai
szabalyai. Targyprogramot csak szintaktikailag é=lyorrasprogrambdl lehetééllitani. A
targyprogram mar gépi nydly de még nem futtathatdé. B& futtathatd programot a
szerkeszt vagy kapcsolatszerkestallit els. A futtathatdo programot aetols helyezi el a
tarban, és adja at neki a vezérlést. A futé progmaikodéseét duttatd rendszefelligyeli. Az
ezekkel kapcsolatos részletes ismeretekeODperacios rendszerek 1(illetve Operacios
rendszerel, és az Automatédk és formalis nyelvek targyak targyaljadk. Bennlnket a

tovabbiakban csak a forditoprograniikiidése és #orditasi ideji események (a szintaktika

12

miatt), tovabba a futtaté rendszer tevékenységa fagasi idbhdz kapcsol6dé események (a

szemantika miatt) érintenek.

A forditbprogramok altaldnosabb értelemben tédeges nyelvdl tetsdleges nyelvre
forditanak. A magas szihtnyelvek kdzétt is létezik olyan, amelyben olyamrdsprogramot
lehet irni, amely tartalmaz nem nyelvi elemeket ligenkor egy elsforditd segitségével
elészor a forrdsprogrambdl egy adott nyeborrasprogramot kell generalni, ami aztan mar

feldolgozhat6 a nyelv fordit6javal. llyen nyelv géul a C.

Az interpreteres technika esetén is megvan dztélsom lépés, de az interpreter nem készit
targyprogramot. Utasitdsonként (vagy egyéb nyelhgységenként) sorra veszi a
forrasprogramot, értelmezi azt, és végrehajtja.t®ddgapjuk az eredményt, ugy, hogy lefut

valamilyen gépi kédu rutin.

Az egyes programnyelvek vagy forditdprogramosalgyviaterpreteresek, vagy egyittesen

alkalmazzak mindkét technikat.

Minden programnyelvnek megvan a sajat szabvanyd,ravatkozasi nyelvnekivunk. Ebben
pontosan definidlva vannak a szintaktikai és a sxikai szabalyok. A szintaktika leirdsahoz
valamilyen formalizmust alkalmaznak, a szemantigatlig altalaban természetes emberi
nyelven (pl. angolul) adjdk meg. A hivatkozasi mymiellett (néha vele szemben) léteznek az
implementaciok Ezek egy adott platformon (processzor, operadiésdszer) realizalt
forditdprogramok vagy interpreterek. Sok vanséhé. Gyakran ugyanazon platformon is
létezik tobb implementacié. A probléma az, hogy iaplementaciok egymassal és a
hivatkozasi nyelvvel nem kompatibilisek. A magatz programozési nyelvek elmalt 50
eves torténetében napjainkig nem sikerilt tokéetemegoldani énordozhatésagha egy
adott implementaciéban megirt programot atviszekragsik implementéaciéba, akkor az ott

fut és ugyanazt az eredményt szolgaltatja) progima

Napjainkban a programok irasdhoz grafikuegralt fejleszti kérnyezeteKIDE - Integrated
Development Enviroment) alinak rendelkezésiinkreekEtartalmaznak szovegszerkészt

forditét (esetleg interpretert), kapcsolatszerkigsbetoltt, futtatd rendszert és belétv

13

1.3. A programnyelvek osztalyozasa

Imperativ nyelvek

— Algoritmikus nyelvek: a programoz6 mikor egy pragszoveget leir, algoritmust kodol,
€s ez az algoritmusiikodteti a processzort.

— A programutasitdsolsorozata.

— Legfébb programozoi eszkdz &altozq amely a tar kozvetlen elérését biztositja,
lehetiséget ad az abban teertékek kdzvetlen manipulalasara. Az algoritmwsiéozok
ertékeit alakitja, tehat a program a hatasat egyes teruletein lévértékeken fejti ki.

— Szorosan k@dnek a Neumann-architektirahoz.
— Alcsoportjai:

- Eljardsorientélt nyelvek

— Objektumorientalt nyelvek

Deklarativ nyelvek

— Nem algoritmikus nyelvek.

- Nem kdtdnek olyan szorosan a Neumann-architektirahoz, aaiimhperativ nyelvek.

— A programoz6 csak a problémat adja meg, a nyelylementaciokba van beépitve a
megoldas megkeresésének maodja.

— A programozoénak nincs leléstge memoriafiveletekre, vagy csak korlatozott médon.

— Alcsoportjai:
— Funkcionalis (applikativiyelvek

— Logikai nyelvek

Maselvi (egyéb) nyelvek

Olyan nyelveket sorolunk ebbe a kategoriaba, arkety@shova nem sorolhatok.

Nincs egységes jellertijiik. Altalaban tagadjak valamelyik imperativ jellsfh

14

1.4. A jegyzetben alkalmazott formalis jel6lésrendzer

A tovabbiakban a szintaktikai szabalyok formalisrdedhoz az alabbi jel6lésrendszert

hasznaljuk:
Terminalis iraskép, ha a jelek higt, akkor nagybéis alak.

Nem terminalis kisbetis kategorianevek, ha tobb szébdl allnak, akkor avaz kozott
alahuzas-jellel.

Alternativa |

Opcid []

Iter4cid: ..., mindig az eitte allo szintaktikai elem tetéleges szamu ismétlését jelenti.

A fenti elemekkel szintaktikai szabalyok formalizaldk. Ezek bal oldalan egy nem
termindlis all, jobb oldalan pedig egy teikeges elemsorozat. A két oldalt Kefpont

valasztja el. A termindlisokat és nem terminalisdkaurier New befitipussal szedtik. Ezt
alkalmazzuk a konkrét forrdsprogramok megadasasalAmennyiben a formalis leird

karakterek részei az adott nyelvnek, akkor azoKatraalizalasnal vastagon szedjuk, ¢, [,
L1
Példa:

szamjegy: {0 |1 |2 |3 |4 |5 |6] 7 |8 |9 }

egész_szam: [{ +|- }] szamjegy

1.5. A jegyzet targya

A Magas szinti programozasi nyelvek ltantargy az eljarasorientalt nyelvek eszkdzeit,
fogalmait, filozéfigjat, szamitdsi modelljét targiga Konkrétan elemzi a legfontosabb, a
gyakorlatban szerepet jatsz6 nyelvek (FORTRAN, CQB®eL/I, Pascal, Ada, C) egyes

elemeit. De a jegyzehem nyelvleiras Az emlitett nyelvek eszkdzeinek csak egy részét

targyalja, gyakran azokat is leegydmdtett, nem teljes formaban. A cél az, hogy a

15

programozasi nyelvekben hasznalhaté eszk@t &gy modellszint attekintést, egy altalanos
absztrakt fogalomrendszert kapjunk, amely keret@k6® aztan az egyes nyelvek konkrét
megvalositédsai elhelyeziogt A konkrét nyelvi ismeretek az adott nyelvet &@ig
konyvekldl és papiralapu illetve elektronikus dokumentaca@idajatithatok elDe barmely
nyelven programozni megtanulni elméletben, ,papiroi nem lehet. Ehhez sok-sok

programot kell megirni és lefuttatni!
Jelentéségik miatt kiemelt figyelmet forditunk a C és ataAyelvekre.

Végul itt jegyezzik meg, hogy az eljarasorientaltogpamozasi nyelvek altalaban

forditdprogramosak, csak ritkan interpreteresek.

16

2. ALAPELEMEK

Ebben a fejezetben egy programozasi nyelv alapesitk@lapfogalmait ismerjik meg.

2.1. Karakterkészlet

Minden program forrasszovegének legkisebb alkor@iés karakterek A forrasszoveg
Osszeallitdsanal alapdetr karakterkészletennek elemei jelenhetnek meg az adott nyelv
programjaiban, ezekb allithatok 6ssze a bonyolultabb nyelvi elemek. dliarasorientalt

nyelvek esetén ezek a kovetkkz

— lexikélis egységek

— szintaktikai egységek
— utasitasok

— programegységek

— forditasi egységek

— program

Minden nyelv definialja a sajat karakterkészletét. karakterkészletek k&zott lényeges
eltérések lehetnek, de a programnyelvek altalabakaraktereket a kovetkézmaodon

kategorizaljak:

— betik
— szamjegyek

— egyéb karakterek

Minden programnyelvben hkietaz angol ABC 26 nagybge. A nyelvek tovabba bét
kategorigju karakternek tekintik gyakran az $, # , @ karaktereket is. Ez viszont sokszor
implementaciofigd. Abban mar eltérnek a nyelvek, hogy hogyan kezalikangol ABC
kisbetiit. Egyes nyelvek (pl. FORTRAN, PL/l) szerint ezedm tartoznak a bi&kategoriaba,
méasok (pl. Ada, C, Pascal) szerint igen. Ezen utdlyelvek kilonbdznek abban, hogy
azonosnak tekintik-e a kis- és nagyihket (Pascal), vagy kiulonbéeknek (C). A nyelvek

17

tulnyomo tbbbsége a nemzeti nyelvi ldedit nem sorolja a bétkategdriaba, néhany kisbi

nyelv viszont igen. Tehat ezekben példaul lehetgyagaul” irni a programot.

A szamjegyeket illéten egységes a nyelvek szemlélete, mindegyik a ddisiszamjegyeket

“ s

Az egyéb karakterek kozé tartoznak avedeti jelek (pl.+, -, *, /), elhatarolo jelek (pl.,],
A I .), irasjelek (pl.?, !) és a specialis karakterek (pl). A program

szovegében kitlintetett szerepet jatszik a szokie,agyeb karakter (1. 2.3. alfejezet).

A hivatkozasi nyelv és az implementaciok karaktsrkete eltéf is lehet. Minden
implementacid mogott egy-egy konkrét kédtabla (EBCDASCII, UNICODE) all. Ez
meghatarozza egyrészt azt, hogy egy- vagy toblddiarakterek kezelése lehetséges-e,
masrészt értelmezi a karakterek sorrendjét. Ugyaamgyon kevés olyan hivatkozési nyelv van

(pl. Ada), amely definialja a karakterek kozottrremdet.

2.2. Lexikalis egységek

A lexikélis egységek a program sztvegének azon edlemelyeket a forditd a lexikalis

elemzés soran felismer és tokenizal (kozBdosméara hoz). Fajtai a kovetkidz

— tbbbkarakteres szimbolum
— szimbolikus név

— cimke

— megjegyzés

— literal

2.2.1. Tobbkarakteres szimbdlumok

Olyan (jellem®en egyéb karakterekballd) karaktersorozatok, amelyeknek a nyelv uldajit
jelentést és ezek csak ilyen értelemben hasznélhideigyon gyakran a nyelvben operéatorok,
elhatarolok lehetnek. Példaul a C-ben tobbkaragtsezenbolumok a kovetkék: ++, -- |, &&,

* %

18

2.2.2. Szimbolikus nevek

Azonosité Olyan karaktersorozat, amely te¢l kezadbdik, és beivel vagy szamjeggyel
folytatodhat. Arra vald, hogy a program irdja aasg@jrogramozoi eszkdzeit megnevezze vele,
€s ezutan ezzel hivatkozzon ra a program szévedsréol. A hivatkozasi nyelvek altalaban
nem mondanak semmit a hosszarol, az implementadgdont értelemszéen korlatozzak

azt.
A kovetkedk szabalyos C azonositok (a C-ben azeti kategoérigja):

X
almafa
hallgato_azonosito
SzemelyNev

A kovetked karaktersorozatok viszont nem azonositok:

X+y a+ nem megengedett karakter
123abc betivel kell kez&dnie

Kulcssz6 (alapszo, fenntartott sz6, védett szdaltogzd) Olyan karaktersorozat (altalaban
azonosito jelleg felépitéssel), amelynek az adott nyelv tulajdgelé@ntést, és ez a jelentés a
programozo altal nem megvaltoztathatd. Nem mindaivn(pl. FORTRAN, PL/I) ismeri ezt
a fogalmat. Az utasitasok altaldban egy-egy jedés kulcsszéval ke#dnek, a szakmai
szleng az utasitast gyakran ezzel nevezi meg Kpltdsitas). Minden nyelvre nagyon
jellemzoek a kulcsszavai. Ezek gyakran hétk6znapi angoVadzavagy roviditések. Az

alapszavak soha nem hasznéalhatok azonositoként.
A C-ben példaul alapszavak a kdveikez

if ,for ,case ,break

Standard azonosit@lyan karaktersorozat, amelynek a nyelv tulajdgelentést, de ez az

e

alapértelmezés a programozé A<al megvaltoztathattértelmezhét Altalaban az

19

implementaciok eszkodzeinek (pl. beépitett fliggvé&hyevei ilyenek. A standard azonosité
hasznalhaté az eredeti értelemben, de a prograsaat azonositokeént is felhasznalhatja. A

C-ben példaul standard azonosit§@LL

2.2.3. Cimke

Az eljarasorientalt nyelvekben a végrehajthatoitdask (l. 4. fejezet) megjeldlésére szolgal,
azért, hogy a program egy masik pontjardl hivatkdadjunk rajuk. Barmely végrehajthato
utasitas megcimkeéziiet

A cimke maga egy specialis karaktersorozat, anehetl ebjel nélkili egész szam, vagy

azonosito. A cimke felépitése az egyes nyelvekb@ivetkes:
— COBOL: nincs.
— FORTRAN: maximum 5 jedyeléjel nélkili egész szam.

— Pascal: A szabvany Pascalban a cimke maximunamjegytdl allo elbjel nélkili egész

szam. Egyes implementaciokban ezen kivil lehet@sitnis.
— PL/I, C, Ada: azonosito.

Eléggé altalanos, hogy a cimke az utasitéis &ll €s tle kettspont valasztja el. Az Adaban

viszont a cimke az utasita$ttla<< és>> tdbbkarakteres szimbdélumok kdzott szerepel.

2.2.4. Megjegyzés

A megjegyzés egy olyan programozasi eszkdz, amefjtsgével a programban olyan
karaktersorozat helyezlietl, amely nem a forditénak sz4l, hanem a progainegét olvaso
embernek. Ez olyan magyaraz6 széveg, amely a prograsznalatat segiti, (tkodesébl,
megirasanak korulményélr a felhasznélt algoritmusrol, az alkalmazott medgsokrol ad
informaciot. A megjegyzeést a lexikalis elemzés sadordito ignoralja. A megjegyzésben a
karakterkészlet barmely karakteréferdulhat, és minden karakter egyenéiitédsak 6nmagat

képviseli, a karakter-kategoriaknak nincs jefsgge.

Egy megjegyzés forrasszévegben valo elhelyezésdoartiéle lehdiség van:

20

— A forrdsszovegben elhelyezhetiink teljes megjeggpét (pl. FORTRAN, COBOL). Ekkor

a sor el§ karaktere (pl. C) jelzi a forditonak, hogy a sermrésze a kdédnak.

— Minden sor végén elhelyezhetiink megjegyzést. Ekkeor el§ része forditandd kodot,
masodik része figyelmen kivil hagyand6 karaktersmai tartalmaz. Példaul Adaban-a

jeltél a sor végeig tart a megjegyzeés.

— Ahol a sz6kdz elhatarold jelként szerepel (l.. ZBBejezet), oda tetéleges hosszusagu
megjegyzes elhelyezltet tehat ekkor nem vesszik figyelembe a sor végé&kolE a
megjegyzés elejét és végét jeldlni kell egy-egycepis karakterrel vagy tdbbkarakteres
szimbélummal. Példaul a Pascaldarés}, a PL/I-ben és a C-béhés */ hatarolja ezt

a fajta megjegyzeést.
A nyelvek egy része tébb fajta megjegyzést is alleal.

A j6 programozasi stilusban elkészitett programaivege sok magyardzé megjegyzést

tartalmaz.

2.2.6. Literalok (Konstansok)

A literdl olyan programozasi eszkdz, amelynek segitségévetxplicit értékek épithék be
a program szovegébe. A literaloknak két komponensiik tipus ésérték A literal mindig
onmagét definidlja. A literal felirdsi modja (mispecialis karaktersorozat) meghatarozza

mind a tipust, mind az értéket.

Az egyes programozasi nyelvek meghatarozzak ségrdllendszeriket, nézzik ezeket

sorban:

FORTRAN:

Egész literdl:

[{+|-}] szamjegy [szamjegy |...

A hétkbznapi egész szam fogalmat veszi attpR, -36 , 111. Mogotte fixpontos bels

abrazolasi mod all.

21

Valos literalok:

Mogottik lebegpontos bels abrazolasi mod all.

— Tizedestort valos literal:
{[{ +I|-}].el sjel_nélkili_egész | egész [el &jel_nélklli_egész 1}

Tehat szerepel benne a tizedespont. Példaudt: ,-3.4 ,-3.0 ,.3,28.

— Exponenciélis valos literal:

{ tizedestort |egész N E |D}egész

E: rovid lebe@pontos,D: hosszu leb&ipontos. A hétnél tdbb szamjdéggzamot hosszu
lebedgpontos formaban abrazolja. PEIdALE3, -2.2D28 .

Komplex literdl:
(valés,valés)

Példaul:(3.2,1.4) , ami nem mas, minta2+1.4i komplex szam.

Hexadecimalis literal:

Zhexa_szamjegy [hexa_szamjegy ...

Arra valo, hogy karaktereket tudjunk kezelni a FGN-ban.

Logikai literal:
.TRUE.
.FALSE.

Szoveges literal:
— Hollerith konstans:

nHkarakter [karakter]...

22

Az n elojel nélklli egész, amely a karakterek szamét adjg.rhlossza tetéieges lehet, de

legaladbb egy karakter sziikséges. PéldAHALMA 6HALMAFA

— Sztring literal:

'karakter [karakter ...

COBOL:

Numerikus literal:

A FORTRAN exponencialis val6s literaljanak felel gné&egy numerikus literal hossza éz

COBOL-ban 18 szamjegyre volt maximalva.

Alfanumerikus literal:
Hossza maximum 100 karakter. Alakja:

"karakter [karakter]..."

PL/I:

Aritmetikai literalok:
— Valés literalok:

— — Decimélis fixpontos literal:
Bels abrazolasa decimalis. A FORTRAN tizedestort vétésaljanak felel meg.

— — Decimdlis lebe&ipontos literal:

A FORTRAN exponencialis valos literaljanak felel gnannyi kilénbséggel, hogy

nem szerepelhet benbe
— — Binéris fixpontos literal:

Alakja:

23

{bitsorozat | [bitsorozat].bitsorozat }B

Példaul:1011.11B , 11B, .01B

— — Binaris lebegpontos literdl:
Abrazolasa decimalis. Alakja:
binaris_fixpontosE [{+|-}] szamjegy [szamjegy]B
Példault.1E33B

— Imaginarius konstans:

valosl

Lanc literalok:
— Karakterlanc:
[(n) 1" [karakter]...’

Az n elojel nélkili egész. Példaui2) ' BA , ami nem mas, mintBABA .

— Bitlanc:
(n) 1' [bit]...'B
Példaul:' 111001 ' B.

Pascal
Egész literal:
A FORTRAN egészének felel meg.

Tizedestort:

A FORTRAN tizedestortje, de a tizedespont mindkéalan szerepelnie kell szamjegynek.

Exponencialis:
Ugyanaz, mint a FORTRAN-ban, annyi kilénbséggeyytiti csakkE beti van.
Sztring:

24

' [karakter ...

C:
Rovid egész literalok:
— Decimélis egész:

Megfelel az eddigi egész literalnak.

— Oktalis egész:

Nyolcas szamrendszerbeli egész, koteden-val kezddik. PéldaulD11l.

— Hexadecimalis egész:

Tizenhatos szamrendszerbeli egéezel, vagyOx -el kezddik. Példaul0X11.

El6jel nélkili egész literal:

rovid_egész {Uu}

HosszU egész literdl:

{egész | el sjel_nélkili_egész KL 1}
Valos literalok:

— Hosszu valos (kétszeres pontossagu valés):
Megfelel a FORTRAN valésanak, de nirizs

— Rovid valds (egyszeres pontossagu valos):

hosszu_valos {f |F}

— Kiterjesztett valés (haromszoros pontossagdsyal

hosszu_valos {l|L}

25

Karakter literal:

'karakter'
Az adott karakter bets kodjat képviseli, szamolni is lehet vele. Egyesplmentaciok

megengedik, hogy az aposztréfok kozott tébb karaktgn.

Sztring literal:
"[karakter]..."

Ada:

Numerikus literalok:
— Egész literal:

szamjegy [[_]szamjegy]... [{ Ele}[+]szamjegy [szamjegy]...]

Példaul:223_222e8 .

— Valés literal:

Megfelel a Pascal valés literaljanak.

— Béazisolt literal:

alap#egész [.el ¢&jel_nélklli_egész 1# [{ Ele}] +|-]szamjegy [szamijegy]...]

Az alap a 2-16 szamrendszer alapszamat adja meg decimasasetleges kitévrészben a
szamjegyek decimalisak. A # jelek kozotti szamjégweszont azalap szamrendszer
szamjegyei. PéldauB#123.56#e-45 , 16#FF#.

Karakter literal:
' [karakter '

Példaul’ s' .

26

Sztring literal:

" [karakter]..."

2.3. A forrasszoveg 0sszeallitdsanak altalanos saiyai

A forrasszéveg, mint minden szdveg, sorokbdl aérd€s, hogy milyen szerepet jatszanak a

sorok a programnyelvek szempontjabol.

Kotott formatumua nyelvekA korai nyelveknél (FORTRAN, COBOL) alapwetszerepet
jatszott a sor. Egy sorban egy utasitas helyezkeljeehat a sorvége jelezte az utasitas végét.
Ha egy utasitdas nem fért el egy sorban, azt kukltetk jelezni (mintegy semlegesiteni a
sorvége hatasat). Tobb utasitds viszont soha nématait egy sorban. A sor bizonyos
pozicidira csak bizonyos programelemek kerllhett&kehat a programozonak kellett

igazodnia a feszes szabalyokhoz.

Szabad formatumu nyelvdkzeknél a nyelveknél a sornak és az utasitassrakns kapcsolata
nincs egymassal. Egy sorba akarhany utasitas jrhegy utasitas akarhany sorban
elhelyezhet. A sorban tetsdeges helyen jelenhetnek meg az egyes programelefek
sorvége nem jelenti az utasitas végét. Eppen ezé&k a nyelvek bevezetik az utasitas
végjelet, ez elég altalanosan a pontosvesbehat a forrasszévegben két pontosue&sz 6tt

all egy utasitas.

Az eljarasorientalt nyelvekben a program szévegéhelexikalis egységeket alapszoval,
valamilyen elhatarolé jellel (zardjel, ké#pont, pontosveséz vessd stb.), vagy ezek
hianyaban egy szokodzzel el kell valasztani egynhdatdorditoprogram ez alapjan ismeri fol
azokat a lexikalis elemzés soran. Az eljaradsoriemyelvekben tehat a szokoz altalanos
elhatarolo szerepet jatszik. A szokbdznek nincs kieszerepe a megjegyzésben és a sztring,
valamint karakter literalokban. Itt, mint minden sniéarakter, csak 6nmagat képviseli. Ahol
egy sz6koz megengedett elhataroloként, oda akaah@&nirhatunk. Egyéb elhatarolék mellett

is allhat szokoz, ez ndveli a forrasszoveg olvasd@at. A FORTRAN-ban a forrasszévegben

27

barhol akarhany szokodz elhelyezhetigyanis a forditas azzal kémlik, hogy a fordité a

szokozoket ignoralja.

2.4. Adattipusok

Az adatabsztrakcio dismegjelenési formaja az adattipus a programozéslivekben. Az
adattipus maga e@bsztraktprogramozasi eszkdz, amely mindig miémkrétprogramozasi

eszkdz egkomponensekeéiglenik meg. Az adattipusnalevevan, ami egy azonosito.

A programozasi nyelvek egy része ismeri ezt az@dzknas része nem. Ennek megfigel

beszélunkipusosesnem tipusosiyelvekil. Az eljarasorientalt nyelvek tipusosak.
Egy adattipust hdrom dolog hataroz meg, ezek:

— tartomany
— miveletek

— reprezentacio

Az adattipusok tartoménya azokat az elemeket naaizta, amelyeket az adott tipust konkrét
programozasi eszkoz folvehet értekként. Bizonygmistbk esetén a tartomany elemei

jelenhetnek meg a programban literalként.

Az adattipushoz hozzatartoznak azok avetetek, amelyeket a tartomany elemein végre

tudunk hajtani.

Minden adattipus mog6tt van egy megfé@lbelss abrazolasi mod. A reprezentacié az egyes
tipusok tartomanyaba tartoz6 értékek tarban valgjelenését hatarozza meg, tehat azt, hogy

az egyes elemek hany bajtra és milyen bitkombimadiépsdnek le.
Minden tipusos nyelv rendelkezik beépitett (statidipusokkal.

Egyes nyelvek lehévé teszik azt, hogy a programoz¢ is definialhas$spusokat. A sajat
tipus definidlasi lehéség az adatabsztrakcionak egy magasabb szingétijetegitségével a

valds vilag egyedeinek tulajdonsagait jobban tudnddellezni.

28

A sajat tipus definialasa altalaban szorosamdikt az absztrakt adatszerkezetekhez (l.

Adatszerkezetek és algoritmusok

Sajat tipust agy tudunk létrehozni, hogy megadjukagomanyat, a fveleteit és a
reprezentacidjat. Szokasos, hogy sajat tipust pitedeés a mar korabban definialt sajat
tipusok segitségével adjuk meg. Altalanos, hoggpaezentacié megadasanal igy jarunk el.
Csak nagyon keveés nyelvben lehet sajat reprezéntaegadni (ilyen az Ada). Kérdés, hogy
egy nyelvben lehet-e a sajat tipushoz saj@teaieteket és sajat operatorokat megadni. Van,
ahol igen, de az is lehetséges, hogyt@eteteket alprogramok (l. 5.1. alfejezet) realialaljA
tartomany megadasanal is alkalmazhat6 a visszasetthnikaja, de van olyan lebsdg is,

hogy explicit médon adjuk meg az elemeket.

Az egyes adattipusok, mint programozasi eszkoz@ldak, egymastol kiulonbdznek. Van
azonban egy specialis eset, amikor egy tipusbéhfedaptipus ugy tudok szarmaztatni egy
masik tipust (ez lesz aatipug, hogy les#kitem annak tartoményat, valtozatlanul hagyva

miiveleteit és reprezentaciojat. Az alaptipus éstfzual tehat nem kildonbézipusok.
Az adattipusoknak két nagy csoportjuk van:

A skalarvagyegyszef adattipus tartomanya atomi értékeket tartalmandem érték egyedi,
kozvetlendl nyelvi eszkdzokkel tovabb nem bonth#@téskalar tipusok tartomanyaibdl vett

ertékek jelenhetnek meg literalként a program sgélen.

A strukturdlt vagy 6sszetetadattipusok tartomanyanak elemei maguk is valamilypussal
rendelkeznek. Az elemek egy-egy értékcsoportot isének, nem atomiak, az értékcsoport
elemeihez kilon-kilon is hozzaférhetiink. Altalabealamilyen absztrakt adatszerkezet
programnyelvi megfelél. Literalként altalaban nem jelenhetnek meg, egynkkeét

értékcsoportot explicit médon kell megadni.

2.4.1. Egyszei tipusok

Minden nyelvben létezik aggésztipus, $t altalaban egész tipusok. Ezek Befbrazolasa
fixpontos. Az egyes egész tipusok az abrazolashiokséges bajtok szamaban térnek el és
nyilvan ez hatarozza meg a tartomanyukat is. Némgmjv ismeri azelsjel nélkili egész
tipust, ennek befsabrazolasa éjel nélkuli (direkt).

29

Alapvetek avalostipusok, bel§ dbrazolasuk lebégontos. A tartomany itt is az alkalmazott

abrazolas fuggvénye, ez viszont altaladban impleaoadiiigds.

Az egész és valGs tipusokra kdzds néven, mimmnerikus tipusokra hivatkozunk. A

numerikus tipusok értékein a numerikus és hasomiiteletek hajthatok végre.

A karakteregipus tartomanyanak elemei karakterekaeakterlancvagysztringtipuséi pedig
karaktersorozatok. Abrazolasuk karakteres (karakigmt egy vagy két bajt, az alkalmazott

kédtablatdl fuggen), miveleteik a szoveges és hasonlitiveletek.

Egyes nyelvek ismerik &ogikai tipust. Ennek tartomanya a hamis és igaz értékedkh

miiveletei a logikai és hasonlitéiveletek, bel§ dbrazolasa logikai.

Specialis egyszér tipus afelsorolasostipus. A felsorolasos tipust sajat tipusként kell
létrehozni. A tipus definidldsa ugy torténik, homegadjuk a tartomany elemeit. Ezek

azonositokehetnek. Az elemekre alkalmazhatok a hasonlitéatetek.

Egyes nyelvek értelmezik az egydedipusok egy specidlis csoportjatsmrszamozottipust.
Ebbe a csoportba tartoznak altalaban az egést&ers, logikai és felsorolasos tipusok. A
sorszadmozott tipus tartomanyanak elemei listatt(aidsztrakt adatszerkezetet) alkotnak, azaz
van el$ és utolsé elem, minden elemnek van méggé (kivéve az eldt) és minden elemnek
van rakovetkedje (kivéve az utolsét). Tehat az elemek kdzott egy@i sorrend értelmezett.

A tartomany elemeihez koélcsondsen egyértelm hozza vannak rendelve a 0, 1, 2, ...
sorszamok. Ez aldl kivételt képeznek az egész dipushol a tartoméany minden eleméhez

Onmaga, mint sorszam van hozzarendelve.

Egy sorszamozott tipus esetén mindig értelmékhrekdvetke# miveletek:
— ha adott egy érték, meg kell tudni mondani azgorgt, €s viszont

— barmely értékhez meg kell tudni mondani a migggdt és a rakovetképet
A sorszamozott tipus az egész tipus egyfajta athaigasanak tekinthit

Egy sorszamozott tipus altipusaként lehet szarmmazaintervallumtipust.

30

2.4.2. Osszetett tipusok

Az eljarasorientalt nyelvek két legfontosabb Ossitdipusa adomb (melyet minden nyelv

ismer) és aekord (melyet csak a FORTRAN nem ismer).

A tbmb tipus a tomb absztrakt adatszerkezet megete tipus szinten. A tongiatikusés
homogéndsszetett tipus, vagyis tartomanyanak elemei ofyégkcsoportok, amelyekben az

elemek szama azonos, és az elemek azonos tipusuak.
A tdémbot, mint tipust meghatérozza:

— dimenzidinak szama
— indexkészletének tipusa és tartomanya

— elemeinek a tipusa

Egyes nyelvek (pl. a C) nem ismerik a tobbdimenzibmboket. Ezek a nyelvek a
tobbdimenzids tomboket ugy képzelik el, mint olyagydimenzios témbok, amelyek elemei

egydimenzids tombok.

Tobbdimenzios tombok reprezentacidja lehet sor-yvagzlopfolytonos. Ez Aaltalaban

implementaciofiugg, a sorfolytonos a gyakoribb.

Ha van egy tdmb tipusu programozasi eszkdzink, rakkwevével az 6sszes elemre egydtt,

mint egy értékcsoportra tudunk hivatkozni (az elerserrendjét a reprezentacié hatérozza

meg). Az értékcsoport egyes elemeire a programazsi6z neve utan megadott indexek

segitségével hivatkozunk. Az indexek a nyelvekréggében szogletes, masik részében kerek
zarojelek kozott allnak. Egyes nyelvek (pl. COB®L/I) megengedik azt is, hogy a tomb egy

adott dimenzidjdnak 0Osszes elemét (pl. egy kétdmden tomb egy sorat) egylitt

hivatkozhassuk.
A nyelveknek a tomb tipussal kapcsolatban a kdwvétkérdéseket kell megvalaszolniuk:
1. Milyen tipusuakehetnek az elemek?

» Minden nyelv barmelyik skalar tipust megengedi.

* A modernebb nyelvek dsszetett tipusokat is megereded

2. Milyen tipusu lehet az index?

31

* Minden nyelv megengedi, hogy egész tipusu legyen.

* A Pascalban és az Adaban sorszamozott tipusues leh
3. Amikor egy tomb tipust definialunk, hogyan kell atkg az indextartomanyt?

» Lehet intervallum tipusu értékkel (pl. Pascal, Ad@az meg kell adni az als6 és adels

hatart.

» Mas nyelveknél (pl. PL/l) az indextartomany alséha a nyelv altal rogzitett (altalaban

1), és csak a tartomany félsatarat kell megadni.

* A nyelvek egy sttkebb csoportja szerint csak a ftelsatart kell megadni, de az alsot

nem a nyelv régziti, hanem a programozo.

* Ritkan (pl. C) az adott dimenzioban éeglemek darabszamat kell megadni, az indexek

tartomanyat ez alapjan a nyelv hatdrozza meg.
4. Hogyan lehet megadni az also és adélatart, illetve a darabszamot?

 Literdllal vagy nevesitett konstanssal (pl. FORTRAMNOBOL, Pascal), vagy konstans
kifejezéssel (pl. C). Ezek a statikus tombhatarbkkégozo nyelvek. Itt forditasi étben

eldsl az értékcsoport elemeinek darabszama.

» Kifejezéssel. (pl. PL/I, Ada). Ezek a dinamikus tiimatart alkalmazo nyelvek. Itt futasi

idében @l el a darabszam, de a rogzités utan az terméspeatesn valtozik.

A tbmb tipus alapvét szerepet jatszik az absztrakt adatszerkezetekofuyg abrazolasat
megvalositd implementacidknal.

A rekord tipus a rekord absztrakt adatszerkezet megjeleiigse szinten. A rekord tipus
minden esetben heterogén, a tartomanyanak eleysri értékcsoportok, amelyeknek elemei
kulonbo® tipusuak lehetnek. Az értékcsoporton belll az eg@lemeketmeznek nevezzik.
Minden mesnek sajat, 6nallé neve (ami egy azonositd) és sggasa van. A kilénbdz

rekord tipusok meinek neve megegyezhet.

A nyelvek egy részében (pl. C) a rekord tipus latigti tehat a mék szama minden
ertékcsoportban azonos. Mas nyelvek esetén (pl) &da egy olyan meegyittes, amely

minden értékcsoportban szerepel (a rekord fix désée van egy olyan méegyittes,

32

amelynek med kozil az értékcsoportokban csak bizonyosak seémeg (a rekord valtozo
része). Egy kulon nyelvi eszk6z (a diszkriminatszplgal annak megadasara, hogy az adott

konkrét esetben a valtozo rész gidazil melyik jelenjen meg.

Az 6snyelvek (pl. PL/I, COBOL) tobbsziintrekord tipussal dogoznak. Ez azt jelenti, hogy egy
mez feloszthatd Gjabb mékre, tetsdleges mélységig, és tipus csak a legalso {szint
mezkhoz rendelhét, de az csak egysZetipus lehet. A kéibbi nyelvek (pl. Pascal, C, Ada)

rekord tipusa egysziifitazaz nincsenek almég viszont a medk tipusa 6sszetett is lehet.

Egy rekord tipust programozasi eszkdz esetén d@zeszevéevel az éertékcsoport 6sszes

mezjére hivatkozunk egyszerre (a megadas sorrendjében)

Az egyes meidkre kulonmingsitett névvetudunk hivatkozni, ennek alakja:

eszkdznév.mez &név

Az eszkdz nevével torténminssitésre azért van szikség, mert a réleznevei nem

szilkségszéen egyediek.

A rekord tipus alapvétszerepet jatszik az input-outputnal.

2.4.3. Mutaté tipus

A mutato tipus lényegében egydrzeipus, specialitasat az adja, hogy tartomanyaterkes
tarcimek A mutatd tipus segitségével valdsithaté meg arpronyelvekben az indirekt
cimzés. A mutatd tipusu programozasi eszkoz ertieket egy tarbeli cim, igy azt
mondhatjuk, hogy az adott eszk6z a tar adott tEitdmzi, az adott tartertletre ,mutat”. A
mutato tipus egyik legfontosabbivelete a megcimzett tarterileten elhelyeskeunitek

elérése.

A mutaté tipus tartomanyanak van egy specialis eJemmely nem valodi tarcim. Tehat az
ezzel az értékkel rendelkeanutatd tipust programozasi eszk6z ,nem mutat sEhov
nyelvek ezt az értéket altalaban beépitett nevekiastanssal kezelik (az Adaban és a C-ben

ennek neve NULL).

A mutatdo tipus alapvét szerepet jatszik az absztrakt adatszerkezetekszszet

reprezentaciojat kezelmplementacioknal.

33

2.5. A nevesitett konstans

A nevesitett konstans olyan programozasi eszkoelysm@k harom komponense van:
— név

— tipus

— érték

A nevesitett konstanst mindig deklaralni kell.

A program szOvegében a nevesitett konstans a neyélemik meg, és az mindig az
ertékkomponenst jelenti. A nevesitett konstankkaiponense a deklaracional @lds nem

valtoztathaté meg a futs folyaman.

A nevesitett konstans szerepe egyrészt az, hogynyms sokszor éforduld eértékeket
.peszéb” nevekkel latunk el, és ily modon az érték szedepke tudunk utalni a szévegben.
Masrészt viszont, ha a program szdévegében meguakadjtoztatni ezt az értéket, akkor nem
kell annak valamennyi éordulasat megkeresni és atirni, hanem ele§esgly helyen, a

deklaracids utasitasban végrehajtani a modositast.

A nevesitett konstanssal kapcsolatban az egyesvakymlk a kovetkdz kérdéseket kell

megvalaszolniuk:

1. Létezik-e a nyelvben beépitett nevesitett konstans?
2. A programozo definialhat-e sajat nevesitett komsita

3. Haigen, milyen tipusut?
4

Hogyan adhatdé meg a nevesitett konstans értéke?

A valaszok:
FORTRAN-ban és Pl-ben nincs nevesitett konstans, COBOL-ban pedil bgépitett van.

A C-ben van beépitett nevesitett konstans és argray6 tobbféleképpen tud létrehozni

sajatot. A legegyszébb az ebforditonak szolé

34

#define név literdl

makro hasznélata. Ekkor azoéfrditd a forrasprogramban aév minden ebfordulasat

helyettesiti diteral lal.

Pascalban és Adaban van beépitett nevesitett ksnésaa programozo is definialhat sajat
nevesitett konstanst, egysizers dsszetett tipusut egyarant. A Pascalban azeéiiterallal,

Adaban kifejezés segitségével tudjuk megadni.

2.6. A valtozo

A valtoz6 olyan programozasi eszkdz, amelynek mé@ggponense van:

— név

— attributumok

—cim

— erték

A név egy azonositd. A program szovegében a valtoriig a nevével jelenik meg, az
viszont barmely komponenst jelentheti. Szemléllketjgy a dolgokat, hogy a masik harom

komponenst a névhez rendeljik hozza.

Az attribitumok olyan jellentik, amelyek a valtozo futas kozbeni viselkedéséaroarzak
meg. Az eljardsorientalt nyelvekben (altaldbanpadds nyelvekben) a lggfb attribitum a
tipus, amely a valtozo altal felvelieértékek korét hatarolja be. Valtozéhoz attribatémo

deklaracio segitségével rengidhek. A deklaracionak kulonbéZajtait ismerjuk.

Explicit deklaracié A programozé végzi explicit deklaracios utasiagitségével. A valtozo
telies nevéhez kell az attribitumokat megadni. Aelvgk altalaban megengedik, hogy

egyszerre tbbb valtozonévhez ugyanazokat az atirtakat rendeljik hozza.

Implicit deklaraci6 A programozé végzi, b&thoz rendel attribGtumokat egy kilén
deklaraciés utasitasban. Ha egy valtozé neve namreel explicit deklaracids utasitasban,
akkor a valtozé a nevének kéetijeéhez rendelt attribGtumokkal fog rendelkezni, tet#

azonos kezsbetiji valtozok ugyanolyan attribGtumuak lesznek.

35

Automatikus deklaraci6 A forditéprogram rendel attribGtumot azokhoz atozbkhoz,
amelyek nincsenek explicit médon deklaralva, ésleetijikhdz nincs attribdtum rendelve
egy implicit deklaraciés utasitasban. Az attribUtiozzarendelése a név valamelyik karaktere

(gyakran az el§ alapjan torténik.

Az eljarasorientalt nyelvek mindegyike ismeri azleit deklaraciot, és egyesek csak azt
ismerik. Az utObbiak altalanossagban azt mondjakgyh minden névvel rendelkéz

programozoi eszkdzt explicit médon deklaralni kell.

A valtoz6 cimkomponense a tarnak azt a részét dmtar meg, ahol a valtozo értéke
elhelyezkedik. A futasi il azon részét, amikor egy valtoz6 rendelkezik cimponenssel, a

valtozoélettartamanakivjuk.
Egy valtozéhoz cim rendelltetdz aldbbi médokon.

Statikus tarkiosztasA futas ebtt elddl a valtozd cime, és a futas alatt az nem valtozik.

Amikor a program betdtik a tarba, a statikus tarkiosztasu valtozékdivhelyre keriilnek.

Dinamikus tarkiosztasA cim hozzarendelését a futtatd rendszer veégaiakozé akkor kap
cimkomponenst, amikor aktivizalodik az a progranségy amelynek lokalis valtozdja, és a
cimkomponens megsaik, ha az adott programegység befejezi dikdaését. A
cimkomponens a futdas soran véltozhait sannak olyan idintervallumok, amikor a

valtozonak nincs is cimkomponense.

A programoz0 altal vezérelt tarkiosztds valtozéhoz a programoz6 rendel cimkomponenst
futasi idben. A cimkomponens valtozhat, és az is elképzglhéibgy bizonyos

idéintervallumokban nincs is cimkomponens. Harom alafgevan:

— A programoz6 abszolit cimet rendel a valtozohoznkk&tan megadja, hogy hol

helyezkedjen el.

— Egy mar korabban a tarban elhelyezett programaszsioz ciméhez képest mondja meg,
hogy hol legyen a valtozo elhelyezve, vagyis relatimet ad meg. Lehet, hogy a

programozo az abszolut cimet nem is ismeri.

36

— A programoz6 csak azt adja meg, hogy mel§pillanattél kezdve legyen az adott
valtozonak cimkomponense, az elhelyezést a futtidszer végzi. A programozé nem

ismeri az abszolut cimet.

Mindharom esetben lennie kell olyan eszkdznek, ema programozé megszintetheti a

cimkomponenst.

A programozasi nyelvek altaldban tobbféle cimhoazdelést ismernek, az eljarasorientalt
nyelveknél altalanos a dinamikus tarkiosztas. Aozilk cimkomponensével kapcsolatos a
tobbszo6ros tarhivatkozéssete. Efl akkor beszélink, amikor két kiulonkibnévvel, esetleg
kulénbo® attributumokkal rendelkézvaltozénak a futasi degy adott pillanataban azonos a
cimkomponense és igy értelemseer az értékkomponense is. igy ha az egyik valtozké
modositjuk, akkor a masiké is megvaltozik. A kangelvekben (pl. FORTRAN, PL/I) erre
explicit nyelvi eszk6zok alltak rendelkezésre, maronyos probléméak megoldasa csak igy
volt lehetséges. A szituacid viszonbdidézheb (akar véletlenll is) mas nyelvekben is, és ez

nem biztonsagos koddhoz vezethet.

A valtozé értékkomponense mindig a cimen elhelyezigkombinacioként jelenik meg. A

bitkombinéacidé felépitését a tipus altal meghatataaprezentacié donti el.

Egy valtozo eértékkomponensének meghatarozasara \etke® Iehetségek allnak

rendelkezéslinkre:

Ertékad6 utasitas Az eljarasorientalt nyelvek leggyakoribb utasitasiz algoritmusok

koédolasanal alapvét Alakja az egyes nyelvekben:

FORTRAN:

valtozénév = kifejezés

COBOL:
MOVE érték TO valtozd _név [, valtozénév]...
PL/I:

véltozonév [, valtozénév]... = kifejezés;
Pascal:

valtozonév := kifejezés

37

valtozénév = kifejezés;

Ada:

valtozénév = kifejezés;

Az értékadd utasitas bal oldalan a valtozé newwdlan a cimkomponenst, kifejezésben az
értékkomponenst jelenti. Az értékadd utasitas esatdriveletek elvégzésének sorrendje

implementaciofugd. Altalaban a baloldali valtozé cimkomponengedl elészor.

A tipusegyenértéiséget (I. 3. fejezet) valld nyelvekben a kifejetigsisanak azonosnak kell
lennie a valtozé tipusaval, a tipuskényszeritélit vayelveknél pedig mindig a kifejezés

tipusa konvertélodik a valtozé tipuséra.

Input A valtozé értekkomponensét egy perifériardl kapaiat hatarozza meg. Részletesen |.

13. fejezet.

Kezdiértékadas Keét fajtaja van. Explicit kezdértékadasnal a programozd explicit
deklaraciés utasitasban a valtozd értékkomponemséimegadja. Amikor a valtozo
cimkomponenst kap, akkor egyben az értéket rept@perbitsorozat is bedallitodik.

Megadhato az értékkomponens literdl vagy kifejesggtségével.

A hivatkozasi nyelvek egy része azt mondja, hogydaddig, amig a programozo valamilyen
modon nem hatarozza meg egy valtozé értékkompohengénhatarozatlan tehat nem
hasznalhaté fol. Ez azért van, mert amikor egyozéltcimkomponenst kap, akkor az adott
memo©riaterileten tet8leges bitkombinécio (,szemét”) allhat, amivel nezhdt mit kezdeni.
Van olyan hivatkozasi nyelv, amely automatikus kezgrtékadaselvét vallja. Ezeknél a
nyelveknél, ha a programozé nem adott explicit kéreket, akkor a cimkomponens
hozzarendelésekor a hivatkozasi nyelv altal megbadét bitkombinacio kertl bedllitasra
(,nulldzoédnak a valtoz6ok”). A hivatkozasi nyelvelrimadik része nem mond semmitéea
dologrdl. Viszont az implementaciok talnyomd részeegvaldsitia az automatikus

kezdbértékadast, akar még a hivatkozasi nyelv ellenében

38

2.7. Alapelemek az egyes nyelvekben

Turbo Pascal
A Pascalban minden programozéi eszkozt explicit onddieklaralni kell.
A Turbo Pascal tipusrendszere az alabbi:

egyszeii tipusok
sorszamozott
ebredefinialt
karakteresliar)
logikailjoolean)
egeésinteger ,shortint |, longint , byte ,word)
felsorolasos
intervallum

valos

string (egyszeiinek és Osszetettnek isekinthet egyszerre, mint karakterlanc, illetve

mint karakterek egydimenziés tombje)

0sszetett tipusok
tomb érray)
rekord fecord)
halmazget)
allomanyfile)
objektum @bject)

mutatoé pointer)

A tdmb tipus megadasanak formaja:

ARRAY intervallum [, intervallum]...1 OF elemtipus

Nevesitett konstans deklaracioja:

CONST név=literal; [név=literal;]...

39

Véltozé deklaracidja:

VAR név : tipus; [név : tipus;]...

Sajat tipus létrehozéasa:

TYPE név tipusleiras; [név tipusleiras;]...

Az igy létrehozott tipus minden mas tipustdl ki@t fog.

Ada:

A programozonak minden sajat eszkdzt explicit modekiaralni kell.
Az Ada tipusrendszere az alabbi:

skalar tipusok

felsorolasos
egeészifteger)
karakterescharacter)
logikai poolean)
valés float)
0sszetett tipusok
tomb érray)
rekord fecord)
mutato tipusdccess)
privat tipus fprivate)
A skalér tipus sorszamozott tipus. Az intervalldtipast az Ada a kévetkéképpen képzi:

RANGE als6_hatér..fels & _hatar

Az explicit deklaracids utasitas a kovetilezppen néz ki:

név [,név]...: [CONSTANtipus [:= kifejezés I;

40

Ha aCONSTANBlapsz6 szerepel, akkor nevesitett konstansteimaszerepel, akkor valtozot
deklaraltunk. A kifejezés a nevesitett konstan&ébles, ez definiadlja az értékét. Valtozo
esetén pedig ezzel lehet explicit kéedeket adni.

Példaul:

A: constant integer:=111;

B: constant integer:=A*22+56;
X: real;

Y: real:=1.0;

Sajat, minden mas tipustdl kulonibdipus deklaralasa:
TYPE név IS tipusleiras;
Altipus deklaraldsa:

SUBTYPE név IS tipusleiras;

Példaul:

type BYTE is range 0..255;
subtype KISBETU is character range 'a'.. 'z

Felsorolasos tipus Iétrehozasa sajat tipusként:

type HONAP is (Januar, Februar, Marcius, Aprilis, M ajus, Junius,
Julius, Augusztus, Szeptember, Oktober, November, D ecember);

type NYARI_HONAP is (Junius, Julius, Augusztus);
Ebben az esetben ugyanaz az azonosito két felsosolipus tartomanyaban is szerepel, tehat

hivatkozaskor meg kell mondani, hogy melyik tipdesmeé6l van szé. Az Ada ilyenkor

minésit a tipus nevével:

HONAP'ORD(Augusztus)

41

Az Adaban dinamikusak a tombhatarok. Definialhdi@mm sajat tomb tipus, ahol nem adjuk
meg ebre az indexek tartomanyat, csak akkor tesszik raegkor egy deklaraciéban

felhasznaljuk a tipust.
Példaul:

type T is array(integer<>,integer<>);
A:T(0..10,0..10);

C:

A C tipusrendszere a kovetkez
aritmetikai tipusok

integralis tipusok
egészrit ,short [int], long [int])
karakterchar)
felsorolasos

valés float , double ,long double)
szarmaztatott tipusok

tomb
fuggvény
mutato
struktura
union

void tipus

Az aritmetikai tipusok az egysfgra szarmaztatottak az Osszetett tipusok a C-ben. A
aritmetikai tipusok tartomanyanak elemeivel ariik@@t miveletek végezhék. A karakter
tipus tartomanyanak elemeit a ldelddok alkotjak. Logikai tipus nincs, a hamisnakirez

0 felel meg, minden mamt értéket pedig igaznak tekint a C. A hasonlittaé$vidzar

logikai miveletek igaz esetémt 1 értéket adnak. Az egészek és karakter tipd el

42

szerepeltethétunsigned tipusmirbsitt nem ebjeles (direkt) abrazolast,signed elsjeles
abrazolast jeldl. A struktara egy fix szerkdzetkord, a union egy olyan, csak valtozo részt
tartalmazo rekord, amelynél minden konkrét esetb@mosan egyetlen mg&zan jelen. A

void tipus tartomanya ures, igy reprezentacioja @sehatei sincsenek.

A felsorolasos tipusok tartomanyai nem fedhetikgytmast. A tartomany elemigit tipusu
nevesitett konstansoknak tekintilet Az értékik egész literdlokkal beallithato, derfiacs
explicit értéekadas, akkor a felsorolas sorrendjéBerdl indul az értékik és egyesével
novekszik. Ha valamelyik elem értékét megadtuk E8vaetkesét nem, akkor annak értéke az
el6z6 értekédl 1-gyel nagyobb érték lesz. KilbnliHzelemekhez ugyanaz az érték

hozzérendelhét A felsorolasos tipus megadasanak forméja:

ENUM név {azonositd [= konstans_kifejezés]
[, azonosito [= konstans_kifejezés 11... };
Példa:
enum szinek {VOROS=11, NARANCS=9, SARGA=7, ZOLD=5, KEK=3, IBOLYA=3};

Az explicit deklaracids utasitas a kdvetilezppen néz ki:

[CONST] tipusleiras eszkbzazonositas [= kifejezés]

[, eszk6zazonositas [= kifejezés 1...;

A CONST megadasa esetén nevesitett konstanst deklarallkér (a kifejezés annak
ertékeét, a tipusleiras annak tipusat definialjaazsszktzazonositas azonosito lehet),
egyebként viszont aipusleiras €s azeszkdzazonositas alapjan meghatéarozott
programozasi eszkozt. Ha ez valtozo, akkdifejezés segitségeével explicit kegdrték
adhat6 neki. Az utdbbi esetben eezkbzazonositas helyén az alabbiak szerepelhetnek
a megadott jelentéssel:

azonosité . tipusleiras tipusu valtozé

(azonositd) : tipusleiras visszatérési tipussal rendelkdiiggvényt cimé mutato

tipusu valtozé

43

*azonosito . tipusleiras tipusu eszkdzt cim& mutato tipusu valtozé

azonosité() : tipusleiras visszatérési tipusu fliggvény
azonosité []: tipusleiras tipusu elemeket tartalmazo tomb tipusa valtozo
es ezek tetsteges kombinacidja. Atipusleiras ugyanezeket a konstrukciokat

tartalmazhatja a tipusnevek mellett.

Példa:
inti, %, f0), *g(), a[17], *b[8];

Ebben a deklaraciés utasitasbani aegész tipusu a egészet cintz mutato tipusu, aa
egeészeket tartalmazo 17 eleegydimenzids tomb tipusu baegészeket cindzmutatoé tipusu
elemeket tartalmazé 8 elémegydimenzios tomb tipusu valtozd; iz egész visszatéresi

tipusy, ag pedig egészeket ciiznutato visszatéresi tipusu fuggveny.

Sajat tipus definidlasa:

TYPEDEF tipusleiras név [, tipusleiras név]...;

Nem hoz létre Uj tipust, csak tipus név szinonimat.

Struktdra deklaralasa:

STRUCT [strukturatipus_név] { mez&_deklaraciok } [valtozolistal;

Union deklaralasa:

UNION [uniontipus_név] { mezs_deklaraciok } [valtozolista];

44

A C csak egydimenzids tomboket kezel. Az indexelalbiszamat kell megadni és az index O-
tol darabszam-1 -ig fut. A C89 hivatkozasi nyelv statikus tombhatéat ismer, de egyes

implementaciok (pl. GNU C), illetve a C99 dinamikkat is kezelnek.

A C a tdmbot mindig mutatd tipusként kezeli. Egyntd neve egy olyan mutat6 tipusu

nevesitett konstans lesz, amely a tomb elsmét cimzi.

A C-ben van automatikus deklaracié, ha egy névieem adunk visszatérési tipust, akkor az

alapértelmezés szerimt lesz.

45

3. KIFEJEZESEK

A kifejezések szintaktikai eszk6zok. Arra valokgkica program egy adott pontjan ott mar

ismert értékekdl Uj értéket hatarozzunk meg. Két komponensuiik g@aékéstipus
Egy kifejezés formalisan a kovetkedsszetedkbol all:

— operandusokAz operandus literal, nevesitett konstans, valteegy fliggvényhivas lehet.

Az értéket képviseli.
— operatorok Miveleti jelek. Az értékekkel végrehajtanddiveleteket hatarozzak meg.

— kerek zarOjelek A miveletek végrehajtasi sorrendjét befolyasoljak. Mimdnyelv

megengedi a redundans zardjelek alkalmazasat.
A legegyszdibb kifejezés egyetlen operandusbdl all.

Attol flggéen, hogy egy operator hany operandussal végzi (aveletet, beszélink
egyoperandusu (unaris), kétoperandusu (binaris), vagy haromoperandusu (ternaris)

operatorokrol.

A kifejezésnek harom alakja lehet attdl fégg, hogy kétoperandusu operatorok esetén az

operandusok és az operator sorrendje milyen. Adéhges esetek:

— prefix, az operator az operandusoéteéll *35)
— infix, az operator az operandusok kozott 8l 6)

— postfix az operator az operandusok mogottab ¢)

Az egyoperandusU operatorok altalaban az operaptitis ritkabban mogotte allnak. A

haromoperandusu operatorok altalaban infixek.

Azt a folyamatot, amikor a Kkifejezés értéke és dgpumeghatarozodik, ifejezés
kiértékelésénekevezzik. A kiértékelés soran adott sorrendbengek#ik a riveleteket,

eléall az érték, és hozzarendeik a tipus.
A miiveletek végrehajtasi sorrendje a kovetkkshet:

— A miveletek felirasi sorrendje, azaz balrél-jobbra.

— Afelirasi sorrenddel ellentétesen, azaz jobbrdiaba

46

— Balrol-jobbra a precedencia tdblazat figyelembdeges.

Az infix alak nem egyértelth (. Adatszerkezetek és algoritmusok Az ilyen alakot
hasznalé nyelvekben az operatorok nem azontsségek. Az ilyen nyelvek operatoraikat
egy precedencia tablazatbaadjak meg. A precedencia tablazat sorokbdl alle@z sorban
megadott operatorok azono$ssédgiek (prioritastak, precedenciajuak), aégrébb szeregk
erdsebbek. Minden sorban meg van adva mkgtési irany amely megmondja, hogy az adott
sorban szerefil operatorokat milyen sorrendben kell kiértékelrs, &zok egymas mellett

allnak egy kifejezésben. A kotési irany lebatrdl jobbra, vagyjobbrol balra.
Egy infix alaku kifejezés kiértékelése a kovetkazppen tortenik:

Indulunk a kifejezés elején (balrdl-jobbra szahaBg9 6sszehasonlitjuk az 1. és 2. operator
precedenciajat (ha csak egyetlen operator van,rakka@ltala kijelolt Miveletet végezzik el,

ha csak egyetlen operandus van, akkor annak éatfjken kifejezés értekét, tipusa a tipusat).
Ha a baloldali gisebb, vagy azonosdémsédiek és a precedencia tablazat adott soraban balrél
jobbra kotési irany van, akkor végrehajtodik a lohdb operator altal kijelolt rvelet,
kuldnben tovabbléplnk a kifejezésben (ha még vamébpr), és hasonlitjuk a kovetkiekét
operator precedenciajat. Ez alapjan azérek elvégzend mivelet egyértelrien
meghatarozhatd, a folytatds viszont implementaggifii Ugyanis az els mivelet
végrehajtasa utan vagy visszalépink a kifejezéérelees megint az élperatorral kezdjuk

a tovabbi vizsgalatokat, vagy a kifejezésben tolgpiink, és csak akkor Iéplnk vissza az

elejére, amikor a kifejezés végére értink.

Megjegyzés A kifejezés kiértékelése természetesen futagii itkvékenység. A
forditoprogramok altalaban az infix kifejezésékpostfix kifejezéseket allitanaksel
és ezek tényleges kiértékelése torténik meg. Abfemeirt |épések tehat igazdban az

infix kifejezések atirasara vonatkoznak.

A miveletek elvégzése @t meg kell hatdrozni az operandusok értékét. Ersmkendjét a
hivatkozasi nyelvek egy része szabalyozza (altal&ddébb a baloldaliét), mas része nem

mond réla semmit, a C pedig azt mondja, hogy ¢étges (tehat implementaciofiigg

Az infix kifejezések esetén kell hasznalni a zdeket, amelyek a precedencia tablazat

alapjan kovetkez végrehajtasi sorrendet tudjak felllbiralni. Egy&éjelezett részkifejezést

47

mindig ebbb kell kiértékelni. Egyes nyelvek a kerek zardjelds szerepeltetik a precedencia

tablazatban, az élsorban.
A teljesen zardjelezett infix kifejezés egyérté|rkiértékelésénél egyetlen sorrend létezik.
Az eljarasorientalt nyelvek az infix alakot haszalél

A kiértékelés szempontjabdl specialisak azok ajddafesek, amelyekben logikai operatorok
szerepelnek. Ezeknél ugyanis ugyisoéiet a kifejezés értéke, hogy nem végzem el aze@ssz
kijelolt miveletet. Példaul egy ESiivelet esetén, ha az él®perandus értéke hamis, az
eredmény hamis lesz, fuggetlenil a masodik opemrehtéké&il (barmilyen bonyolult

részkifejezéssel is adtuk meg azt).
A nyelvek az ilyen kifejezésekkel kapcsolatban adtkezket valljak:
— Az ilyen kifejezést is végig kell értékelni (pl. RDRAN), ez aeljeskiértékelés.

— Csak addig kell kiértékelni a kifejezést, amig etpléniien el nem 8l az eredmény. Ez a

rovidzarkiértékelés (pl. PL/).

— A nyelvben vannak rovidzar, illetve nem rovidzaeogorok, a programozo dontheti el a
kiértékelés modjat (pl. Addban nem révidzand, or; rovidzar: and then , or

else)
— A kifejezés kiértékelését futasi tzemmaodkent Iddeetilitani (pl. Turbo Pascal).

A kifejezés tipusanak meghatarozasanal kétfélet ekdwetnek a nyelvek. Vannak a
tipusegyenértéiségetés vannak éipuskényszeritéstllok. Ugyanez a kérdéskor folmerul az

ertékado utasitasnal (I. 2.6. alfejezet) és a paterkiértekelésnél (I. 5.4. alfejezet) is.

A tipusegyenértéiséget vallo nyelvek azt mondjak, hogy egy kifejeedsegy kétoperandusu
operatornak csakzonogipusu operandusai lehetnek. llyenkarcs konverzigaz eredmeény
tipusa vagy a két operandus kdzds tipusa, vagyzaaperator donti el (példaul hasonlitd
miiveletek esetén az eredmény logikai tipusu lesz).

A kllénb6 nyelvek szerint két programozasi eszkoz tipusa@zca azoknal fonnall a

— deklaracio egyenértékég az adott eszkdzbket azonos deklaracios utasitasogytt,

azonos tipusnévvel deklaraltuk.

48

— név egyenértéiseég az adott eszkodzoket azonos tipusnévvel dekl&raliesetleg

kulonbo® deklaraciés utasitasban).

— struktira egyenértéiség a két eszkdz Osszetett tipusu és a két tipuskesze
megegyezik (példaul két 10-10 egészet tartalmandbtipus, flggetlentl az indexek

tartoméanyatal).

A tipuskényszerités elvét valld nyelvek esetén mitiiid tipusu operandusai lehetnek egy
kétoperandusu operatornak. A tweletek viszont csak az azonos Belébrazolasu

operandusok kdzo6tt végezbiletel, tehat killonbdztipust operandusok esetén konverzié van.
llyen esetben a nyelv definidlja, hogy egy adotterdor esetén egyrészt milyen

tipuskombinaciok megengedettek, masrészt, hogesuaid nivelet eredményének a tipusa.

A kifejezés kiértékelésénél mindenivelet elvégzése utan éldaz adott részkifejezés tipusa

€s az utoljara végrehajtottineletnél pedig a kifejezés tipusa.

Egyes nyelvek (pl. Pascal, C) a numerikus tipusiokmégengedik a tipuskényszerités egy
specidlis fajtdjat még akkor is, ha egyébként asgpgyenértdiséget valljak. Ezeknél a
nyelveknél beszélink lasvitésésszikitésesetésl. A bovités olyan tipuskényszerités, amikor
a konvertalando tipus tartomanyanak minden elemjieeegeleme a céltipus tartomanyanak is
(pl. egész— valos). Ekkor a konverzié minden tovabbi nélkitékvesztés nélkll végrehajthat6. A
sZikités ennek a forditottjdpl. valos — egész), ekkor a konverziénal értékcsonkitas, apetle

kerekités torténik. Ezeknél a nyelveknél &vités automatikusan torténik, aiikést viszont a

programozonak kell explicit médondéinia, kilonben forditasi hiba 1ép fol.
A nyelvek kozil az Addban semmiféle tipuskeveredés lehet, a PL/I viszont a teljes

konverzio hive.

Konstans kifejezés
Azt a kifejezést, amelynek értéke forditagibdn eldl, amelynek kiértékelését a forditd vegzi

konstans kifejezésnélkvjuk. Operandusai literalok és nevesitett kamsté lehetnek.

49

3.1. Kifejezés a C-ben

A C egy alapvéien kifejezésorientalt nyelv. Az aritmetikai tipusdk a tipuskényszerités

elvét vallja.

A mutato tipus tartomanyanak elemeivel 6sszead&s/ésas végezhét azok ebjel nélkuli

egészeknek tekinthikt.

A tdmb tipusu eszk6z neve mutato tipusu, tehat
inti;
int a[10];

esetérafi] jelentése(a+i)

A C kifejezésfogalmanak rekurziv definicidja a kikezo:
kifejezés:
{ els &dleges kifejezés |

balérték++ |

balérték-- |

++balérték |

--balérték |
egy_operandusu_operétor kifejezés
SIZEOF(kifejezés) |
SIZEOF(tipusnév) |
(tipusnév)kifejezés |
kifejezés két_operandusu_operétor kifejezés
kifejezés?kifejezés:kifejezés |
balérték értékadd_operator kifejezés

kifejezés,kifejezés }

els &dleges_kifejezés:

{ konstans |

50

valtoz6 |

(kifejezeés) |
flggvénynév(aktudlis_paraméter_lista)
tombnév [kifejezés] |
balérték.azonosito |

els sdleges_kifejezés->azonositd }

balérték :

{ azonosité |
tombnév [kifejezés] |
balérték.azonosité |
els sdleges_kifejezés->azonositd
*kifejezés |
(balérték) }

A C precedencia tablazata a kdvetkez

Oa.->

* & + -1 ~ ++ -- SIZEOF (tipus)
*| %

+-

>> <<

< > <= >=

&

N

I
&&
|

?.
= 4= -=*= [= Op= >>= <<= &= "= |:

Az utols6 oszlop a kotési iranyt mutatja.

51

A C kifejezés formalis leirasaban a kdvetkeperatorokra hivatkoztunk:

— egy_operandusu_operator : a precedencia tablazat 2. soranak élsperatora
— két_operandusu_operator : a precedencia tablazat 3. - 12. soranak operatora
— értékadd _operator : a 14. sor operatorai

Az egyes operatorok értelmezése:

0

Egyrészt a szokasos eértéinkiemelést, a precedencia felllirasat szolgaljasreszt a

fliggvényoperator.

[

A tdmboperéator.

A mingsits operator, struktlra és union esetén hasznaljuketeel mirdsitink.

->

A mutatoval tértéé minésités operatora.

*

Az indirekcios operator. A mutaté tipusu operandéisal hivatkozott tarterileten elhelyezett

ertékéket adja.

&

Az operandusanak cimét adja meg.

52

+

Plusz ebjel.

Minusz ebjel.

!
Egyoperandusu operator, integralis és mutato tipysgerandusokra alkalmazhat6. Ha az
operandus értéke nem nulla, akkor az eredmény, ragigbként 1. Az eredmémyt tipusu

lesz.

~

Az egyes komplemens operatora.

++ és—

Operandusanak értékét noveli illetve csokkenti.1-el

int x,n;

n=5;

X=N++;

esetérx értékeb lesz, az értékadas azorabbi értékével torténik.
X=++n;

esetén pedig lesz, a megnovelt értékkel torténik az értékadas.

Az n értéke mindkét esetben noddik.

sizeof(kifejezés)

A kifejezés tipusanak az abrazolasi hosszat agljadma

sizeof(tipus)

A tipus Aabrazolashoz szikséges bajtok szamat adja.

(tipus)

53

Az explicit konverziés operator.

Szorzas operatora.

/

Osztéas operatora. Az egészek osztasakor egészosztas

%

Maradékképzés operatora.

+

Osszeadas operatora.

Kivonas operatora.

>> @s<<

Lépteth operatorok. A baloldali operandust lépteti a jddbb altal meghatarozott szamau
bittel jobbra illetve balra.. Ha balra 1éptet, akKkikat hoz be jobbrél. Ha jobbra Iéptet, akkor

az ebjelbitet lépteti végig bal oldalon. Integralis tgiuoperandusokoniikodik.

<, >, <=,>=, = | I=

Hasonlité operatorokeredményiknt tipusu, igaz esetbeln hamisnab.
&l Aa |

Nem rovidzar logikai operatorok (és, kizaré vagggy), integralis tipuson itkodnek, a

megfeleb miveletet bitenként hajtjak végre.

54

&& ésl|

Rovidzar logikai operatorok (és, vagyt 0 vagyl ertéket adnak.

?:

Haromoperandusu operator, az Un. feltételes operdt az el§ operandus értéke nefh
akkor a nfivelet eredményét a masodik operandus értéke hataromg, egyébként a
harmadiké.

Példaul aa>b)?a:b kifejezés aa ésb értéke kozill a nagyobbikat adja.

:'+:,-:'*:,/:'%:,>>:'<<:,&:'/\:,|:
Ertékadd operatorok. AX operator= y kifejezés megfelel a kovetkézrtékadasnak:
x=(x)operator(y) . Az el$ operandus értekét irjuk feldl.

A balrdl jobbra kiértékelést kényszeriti ki.

55

4. UTASITASOK

Az utasitasok alkotjak az eljarasorientalt nyelvekmegirt programok olyan egységeit,
amelyekkel egyrészt az algoritmusok egyes |épéseifadjuk, masrészt a forditoprogram ezek
segitségével generalja a targyprogramot. Két nagppartjuk van: adeklaracios és a

végrehajthatditasitasok.

A deklaracios utasitasok mogott nem all targykoderk utasitasok teljes mértékben a
forditdprogramnak szoélnak, attol kérnek valamilysolgéltatast, Gzemmaodot allitanak be,
illetve olyan informéacidkat szolgéaltatnak, melyeletorditdprogram felhasznél a targykod
generalasanal. Alapuin befolyasoljak a targykddot, de maguk nem kekileforditasra. A

programozo a névvel rendelléegajat programozasi eszkozeit tudja deklaralni.

A végrehajthaté utasitasokbdl generélja a forddgmm a targykodot. Altalaban a magas

szinti nyelvek végrehajthatd utasitasaibdl tobb (néha gégi kddu utasitas allcel
A végrehajthat6 utasitasokat az aldbbiak szeropasosithatjuk:

. Ertékado utasitas
. Ures utasitas
. Ugro utasitas

. Elagaztato6 utasitasok

1

2

3

4

5. Ciklusszervez utasitasok
6. Hivo utasitas

7. Vezérlésatado utasitasok
8. I/O utasitasok

9

. Egyéb utasitasok

A 3-7. utasitdsok az urvezérlési szerkezetet megvaldgitldsitasok. Az eljarasorientalt
nyelvek altalaban tartalmazzédk az 1-5. utasitasat részik pedig ismeri a 6-8. utasitas
fajtakat. A legnagyobb eltérés az egyéb utasités@n tapasztalhatd. A nyelvek egy részében
nincs ilyen utasitas (pl. C), némelyikben viszak gan beblik (pl. PL/I).

Vegyik sorra a végrehajthato utasitasokat.

56

4.1. Ertékado utasitas

Feladata beallitani vagy moédositani egy (esetlep)tivaltozd értékkomponensét a program

futasanak barmely pillanataban. Ezt az utasitasténgyaltuk a valtozénal (I. 2.6. alfejezet).

4.2. Ures utasitas

Az eljardsorientalt programnyelvek altaldban tamenak Ures utasitast, és vannak olyan
nyelvek (a korai nyelvek), melyekben a szintaktiklyan, hogy elengedhetetlen ennek
hasznalata. Jelafgége viszont altalanossagban abban all, hogy ég§itsl egyértelin

programszerkezet alakithato ki.
Az Ures utasitas hatasara a processzor egy Urestgséjpast hajt végre.

Egyes nyelvekben az Ures utasitasnak van kulonszdap (pl. FORTRAN-ban a
CONTINUE, Adéban aNULL), méashol nincsen. Ez utébbi nyelvekben az lUredtatisiem

jeloljuk (pl. két utasitas-végjel kozott nem alirgai).

4.3. Ugro utasitas

Az ugré (vagy feltétel nélklli vezérlésatadd) utasisegitségével a program egy adott
pontjardl egy adott cimkével ellatott vegrehajthattasitasra adhatjuk at a vezérlést.

Altalanosan hasznalt alakja:

GOTO cimke

A korai nyelvekben (FORTRAN, PL/BOTOnélkul gyakorlatilag nem lehet programot irni.
A késibbi nyelvekben viszont minden program vezérlésilezete felirhatdé &OTCQutasitas

hasznalata nélkil, bar a nyelvek tartalmazzak Aztugré utasitas nem fegyelmezett médon
tortérd hasznalata veszélyeket hordoz magaban, mert nrgonbagos, atlathatatlan, struktira

nélkuli kédot eredményezhet.

57

4.4. Eldgaztaté utasitasok

4.4.1. Kétiranyu elagaztato utasitas (feltételes asitas)

A kétirAnyu eladgaztatd utasitas arra szolgal, loggogram egy adott pontjan két tevékenység
kozll valasszunk, illetve egy adott tevekenységagrehajtsunk vagy sem. A nyelvekben

meglehedsen altalanos a feltételes utasitas kovétiseerkezete:
IF feltétel THEN tevékenység [ELSE tevékenység]
A feltétel egy logikai (vagy annak megfetetipusu) kifejezés.

Kérdés, hogy egy nyelv mit mond tavékenység megadaséarol.Egyes nyelvek (pl.
Pascal) szerint itt csak egyetlen végrehajthatéitdts allhat. Ha viszont a tevékenység olyan
Osszetett, hogy csak tobb utasitassal tudjuk |edkkor utasitas zaréjelekekell alkalmazni.

Az utasitas zarojel a Pascal eseBGIN és END. Egy ilyen moédon bezardjelezett
utasitassorozatot hivunkitasitds csoportnak Az utasitds csoport formalisan egyetlen
utasitasnak tekinteid Mas nyelvek (specialis szintaktikajuk miatt) megedik, hogy a
tevékenység leirdsara teikages veégrehajthatd utasitassorozatot alkalmazZphkAda).
Végul a nyelvek harmadik csoportja azt mondja, heatgvékenység helyén vagy egyetlen

végrehajthat6 utasitas, vagy egy blokk (. 5.&&jetet) allhat (pl. C).

A kétirdanyu elagaztatd utasitasnél beszélink rdmiein szerepel az ELSE-4g) és hosszu

(szerepel az ELSE-ag) alakrol.
A kétirdnyu eldgaztato utasitas szemantikdja atk@wé

Kiértekebdik a feltétel. Ha az igaz, akkor végrehajtodikTIAEN utani tevékenység, és a
program az IF-utasitast koveutasitason folytatodik. Ha a feltétel értéke handéis van
ELSE ag, akkor az ott megadott tevékenyseg hajtédikeyémiajd a program az IF-utasitast

kove® utasitason folytatodik, végul, ha nincs ELSE-&toa ez egy Ures utasitas.

Az IF-utasitasok tetéitegesen egymasba agyazhatdk és természeteservdkdagban, akar
az ELSE-agban ujabb feltételes utasitas allhaenKgr felmertlhet a ,cselledgELSE”

problémaja, amikor is a kérdés a kdvetkezgy
IF ... THEN IF ... THEN ... ELSE ...

58

konstrukcioju feltételes utasitas esetén melyilhéE-tartozik az ELSE-ag? Vagyis itt egy
olyan rovid IF-utasitas all, amelybe be van agyaegg hosszu, vagy pedig egy hosszu IF-

utasitas THEN-agéaban szerepel egy rovid?
A valasz tobbféle lehet:

a. A ,csellengd ELSE” probléma kikiszobdlh&tha mindig hosszu IF-utasitast irunk fel,

agy, hogy abban az agban, amelyet elhagytunk vdhes, utasitas szerepel.

b. Ha a hivatkozasi nyelv éirnem mond semmit, akkor a dolog implementéaciééiigg
Az implementéaciok tobbsége azt mondja, hogy egypataELSE a legkdzelebbi,
ELSE-el még nem parositott THEN-hez tartozik, vagyz értelmezés beébtrkifelé

torténik. Eszerint a fenti példankban egy révidulsitasba agyaztunk egy hosszut.

c. A nyelv szintaktikdja olyan, hogy egyértdira skatulydzas. Az Ada feltételes utasitasa

a kovetke#d:

IF feltétel THEN végrehajthatd_utasitasok

[ELSEIF feltétel THEN végrehajthato_utasitasok]...
[ELSE végrehajthaté utasitasok]
END IF;

Végul megjegyezzilk, hogy a C-ben a feltétel zae&jakozott szerepel és nincs THEN

alapszoé.

4.4.2. Tébbirdnya elagaztato utasitas

A tbbbiranyd elagaztatd utasitas arra szolgal, hmgyrogram egy adott pontjan egymast
kolcsonosen kizaro akarhany tevékenység kozul egygrehajtsunk. A tevékenységek kozotti
valasztast egy kifejezés értékei szerint tehetjlkg.mSzintaktikaja és szemantikaja

nyelvenként killonbdz Nézzik a lehetséges megoldasokat.

Turbo Pascal
CASE kifejezés OF
konstanslista : tevékenység

59

[konstanslista : tevékenység]...

[ELSE tevékenység]

END;

A konstanslista literdlok vagy intervallumok ves8el elvalasztott sorozata. Egy literal
csak egy konstanslistaban szerepelhet. kifejezés és ennek megfelegdn a
konstanslista sorszamozott tipusu lehet. Nem kotélez kifejezés minden lehetséges

értékére dlirni tevékenységet. fevékenység egy utasitas vagy egy utasitas csoport lehet.

Miikbdeése:
A kifejezés kiértekebdik, és az értéke a feliras sorrendjében hasoritéeril a
konstansokkal. Ha van egyezés, veégrehajtédik a etegf konstanslista utani

tevékenység, majd a CASE-utasitast kdvetasitassal folytatodik a program. Ha egyetlen
konstanssal sincs egyezés, de van ELSE-4g, akkgrehatodik az abban magadott
tevékenység , majd a CASE-utasitast kodeutasitassal folytatédik a program. Ha nincs

ELSE-ag, akkor ez egy Ures utasitas.

Ada:

CASE kifejezésl IS

WHEN({ kifejezés [tartomany |OTHERS}] | {kifejezés [tartomany |OTHERS]}...
=> végrehajthat6é_utasitasok

[WHEN { kifejezés tartomany |OTHERS}[| {kifejezés [tartomany |OTHERS]}]...

=> végrehajthatd_utasitasok]...
END CASE;

A WHEN-agakban szereplkifejezések és a tartomanyok értékeinek kulonhikzrikell.
WHEN OTHERS &aghdl egy szerepelhet, és utolsonaklé&ehie. A kifejezésl skalar
tipusu lehet. A kifejezésl minden lehetséges értékéres ekell irni valamilyen

tevékenyseéget.

Mukodése:

60

A kifejezésl kiértékebdik, és értéke a felirds sorrendjében hasonlitéeidd a WHEN-
agakban megadott kifejezések és tartomanyok évidkeiHa van egyezés, akkor
végrehajtodnak a WHEN-agban téwtasitasok, és a CASE-utasitast kévetasitassal
folytatdédik a program. Ha nincs egyezeés sehol, ate WWHEN OTHERS &g, akkor az abban
megadott utasitasok hajtédnak végre, és a CASHadakoved utasitassal folytatodik a
program. Ha nincs WHEN OTHERS &g, akkor viszondsuhiba (kivétel) kovetkezik be. Ha
valamely értékekre nem akarunk csinalni semmitpalkdgy olyan WHEN OTHERS agat kell

szerepeltetniink, amely egy Ures utasitast tartalmaz

C:

SWITCH (kifejezés) {

CASE egész_konstans_kifejezés : [tevékenység]

[CASE egész_konstans_kifejezés : [tevékenység]]...

[DEFAULT: tevékenység]

b

A kifejezés tipusanak egészre konvertalhatonak kell lennie. ASE-agak értékei nem

lehetnek azonosak. fevékenység végrehajthatd utasitas, vagy blokk lehet. A DEFALAG

barhol szerepelhet.
Mukodése:

Kiértékebdik a kifejezés , majd értéke a felirds sorrendjében hasonlitéesnal e CASE-
agak értékeivel. Ha van egyezés, akkor végreh&jtadiadott agban megadott tevékenység,
majd a program a kovetk&€zagakban megadott tevékenységeket is végrehajganikics
egyezés, de van DEFAULT-4g, akkor az ott megadmtekenység hajtodik végre, és a
program a kovetkézagakban megadott tevékenységeket is végrehagjaimts DEFAULT-
ag, akkor ez egy Ures utasitas. Tehat a C-ben kiltidsitas kell ahhoz, hogy kilépjink a
SWITCH-utasitasbol, ha valamelyik ag tevékenységgfrehajtottuk (I. BREAK-utasitas -
4.7. alfejezet).

61

PL/I:
SELECT [(kifejezés1) 1,

WHEN (kifejezés [, kifejezés]...) tevékenység

[WHEN (kifejezés [, kifejezés]...) tevékenység]...
[OTHERWISE tevékenység]

END;

A kifejezések tipusa tetsleges. Atevekenység egy utasitas, egy utasitas csoport, vagy

egy blokk lehet.
Miikbdeése:

Ha szerepel &ifejezésl , akkor nikédése megegyezik az Adaéval. Tehat a PL/I-ben is a
kifejezésl minden lehetséges értékéré &kll irni valamilyen tevékenységet. Ha nem
szerepel, akkor a WHEN-agakban megadott kifejezésadkét bitlancca konvertalja és az
els olyan &gat valasztja ki, amelynek a bitjei nempesnullak. Ha nincs ilyen, akkor ez egy

ures utasitas.

A FORTRAN és a COBOL nem tartalmaz ilyen utasitast.

4 5. Ciklusszerve# utasitasok

A ciklusszerveé utasitasok lehévé teszik, hogy a program egy adott pontjan eggriyias

tevékenységet akarhanyszor megismeteljink.
Egy ciklus altalanos felépitése a kdvetkez

fej
mag
Vég
Az ismétlésre vonatkoz6 informaciok vagy a fejbagwa vegben szerepelnek.

A mag az ismétlertilvégrehajthaté utasitasokat tartalmazza.

62

A ciklusok mikddésénél megkllonbdztetiink két séséges esetet. Az egyik az, amikor a
mag egyszer sem fut le, ezt hivjiles ciklusnakA masik az, amikor az ismétiés soha nem
all le, ez avégtelen ciklus A mikodés szerinti végtelen ciklus a programban nyilvan

szemantikai hibat jelent, hiszen az sohasemddjkde.

A programozasi nyelvekben a kovetkezklusfajtdkat kiulonboztetjik medeltételes elsirt

lépésszamuelsorolasosvégtelenésosszetettiklus.

Lassuk ezeket egyenként.

4 .5.1. Feltételes ciklus

Ennél a ciklusnal az ismédést egy feltétel igaz vagy hamis értéke szababoazfeltétel
maga vagy a fejben vagy a végben szerepel. Szdw@pntialapjan beszélurkezdfeltételes

ésvégfeltételesiklusrol.

Kezdifeltételes ciklus:
A feltétel a fejben jelenik meg.
Mukddése:

Kiértekebdik a feltétel. Ha igaz, végrehajtodik a ciklusmampjd Gjra kiértékeéldik a feltétel,
és a ciklusmag mindaddig Ujra és Ujra lefut, amiigleétel hamissa nem valik. Tehat, ha
egyszer beléptiink a magba, akkor ott kell valamdtgan utasitasnak végrehajtédnia, amely

megvaltoztatja a feltétel értékét.

A kezdbfeltételes ciklus lehet Ures ciklus, ha a feltététgel$ esetben hamis. Lehet végtelen

ciklus is, ha a feltétel a legélesetben igaz és mindig igaz is marad.

Végfeltételes ciklus:
A feltétel altalaban a végben van, de vannak n{elamelyekben a fej tartalmazza azt.

Miikddése:

63

Elészor végrehajtodik a mag, majd ezutan kiérigdiel a feltétel. Altalaban ha a feltétel
hamis, Gjra végrehajtddik a mag. Tehat az issdé8 mindaddig tart, mig a feltétel igazza
nem valik. Vannak viszont olyan nyelvek, amelyeézig ismételnek. Nyilvan itt is a magban

kell gondoskodni a feltétel értékének megvaltoz@tal.

A végfeltételes ciklus soha nem lehet Ures cikluspag egyszer mindenféleképpen lefut.

Végtelen ciklus viszont lehet, ha a feltétel értekmasodik ismétlés utan nem valtozik meg.

4.5.2. Ebirt Iépésszamu ciklus

Ennél a ciklusfajtanal az ismétlésre vonatkozo informaciok (az wriklusparamétereka
fejpen vannak. Minden esetben tartozik hozza edipz@ aciklusvaltozo A valtozé altal
felvett értekekre fut le a ciklusmag. A valtozo earékeit egy tartomanybol veheti fol. Ezt a
tartoményt a fejben adjuk mégzd- ésvégertékévelA ciklusvaltozo a tartomanynak vagy
minden elemét folveheti (beleértve a kézaés vegeértéket is), vagy csak a tartomanyban
szabalyosan (ekvidisztansan) elhelyeZkduizonyos értékeket. Ekkor meg kell adni a
tartomanyban a felvehetelemek tavolsagat meghatarokEpéskodzt A valtozo az adott

tartoményt befuthatja novekleg, illetve cstkkebleg, ezt hatdrozza meg aany.

Az elbirt lepésszamu ciklussal kapcsolatban a nyelvekaekovetked kérdéseket kell

megvalaszolniuk:
1. Milyen tipusu lehet a ciklusvaltoz6?

* Minden nyelv megengedi az egész tipust.

* Egyes nyelveknél sorszamozott tipusu lehet.

* Van néhany nyelv, amelyik megengedi a valésat is.

* A kezdbérték, a vegerték és a lepéskoz tipusa meg kally bgyezzen a ciklusvaltozé

tipusaval, vagy arra konvertalhatonak kell lennie.
2. Milyen formaban lehet megadni a kéedéket, végértéket és a lepéskozt?

* Minden nyelv esetén megengedett a literal, valtxzdevesitett konstans.

» Keésibbi nyelveknél kifejezéssel is megadhato.

3. Hogyan hatarozédik meg az irany?

64

* A lépéskoz dljele donti el — ha pozitiv, akkor ndvekvha negativ, akkor cstkké&n
Altalaban azok a nyelvek valljak ezt, melyekberikiusvaltozo csak numerikus tipusu
lehet.

» Kulon alapszot kell hasznalni.
4. Hanyszor értékétnek ki a ciklusparaméterek?

« Altalaban egyszer, amikor a vezérlés a ciklushgzégra ciklus ritkodése alatt nem
valtoznak.

* Minden ciklusmag-végrehajtassétl Gjra meghatarozédnak.
5. Hogyan fejeddhet be a ciklus?

» Szabalyos lefutas
- aciklusparaméterek altal meghatarozott médon.
- a ciklus magjaban kul6én utasitassal.

» GOTO-utasitassal, altaldban nem tekintjik szabdpdsjezésnek.
6. Mi lesz a ciklusvaltozo értéke a ciklus lefutasan@t

* Ha GOTO-val ugrunk ki a ciklusbdl, akkor a ciklukead értéke az utoljara felvett
erték lesz.
» Szabalyos befejezés esetén a hivatkozéasi nyelvgkrésgze nem nyilatkozik €ir a
kérdésél, masik része azt mondja, hogy a ciklusvaltozél&rthatarozatlan.
» Az implementacidk viszont a kévetkiet mondjak:
- A ciklusvaltozo értéke az az érték, amelyre utalfértott le a ciklus.
- A ciklusvaltoz6 értéke az az érték, amire mar éppan futott le a ciklus.

- A ciklusvaltozo6 értéke hatarozatlan.

Mukodését tekintve az @kt l1épésszamu ciklus lehetolibszteb, vagy hatultesztél A
hivatkozasi nyelveknek csak egy része definialjat, eezért a rmkodés gyakran
implementaciofigd. Az implementaciok tébbsége inkabb adltekztet valtozatot valositja

meg.

65

Miikodés edlteszteb esetben:

A milkddés kezdetén meghatarozodnakciklusparaméterek Ezutan a futtatd rendszer
megvizsgalja, hogy a megadott iranynak megbelela megadott tartomany nem Ures-e. Ha
dres (pl. a [10..1] tartomany novekeg), akkor ez egy Ures ciklus. Kilénben a ciklliszd
felveszi a kezdértéket, és a mag lefut. Majd a futtatd rendszegumaegalja, hogy az adott
tartomanyban, az adott iranyban, az adott Iépéshoaregfeladen, a ciklusvaltozé pillanatnyi
értékéhez képest van-e még olyan érték, amit assikltozé felvehet. Ha van, akkor felveszi
a kovetke# ilyen értéket, és Ujra lefut a mag, ha nincs ilgeték, akkor befejéik a ciklus

(szabélyos befejezés).

Mikodés hatultesztélesetben:

A mikddeés kezdetén meghatarozodnak a ciklusparaméteraekan a ciklusvaltozo felveszi a
kezdsértéket, és a mag lefut. Majd a futtatd rendszemgumegalja, hogy az adott
tartomanyban, az adott iranyban, az adott lépéshkoaregfeladen, a ciklusvaltozé pillanatnyi
értékéhez képest van-e még olyan érték, amit assikltozé felvehet. Ha van, akkor felveszi

a kovetked ilyen értéket, és Ujra lefut a mag, ha nincs ilgeiek, akkor befejéik a ciklus.

Altalaban az eljarasorientalt nyelvek megengedigyha ciklusvaltozonak értéket adjunk a

magban.

Az eblteszteb elsirt Iépésszamu ciklus lehet Ures ciklus, a hatuléds viszont nem. Egyes

nyelvekben mindkét fajta lehet viszont végtelenusk

4.5.3. Felsorolasos ciklus

A felsorolasos ciklus az @&ft Iépésszamu ciklus egyfajta altalanositasankintteets. Van
ciklusvaltozoja, amely explicit médon megadott ketéet vesz fel, és minden felvett érték
mellett lefut a mag. A ciklusvaltozét és az értakel fejben adjuk meg, ez utdbbiakat
kifejezéssel. A ciklusvaltozé tipusa altalabanzéeges. Nem lehet sem Ures, sem végtelen

ciklus.

66

4.5.4. Végtelen ciklus

A végtelen ciklus az a ciklusfajta, ahol sem dde, sem a végben nincs informéacié az
ismétbdésre vonatkozdan. dkodését tekintve definicid szerint végtelen ciklisgs ciklus
nem lehet. Hasznalatanal a magban kell olyan atsélkalmazni, amelyik befejezteti a

ciklust. Nagyon hatékony lehet eseményvezéreltrmikaasok implementalasanal.

4.5.5. Osszetett ciklus

Az el6zé6 négy ciklusfajta kombinacioibol all 6ssze. A cikdejben tetsdlegesen sok
ismétbdésre vonatkozo informacié sorolhatd fol, szemaniik pedig szuperponalddik.

Nagyon bonyolult ikodési ciklusok épitheik fel a segitségével.

A nyelvek egy részében vannak olyan vezérlésatddsitasok, amelyeket barmilyen fajta
ciklus magjaban kiadva, a ciklus szabalyos befsgizéeredményezik. Veégtelen ciklus

szabélyosan csak igy fejeztethbe.

4.6. Ciklusszerve# utasitasok az egyes nyelvekben

FORTRAN:
ElGirt lepésszamu ciklus:
DO cimke valtoz6 =k, v [l]

végrehajthatd_utasitasok
cimke végrehajthat6_utasitas

A valtozd ,k,v,| tipusa csak egész lehetkAv, | (kezdsérték, végérték, Iépéskdz) csak
literal vagy valtozé lehet, kifejezés nem. Ha ninoegadva azl , akkor a |épéskoz
alapértelmezett értéke 1, és az irAny ndvekla adott at , akkor az iranyt annakdele adja
meg. Implementacioi altalaban hatultesi#él A ciklus végén nem lehet vezénitasitas,

ilyenkor Ures utasitast kell oda irni.

67

A késsbbi verzidkba bekerilnek a kedes végfeltételes ciklusok is.

PL/I:
Benne minden ciklusfajta létezik.
Kezdsfeltételes ciklus:

DO WHILE(kifejezés);
végrehajthatd_utasitasok
END;

A kifejezés bitlAncca konvertalhato kell legyen, akkor igaa ,fem minden bit értéke 0.

Végfeltételes ciklus:

DO UNTIL(kifejezés);
végrehajthatd_utasitasok
END;

El6irt Iépésszamu ciklus:

DO valtoz6 =k TO v [BY I]
végrehajthatd_utasitasok
END;

A valtoz6 aritmetikai vagy bitlanc tipusu. Az irAnyt bzléjele donti el. Ha nem szerepel a

TO v, akkor végtelen ciklus.

Felsorolasos ciklus:

DO véltozo = kifejezésl [, kifejezés2 1...;
végrehajthatd_utasitasok
END;

A kifejezés tipusa tetéeges.

68

Minden ciklusfajta kombinalhat6é az 6sszes tdbbiigl,jonnek Iétre az dsszetett ciklusok.

Pascal

Kezdbfeltételes ciklus:

WHILE feltétel DO végrehajthatd_utasitas

Végfeltételes ciklus:

REPEAT végrehajthat6_utasitdsok UNTIL feltétel

El6irt Iépésszamu ciklus:
FOR valtozé = k { TO |DOWNTO} v DO utasitas

El6lteszteb. Az iranyt alapszd donti ellfO esetén ndvekly DOWNT@setén csokkeén A

|[épéskozt a Pascal nem értelmezi.

Ada:

Kezdbfeltételes ciklus:

WHILE feltétel

LOOP
végrehajthatd_utasitasok
END LOOP;

El6irt lepésszamu ciklus:

FOR ciklusvéltozo6 IN [REVERSE] tartomany
LOOP

végrehajthatd_utasitasok

END LOOP;

El6lteszteb. REVERSEesetén csokkéieg |épked végig a tartomanyon, ha niRiSVERSE
akkor novekwleg. A tartomany sorszamozott tipusu. Lépéskodzt az Ada nem értelkez

ciklusvaltozé implicit moédon a ciklus lokalis vaépaként deklaralodik a tartomanynak

69

megfeled tipussal, és a ciklusmagban nevesitett konstahs$iggsznalhaté (tehat nem lehet

neki értéket adni).

Végtelen ciklus:

LOOP
végrehajthatd_utasitasok
END LOOP;

Az Adaban az EXIT-utasitas segitségével mindenusikhagjabol szabalyosan ki tudunk

Iépni. A végtelen ciklusnal is ezt hasznaljuk anbafejeztetésére.

C:
Kezdbfeltételes ciklus:

WHILE(feltétel) végrehajthaté_utasitas

A feltétel integralis tipusu. Ha értéke némakkor ismétel.

Végfeltételes ciklus:

DO végrehajthatd_utasitas WHILE(feltétel);

Akkor ismétel, ha deltétel értéke nend.

FOR-ciklus:

FOR(kifejezésl]; [kifejezés2]; [kifejezés3]) végrehajthaté utasitas
Ez a ciklus megfelel a kovetk&kddnak:

kifejezésl;

WHILE(kifejezés?2) {végrehajthaté_utasitas; kifejezé s3;}

70

A kifejezésl inicializalé kifejezés, kifejezésutasitaskéent &ius mikodése dltt
ertékebdik ki. A kifejezés2 felelés a ciklus befejezéséért, feltételként értelbagz A
kifejezés3 kifejezésutasitdsként minden cikluslépés végeénrtékébdik. Ha a
kifejezés2 nem szerepel, akkor végtelen ciklus lesz. A végteliklusbol szabalyosan a
BREAKutasitassal tudunk kilépni.

4.7. Vezérb utasitasok a C-ben

A C-ben harom vezéflutasitas van még az eddigiekben targyalt végiedtajtutasitasokon

kival:

CONTINUE;
Ciklus magjaban alkalmazhat6. A ciklus magjanakraiét6 utasitasait nem hajtja végre,
hanem az ismditiés feltételeit vizsgalja meg, és vagy Ujabb cikpésbe kezd, vagy befejezi

a ciklust.

BREAK;,
Ciklus magjaban vagy tobbszorts elagaztatd utésitdbelyezhétel. A ciklust szabalyosan

befejezteti, illebleg kilép a tobbsz6rds elagaztatd utasitasbaol.

RETURN kifejezés ;

Szabalyosan befejezteti a flggvényt és visszaadgaéxrlést a hivonak (I. 5.1. alfejezet).

71

5. APROGRAMOK SZERKEZETE

Az eljarasorientalt programnyelvekben a progranmvegé tobbeé-kevéshé fliggetlen, szuverén

részekre, urprogramegységekragolhaté.
Ezen részekkel kapcsolatban a megvalaszolandddek@dekovetkeik:

1. A program teljes sztévegét egyben kell-e leforditasaigy az feltdrdelhét onalléan
fordithato reszekre?

» Bizonyos nyelvekben a program fizikailag onallézeddsl &ll, melyek kulon-kalon

fordithatok. Ezek a részek mélységében nem straikailr

* Més nyelvekben a programot egyetlen egységkéntlégeliditani. llyenkor a program

szOvege mélységében strukturalhato. A programegksiggkailag nem flggetlenek.

[]

* Veégul az ebz6 ketts kombinacidja is elképzelhet Ezen nyelvekben fizikailag

flggetlen, de tetgiteges bels strukturaval rendelkézprogramegységek léteznek.

[]

2. Ha a részek kulon fordithatok, mi alkothat egy tinfdrditasi egységet?

72

3. Milyen programegységek léteznek?
4. Milyen a programegyseégek viszonya?

5. A programegységek hogyan kommunikalnak egymassal?

Az eljarasorientalt nyelvekben az alabbi prograrséggk 1éteznek:

- alprogram
- blokk
- csomag

- taszk

5.1. Alprogramok

Az alprogram az eljarasorientalt nyelvekben a pilacélis absztrakcido &ls megjelenési
formaja, alapvét szerepet jatszik ebben a paradigmabdit, nseghatarozdja annak. Az
alprogram mint absztrakciés eszkdz egy bemeneticsolportot képez le egy kimeneti
adatcsoportra ugy, hogy egy specifikacid megadjadatok leirasat, de semmit nem tudunk
magarél a tényleges leképedidsrismerjik a specifikaciét, de nem ismerjuk az

implementaciot.

Az alprogram, mint programozési eszk6z az Ujrafethalds eszkdze. Akkor alkalmazhaté, ha
a program Kkulonbdz pontjain ugyanaz a programrész megistu#tl Ez az ismetdos
programrész kiemelh&t egyszer kell megirni, és a program azon pontjaiml ez a
programrész szerepelt volna, cshivatkozni kell rA — az alprogram az adott helyeken

meghivhatpaktivizalhato

Az alprogram attol lesz absztrakciés eszkdz, hogykiemelt programréesztformalis
paraméterekkelatjuk el, vagyisaltaldnosabbanirjuk meg, mint ahogyan az adott helyeken

szerepelt volna.

Formélisan az alprogram a kovetkképpen épul fel:

73

— fej vagy specifikacio
— térzs vagy implementacio
- Vég

Az alprogram, mint programozasi eszktz négy kompsidi all:

7

- nev

formalis paraméter lista

— torzs

kérnyezet

A név egy azonositd, amely mindig a fejben szerepelfoAnalis paraméterlista is a
specifikacio része. A formalis paraméter listabaonasitok szerepelnek, ezek a térzsben sajat
programozasi eszk6zok nevei lehetnek, és egy atialazerepkort irnak le, amelyet a hivas

helyén konkretizalni kell aaktualis paraméteregegitségével.

A korai nyelvekben a formalis paraméter listan caagaraméterek nevei szerepelhettek, a
késsbbi nyelvekben viszont itt megadhatok tovabbi oly@iormaciok, melyek a paraméterek

futas kozbeni viselkedését szabalyozzak.

A formalis paraméter lista kerek zarojelek kozdittA nyelvek egy része szerint a zaréjelek a

formalis paraméter listahoz, masok szerint a nétwueaznak.
A formalis paraméter lista lehet Ures is, ekgaraméter nélkilalprogramrél beszélink.

A torzsbendeklaracios és végrehajthatd utasitasok szerepelkekyelvek egy része azt
mondja, hogy ezeket el kell kuloniteni egymasehat a torzsnek van egy deklaracios és egy

végrehajthato része. Mas nyelvek szerint viszddtiele utasitas tetélegesen keverhét

Az alprogramban deklaralt programozési eszkozo&lpmgramlokélis eszkozei, ezek nevei
az alprogramokalis nevei A lokalis nevek az alprogramon kivéilmem lathatok, azokat az
alprogram elrejti a kilvilag 8l. Ezzel szemben |éteznekgiobalis nevekmelyeket nem az
adott alprogramban deklaraltunk, hanem valaholargjvil, de a térzsben szabalyosan

hivatkozhatunk rajuk.

74

Egy alprogrankdrnyezetalatt a globdlis valtozok egyittesét értjik.
Az alprogramoknak két fajtaja vaeljaras ésfuiggveny

Az eljaras olyan alprogram, amely valamilyen tewsisgget hajt végre. A hivas helyén ezen
tevékenység eredményét hasznalhatjuk fel. Az alj@ahatasat a paramétereinek vagy a
kornyezetének megvaltoztatasaval illetve a torzslbalyezett végrehajthaté utasitasok altal

meghatarozott tevékenyseg elvegzéseével fejti ki.

A fuggvény olyan alprogram, amelynek az a feladatay egyetlen értéket hatarozzon meg.
Ez az érték altalaban tetdeges tipusu lehet. A fliggvény visszatéerési értekéntipusa egy
tovabbi olyan informéacié, amely hozzatartozik adiu@ny specifikacidjahoz. A fliggvény
visszatérési ertékét mindig a neve hordozza, fosawdlaz kozvetiti vissza a hivas helyére. A

fliggvény torzsének végrehajthat6 utasitasai aatiéezsi érték meghatarozasat szolgaljak.

Azt a szituaciot, amikor a fliggvény megvaltoztataramétereit vagy a kornyezetét, a

fuggvénymellékhatdsanakevezzik. A mellékhatést altaldban k&rosnak tartja

Egy eljarast aktivizalni utasitasséien lehet, azaz az eljarashivas elhelygzihérhol, ahol
végrehajthatd utasitas allhat. Egyes nyelvekbenkiéim eljarashivasra szolgalé alapszo (ez
nagyon gyakran &ALL). Mas nyelvekben nincs kulon alapszo. Hivaskorzgsés atadodik

az eljarasra.

Formaélisan a hivas a kovetké&ppen néz ki:

[alapszO] eljarasnév(aktualis_paraméter_lista)

Egy eljaraszabalyosamefejedhet a kilonbdz nyelvekben, ha

- elérjik a végét,

- kllon utasitassal befejeztetjik, ez barhol kiadbatéljaras térzseben.
Szabalyos befejézés esetén a program a hivast kdwgasitason folytatodik.

Altalaban nem szabalyos befejezésnek tekintjiikvetk@ket:

- A nyelvek altalaban megengedik, hogy az eljarasB&TO-utasitassal kilépjink, a

megadott cimkeén folytatva a programot.

75

- Van olyan eszkdz a nyelvben, amely hatasara astptjggram befejéik, ekkor nyilvan

az eljaras maga is véget ér, és a vezérlés azaperandszerhez kertl vissza.

Fuggvényt meghivni csdfejezésbeirehet, a hivas alakja:
flggvénynév(aktudlis_paraméter_lista)

A flggvényhivas utan normalis befejest feltételezve a vezérlés a kifejezésbe térajsss

tovabbfolytatédik annak a kiértékelése.
Egy flggvény a kovetkéznddokon hatarozhatja meg a visszatérési eértekét:

- A flggvény torzsében véltozoként hasznalhaté aviéigg neve (pl. FORTRAN). A
torzsben tetsdegesen felhasznalhato és valtoztathatd annakeéréekisszatéresi értek a
legutoljara kapott érték lesz.

- A fliggveény torzsében a fuggveny nevéhez értékéhkelzarendelni. A fliggvény neve azt
az értéket hordozza, amit utoljara kapott.

- Kulon utasitas szolgal a visszaterési erték meghedaara, amely egyben be is fejezteti a
fluggvényt.

A fuggvény szabalyosan befefeihet, ha

- elérjiuk a végét, és mar van visszatérési érték,

- befejezted utasitast alkalmazunk, és mar van visszatéras{,ert

- olyan befejeztét utasitast alkalmazunk, amely egyben meghataroxissaatérési értéket
is.

Nem szabdlyos a befef@es, ha

7

- elérjik a végeét, és nem hataroztuk meg a visszaiénéket,

- olyan befejeztét utasitast alkalmazunk, amely nem hatarozza mdgsaatérési értéket,

€s mas modon sincs megadva az,
- GOTO-utasitassal lIépunk ki.

Az utolso esetben a vezérlés a cimkére adodiki sdyaltalan nem tériink vissza a kifejezés

kiértékeléséhez. Kerlletidmegoldas, nem biztonsagos kdédot eredményez. Az lads

76

esetben a vezérlés visszatér a kifejezés kiérigddedZ, azonban a flggveny visszatérési
ertéke hatarozatlan. Egyes nyelvekben (pl. C) emrlyios szituaciokban nem jelent

problémat, altalaban viszont szemantikai hiba.

Az eljarasorientalt programozasi nyelvekben megimiden programban kotel&en lennie
kell egy specialis programegységnek, afdfirogramnakhivunk. Ez alprogram jellég a
betdl neki adja at a vezérlést, és az 6sszes tobbi qaragyseég rikodéseéts koordinalja.
Egy program szabdlyos befefelése a dprogram befejamdésével torténik meg, ekkor a

vezérlés visszakerul az operacios rendszerhez.

5.2. Hivasi lanc, rekurzié

Egy programegység barmikor meghivhat egy masik rproggységet, az egy Ujabb
programegységet, és igy tovabb. igy kialakul leissi lanc A hivasi lanc els tagja mindig a
féprogram. A hivasi lanc minden tagjittiv, de csak a legutoljara meghivott programegyséeg
mikodik Szabalyos esetbenindig az utoljara meghivott programegység fejezidgebszor

a mikodését, és a vezérlés visszatéroaaeghivd programegységbe. A hivasi lanc futas

kdézben dinamikusan épul fél és bomlik le.
Azt a szituaciot, amikor egy aktiv alprogramot mkumeg,rekurzionaknevezzik.
A rekurzio kétféle lehet:

— kozvetlen: egy alprogram 6énmagat hivja meg, vagyiérzsben van egy hivatkozas sajat
magara. Specidlis esete a farokrekurzid, amikarig/ds az alprogram végeén van.

— kozvetett: a hivasi lancban mar korabban széralprogramot hivunk meg.

A rekurzidval megvaloésitott algoritmus mindig atith iterativ algoritmussa. Farokrekurzié
esetén ezt a forditoprogramok képesek elvégezni. itBmtiv algoritmusok éltalaban

gyorsabbak, mivel kevesebb memdriafoglaladssal karna

Egyes nyelvek nem ismerik a rekurziot (pl. FORTRAMasok azt mondjak, hogy minden
alprogram alapértelmezett moédon rekurziv, végul yelvek harmadik csoportjaban a

programozo dontheti el, hogy egy adott alprograkanav legyen-e, vagy sem.

77

5.3. Masodlagos belépési pontok

Egyes nyelvek megengedik, hogy egy alprogramot megme csak a fejen keresztlil
lehessen, hanem a torzsben ki lehessen alakitamasodlagos belépési pontokagy vagy a
fejpen megadott névvel vagy a masodlagos belépést pevével lehet hivatkozni az
alprogramra. A masodlagos belépési pont képzésenafiman meg kell felelien a
specifikacionak. Ha fuggvénylrvan szo6, akkor a tipusnak meg kell egyeznie. Hadott
alprogramba a fejen keresztll Iéplnk be, akkor lppogram teljes torzse végrehajtodik,

masodlagos belépési pont hasznéalata esetén adkresmpan egy része hajtodik végre.

5.4. Paraméterkiértékelés

Paraméterkiértekeléalatt értjik azt a folyamatot, amikor egy alpregraivasanal egymashoz
rendebdnek a formalis- és aktualis paraméterek, és méagiaidnak azok az informaciok,

amelyek a paraméteratadasnal a kommunikaciot dratigh.

A paraméterkiértékelésnél mindig a formalis paramésta az el&dleges, ezt az alprogram
specifikacidja tartalmazza, egy darab varbleelAktualis paraméter lista viszont annyi lehet,
ahanyszor meghivjuk az alprogramot. Tehat az edyozasendelésnél mindig a formalis

paraméter lista a meghatarozo6, mindig az aktualiamétereket rendeljik a formalisakhoz.

A paraméterkiértékelésnek harom aspektusa van,azakabbi kérdésekre adnak valaszt.

1. Melyik formalis paraméterhez melyik aktudlis pagder fog hozzarendsni?
Ez torténhesorrendi kétévagynév szerinti kotészerint.

Sorrendi kotés esetén a formalis paraméterekhelsardlas sorrendjében rendidhek hozza
az aktudlis paraméterek: az @6z az el§, a masodikhoz a méasodik, és igy tovabb. Ezt a

lehetiséget minden nyelv ismeri, és éltalaban ez az d&dpezés.

A név szerinti kotés esetén az aktudlis paramé&tbhan hatarozhatjuk meg az egymashoz

rendelést Ggy, hogy megadjuk a formalis paramétevéin és mellette valamilyen

78

szintaktikaval az aktudlis paramétert. llyenkorylEgtelen a formalis paraméterek sorrendje.

Néhany nyelv ismeri.

Alkalmazhat6 a sorrendi és név szerinti kétés kodtidja egyutt is Ugy, hogy az aktualis

paraméter lista elején sorrendi kotés, utana nénrgizkotés van.

2. Hany darab aktualis paramétert kell megadni?

Lehetséges, hogy a formalis paraméterek szaman ffeymalis paraméter lista adott szamu

paramétert tartalmaz. Ekkor a paraméterkiértékadéiele mdédon mehet végbe:
- Az aktudlis paraméterek szamanak meg kell egyezfoemalis paraméterek szamaval.

- Az aktudlis paraméterek szama kevesebb lehet, anformalis paraméterek szama. Ez
csak érték szerinti paraméterdtadasi mod esetéretskes. Azon formélis
paraméterekhez, amelyekhez nem tartozik aktualimnpeter, a formalis paraméter

listAban alapértelmezett modon rerédiéh érték.

Lehet olyan eset, amikor a formélis paraméterekngazaem rogzitett, tetéleges. Ekkor az
aktudlis paraméterek szama is télsges. Létezik olyan megoldas is, hogy a paramétere

szamara van also korlat, tehat legalabb ennyi Aktparamétert szerepeltetni kell.

3. Mi a viszony a formalis és aktualis paramétereligg kozott?

A nyelvek egyik része a tipusegyenétigdget vallja, ekkor az aktudlis paraméter tipusédnak
azonosnak kell lennie a formalis paraméter tipusava nyelvek masik része a
tipuskényszerités alapjan azt mondja, hogy az b&tparaméter tipusdnak konvertalhatonak

kell lennie a formalis paraméter tipusara.

79

5.5. Paraméteratadas

A paraméteratadas az alprogramok és mas progradukykozotti kommunikacio egy
formaja. A paraméteratadasnal mindig van bgyd, ez tetséleges programegység, és egy

hivott amelyik mindig alprogram. Kérdés, hogy melyiknyhan és milyen informacié mozog.
A nyelvek a kdvetkez paraméteratadasi médokat ismerik:

— érték szerinti

— cim szerinti

— eredmeény szerinti

— érték-eredmény szerinti
— név szerinti

— szOveg szerinti

Az érték szerinti paraméteratadas esetén a formalis pagaghkéek van cimkomponensik a
hivott alprogram teriletén. Az aktualis paramétiermendelkeznie kell értékkomponenssel a
hivoé oldalon. Ez az érték meghatarozodik a parakiétéekelés folyaman, majd atkerll a
hivott alprogram teriletén lefoglalt cimkomponense formalis paraméter kap egy
kezdsértéket, és az alprogram ezzel az eértékkel dolgoaiksajat teruletén. Az
informé&cidaramlas egyirdnyu, a hivétdl a hivotéfehnyul. A hivott alprogram semmit sem
tud a hivordl, a sajat tertletén dolgozik. Mindignvegy értékmasolas, és ez az eérték
tetsdleges bonyolultsagu lehet. Ha egy egész adatcsiga atmasolni, az hosszadalmas.
Lényeges, hogy a két programegység egymastol figggetmikodik, és egymas tikddéset

az érték meghatarozason tal nem befolyasoljak.
Az aktualis paraméter kifejezés lehet.

A cimszerinti paraméteratadasnal a formalis paramétekekincs cimkomponensiik a hivott
alprogram teriiletén. Az aktualis paraméternek viszendelkeznie kell cimkomponenssel a
hivo terlletén. Paraméterkiértékeléskor meghatélikzéz aktudlis paraméter cime és
atadodik a hivott alprogramnak, ez lesz a formabsaméter cimkomponense. Tehat a
meghivott alprogram a hivo teriletén dolgozik. Albimacioatadas kétiranyu, az alprogram a

hivo teruletésl atvehet értéket, és irhat is oda. Az alprograny(dta hivo teriletre. tiben

80

gyors, mert nincs értékmasolas, de veszélyes lafieel a hivott alprogram hozzafér a hivo

teriletén léd informaciokhoz, és szabalytalanul hasznalhatjazokat.
Az aktualis paraméter valtozo lehet.

Az eredményszerinti paraméteratadasnal a formalis paramétevaa cimkomponense a
hivott alprogram tertletén, az aktualis paramétempedig lennie kell cimkomponensének.
Paraméterkiértékeléskor meghatarozédik az akty@mmméter cime, és atadodik a hivott
alprogramnak, azonban az alprogram a sajat tenildtdgozik, és a futds kdzben nem
hasznalja ezt a cimet. Atkbdésének befejeztekor viszont atmasolja a forngdimmeéter
értékét erre a cimkomponensre. A kommunik&cié égyiil, a hivottdl a hivo felé iranyul.

Van értékmasolas.
Az aktualis paraméter valtozo lehet.

Az érték-eredméngzerinti paraméteratadasnal a formalis paraméterae cimkomponense
a hivott tertletén és az aktualis paraméterneketkadnie kell érték- és cimkomponenssel. A
paraméterkiértékelésnél meghatarozodik az akty@iaméter értéke és cime és mindkett
atkerul a hivotthoz. Az alprogram a kapott értékkeint kezdértékkel kezd el dolgozni a
sajat tertletén és a cimet nem hasznélja. Miutamont befejeddik, a formalis paraméter
értéke atmasolddik az aktualis paraméter cimér&ommunikécié kétirdnyu, kétszer van

ertékmasolas.
Az aktualis paraméter valtozo lehet.

Név szerinti paraméteratadasnal az aktualis parameggr az adott szévegkornyezetben
értelmezhet tetsdleges szimbdlumsorozat lehet. A paraméterkiértékeélé rogzibdik az
alprogram szovegkornyezete, itt értelmezésre ke#l aktualis paraméter, majd a
szimbolumsorozat a formalis paraméter nevének mirekdordulasét felllirja az alprogram
szOovegében, és ezutan fut le az. Az informacio&snirinya az aktualis paraméter adott

szovegkornyezetbeli értelmezé&gddtigg.

A szovegszerinti paraméteratadas a név szerintinek edpaath, annyiban kilénbozikle,
hogy a hivds utan az alprogram elkezdikédni, az aktualis paraméter érteliez

szovegkornyezetének rogzitése és a formalis pagarfedtilirasa csak akkor kovetkezik be,

81

amikor a formalis paraméter nevésdor fordul eb az alprogram szévegében a végrehajtas

folyaman.
Alprogramok esetén tipust paraméterként atadnileet.

Egy adott esetben a paraméteratadas maédjat azaatiimtik el:

a nyelv csak egyetlen paraméteratadasi médot iquhet)

a formalis paraméter listaban explicit médon melly &dni a paraméteratadasi modot (pl.
Ada)

az aktualis és formalis paraméter tipusa egyuttédeti el (pl. PL/I)

a formalis paraméter tipusa donti el (pl. FORTRAN)

Az alprogramok formalis paramétereit harom csoparzthatjuk:

- Input paraméterek: ezek segitségével az alprogram Kapmaciot a hivotol (pl. érték

szerinti paraméteratadas).

- Outputparaméterek: a hivott alprogram ad at informaaibtvénak (pl. eredmény szerinti

paraméteratadas).

- Input-output paraméterek: az informacié mindkét iranyba mozply €rték-eredmeény

szerinti paraméteratadas).

5.6. A blokk

A blokk olyan programegység, amely csak masik moggység belsejében helyezkedhet el,

kllsé szinten nem allhat.

Formalisan a blokknak vakezdetetorzseésvége A kezdetet és a véget egy-egy specialis
karaktersorozat vagy alapszé jelzi. A torzsben tledle deklaracios és végrehajthato

utasitdsok. Ugyanugy, mint az alprogramoknal, eaek utasitdsok vagy tetdegesen

82

keverhebtk, vagy van kulon deklaraciés rész és vegrehajthégrz. A blokknak nincs

paramétere. A blokknak egyes nyelvekben lehet rex@ltalaban a kezdei# allé cimke.
A blokk béarhol elhelyezhét ahol végrehajthatd utasitas allhat.

Blokkot aktivizalni vagy ugy lehet, hogy szekverisian rakertl a vezeérlés, vagy ugy, hogy
GOTO-utasitassal raugrunk a kezdetére. Egy bloKkjemdhet, ha elértiik a végét, vagy
GOTO-utasitassal kilépunk loé, vagy befejeztetjik az egész programot a blokkba

A blokkot az eljarasorientélt nyelveknek csak e@gze ismeri. Szerepe a nevek hataskorének

elhatarolasaban van.

5.7. Hataskor

A hataskor a nevekhez kapcsolodd fogalom. Egy haétaskorealatt értjik aprogram
szovegének azon részahol az adott név ugyanazt a programozasi estigatkozza, tehat

jelentése, felhasznalasi médja, jelldiinazonosak. A hataskor szinonimajkthatdésag

A név hataskére az eljarasorientalt programnyelgekla programegységekhez, illetve a

forditasi egységekhez kapcsolédik.

Egy programegységben deklaralt nevet a programgdgsélis nevénelnevezzik. Azt a
nevet, amelyet nem a programegységben deklaraliekbit hivatkozunk raszabad névnek
hivjuk.

Azt a tevékenységet, mikor egy név hataskorét neggglk, hatdskorkezelésnekivjuk.

Kétféle hataskorkezelést ismerinlstatikusés adinamikushataskorkezelést.

A statikus hataskorkezelés forditasiohén torténik, a forditdbprogram végzi. Alapja a
programszoveg programegység szerkezete. Ha a doedfy programegységben talal egy
szabad nevet, akkor kilépartalmazdéprogramegységbe, és megnézi, hogy a név ott fokali

Ha igen vége a folyamatnak, ha nem, akkor tovapkelé kifelé, egészen addig, amig meg

83

nem talalja lokalis névként, vagy el nem jut a ldgk szintre. Ha kiért a legkifisszintre,

akkor két eset lehetséges:

- A nyelvek egy része azt mondja, hogy a programdzémaden nevet deklaralni kell. Igy,

ha egy név nem volt deklaralva, az forditasi hiba.

— A nyelvek masik része ismeri az automatikus deklath és a névhez a forditod
hozzarendeli az automatikus deklaracio szabalyamakfeleb attribitumokat. A név

ilyenkor tehat a legkidsszint lokélis neveként értelmidik.

Statikus hataskorkezelés esetén egy lokalis néaskdte az a programegység, amelyben
deklaraltuk és minden olyan programegység, amealyedz adott programegység tartalmaz,

hacsak a tartalmazott programegységekben a newetleklaraltuk Gjra.

A hataskor befelé terjed, kifelé soha. Egy progmység a lokalis neveit bezarja a kilvilag
elél. Azt a nevet, amely egy adott programegységben fokalis név, de onnan lathato,
globalis névnehivjuk. A globdlis név, lokalis név relativ fogadin Ugyanaz a név az egyik
programegység szempontjabdl lokalis, egy masikbalpatis, egy harmadikban pedig nem is

latszik.

Példa:

int x;

float x;

84

Az abran egymasba skatulyazott programegységelattdth A 1-es programegységben
deklaraltunk egyx newvi int tipusu valtozét, amely itt lokalis. A 2-es, 4-es B-0s
programegységben hivatkozhatunk azmeévre, amely itt globéalis név. Az nevet a 3-as
programegységben Ujradeklaraltfibat tipusuként. igy ez az Gjradeklaralt név a 3-as
programegységben mar egy masik valtozoét jeldl tielokalis és masik programegységben
nem latszik. Viszont a 3-as programegységben neomtuhivatkozni aint tipusix neui
valtozora, mert az () deklaracio elfedi azt. Széstdésen azt mondjuk, hogy az 1-es
programegységben deklarak hataskorében ,lyuk” keletkezik. Megjegyezziik, hogy

példaban nincs jeletsége annak, hogy a két valtozo tipusa kilonbozik.

A dinamikus hataskorkezelés futasi ifldpvékenység, a futtatd rendszer végzi. Alapja a
hivasi lanc. Ha a futtatd rendszer egy programegpesetalal egy szabad nevet, akkor a hivasi
lancon keresztil kezd el visszalépkedni mindaddigig meg nem talalja lokdlis névként,
vagy a hivasi lanc elejéere nem ér. Ez utébbi esetlmy futasi hiba keletkezik, vagy

automatikus deklaracio kovetkezik be.

Dinamikus hataskorkezelésnél egy név hataskérempgramegység, amelyben deklaraltuk,
€s minden olyan programegység, amely ezen program@giél induld hivasi lancban
helyezkedik el, hacsak ott nem deklaraltuk Gjraesmen Ujradeklaralas esetén a hivasi lanc

tovabbi elemeiben az Ujradeklaralt név latszikcaiflyuk a hataskorben” szituacio.

Statikus hataskorkezelés esetén a programban Ezéregzes név hataskore a forrasszoveg
alapjan egyérteliren megallapithatd. Dinamikus hataskorkezelésnébwisa hataskor futasi

idében valtozhat és mas-mas futasnal mas-mas lehet.

Az eljarasorientalt nyelvek a statikus hataskorkeste valositjiak meg. Altalanossagban
elmondhatd, hogy az alprogramok formalis parametezealprogram lokalis eszkozei, igy
neveik az alprogram lokalis nevei. Viszont a progggységek neve a programegység szamara
globdlis. A kulcsszavak, mint nevek a program bdynmontjarél lathatok. A standard

azonositok, mint nevek azon programegységididhatdk, ahol nem deklaraltuk Gjsaet.

85

5.8. Forditasi egység

Az eljarasorientalt nyelvekben a program kozvetldoiditasi egységekid epul fol. Ezek
olyan forrasszbveg-részek, melyek ©nalléan, a progrtobbi részét fizikailag
kulonvalasztva fordithatok le. Az egyes nyelvekbeorditasi egységek felépitése igen éltér

lehet. A forditasi egységek altalaban hataskogy@gran élettartam definialé egységek is.

5.9. Az egyes nyelvek eszkozei

FORTRAN:

A FORTRAN fizikailag kulénalld6 programegységéekb épiti fel a programot, a
programegységek kulon fordithatok, és nem skathbtéik egymasba. Csak az alprogramot
ismeri. A FORTRAN-ban egy forditasi egység egyetlggrogramegység, vagy
programegységek tetdieges csoportja. Mivel igy a FORTRAN-ban nincsergibalis
valtozok, a programegységek egy specialis tartmtilasznalhatnak a kommunikaciora, az
un. kdzos adatmeét. A k6zos adatmeit minden olyan programegység irhatja és olvashatja,

amelyben szerepel a kdvetkedeklaracio:

COMMONN/ Ja; [(d1)] [La 2 [(d2)]]...

Az a; skalar vagy tomb tipusid(a dimenziddeklaraciot jelenti) valtozo, amelyngkusat
kulon deklaracios utasitasban kell megadninfe kozos adatmémeve. K6zos adatmélzsl
akarmennyi lehet. A tarnak ezen a specidlis teziilet felsorolas sorrendjében helyezi el a
rendszer a valtozokat. A kozos tarterulet felosz@@s egyes alprogramokban més-maés lehet,
s6t még a valtozok tipusa is eltérhet. A megnevekeéieannyi részre osztja a tarat, ahany

név szerepel, ha a név hidnyzik, akkor a tartexi@gére rakja a valtozot.
A FORTRAN-ban van automatikus deklaracio.

A FORTRAN-ban adprogramnak nincs kilon kegditasitasa.

Az eljaras alakja:

SUBROUTINE név[(formalis_paraméter_lista)]

86

deklaraciok
végrehajthatd_utasitasok
END

A formalis paraméter listan csak nevek vannak stigat a deklaracios részben kell megadni.
Hivasa aCALL alapszoval torténik. Szabalyosan befégk a RETURNN] utasitas hatasara,

aholn egy ebjel nélkili egész.

A FORTRAN ismeri a masodlagos belépési pontot. Met ihelyeziink el egy eljarasban,
akkor a benne és az eljarasfejpen megadott fornp@iaméterek eltérhetnek egymastol.
Alakja:

ENTRY név[(formalis_paraméter_lista)]

A paraméterkiértékelésnél sorrendi kotés, tipusagyyékiség és szambeli egyeztetés van.

A paraméterek a formalis paraméter listan harorkéfpen jelenhetnek meg: A formalis
paraméter lehet egy azonositd. llyenkor ez a térzdietséleges valtozd vagy alprogram
neveként szerepelhet. Ha az azonositd perjeletogdtt szerepel, akkor csak skalarvaltozot

nevezhet meg. Végul a formalis paraméter |&het

Ha a formalis paraméter skalarvaltozo, akkor amdallg paraméter kifejezés; ha témb tipusu
valtozo, akkor tomb tipusu valtozo, vagy indexelsozé; ha alprogram név, akkor alprogram
név; és ha, akkor a hivo alprogram egy cimkéje lekeimke forméban. Ez utébbi esetben

alkalmazhat6 é(RETURN n ami visszaadja a vezérlést az aktudlis paramistaban n-

edikként megadott cimkére

A paraméteratadas a formdlis paramétdiiggéen:

TOmb tipus esetén cim szerinti.

Skaléar valtozoknal érték szerinti.

Alprogram neve esetén név szerinti.

/azonosit6/ esetén cim szerinti.

87

— * esetén cim szerinti.

A fuggvény alakja:

[tipus] FUNCTIONnév(pl [,p2]...)
deklaraciok
végrehajthatd_utasitasok

END

A FORTRAN szerint kell legaldbb egy formalis paraené Vagy a fejben deklaraljuk a
fuggvény tipusat, vagy kilén a deklaracios részMasodlagos belépési pont van itt is, de a
formalis paraméter listanak szigorlan egyeznie &atiasodlagos belépési pontban felsorolt
paraméterekkel, és a tipusnak is azonosnak keli.|l&rformalis paraméterek kdzo6ttra nem
szerepelhet. A flggvény neve lokalis valtozékénszhalhaté a torzsben. Befejezése a
RETURN utasitassal torténik, de ez nem hataroz meg értékéirzsben kell értékadasrol
gondoskodni, és az utoljara adott értékkel térzas$ia egy alprogram meg akar hivni egy

fuggvényt, akkor a fliggveny nevét a megielibussal ott is deklaralni kell.

A FORTRAN nem ismeri a rekurziét.

A faktoridlist kiszamito6 fuggveény:

REAL FUNCTION FAKT(l)
FAKT=1
IF (1.EQ.0.OR.1.EQ. 1) RETURN
DO 20 K=2,l
20 FAKT=FAKT [K
RETURN
END

88

PL/I:

A PL/I ismeri az alprogramot, a blokkot és a tas$zko programegysegek kozul. Az
alprogramok lehetnek egymastadl fliggetlenek, ézdietgesen egymasba skatulyazhaték. Itt is
létezik ©bprogram, amely egy specialis alprogram. Forditggséget alkothat &program, az

alprogramok vagy ezek tetdeges egylittese.

Az alprogram alakja:

név:PROCEDURE[(formalis_paraméter_lista)] [OPTIONS(opcidlista)]

[RECURSIVE [RETURNS(attribGtumok) 1;
utasitasok
END [név];

Nem valik el a deklaracids és a végrehajthat6 rdszjtasitasok tetdlegesen keverhék. A
név cimke jelleg. A formalis_paraméter_lista csak a paraméterek neveit
tartalmazza, deklaralntket a térzsben kell. A formalis paraméterek a tiensvaltozok,

cimkék, belépési pontok, vagy pedig alloméanyok niretnek.

Az opcidlista az adott alprogram futas kdzbeni viselkedését $gaibza. Ha itt dVIAIN
opcio szerepel, akkor ez leszépifogram, és az dsszes tébbi opcid nem szerepelagiem
ez az opcio all itt, akkor fuggvérdyrvagy eljarasrél van szé. A programozé donti elgynaz
rekurziv legyen-e vagy sem. HaRECURSIVEalapsz6 szerepel, akkor az adott alprogram

rekurziv lesz, kuléonben pedig nem.

Ha szerepel RETURNSakkor figgvenysl van sz0, aattribitumok a visszatérési érték
attribitumait adjak meg.
Az eljaras hivasa @ALL utasitassal torténik.

Egy eljaras szabalyosan befdjdik, ha elérjuk a végét, vagy valahol a torzsébiaadjiuk a
RETURNutasitast.

Egy fuggvény eRETURN(kifejezés); utasitas hatasara fefalik be, és «ifejezés
adja meg a fiiggvény visszatérési értékét.

89

A PL/I-ben a méasodlagos belépési pont alakja:
név:ENTRY [(formdlis_paraméter_lista)] [RETURNS(attribatumok) 1;

Ha fuggvényél van sz0, akkor az attribGtumoknak és a formadisaméter listanak meg kell

egyezni, ha eljarasrol, akkor nem.

A paraméterkiértékelésnél sorrendi kotés és szamiggkztetés, tovabba tipuskényszerités

van.

A paraméteratadas, ha az aktualis paraméter:

— cimke vagy a formélis paraméterrel megeg@yiausu valtozo, akkor cim szerinti,
— belépési pont vagy allomany neve, akkor név szgerint

— minden mas esetben pedig érték szerinti.

A blokk a kdvetkegképpen néz ki:

[cimke:] BEGIN
utasitasok
END [cimke];

Itt is tetsdlegesen keverhék a deklaracios- és végrehajthatd utasitasok.
A PL/I az élettartamot attributumokkal hatarozzagme

— STATIC: statikus tarkiosztas.

- AUTOMATICdinamikus tarkiosztas, ez az alapértelmezett.

— CONTROLLED programoz¢é Altal vezérelt tarkiosztds. A prograinoa kovetked

utasitasokat hasznalhatja ilyen esetben:
ALLOCATE a rendszer helyezi el a valtozot a tarban.

FREE memoriaterilet felszabaditasa.

90

— BASED bazisolt valtozok alkalmazasa. A cimkomponensfpragramozé rendeli a
valtozéhoz egy korabban elhelyezett objektum cimmédtépest. Ez relativ cim, abszolut
cimet altaldban nem kezel. Nem ismeri a progranata vezérelt tarkiosztasi moédok

kozil az abszollt cimes tarkiosztast.

A PL/I a statikus hatdskorkezelést valljia. Ha ugydna nevet két kulonbézforditasi
egységben aEXTERNALattribitummal deklaraljuk agy, hogy minden magiaftumuk
megegyezik, akkor az ugyanaz a név. A legkukzinten |é% alprogramok nevei

alapértelmezés szeriBXKTERNALattribGtumuak.

A PL/l gyakorlatilag minden attribGtumra vonatkoméarendelkezik automatikus

deklaracioval.

A faktorialist kiszamito fuggvény iterativ valtoaat

FAKT:PROCEDURE(I);
F=1,
DOL=2TO;
F=F [,
END;
RETURN(F);
END FAKT;

A faktorialist kiszamito fuggvény rekurziv valtoaat
FAKT:PROCEDURE(l) RECURSIVE;

F=1,

IF I>1 THEN F=I [(FAKT(I-1);

RETURN(F);
END FAKT;

91

Pascal:

A Pascalban a forditasi egységéprbgram. A programegységek kdzul csak az alprogramo

ismeri. Egyes verzidkban van csomag (pl. a Turksc&aunitja).
A féprogram alakja:

PROGRAM néj(kdrnyzeti_paraméterek) I;
deklaraciés_rész

BEGIN

végrehajthatd_utasitasok

END.

A féprogram is rendelkezik formalis paraméter listd@aformalis paraméterek szama nem
fix. Ennek alapvet szerepe van az operécids rendszerrel tdriddmmunikacioban. Az

alprogramok a dprogram deklaracidos részébe skatulyazanddk. Azogtpamok felépitése

teljesen hasonlé elveket kdvet, beleértve az atprogk skatulyazasat is.
Az eljaras lakja:

PROCEDURE né{(formalis_paraméter_lista) 1;
deklaraciés_rész

BEGIN

végrehajthatd_utasitasok

END;

A fuggvény lakja:

FUNCTION név[(formalis paraméter_lista)] : tipus;

deklaraciés_rész

BEGIN

végrehajthatd_utasitasok

END;

A formalis paraméter lista paramétercsoportokbdl ddelyeket pontosves§zvélaszt el

egymastol. Egy paramétercsoport alakja:

[VAR] azonosité [, azonosité ... : tipus

92

Ha a paramétercsoportban szerep& AR kulcssz6, akkor a paraméteratadas cim szerinti,
kilébnben érték szerinti. A paraméterkiértékelésérsarrendi kotés, szambeli- és

tipusegyeztetés van.
Az eljarashivésra nincs kulon alapszo.
A rekurzié alapértelmezett.

A fliggvény nevének a végrehajthat6 utasitasok k@xtitket kell kapnia, és az utoljara kapott
ertékkel tér vissza, ha elérjuk a fuggvény vegealfalyos befejéalés). Az eljaras is akkor

fejezodik be szabdlyosan, ha elérjik a végét.
A Pascalban dinamikus élettartam-kezelés és pragraraltal vezérelt tarkiosztas van.
A Pascalban egy név csak a deklaracigjatol kezatgeik.

A faktorialist kiszamito figgvény:
FUNCTION FAKT(I:INTEGER):REAL,;
BEGIN

IF 1=0 THEN FAKT:=1

ELSE FAKT:=FAKT(I-1) [;
END;

Ada:

Minden programegységet ismer. Mas nyelveknél a rkidorditott egysegek fizikailag
onalléak, semmit nem tudnak egymasrol, a kapcsmldieszé dolga, hogy 0Osszeallitsa
beblik a programot. Az Ada fordité olyan, hogy fordité&zben van konzisztenciaelienés.

Nincs kulon program, implementaciofugghogy melyik alprogram indul el@&zor.
Az eljaras alakja:

PROCEDURE né{(formalis_paraméter_lista)]
IS

deklaraciok

végrehajthatd_utasitasok

END [név];

93

A fuggvény alakja:

FUNCTION név[(formalis_paraméter_lista)] RETURN tipus
IS

deklaraciok

végrehajthatd_utasitasok

END [név];

Az eljarashivasra nincs kilon alapszo. Az eljarebalyosan befejédik RETURN-utasitas
hatasara, vagy ha elérjuk az END-et. A fuggvényejeaidik a RETURN kifejezés;

utasitas hatasara.

A formalis paraméter lista paramétercsoportokbiola@helyeket pontosvessxalaszt el. Egy

paramétercsoport szerkezete a kovetkez
névl,név]...: [mod tipus [:= kifejezés]
A mdd a paraméteratadas médjat donti el. Harom alapsa@selhet ittIN, OUT IN OUT .

IN esetén a paraméteratadas érték szefti] esetén eredmeény szerinfy OUT esetén
pedig érték-eredmény szerinti. Hangd elmarad, akkor az alapértelmezék. IN modua
paraméterek esetén szerepelh&ifgjezés , amely a paraméter inicializalasdnak szerepét
jatssza. A fuggvény paramétere cHdkmaodu lehet, tehat a fliggvény a paraméterét neja tud
megvaltoztatni. De az Adéban is van a flggvénynekékhatasa, mert a kérnyezetét meg

tudja valtoztatni.

A paraméterkiértékelésnél szigoru tipusegyeztetdés mlapértelmezett a sorrendi kotés, de
lehetbség van a név szerinti kotésre igormalis_paraméter név =>
aktudlis_paraméter alakban, az aktualis paraméter listaban. Azon &tiem
paraméterekhez, amelyekhez kifejezéssel d&@téket rendeltink, nem kotetezaktualis
paramétert megadni. llyenkor, ha megadtunk aktyp@iamétert, akkor azzal, ha nem, akkor a

kezdsértékkel kezd el iikddni az alprogram.
Példa eljarasspecifikaciora:

PROCEDURE xy(C: IN INTEGER RANGE 1..89; D: IN INTEG ER:=0)

94

Ezt az eljarast tobbféleképpen meghivhatjuk:

xy(2,9);

xy(2);

xy(D =>9, C => 2);

Az el és harmadik esetb&r2 ésD=9, a masodikba=2 ésD=0, az inicializalds miatt. A
harmadik esetben név szerinti kdtés van, expliddom megadjuk, hogy melyik formalis

paraméterhez melyik értéket rendeljik hozza.
A rekurzi6 alapértelmezés.
A blokk alakja:

[blokknév:]
[DECLARE

deklaraciok]

BEGIN
végrehajthatd_utasitasok

END [blokknév 1];
Hablokknév szerepel a blokk étt, akkor megadasa kéteteaz END utan is.
A valtozok élettartama alapértelmezés szerint dinasik

A hataskorkezelés statikus, de az Ada kezeli ak,unataskorben” problémat. Ezt Ggy oldja
meg, hogy a globalis eszktzdok nevét azon prograsgggynevével missiti, amely
programegységnek a lokalis neve.
A faktoridlist kiszamito fuggveény:
FUNCTION FAKT(l : INTEGER) RETURN REAL IS

F: REAL:=1.0;
BEGIN

IF 1>1 THEN F:=FAKT(I-1) OFLOAT(I);

END IF;

RETURN F;
END FAKT;

95

C:

A C nyelv a fliggvényt és a blokkot ismeri. A flggyék nem &agyazhaték be mas

programegységbe, a blokkok teieges mélységben skatulyazhatok.
A blokk alakja:

{

deklaraciok
végrehajthatd_utasitasok

}
A faggvény alakja:

[tipus] név([formalis_paraméter_lista D
blokk

Ha nem szerepel #ipus , akkor az alapértelmezést . Ha void a tipus , akkor

Iényegében egy eljarasrél van szé.6arbgram is egy fliggvény, melynek nevain() .
Fuggvény befejgalhet az alabbi médokon:

- RETURN Kkifejezés; . ebben az esetben kifejezés ertéke lesz a flggvény

visszatérési értéke.

- RETURN: ha void tipust a flggvény, akkor nem ad vissza értéketélagnt

hatérozatlan értékkel tér vissza.
- Haeléri a zard -t, ekkor is hatarozatlan értéket ad vissza.
A rekurzi6 alapértelmezés.

A formalis paraméter listan a tipust adhatjuk medormalis paramétereket vessralasztja
el. A C-ben a programoz6 tud nem fix paraméterszéimgvényt deklaralni tgy, hogy megad
legaldbb egy formalis paramétert, és a formalisupéter listat... zarja. Az Ures formalis

paraméter listat explicit médon jelélhetjikaid alapszé megadasaval.

A paraméterkiértékelésnél sorrendi kotés, tipuskzeytés és fix paraméterszam esetén

szambeli egyeztetés van.

A paraméteratadas érték szerinti.

96

A C-ben a forditasi egységfarrasallomany Ez an.kilss deklaracidkat (nevesitett konstans,
valtozo, tipus, fuggveény) tartalmaz. A forditasysgg elején mas olyan forditasi egységekre,

amelyek eszkdzeit hasznalni akarjuk, a

#include <forrasallomanynév>
eléforditdi utasitassal hivatkozhatunk.

A C a hataskor és élettartam szabalyozasara beweet#eblasi osztaly attribGtumokat, melyek
a kovetkedk:

— extern : A forditasi egység szintjen deklaralt nevek attgidnezett tarolasi osztalya,
lokalis neveknél explicit médon meg kell adni. Agen nevek hataskére a teljes program,

élettartamuk a program futasi ideje. Van automatkezdértékik.

— auto : A lokalis nevek alapértelmezett tarolasi osztalataskorkezelésuk statikus, de
csak a deklaraciotol kezdve lathatok. Elettartamdikamikus. Nincs automatikus
kezdsértékik.

— register : Specialisauto , amelynek értéke regiszterben tarolodik, ha vambad

regiszter, egyébkeént nincs kilonbség.

— static : Barmely névnél explicit médon meg kell adni. H&kidrik a forditasi egység,

élettartamuk a program futasi ideje. Van automatikezdértékik.

A faktoridlist kiszamito fuggvény C-ben:

long fakt(long n)
{

if (n<=1) then return 1;

else return n [fakt(n-1);

97

6. ABSZTRAKT ADATTIPUS

Az absztrakt adattipus olyan adattipus, amely niégitm abezarastvagyinformacio rejtést
Ez azt jelenti, hogy ezen adattipusnadl nem ismegukeprezentaciot és aimeletek
implementaciojat. Az adattipus ezeket nem mutagg @ kilvilag szamara. Az ilyen tipusu
programozasi eszkdzok értékeihez csak szabalyozétton, a mveleteinek specifikacioi
altal meghatarozointerfészerkeresztil férhetiink hozza. Tehat az értekeketleid vagy
szandékosan nem ronthatjuk el. Ez nagyon I|ényegedizéonsagos programozas
szempontjabol. Az absztrakt adattipus (angol rigsdiel: ADT — Abstract Data Type) az
elmult évtizedekben a programnyelvek egyik legfeatib fogalmava valt és alapien

befolyasolta a nyelvek fétiesét.

98

7. ACSOMAG

A csomag az a programegyseg, amely egyarant spolgloceduralis és az adatabsztrakciot.

A proceduralis absztrakcié oldalarél tekintve a mag programozasi eszkdzok

Ujrafelhasznéalhato gytemenye. Ezek az eszkdzok:

- tipus

- valtozo

— nevesitett konstans
— sajat kivétel

— alprogram

- csomag
Ezek az eszkdzOk a csomag hataskorén belil mindeahdetsélegesen hivatkozhatok.

A csomag mint programegység megvalositja a bezéeastt alkalmas absztrakt adattipus
implementalaséra.

A csomag az Adaban jelenik meg. Az Ada csomagnakdsze vanspecifikacioestorzs

Formélisan a specifikacié a kovetk&eppen néz ki:

PACKAGE név IS

lathaté _deklaracids_rész
[PRIVATE
privat_deklaracios_rész]
END [név];

A lathaté_deklaracios_rész a csomagspecifikacio lathatd része. Az itt deklara
programozasi eszkdzok hivatkozhatok a csomagonrkividlprogramok esetén itt csak azok

specifikacigja allhat. A hivatkozas a csomag nelé&méns mingsitéssel lehetséges.

A privat_deklaracios_ rész kivulrél nem elérhdt, a csomag az itt deklaralt

eszkbzoket bezarja, elrejti a kulvilaglel

99

A csomag torzse opciondlis. Ha viszont a specifid@n szerepel alprogramspecifikacio,
akkor kotele# a torzs, és az alprogram teljes deklaracioj&eiitmegadni. A térzs a kilvilag

szaméara nem elérliet

A csomag torzsének alakja:
PACKAGE BODY név IS
deklaraciés _rész

[BEGIN

végrehajthatd _utasitdsok]
END [név];

Az Adaban a csomag fordithatd o©nalldéan, vagy eHmigt lokakisan egy masik

programegység deklaracios részében. Az utobbi esedd lathatésdgat a statikus a
hatadskorkezelésnek megféleh a tartalmazd programegység szabalyozza. Ha 6éanall
forditjuk a csomagot, akkor a program mas részansgza explicit médon kell lathatova tenni
(I. 8.2. alfejezet).

A kovetkez példa egy olyan csomag vazlatat mutatja be, ametyrtekkel valé szamolast

teszi lehatvé.

package RACIONALIS_SZAM is
type RACIONALIS is
record
SZAMLALO : integer;
NEVEZO :integer range 1..MAX_INTEGER;

end record;
function "=" (X,Y : RACIONALIS) return boolean;
function " +" (X,Y : RACIONALIS) return RACIONALIS;

function "-" (X,Y : RACIONALIS) return RACIONALIS;

function ™" (X,Y : RACIONALIS) return RACIONALIS;

function "/" (X,Y : RACIONALIS) return RACIONALIS ;
end;

100

package body RACIONALIS_SZAM is
procedure KOZOS_NEVEZO (X,Y: in out RACIONALIS) is
function "=" ...
function " +
function "-" ...
function ™" ...
function "/" ...
end RACIONALIS_SZAM;

A csomag specifikacidjanak csak lathato része ihten szerepel egy sajat tipus definicio
(RACIONALIS), amely a tortek értekeinek kezelésére vald. Aeldreprezentacioja egy
rekord segitségével torténik, a szamlalét és a zévegy-egy medben taroljuk. A
reprezentacidé meghatarozza a tartomanyt is (a fepkzcsak pozitiv egész lehet). Van

tovabba ot fuggvényspecifikacio, ezek adjak mediaatetek specifikaciojat.

Erdekességként jegyezzilk meg, hogy az Ada debeteszi, hogy a fliggvény neve ne csak
azonosito legyen. A beépitett operatorok tultetdk. Az Adaban ugyanis idégelek kozé
tett specialis karaktereket is hasznalhatunk a Véiggnév megadasahoz. Példankban a

szokasos aritmetikai operatorokat terhelttik tul.

A csomag specifikacidjdban van alprogramspecifikatghat kotelaz a térzs. Abban a teljes
alprogram deklaraciokat meg kell adni. Aiveleteket ugy kell implementalni, hogy azok a
megfeleb tortaritmetikara jellemi viselkedésmaédot tikrozzék. Ezért szikséges a rkivil
nem elérhéi KOZOS_ NEVEZ@ljaras.

A fenti példankban aRACIONALIS tipus nem absztrakt adattipus. ti\\leteinek
implementaciojat ugyan elrejti, de a reprezentatiaem. A programoz6 onfegyelmére van
bizva, hogy az ilyen tipusu eszkdzok értékeit caaksomagbeli fliggvények segitségével
kezeli, vagy pedig a reprezentald rekord 6mez kilon-kaloén hivatkozik. Példaul a
SZAMLALGhoz minden tovabbi nélkal hozz& tudunk adni eggnsat, a NEVEZG6!

fuggetlendil.
Nézzuk ezutan, hogy az Ada csomagja hogyan szalgalpdatabsztrakciot.

Az Adaban a bezarast a priv&RIVATE) tipus és a csomag specifikacios részének Kilvilr

nem lathatd része egyittesen teszi l@het A lathaté részben szerepelhet a privat

101

tipusmegijeldlés. Aprivat tipustnak deklaralt objektumokra a nyelvbe beépitéieletek
kozll csak az egyefdegvizsgalatx) , és az értékadas=() alkalmazhat6. Tehat az igy
deklaralt eszkdzok eértékeit kedemiveleteket a programozonak kell implementalnia. A

privat tipus reprezentaciojardl nem tudunk semmit.

Ha van a lathat6 részben privat tipussal deklas#koz, akkor koteléza nem lathatd rész

szerepeltetése. Itt kell megadni a reprezentagigmatkoz6 6sszes informaciot.

Korabbi példankban ®ACIONALIS tipusbdl csinaljunk absztrakt adatipust. Ehheérast

valtozatlanul hagyasa mellett a specifikaciot kgdllakitanunk a kévetk&@zanodon:

package RACIONALIS_SZAM is
type RACIONALIS is private;
function "=" (X,Y : RACIONALIS) return boolean;
function " +" (X,Y : RACIONALIS) return RACIONALIS;
function "-" (X,Y : RACIONALIS) return RACIONALIS;
function ™" (X,Y : RACIONALIS) return RACIONALIS;
function "/" (X,Y : RACIONALIS) return RACIONALIS ;

private
type RACIONALIS is
record
SZAMLALO : integer;
NEVEZO :integer range 1..MAX_INTEGER;
end record;
end;

A reprezentacio tehat atkeriilt a nem lathaté részegvalosult a bezaras. igy most mar csak

a szabalyos hozzaférés ésueletvégzes lehetséges.

Az Adaban a privat tipusnak létezik egy olyan vAdta, a korlatozott privat (MITED
PRIVATE) tipus, amelyre még az egyéségvizsgalat és az értékatadas beépitétieratek
sem alkalmazhatdék. Ennek hasznélatanél tehat eZeeleteket is a programozonak kell

implementalnia.

A korlatozott privat tipus alkalmazédsaval csomaguiikata a kovetkéképpen alakul:

102

package RACIONALIS_SZAM is
type RACIONALIS is limited private;
function "=" (X,Y : RACIONALIS) return boolean;
procedure ERTEKMASOLAS (X : out RACIONALIS; Y : R ACIONALIS);
function ” +" (X,Y : RACIONALIS) return RACIONALIS;
function "-” (X,Y : RACIONALIS) return RACIONALIS;
function ™" (X,Y : RACIONALIS) return RACIONALIS;
function /" (X,Y : RACIONALIS) return RACIONALIS ;

private
type RACIONALIS is
record
SZAMLALO : integer;
NEVEZO :integer range 1..MAX_INTEGER;
end record;
end;

package body RACIONALIS SZAM is
procedure KOZOS_NEVEZO (X,Y: in out RACIONALIS) is
function "=" ...
procedure ERTEKMASOLAS ...
function " +
function "-" ...
function ™" ...
function "/" ...
end RACIONALIS_SZAM;

Ha egy csomagspecifikacié lathato részében valetzdkklaralunk, akkor azok a valtozok
(amennyiben felhasznaljubket a csomagban deklaralt alprogramokb@vyNulajdonsagu

valtozok lesznek, ezek két alprogramhivas kozt enggk értekiket (a valtozo befejezéskori
ertékét tehat felhasznalhatom a kovetkealprogramhivaskor). Ezzel az Ada tovabbi

kommunik&cids lehéséget biztosit az alprogramok kozott.

103

Itt jegyezzilk meg, hogy a Turbo Pascal unitja cgpmdakja:

UNIT név;

INTERFACE
lathaté_deklaracidk

IMPLEMENTATION
nem_lathaté_deklaraciok

BEGIN
végrehajthatd_utasitasok

END.

104

8. AZ ADA FORDITASROL

8.1. Pragmak

A pragmak a program szovegében elhelyezkedlyan utasitasok, amelyek a fordito
mukodését befolyasoljak. A forditoprogramnak szolreqlgaltatast kérnelsle, valamilyen

Uzemmodot allitanak be, nem all mogottik kdzvekeéd, de befolyadsolhatjdk a kodot. A
pragmak egy része a program szdvegének barmelyapoethelyezhét, masik része csak

kotott helyen hasznéalhato.
Egy pragma szerkezete a kdvetkez

PRAGMA név [(paraméter _lista) 1];

Egy paraméter felépitése:

[név=>] { azonosito | kifejezés }

A pragmak azon eszkozrendszerek kozé tartoznaklyeket az Ada hivatkozasi nyelv csak
részben szabdlyoz, azaz az implementaciok megtédésieltérhetnek egymastol. Az Ada

rendszerekben altalaban mintegy 50 féle pragma van.
Lassunk kézuluk néhanyat:
INTERFACE(programnyelv_neve, alprogram_név);

Az adott alprogram specifikacidja utan kell megadis azt jelzi, hogy az adott alprogram

tbrzse az adott nyelven van megirva.
LIST({ ON|OFF })

Forditas kdzben a programszouidista készil a szabvany kimenetédN, vagy letiltjuk a

listazast OFF). Barhol elhelyezhét
Ha a fordité nem ismeri fol a pragma nevét, akgaoralja azt.

105

8.2. Forditasi egységek

Az Adaban forditasi egység lehet:

— alprogram specifikacio
— alprogram térzs

— csomag specifikacio

— csomag torzs

- forditasi alegység

— valamint ezek tet€iteges kombinacidja

Azokat a forditasi egységeket, amelyek nem fliggnék forditasi egységjt(nem alegységei
mas forditasi egységnekkonyvtari egységnekivja az Ada. llyen koényvtari egységet a
programozo tetsteges szdmban hozhat létre. A kdnyvtari egységekiién egyedi nevik

van.

Ha valamely forditasi egységben hasznalni akarok @gan eszkdzt, amely egy masik
forditasi egységben van benne, akkor az adott esgp@cifikacidjanak leforditva kell lennie,
tehat ebbb kell leforditani, mint azt, amiben hivatkozurdk Tehéat adprogramot kell utoljara

megirni. Az Ada fordito forditasi étben konzisztencia ellérzést is végez.

Ha a specifikacié médosul, Ujra kell forditani azorditasi egységet, amelyben a specifikacio
van, és azokat, amelyek hivatkoznak erre a modospkcifikaciora. Ha csak az
implementacio valtozik, csak az azt tartalmazo itésd egységet kell Gjraforditanunk. Ennek
segitségével nagy programok fejlesztése mehet pammsan, €és a program modositasa is

egyszeifibb, valamint B a biztonsdgos programiras lefsge.

Minden forditasi egység kezdetestel meg kell adni egy unkodrnyezeti elirdst Ennek
megadasa aVITH utasitassal torténik, melyben azon konyvtéri egykeéq soroljuk fel,
amelyekre az adott forditasi egységben hivatkozamkelynek eszkodzeit felhasznaljuk a

forditasi egységben.
Alakja:

WITH kényvtari_egység [, kbnyvtari_egység |

106

Az igy megadott konyvtari egységek alkotjak az adotditasi egység kornyezetét. Ez a
forditasi egység ezen kdnyvtari egységek elemigdt |a

Az Adaban kilenc szabvany kényvtari egység vank ed&otjdk magat az Ada rendszert.

Ezeket is szerepeltetni kell a kdrnyezedisban.

Van viszont &STANDARDnNevi konyvtari egység, amelyet a forditoprogram minfteditasi
egységhez automatikusan hozzailleszt, ezt nem Kibn megadni. Ez tartalmazza az
alapvet nyelvi eszkdzoket (pl. karakterkészlet, beéptipiisok, stb.), melyek nélkil nem

irhaté program.

Azokat a forditasi egységeket hivjuk forditasi gtemgnek, amelyek 6nélléan nem léteznek,

hanem egy masik forditasi egységhez kapcsolodnak.

Az Ada lehebvé teszi, hogy akarmelyik szinten beagyazott alwg csomag, taszk térzsét
ne a specifikaciohoz kapcsolva adjuk meg, hanentsatk jelezzik eggsonksegitségeével,
hogy a tbrzs egy masik forditasi egységben mintlifasi alegység lesz leforditva. Egy
forditasi alegység koérnyezetét a csonk hatarozzg, raeforditasi alegységben a csonkot
tartalmaz6 programegység nevére kell hivatkoznicsénkot tartalmazoé forditasi egységet
mindig ebbb kell leforditani, mint a kapcsol6doé forditasegyseget. Tetskeges egymashoz

kapcsolddo forditasi alegység sorozatot lehethézei.

A csonkot a torzs helyett elhelyez&EPARATEalapszo jelzi. Forditasi alegység elején a
csonkot eSEPARATE(név) formaban kell hivatkozni.

A kovetkedkben forditasi egységekre latunk példakat:

-- egyetlen forditasi egység
procedure FELDOLGOZO is
package D is
HATAR : constant:=1000;
TABLA : array (1..HATAR) of integer;
procedure RESTART,
end;

107

package body D is
procedure RESTART is

begin
for Nin 1..HATAR loop
TABLA(N):=N;
end loop;
end;
begin
RESTART,;
end D;
procedure Q(X:integer) is
begin
D.TABLA(X):= D.TABLA(X) +1;
end Q;
begin
D.RESTART;

end FELDOLGOZO;

Itt egy eljarast latunk, ezen belll van egy csordagegy masik eljaras. Forditds utan egy
FELDOLGOZeui koényvtari egység keletkezik.

Ez a programszioveg most egy forditasi egységett,athk® feldarabolhatd harom kulon

forditasi egységre a kdvetkid@&ppen:

--els & forditasi egység

package D is
HATAR : constant:=1000;
TABLA : array (1..HATAR) of integer;
procedure RESTART;

end D;

-- masodik forditasi egység

108

package body D is
procedure RESTART is

begin
for Nin 1..HATAR loop
TABLA(N):=N;
end loop;
end;
begin
RESTART,
end D;

-- harmadik forditasi egység
with D;
procedure FELDOLGOZO is
procedure Q(X:integer) is
begin

D.TABLA(X):= D.TABLA(X) +1;

end Q;
begin

D.RESTART;

end FELDOLGOZO;

Miutan a hivatkozott eszkdzok specifikaciojanak nedorditottnak kell lennitk, ezértadzor

forditando az etsforditasi egység, majd a masodik és harmadikzdketges sorrendben.

Példa forditasi alegységekre:

-- tartalmaz6 eljaras
procedure T is
type REAL is digits 10;
R,S : REAL:=1.0;

109

package D is
PI: constant:=3.14159;
function F(X:REAL) return REAL;
procedure G(X,Z:REAL);

end;

package body D is separ at e; -- csonk

procedure Q(U:in out REAL) is
begin

Q(R);
D.G(R,S);
end T;
—- forditési alegység
separ at e(T) — hivatkozas a csonkra

procedure Q(U : in out REAL) is
begin

end Q;
—- forditasi alegység
separ at e(T) — hivatkozas a csonkra

package body D is

function F(X:REAL) return REAL is

procedure G(Y,Z: real) is

end D;

— forditasi alegység

separ at e; -- csonk

separ at e; -- csonk

separ at e; -- csonk

separat e(T. D) — hivatkozas a forditasi alegységbeli csonkra

110

function F(X:REAL) return REAL is

end F;
procedure G(Y,Z:REAL) is

end G;

111

9. KIVETELKEZELES

A kivételkezelési eszkdzrendszer azt teszi k@esthogy az operacios rendssedtvegyik a
megszakitasok kezelését, felhozzuk azt a programjé&z. A kivételekolyan események,
amelyek megszakitast okoznak kivételkezeléaz a tevékenység, amelyet a program végez,
ha egy kivétel kdvetkezik b&ivételkezel alatt egy olyan programrészt fogunk érteni, amely

mikodésbe Iép egy adott kivétel bekbvetkezte utagalwa az esemenyre.
A kivételkezelés az eseményvezérlés léhegét teszi lehété a programozasban.

Operacios rendszer szinten lgisglg van bizonyos megszakitasok maszkolasara. Ez a
lehetiség megvan nyelvi szinten is. Egyagételek figyelése letilthatéagy engedélyezhét

Eqgy kivétel figyelésének letiltasa a legegysibérkivételkezelés. Ekkor az esemény hatasara a
megszakitds bekovetkezik, feljon programszintrealkbdik a kivétel, de a program nem vesz
réla tudomast, fut tovabb. Természetesen nem kudjogy ennek milyen hatasa lesz a
program tovabbi rikddésére, lehet, hogy az rosszul, vagy sehogy sefja tfolytatni
munkajat.

A kivételeknek altalaban vameve(amely gyakran az eseményhez kapcsol6dé lizenetpste

jatssza) ékodja(ami egy egész szam).

A kivételkezelés a PL/I-ben jelenik meg és az Aslaeindelkezik vele. A két nyelv kétfajta
kivételkezelési filozofiat vall. A PL/I azt mondjdogy ha egy program futasa folyaman
bekovetkezik egy kivétel, akkor az azért van, naeprogram <al realizalt algoritmust nem
készitettlk fol az adott esemeény kezelésére, dydnacio kbvetkezett be, amelyre specialis
modon kell reagalni. Ekkor keressiik meg az eserbéhypvetkeztének az okat, szintessik
meg a specialis szituaciot és térjink vissza arprognormal nikddéséhez, folytassuk a

programot ott, ahol a kivétel kivaltodott.

Az Ada szerint viszont, ha bekdvetkezik a specighiguacio, akkor hagyjuk ott az eredeti
tevékenyseéget, végezzink olyan tevékenységet, gaRivat a bekdvetkezett eseménnyel és ne

térjunk vissza oda, ahol a kivétel kivaltodott.

A kivételkezelési eszkdzrendszerrel kapcsolatbaryedveknek a kovetkézkérdéseket kell

megvalaszolni:

112

© 00 N O o B~ W N P

. Milyen beépitett kivételek vannak a nyelvben?

. Definialhat-e a programozo sajat kivételt?

. Milyenek a kivételkez&hataskori szabalyai

. A kivételkezelés kotliee programelemekhez (kifejezés, utasitas, prograseegy?
. Hogyan folytatddik a program a kivételkezelés utan?

. Mi tortéenik, ha kivételkezétben kovetkezik be kivéetel?

. Van-e a nyelvben beépitett kivételkézel

. Van-e leheiség arra, hogy barmely kivételt kez&hltalanos) kivételkezétl irjunk?

. Lehet-e parametrizalni a kivételkez&!

Sem a PL/I-ben, sem az Adaban nincs parametrigditeépitett kivetelkezgl a részleteket

illetéen pedig az alabbiakat mondjak.

9.1. A PL/I kivételkezelése

A PL/I beépitett kivételei a kovetkéz

CONVERSION
FIXEDOVERFLOW
OVERFLOW
UNDERFLOW
ZERODIVIDE

SIZE

SUBSCRIPTRANGE
STRINGRANGE
STRINGSIZE

CHECK][(azonositd)]
AREA

ATTENTION
FINISH

konverzids hiba

fixpontos tulcsordulas
lebe@pontos tulcsordulas
lebedpontos alulcsordulas
nullaval valé osztas
mérethiba

indextullépés

nyomkovetés eszkodze
cimzési hiba
kilss megszakitas

a program szabalyos befejeEse

113

ENDFILE(@ll_név) alloméany vége
ENDPAGE(All_név) lap vége
KEY(&ll_név) kulcshiba
NAME(all_név)

RECORD(@ll_név)

TRANSMIT(All_név)
UNDEFINEDFILE(All_név)
PENDING(all_név)

ERROR altalanos kivéetel

A programozé sajat kivételt a
CONDITION(név)

forméaban tud deklaralni.

Az els 6t beépitett kivétel figyelése alapértelmezéeshmeeelyezett, de letilthatd, a masodik
oteé letiltott, de engedélyeziteta tobbié, és a programozoi kivételeké mindig dabyezett és

soha nem tilthato le.

Minden utasitas étt szerepelhet egy, a kivétel figyelésének letfitAsvagy engedélyezésére
vonatkozO dliras. Ha kerek zardjelek kozott megadunk tidegges szamu kivételnevet,
vessdvel elvalasztva

(kivételnév [, kivételnév] ...):utasitas

akkor ez az adott kivételek figyelésének engedélséizjelenti.
Ha a kivételnév ékt szerepel &Q akkor az adott kivétel letiltasat irtukéel

Példaul:
(NOZERODIVIDE, SIZE):IF ...

Ha egy blokk vagy alprogram kezdtasitasa étt szerepel az éiras, akkor az az adott teljes
programegységre vonatkozik (melyen belll utasitésoin feltulbiralhatd), beleértve a

tartalmazott programegységeket is. Ha olyan utagidt all, amelyben van kifejezés, akkor

114

csak a kifejezésre vonatkozik, nem pedig a telfasitasra. Ha nincs kifejezés, akkor a teljes

utasitasra vonatkozik.

Egy kivétel explicit kivaltasara a
SIGNAL kivételnév;

utasitas szolgal. Programozoi kivétel csak igyhedd ki.
A kivételkezeb alakja:

ON kivételnév végrehajthatd_utasitas;

Természetesen a végrehajthato utasitas helyen dlthdk.
A program szovegében béarhol elhelye#heavételkezeb.

A kivételkezeb hataskore egy adott programegységben attél@moidtol kezddik, amikor a

vezeérlés athaladt rajta, és tart
— egy masik ugyanerre a névre kiadott kivételk&gelmely folllirja az edz6 hatasat),

— ugyanerre a névre kiadoREVERT kivételnév; utasitasig (mely érvényteleniti a

legutolsénak kiadott ON-utasitas hatasét),
— vagy a programegyseég befejeéseig,
beleértve a kivételkezehataskoréen belll meghivott minden egyes prograssegg is.
A kivételkezeb hataskore tehat dinamikus.

Ha egy programegységben bekovetkezik egy kivékédpraa futtatd rendszer megnézi, hogy
az adott kivétel figyelése engedélyezett-e vagy. ddanletiltott, akkor folytatddik tovabb a
programegység végrehajtasa. Ha a kivétel figyetdgpedélyezett, akkor megnézi a futtatd
rendszer, hogy ezen a ponton van-e olyan lathattddkezeb, amely az adott kivétel nevét
tartalmazza. Ha van ilyen, akkor lefut a kivételdéz Ha a kivételkezében van GOTO-
utasitas, akkor a megadott cimkétasitason folytatddik a program. Ha nem szer€g&l O-
utasitas, akkor vagy azon az utasitasra keril asissxezérlés, amelyben bekbvetkezett a
kivétel, vagy a kovetkézutasitasra. Ez a kivétéltfiigg. PeldauCONVERSIONsetén a hiba

okanak megszuntetése utan Ujra ugyanaz az utksfifisvégrehajtasra, amely kivaltotta ezt a

115

kivételt. Aritmetikai hibak esetén, illetve sajatvételnél pedig a kivételt kivaltd utasitast

kove® utasitason folytatodik a program futasa.

Ha nincs az adott programegységben lathaté nettdditételkezeb, akkor visszalép a hivasi
lancon és a hivoban keres ilyet. Ha a hivasi lanisseafelé Iépkedve sehol sem talal ilyet,
akkor bekovetkezik aERRORkivétel, és ezutan erre prébal lathaté hatasoétdikezebt
taldlni. Az ON ERROR kivételkezel kezeli le az 6sszes nem nevesitett kivételtekattaz
altalanos kivételkezéla PL/I-ben. Ha ilyen kivételkez#lnem talal, akkor a vezérlés atkertil

az operacios rendszerhez, a program nem kezedtgadizkivételt.
A kivételkezebben bekdvetkgzkivetelt a PL/I ugyanigy kezeli.

A PL/l rendelkezik a kivételkezelést ¢skgitt beépitett, paraméter nélkili, csak
kivételkezebben hivhatd fiiggvényekkel, az un. ON-fuggvényekkBlzek segitenek
behatérolni a kivételt kivaltd pontos eseményt akrimelyét, esetleg okat. Réviden attekintiink

k6zuluk néhanyat:

ONCODEA hiba koédjat adja meg. Tobb olyan beépitett tali€pl. KEY) van, amely egy
eseménycsoportot nevez meg. Ekkor az egyedi esémé&sgk a kodja alapjan

azonosithatjuk.

ONCHARKonverziés hibaknal, folyamatos modua atvitelnégadja azt a karaktert, amely
a hibat okozta. Ez a beépitett fliggvény pszeudiz@ient hasznalhatd, azaz érték adhato
neki. Tehat kicserélhéta konverzids hibat okozé karakter, és Ujra lemébg@lkozni az
l/O-val.

— ONKEY/O hibanal a hibat okoz6 rekord ébeges kulcséat adja meg.

ONLOCKAzon alprogram nevével tér vissza, amelyben atkivbekovetkezett.

A kivételkezeb dinamikus hataskorkezelédb problémak adddhatnak. A nevek

hataskorkezelése statikus, a kivételkégedinamikus, ez ellentmondashoz vezethet. A
meghivott programegység 0rokli azon kivételkézmtasat, amely a hivd programegységben
hatasossa valik. Ez veszélyes lehet, mert nembkddirasokat eredményezhet. Ha egy

programegységben nem kezeljik az ott bekdvetkéaaitelt, akkor lehet, hogy az egy, a

116

hivasi lancban joval kordbban elhelyezikguogramegység olyan kivételkeéjgt aktivizalja,
amely teljesen hibas reagalast eredményez.

A PL/I-ben a sajat kivételek nagyon j0l hasznélkadelovésnél, de nem igazan hatékonyak

futas kozben.

Példa:

Egy szekvencidlis &llomany feldolgozasanak mingd/I-ben a kovetkézlehet:

DECLARE F FILE;
1S,

2 AZON PICTURE '9999',

2 EGYEB CHARACTER(91),
EOF BIT(1) INIT(O0'B);
ON ENDFILE(F) EOF='1'B;
OPEN FILE(F);
READ FILE(F) INTO(S);

DO WHILE(~EOF);

READ FILE(F) INTO(S);
END;

9.2. Az Ada kivételkezelése

Az Ada beépitett kivételei altaldban eseménycsopogveznek meg. Ezek a kdvetékez
- CONSTRAINT_ERROROIlyan eseménycsoport, amely akkor kévetkezik be, h
- valamilyen deklaracios korlatozast megprobaluniépii. Példaul indexhatar atlépése.

- NUMERIC_ERROR:Aritmetikai hibak, alul- ill. tulcsordulas, 0-vahld osztés, stb.

117

- STORAGE_ERROR:Térhiba (minden allokalasi probléma ide tartozile): tarrész,

amelyre hivatkoztunk nem all rendelkezésre.
- TASKING_ERRORAZ adott taszkkal nem johet Iétre randevu.
- SELECT_ERROR SELECT-utasitas hiba.

Alaphelyzetben minden kivétel figyelése engedélitezde egyes esemeények figyelése

(bizonyos ellefirzések) letilthatd. Erre egy pragma szolgal, meédyalakja:

SUPPRESS(név [,ON => { eszkdznév |[tipus }])

A név a letiltandé esemény neve. Egyetlen eseményt affomem egyezik meg a beépitett

kivételnevekkel. Lehetséges értékei:

ACCESS_CHECKIimzés ellebrzés

DISCRIMINANT_CHECK : rekord diszkriminansanak ellézése
INDEX_CHECKiIindex elleérzés

LENGTH_CHECK: hossz ellebrzés

RANGE_CHECK: tartomany elleérzés

- DIVISION_CHECK: nullaval val6 osztas ellérzése

- OVERFLOW_CHECKicsordulas ellefrzés

- STORAGE_CHECHKrhely rendelkezésre allasanak ellzése

Az eszkdznév valamely programozéi eszkoz (pl. valtozo) nevérje. Ha az opcionalis
rész nem létezik, akkor a teljes programra vonaltkazetiltds, ha igen, akkor az ott megadott

tipusra , vagy az adott néveszkozre.
Sajat kivétel aEXCEPTIONattributummal deklaralhaté.

Kivételkezeb minden programegyseég torzsének végén, kozvetlenidaro6 END ditt

helyezhet el, alakja:

EXCEPTION
WHEN kivételnév [, kivételnév]... => utasitasok
[WHEN kivételnév [, kivételnév]... => utasitasok]...

[WHEN OTHERS => utasitasok]

118

Az utasitdsok rész tets@leges szamu és fajtaju végrehajthaté utasitasta@taWHEN-
agbol tetséleges szamu megadhato, de legalabb egy kéteWHEN OTHERS &g viszont
legfeljebb egyszer szerepelhet, és utolsOként rkeljadni. Ez a nem nevesitett kivételek

kezelésére valo (altalanos kivételkezelés).

A kivételkezeb a teljes programegységben, tovabba az abbdl mattyiprogramegységekben
latszik, ha azokban nem szerepel sajat kivételkeZBbhat a kivételkezél hataskore az

Adéaban is dinamikus, az a hivasi lancon odld.

Barmely kivételt explicit médon kivaltani a

RAISE kivételnév;
utasitassal lehet. Programozoi kivétel kivaltask égy lehetséges.

Ha egy programegységben kivaltodik egy kivétel,aalkk futtatd rendszer megvizsgalja, hogy
az adott kivétel figyelése le van-e tiltva. Ha igekkor a program fut tovabb, kilénben a
programegység befejeziiikddését. Ezek utdn a futtatd rendszer megnézi, laagpdott
programegységen belll van-e kivételkézéla van, akkor megnézi, hogy annak van-e olyan
WHEN-aga, amelyben szerepel az adott kivétel ndaevan ilyen ag, akkor végrehajtja az ott
megadott utasitasokat. Ha ezen utasitasok kozmeszl a GOTO-utasitas, akkor a megadott
cimkén folytatédik a program. Ha nincs GOTO, akkgy folytatdodik a program futasa,
mintha a programegység szabalyosan f&éit volna be. Ha a kivétel nincs nevesitve,
megnézi, hogy van-e WHEN OTHERS ag. Ha van, akkatimegadott utasitasok hajtdédnak
Végre, €s a program ugyanugy folytatodik mint &blkel Ha nincs nevesitve a kivétel egyetlen
agban sem, és nincs WHEN OTHERS ag, vagy egyélatas kivételkezél, akkor az adott
programegysétpvabbadjaa kivételt. Ez azt jelenti, hogy a kivétel kivaltk a hivas helyén,
és a fenti folyamat ott ke#dik elérél. Tehat a hivasi lancon visszafelé Iépkedve keres
megfeleb kivételkezebt. Ha a hivasi lanc elejére ér, és ott sem talddtkikezebt, akkor a

program a kivételt nem kezelte, és a vezérlés dita@da operacids rendszernek.
Kivételkezebben kivaltott kivétel azonnal tovabbadddik.

Csak a kivételkezében alkalmazhat6 a

119

RAISE;

utasitas, amely Ojra kivaltja azt a kivételt, amekyivizalta a kivételkezét. Ez viszont az

adott kivétel azonnali tovabbadasat eredményezi.

Deklaracios utasitasban kivaltédott kivétel azonmavabbadodik. Csomagban barhol
bekovetkezett és ott nem kezelt kivétel beagyamaitnag esetén tovabbadddik a tartalmazo

programegységnek, forditasi egység szasomagnal viszont @program félbeszakad.

A kivételkezeb dinamikus hatdskore itt is ugyanazokat a problénakti fol, mint a PL/I-
ben. Az egyetlen kilénbség, hogy a hivasi lanc narmggységei szabalyosan beféprzek.

Az Ada fordité nem tudja ellémizni a kivételkezelk mikodését.

Az Adaban a sajat kivételeknek alagiveszerepik van a programirasban, egyfajta

kommunikaciét tesznek letiaté a programegységek kdzott az eseményvezérlés.révé

Példa:

FUNCTION FAKT(N : NATURAL) RETURN FLOAT IS
BEGIN

IF N=1 THEN RETURN 1.0;

ELSE RETURN FLOAT(N)*FAKT(N-1);

END IF;
EXCEPTION

WHEN NUMERIC_ERROR => RETURN FLOAT_MAX;
END;

Ha olyan paraméterrel hivom meg a flggvényt, areedyrfaktorialis értéke tul nagy, akkor
kivételkezelés nélkil tulcsordulas kovetkezne hpy, Viszont a fliggvény a maximalis

lebedpontos értékkel tér vissza.

120

10. GENERIKUS PROGRAMOZAS

A generikus programozasi paradigma az Ujrafelhdsat@sag és igy a proceduralis
absztrakcio eszkoze. Ez a paradigma ortogondlidsszes tobbi paradigmara, tehat barmely
programozasi nyelvbe beépithatyen eszkdzrendszer. A generikus programozaselfmy
hogy egy paraméterezideforrasszéveg-mintat adunk meg. Eztrantaszéveget forditd
kezeli. A mintaszévedl aktualis paraméterek segitségeveéladithatdo egykonkrétszoveg,
ami aztan lefordithaté. Az Ujrafelhasznalas otte#rhtetten, hogy egy mintaszéveidb
tetsdleges szamul konkrét szoveg generalhatd. Es amm taldeglényegesebb, hogy a

mintaszdvedipussalis paraméterezhit
Most az Ada lehékégeit vizsgaljuk meg.

Az Adagenerikusalakja:

GENERIC formalis_paraméter_lista
torzs

A torzs egy teljes alprogram vagy csomag deklajaci@miben szerepelnek a formélis
paraméterek. A generikus formalis paraméterei zakptipusok és alprogramspecifikaciok

lehetnek. Aformalis_paraméter_lista alakja:

[{ valtozédeklaracio |
TYPENnév IS {(<>) | RANGE <> |DELTA<> |DIGITS <> | tombtipus

| mutatotipus | [LIMITED] PRIVATE }|
WITH alprogram_specifikacio [ISnév] |
WITH alprogram_specifikacio 1S <>1; 1.

Konkrét alprogramot vagy csomagot éba mintaszéveghl a kovetked utasitas segitségével

lehet generaltatni:

{ PROCEDUREFUNCTION| PACKAGE} generalt_név

IS NEW generikus_név [(aktualis_paraméter_lista) 1;

121

A generikust igy ,hivjuk” meg. Ennek soran lejatdikdo a paraméterkiértékelés és a

paraméteratadas.

A generikus formélis paramétereinek szama mindigAi paraméterkiértékelésnél a sorrendi
kotés az alapértelmezés, de alkalmazhatd a néinsadités is. Az alprogramspecifikacio
formélis paraméterekhez az IS szerepeltetése esetérszikséges aktudlis paramétert adni.
Valtozohoz azonos tipusu konstans kifejezés, aftprogpecifikaciohoz megfelel
specifikacigju eljards- vagy fiilggvénynevet adhatunkg aktualis paraméternek. Tipus
formalis paraméter esetén az aktualis paramétatree(a szintaktikai leirasban megadott
sorrendet kovetve) egy sorszamozott, egész, fixgepnebegpontos, tdmb, mutatdé vagy

tetsdleges tipus neve lehet.

A paraméteratadas valtozénal érték, tipusnévnélsaéxint torténik. Alprogram specifikacio
esetén, ha megadunk aktualis alprogram nevet, aklganeralt szévegben ez a név jelenik
meg. Ha nem adunk meg aktualis alprogram nevetprakk generalt név a¥S utan
megadotinév lesz, vagyS <> esetén a generdlt név meg fog egyezni a formatasnpéter

nevével.

Példaként nézzik azt a generikus csomagot, anteanvabsztrakt adattipust implementalja:

generic

MERET : integer;

type ELEM is private;

package VERMEK is
type VEREM is limited private;
procedure PUSH(S:in out VEREM; E:in ELEM);
procedure POP(S:in out VEREM; E:out ELEM);
TELE,URES : exception;

private
type VEREM is
record
HELY:array(1..MERET) of ELEM;
INDEX:integer range 0..MERET:=0;
end record;
end;

122

package body VERMEK is
procedure PUSH(S:in out VEREM; E:in ELEM) is
begin
if S.INDEX=MERET then raise TELE; end if;
S.INDEX:= S.INDEX+1;
S.HELY(S.INDEX):=E;
end PUSH;
procedure POP(S:in out VEREM; E:out ELEM) is
begin
if S.INDEX=0 then raise URES; end if;
E:=S.HELY(S.INDEX);
S.INDEX:=S.INDEX-1;
end POP;
end VERMEK;

A generikusnak két formdlis paramétere vaMERETa verem méretét, & EMa veremben
tarolando elemek tipusat hatarozza meg. Ez utdhbidtozott privat tipusa, tehat
generalaskor barmilyen tipusnév megadhat6 hozzalkiparaméterként. Ezaltal tetkmes
tipusu elemeket tartalmazo, tétleges mérdt verem kezelését megvalositdé konkrét csomag

generalhato béle.

A vermet egydimenzids témbbel reprezentéljuk. AewerLIFO viselkedését a kétimwelet

(PUSH ésPOB megfeleben implementalja. A két szélséges szituaciot (a verem ures és tele
van) sajat kivételek kivaltasaval jelezzik. A csgiven nincs kivételkezelés, tehat ezek a
kivételek tovabbadddnak a hivasi kornyezetbe, hiszeadott eseményt értelmesen csak ott

lehet lekezelni.

A kovetkedkben két konkrét veremkesdetsomag generalasat lathatjuk:

package EGESZ VEREM is new VERMEK(ELEM=>integer, ME RET=>1024);
package LOGIKAI_VEREM is new VERMEK(100, boolean);

Az el esetben név szerinti kotést, a masodikban sorkeiést alkalmaztunk.

123

11. PARHUZAMOS PROGRAMOZAS

A Neumann-architektdran felégiilgépek szekvencialisak: a processzor a programnak

megfeleb sorrendben hajtja végre az utasitasokat elemsédpént.

Egy processzor altal éppen veégrehajtott gépi kochgramot folyamatnakvagy szalnak
hivunk. Ha ezek a tkods kodok az efforrasokat kizarélagosan birtokoljak, akkor

folyamatrdl, ha bizonyos éforrasokat kozésen birtokolhatnak, akkor szalakedzélunk.

A folyamatok kezelése operacios rendszer szintew@rii (I. Operaciés rendszerek L A
kérdés az, hogy nyelvi szinten milyen eszk6zok aidinrendelkezésiinkre ezek

leprogramozasahoz.
A parhuzamos programozas nyelvi alapfogalmai:
Kommunikacié A folyamatok kommunikalnak egymassal, adatcdetgtatnak.

Szinkronizacio Az operacios rendszer szinkronizacios eszkdzdjimyelvi szinten lIényeges
az idbeli szinkronizacié. A parhuzamosan futé folyamatak bizonyos iéipillanatokban

talalkozniuk kell. Ebfordul, hogy a szinkronizacidés ponton keresztutéxik adatcsere, a
szinkronizaciés ponton keresztil zajlik a kommuni&é Példaul olyan informaciot var az

egyik a masiktol, ami nélkil nem tud tovabbhaladni.
Konkurencia A folyamatok vetélkednek a programbelbferrasokeért.

Kdlcsonos kizarasMivel a folyamatok kizarolagosan birtokoljak adferrasokat, biztositani
kell, hogy amig az egyik folyamat médositia az afjabddig a masik folyamat ne

hasznalhassa fel azt.

A parhuzamos programozasi eszkdzrendszészél a PL/lI-ben jelent meg. Létezik a

Pascalnak és a C-nek is olyan valtozata, amelyreb@&anyban dviti tovabb a nyelvet.

Azok az algoritmusok, amelyekkel eddig talalkozturdzekvencidlis algoritmusok, de
léteznek parhuzamos algoritmusok is a problémakofdégara. Ezen algoritmusokon belll az

egyszerre elvégezliemiiveleteket egyszerre végezziik el.

A programozasi nyelveknek a parhuzamos programomegyalésitasahoz rendelkeznitk kell

eszkozzel:

124

— a folyamatok kédjanak megadasara,

— a folyamatok elinditasara és befejeztetésére,
— a kolcsonos kizaras kérésére,

— a szinkronizaciora,

— a kommunikéacié megvalésitasara,

— a folyamatok rikodésenek felfliggesztésére,
— a folyamatok prioritAsdnak meghatarozaséra,

— a folyamatok Utemezésére.

125

12. ATASZK

Az Adaban a taszk mint programegyseg szolgal ayzarnos programozas megvaldsitasara.
A taszk tehat az a nyelvi eszk6z, amely mogottamigt all. A taszk mint programegység
onalléan nem létezik, csak egy masik programegysdmgiagyazva jelenhet meg a program
szovegében. A taszkot tartalmazé programegysegeiibegységek hivjuk. Egy
szubegységen belll akarhantestvértaszkelhelyezhei. Ezek azonos szinten deklaralt
taszkok. A taszkok tetéleges mélységben egymasba agyazhatdék. Adeguség és a

testvértaszkok torzse mogotti folyamatokkiidnek egymassal parhuzamosan.

Tobbprocesszoros rendszerek esetén elképaelhegy minden taszk mas-mas processzoron
fut. Ez a valodi parhuzamossag. Egyprocesszoratszenek is programozhatdk parhuzamos
modon, ekkor az operaciés rendszer szimuldlja ahuyzamossagot. Ez a virtudlis

parhuzamossag.

Egy taszk akkor kezdi el a itkddését, amikor elindul a sdégysége. Ez egy kezdeti
szinkronizacié. Tehat az Adaban az Utemezést aramogszerkezete donti el, vagyis

Iényegében a programozd lUtemez.
Egy taszk befejezi miikodesét:

— ha elfogytak az utasitasai,
- ha a szitlegysége vagy egy testvértaszkja befejeztetiixdnesét azABORT név;
utasitassal,

— explicit mdédon befejezteti sajatikddéseét kulon utasitassal.

A szubegység akkor fejéalik be, ha6, mint programegység befeflttt, és ha az dsszes
altala tartalmazott testvértaszk befé@dtt. Ez egyfajta végszinkronizacidos pont a

szubegység szamara.

A taszknak két része vaspecifikacidestorzs Formalisan a kdvetkéképpen néz ki:

126

TASK [TYPH név

[IS entry _deklaraciok
END [név]];

TASK BODY név IS

[deklaraciok]

BEGIN
végrehajthatd _utasitasok
[kivételkezel &]

END [név];

A specifikacios részben uarentry-specifikdciokdeklaralhatok, ezek segitségével belépési
pontokat adhatunk meg. Ezek formalisan olyanok,t rain eljarasok specifikacioi, csak az
alapsz€ENTRY nemPROCEDUREzek a szinkronizacié eszkbzei az Adaban.

Létrehozhato taszk tipus, ez egy korlatozott prifgtsnak tekinthét

A felhasznalasuk mdédja szerint megkulonbozetinkféggh taszkotPasszivtaszkok azok a
taszkok, amelyek valamilyen szolgaltatast nydjtanBkek specifikaciés részében entry-
specifikaciok allnak, melyek leirjak a szolgaltajéiegét. Aktiv taszkok azok a taszkok,

amelyek igénybe eszik ezeket a szolgaltatasokat.

A szinkronizaciét az Adaandevunakhivja. Az aktiv taszk egy entry-hivassal képez egy

randevupontot. Ez formalisan megegyezik az eljavasisal.

A passziv taszkon belil minden egyes entry-speaidhoz meg kell adni legaldbb egy

elfogado utasitast, melynek alakja:

ACCEPT entry _név|[(formalis _paraméter _lista) |

[DO végrehajthat6_utasitdsok END [entry név]];

A passziv taszk egy ilyen elfogadd utasitassal k@&gg randevipontot. A passziv taszk altal

folajanlott szolgaltatasok a DO és END k6zott vaniedrva.

Alaphelyzetben a randevu a kovetkemmodon megy végbe. A randevuhoz kell egy aktiv

taszk, amely meghiv egy entryt, és egy passzivlyaere a megfelél elfogadd utasitas van.

127

Elindul a két taszk, szekvencialisan hajtja végreutasitasokat, amig egy randeviponthoz
nem ér valamelyikiik. Amelyik hamarabb ér a randewtipoz, az bevarja a masikat, tehat

addig a nikodését felfliggeszti. A randevi &srban a szinkronizacié eszkéze az Adaban, de
van lehebség a randevuban tortemdatcserére is, erre szolgalnak a belépési pomafs

paraméterei.

Ha mindkét taszk odaért a randevuponthoz, akkoiNazZs IN OUT paraméterek esetén
informé&cio adddik at az aktiv taszktol a passzie.fEzutdn, ha van DO-END rész, akkor az
végrehajtodik, a randevu végén pedig az OUT és IN @araméterek segitségével a passziv
taszk febl mozog informacié az aktiv taszk felé. Tehat ademtiban szinkronizacié mindig

van, kommunikacio és kdzos tevékenység pedig légess

A taszkok kommunikalhatnak a s#ébységben deklaralt, a testvértaszkok szaméaralgoba
valtozok segitségével is. Ezeket edyidn hasznalhatja ez 6sszes testvértaszk. A kdzbsen

hasznalt valtozokra a kdlcsonos kizarast egy pragggéségével biztosithatjuk, ennek alakja:
SHARED(valtozd_név)
A szubegység deklaracios részében kell megadni, ahdt@zdadeklaracidja is szerepel.

Egy taszk specifikacids részében helyegleta kdvetked pragma, melynek segitségeével a

taszkhoz prioritas rendellget
PRIORITY (kifejezés)

Egy alacsonyabb prioritasu vagy prioritds nélkékzk soha nem akadalyozhatja magasabb

prioritasu taszk munkajat.

Ha valamely passziv taszk egy adott szolgaltatéidgdi aktiv taszk akarja igénybe venni

egyidejileg, akkor az aktiv taszkok egy prioritasos varakozorba kerilnek.
Minden taszk torzsében elhelyezhat
DELAY kifejezés;

késlelte utasitas. Akifejezés nemnegativ, egész értékdecimalis szamrendszerben
értendd szam, amely a késleltetést adja meg masodperdkeradott taszk ennyi dte

felfiggeszti a mkodését.

128

A randevu bekdvetkezte a taszkokban befolyasolhaBELECT-utasitas segitségével. Ezen
utasitas szerepe mas-mas az aktiv és a passzkvesesiZn. Az aktiv taszk ugyanis mindig
maga hiv meg egy szolgéltatast jetebelépési pontot, a passziv taszk viszont nem tudja
sohasem, hogy egy elfogadd utasitas altal felkisatilgaltatast igénybe akar-e venni

valamikor majd egy aktiv taszk.
Az aktiv taszkokban a SELECT-utasitasnak két foanagifalmazhato.

Feltételes randevura szolgalé SELECT:
SELECT

entry_hivéas

[végrehajthaté_utasitasok]
ELSE

végrehajthatd_utasitasok
END SELECT;

Ha azentry hivas altal kezdeményezett randevl azonnal létrejohdtpravégbemegy,
ezutan végrehajtédnak az esetlegesen megadott atpgibasok, és a taszk kilép a SELECT-
utasitasbol, ha viszont nem, akkor az aktiv tasrk mar, hanem ,poéttevékenységet” végez,

azaz az ELSE-4gban gutasitdsokat hajtja végre, és kilép a SELECT-#sisol.

ld6zitett randevura szolgalé SELECT:

SELECT
entry_hivas
[végrehajthat6_utasitasok]
ELSE
késleltet &_utasitas

[végrehajthaté_utasitasok]
END SELECT;

Ha azentry hivas altal kezdeményezett randevl azonnal létrejohdtpravégbemegy,
ezutan végrehajtédnak az esetlegesen megadott atpgibasok, és a taszk kilép a SELECT-

utasitasbol, ha viszont nem, akkor az aktiv taszlekozik a késleltétutasitasban megadott

129

ideig, mikdzben Ujra és Ujra megprébal randeviénicsak az adott ddletelte utan hajtja

végre az esetlegesen megadott ,pottevékenységhdp ésa SELECT-utasitasbol.

A passziv taszkban elhelyezh&ELECT:

SELECT
[WHEN feltétel =>] alternativa
[OR [WHEN feltétel =>] alternativa]...
[ELSE végrehajthaté_utasitasok]

END SELECT,

Egyalternativa alakja:

- elfogado alternativa:
elfogadd_utasitas [végrehajthaté utasitasok]
- késlelteb alternativa:
késleltet &_utasitas [végrehajthaté_utasitasok]
- befejezted utasitas:
TERMINATE;
Legalabb egy elfogado alternativa sziikséges, denakdyi lehet. A késleltétalternativabol
barmennyi, befejeztéhbl maximum egy szerepelhet. A késlaltéts a befejeztétalternativa
kizarja egymast.
Egy alternativanyiltnak neveziink, ha vagy nem szerepdittel WHEN feltétel , vagy

szerepel, de a feltétel igaz. Egyébkénaléernativazart.
Amikor egy ilyen SELECT-utasitashoz ér a passzdzkaakkor

- Kiértékebdnek a feltételek és €t hogy mely alternativadk nyiltak és mely altermaki

zartak.

— Azon nyilt alternativakban, melyekben DELAY-utasitzan, kiértékéldnek a megadott

kifejezések és etdnek a varakozasi tik.

- Egy nyilt elfogadd alternativa kivalaszthatd, heezé olyan aktiv taszk, amely ezzel a

ponttal randevuzni akar (meghivta ezt az entrytkkoE a randevu végbemegy,

130

végrehajtédnak az esetlegesen megadott egyébastsiés a taszk kilép a SELECT-
utasitasbol. Ha egyszerre tobb kivalaszthatd etfogalternativa van, barmelyik
végrehajtédhat. Nem determinisztikus, hogy mely@kdeva hajtodik végre, de mindig

csak egyetlen randevd mehet végbe.

— Egy nyilt késleltet alternativa kivalaszthato, ha nincs kivalaszthedtégado alternativa.
Ha tobb kivalaszthaté késleltetalternativa van, akkor a legkisebb varakozasiiitdej
valasztja ki. EKkor a passziv taszk a megadotgisgtédrakozik, és kdzben vizsgalja, hogy
nem futott-e be valamelyik nyilt elfogadd altermatioz randevu kérés. Ha igen
végbemegy a randevu, ha nem, akkor a varakozdsiletélte utdn végrehajtia az

esetlegesen megadott egyeb utasitasokat, majdekifl ECT-utasitasbol.

— Nyilt befejezted alternativa akkor valaszthatd ki, ha a testvékialsza szibegység és
minden, az adott taszk altal tartalmazott taszlejpefe a rikddését. Ekkor a taszk

befejezi a mikodését.

— Ha nincs kivalaszthatd nyilt alternativa, és varSElag, akkor végrehajtodnak az ott
megadott utasitasok, és a taszk kilép a SELECTitashel. Ha nincsen ELSE-4g, akkor a
taszk belefut egy végtelen varakozasba, és kdzBen hogy egy nyilt alternativa nem

valik-e kivalaszthatova, vagy egy zart nyiltt éslkaszthatova.

— Ha minden alternativa zart, és van ELSE-ag, akkegrehajtodnak az ott megadott
utasitasok, és a taszk kilép a SELECT-utasitadhal.viszont nincs ELSE-4g, akkor
bekdvetkezik SELECT ERRORIvétel.

Aktiv taszk csak olyan passziv taszkkal tud randeiiamelyik még rikddik. Ha egy olyan
taszkkal akar randevlzni egy taszk, amelyikkel hetmetséges (mert példaul mar befejezte a
mikodéseét), akkor kivaltodik BASKING_ERRORivétel.

A kivételkezelés szabdlyai a taszkok esetén nérkilgeszilnek. Ha egy kivétel randevuban
kovetkezik be, akkor az a randevuban részivaindkét taszkban kivaltodik. Viszont vannak
olyan kivételek, amelyek csak taszkban kovetkeziethe, igy azok kezelését is csak
taszkban lehet megoldani. Ezért az Ada azt momdjgy ha egy taszkban bekdvetkezik egy

kivétel, és azt nem kezeljik, akkor az nem addauiéibb.

131

Példa:

Adva van egy folyamat, amelyik karaktereket all&t @ sajat itemének megfdéleh. Van egy
masik folyamat, ami felhasznalja a termelt karadtet szintén a sajat titemének megéael

Nincsenek szinkronban, parhuzamosan dolgoznakkifuogramot erre a problémaral

irjunk egy termdl, egy fogyasztd aktiv taszkot és egy passziv tasakeely fogadja, tarolja
illetve atadja az karaktereket! Kell hozzajuk egptalmazo szidegység, melynek egyetlen

feladata a szinkronizacié. Legyen ez az aldbbilblok

begin
-- a taszkok deklaracioja
null;
end;

Atermeb és a fogyasztd taszk tdrzsében legyen egy-edgleégciklus:

loop
-- a karakter el sallithsa
BUFFER.WRITE(CHAR);
exit when CHAR=END_OF CHAR;
end loop;

loop

BUFFER.READ(CHAR);

-- a karakter feldolgozasa

exit when CHAR=END_OF CHAR;
end loop;

A passziv taszk egy ciklikus reprezentacioval kesmiban tarolja az adatokat:

task BUFFER is
entry READ(C : out character);
entry WRITE(C : in character);
end;

132

task body BUFFER is

POOL_SIZE : constant integer:=100;
POOL > array (1..POOL_SIZE) of character;
COUNT : integer range 0..POOL_SIZE:=0;
IN_INDEX, OUT_INDEX : integer range 1..POOL_SIZE:= 1;
begin
loop
select

when COUNT < POOL_SIZE =>

accept WRITE (C : in character) do
POOL(IN_INDEX):=C; end;
IN_INDEX:=IN_INDEX mod POOL_SIZE+1;
COUNT:=COUNT+1;

or when COUNT >0 =>

accept READ(C : out character) do
C:=POOL(OUT_INDEX); end;
OUT_INDEX:= OUT_INDEX mod POOL_SIZE-1;
COUNT:=COUNT-1;

or terminate;

end select;
end loop;
end BUFFER,;

A torzs egy végtelen ciklus, amelyen belll egyetl®BLECT-utasitas van. A SELECT
feladata a szinkronizaci6. Harom aga van, melyekilk@ befejeztét alternativa mindig
nyilt. Elindul a szilegység, és azonnal be is fejeziékidéseét, varva hogy a taszkok is véget
érjenek. A harom taszk belefut a végtelen ciklugtrael randevit a terméltaszkkal hajtja
végre a passziv taszk, majd kilép a SELEGI-Mivel végtelen ciklusrél van sz0, azonnal
Ujbol a SELECT-re kerll a vezérlés. A két aktivziaslbbb-utdbb kilép a végtelen ciklusbdl
az EXIT-utasitassal, és elér a torzsének a veépeéfejezvén a iikddését. A szidegység mar

varakozik, tehat kivalaszthatova valik a befejeéztdternativa, a folyamatok lezarulnak.

133

13. INPUT/OUTPUT

Az 1/O az a terulete a programnyelveknek, ahol aeginkabb eltérnek egymastol. Az 1/0
platform-, operéciés rendszer-, implementaciétiigggyes nyelvek nem is tartalmaznak

eszkdzt ennek megvalositasara, eleve az implemérddiizzak a megoldast.

Az /O az az eszkdzrendszer a programnyelvekbenelyana periféridkkal tortéh
kommunikéaciéért feléls, amely az operativ tarbol oda kild adatokat, vagpan var
adatokat. Az /O kozéppontjdban &lomany all. A programnyelvi allomanyfogalom
megfelel az absztrakt allomanyfogalomnak Aldatszerkezetek és algoritmusok Egy
programban dogikai allomanyegy olyan programozasi eszkdz, amelynek neve ean,
amelynél az absztrakt allomanyjellethz(rekordfelépités, rekordformatum, elérés, szerkez
blokkolas, rekordazonosité stb.) attribitumkénenelek meg. Afizikai allomanypedig a
szokasos operacios rendszer szikbnkrét, a periferiakon megjel@&naz adatokat tartalmazoé

alloméany.
Egy allomanyfunkcioszerint lehet:

— input &llomany: a feldolgozas @t mar léteznie kell, és a feldolgozas soran valian

marad, csak olvasni lehet Bid,

— outputallomany: a feldolgozasd@t nem létezik, a feldolgozas hozza létre, csaklémet

bele,

— input-outputallomany: altaldban létezik a feldolgozastieés létezik a feldolgozés utan is,

de a tartalma megvaltozik, olvasni és irni is lehet

Az 1/O soran adatok mozognak a tar és a perifé@i@#. A tarban is, és a periférian is van
valamilyen abrazolasi mod. Kérdés, hogy az adataiasgkozben torténik-e konverzio.
Ennek megfelélen létezik kétféladatatviteli mod afolyamatog(van konverzio) és binaris

vagyrekord modd(nincs konverzio).

A folyamatos médu adatatvitelnél a tarban és afgpén eltér a reprezentacié. Ebben az
esetben a nyelvek a periférian az adatokat egyofodgs karaktersorozatnak tekintik, a tarban

pedig a tipusnak megfetebels) abrazolas altal definialt bitsorozatok vannak. adlatatvitel

134

ekkor egyedi adatok atvitelét jelenti konverziov@lvasaskor meg kell mondania, hogy a
folytonos karaktersorozatot hogyan tordeljiuk fglaml karaktercsoportokra, amelyek az egyedi
adatokat jelentik, és hogy az adott karaktercsomdlsten tipust adatot jelent. iraskor pedig
rendelkezni kell arrél, hogy a tarbeli, adott tipaglatot reprezentalo bitsorozatbdl a folytonos

karaktersorozatban melyik helyen és hany karaktkdtva jelenjen meg az egyedi adat.
A nyelvekben ezek megadasara harom al@peetkozrendszer alakult ki:

- formatumos mddu adatatviteininden egyes egyedi adathoz a formatumok segiteég

explicit médon meg kell adni a kezelénkiarakterek darabszamat és a tipust.

— szerkesztett médu adatétvitehinden egyes egyedi adathoz meg kell adni egyzkahs
amely szerkesétés atviend karakterekBl all. A maszk elemeinek szama hatarozza meg
a kezelend karakterek darabszamét, a szerkedarakterek megadjak, hogy az adott
pozicion milyen kategorigju karakternek kell megjelie, a tobbi karakter valtoztatas

nélkdl atvitelre kerdl.

— listdzott mddu adatatviteitt a folytonos karaktersorozatban magaban vanaaérdelést
végd specialis karakterek, amelyek az egyedi adatokatdoljak egymastdl, a tipusra

nézve pedig nincs explicit médon megadott informaci

A binaris adatétvitel esetén az adatok a tarbanpEgiférian ugyanugy jelennek meg. Ez csak

hattértarakkal valé6 kommunikacional j6het szobaatatel alapja itt a rekord.

Ha egy programban allomanyokkal akarunk dolgoznkkoa a kovetkeéket kell

végrehajtanunk:

1. Deklaraci@ A logikai allomanyt mindig deklaralni kell az ationyelv szabdlyainak
megfeleben. El kell latni a megfelélnévvel és attributumokkal. Minden nyelv definialja
hogy milyen allomanyfogalommal dolgozik. Egyes mgdl azt mondjéak, hogy a funkcié is

attributum, tehat a deklaracional éld

2. Osszerendelé€nnek soran a logikai allomanynak megfeleltetégk fizikai allomanyt.
Ezt a megfeleltetés vagy a program szévegébenyingskkozzel torténik (a fizikai

allomany csak itt jelenik meg), vagy a program sgfiin Kivil, operaciés rendszer szinten

135

végezzik azt el. Innefit kezdve csak a logikai allomanynévvel dolgozunike d

tevékenység mindig a mogotte allo fizikai allomanyonatkozik.

. Allomany megnyitasaEgy allomannyal csak akkor tudunk dolgozni, hagméottuk.
Megnyitaskor operacios rendszer rutinok futnakeleensrizve, hogy a logikai allomany
attribatumai és a fizikai alloméany jelleidizmegfelelnek-e egymésnak. Egy éallomany
funkciéja a megnyitasnal is dlithet bizonyos nyelvekben (pl. ,inputra nyitunk”)klor a

program futasa folyaman ugyanazt az allomanyt masfomkciéra is megnyithatjuk.

Feldolgozas Ha az allomanyt megnyitottuk, akkor abba irhatumagy olvashatunk
belble. Az olvasast realizadl6 eszkdznél meg kell adniogikai allomany nevét és
folyamatos méda adatéatvitelnél egy télsges valtozolistat. Ekkor a felsorolt valtozok
értékkomponensiket az adott allomanybdl kapjak nkegmatumos atvitelnél minden
valtozohoz egy formatumot, szerkesztettnél egy kwisneg kell adni. Listazott atvitelnél
a konverziot a valtozok tipusa hatarozza meg. Bir&vitelnél altalaban egy (ritkan tébb)

valtoz6 adhaté meg, melynek rekord tipusunak keihi.

A Kkiir6 eszkozrendszerben a logikai allomany nevellett egy kifejezéslistat kell
szerepeltetni. A kifejezések kiértékehek, és ezen értékek kiirasra kerilnek. A
kifejezésekhez itt is egyenként sziikségesek a tomak, illetve a maszkok. Listazottnal
a kifejezés tipusa a meghataroz6. Binaris atvitelmékifejezésnek rekordot Kkell

szolgaltatnia.

Lezaras A lezaras ismét operacios rendszer rutinokavedi. Azért nagyon fontos, mert
a konyvtarak informécidinak aktualizalasa ilyenkérténik meg. Output és inpututput
alloméanyokat le kell zarni, input dllomanyokat gediik lezarni. A lezaras megszinteti a
kapcsolatot a logikai allomany és a fizikai allomakbzott. A nyelvek altalaban azt
mondjak, hogy a program szabalyos beféjesekor az 6sszes megnyitott allomany

automatikusan lezarodik.

A programozasi nyelvek a programoz6 szamara megdédnget, hogy input-output esetén ne

allomanyokban gondolkozzon, hanem az iras-olvasggtképzelje el, hogy az kozvetlendl

valamelyik perifériaval torténik. Ezt hivjukmplicit allomanynak A megfeleb logikai és

fizikai allomany most is létezik standard nevek&sljellemskkel, de ezt a futtatd rendszer

136

automatikusan kezeli. Tehat az implicit &llomanyem kell deklaralni, 6sszerendelni,
megnyitni és lezarni. Az implicit input allomany szabvany rendszerbemeneti periféria
(altaldban a billentyzet), az implicit output &llomany a szabvany reedsimeneti periféria
(altalaban a képerdy. A programozé barmely allomanyokkal kapcsolatesékenységet
elvégezhet explicit médon (pl. az implicit outplibénanyhoz hozzarendelheti a nyomtatét).
Ha az ir6 és olvasd eszkdzben nem adjuk meg adiodilomany nevét, akkor aivelet az

implicit &llomannyal torténik.

13.1. Az egyes nyelvek I/O eszkdzei

FORTRAN:

Szerialis, szekvencialis és direkt allomanyt tudelei. Eszkbzrendszere szegényes. Csak fix
rekordformatumot tud kezeln®) vezeti be a formatumos adatatvitelt. A listazadtitél a
késsbbi verziokba keril be. Létezik benne a binarist@wéel, azonban nem rekordonként,

hanem egyedi adatokként.

COBOL:

Erés I/O eszkdzrendszere van. Mindig konvertal. A CQB@zeti be a szerkesztett atvitelt.
Szerialis, szekvencialis, direkt, indexelt és in&ierallomanyszerkezetet is ismer, de egyszerre
csak egy masodlagos kulcs szerint tud keresni.l&bgm fix rekordforméatumot kezel.

Blokkolas lehetséges.

PL/I:
Kiemelkedben a legjobb allomanykezelési eszkbzrendszerrelgodd. Az Osszes
alloméanyszerkezetet, adatatviteli médot, rekordftumot és blokkolasi lehitéget ismeri €s

kezeli.

PASCAL.:

Allomanykezelési eszkdzrendszere szegényes. Fiwadt®zo rekordformatumi szeridlis

allomanyt kezel. Az egyes implementaciok ismerikbiaaris és a folyamatos modu (a

formatumos és a listazott egyfajta keverékekénttedt, €s esetlegesen kdzvetlen eléréssel

dolgoznak. Blokkolas nincs. Nincs I/O utasitas,piesdt alprogramokkal dolgozik.

137

C:

Az 1/0 eszkozrendszer nem része a nyelvnek. Stdn#é@nyvtari fliggvények allnak
rendelkezésére. Létezik a binaris és a folyamatbdunatvitel, ez utébbinal egy formatumos
€s egy szerkesztett atvitel keverékeként. Szeridlisrkezetet kezel fix és valtozo
rekordformatummal. Az 1/0O fuggvenyek minimalisanyekarakter vagy karaktercsoport,

illetve egy bajt vagy bajtcsoport irasat és olvasteszik lehdivé.

Ada:

Minden perifériat tud nyelvi eszkdzokkel kezelniz Adanak sem része az 1/0, csomagok

segitségével valodsitja meg azt. Léteznek az atAumagok:

- SEQUENTIAL_IO: Szekvencialis allomanyok kezelésé&zolgal. Indexelt szekvencialis

alloménnyal is tud dolgozni.

- DIRECT_IO: Direkt allomany kezelésére szolgal.

- TEXT_IO: Szdveges allomany kezelésére szolgal.

- LOW_LEVEL_IO: Tetsdleges perifériaval valo kommunikacié biztositasalwy
eszkozokkel.

- IO_EXCEPTIONS: Az I/O kivételek kezelésénél yalenibsége.

A logikai allomany deklaralasa és fizikai allomaahyal6 6sszerendelése utan a megnyitott
allomany funkciéja a programon belll dinamikusantozathatd, példaul egy kivétel

bekovetkeztekor. Lezaraskob&hatd, hogy az allomany megmaradjon vagystjin.

138

14. IMPLEMENTACIOS KERDESEK

Az eljarasorientalt programozasi nyelvek a rendadkékre allo memdriat altalaban a

kovetked tertletekre osztjak fel futds kézben:
Statikus terlletez tartalmazza a kddszegmenst és a futtatd rendsginjait.
Rendszer verentarolja az aktival6é rekordokat.

Dinamikus tertletA mutat6 tipusu eszkdzokkel kezelt dinamikus kargidok helyezkednek

el benne.

Sok nyelvi implementacié ugy kezeli a memoriat, ywag szabad tartertilet a verem és a

dinamikus terilet k6zo6tt van, tehat ezek egymadasara ndvekszenek.

A kbédszegmens a program gépi nyelutasitasait, rendszerinformaciokat és a literalok

tablazatait tartalmazza.

Az eljarasorientalt programozasi nyelvek a progmgységek futasidéjkezelésehez, a hivasi

lanc implementalasahoz az @ktivalé rekordothasznéljak. Ennek felépitése az alabbi:

Dinamikus kapcsol6Ez egy mutatd tipusu m&zamely ahivd programegység aktivalo
rekordjat cimzi. A hivasi kdrnyezet érietel vele, és a programegység szabalyos

befejeddésekor az aktivalo rekord torlesénél van alapseerepe.

Statikus kapcsoldEz egy mutatd tipusi m&zamely atartalmazéprogramegység aktivalo
rekordjat cimzi. Statikus hataskorkezelésnél ensefitségével érhetel a tartalmazo

kornyezet.

Visszatérési cimA kdédszegmens azon cime, ahol a programegyséuglspa befejezése

esetén a programot folytatni kell.

Lokalis valtozok

Formalis paraméterekcsak alprogram esetén)
Visszatéreési ertéfcsak fliggvény esetén)

Az egyszelt tipusu lokdlis valtozok szamara a tipusukhoz tartbel$ abrdzolasnak

(fixpontos, lebe§pontos, logikai, karakteres, cim, felsorolasos) fiele@en foglalodik le a

139

tartertilet. Az dsszetett tipustaknal mar bonydbllta helyzet. Tomboknél altalanos, hogy a
lefoglalt tarterilet elején egy un. tombleiré hekedik el, amely tartamazza dimenzidénként
az indexek alsé és félhatarat, az elemek tipusat és az egy elem tahuaszikséges bajtok

szamat. Ezutan pedig jonnek az elemek sor- vaglpmfetytonosan. A rekord tipusnal a

mezk tipusa dont, ezek egymas utan helyezkednek dloathahosszuségu rekordtipusnél a
helyfoglalas a maximalis méretre torténik. Sztrkigd egyarant széba johet a fix €s a valtozé
hosszon val6 tarolas, az utébbinal hosszmegadalisble végjellel. Halmaz esetén kevés
elemszamnal karakterisztikus fliggvény, nagy elemsegetén kulcstranszformacios tablazat

alkalmazasa a szokasos.

A formalis paraméterek szamara lefoglalt tarteralgtaraméteratadastol fiigg. Erték szerinti
esetben a formalis paraméter tipusanak megfabaterilet szikséges. Cim és eredmény
szerinti esetben egy cim tarolasahoz sziikségamdrdityiség foglalddik le. Erték-eredmény
szerintinél pedig az &6 ketts. A név és szdveg szerinti paraméteratadas esdeeregy
paraméter nelkili rendszer rutin hivasa kerul. Bzdig lefut, amikor a formalis paraméterre
hivatkozas torténik. Feladata a szovegkornyezehatégozasa és abban az aktualis paraméter

kiértékelése, aztan a formalis paraméterek nevishélirasa.

Az aktivalé rekordok a veremben tarolédnak. A veraljdn mindig a éprogram aktivalo
rekordja van. Szabalyos program befejezéskor anvekgiril. Amikor meghivunk egy
alprogramot vagy blokkot, akkor feléptul hozzéa atvaio rekord, és az a verem tetejére kerdl
(innentl aktiv az adott programegység), €s mindig az graraegység tkodik, amelynek

aktivalo rekordja a verem tetején van. Szabalydsjemdéskor az aktivald rekord tédik

Taszkok esetén (egy processzoron) egy ,kaktusz&rmeépul fol. A sziflegység aktivalo
rekordja elhelyeidik a verem tejére, és az altala meghivott nemktasagramegységek
aktivalo rekordjai pedig folé kerllnek. A testvékok mindegyikéhez felépil egy-egy olyan
verem, melynek az aljan a séébyseg aktivalo rekordja van. Ezek a vermek eglieg;
léteznek, és tartalmazzéak az adott taszk altatHéizott hivasi lanc aktivalé rekordjait. A
szUbegység aktivalé rekordja csak akkor torotheha minden testvértaszkjanak verme

kiuralt.

140

IRODALOMJEGYZEK

Bergin, T. J. — Gibson, R. G.: History of ProgramgiLanguages, Addison-Wesley, 1996.

Horowitz, E.: Magas szititprogramnyelvek, Mszaki, 1987.

Juhasz I. — Késa M. — Panovics J.: C példatar, irafe05s.

Kernighan, B. W. — Ritchie, D. M.: A C programozégelv, Miszaki, 2006.

Kosa M. — Panovics J.: PéldatdPagramozas 1argyhoz, elektronikus jegyzet, DE IK.

Marcotty, M. — Ledgard, H.: The World of Programminanguages, Springer-Verlag, 1987.

Nyékiné Gaizler Judit (szerk.): Az Ada95 progranszgelv, ELTE E6tvos Kiado, 1998.

Nyékiné Gaizler Judit (szerk.): Programozasi nylkel&skapu, 2003.

Pyle, I. C.: Az Ada programozasi nyelviskaki, 1987.

Scott M. L.: Programming Language Pragmatics, Modgaufmann, 2006.

Sebesta, R. W.: Concepts of Programming Langudgkison-Wesley, 2007.

Sethi, R.: Programming Languages, Concepts andt@ots Addison-Wesley, 1996.

Watt D. A.: Programming Language Design Concepiise\yV2006.

The Programming Language Ada, Reference Manuatute®otes in Computer Science 106,
Springer-Verlag, 1981.

http://www.hitmill.com/programming/c.html

http://www.adahome.com/

http://www.engin.umd.umich.edu/CIS/course.des/dddigol/algol.html

http://www.cobolreport.com/index.asp

http://www.fortran.com/

http://www.merlyn.demon.co.uk/pascal.htm

http://home.nycap.rr.com/pflass/pli.htm

141

