

Juhász István

MAGAS SZINTŐ PROGRAMOZÁSI NYELVEK 1

mobiDIÁK könyvtár

Juhász István

MAGAS SZINTŐ PROGRAMOZÁSI NYELVEK 1

mobiDIÁK könyvtár

SOROZATSZERKESZTİ
Fazekas István

Juhász István

MAGAS SZINTŐ PROGRAMOZÁSI NYELVEK 1

Egyetemi jegyzet
Harmadik kiadás

mobiDIÁK könyvtár

Debreceni Egyetem
Informatikai Kar

Lektor

Pánovics János
Debreceni Egyetem

Copyright © Juhász István 2008

Copyright © elektronikus közlés mobiDIÁK könyvtár, 2008

mobiDIÁK könyvtár
Debreceni Egyetem
Informatikai Kar
4010 Debrecen, Pf. 12
http://mobidiak.inf.unideb.hu

A mő egyéni tanulmányozás céljára szabadon letölthetı. Minden egyéb felhasználás
csak a szerzı elızetes írásbeli engedélyével történhet.
A mő A mobiDIÁK önszervez ı mobil portál (IKTA, OMFB-00373/2003) és a GNU
Iterátor, a legújabb generációs portál szoftver (ITEM, 50/2003) projektek
keretében készült.

 7

TARTALOMJEGYZÉK

ELİSZÓ.. 9

1. BEVEZETÉS .. 10

1.1. Modellezés ... 10
1.2. Alapfogalmak... 11
1.3. A programnyelvek osztályozása... 14
1.4. A jegyzetben alkalmazott formális jelölésrendszer.. 15
1.5. A jegyzet tárgya.. 15

2. ALAPELEMEK.. 17

2.1. Karakterkészlet... 17
2.2. Lexikális egységek ... 18

2.2.1. Többkarakteres szimbólumok .. 18
2.2.2. Szimbolikus nevek .. 19
2.2.3. Címke ... 20
2.2.4. Megjegyzés... 20
2.2.6. Literálok (Konstansok) .. 21

2.3. A forrásszöveg összeállításának általános szabályai.. 27
2.4. Adattípusok .. 28

2.4.1. Egyszerő típusok .. 29
2.4.2. Összetett típusok .. 31
2.4.3. Mutató típus... 33

2.5. A nevesített konstans ... 34
2.6. A változó .. 35
2.7. Alapelemek az egyes nyelvekben... 39

3. KIFEJEZÉSEK .. 46

3.1. Kifejezés a C-ben ... 50

4. UTASÍTÁSOK.. 56

4.1. Értékadó utasítás .. 57
4.2. Üres utasítás ... 57
4.3. Ugró utasítás... 57
4.4. Elágaztató utasítások.. 58

4.4.1. Kétirányú elágaztató utasítás (feltételes utasítás)... 58
4.4.2. Többirányú elágaztató utasítás ... 59

4.5. Ciklusszervezı utasítások .. 62
4.5.1. Feltételes ciklus ... 63
4.5.2. Elıírt lépésszámú ciklus .. 64
4.5.3. Felsorolásos ciklus .. 66

8

4.5.4. Végtelen ciklus ... 67
4.5.5. Összetett ciklus... 67

4.6. Ciklusszervezı utasítások az egyes nyelvekben .. 67
4.7. Vezérlı utasítások a C-ben... 71

5. A PROGRAMOK SZERKEZETE... 72

5.1. Alprogramok .. 73
5.2. Hívási lánc, rekurzió .. 77
5.3. Másodlagos belépési pontok .. 78
5.4. Paraméterkiértékelés .. 78
5.5. Paraméterátadás.. 80
5.6. A blokk... 82
5.7. Hatáskör ... 83
5.8. Fordítási egység.. 86
5.9. Az egyes nyelvek eszközei... 86

6. ABSZTRAKT ADATTÍPUS ... 98

7. A CSOMAG .. 99

8. AZ ADA FORDÍTÁSRÓL... 105

8.1. Pragmák.. 105
8.2. Fordítási egységek.. 106

9. KIVÉTELKEZELÉS ... 112

9.1. A PL/I kivételkezelése ... 113
9.2. Az Ada kivételkezelése.. 117

10. GENERIKUS PROGRAMOZÁS ... 121

11. PÁRHUZAMOS PROGRAMOZÁS ..124

12. A TASZK... 126

13. INPUT/OUTPUT.. 135

13.1. Az egyes nyelvek I/O eszközei... 138

14. IMPLEMENTÁCIÓS KÉRDÉSEK... 140

IRODALOMJEGYZÉK.. 142

9

ELİSZÓ

Jelen jegyzet a Debreceni Egyetem Informatikai Kar Programtervezı informatikus és

Mérnökinformatikus szakán alapozó tárgy, a Magas szintő programozási nyelvek 1 elméleti

anyagát tartalmazza. A tantárgy elıfeltétele Bevezetés az informatikába tárgy. Ez a jegyzet is

sok helyen támaszkodik az ott elsajátított alapismeretekre. Az ajánlott tantervi háló szerint a

tárggyal párhuzamosan kerül meghirdetésre az Operációs rendszerek 1 (illetve Operációs

rendszerek) és az Adatszerkezetek és algoritmusok címő tárgy. Ezekkel nagyon szoros a

kapcsolat, gyakoriak az áthivatkozások. A Magas szintő programozási nyelvek 1 tárgyhoz

közvetlenül kapcsolódik a Magas szintő programozási nyelvek 2 tárgy, ezek együtt alkotnak

szerves egészet.

A jegyzet megírásának idıpontjában a tárgy gyakorlatán a C a kötelezı nyelv. Ez magyarázza,

hogy ezzel a nyelvvel részletesebben foglalkozunk.

A tantárgy gyakorlatán Kósa Márk és Pánovics János Példatár a Programozás 1 tárgyhoz

címő elektronikus jegyzete használható.

10

1. BEVEZETÉS

1.1. Modellezés

Az ember már igen régóta törekszik a valós világ megismerésére. A valós világban mindenféle

objektumok (személyek, tárgyak, intézmények, számítógépes programok) vannak – nevezzük

ezeket egyedeknek. Az egyedeknek egyrészt rájuk jellemzı tulajdonságaik vannak, másrészt

közöttük bonyolult kapcsolatrendszer áll fenn. Az egyedek reagálnak a körülöttük lévı más

egyedek hatásaira, kapcsolatba lépnek egymással, információt cserélnek – vagyis viselkednek.

Az egyes konkrét egyedeket egymástól tulajdonságaik eltérı értékei, vagy eltérı viselkedésük

alapján különböztetjük meg. Ugyanakkor viszont a valós világ egyedei, közös tulajdonságaik

és viselkedésmódjuk alapján kategorizálhatók, osztályozhatók.

A valós világ túlságosan összetett ahhoz, hogy a maga teljességében megragadjuk, éppen ezért

a humán gondolkodás az absztrakción alapszik és ennek segítségével modellekben

gondolkodunk. Az absztrakció lényege, hogy kiemeljük a közös, lényeges tulajdonságokat és

viselkedésmódokat, az eltérıeket, lényegteleneket pedig elhanyagoljuk. Ezáltal létrejön a

valós világ modellje, amely már nem az egyes egyedekkel, hanem az egyedek egy

csoportjával, osztályával foglalkozik.

Az ember modelleket használ, amikor egy megoldandó problémán gondolkodik, amikor

beszélget valakivel, amikor eszközt tervez, amikor tanít, amikor tanul és amikor megpróbálja

megérteni az itt leírtakat.

A modellalkotás képessége velünk születik. Amikor a gyermek megismerkedik a világgal,

akkor igazában azt tanulja meg, hogy a számtalan egyedi problémát hogyan lehet kezelhetı

számú problémaosztályra leszőkíteni.

Egy modellel szemben három követelményt szoktak támasztani:

1. Leképezés követelménye: Léteznie kell olyan egyednek, amelynek a modellezését

végezzük. Ez az „eredeti egyed”.

11

2. Leszőkítés követelménye: Az eredeti egyed nem minden tulajdonsága jelenik meg a

modellben, csak bizonyosak.

3. Alkalmazhatóság követelménye: A modellnek használhatónak kell lennie, azaz a

benne levont következtetéseknek igaznak kell lenniük, ha azokat visszavetítjük az

eredeti egyedre.

Az 1. követelmény nem jelenti szükségszerően az eredeti egyed aktuális létezését, az lehet

megtervezett (pl. egy legyártandó gép), kitalált (pl. egy regényalak), vagy feltételezett (pl. egy

baktérium a Marson).

A 2. követelmény miatt a modell mindig szegényebb, viszont kezelhetı (míg az eredeti egyed

gyakran nem).

A 3. követelmény az, amiért az egész modellt egyáltalán elkészítjük. Az eredeti egyed igen

gyakran nem is elérhetı számunkra, ezért vizsgálatainkat csak a modellben végezhetjük.

A számítógépek megjelenése lehetıvé tette az emberi gondolkodás bizonyos elemeinek

automatizálását. Az informatika a modellezés terén is alapvetı jelentıségre tett szert. Az

egyedek tulajdonságait számítógépen adatokkal, a viselkedésmódot pedig programokkal

tudjuk kezelni – ezzel természetesen szintén egyfajta modellt megadva. Így beszélhetünk

adatmodellrıl és funkcionális modellrıl (eljárásmodellrıl). Ez a megkülönböztetés azonban

csak számítógépes környezetben lehetséges, hiszen a modell maga egy és oszthatatlan.

Ugyancsak ebben a közelítésben említhetjük az adatabsztrakciót és a procedurális

absztrakciót, mint az absztrakció megjelenési formáit az informatikában.

1.2. Alapfogalmak

A számítógépek programozására kialakult nyelveknek három szintjét különböztetjük meg:

– gépi nyelv

– assembly szintő nyelv

– magas szintő nyelv

12

A Magas szintő programozási nyelvek 1 és Magas szintő programozási nyelvek 2 tárgyak

a magas szintő nyelvek eszközeivel, filozófiájával, használatával foglalkoznak. A magas

szintő nyelven megírt programot forrásprogramnak, vagy forrásszövegnek nevezzük. A

forrásszöveg összeállítására vonatkozó formai, „nyelvtani” szabályok összességét szintaktikai

szabályoknak hívjuk. A tartalmi, értelmezési, jelentésbeli szabályok alkotják a szemantikai

szabályokat. Egy magas szintő programozási nyelvet szintaktikai és szemantikai szabályainak

együttese határoz meg.

Minden processzor rendelkezik saját gépi nyelvvel, és csak az adott gépi nyelven írt

programokat tudja végrehajtani. A magas szintő nyelven megírt forrásszövegbıl tehát

valamilyen módon gépi nyelvő programokhoz kell eljutni. Erre kétféle technika létezik, a

fordítóprogramos és az interpreteres.

A fordítóprogram egy speciális program, amely a magas szintő nyelven megírt

forrásprogramból gépi kódú tárgyprogramot állít elı. A fordítóprogram a teljes

forrásprogramot egyetlen egységként kezeli, és mőködése közben a következı lépéseket hajtja

végre:

– lexikális elemzés

– szintaktikai elemzés

– szemantikai elemzés

– kódgenerálás

A lexikális elemzés során a forrásszöveget feldarabolja lexikális egységekre (l. 2.2. alfejezet),

a szintaktikai elemzés folyamán ellenırzi, hogy teljesülnek-e az adott nyelv szintaktikai

szabályai. Tárgyprogramot csak szintaktikailag helyes forrásprogramból lehet elıállítani. A

tárgyprogram már gépi nyelvő, de még nem futtatható. Belıle futtatható programot a

szerkesztı vagy kapcsolatszerkesztı állít elı. A futtatható programot a betöltı helyezi el a

tárban, és adja át neki a vezérlést. A futó program mőködését a futtató rendszer felügyeli. Az

ezekkel kapcsolatos részletes ismereteket az Operációs rendszerek 1 (illetve Operációs

rendszerek), és az Automaták és formális nyelvek tárgyak tárgyalják. Bennünket a

továbbiakban csak a fordítóprogram mőködése és a fordítási idejő események (a szintaktika

13

miatt), továbbá a futtató rendszer tevékenysége és a futási idıhöz kapcsolódó események (a

szemantika miatt) érintenek.

A fordítóprogramok általánosabb értelemben tetszıleges nyelvrıl tetszıleges nyelvre

fordítanak. A magas szintő nyelvek között is létezik olyan, amelyben olyan forrásprogramot

lehet írni, amely tartalmaz nem nyelvi elemeket is. Ilyenkor egy elıfordító segítségével

elıször a forrásprogramból egy adott nyelvő forrásprogramot kell generálni, ami aztán már

feldolgozható a nyelv fordítójával. Ilyen nyelv például a C.

Az interpreteres technika esetén is megvan az elsı három lépés, de az interpreter nem készít

tárgyprogramot. Utasításonként (vagy egyéb nyelvi egységenként) sorra veszi a

forrásprogramot, értelmezi azt, és végrehajtja. Rögtön kapjuk az eredményt, úgy, hogy lefut

valamilyen gépi kódú rutin.

Az egyes programnyelvek vagy fordítóprogramosak, vagy interpreteresek, vagy együttesen

alkalmazzák mindkét technikát.

Minden programnyelvnek megvan a saját szabványa, amit hivatkozási nyelvnek hívunk. Ebben

pontosan definiálva vannak a szintaktikai és a szemantikai szabályok. A szintaktika leírásához

valamilyen formalizmust alkalmaznak, a szemantikát pedig általában természetes emberi

nyelven (pl. angolul) adják meg. A hivatkozási nyelv mellett (néha vele szemben) léteznek az

implementációk. Ezek egy adott platformon (processzor, operációs rendszer) realizált

fordítóprogramok vagy interpreterek. Sok van belılük. Gyakran ugyanazon platformon is

létezik több implementáció. A probléma az, hogy az implementációk egymással és a

hivatkozási nyelvvel nem kompatibilisek. A magas szintő programozási nyelvek elmúlt 50

éves történetében napjainkig nem sikerült tökéletesen megoldani a hordozhatóság (ha egy

adott implementációban megírt programot átviszek egy másik implementációba, akkor az ott

fut és ugyanazt az eredményt szolgáltatja) problémáját.

Napjainkban a programok írásához grafikus integrált fejlesztıi környezetek (IDE - Integrated

Development Enviroment) állnak rendelkezésünkre. Ezek tartalmaznak szövegszerkesztıt,

fordítót (esetleg interpretert), kapcsolatszerkesztıt, betöltıt, futtató rendszert és belövıt.

14

1.3. A programnyelvek osztályozása

Imperatív nyelvek:

− Algoritmikus nyelvek: a programozó mikor egy programszöveget leír, algoritmust kódol,

és ez az algoritmus mőködteti a processzort.

− A program utasítások sorozata.

− Legfıbb programozói eszköz a változó, amely a tár közvetlen elérését biztosítja,

lehetıséget ad az abban lévı értékek közvetlen manipulálására. Az algoritmus a változók

értékeit alakítja, tehát a program a hatását a tár egyes területein lévı értékeken fejti ki.

− Szorosan kötıdnek a Neumann-architektúrához.

− Alcsoportjai:

− Eljárásorientált nyelvek

− Objektumorientált nyelvek

Deklaratív nyelvek:

− Nem algoritmikus nyelvek.

− Nem kötıdnek olyan szorosan a Neumann-architektúrához, mint az imperatív nyelvek.

− A programozó csak a problémát adja meg, a nyelvi implementációkba van beépítve a

megoldás megkeresésének módja.

− A programozónak nincs lehetısége memóriamőveletekre, vagy csak korlátozott módon.

− Alcsoportjai:

− Funkcionális (applikatív) nyelvek

− Logikai nyelvek

Máselvő (egyéb) nyelvek:

Olyan nyelveket sorolunk ebbe a kategóriába, amelyek máshová nem sorolhatók.

Nincs egységes jellemzıjük. Általában tagadják valamelyik imperatív jellemzıt.

15

1.4. A jegyzetben alkalmazott formális jelölésrendszer

A továbbiakban a szintaktikai szabályok formális leírásához az alábbi jelölésrendszert

használjuk:

Terminális: íráskép, ha a jelek betők, akkor nagybetős alak.

Nem terminális: kisbetős kategórianevek, ha több szóból állnak, akkor a szavak között

aláhúzás-jellel.

Alternatíva: |

Opció: []

Iteráció: …, mindig az elıtte álló szintaktikai elem tetszıleges számú ismétlıdését jelenti.

A fenti elemekkel szintaktikai szabályok formalizálhatók. Ezek bal oldalán egy nem

terminális áll, jobb oldalán pedig egy tetszıleges elemsorozat. A két oldalt kettıspont

választja el. A terminálisokat és nem terminálisokat Courier New betőtípussal szedtük. Ezt

alkalmazzuk a konkrét forrásprogramok megadásánál is. Amennyiben a formális leíró

karakterek részei az adott nyelvnek, akkor azokat a formalizálásnál vastagon szedjük ({, }, [,

], |).

Példa:

számjegy: { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }

egész_szám: [{ + | - }] számjegy …

1.5. A jegyzet tárgya

A Magas szintő programozási nyelvek 1 tantárgy az eljárásorientált nyelvek eszközeit,

fogalmait, filozófiáját, számítási modelljét tárgyalja. Konkrétan elemzi a legfontosabb, a

gyakorlatban szerepet játszó nyelvek (FORTRAN, COBOL, PL/I, Pascal, Ada, C) egyes

elemeit. De a jegyzet nem nyelvleírás! Az említett nyelvek eszközeinek csak egy részét

tárgyalja, gyakran azokat is leegyszerősített, nem teljes formában. A cél az, hogy a

16

programozási nyelvekben használható eszközökrıl egy modellszintő áttekintést, egy általános

absztrakt fogalomrendszert kapjunk, amely keretek között aztán az egyes nyelvek konkrét

megvalósításai elhelyezhetık. A konkrét nyelvi ismeretek az adott nyelvet tárgyaló

könyvekbıl és papíralapú illetve elektronikus dokumentációkból sajátíthatók el. De bármely

nyelven programozni megtanulni elméletben, „papíron” nem lehet. Ehhez sok-sok

programot kell megírni és lefuttatni!

Jelentıségük miatt kiemelt figyelmet fordítunk a C és az Ada nyelvekre.

Végül itt jegyezzük meg, hogy az eljárásorientált programozási nyelvek általában

fordítóprogramosak, csak ritkán interpreteresek.

17

2. ALAPELEMEK

Ebben a fejezetben egy programozási nyelv alapeszközeit, alapfogalmait ismerjük meg.

2.1. Karakterkészlet

Minden program forrásszövegének legkisebb alkotórészei a karakterek. A forrásszöveg

összeállításánál alapvetı a karakterkészlet, ennek elemei jelenhetnek meg az adott nyelv

programjaiban, ezekbıl állíthatók össze a bonyolultabb nyelvi elemek. Az eljárásorientált

nyelvek esetén ezek a következık:

– lexikális egységek

– szintaktikai egységek

– utasítások

– programegységek

– fordítási egységek

– program

Minden nyelv definiálja a saját karakterkészletét. A karakterkészletek között lényeges

eltérések lehetnek, de a programnyelvek általában a karaktereket a következı módon

kategorizálják:

– betők

– számjegyek

– egyéb karakterek

Minden programnyelvben bető az angol ABC 26 nagybetője. A nyelvek továbbá bető

kategóriájú karakternek tekintik gyakran az _ , $, # , @ karaktereket is. Ez viszont sokszor

implementációfüggı. Abban már eltérnek a nyelvek, hogy hogyan kezelik az angol ABC

kisbetőit. Egyes nyelvek (pl. FORTRAN, PL/I) szerint ezek nem tartoznak a bető kategóriába,

mások (pl. Ada, C, Pascal) szerint igen. Ezen utóbbi nyelvek különböznek abban, hogy

azonosnak tekintik-e a kis- és nagybetőket (Pascal), vagy különbözıeknek (C). A nyelvek

18

túlnyomó többsége a nemzeti nyelvi betőket nem sorolja a bető kategóriába, néhány késıbbi

nyelv viszont igen. Tehát ezekben például lehet „magyarul” írni a programot.

A számjegyeket illetıen egységes a nyelvek szemlélete, mindegyik a decimális számjegyeket

tekinti számjegy kategóriájú karakternek.

Az egyéb karakterek közé tartoznak a mőveleti jelek (pl. +, - , * , /), elhatároló jelek (pl. [,] ,

. , : , { , } , ’ , ", ;), írásjelek (pl. ?, !) és a speciális karakterek (pl. ~). A program

szövegében kitüntetett szerepet játszik a szóköz, mint egyéb karakter (l. 2.3. alfejezet).

A hivatkozási nyelv és az implementációk karakterkészlete eltérı is lehet. Minden

implementáció mögött egy-egy konkrét kódtábla (EBCDIC, ASCII, UNICODE) áll. Ez

meghatározza egyrészt azt, hogy egy- vagy több-bájtos karakterek kezelése lehetséges-e,

másrészt értelmezi a karakterek sorrendjét. Ugyanis nagyon kevés olyan hivatkozási nyelv van

(pl. Ada), amely definiálja a karakterek közötti sorrendet.

2.2. Lexikális egységek

A lexikális egységek a program szövegének azon elemei, melyeket a fordító a lexikális

elemzés során felismer és tokenizál (közbensı formára hoz). Fajtái a következık:

– többkarakteres szimbólum

– szimbolikus név

– címke

– megjegyzés

– literál

2.2.1. Többkarakteres szimbólumok

Olyan (jellemzıen egyéb karakterekbıl álló) karaktersorozatok, amelyeknek a nyelv tulajdonít

jelentést és ezek csak ilyen értelemben használhatók. Nagyon gyakran a nyelvben operátorok,

elhatárolók lehetnek. Például a C-ben többkarakteres szimbólumok a következık: ++, -- , &&,

/* , */ .

19

2.2.2. Szimbolikus nevek

Azonosító: Olyan karaktersorozat, amely betővel kezdıdik, és betővel vagy számjeggyel

folytatódhat. Arra való, hogy a program írója a saját programozói eszközeit megnevezze vele,

és ezután ezzel hivatkozzon rá a program szövegében bárhol. A hivatkozási nyelvek általában

nem mondanak semmit a hosszáról, az implementációk viszont értelemszerően korlátozzák

azt.

A következık szabályos C azonosítók (a C-ben az _ bető kategóriájú):

x

almafa

hallgato_azonosito

SzemelyNev

A következı karaktersorozatok viszont nem azonosítók:

x+y a + nem megengedett karakter

123abc betővel kell kezdıdnie

Kulcsszó (alapszó, fenntartott szó, védett szó, foglalt szó): Olyan karaktersorozat (általában

azonosító jellegő felépítéssel), amelynek az adott nyelv tulajdonít jelentést, és ez a jelentés a

programozó által nem megváltoztatható. Nem minden nyelv (pl. FORTRAN, PL/I) ismeri ezt

a fogalmat. Az utasítások általában egy-egy jellegzetes kulcsszóval kezdıdnek, a szakmai

szleng az utasítást gyakran ezzel nevezi meg (pl. IF-utasítás). Minden nyelvre nagyon

jellemzıek a kulcsszavai. Ezek gyakran hétköznapi angol szavak vagy rövidítések. Az

alapszavak soha nem használhatók azonosítóként.

A C-ben például alapszavak a következık:

if , for , case , break

Standard azonosító: Olyan karaktersorozat, amelynek a nyelv tulajdonít jelentést, de ez az

alapértelmezés a programozó által megváltoztatható, átértelmezhetı. Általában az

20

implementációk eszközeinek (pl. beépített függvények) nevei ilyenek. A standard azonosító

használható az eredeti értelemben, de a programozó saját azonosítóként is felhasználhatja. A

C-ben például standard azonosító a NULL.

2.2.3. Címke

Az eljárásorientált nyelvekben a végrehajtható utasítások (l. 4. fejezet) megjelölésére szolgál,

azért, hogy a program egy másik pontjáról hivatkozni tudjunk rájuk. Bármely végrehajtható

utasítás megcímkézhetı.

A címke maga egy speciális karaktersorozat, amely lehet elıjel nélküli egész szám, vagy

azonosító. A címke felépítése az egyes nyelvekben a következı:

– COBOL: nincs.

– FORTRAN: maximum 5 jegyő elıjel nélküli egész szám.

– Pascal: A szabvány Pascalban a címke maximum 4 számjegybıl álló elıjel nélküli egész

szám. Egyes implementációkban ezen kívül lehet azonosító is.

– PL/I, C, Ada: azonosító.

Eléggé általános, hogy a címke az utasítás elıtt áll és tıle kettıspont választja el. Az Adában

viszont a címke az utasítás elıtt a << és >> többkarakteres szimbólumok között szerepel.

2.2.4. Megjegyzés

A megjegyzés egy olyan programozási eszköz, amely segítségével a programban olyan

karaktersorozat helyezhetı el, amely nem a fordítónak szól, hanem a program szövegét olvasó

embernek. Ez olyan magyarázó szöveg, amely a program használatát segíti, mőködésérıl,

megírásának körülményeirıl, a felhasznált algoritmusról, az alkalmazott megoldásokról ad

információt. A megjegyzést a lexikális elemzés során a fordító ignorálja. A megjegyzésben a

karakterkészlet bármely karaktere elıfordulhat, és minden karakter egyenértékő, csak önmagát

képviseli, a karakter-kategóriáknak nincs jelentısége.

Egy megjegyzés forrásszövegben való elhelyezésére háromféle lehetıség van:

21

– A forrásszövegben elhelyezhetünk teljes megjegyzés sort (pl. FORTRAN, COBOL). Ekkor

a sor elsı karaktere (pl. C) jelzi a fordítónak, hogy a sor nem része a kódnak.

– Minden sor végén elhelyezhetünk megjegyzést. Ekkor a sor elsı része fordítandó kódot,

második része figyelmen kívül hagyandó karaktersorozatot tartalmaz. Például Adában a --

jeltıl a sor végéig tart a megjegyzés.

– Ahol a szóköz elhatároló jelként szerepel (l. 2.3. alfejezet), oda tetszıleges hosszúságú

megjegyzés elhelyezhetı, tehát ekkor nem vesszük figyelembe a sor végét. Ekkor a

megjegyzés elejét és végét jelölni kell egy-egy speciális karakterrel vagy többkarakteres

szimbólummal. Például a Pascalban { és } , a PL/I-ben és a C-ben /* és */ határolja ezt

a fajta megjegyzést.

A nyelvek egy része több fajta megjegyzést is alkalmaz.

A jó programozási stílusban elkészített programok szövege sok magyarázó megjegyzést

tartalmaz.

2.2.6. Literálok (Konstansok)

A literál olyan programozási eszköz, amelynek segítségével fix, explicit értékek építhetık be

a program szövegébe. A literáloknak két komponensük van: típus és érték. A literál mindig

önmagát definiálja. A literál felírási módja (mint speciális karaktersorozat) meghatározza

mind a típust, mind az értéket.

Az egyes programozási nyelvek meghatározzák saját literálrendszerüket, nézzük ezeket

sorban:

FORTRAN :

Egész literál:

[{ +|- }] számjegy [számjegy]…

A hétköznapi egész szám fogalmát veszi át: pl. +28 , -36 , 111 . Mögötte fixpontos belsı

ábrázolási mód áll.

22

Valós literálok:

Mögöttük lebegıpontos belsı ábrázolási mód áll.

– Tizedestört valós literál:

{ [{ +|- }] .el ıjel_nélküli_egész | egész .[el ıjel_nélküli_egész] }

Tehát szerepel benne a tizedespont. Például: +.01 , -3.4 , -3.0 , .3 , 28 .

– Exponenciális valós literál:

{ tizedestört | egész }{ E | D } egész

E: rövid lebegıpontos, D: hosszú lebegıpontos. A hétnél több számjegyő számot hosszú

lebegıpontos formában ábrázolja. Például: 1E3, -2.2D28 .

Komplex literál:

(valós,valós)

Például: (3.2,1.4) , ami nem más, mint a 3.2+1.4i komplex szám.

Hexadecimális literál:

Zhexa_számjegy [hexa_számjegy]…

Arra való, hogy karaktereket tudjunk kezelni a FORTRAN-ban.

Logikai literál:

.TRUE.

.FALSE.

Szöveges literál:

– Hollerith konstans:

nHkarakter [karakter]…

23

Az n elıjel nélküli egész, amely a karakterek számát adja meg. Hossza tetszıleges lehet, de

legalább egy karakter szükséges. Például: 4HALMA, 6HALMAFA .

 – Sztring literál:

'karakter [karakter]…'

COBOL :

Numerikus literál:

A FORTRAN exponenciális valós literáljának felel meg. Egy numerikus literál hossza az ıs

COBOL-ban 18 számjegyre volt maximálva.

Alfanumerikus literál:

Hossza maximum 100 karakter. Alakja:

"karakter [karakter]…"

PL/I :

Aritmetikai literálok:

 – Valós literálok:

 – – Decimális fixpontos literál:

Belsı ábrázolása decimális. A FORTRAN tizedestört valós literáljának felel meg.

 – – Decimális lebegıpontos literál:

A FORTRAN exponenciális valós literáljának felel meg, annyi különbséggel, hogy

nem szerepelhet benne D.

 – – Bináris fixpontos literál:

Alakja:

24

 { bitsorozat | [bitsorozat] .bitsorozat } B

Például: 1011.11B , 11B, .01B

 – – Bináris lebegıpontos literál:

Ábrázolása decimális. Alakja:

 bináris_fixpontosE [{ +|- }] számjegy [számjegy]B

 Például: 1.1E33B

– Imaginárius konstans:

 valósI

Lánc literálok:

– Karakterlánc:

 [(n)] ' [karakter]… '

 Az n elıjel nélküli egész. Például: (2) ' BA' , ami nem más, mint ' BABA' .

 – Bitlánc:

 [(n)] ' [bit]…'B

 Például: ' 111001 ' B.

Pascal:

Egész literál:

A FORTRAN egészének felel meg.

Tizedestört:

A FORTRAN tizedestörtje, de a tizedespont mindkét oldalán szerepelnie kell számjegynek.

Exponenciális:

Ugyanaz, mint a FORTRAN-ban, annyi különbséggel, hogy itt csak E bető van.

Sztring:

25

' [karakter]…'

C:

Rövid egész literálok:

– Decimális egész:

 Megfelel az eddigi egész literálnak.

 – Oktális egész:

 Nyolcas számrendszerbeli egész, kötelezıen 0-val kezdıdik. Például 011 .

– Hexadecimális egész:

 Tizenhatos számrendszerbeli egész, 0X-el, vagy 0x -el kezdıdik. Például 0X11.

Elıjel nélküli egész literál:

rövid_egész { U|u}

Hosszú egész literál:

{ egész | el ıjel_nélküli_egész }{L| l}

Valós literálok:

 – Hosszú valós (kétszeres pontosságú valós):

 Megfelel a FORTRAN valósának, de nincs D.

 – Rövid valós (egyszeres pontosságú valós):

 hosszú_valós {f|F}

 – Kiterjesztett valós (háromszoros pontosságú valós):

 hosszú_valós { l|L}

26

Karakter literál:

'karakter'

Az adott karakter belsı kódját képviseli, számolni is lehet vele. Egyes implementációk

megengedik, hogy az aposztrófok között több karakter álljon.

Sztring literál:

"[karakter]…"

Ada:

Numerikus literálok:

 – Egész literál:

számjegy [[_]számjegy]… [{ E|e}[+]számjegy [számjegy]…]

Például: 223_222e8 .

 – Valós literál:

Megfelel a Pascal valós literáljának.

– Bázisolt literál:

alap#egész [.el ıjel_nélküli_egész]# [{ E|e}[+|-]számjegy [számjegy]…]

Az alap a 2-16 számrendszer alapszámát adja meg decimálisan, az esetleges kitevı részben a

számjegyek decimálisak. A # jelek közötti számjegyek viszont az alap számrendszer

számjegyei. Például: 8#123.56#e-45 , 16#FF# .

Karakter literál:

' [karakter] '

Például: ' s ' .

27

Sztring literál:

" [karakter]…"

2.3. A forrásszöveg összeállításának általános szabályai

A forrásszöveg, mint minden szöveg, sorokból áll. Kérdés, hogy milyen szerepet játszanak a

sorok a programnyelvek szempontjából.

Kötött formátumú nyelvek: A korai nyelveknél (FORTRAN, COBOL) alapvetı szerepet

játszott a sor. Egy sorban egy utasítás helyezkedett el, tehát a sorvége jelezte az utasítás végét.

Ha egy utasítás nem fért el egy sorban, azt külön kellett jelezni (mintegy semlegesíteni a

sorvége hatását). Több utasítás viszont soha nem állhatott egy sorban. A sor bizonyos

pozícióira csak bizonyos programelemek kerülhettek. Tehát a programozónak kellett

igazodnia a feszes szabályokhoz.

Szabad formátumú nyelvek: Ezeknél a nyelveknél a sornak és az utasításnak semmi kapcsolata

nincs egymással. Egy sorba akárhány utasítás írható, egy utasítás akárhány sorban

elhelyezhetı. A sorban tetszıleges helyen jelenhetnek meg az egyes programelemek. A

sorvége nem jelenti az utasítás végét. Éppen ezért ezek a nyelvek bevezetik az utasítás

végjelet, ez elég általánosan a pontosvesszı. Tehát a forrásszövegben két pontosvesszı között

áll egy utasítás.

Az eljárásorientált nyelvekben a program szövegében a lexikális egységeket alapszóval,

valamilyen elhatároló jellel (zárójel, kettıspont, pontosvesszı, vesszı stb.), vagy ezek

hiányában egy szóközzel el kell választani egymástól. A fordítóprogram ez alapján ismeri föl

azokat a lexikális elemzés során. Az eljárásorientált nyelvekben tehát a szóköz általános

elhatároló szerepet játszik. A szóköznek nincs kiemelt szerepe a megjegyzésben és a sztring,

valamint karakter literálokban. Itt, mint minden más karakter, csak önmagát képviseli. Ahol

egy szóköz megengedett elhatárolóként, oda akárhányat is írhatunk. Egyéb elhatárolók mellett

is állhat szóköz, ez növeli a forrásszöveg olvashatóságát. A FORTRAN-ban a forrásszövegben

28

bárhol akárhány szóköz elhelyezhetı, ugyanis a fordítás azzal kezdıdik, hogy a fordító a

szóközöket ignorálja.

2.4. Adattípusok

Az adatabsztrakció elsı megjelenési formája az adattípus a programozási nyelvekben. Az

adattípus maga egy absztrakt programozási eszköz, amely mindig más, konkrét programozási

eszköz egy komponenseként jelenik meg. Az adattípusnak neve van, ami egy azonosító.

A programozási nyelvek egy része ismeri ezt az eszközt, más része nem. Ennek megfelelıen

beszélünk típusos és nem típusos nyelvekrıl. Az eljárásorientált nyelvek típusosak.

Egy adattípust három dolog határoz meg, ezek:

– tartomány

– mőveletek

– reprezentáció

Az adattípusok tartománya azokat az elemeket tartalmazza, amelyeket az adott típusú konkrét

programozási eszköz fölvehet értékként. Bizonyos típusok esetén a tartomány elemei

jelenhetnek meg a programban literálként.

Az adattípushoz hozzátartoznak azok a mőveletek, amelyeket a tartomány elemein végre

tudunk hajtani.

Minden adattípus mögött van egy megfelelı belsı ábrázolási mód. A reprezentáció az egyes

típusok tartományába tartozó értékek tárban való megjelenését határozza meg, tehát azt, hogy

az egyes elemek hány bájtra és milyen bitkombinációra képzıdnek le.

Minden típusos nyelv rendelkezik beépített (standard) típusokkal.

Egyes nyelvek lehetıvé teszik azt, hogy a programozó is definiálhasson típusokat. A saját

típus definiálási lehetıség az adatabsztrakciónak egy magasabb szintjét jelenti, segítségével a

valós világ egyedeinek tulajdonságait jobban tudjuk modellezni.

29

A saját típus definiálása általában szorosan kötıdik az absztrakt adatszerkezetekhez (l.

Adatszerkezetek és algoritmusok).

Saját típust úgy tudunk létrehozni, hogy megadjuk a tartományát, a mőveleteit és a

reprezentációját. Szokásos, hogy saját típust a beépített és a már korábban definiált saját

típusok segítségével adjuk meg. Általános, hogy a reprezentáció megadásánál így járunk el.

Csak nagyon kevés nyelvben lehet saját reprezentációt megadni (ilyen az Ada). Kérdés, hogy

egy nyelvben lehet-e a saját típushoz saját mőveleteket és saját operátorokat megadni. Van,

ahol igen, de az is lehetséges, hogy a mőveleteket alprogramok (l. 5.1. alfejezet) realizálják. A

tartomány megadásánál is alkalmazható a visszavezetés technikája, de van olyan lehetıség is,

hogy explicit módon adjuk meg az elemeket.

Az egyes adattípusok, mint programozási eszközök önállóak, egymástól különböznek. Van

azonban egy speciális eset, amikor egy típusból (ez az alaptípus) úgy tudok származtatni egy

másik típust (ez lesz az altípus), hogy leszőkítem annak tartományát, változatlanul hagyva

mőveleteit és reprezentációját. Az alaptípus és az altípus tehát nem különbözı típusok.

Az adattípusoknak két nagy csoportjuk van:

A skalár vagy egyszerő adattípus tartománya atomi értékeket tartalmaz, minden érték egyedi,

közvetlenül nyelvi eszközökkel tovább nem bontható. A skalár típusok tartományaiból vett

értékek jelenhetnek meg literálként a program szövegében.

A strukturált vagy összetett adattípusok tartományának elemei maguk is valamilyen típussal

rendelkeznek. Az elemek egy-egy értékcsoportot képviselnek, nem atomiak, az értékcsoport

elemeihez külön-külön is hozzáférhetünk. Általában valamilyen absztrakt adatszerkezet

programnyelvi megfelelıi. Literálként általában nem jelenhetnek meg, egy konkrét

értékcsoportot explicit módon kell megadni.

2.4.1. Egyszerő típusok

Minden nyelvben létezik az egész típus, sıt általában egész típusok. Ezek belsı ábrázolása

fixpontos. Az egyes egész típusok az ábrázoláshoz szükséges bájtok számában térnek el és

nyilván ez határozza meg a tartományukat is. Néhány nyelv ismeri az elıjel nélküli egész

típust, ennek belsı ábrázolása elıjel nélküli (direkt).

30

Alapvetıek a valós típusok, belsı ábrázolásuk lebegıpontos. A tartomány itt is az alkalmazott

ábrázolás függvénye, ez viszont általában implementációfüggı.

Az egész és valós típusokra közös néven, mint numerikus típusokra hivatkozunk. A

numerikus típusok értékein a numerikus és hasonlító mőveletek hajthatók végre.

A karakteres típus tartományának elemei karakterek, a karakterlánc vagy sztring típuséi pedig

karaktersorozatok. Ábrázolásuk karakteres (karakterenként egy vagy két bájt, az alkalmazott

kódtáblától függıen), mőveleteik a szöveges és hasonlító mőveletek.

Egyes nyelvek ismerik a logikai típust. Ennek tartománya a hamis és igaz értékekbıl áll,

mőveletei a logikai és hasonlító mőveletek, belsı ábrázolása logikai.

Speciális egyszerő típus a felsorolásos típus. A felsorolásos típust saját típusként kell

létrehozni. A típus definiálása úgy történik, hogy megadjuk a tartomány elemeit. Ezek

azonosítók lehetnek. Az elemekre alkalmazhatók a hasonlító mőveletek.

Egyes nyelvek értelmezik az egyszerő típusok egy speciális csoportját a, sorszámozott típust.

Ebbe a csoportba tartoznak általában az egész, karakteres, logikai és felsorolásos típusok. A

sorszámozott típus tartományának elemei listát (mint absztrakt adatszerkezetet) alkotnak, azaz

van elsı és utolsó elem, minden elemnek van megelızıje (kivéve az elsıt) és minden elemnek

van rákövetkezıje (kivéve az utolsót). Tehát az elemek között egyértelmő sorrend értelmezett.

A tartomány elemeihez kölcsönösen egyértelmően hozzá vannak rendelve a 0, 1, 2, ...

sorszámok. Ez alól kivételt képeznek az egész típusok, ahol a tartomány minden eleméhez

önmaga, mint sorszám van hozzárendelve.

Egy sorszámozott típus esetén mindig értelmezhetık a következı mőveletek:

– ha adott egy érték, meg kell tudni mondani a sorszámát, és viszont

– bármely értékhez meg kell tudni mondani a megelızıjét és a rákövetkezıjét

A sorszámozott típus az egész típus egyfajta általánosításának tekinthetı.

Egy sorszámozott típus altípusaként lehet származtatni az intervallum típust.

31

2.4.2. Összetett típusok

Az eljárásorientált nyelvek két legfontosabb összetett típusa a tömb (melyet minden nyelv

ismer) és a rekord (melyet csak a FORTRAN nem ismer).

A tömb típus a tömb absztrakt adatszerkezet megjelenése típus szinten. A tömb statikus és

homogén összetett típus, vagyis tartományának elemei olyan értékcsoportok, amelyekben az

elemek száma azonos, és az elemek azonos típusúak.

A tömböt, mint típust meghatározza:

− dimenzióinak száma

− indexkészletének típusa és tartománya

− elemeinek a típusa

Egyes nyelvek (pl. a C) nem ismerik a többdimenziós tömböket. Ezek a nyelvek a

többdimenziós tömböket úgy képzelik el, mint olyan egydimenziós tömbök, amelyek elemei

egydimenziós tömbök.

Többdimenziós tömbök reprezentációja lehet sor- vagy oszlopfolytonos. Ez általában

implementációfüggı, a sorfolytonos a gyakoribb.

Ha van egy tömb típusú programozási eszközünk, akkor a nevével az összes elemre együtt,

mint egy értékcsoportra tudunk hivatkozni (az elemek sorrendjét a reprezentáció határozza

meg). Az értékcsoport egyes elemeire a programozási eszköz neve után megadott indexek

segítségével hivatkozunk. Az indexek a nyelvek egy részében szögletes, másik részében kerek

zárójelek között állnak. Egyes nyelvek (pl. COBOL, PL/I) megengedik azt is, hogy a tömb egy

adott dimenziójának összes elemét (pl. egy kétdimenziós tömb egy sorát) együtt

hivatkozhassuk.

A nyelveknek a tömb típussal kapcsolatban a következı kérdéseket kell megválaszolniuk:

1. Milyen típusúak lehetnek az elemek?

• Minden nyelv bármelyik skalár típust megengedi.

• A modernebb nyelvek összetett típusokat is megengednek.

2. Milyen típusú lehet az index?

32

• Minden nyelv megengedi, hogy egész típusú legyen.

• A Pascalban és az Adában sorszámozott típusú is lehet.

3. Amikor egy tömb típust definiálunk, hogyan kell megadni az indextartományt?

• Lehet intervallum típusú értékkel (pl. Pascal, Ada), azaz meg kell adni az alsó és a felsı

határt.

• Más nyelveknél (pl. PL/I) az indextartomány alsó határa a nyelv által rögzített (általában

1), és csak a tartomány felsı határát kell megadni.

• A nyelvek egy szőkebb csoportja szerint csak a felsı határt kell megadni, de az alsót

nem a nyelv rögzíti, hanem a programozó.

• Ritkán (pl. C) az adott dimenzióban lévı elemek darabszámát kell megadni, az indexek

tartományát ez alapján a nyelv határozza meg.

4. Hogyan lehet megadni az alsó és a felsı határt, illetve a darabszámot?

• Literállal vagy nevesített konstanssal (pl. FORTRAN, COBOL, Pascal), vagy konstans

kifejezéssel (pl. C). Ezek a statikus tömbhatárokkal dolgozó nyelvek. Itt fordítási idıben

eldıl az értékcsoport elemeinek darabszáma.

• Kifejezéssel. (pl. PL/I, Ada). Ezek a dinamikus tömbhatárt alkalmazó nyelvek. Itt futási

idıben dıl el a darabszám, de a rögzítés után az természetesen nem változik.

A tömb típus alapvetı szerepet játszik az absztrakt adatszerkezetek folytonos ábrázolását

megvalósító implementációknál.

A rekord típus a rekord absztrakt adatszerkezet megjelenése típus szinten. A rekord típus

minden esetben heterogén, a tartományának elemei olyan értékcsoportok, amelyeknek elemei

különbözı típusúak lehetnek. Az értékcsoporton belül az egyes elemeket mezınek nevezzük.

Minden mezınek saját, önálló neve (ami egy azonosító) és saját típusa van. A különbözı

rekord típusok mezıinek neve megegyezhet.

A nyelvek egy részében (pl. C) a rekord típus statikus, tehát a mezık száma minden

értékcsoportban azonos. Más nyelvek esetén (pl. Ada) van egy olyan mezıegyüttes, amely

minden értékcsoportban szerepel (a rekord fix része), és van egy olyan mezıegyüttes,

33

amelynek mezıi közül az értékcsoportokban csak bizonyosak szerepelnek (a rekord változó

része). Egy külön nyelvi eszköz (a diszkriminátor) szolgál annak megadására, hogy az adott

konkrét esetben a változó rész mezıi közül melyik jelenjen meg.

Az ısnyelvek (pl. PL/I, COBOL) többszintő rekord típussal dogoznak. Ez azt jelenti, hogy egy

mezı felosztható újabb mezıkre, tetszıleges mélységig, és típus csak a legalsó szintő

mezıkhöz rendelhetı, de az csak egyszerő típus lehet. A késıbbi nyelvek (pl. Pascal, C, Ada)

rekord típusa egyszintő, azaz nincsenek almezık, viszont a mezık típusa összetett is lehet.

Egy rekord típusú programozási eszköz esetén az eszköz nevével az értékcsoport összes

mezıjére hivatkozunk egyszerre (a megadás sorrendjében).

Az egyes mezıkre külön minısített névvel tudunk hivatkozni, ennek alakja:

eszköznév.mez ınév

Az eszköz nevével történı minısítésre azért van szükség, mert a mezık nevei nem

szükségszerően egyediek.

A rekord típus alapvetı szerepet játszik az input-outputnál.

2.4.3. Mutató típus

A mutató típus lényegében egyszerő típus, specialitását az adja, hogy tartományának elemei

tárcímek. A mutató típus segítségével valósítható meg a programnyelvekben az indirekt

címzés. A mutató típusú programozási eszköz értéke tehát egy tárbeli cím, így azt

mondhatjuk, hogy az adott eszköz a tár adott területét címzi, az adott tárterületre „mutat”. A

mutató típus egyik legfontosabb mővelete a megcímzett tárterületen elhelyezkedı érték

elérése.

A mutató típus tartományának van egy speciális eleme, amely nem valódi tárcím. Tehát az

ezzel az értékkel rendelkezı mutató típusú programozási eszköz „nem mutat sehova”. A

nyelvek ezt az értéket általában beépített nevesített konstanssal kezelik (az Adában és a C-ben

ennek neve NULL).

A mutató típus alapvetı szerepet játszik az absztrakt adatszerkezetek szétszórt

reprezentációját kezelı implementációknál.

34

2.5. A nevesített konstans

A nevesített konstans olyan programozási eszköz, amelynek három komponense van:

– név

– típus

– érték

A nevesített konstanst mindig deklarálni kell.

A program szövegében a nevesített konstans a nevével jelenik meg, és az mindig az

értékkomponenst jelenti. A nevesített konstans értékkomponense a deklarációnál eldıl, és nem

változtatható meg a futás folyamán.

A nevesített konstans szerepe egyrészt az, hogy bizonyos sokszor elıforduló értékeket

„beszélı” nevekkel látunk el, és ily módon az érték szerepkörére tudunk utalni a szövegben.

Másrészt viszont, ha a program szövegében meg akarjuk változtatni ezt az értéket, akkor nem

kell annak valamennyi elıfordulását megkeresni és átírni, hanem elegendı egy helyen, a

deklarációs utasításban végrehajtani a módosítást.

A nevesített konstanssal kapcsolatban az egyes nyelveknek a következı kérdéseket kell

megválaszolniuk:

1. Létezik-e a nyelvben beépített nevesített konstans?

2. A programozó definiálhat-e saját nevesített konstanst?

3. Ha igen, milyen típusút?

4. Hogyan adható meg a nevesített konstans értéke?

A válaszok:

FORTRAN-ban és PL/I-ben nincs nevesített konstans, COBOL-ban pedig csak beépített van.

A C-ben van beépített nevesített konstans és a programozó többféleképpen tud létrehozni

sajátot. A legegyszerőbb az elıfordítónak szóló

35

#define név literál

makró használata. Ekkor az elıfordító a forrásprogramban a név minden elıfordulását

helyettesíti a literál lal.

Pascalban és Adában van beépített nevesített konstans és a programozó is definiálhat saját

nevesített konstanst, egyszerő és összetett típusút egyaránt. A Pascalban az értéket literállal,

Adában kifejezés segítségével tudjuk megadni.

2.6. A változó

A változó olyan programozási eszköz, amelynek négy komponense van:

– név

– attribútumok

– cím

– érték

A név egy azonosító. A program szövegében a változó mindig a nevével jelenik meg, az

viszont bármely komponenst jelentheti. Szemlélhetjük úgy a dolgokat, hogy a másik három

komponenst a névhez rendeljük hozzá.

Az attribútumok olyan jellemzık, amelyek a változó futás közbeni viselkedését határozzák

meg. Az eljárásorientált nyelvekben (általában a típusos nyelvekben) a legfıbb attribútum a

típus, amely a változó által felvehetı értékek körét határolja be. Változóhoz attribútumok

deklaráció segítségével rendelıdnek. A deklarációnak különbözı fajtáit ismerjük.

Explicit deklaráció: A programozó végzi explicit deklarációs utasítás segítségével. A változó

teljes nevéhez kell az attribútumokat megadni. A nyelvek általában megengedik, hogy

egyszerre több változónévhez ugyanazokat az attribútumokat rendeljük hozzá.

Implicit deklaráció: A programozó végzi, betőkhöz rendel attribútumokat egy külön

deklarációs utasításban. Ha egy változó neve nem szerepel explicit deklarációs utasításban,

akkor a változó a nevének kezdıbetőjéhez rendelt attribútumokkal fog rendelkezni, tehát az

azonos kezdıbetőjő változók ugyanolyan attribútumúak lesznek.

36

Automatikus deklaráció: A fordítóprogram rendel attribútumot azokhoz a változókhoz,

amelyek nincsenek explicit módon deklarálva, és kezdıbetőjükhöz nincs attribútum rendelve

egy implicit deklarációs utasításban. Az attribútum hozzárendelése a név valamelyik karaktere

(gyakran az elsı) alapján történik.

Az eljárásorientált nyelvek mindegyike ismeri az explicit deklarációt, és egyesek csak azt

ismerik. Az utóbbiak általánosságban azt mondják, hogy minden névvel rendelkezı

programozói eszközt explicit módon deklarálni kell.

A változó címkomponense a tárnak azt a részét határozza meg, ahol a változó értéke

elhelyezkedik. A futási idı azon részét, amikor egy változó rendelkezik címkomponenssel, a

változó élettartamának hívjuk.

Egy változóhoz cím rendelhetı az alábbi módokon.

Statikus tárkiosztás: A futás elıtt eldıl a változó címe, és a futás alatt az nem változik.

Amikor a program betöltıdik a tárba, a statikus tárkiosztású változók fix tárhelyre kerülnek.

Dinamikus tárkiosztás: A cím hozzárendelését a futtató rendszer végzi. A változó akkor kap

címkomponenst, amikor aktivizálódik az a programegység, amelynek ı lokális változója, és a

címkomponens megszőnik, ha az adott programegység befejezi a mőködését. A

címkomponens a futás során változhat, sıt vannak olyan idıintervallumok, amikor a

változónak nincs is címkomponense.

A programozó által vezérelt tárkiosztás: A változóhoz a programozó rendel címkomponenst

futási idıben. A címkomponens változhat, és az is elképzelhetı, hogy bizonyos

idıintervallumokban nincs is címkomponens. Három alapesete van:

– A programozó abszolút címet rendel a változóhoz, konkrétan megadja, hogy hol

helyezkedjen el.

– Egy már korábban a tárban elhelyezett programozási eszköz címéhez képest mondja meg,

hogy hol legyen a változó elhelyezve, vagyis relatív címet ad meg. Lehet, hogy a

programozó az abszolút címet nem is ismeri.

37

– A programozó csak azt adja meg, hogy mely idıpillanattól kezdve legyen az adott

változónak címkomponense, az elhelyezést a futtató rendszer végzi. A programozó nem

ismeri az abszolút címet.

Mindhárom esetben lennie kell olyan eszköznek, amivel a programozó megszüntetheti a

címkomponenst.

A programozási nyelvek általában többféle címhozzárendelést ismernek, az eljárásorientált

nyelveknél általános a dinamikus tárkiosztás. A változók címkomponensével kapcsolatos a

többszörös tárhivatkozás esete. Errıl akkor beszélünk, amikor két különbözı névvel, esetleg

különbözı attribútumokkal rendelkezı változónak a futási idı egy adott pillanatában azonos a

címkomponense és így értelemszerően az értékkomponense is. Így ha az egyik változó értékét

módosítjuk, akkor a másiké is megváltozik. A korai nyelvekben (pl. FORTRAN, PL/I) erre

explicit nyelvi eszközök álltak rendelkezésre, mert bizonyos problémák megoldása csak így

volt lehetséges. A szituáció viszont elıidézhetı (akár véletlenül is) más nyelvekben is, és ez

nem biztonságos kódhoz vezethet.

A változó értékkomponense mindig a címen elhelyezett bitkombinációként jelenik meg. A

bitkombináció felépítését a típus által meghatározott reprezentáció dönti el.

Egy változó értékkomponensének meghatározására a következı lehetıségek állnak

rendelkezésünkre:

Értékadó utasítás: Az eljárásorientált nyelvek leggyakoribb utasítása, az algoritmusok

kódolásánál alapvetı. Alakja az egyes nyelvekben:

FORTRAN:

 változónév = kifejezés

COBOL:

 MOVE érték TO változó_név [, változónév]…

PL/I:

 változónév [, változónév]… = kifejezés;

Pascal:

 változónév := kifejezés

38

C:

 változónév = kifejezés;

Ada:

 változónév := kifejezés;

Az értékadó utasítás bal oldalán a változó neve általában a címkomponenst, kifejezésben az

értékkomponenst jelenti. Az értékadó utasítás esetén a mőveletek elvégzésének sorrendje

implementációfüggı. Általában a baloldali változó címkomponense dıl el elıször.

A típusegyenértékőséget (l. 3. fejezet) valló nyelvekben a kifejezés típusának azonosnak kell

lennie a változó típusával, a típuskényszerítést valló nyelveknél pedig mindig a kifejezés

típusa konvertálódik a változó típusára.

Input: A változó értékkomponensét egy perifériáról kapott adat határozza meg. Részletesen l.

13. fejezet.

Kezdıértékadás: Két fajtája van. Explicit kezdıértékadásnál a programozó explicit

deklarációs utasításban a változó értékkomponensét is megadja. Amikor a változó

címkomponenst kap, akkor egyben az értéket reprezentáló bitsorozat is beállítódik.

Megadható az értékkomponens literál vagy kifejezés segítségével.

A hivatkozási nyelvek egy része azt mondja, hogy mindaddig, amíg a programozó valamilyen

módon nem határozza meg egy változó értékkomponensét, az határozatlan, tehát nem

használható föl. Ez azért van, mert amikor egy változó címkomponenst kap, akkor az adott

memóriaterületen tetszıleges bitkombináció („szemét”) állhat, amivel nem lehet mit kezdeni.

Van olyan hivatkozási nyelv, amely az automatikus kezdıértékadás elvét vallja. Ezeknél a

nyelveknél, ha a programozó nem adott explicit kezdıértéket, akkor a címkomponens

hozzárendelésekor a hivatkozási nyelv által meghatározott bitkombináció kerül beállításra

(„nullázódnak a változók”). A hivatkozási nyelvek harmadik része nem mond semmit errıl a

dologról. Viszont az implementációk túlnyomó része megvalósítja az automatikus

kezdıértékadást, akár még a hivatkozási nyelv ellenében is.

39

2.7. Alapelemek az egyes nyelvekben

Turbo Pascal:

A Pascalban minden programozói eszközt explicit módon deklarálni kell.

A Turbo Pascal típusrendszere az alábbi:

egyszerő típusok

 sorszámozott

 elıredefiniált

 karakteres (char)

 logikai (boolean)

 egész (integer , shortint , longint , byte , word)

 felsorolásos

 intervallum

 valós

string (egyszerőnek és összetettnek is tekinthetı egyszerre, mint karakterlánc, illetve

mint karakterek egydimenziós tömbje)

összetett típusok

 tömb (array)

 rekord (record)

 halmaz (set)

 állomány (file)

 objektum (object)

mutató (pointer)

A tömb típus megadásának formája:

ARRAY [intervallum [, intervallum]…] OF elemtípus

Nevesített konstans deklarációja:

CONST név=literál; [név=literál;]…

40

Változó deklarációja:

VAR név : típus; [név : típus;]…

Saját típus létrehozása:

TYPE név típusleírás; [név típusleírás;]…

Az így létrehozott típus minden más típustól különbözni fog.

Ada:

A programozónak minden saját eszközt explicit módon deklarálni kell.

Az Ada típusrendszere az alábbi:

skalár típusok

 felsorolásos

 egész (integer)

 karakteres (character)

 logikai (boolean)

 valós (float)

összetett típusok

 tömb (array)

 rekord (record)

mutató típus(access)

privát típus (private)

A skalár típus sorszámozott típus. Az intervallum altípust az Ada a következıképpen képzi:

RANGE alsó_határ..fels ı_határ

Az explicit deklarációs utasítás a következıképpen néz ki:

név [, név]… : [CONSTANT] típus [:= kifejezés];

41

Ha a CONSTANT alapszó szerepel, akkor nevesített konstanst, ha nem szerepel, akkor változót

deklaráltunk. A kifejezés a nevesített konstansnál kötelezı, ez definiálja az értékét. Változó

esetén pedig ezzel lehet explicit kezdıértéket adni.

Például:

A: constant integer:=111;

B: constant integer:=A*22+56;

X: real;

Y: real:=1.0;

Saját, minden más típustól különbözı típus deklarálása:

TYPE név IS típusleírás;

Altípus deklarálása:

SUBTYPE név IS típusleírás;

Például:

type BYTE is range 0..255;

subtype KISBETU is character range 'a'.. 'z';

Felsorolásos típus létrehozása saját típusként:

type HONAP is (Januar, Februar, Marcius, Aprilis, M ajus, Junius,

Julius, Augusztus, Szeptember, Oktober, November, D ecember);

type NYARI_HONAP is (Junius, Julius, Augusztus);

Ebben az esetben ugyanaz az azonosító két felsorolásos típus tartományában is szerepel, tehát

hivatkozáskor meg kell mondani, hogy melyik típus elemérıl van szó. Az Ada ilyenkor

minısít a típus nevével:

HONAP'ORD(Augusztus)

42

Az Adában dinamikusak a tömbhatárok. Definiálható olyan saját tömb típus, ahol nem adjuk

meg elıre az indexek tartományát, csak akkor tesszük meg, amikor egy deklarációban

felhasználjuk a típust.

Például:

type T is array(integer<>,integer<>);

A:T(0..10,0..10);

C:

A C típusrendszere a következı:

aritmetikai típusok

 integrális típusok

 egész (int , short [int], long [int])

 karakter (char)

 felsorolásos

 valós (float , double , long double)

származtatott típusok

 tömb

 függvény

 mutató

 struktúra

 union

void típus

Az aritmetikai típusok az egyszerő, a származtatottak az összetett típusok a C-ben. Az

aritmetikai típusok tartományának elemeivel aritmetikai mőveletek végezhetık. A karakter

típus tartományának elemeit a belsı kódok alkotják. Logikai típus nincs, a hamisnak az int

0 felel meg, minden más int értéket pedig igaznak tekint a C. A hasonlító és a rövidzár

logikai mőveletek igaz esetén int 1 értéket adnak. Az egészek és karakter típus elıtt

43

szerepeltethetı unsigned típusminısítı nem elıjeles (direkt) ábrázolást, a signed elıjeles

ábrázolást jelöl. A struktúra egy fix szerkezető rekord, a union egy olyan, csak változó részt

tartalmazó rekord, amelynél minden konkrét esetben pontosan egyetlen mezı van jelen. A

void típus tartománya üres, így reprezentációja és mőveletei sincsenek.

A felsorolásos típusok tartományai nem fedhetik át egymást. A tartomány elemei int típusú

nevesített konstansoknak tekinthetık. Az értékük egész literálokkal beállítható, de ha nincs

explicit értékadás, akkor a felsorolás sorrendjében 0-ról indul az értékük és egyesével

növekszik. Ha valamelyik elem értékét megadtuk és a következıét nem, akkor annak értéke az

elızı értékétıl 1-gyel nagyobb érték lesz. Különbözı elemekhez ugyanaz az érték

hozzárendelhetı. A felsorolásos típus megadásának formája:

ENUM név {azonosító [= konstans_kifejezés]

 [, azonosító [= konstans_kifejezés]]… };

Példa:

enum szinek {VOROS=11, NARANCS=9, SARGA=7, ZOLD=5, KEK=3, IBOLYA=3};

Az explicit deklarációs utasítás a következıképpen néz ki:

[CONST] típusleírás eszközazonosítás [= kifejezés]

 [, eszközazonosítás [= kifejezés]… ;

A CONST megadása esetén nevesített konstanst deklarálunk (ekkor a kifejezés annak

értékét, a típusleírás annak típusát definiálja, és az eszközazonosítás azonosító lehet),

egyébként viszont a típusleírás és az eszközazonosítás alapján meghatározott

programozási eszközt. Ha ez változó, akkor a kifejezés segítségével explicit kezdıérték

adható neki. Az utóbbi esetben az eszközazonosítás helyén az alábbiak szerepelhetnek

a megadott jelentéssel:

azonosító : típusleírás típusú változó

(azonosító) : típusleírás visszatérési típussal rendelkezı függvényt címzı mutató

 típusú változó

44

*azonosító : típusleírás típusú eszközt címzı mutató típusú változó

azonosító() : típusleírás visszatérési típusú függvény

azonosító []: típusleírás típusú elemeket tartalmazó tömb típusú változó

és ezek tetszıleges kombinációja. A típusleírás ugyanezeket a konstrukciókat

tartalmazhatja a típusnevek mellett.

Példa:

int i, *j, f(), *g(), a[17], *b[8];

Ebben a deklarációs utasításban az i egész típusú a j egészet címzı mutató típusú, az a

egészeket tartalmazó 17 elemő egydimenziós tömb típusú, a b egészeket címzı mutató típusú

elemeket tartalmazó 8 elemő egydimenziós tömb típusú változó; az f egész visszatérési

típusú, a g pedig egészeket címzı mutató visszatérési típusú függvény.

Saját típus definiálása:

TYPEDEF típusleírás név [, típusleírás név]… ;

Nem hoz létre új típust, csak típus név szinonimát.

Struktúra deklarálása:

STRUCT [struktúratípus_név] {mezı_deklarációk } [változólista];

Union deklarálása:

UNION [uniontípus_név] {mezı_deklarációk } [változólista];

45

A C csak egydimenziós tömböket kezel. Az indexek darabszámát kell megadni és az index 0-

tól darabszám-1 -ig fut. A C89 hivatkozási nyelv statikus tömbhatárokat ismer, de egyes

implementációk (pl. GNU C), illetve a C99 dinamikusakat is kezelnek.

A C a tömböt mindig mutató típusként kezeli. Egy tömb neve egy olyan mutató típusú

nevesített konstans lesz, amely a tömb elsı elemét címzi.

A C-ben van automatikus deklaráció, ha egy névhez nem adunk visszatérési típust, akkor az

alapértelmezés szerint int lesz.

46

3. KIFEJEZÉSEK

A kifejezések szintaktikai eszközök. Arra valók, hogy a program egy adott pontján ott már

ismert értékekbıl új értéket határozzunk meg. Két komponensük van, érték és típus.

Egy kifejezés formálisan a következı összetevıkbıl áll:

− operandusok: Az operandus literál, nevesített konstans, változó vagy függvényhívás lehet.

Az értéket képviseli.

− operátorok: Mőveleti jelek. Az értékekkel végrehajtandó mőveleteket határozzák meg.

− kerek zárójelek: A mőveletek végrehajtási sorrendjét befolyásolják. Minden nyelv

megengedi a redundáns zárójelek alkalmazását.

A legegyszerőbb kifejezés egyetlen operandusból áll.

Attól függıen, hogy egy operátor hány operandussal végzi a mőveletet, beszélünk

egyoperandusú (unáris), kétoperandusú (bináris), vagy háromoperandusú (ternáris)

operátorokról.

A kifejezésnek három alakja lehet attól függıen, hogy kétoperandusú operátorok esetén az

operandusok és az operátor sorrendje milyen. A lehetséges esetek:

− prefix, az operátor az operandusok elıtt áll (* 3 5)

− infix, az operátor az operandusok között áll (3 * 5)

− postfix, az operátor az operandusok mögött áll (3 5 *)

Az egyoperandusú operátorok általában az operandus elıtt, ritkábban mögötte állnak. A

háromoperandusú operátorok általában infixek.

Azt a folyamatot, amikor a kifejezés értéke és típusa meghatározódik, a kifejezés

kiértékelésének nevezzük. A kiértékelés során adott sorrendben elvégezzük a mőveleteket,

elıáll az érték, és hozzárendelıdik a típus.

A mőveletek végrehajtási sorrendje a következı lehet:

− A mőveletek felírási sorrendje, azaz balról-jobbra.

− A felírási sorrenddel ellentétesen, azaz jobbról-balra.

47

− Balról-jobbra a precedencia táblázat figyelembevételével.

Az infix alak nem egyértelmő (l. Adatszerkezetek és algoritmusok). Az ilyen alakot

használó nyelvekben az operátorok nem azonos erısségőek. Az ilyen nyelvek operátoraikat

egy precedencia táblázatban adják meg. A precedencia táblázat sorokból áll, az egy sorban

megadott operátorok azonos erısségőek (prioritásúak, precedenciájúak), az elırébb szereplık

erısebbek. Minden sorban meg van adva még a kötési irány, amely megmondja, hogy az adott

sorban szereplı operátorokat milyen sorrendben kell kiértékelni, ha azok egymás mellett

állnak egy kifejezésben. A kötési irány lehet balról jobbra, vagy jobbról balra.

Egy infix alakú kifejezés kiértékelése a következıképpen történik:

Indulunk a kifejezés elején (balról-jobbra szabály), és összehasonlítjuk az 1. és 2. operátor

precedenciáját (ha csak egyetlen operátor van, akkor az általa kijelölt mőveletet végezzük el,

ha csak egyetlen operandus van, akkor annak értéke adja a kifejezés értékét, típusa a típusát).

Ha a baloldali erısebb, vagy azonos erısségőek és a precedencia táblázat adott sorában balról

jobbra kötési irány van, akkor végrehajtódik a baloldali operátor által kijelölt mővelet,

különben továbblépünk a kifejezésben (ha még van operátor), és hasonlítjuk a következı két

operátor precedenciáját. Ez alapján az elsınek elvégzendı mővelet egyértelmően

meghatározható, a folytatás viszont implementációfüggı. Ugyanis az elsı mővelet

végrehajtása után vagy visszalépünk a kifejezés elejére, és megint az elsı operátorral kezdjük

a további vizsgálatokat, vagy a kifejezésben továbblépünk, és csak akkor lépünk vissza az

elejére, amikor a kifejezés végére értünk.

Megjegyzés: A kifejezés kiértékelése természetesen futási idejő tevékenység. A

fordítóprogramok általában az infix kifejezésekbıl postfix kifejezéseket állítanak elı,

és ezek tényleges kiértékelése történik meg. A fentebb leírt lépések tehát igazában az

infix kifejezések átírására vonatkoznak.

A mőveletek elvégzése elıtt meg kell határozni az operandusok értékét. Ennek sorrendjét a

hivatkozási nyelvek egy része szabályozza (általában elıbb a baloldaliét), más része nem

mond róla semmit, a C pedig azt mondja, hogy tetszıleges (tehát implementációfüggı).

Az infix kifejezések esetén kell használni a zárójeleket, amelyek a precedencia táblázat

alapján következı végrehajtási sorrendet tudják felülbírálni. Egy bezárójelezett részkifejezést

48

mindig elıbb kell kiértékelni. Egyes nyelvek a kerek zárójeleket is szerepeltetik a precedencia

táblázatban, az elsı sorban.

A teljesen zárójelezett infix kifejezés egyértelmő, kiértékelésénél egyetlen sorrend létezik.

Az eljárásorientált nyelvek az infix alakot használják.

A kiértékelés szempontjából speciálisak azok a kifejezések, amelyekben logikai operátorok

szerepelnek. Ezeknél ugyanis úgyis eldılhet a kifejezés értéke, hogy nem végzem el az összes

kijelölt mőveletet. Például egy ÉS mővelet esetén, ha az elsı operandus értéke hamis, az

eredmény hamis lesz, függetlenül a második operandus értékétıl (bármilyen bonyolult

részkifejezéssel is adtuk meg azt).

A nyelvek az ilyen kifejezésekkel kapcsolatban a következıket vallják:

– Az ilyen kifejezést is végig kell értékelni (pl. FORTRAN), ez a teljes kiértékelés.

– Csak addig kell kiértékelni a kifejezést, amíg egyértelmően el nem dıl az eredmény. Ez a

rövidzár kiértékelés (pl. PL/I).

– A nyelvben vannak rövidzár, illetve nem rövidzár operátorok, a programozó döntheti el a

kiértékelés módját (pl. Adában nem rövidzár: and , or ; rövidzár: and then , or

else) .

– A kifejezés kiértékelését futási üzemmódként lehet beállítani (pl. Turbo Pascal).

A kifejezés típusának meghatározásánál kétféle elvet követnek a nyelvek. Vannak a

típusegyenértékőséget és vannak a típuskényszerítést vallók. Ugyanez a kérdéskör fölmerül az

értékadó utasításnál (l. 2.6. alfejezet) és a paraméterkiértékelésnél (l. 5.4. alfejezet) is.

A típusegyenértékőséget valló nyelvek azt mondják, hogy egy kifejezésben egy kétoperandusú

operátornak csak azonos típusú operandusai lehetnek. Ilyenkor nincs konverzió, az eredmény

típusa vagy a két operandus közös típusa, vagy azt az operátor dönti el (például hasonlító

mőveletek esetén az eredmény logikai típusú lesz).

A különbözı nyelvek szerint két programozási eszköz típusa azonos, ha azoknál fönnáll a

− deklaráció egyenértékőség: az adott eszközöket azonos deklarációs utasításban, együtt,

azonos típusnévvel deklaráltuk.

49

− név egyenértékőség: az adott eszközöket azonos típusnévvel deklaráltuk (esetleg

különbözı deklarációs utasításban).

− struktúra egyenértékőség: a két eszköz összetett típusú és a két típus szerkezete

megegyezik (például két 10-10 egészet tartalmazó tömbtípus, függetlenül az indexek

tartományától).

A típuskényszerítés elvét valló nyelvek esetén különbözı típusú operandusai lehetnek egy

kétoperandusú operátornak. A mőveletek viszont csak az azonos belsı ábrázolású

operandusok között végezhetık el, tehát különbözı típusú operandusok esetén konverzió van.

Ilyen esetben a nyelv definiálja, hogy egy adott operátor esetén egyrészt milyen

típuskombinációk megengedettek, másrészt, hogy mi lesz a mővelet eredményének a típusa.

A kifejezés kiértékelésénél minden mővelet elvégzése után eldıl az adott részkifejezés típusa

és az utoljára végrehajtott mőveletnél pedig a kifejezés típusa.

Egyes nyelvek (pl. Pascal, C) a numerikus típusoknál megengedik a típuskényszerítés egy

speciális fajtáját még akkor is, ha egyébként a típusegyenértékőséget vallják. Ezeknél a

nyelveknél beszélünk a bıvítés és szőkítés esetérıl. A bıvítés olyan típuskényszerítés, amikor

a konvertálandó típus tartományának minden eleme egyben eleme a céltípus tartományának is

(pl. egész → valós). Ekkor a konverzió minden további nélkül, értékvesztés nélkül végrehajtható. A

szőkítés ennek a fordítottja (pl. valós → egész), ekkor a konverziónál értékcsonkítás, esetleg

kerekítés történik. Ezeknél a nyelveknél a bıvítés automatikusan történik, a szőkítést viszont a

programozónak kell explicit módon elıírnia, különben fordítási hiba lép föl.

A nyelvek közül az Adában semmiféle típuskeveredés nem lehet, a PL/I viszont a teljes

konverzió híve.

Konstans kifejezés

Azt a kifejezést, amelynek értéke fordítási idıben eldıl, amelynek kiértékelését a fordító végzi

konstans kifejezésnek hívjuk. Operandusai literálok és nevesített konstansok lehetnek.

50

3.1. Kifejezés a C-ben

A C egy alapvetıen kifejezésorientált nyelv. Az aritmetikai típusoknál a típuskényszerítés

elvét vallja.

A mutató típus tartományának elemeivel összeadás és kivonás végezhetı, azok elıjel nélküli

egészeknek tekinthetık.

A tömb típusú eszköz neve mutató típusú, tehát

int i;

int a[10];

esetén a[i] jelentése *(a+i) .

A C kifejezésfogalmának rekurzív definíciója a következı:

kifejezés:

{ els ıdleges_kifejezés |

balérték++ |

balérték-- |

++balérték |

--balérték |

egy_operandusú_operátor kifejezés |

SIZEOF(kifejezés) |

SIZEOF(típusnév) |

(típusnév)kifejezés |

kifejezés két_operandusú_operátor kifejezés |

kifejezés?kifejezés:kifejezés |

balérték értékadó_operátor kifejezés |

kifejezés,kifejezés }

els ıdleges_kifejezés:

{ konstans |

51

változó |

(kifejezés) |

függvénynév(aktuális_paraméter_lista) |

tömbnév [kifejezés] |

balérték.azonosító |

els ıdleges_kifejezés->azonosító }

balérték :

{ azonosító |

tömbnév [kifejezés] |

balérték.azonosító |

els ıdleges_kifejezés->azonosító |

*kifejezés |

(balérték) }

A C precedencia táblázata a következı:

() [] . -> →

* & + - ! ~ ++ -- SIZEOF (típus) ←

* / % →

+ - →

>> << →

< > <= >= →

== != →

& →

^ →

| →

&& →

|| →

?: →

= += -= *= /= %= >>= <<= &= ^= |= ←

, →

Az utolsó oszlop a kötési irányt mutatja.

52

A C kifejezés formális leírásában a következı operátorokra hivatkoztunk:

− egy_operandusú_operátor : a precedencia táblázat 2. sorának elsı 6 operátora

− két_operandusú_operátor : a precedencia táblázat 3. - 12. sorának operátorai

− értékadó _operátor : a 14. sor operátorai

Az egyes operátorok értelmezése:

()

Egyrészt a szokásos értelmő kiemelést, a precedencia felülírását szolgálja, másrészt a

függvényoperátor.

[]

A tömboperátor.

.

A minısítı operátor, struktúra és union esetén használjuk, ha névvel minısítünk.

->

A mutatóval történı minısítés operátora.

*

Az indirekciós operátor. A mutató típusú operandusa által hivatkozott tárterületen elhelyezett

értékéket adja.

&

Az operandusának címét adja meg.

53

+

Plusz elıjel.

-

Mínusz elıjel.

!

Egyoperandusú operátor, integrális és mutató típusú operandusokra alkalmazható. Ha az

operandus értéke nem nulla, akkor az eredmény nulla, egyébként 1. Az eredmény int típusú

lesz.

~

Az egyes komplemens operátora.

++ és –-

Operandusának értékét növeli illetve csökkenti 1-el.

int x,n;

n=5;

x=n++;

esetén x értéke 5 lesz, az értékadás az n korábbi értékével történik.

x=++n;

esetén pedig 6 lesz, a megnövelt értékkel történik az értékadás.

Az n értéke mindkét esetben növelıdik.

sizeof(kifejezés)

A kifejezés típusának az ábrázolási hosszát adja bájtban.

sizeof(típus)

A típus ábrázoláshoz szükséges bájtok számát adja.

(típus)

54

Az explicit konverziós operátor.

*

Szorzás operátora.

/

Osztás operátora. Az egészek osztásakor egészosztás.

%

Maradékképzés operátora.

+

Összeadás operátora.

-

Kivonás operátora.

>> és <<

Léptetı operátorok. A baloldali operandust lépteti a jobboldali által meghatározott számú

bittel jobbra illetve balra.. Ha balra léptet, akkor 0-kat hoz be jobbról. Ha jobbra léptet, akkor

az elıjelbitet lépteti végig bal oldalon. Integrális típusú operandusokon mőködik.

<, >, <=, >=, = , !=

Hasonlító operátorok, eredményük int típusú, igaz esetben 1, hamisnál 0.

&, ̂ , |

Nem rövidzár logikai operátorok (és, kizáró vagy, vagy), integrális típuson mőködnek, a

megfelelı mőveletet bitenként hajtják végre.

55

&& és ||

Rövidzár logikai operátorok (és, vagy), int 0 vagy 1 értéket adnak.

? :

Háromoperandusú operátor, az ún. feltételes operátor. Ha az elsı operandus értéke nem 0,

akkor a mővelet eredményét a második operandus értéke határozza meg, egyébként a

harmadiké.

Például az(a>b)?a:b kifejezés az a és b értéke közül a nagyobbikat adja.

=, += , -= , *= , /= , %=, >>= , <<= , &= , ^= , |=

Értékadó operátorok. Az x operátor= y kifejezés megfelel a következı értékadásnak:

x=(x)operátor(y) . Az elsı operandus értékét írjuk felül.

,

A balról jobbra kiértékelést kényszeríti ki.

56

4. UTASÍTÁSOK

Az utasítások alkotják az eljárásorientált nyelveken megírt programok olyan egységeit,

amelyekkel egyrészt az algoritmusok egyes lépéseit megadjuk, másrészt a fordítóprogram ezek

segítségével generálja a tárgyprogramot. Két nagy csoportjuk van: a deklarációs és a

végrehajtható utasítások.

A deklarációs utasítások mögött nem áll tárgykód. Ezen utasítások teljes mértékben a

fordítóprogramnak szólnak, attól kérnek valamilyen szolgáltatást, üzemmódot állítanak be,

illetve olyan információkat szolgáltatnak, melyeket a fordítóprogram felhasznál a tárgykód

generálásánál. Alapvetıen befolyásolják a tárgykódot, de maguk nem kerülnek lefordításra. A

programozó a névvel rendelkezı saját programozási eszközeit tudja deklarálni.

A végrehajtható utasításokból generálja a fordítóprogram a tárgykódot. Általában a magas

szintő nyelvek végrehajtható utasításaiból több (néha sok) gépi kódú utasítás áll elı.

A végrehajtható utasításokat az alábbiak szerint csoportosíthatjuk:

1. Értékadó utasítás

2. Üres utasítás

3. Ugró utasítás

4. Elágaztató utasítások

5. Ciklusszervezı utasítások

6. Hívó utasítás

7. Vezérlésátadó utasítások

8. I/O utasítások

9. Egyéb utasítások

A 3-7. utasítások az ún. vezérlési szerkezetet megvalósító utasítások. Az eljárásorientált

nyelvek általában tartalmazzák az 1-5. utasításokat, egy részük pedig ismeri a 6-8. utasítás

fajtákat. A legnagyobb eltérés az egyéb utasítások terén tapasztalható. A nyelvek egy részében

nincs ilyen utasítás (pl. C), némelyikben viszont sok van belılük (pl. PL/I).

Vegyük sorra a végrehajtható utasításokat.

57

4.1. Értékadó utasítás

Feladata beállítani vagy módosítani egy (esetleg több) változó értékkomponensét a program

futásának bármely pillanatában. Ezt az utasítást már tárgyaltuk a változónál (l. 2.6. alfejezet).

4.2. Üres utasítás

Az eljárásorientált programnyelvek általában tartalmaznak üres utasítást, és vannak olyan

nyelvek (a korai nyelvek), melyekben a szintaktika olyan, hogy elengedhetetlen ennek

használata. Jelentısége viszont általánosságban abban áll, hogy segítségével egyértelmő

programszerkezet alakítható ki.

Az üres utasítás hatására a processzor egy üres gépi utasítást hajt végre.

Egyes nyelvekben az üres utasításnak van külön alapszava (pl. FORTRAN-ban a

CONTINUE, Adában a NULL) , máshol nincsen. Ez utóbbi nyelvekben az üres utasítást nem

jelöljük (pl. két utasítás-végjel között nem áll semmi).

4.3. Ugró utasítás

Az ugró (vagy feltétel nélküli vezérlésátadó) utasítás segítségével a program egy adott

pontjáról egy adott címkével ellátott végrehajtható utasításra adhatjuk át a vezérlést.

Általánosan használt alakja:

GOTO címke

A korai nyelvekben (FORTRAN, PL/I) GOTO nélkül gyakorlatilag nem lehet programot írni.

A késıbbi nyelvekben viszont minden program vezérlési szerkezete felírható a GOTO utasítás

használata nélkül, bár a nyelvek tartalmazzák azt. Az ugró utasítás nem fegyelmezett módon

történı használata veszélyeket hordoz magában, mert nem biztonságos, átláthatatlan, struktúra

nélküli kódot eredményezhet.

58

4.4. Elágaztató utasítások

4.4.1. Kétirányú elágaztató utasítás (feltételes utasítás)

A kétirányú elágaztató utasítás arra szolgál, hogy a program egy adott pontján két tevékenység

közül válasszunk, illetve egy adott tevékenységet végrehajtsunk vagy sem. A nyelvekben

meglehetısen általános a feltételes utasítás következı szerkezete:

IF feltétel THEN tevékenység [ELSE tevékenység]

A feltétel egy logikai (vagy annak megfelelı típusú) kifejezés.

Kérdés, hogy egy nyelv mit mond a tevékenység megadásáról. Egyes nyelvek (pl.

Pascal) szerint itt csak egyetlen végrehajtható utasítás állhat. Ha viszont a tevékenység olyan

összetett, hogy csak több utasítással tudjuk leírni, akkor utasítás zárójeleket kell alkalmazni.

Az utasítás zárójel a Pascal esetén BEGIN és END. Egy ilyen módon bezárójelezett

utasítássorozatot hívunk utasítás csoportnak. Az utasítás csoport formálisan egyetlen

utasításnak tekintendı. Más nyelvek (speciális szintaktikájuk miatt) megengedik, hogy a

tevékenység leírására tetszıleges végrehajtható utasítássorozatot alkalmazzunk (pl. Ada).

Végül a nyelvek harmadik csoportja azt mondja, hogy a tevékenység helyén vagy egyetlen

végrehajtható utasítás, vagy egy blokk (l. 5.6. alfejezet) állhat (pl. C).

A kétirányú elágaztató utasításnál beszélünk rövid (nem szerepel az ELSE-ág) és hosszú

(szerepel az ELSE-ág) alakról.

A kétirányú elágaztató utasítás szemantikája a következı:

Kiértékelıdik a feltétel. Ha az igaz, akkor végrehajtódik a THEN utáni tevékenység, és a

program az IF-utasítást követı utasításon folytatódik. Ha a feltétel értéke hamis, és van

ELSE- ág, akkor az ott megadott tevékenység hajtódik végre, majd a program az IF-utasítást

követı utasításon folytatódik, végül, ha nincs ELSE-ág, akkor ez egy üres utasítás.

Az IF-utasítások tetszılegesen egymásba ágyazhatók és természetesen akár az IF-ágban, akár

az ELSE-ágban újabb feltételes utasítás állhat. Ilyenkor felmerülhet a „csellengı ELSE”

problémája, amikor is a kérdés a következı: egy

IF ... THEN IF ... THEN ... ELSE ...

59

konstrukciójú feltételes utasítás esetén melyik IF-hez tartozik az ELSE-ág? Vagyis itt egy

olyan rövid IF-utasítás áll, amelybe be van ágyazva egy hosszú, vagy pedig egy hosszú IF-

utasítás THEN-ágában szerepel egy rövid?

A válasz többféle lehet:

a. A „csellengı ELSE” probléma kiküszöbölhetı, ha mindig hosszú IF-utasítást írunk fel,

úgy, hogy abban az ágban, amelyet elhagytunk volna, üres utasítás szerepel.

b. Ha a hivatkozási nyelv errıl nem mond semmit, akkor a dolog implementációfüggı.

Az implementációk többsége azt mondja, hogy egy szabad ELSE a legközelebbi,

ELSE-el még nem párosított THEN-hez tartozik, vagyis az értelmezés bentrıl kifelé

történik. Eszerint a fenti példánkban egy rövid IF-utasításba ágyaztunk egy hosszút.

c. A nyelv szintaktikája olyan, hogy egyértelmő a skatulyázás. Az Ada feltételes utasítása

a következı:

IF feltétel THEN végrehajtható_utasítások

[ELSEIF feltétel THEN végrehajtható_utasítások]…

[ELSE végrehajtható_utasítások]

END IF;

Végül megjegyezzük, hogy a C-ben a feltétel zárójelek között szerepel és nincs THEN

alapszó.

4.4.2. Többirányú elágaztató utasítás

A többirányú elágaztató utasítás arra szolgál, hogy a program egy adott pontján egymást

kölcsönösen kizáró akárhány tevékenység közül egyet végrehajtsunk. A tevékenységek közötti

választást egy kifejezés értékei szerint tehetjük meg. Szintaktikája és szemantikája

nyelvenként különbözı. Nézzük a lehetséges megoldásokat.

Turbo Pascal:

CASE kifejezés OF

konstanslista : tevékenység

60

[konstanslista : tevékenység]…

[ELSE tevékenység]

END;

A konstanslista literálok vagy intervallumok vesszıvel elválasztott sorozata. Egy literál

csak egy konstanslistában szerepelhet. A kifejezés és ennek megfelelıen a

konstanslista sorszámozott típusú lehet. Nem kötelezı a kifejezés minden lehetséges

értékére elıírni tevékenységet. A tevékenység egy utasítás vagy egy utasítás csoport lehet.

Mőködése:

A kifejezés kiértékelıdik, és az értéke a felírás sorrendjében hasonlításra kerül a

konstansokkal. Ha van egyezés, végrehajtódik a megfelelı konstanslista utáni

tevékenység, majd a CASE-utasítást követı utasítással folytatódik a program. Ha egyetlen

konstanssal sincs egyezés, de van ELSE-ág, akkor végrehajtódik az abban magadott

tevékenység , majd a CASE-utasítást követı utasítással folytatódik a program. Ha nincs

ELSE-ág, akkor ez egy üres utasítás.

Ada:

CASE kifejezés1 IS

WHEN { kifejezés |tartomány |OTHERS } [|{ kifejezés |tartomány |OTHERS }]…

 => végrehajtható_utasítások

[WHEN { kifejezés |tartomány |OTHERS } [|{ kifejezés |tartomány |OTHERS }]…

 => végrehajtható_utasítások]…

END CASE;

A WHEN-ágakban szereplı kifejezések és a tartományok értékeinek különbözniük kell.

WHEN OTHERS ágból egy szerepelhet, és utolsónak kell lennie. A kifejezés1 skalár

típusú lehet. A kifejezés1 minden lehetséges értékére elı kell írni valamilyen

tevékenységet.

Mőködése:

61

A kifejezés1 kiértékelıdik, és értéke a felírás sorrendjében hasonlításra kerül a WHEN-

ágakban megadott kifejezések és tartományok értékeivel. Ha van egyezés, akkor

végrehajtódnak a WHEN-ágban lévı utasítások, és a CASE-utasítást követı utasítással

folytatódik a program. Ha nincs egyezés sehol, de van WHEN OTHERS ág, akkor az abban

megadott utasítások hajtódnak végre, és a CASE-utasítást követı utasítással folytatódik a

program. Ha nincs WHEN OTHERS ág, akkor viszont futási hiba (kivétel) következik be. Ha

valamely értékekre nem akarunk csinálni semmit, akkor egy olyan WHEN OTHERS ágat kell

szerepeltetnünk, amely egy üres utasítást tartalmaz.

C:

SWITCH (kifejezés) {

CASE egész_konstans_kifejezés : [tevékenység]

[CASE egész_konstans_kifejezés : [tevékenység]]…

[DEFAULT: tevékenység]

};

A kifejezés típusának egészre konvertálhatónak kell lennie. A CASE-ágak értékei nem

lehetnek azonosak. A tevékenység végrehajtható utasítás, vagy blokk lehet. A DEFAULT-ág

bárhol szerepelhet.

Mőködése:

Kiértékelıdik a kifejezés , majd értéke a felírás sorrendjében hasonlításra kerül a CASE-

ágak értékeivel. Ha van egyezés, akkor végrehajtódik az adott ágban megadott tevékenység,

majd a program a következı ágakban megadott tevékenységeket is végrehajtja. Ha nincs

egyezés, de van DEFAULT-ág, akkor az ott megadott tevékenység hajtódik végre, és a

program a következı ágakban megadott tevékenységeket is végrehajtja. Ha nincs DEFAULT-

ág, akkor ez egy üres utasítás. Tehát a C-ben külön utasítás kell ahhoz, hogy kilépjünk a

SWITCH-utasításból, ha valamelyik ág tevékenységét végrehajtottuk (l. BREAK-utasítás -

4.7. alfejezet).

62

PL/I :

SELECT [(kifejezés1)] ;

WHEN (kifejezés [, kifejezés]…) tevékenység

[WHEN (kifejezés [, kifejezés]…) tevékenység]…

[OTHERWISE tevékenység]

END;

A kifejezések típusa tetszıleges. A tevékenység egy utasítás, egy utasítás csoport, vagy

egy blokk lehet.

Mőködése:

Ha szerepel a kifejezés1 , akkor mőködése megegyezik az Adáéval. Tehát a PL/I-ben is a

kifejezés1 minden lehetséges értékére elı kell írni valamilyen tevékenységet. Ha nem

szerepel, akkor a WHEN-ágakban megadott kifejezések értékét bitlánccá konvertálja és az

elsı olyan ágat választja ki, amelynek a bitjei nem csupa nullák. Ha nincs ilyen, akkor ez egy

üres utasítás.

A FORTRAN és a COBOL nem tartalmaz ilyen utasítást.

4.5. Ciklusszervezı utasítások

A ciklusszervezı utasítások lehetıvé teszik, hogy a program egy adott pontján egy bizonyos

tevékenységet akárhányszor megismételjünk.

Egy ciklus általános felépítése a következı:

 fej

 mag

 vég

Az ismétlésre vonatkozó információk vagy a fejben vagy a végben szerepelnek.

A mag az ismétlendı végrehajtható utasításokat tartalmazza.

63

A ciklusok mőködésénél megkülönböztetünk két szélsıséges esetet. Az egyik az, amikor a

mag egyszer sem fut le, ezt hívjuk üres ciklusnak. A másik az, amikor az ismétlıdés soha nem

áll le, ez a végtelen ciklus. A mőködés szerinti végtelen ciklus a programban nyilván

szemantikai hibát jelent, hiszen az sohasem fejezıdik be.

A programozási nyelvekben a következı ciklusfajtákat különböztetjük meg: feltételes, elıírt

lépésszámú, felsorolásos, végtelen és összetett ciklus.

Lássuk ezeket egyenként.

4.5.1. Feltételes ciklus

Ennél a ciklusnál az ismétlıdést egy feltétel igaz vagy hamis értéke szabályozza. A feltétel

maga vagy a fejben vagy a végben szerepel. Szemantikájuk alapján beszélünk kezdıfeltételes

és végfeltételes ciklusról.

Kezdıfeltételes ciklus:

A feltétel a fejben jelenik meg.

Mőködése:

Kiértékelıdik a feltétel. Ha igaz, végrehajtódik a ciklusmag, majd újra kiértékelıdik a feltétel,

és a ciklusmag mindaddig újra és újra lefut, amíg a feltétel hamissá nem válik. Tehát, ha

egyszer beléptünk a magba, akkor ott kell valamikor olyan utasításnak végrehajtódnia, amely

megváltoztatja a feltétel értékét.

A kezdıfeltételes ciklus lehet üres ciklus, ha a feltétel a legelsı esetben hamis. Lehet végtelen

ciklus is, ha a feltétel a legelsı esetben igaz és mindig igaz is marad.

Végfeltételes ciklus:

A feltétel általában a végben van, de vannak nyelvek, amelyekben a fej tartalmazza azt.

Mőködése:

64

Elıször végrehajtódik a mag, majd ezután kiértékelıdik a feltétel. Általában ha a feltétel

hamis, újra végrehajtódik a mag. Tehát az ismétlıdés mindaddig tart, míg a feltétel igazzá

nem válik. Vannak viszont olyan nyelvek, amelyek igazra ismételnek. Nyilván itt is a magban

kell gondoskodni a feltétel értékének megváltoztatásáról.

A végfeltételes ciklus soha nem lehet üres ciklus, a mag egyszer mindenféleképpen lefut.

Végtelen ciklus viszont lehet, ha a feltétel értéke a második ismétlés után nem változik meg.

4.5.2. Elıírt lépésszámú ciklus

Ennél a ciklusfajtánál az ismétlıdésre vonatkozó információk (az ún. ciklusparaméterek) a

fejben vannak. Minden esetben tartozik hozzá egy változó, a ciklusváltozó. A változó által

felvett értékekre fut le a ciklusmag. A változó az értékeit egy tartományból veheti föl. Ezt a

tartományt a fejben adjuk meg kezdı- és végértékével. A ciklusváltozó a tartománynak vagy

minden elemét fölveheti (beleértve a kezdı- és végértéket is), vagy csak a tartományban

szabályosan (ekvidisztánsan) elhelyezkedı bizonyos értékeket. Ekkor meg kell adni a

tartományban a felvehetı elemek távolságát meghatározó lépésközt. A változó az adott

tartományt befuthatja növekvıleg, illetve csökkenıleg, ezt határozza meg az irány.

Az elıírt lépésszámú ciklussal kapcsolatban a nyelveknek a következı kérdéseket kell

megválaszolniuk:

1. Milyen típusú lehet a ciklusváltozó?

• Minden nyelv megengedi az egész típust.

• Egyes nyelveknél sorszámozott típusú lehet.

• Van néhány nyelv, amelyik megengedi a valósat is.

• A kezdıérték, a végérték és a lépésköz típusa meg kell, hogy egyezzen a ciklusváltozó

típusával, vagy arra konvertálhatónak kell lennie.

2. Milyen formában lehet megadni a kezdıértéket, végértéket és a lépésközt?

• Minden nyelv esetén megengedett a literál, változó és nevesített konstans.

• Késıbbi nyelveknél kifejezéssel is megadható.

3. Hogyan határozódik meg az irány?

65

• A lépésköz elıjele dönti el – ha pozitív, akkor növekvı, ha negatív, akkor csökkenı.

Általában azok a nyelvek vallják ezt, melyekben a ciklusváltozó csak numerikus típusú

lehet.

• Külön alapszót kell használni.

4. Hányszor értékelıdnek ki a ciklusparaméterek?

• Általában egyszer, amikor a vezérlés a ciklushoz ér, és a ciklus mőködése alatt nem

változnak.

• Minden ciklusmag-végrehajtás elıtt újra meghatározódnak.

5. Hogyan fejezıdhet be a ciklus?

• Szabályos lefutás

- a ciklusparaméterek által meghatározott módon.

- a ciklus magjában külön utasítással.

• GOTO-utasítással, általában nem tekintjük szabályos befejezésnek.

6. Mi lesz a ciklusváltozó értéke a ciklus lefutása után?

• Ha GOTO-val ugrunk ki a ciklusból, akkor a ciklusváltozó értéke az utoljára felvett

érték lesz.

• Szabályos befejezés esetén a hivatkozási nyelvek egy része nem nyilatkozik errıl a

kérdésrıl, másik része azt mondja, hogy a ciklusváltozó értéke határozatlan.

• Az implementációk viszont a következıket mondják:

- A ciklusváltozó értéke az az érték, amelyre utoljára futott le a ciklus.

- A ciklusváltozó értéke az az érték, amire már éppen nem futott le a ciklus.

- A ciklusváltozó értéke határozatlan.

Mőködését tekintve az elıírt lépésszámú ciklus lehet elıltesztelı, vagy hátultesztelı. A

hivatkozási nyelveknek csak egy része definiálja ezt, ezért a mőködés gyakran

implementációfüggı. Az implementációk többsége inkább az elıltesztelı változatot valósítja

meg.

66

Mőködés elıltesztelı esetben:

A mőködés kezdetén meghatározódnak a ciklusparaméterek. Ezután a futtató rendszer

megvizsgálja, hogy a megadott iránynak megfelelıen a megadott tartomány nem üres-e. Ha

üres (pl. a [10..1] tartomány növekvıleg), akkor ez egy üres ciklus. Különben a ciklusváltozó

felveszi a kezdıértéket, és a mag lefut. Majd a futtató rendszer megvizsgálja, hogy az adott

tartományban, az adott irányban, az adott lépésköznek megfelelıen, a ciklusváltozó pillanatnyi

értékéhez képest van-e még olyan érték, amit a ciklusváltozó felvehet. Ha van, akkor felveszi

a következı ilyen értéket, és újra lefut a mag, ha nincs ilyen érték, akkor befejezıdik a ciklus

(szabályos befejezés).

Mőködés hátultesztelı esetben:

A mőködés kezdetén meghatározódnak a ciklusparaméterek. Ezután a ciklusváltozó felveszi a

kezdıértéket, és a mag lefut. Majd a futtató rendszer megvizsgálja, hogy az adott

tartományban, az adott irányban, az adott lépésköznek megfelelıen, a ciklusváltozó pillanatnyi

értékéhez képest van-e még olyan érték, amit a ciklusváltozó felvehet. Ha van, akkor felveszi

a következı ilyen értéket, és újra lefut a mag, ha nincs ilyen érték, akkor befejezıdik a ciklus.

Általában az eljárásorientált nyelvek megengedik, hogy a ciklusváltozónak értéket adjunk a

magban.

Az elıltesztelı elıírt lépésszámú ciklus lehet üres ciklus, a hátultesztelı viszont nem. Egyes

nyelvekben mindkét fajta lehet viszont végtelen ciklus.

4.5.3. Felsorolásos ciklus

A felsorolásos ciklus az elıírt lépésszámú ciklus egyfajta általánosításának tekinthetı. Van

ciklusváltozója, amely explicit módon megadott értékeket vesz fel, és minden felvett érték

mellett lefut a mag. A ciklusváltozót és az értékeket a fejben adjuk meg, ez utóbbiakat

kifejezéssel. A ciklusváltozó típusa általában tetszıleges. Nem lehet sem üres, sem végtelen

ciklus.

67

4.5.4. Végtelen ciklus

 A végtelen ciklus az a ciklusfajta, ahol sem a fejben, sem a végben nincs információ az

ismétlıdésre vonatkozóan. Mőködését tekintve definíció szerint végtelen ciklus, üres ciklus

nem lehet. Használatánál a magban kell olyan utasítást alkalmazni, amelyik befejezteti a

ciklust. Nagyon hatékony lehet eseményvezérelt alkalmazások implementálásánál.

4.5.5. Összetett ciklus

Az elızı négy ciklusfajta kombinációiból áll össze. A ciklusfejben tetszılegesen sok

ismétlıdésre vonatkozó információ sorolható föl, szemantikájuk pedig szuperponálódik.

Nagyon bonyolult mőködéső ciklusok építhetık fel a segítségével.

A nyelvek egy részében vannak olyan vezérlésátadó utasítások, amelyeket bármilyen fajta

ciklus magjában kiadva, a ciklus szabályos befejezését eredményezik. Végtelen ciklus

szabályosan csak így fejeztethetı be.

4.6. Ciklusszervezı utasítások az egyes nyelvekben

FORTRAN :

Elıírt lépésszámú ciklus:

 DO címke változó = k, v [,l]

 végrehajtható_utasítások

címke végrehajtható_utasítás

A változó , k , v , l típusa csak egész lehet. A k , v , l (kezdıérték, végérték, lépésköz) csak

literál vagy változó lehet, kifejezés nem. Ha nincs megadva az l , akkor a lépésköz

alapértelmezett értéke 1, és az irány növekvı. Ha adott az l , akkor az irányt annak elıjele adja

meg. Implementációi általában hátultesztelıek. A ciklus végén nem lehet vezérlı utasítás,

ilyenkor üres utasítást kell oda írni.

68

A késıbbi verziókba bekerülnek a kezdı- és végfeltételes ciklusok is.

PL/I :

Benne minden ciklusfajta létezik.

Kezdıfeltételes ciklus:

DO WHILE(kifejezés);

végrehajtható_utasítások

END;

A kifejezés bitlánccá konvertálható kell legyen, akkor igaz, ha nem minden bit értéke 0.

Végfeltételes ciklus:

DO UNTIL(kifejezés);

végrehajtható_utasítások

END;

Elıírt lépésszámú ciklus:

DO változó = k TO v [BY l]

végrehajtható_utasítások

END;

A változó aritmetikai vagy bitlánc típusú. Az irányt az l elıjele dönti el. Ha nem szerepel a

TO v , akkor végtelen ciklus.

Felsorolásos ciklus:

DO változó = kifejezés1 [, kifejezés2]… ;

végrehajtható_utasítások

END;

A kifejezés típusa tetszıleges.

69

Minden ciklusfajta kombinálható az összes többivel, így jönnek létre az összetett ciklusok.

Pascal:

Kezdıfeltételes ciklus:

WHILE feltétel DO végrehajtható_utasítás

Végfeltételes ciklus:

REPEAT végrehajtható_utasítások UNTIL feltétel

Elıírt lépésszámú ciklus:

FOR változó = k { TO | DOWNTO } v DO utasítás

Elıltesztelı. Az irányt alapszó dönti el, TO esetén növekvı, DOWNTO esetén csökkenı. A

lépésközt a Pascal nem értelmezi.

Ada:

Kezdıfeltételes ciklus:

WHILE feltétel

LOOP

végrehajtható_utasítások

END LOOP;

Elıírt lépésszámú ciklus:

FOR ciklusváltozó IN [REVERSE] tartomány

LOOP

végrehajtható_utasítások

END LOOP;

Elıltesztelı. REVERSE esetén csökkenıleg lépked végig a tartományon, ha nincs REVERSE,

akkor növekvıleg. A tartomány sorszámozott típusú. Lépésközt az Ada nem értelmez. A

ciklusváltozó implicit módon a ciklus lokális változójaként deklarálódik a tartománynak

70

megfelelı típussal, és a ciklusmagban nevesített konstansként használható (tehát nem lehet

neki értéket adni).

Végtelen ciklus:

LOOP

végrehajtható_utasítások

END LOOP;

Az Adában az EXIT-utasítás segítségével minden ciklus magjából szabályosan ki tudunk

lépni. A végtelen ciklusnál is ezt használjuk annak befejeztetésére.

C:

Kezdıfeltételes ciklus:

WHILE(feltétel) végrehajtható_utasítás

A feltétel integrális típusú. Ha értéke nem 0, akkor ismétel.

Végfeltételes ciklus:

DO végrehajtható_utasítás WHILE(feltétel);

Akkor ismétel, ha a feltétel értéke nem 0.

FOR-ciklus:

FOR([kifejezés1]; [kifejezés2]; [kifejezés3]) végrehajtható_utasítás

Ez a ciklus megfelel a következı kódnak:

kifejezés1;

WHILE(kifejezés2) {végrehajtható_utasítás; kifejezé s3;}

71

A kifejezés1 inicializáló kifejezés, kifejezésutasításként a ciklus mőködése elıtt

értékelıdik ki. A kifejezés2 felelıs a ciklus befejezéséért, feltételként értelmezıdik. A

kifejezés3 kifejezésutasításként minden cikluslépés végén kiértékelıdik. Ha a

kifejezés2 nem szerepel, akkor végtelen ciklus lesz. A végtelen ciklusból szabályosan a

BREAK utasítással tudunk kilépni.

4.7. Vezérlı utasítások a C-ben

A C-ben három vezérlı utasítás van még az eddigiekben tárgyalt végrehajtható utasításokon

kívül:

CONTINUE;

Ciklus magjában alkalmazható. A ciklus magjának hátralévı utasításait nem hajtja végre,

hanem az ismétlıdés feltételeit vizsgálja meg, és vagy újabb cikluslépésbe kezd, vagy befejezi

a ciklust.

BREAK;

Ciklus magjában vagy többszörös elágaztató utasításban helyezhetı el. A ciklust szabályosan

befejezteti, illetıleg kilép a többszörös elágaztató utasításból.

RETURN [kifejezés];

Szabályosan befejezteti a függvényt és visszaadja a vezérlést a hívónak (l. 5.1. alfejezet).

72

5. A PROGRAMOK SZERKEZETE

Az eljárásorientált programnyelvekben a program szövege többé-kevésbé független, szuverén

részekre, ún. programegységekre tagolható.

Ezen részekkel kapcsolatban a megválaszolandó kérdések a következık:

1. A program teljes szövegét egyben kell-e lefordítani, vagy az feltördelhetı önállóan

fordítható részekre?

• Bizonyos nyelvekben a program fizikailag önálló részekbıl áll, melyek külön-külön

fordíthatók. Ezek a részek mélységében nem strukturáltak.

• Más nyelvekben a programot egyetlen egységként kell lefordítani. Ilyenkor a program

szövege mélységében strukturálható. A programegységek fizikailag nem függetlenek.

• Végül az elızı kettı kombinációja is elképzelhetı. Ezen nyelvekben fizikailag

független, de tetszıleges belsı struktúrával rendelkezı programegységek léteznek.

2. Ha a részek külön fordíthatók, mi alkothat egy önálló fordítási egységet?

73

3. Milyen programegységek léteznek?

4. Milyen a programegységek viszonya?

5. A programegységek hogyan kommunikálnak egymással?

Az eljárásorientált nyelvekben az alábbi programegységek léteznek:

- alprogram

- blokk

- csomag

- taszk

5.1. Alprogramok

Az alprogram az eljárásorientált nyelvekben a procedurális absztrakció elsı megjelenési

formája, alapvetı szerepet játszik ebben a paradigmában, sıt meghatározója annak. Az

alprogram mint absztrakciós eszköz egy bemeneti adatcsoportot képez le egy kimeneti

adatcsoportra úgy, hogy egy specifikáció megadja az adatok leírását, de semmit nem tudunk

magáról a tényleges leképezésrıl. Ismerjük a specifikációt, de nem ismerjük az

implementációt.

Az alprogram, mint programozási eszköz az újrafelhasználás eszköze. Akkor alkalmazható, ha

a program különbözı pontjain ugyanaz a programrész megismétlıdik. Ez az ismétlıdı

programrész kiemelhetı, egyszer kell megírni, és a program azon pontjain, ahol ez a

programrész szerepelt volna, csak hivatkozni kell rá – az alprogram az adott helyeken

meghívható, aktivizálható.

Az alprogram attól lesz absztrakciós eszköz, hogy a kiemelt programrészt formális

paraméterekkel látjuk el, vagyis általánosabban írjuk meg, mint ahogyan az adott helyeken

szerepelt volna.

Formálisan az alprogram a következıképpen épül fel:

74

– fej vagy specifikáció

– törzs vagy implementáció

– vég

Az alprogram, mint programozási eszköz négy komponensbıl áll:

− név

− formális paraméter lista

− törzs

− környezet

A név egy azonosító, amely mindig a fejben szerepel. A formális paraméter lista is a

specifikáció része. A formális paraméter listában azonosítók szerepelnek, ezek a törzsben saját

programozási eszközök nevei lehetnek, és egy általános szerepkört írnak le, amelyet a hívás

helyén konkretizálni kell az aktuális paraméterek segítségével.

A korai nyelvekben a formális paraméter listán csak a paraméterek nevei szerepelhettek, a

késıbbi nyelvekben viszont itt megadhatók további olyan információk, melyek a paraméterek

futás közbeni viselkedését szabályozzák.

A formális paraméter lista kerek zárójelek között áll. A nyelvek egy része szerint a zárójelek a

formális paraméter listához, mások szerint a névhez tartoznak.

A formális paraméter lista lehet üres is, ekkor paraméter nélküli alprogramról beszélünk.

A törzsben deklarációs és végrehajtható utasítások szerepelnek. A nyelvek egy része azt

mondja, hogy ezeket el kell különíteni egymástól, tehát a törzsnek van egy deklarációs és egy

végrehajtható része. Más nyelvek szerint viszont a kétféle utasítás tetszılegesen keverhetı.

Az alprogramban deklarált programozási eszközök az alprogram lokális eszközei, ezek nevei

az alprogram lokális nevei. A lokális nevek az alprogramon kívülrıl nem láthatók, azokat az

alprogram elrejti a külvilág elıl. Ezzel szemben léteznek a globális nevek, melyeket nem az

adott alprogramban deklaráltunk, hanem valahol rajta kívül, de a törzsben szabályosan

hivatkozhatunk rájuk.

75

Egy alprogram környezete alatt a globális változók együttesét értjük.

Az alprogramoknak két fajtája van: eljárás és függvény.

Az eljárás olyan alprogram, amely valamilyen tevékenységet hajt végre. A hívás helyén ezen

tevékenység eredményét használhatjuk fel. Az eljárás a hatását a paramétereinek vagy a

környezetének megváltoztatásával illetve a törzsben elhelyezett végrehajtható utasítások által

meghatározott tevékenység elvégzésével fejti ki.

A függvény olyan alprogram, amelynek az a feladata, hogy egyetlen értéket határozzon meg.

Ez az érték általában tetszıleges típusú lehet. A függvény visszatérési értékének a típusa egy

további olyan információ, amely hozzátartozik a függvény specifikációjához. A függvény

visszatérési értékét mindig a neve hordozza, formálisan az közvetíti vissza a hívás helyére. A

függvény törzsének végrehajtható utasításai a visszatérési érték meghatározását szolgálják.

Azt a szituációt, amikor a függvény megváltoztatja paramétereit vagy a környezetét, a

függvény mellékhatásának nevezzük. A mellékhatást általában károsnak tartják.

Egy eljárást aktivizálni utasításszerően lehet, azaz az eljáráshívás elhelyezhetı bárhol, ahol

végrehajtható utasítás állhat. Egyes nyelvekben van külön eljáráshívásra szolgáló alapszó (ez

nagyon gyakran a CALL) . Más nyelvekben nincs külön alapszó. Híváskor a vezérlés átadódik

az eljárásra.

Formálisan a hívás a következıképpen néz ki:

[alapszó] eljárásnév(aktuális_paraméter_lista)

Egy eljárás szabályosan befejezıdhet a különbözı nyelvekben, ha

- elérjük a végét,

- külön utasítással befejeztetjük, ez bárhol kiadható az eljárás törzsében.

Szabályos befejezıdés esetén a program a hívást követı utasításon folytatódik.

Általában nem szabályos befejezésnek tekintjük a következıket:

- A nyelvek általában megengedik, hogy az eljárásból GOTO-utasítással kilépjünk, a

megadott címkén folytatva a programot.

76

- Van olyan eszköz a nyelvben, amely hatására a teljes program befejezıdik, ekkor nyilván

az eljárás maga is véget ér, és a vezérlés az operációs rendszerhez kerül vissza.

Függvényt meghívni csak kifejezésben lehet, a hívás alakja:

függvénynév(aktuális_paraméter_lista)

A függvényhívás után normális befejezıdést feltételezve a vezérlés a kifejezésbe tér vissza, és

továbbfolytatódik annak a kiértékelése.

Egy függvény a következı módokon határozhatja meg a visszatérési értékét:

- A függvény törzsében változóként használható a függvény neve (pl. FORTRAN). A

törzsben tetszılegesen felhasználható és változtatható annak értéke. A visszatérési érték a

legutoljára kapott érték lesz.

- A függvény törzsében a függvény nevéhez értéket kell hozzárendelni. A függvény neve azt

az értéket hordozza, amit utoljára kapott.

- Külön utasítás szolgál a visszatérési érték meghatározására, amely egyben be is fejezteti a

függvényt.

A függvény szabályosan befejezıdhet, ha

- elérjük a végét, és már van visszatérési érték,

- befejeztetı utasítást alkalmazunk, és már van visszatérési érték,

- olyan befejeztetı utasítást alkalmazunk, amely egyben meghatározza a visszatérési értéket

is.

Nem szabályos a befejezıdés, ha

- elérjük a végét, és nem határoztuk meg a visszatérési értéket,

- olyan befejeztetı utasítást alkalmazunk, amely nem határozza meg a visszatérési értéket,

és más módon sincs megadva az,

- GOTO-utasítással lépünk ki.

Az utolsó esetben a vezérlés a címkére adódik, tehát egyáltalán nem térünk vissza a kifejezés

kiértékeléséhez. Kerülendı megoldás, nem biztonságos kódot eredményez. Az elsı két

77

esetben a vezérlés visszatér a kifejezés kiértékeléséhez, azonban a függvény visszatérési

értéke határozatlan. Egyes nyelvekben (pl. C) ez bizonyos szituációkban nem jelent

problémát, általában viszont szemantikai hiba.

Az eljárásorientált programozási nyelvekben megírt minden programban kötelezıen lennie

kell egy speciális programegységnek, amit fıprogramnak hívunk. Ez alprogram jellegő, a

betöltı neki adja át a vezérlést, és az összes többi programegység mőködését ı koordinálja.

Egy program szabályos befejezıdése a fıprogram befejezıdésével történik meg, ekkor a

vezérlés visszakerül az operációs rendszerhez.

5.2. Hívási lánc, rekurzió

Egy programegység bármikor meghívhat egy másik programegységet, az egy újabb

programegységet, és így tovább. Így kialakul egy hívási lánc. A hívási lánc elsı tagja mindig a

fıprogram. A hívási lánc minden tagja aktív, de csak a legutoljára meghívott programegység

mőködik. Szabályos esetben mindig az utoljára meghívott programegység fejezi be legelıször

a mőködését, és a vezérlés visszatér az ıt meghívó programegységbe. A hívási lánc futás

közben dinamikusan épül föl és bomlik le.

Azt a szituációt, amikor egy aktív alprogramot hívunk meg, rekurziónak nevezzük.

A rekurzió kétféle lehet:

− közvetlen: egy alprogram önmagát hívja meg, vagyis a törzsben van egy hivatkozás saját

magára. Speciális esete a farokrekurzió, amikor is a hívás az alprogram végén van.

− közvetett: a hívási láncban már korábban szereplı alprogramot hívunk meg.

A rekurzióval megvalósított algoritmus mindig átírható iteratív algoritmussá. Farokrekurzió

esetén ezt a fordítóprogramok képesek elvégezni. Az iteratív algoritmusok éltalában

gyorsabbak, mivel kevesebb memóriafoglalással járnak.

 Egyes nyelvek nem ismerik a rekurziót (pl. FORTRAN), mások azt mondják, hogy minden

alprogram alapértelmezett módon rekurzív, végül a nyelvek harmadik csoportjában a

programozó döntheti el, hogy egy adott alprogram rekurzív legyen-e, vagy sem.

78

5.3. Másodlagos belépési pontok

Egyes nyelvek megengedik, hogy egy alprogramot meghívni ne csak a fejen keresztül

lehessen, hanem a törzsben ki lehessen alakítani ún. másodlagos belépési pontokat, így vagy a

fejben megadott névvel vagy a másodlagos belépési pont nevével lehet hivatkozni az

alprogramra. A másodlagos belépési pont képzése formálisan meg kell feleljen a

specifikációnak. Ha függvényrıl van szó, akkor a típusnak meg kell egyeznie. Ha az adott

alprogramba a fejen keresztül lépünk be, akkor az alprogram teljes törzse végrehajtódik,

másodlagos belépési pont használata esetén a törzsnek csupán egy része hajtódik végre.

5.4. Paraméterkiértékelés

Paraméterkiértékelés alatt értjük azt a folyamatot, amikor egy alprogram hívásánál egymáshoz

rendelıdnek a formális- és aktuális paraméterek, és meghatározódnak azok az információk,

amelyek a paraméterátadásnál a kommunikációt szolgáltatják.

A paraméterkiértékelésnél mindig a formális paraméter lista az elsıdleges, ezt az alprogram

specifikációja tartalmazza, egy darab van belıle. Aktuális paraméter lista viszont annyi lehet,

ahányszor meghívjuk az alprogramot. Tehát az egymáshoz rendelésnél mindig a formális

paraméter lista a meghatározó, mindig az aktuális paramétereket rendeljük a formálisakhoz.

A paraméterkiértékelésnek három aspektusa van, ezek az alábbi kérdésekre adnak választ.

1. Melyik formális paraméterhez melyik aktuális paraméter fog hozzárendelıdni?

Ez történhet sorrendi kötés vagy név szerinti kötés szerint.

Sorrendi kötés esetén a formális paraméterekhez a felsorolás sorrendjében rendelıdnek hozzá

az aktuális paraméterek: az elsıhöz az elsı, a másodikhoz a második, és így tovább. Ezt a

lehetıséget minden nyelv ismeri, és általában ez az alapértelmezés.

A név szerinti kötés esetén az aktuális paraméter listában határozhatjuk meg az egymáshoz

rendelést úgy, hogy megadjuk a formális paraméter nevét és mellette valamilyen

79

szintaktikával az aktuális paramétert. Ilyenkor lényegtelen a formális paraméterek sorrendje.

Néhány nyelv ismeri.

Alkalmazható a sorrendi és név szerinti kötés kombinációja együtt is úgy, hogy az aktuális

paraméter lista elején sorrendi kötés, utána név szerinti kötés van.

2. Hány darab aktuális paramétert kell megadni?

Lehetséges, hogy a formális paraméterek száma fix, a formális paraméter lista adott számú

paramétert tartalmaz. Ekkor a paraméterkiértékelés kétféle módon mehet végbe:

- Az aktuális paraméterek számának meg kell egyeznie a formális paraméterek számával.

- Az aktuális paraméterek száma kevesebb lehet, mint a formális paraméterek száma. Ez

csak érték szerinti paraméterátadási mód esetén lehetséges. Azon formális

paraméterekhez, amelyekhez nem tartozik aktuális paraméter, a formális paraméter

listában alapértelmezett módon rendelıdik érték.

Lehet olyan eset, amikor a formális paraméterek száma nem rögzített, tetszıleges. Ekkor az

aktuális paraméterek száma is tetszıleges. Létezik olyan megoldás is, hogy a paraméterek

számára van alsó korlát, tehát legalább ennyi aktuális paramétert szerepeltetni kell.

3. Mi a viszony a formális és aktuális paraméterek típusai között?

A nyelvek egyik része a típusegyenértékőséget vallja, ekkor az aktuális paraméter típusának

azonosnak kell lennie a formális paraméter típusával. A nyelvek másik része a

típuskényszerítés alapján azt mondja, hogy az aktuális paraméter típusának konvertálhatónak

kell lennie a formális paraméter típusára.

80

5.5. Paraméterátadás

A paraméterátadás az alprogramok és más programegységek közötti kommunikáció egy

formája. A paraméterátadásnál mindig van egy hívó, ez tetszıleges programegység, és egy

hívott, amelyik mindig alprogram. Kérdés, hogy melyik irányban és milyen információ mozog.

A nyelvek a következı paraméterátadási módokat ismerik:

– érték szerinti

– cím szerinti

– eredmény szerinti

– érték-eredmény szerinti

– név szerinti

– szöveg szerinti

Az érték szerinti paraméterátadás esetén a formális paramétereknek van címkomponensük a

hívott alprogram területén. Az aktuális paraméternek rendelkeznie kell értékkomponenssel a

hívó oldalon. Ez az érték meghatározódik a paraméterkiértékelés folyamán, majd átkerül a

hívott alprogram területén lefoglalt címkomponensre. A formális paraméter kap egy

kezdıértéket, és az alprogram ezzel az értékkel dolgozik a saját területén. Az

információáramlás egyirányú, a hívótól a hívott felé irányul. A hívott alprogram semmit sem

tud a hívóról, a saját területén dolgozik. Mindig van egy értékmásolás, és ez az érték

tetszıleges bonyolultságú lehet. Ha egy egész adatcsoportot kell átmásolni, az hosszadalmas.

Lényeges, hogy a két programegység egymástól függetlenül mőködik, és egymás mőködését

az érték meghatározáson túl nem befolyásolják.

Az aktuális paraméter kifejezés lehet.

A cím szerinti paraméterátadásnál a formális paramétereknek nincs címkomponensük a hívott

alprogram területén. Az aktuális paraméternek viszont rendelkeznie kell címkomponenssel a

hívó területén. Paraméterkiértékeléskor meghatározódik az aktuális paraméter címe és

átadódik a hívott alprogramnak, ez lesz a formális paraméter címkomponense. Tehát a

meghívott alprogram a hívó területén dolgozik. Az információátadás kétirányú, az alprogram a

hívó területérıl átvehet értéket, és írhat is oda. Az alprogram átnyúl a hívó területre. Idıben

81

gyors, mert nincs értékmásolás, de veszélyes lehet, mivel a hívott alprogram hozzáfér a hívó

területén lévı információkhoz, és szabálytalanul használhatja föl azokat.

Az aktuális paraméter változó lehet.

Az eredmény szerinti paraméterátadásnál a formális paraméternek van címkomponense a

hívott alprogram területén, az aktuális paraméternek pedig lennie kell címkomponensének.

Paraméterkiértékeléskor meghatározódik az aktuális paraméter címe, és átadódik a hívott

alprogramnak, azonban az alprogram a saját területén dolgozik, és a futás közben nem

használja ezt a címet. A mőködésének befejeztekor viszont átmásolja a formális paraméter

értékét erre a címkomponensre. A kommunikáció egyirányú, a hívottól a hívó felé irányul.

Van értékmásolás.

Az aktuális paraméter változó lehet.

Az érték-eredmény szerinti paraméterátadásnál a formális paraméternek van címkomponense

a hívott területén és az aktuális paraméternek rendelkeznie kell érték- és címkomponenssel. A

paraméterkiértékelésnél meghatározódik az aktuális paraméter értéke és címe és mindkettı

átkerül a hívotthoz. Az alprogram a kapott értékkel, mint kezdıértékkel kezd el dolgozni a

saját területén és a címet nem használja. Miután viszont befejezıdik, a formális paraméter

értéke átmásolódik az aktuális paraméter címére. A kommunikáció kétirányú, kétszer van

értékmásolás.

Az aktuális paraméter változó lehet.

Név szerinti paraméterátadásnál az aktuális paraméter egy, az adott szövegkörnyezetben

értelmezhetı tetszıleges szimbólumsorozat lehet. A paraméterkiértékelésnél rögzítıdik az

alprogram szövegkörnyezete, itt értelmezésre kerül az aktuális paraméter, majd a

szimbólumsorozat a formális paraméter nevének minden elıfordulását felülírja az alprogram

szövegében, és ezután fut le az. Az információáramlás iránya az aktuális paraméter adott

szövegkörnyezetbeli értelmezésétıl függ.

A szöveg szerinti paraméterátadás a név szerintinek egy változata, annyiban különbözik tıle,

hogy a hívás után az alprogram elkezd mőködni, az aktuális paraméter értelmezı

szövegkörnyezetének rögzítése és a formális paraméter felülírása csak akkor következik be,

82

amikor a formális paraméter neve elıször fordul elı az alprogram szövegében a végrehajtás

folyamán.

Alprogramok esetén típust paraméterként átadni nem lehet.

Egy adott esetben a paraméterátadás módját az alábbiak döntik el:

- a nyelv csak egyetlen paraméterátadási módot ismer (pl. C)

- a formális paraméter listában explicit módon meg kell adni a paraméterátadási módot (pl.

Ada)

- az aktuális és formális paraméter típusa együttesen dönti el (pl. PL/I)

- a formális paraméter típusa dönti el (pl. FORTRAN)

Az alprogramok formális paramétereit három csoportra oszthatjuk:

- Input paraméterek: ezek segítségével az alprogram kap információt a hívótól (pl. érték

szerinti paraméterátadás).

- Output paraméterek: a hívott alprogram ad át információt a hívónak (pl. eredmény szerinti

paraméterátadás).

- Input-output paraméterek: az információ mindkét irányba mozog (pl. érték-eredmény

szerinti paraméterátadás).

5.6. A blokk

A blokk olyan programegység, amely csak másik programegység belsejében helyezkedhet el,

külsı szinten nem állhat.

Formálisan a blokknak van kezdete, törzse és vége. A kezdetet és a véget egy-egy speciális

karaktersorozat vagy alapszó jelzi. A törzsben lehetnek deklarációs és végrehajtható

utasítások. Ugyanúgy, mint az alprogramoknál, ezek az utasítások vagy tetszılegesen

83

keverhetık, vagy van külön deklarációs rész és végrehajtható rész. A blokknak nincs

paramétere. A blokknak egyes nyelvekben lehet neve. Ez általában a kezdet elıtt álló címke.

A blokk bárhol elhelyezhetı, ahol végrehajtható utasítás állhat.

Blokkot aktivizálni vagy úgy lehet, hogy szekvenciálisan rákerül a vezérlés, vagy úgy, hogy

GOTO-utasítással ráugrunk a kezdetére. Egy blokk befejezıdhet, ha elértük a végét, vagy

GOTO-utasítással kilépünk belıle, vagy befejeztetjük az egész programot a blokkban.

A blokkot az eljárásorientált nyelveknek csak egy része ismeri. Szerepe a nevek hatáskörének

elhatárolásában van.

5.7. Hatáskör

A hatáskör a nevekhez kapcsolódó fogalom. Egy név hatásköre alatt értjük a program

szövegének azon részét, ahol az adott név ugyanazt a programozási eszközt hivatkozza, tehát

jelentése, felhasználási módja, jellemzıi azonosak. A hatáskör szinonimája a láthatóság.

A név hatásköre az eljárásorientált programnyelvekben a programegységekhez, illetve a

fordítási egységekhez kapcsolódik.

Egy programegységben deklarált nevet a programegység lokális nevének nevezzük. Azt a

nevet, amelyet nem a programegységben deklaráltunk, de ott hivatkozunk rá, szabad névnek

hívjuk.

Azt a tevékenységet, mikor egy név hatáskörét megállapítjuk, hatáskörkezelésnek hívjuk.

Kétféle hatáskörkezelést ismerünk, a statikus és a dinamikus hatáskörkezelést.

A statikus hatáskörkezelés fordítási idıben történik, a fordítóprogram végzi. Alapja a

programszöveg programegység szerkezete. Ha a fordító egy programegységben talál egy

szabad nevet, akkor kilép a tartalmazó programegységbe, és megnézi, hogy a név ott lokális-e.

Ha igen vége a folyamatnak, ha nem, akkor tovább lépked kifelé, egészen addig, amíg meg

84

nem találja lokális névként, vagy el nem jut a legkülsı szintre. Ha kiért a legkülsı szintre,

akkor két eset lehetséges:

− A nyelvek egy része azt mondja, hogy a programozónak minden nevet deklarálni kell. Így,

ha egy név nem volt deklarálva, az fordítási hiba.

− A nyelvek másik része ismeri az automatikus deklarációt, és a névhez a fordító

hozzárendeli az automatikus deklaráció szabályainak megfelelı attribútumokat. A név

ilyenkor tehát a legkülsı szint lokális neveként értelmezıdik.

Statikus hatáskörkezelés esetén egy lokális név hatásköre az a programegység, amelyben

deklaráltuk és minden olyan programegység, amelyet ez az adott programegység tartalmaz,

hacsak a tartalmazott programegységekben a nevet nem deklaráltuk újra.

A hatáskör befelé terjed, kifelé soha. Egy programegység a lokális neveit bezárja a külvilág

elıl. Azt a nevet, amely egy adott programegységben nem lokális név, de onnan látható,

globális névnek hívjuk. A globális név, lokális név relatív fogalmak. Ugyanaz a név az egyik

programegység szempontjából lokális, egy másikban globális, egy harmadikban pedig nem is

látszik.

Példa:

2

1

3 4

5

int x;

float x;

85

Az ábrán egymásba skatulyázott programegységek láthatók. A 1-es programegységben

deklaráltunk egy x nevő int típusú változót, amely itt lokális. A 2-es, 4-es és 5-ös

programegységben hivatkozhatunk az x névre, amely itt globális név. Az x nevet a 3-as

programegységben újradeklaráltuk float típusúként. Így ez az újradeklarált név a 3-as

programegységben már egy másik változót jelöl, ez itt lokális és másik programegységben

nem látszik. Viszont a 3-as programegységben nem tudunk hivatkozni az int típusú x nevő

változóra, mert az új deklaráció elfedi azt. Szemléletesen azt mondjuk, hogy az 1-es

programegységben deklarált x hatáskörében „lyuk” keletkezik. Megjegyezzük, hogy a

példában nincs jelentısége annak, hogy a két változó típusa különbözik.

A dinamikus hatáskörkezelés futási idejő tevékenység, a futtató rendszer végzi. Alapja a

hívási lánc. Ha a futtató rendszer egy programegységben talál egy szabad nevet, akkor a hívási

láncon keresztül kezd el visszalépkedni mindaddig, amíg meg nem találja lokális névként,

vagy a hívási lánc elejére nem ér. Ez utóbbi esetben vagy futási hiba keletkezik, vagy

automatikus deklaráció következik be.

Dinamikus hatáskörkezelésnél egy név hatásköre az a programegység, amelyben deklaráltuk,

és minden olyan programegység, amely ezen programegységbıl induló hívási láncban

helyezkedik el, hacsak ott nem deklaráltuk újra a nevet. Újradeklarálás esetén a hívási lánc

további elemeiben az újradeklarált név látszik, nincs „lyuk a hatáskörben” szituáció.

Statikus hatáskörkezelés esetén a programban szereplı összes név hatásköre a forrásszöveg

alapján egyértelmően megállapítható. Dinamikus hatáskörkezelésnél viszont a hatáskör futási

idıben változhat és más-más futásnál más-más lehet.

Az eljárásorientált nyelvek a statikus hatáskörkezelést valósítják meg. Általánosságban

elmondható, hogy az alprogramok formális paraméterei az alprogram lokális eszközei, így

neveik az alprogram lokális nevei. Viszont a programegységek neve a programegység számára

globális. A kulcsszavak, mint nevek a program bármely pontjáról láthatók. A standard

azonosítók, mint nevek azon programegységekbıl láthatók, ahol nem deklaráltuk újra ıket.

86

5.8. Fordítási egység

Az eljárásorientált nyelvekben a program közvetlenül fordítási egységekbıl épül föl. Ezek

olyan forrásszöveg-részek, melyek önállóan, a program többi részétıl fizikailag

különválasztva fordíthatók le. Az egyes nyelvekben a fordítási egységek felépítése igen eltérı

lehet. A fordítási egységek általában hatásköri és gyakran élettartam definiáló egységek is.

5.9. Az egyes nyelvek eszközei

FORTRAN:

A FORTRAN fizikailag különálló programegységekbıl építi fel a programot, a

programegységek külön fordíthatók, és nem skatulyázhatók egymásba. Csak az alprogramot

ismeri. A FORTRAN-ban egy fordítási egység egyetlen programegység, vagy

programegységek tetszıleges csoportja. Mivel így a FORTRAN-ban nincsenek globális

változók, a programegységek egy speciális tárterületet használhatnak a kommunikációra, az

ún. közös adatmezıt. A közös adatmezıt minden olyan programegység írhatja és olvashatja,

amelyben szerepel a következı deklaráció:

COMMON [/n/] a 1 [(d 1)] [, a 2 [(d 2)]]…

Az ai skalár vagy tömb típusú (di a dimenziódeklarációt jelenti) változó, amelynek típusát

külön deklarációs utasításban kell megadni. Az n a közös adatmezı neve. Közös adatmezıbıl

akármennyi lehet. A tárnak ezen a speciális területén a felsorolás sorrendjében helyezi el a

rendszer a változókat. A közös tárterület felosztása az egyes alprogramokban más-más lehet,

sıt még a változók típusa is eltérhet. A megnevezetteknél annyi részre osztja a tárat, ahány

név szerepel, ha a név hiányzik, akkor a tárterület végére rakja a változót.

A FORTRAN-ban van automatikus deklaráció.

A FORTRAN-ban a fıprogramnak nincs külön kezdı utasítása.

Az eljárás alakja:

SUBROUTINE név[(formális_paraméter_lista)]

87

deklarációk

végrehajtható_utasítások

END

A formális paraméter listán csak nevek vannak, típusukat a deklarációs részben kell megadni.

Hívása a CALL alapszóval történik. Szabályosan befejezıdik a RETURN [n] utasítás hatására,

ahol n egy elıjel nélküli egész.

A FORTRAN ismeri a másodlagos belépési pontot. Ha ilyet helyezünk el egy eljárásban,

akkor a benne és az eljárásfejben megadott formális paraméterek eltérhetnek egymástól.

Alakja:

ENTRY név [(formális_paraméter_lista)]

A paraméterkiértékelésnél sorrendi kötés, típusegyenértékőség és számbeli egyeztetés van.

A paraméterek a formális paraméter listán háromféleképpen jelenhetnek meg: A formális

paraméter lehet egy azonosító. Ilyenkor ez a törzsben tetszıleges változó vagy alprogram

neveként szerepelhet. Ha az azonosító perjelek (/) között szerepel, akkor csak skalárváltozót

nevezhet meg. Végül a formális paraméter lehet * .

Ha a formális paraméter skalárváltozó, akkor az aktuális paraméter kifejezés; ha tömb típusú

változó, akkor tömb típusú változó, vagy indexes változó; ha alprogram név, akkor alprogram

név; és ha * , akkor a hívó alprogram egy címkéje lehet &címke formában. Ez utóbbi esetben

alkalmazható a RETURN n, ami visszaadja a vezérlést az aktuális paraméter listában n-

edikként megadott címkére

A paraméterátadás a formális paramétertıl függıen:

− Tömb típus esetén cím szerinti.

− Skalár változóknál érték szerinti.

− Alprogram neve esetén név szerinti.

− /azonosító/ esetén cím szerinti.

88

− * esetén cím szerinti.

A függvény alakja:

[típus] FUNCTION név(p1 [,p2]…)

deklarációk

végrehajtható_utasítások

END

A FORTRAN szerint kell legalább egy formális paraméter. Vagy a fejben deklaráljuk a

függvény típusát, vagy külön a deklarációs részben. Másodlagos belépési pont van itt is, de a

formális paraméter listának szigorúan egyeznie kell a másodlagos belépési pontban felsorolt

paraméterekkel, és a típusnak is azonosnak kell lenni. A formális paraméterek között a * nem

szerepelhet. A függvény neve lokális változóként használható a törzsben. Befejezése a

RETURN utasítással történik, de ez nem határoz meg értéket. A törzsben kell értékadásról

gondoskodni, és az utoljára adott értékkel tér vissza. Ha egy alprogram meg akar hívni egy

függvényt, akkor a függvény nevét a megfelelı típussal ott is deklarálni kell.

A FORTRAN nem ismeri a rekurziót.

A faktoriálist kiszámító függvény:

 REAL FUNCTION FAKT(I)

 FAKT=1

 IF (I .EQ. 0 .OR. I .EQ. 1) RETURN

 DO 20 K=2,I

20 FAKT=FAKT ∗K

 RETURN

 END

89

PL/I:

A PL/I ismeri az alprogramot, a blokkot és a taszkot a programegységek közül. Az

alprogramok lehetnek egymástól függetlenek, és tetszılegesen egymásba skatulyázhatók. Itt is

létezik fıprogram, amely egy speciális alprogram. Fordítási egységet alkothat a fıprogram, az

alprogramok vagy ezek tetszıleges együttese.

Az alprogram alakja:

név:PROCEDURE [(formális_paraméter_lista)] [OPTIONS(opciólista)]

 [RECURSIVE] [RETURNS(attribútumok)];

utasítások

END [név];

Nem válik el a deklarációs és a végrehajtható rész, az utasítások tetszılegesen keverhetık. A

név címke jellegő. A formális_paraméter_lista csak a paraméterek neveit

tartalmazza, deklarálni ıket a törzsben kell. A formális paraméterek a törzsben változók,

címkék, belépési pontok, vagy pedig állományok nevei lehetnek.

Az opciólista az adott alprogram futás közbeni viselkedését szabályozza. Ha itt a MAIN

opció szerepel, akkor ez lesz a fıprogram, és az összes többi opció nem szerepelhet. Ha nem

ez az opció áll itt, akkor függvényrıl vagy eljárásról van szó. A programozó dönti el, hogy az

rekurzív legyen-e vagy sem. Ha a RECURSIVE alapszó szerepel, akkor az adott alprogram

rekurzív lesz, különben pedig nem.

Ha szerepel a RETURNS, akkor függvényrıl van szó, az attribútumok a visszatérési érték

attribútumait adják meg.

Az eljárás hívása a CALL utasítással történik.

Egy eljárás szabályosan befejezıdik, ha elérjük a végét, vagy valahol a törzsében kiadjuk a

RETURN utasítást.

Egy függvény a RETURN(kifejezés); utasítás hatására fejezıdik be, és a kifejezés

adja meg a függvény visszatérési értékét.

90

A PL/I-ben a másodlagos belépési pont alakja:

név:ENTRY [(formális_paraméter_lista)] [RETURNS(attribútumok)];

Ha függvényrıl van szó, akkor az attribútumoknak és a formális paraméter listának meg kell

egyezni, ha eljárásról, akkor nem.

A paraméterkiértékelésnél sorrendi kötés és számbeli egyeztetés, továbbá típuskényszerítés

van.

A paraméterátadás, ha az aktuális paraméter:

− címke vagy a formális paraméterrel megegyezı típusú változó, akkor cím szerinti,

− belépési pont vagy állomány neve, akkor név szerinti,

– minden más esetben pedig érték szerinti.

A blokk a következıképpen néz ki:

[címke:] BEGIN

utasítások

END [címke];

Itt is tetszılegesen keverhetık a deklarációs- és végrehajtható utasítások.

A PL/I az élettartamot attribútumokkal határozza meg:

− STATIC: statikus tárkiosztás.

− AUTOMATIC: dinamikus tárkiosztás, ez az alapértelmezett.

− CONTROLLED: programozó által vezérelt tárkiosztás. A programozó a következı

utasításokat használhatja ilyen esetben:

 ALLOCATE: a rendszer helyezi el a változót a tárban.

 FREE: memóriaterület felszabadítása.

91

− BASED: bázisolt változók alkalmazása. A címkomponenst a programozó rendeli a

változóhoz egy korábban elhelyezett objektum címéhez képest. Ez relatív cím, abszolút

címet általában nem kezel. Nem ismeri a programozó által vezérelt tárkiosztási módok

közül az abszolút címes tárkiosztást.

A PL/I a statikus hatáskörkezelést vallja. Ha ugyanazt a nevet két különbözı fordítási

egységben az EXTERNAL attribútummal deklaráljuk úgy, hogy minden más attribútumuk

megegyezik, akkor az ugyanaz a név. A legkülsı szinten lévı alprogramok nevei

alapértelmezés szerint EXTERNAL attribútumúak.

A PL/I gyakorlatilag minden attribútumra vonatkozóan rendelkezik automatikus

deklarációval.

A faktoriálist kiszámító függvény iteratív változata:

FAKT:PROCEDURE(I);

 F=1;

 DO L=2 TO I;

 F=F ∗L;

 END;

 RETURN(F);

END FAKT;

A faktoriálist kiszámító függvény rekurzív változata:

FAKT:PROCEDURE(I) RECURSIVE;

F=1;

IF I>1 THEN F=I ∗FAKT(I-1);

RETURN(F);

END FAKT;

92

Pascal:

A Pascalban a fordítási egység a fıprogram. A programegységek közül csak az alprogramot

ismeri. Egyes verziókban van csomag (pl. a Turbo Pascal unitja).

A fıprogram alakja:

PROGRAM név[(környzeti_paraméterek)];

deklarációs_rész

BEGIN

végrehajtható_utasítások

END.

A fıprogram is rendelkezik formális paraméter listával, a formális paraméterek száma nem

fix. Ennek alapvetı szerepe van az operációs rendszerrel történı kommunikációban. Az

alprogramok a fıprogram deklarációs részébe skatulyázandók. Az alprogramok felépítése

teljesen hasonló elveket követ, beleértve az alprogramok skatulyázását is.

Az eljárás lakja:

PROCEDURE név[(formális_paraméter_lista)];

deklarációs_rész

BEGIN

végrehajtható_utasítások

END;

A függvény lakja:

FUNCTION név [(formális paraméter_lista)] : típus;

deklarációs_rész

BEGIN

végrehajtható_utasítások

END;

A formális paraméter lista paramétercsoportokból áll, melyeket pontosvesszı választ el

egymástól. Egy paramétercsoport alakja:

[VAR] azonosító [, azonosító]… : típus

93

Ha a paramétercsoportban szerepel a VAR kulcsszó, akkor a paraméterátadás cím szerinti,

különben érték szerinti. A paraméterkiértékelésénél sorrendi kötés, számbeli- és

típusegyeztetés van.

Az eljáráshívásra nincs külön alapszó.

A rekurzió alapértelmezett.

A függvény nevének a végrehajtható utasítások között értéket kell kapnia, és az utoljára kapott

értékkel tér vissza, ha elérjük a függvény végét (szabályos befejezıdés). Az eljárás is akkor

fejezıdik be szabályosan, ha elérjük a végét.

A Pascalban dinamikus élettartam-kezelés és programozó által vezérelt tárkiosztás van.

A Pascalban egy név csak a deklarációjától kezdve látszik.

A faktoriálist kiszámító függvény:

FUNCTION FAKT(I:INTEGER):REAL;

BEGIN

 IF I=0 THEN FAKT:=1

 ELSE FAKT:=FAKT(I-1) ∗I;

END;

Ada:

Minden programegységet ismer. Más nyelveknél a külön fordított egységek fizikailag

önállóak, semmit nem tudnak egymásról, a kapcsolatszerkesztı dolga, hogy összeállítsa

belılük a programot. Az Ada fordító olyan, hogy fordítás közben van konzisztenciaellenırzés.

Nincs külön fıprogram, implementációfüggı, hogy melyik alprogram indul el elıször.

Az eljárás alakja:

PROCEDURE név[(formális_paraméter_lista)]

IS

deklarációk

végrehajtható_utasítások

END [név];

94

A függvény alakja:

FUNCTION név [(formális_paraméter_lista)] RETURN típus

IS

deklarációk

végrehajtható_utasítások

END [név];

Az eljáráshívásra nincs külön alapszó. Az eljárás szabályosan befejezıdik RETURN-utasítás

hatására, vagy ha elérjük az END-et. A függvény befejezıdik a RETURN kifejezés;

utasítás hatására.

A formális paraméter lista paramétercsoportokból áll, amelyeket pontosvesszı választ el. Egy

paramétercsoport szerkezete a következı:

név [,név]… : [mód] típus [:= kifejezés]

A mód a paraméterátadás módját dönti el. Három alapszó szerepelhet itt: IN , OUT, IN OUT .

IN esetén a paraméterátadás érték szerinti, OUT esetén eredmény szerinti, IN OUT esetén

pedig érték-eredmény szerinti. Ha a mód elmarad, akkor az alapértelmezés IN . IN módú

paraméterek esetén szerepelhet a kifejezés , amely a paraméter inicializálásának szerepét

játssza. A függvény paramétere csak IN módú lehet, tehát a függvény a paraméterét nem tudja

megváltoztatni. De az Adában is van a függvénynek mellékhatása, mert a környezetét meg

tudja változtatni.

A paraméterkiértékelésnél szigorú típusegyeztetés van. Alapértelmezett a sorrendi kötés, de

lehetıség van a név szerinti kötésre is formális_paraméter_név =>

aktuális_paraméter alakban, az aktuális paraméter listában. Azon formális

paraméterekhez, amelyekhez kifejezéssel kezdıértéket rendeltünk, nem kötelezı aktuális

paramétert megadni. Ilyenkor, ha megadtunk aktuális paramétert, akkor azzal, ha nem, akkor a

kezdıértékkel kezd el mőködni az alprogram.

Példa eljárásspecifikációra:

PROCEDURE xy(C: IN INTEGER RANGE 1..89; D: IN INTEG ER:=0)

95

Ezt az eljárást többféleképpen meghívhatjuk:

xy(2,9);

xy(2);

xy(D => 9, C => 2);

Az elsı és harmadik esetben C=2 és D=9, a másodikban C=2 és D=0, az inicializálás miatt. A

harmadik esetben név szerinti kötés van, explicit módon megadjuk, hogy melyik formális

paraméterhez melyik értéket rendeljük hozzá.

A rekurzió alapértelmezés.

A blokk alakja:

[blokknév:]

[DECLARE

deklarációk]

BEGIN

végrehajtható_utasítások

END [blokknév];

Ha blokknév szerepel a blokk elıtt, akkor megadása kötelezı az END után is.

A változók élettartama alapértelmezés szerint dinamikus.

A hatáskörkezelés statikus, de az Ada kezeli a „lyuk a hatáskörben” problémát. Ezt úgy oldja

meg, hogy a globális eszközök nevét azon programegység nevével minısíti, amely

programegységnek a lokális neve.

A faktoriálist kiszámító függvény:

FUNCTION FAKT(I : INTEGER) RETURN REAL IS

 F: REAL:=1.0;

BEGIN

 IF I>1 THEN F:=FAKT(I-1) ∗ FLOAT(I);

 END IF;

 RETURN F;

END FAKT;

96

C:

A C nyelv a függvényt és a blokkot ismeri. A függvények nem ágyazhatók be más

programegységbe, a blokkok tetszıleges mélységben skatulyázhatók.

A blokk alakja:

{

deklarációk

végrehajtható_utasítások

}

A függvény alakja:

[típus] név([formális_paraméter_lista])

blokk

Ha nem szerepel a típus , akkor az alapértelmezés int . Ha void a típus , akkor

lényegében egy eljárásról van szó. A fıprogram is egy függvény, melynek neve main() .

Függvény befejezıdhet az alábbi módokon:

- RETURN kifejezés; : ebben az esetben a kifejezés értéke lesz a függvény

visszatérési értéke.

- RETURN : ha void típusú a függvény, akkor nem ad vissza értéket, egyébként

határozatlan értékkel tér vissza.

- Ha eléri a záró }-t, ekkor is határozatlan értéket ad vissza.

A rekurzió alapértelmezés.

A formális paraméter listán a típust adhatjuk meg. A formális paramétereket vesszı választja

el. A C-ben a programozó tud nem fix paraméterszámú függvényt deklarálni úgy, hogy megad

legalább egy formális paramétert, és a formális paraméter listát … zárja. Az üres formális

paraméter listát explicit módon jelölhetjük a void alapszó megadásával.

A paraméterkiértékelésnél sorrendi kötés, típuskényszerítés és fix paraméterszám esetén

számbeli egyeztetés van.

A paraméterátadás érték szerinti.

97

A C-ben a fordítási egység a forrásállomány. Ez ún. külsı deklarációkat (nevesített konstans,

változó, típus, függvény) tartalmaz. A fordítási egység elején más olyan fordítási egységekre,

amelyek eszközeit használni akarjuk, a

#include <forrásállománynév>

elıfordítói utasítással hivatkozhatunk.

A C a hatáskör és élettartam szabályozására bevezeti a tárolási osztály attribútumokat, melyek

a következık:

− extern : A fordítási egység szintjén deklarált nevek alapértelmezett tárolási osztálya,

lokális neveknél explicit módon meg kell adni. Az ilyen nevek hatásköre a teljes program,

élettartamuk a program futási ideje. Van automatikus kezdıértékük.

− auto : A lokális nevek alapértelmezett tárolási osztálya. Hatáskörkezelésük statikus, de

csak a deklarációtól kezdve láthatók. Élettartamuk dinamikus. Nincs automatikus

kezdıértékük.

− register : Speciális auto , amelynek értéke regiszterben tárolódik, ha van szabad

regiszter, egyébként nincs különbség.

− static : Bármely névnél explicit módon meg kell adni. Hatáskörük a fordítási egység,

élettartamuk a program futási ideje. Van automatikus kezdıértékük.

A faktoriálist kiszámító függvény C-ben:

long fakt(long n)

{

 if (n<=1) then return 1;

 else return n ∗fakt(n-1);

}

98

6. ABSZTRAKT ADATTÍPUS

Az absztrakt adattípus olyan adattípus, amely megvalósítja a bezárást vagy információ rejtést.

Ez azt jelenti, hogy ezen adattípusnál nem ismerjük a reprezentációt és a mőveletek

implementációját. Az adattípus ezeket nem mutatja meg a külvilág számára. Az ilyen típusú

programozási eszközök értékeihez csak szabályozott módon, a mőveleteinek specifikációi

által meghatározott interfészen keresztül férhetünk hozzá. Tehát az értékeket véletlenül vagy

szándékosan nem ronthatjuk el. Ez nagyon lényeges a biztonságos programozás

szempontjából. Az absztrakt adattípus (angol rövidítéssel: ADT – Abstract Data Type) az

elmúlt évtizedekben a programnyelvek egyik legfontosabb fogalmává vált és alapvetıen

befolyásolta a nyelvek fejlıdését.

99

7. A CSOMAG

A csomag az a programegység, amely egyaránt szolgálja a procedurális és az adatabsztrakciót.

A procedurális absztrakció oldaláról tekintve a csomag programozási eszközök

újrafelhasználható győjteménye. Ezek az eszközök:

− típus

− változó

− nevesített konstans

− saját kivétel

− alprogram

− csomag

Ezek az eszközök a csomag hatáskörén belül mindenhonnan tetszılegesen hivatkozhatók.

A csomag mint programegység megvalósítja a bezárást, ezért alkalmas absztrakt adattípus

implementálására.

A csomag az Adában jelenik meg. Az Ada csomagnak két része van: specifikáció és törzs.

Formálisan a specifikáció a következıképpen néz ki:

 PACKAGE név IS

látható_deklarációs_rész

[PRIVATE

 privát_deklarációs_rész]

END [név];

A látható_deklarációs_rész a csomagspecifikáció látható része. Az itt deklarált

programozási eszközök hivatkozhatók a csomagon kívülrıl. Alprogramok esetén itt csak azok

specifikációja állhat. A hivatkozás a csomag nevével történı minısítéssel lehetséges.

A privát_deklarációs_ rész kívülrıl nem elérhetı, a csomag az itt deklarált

eszközöket bezárja, elrejti a külvilág elıl.

100

A csomag törzse opcionális. Ha viszont a specifikációban szerepel alprogramspecifikáció,

akkor kötelezı a törzs, és az alprogram teljes deklarációját itt kell megadni. A törzs a külvilág

számára nem elérhetı.

A csomag törzsének alakja:

PACKAGE BODY név IS

deklarációs _rész

[BEGIN

végrehajtható _utasítások]

END [név] ;

Az Adában a csomag fordítható önállóan, vagy elhelyezhetı lokákisan egy másik

programegység deklarációs részében. Az utóbbi esetben a láthatóságát a statikus a

hatáskörkezelésnek megfelelıen a tartalmazó programegység szabályozza. Ha önállóan

fordítjuk a csomagot, akkor a program más részei számára explicit módon kell láthatóvá tenni

(l. 8.2. alfejezet).

A következı példa egy olyan csomag vázlatát mutatja be, amely a törtekkel való számolást

teszi lehetıvé.

package RACIONALIS_SZAM is

type RACIONALIS is

 record

 SZAMLALO : integer;

 NEVEZO : integer range 1..MAX_INTEGER;

 end record;

 function "=" (X,Y : RACIONALIS) return boolean;

 function " +" (X,Y : RACIONALIS) return RACIONALIS;

function "-" (X,Y : RACIONALIS) return RACIONALIS;

function "*" (X,Y : RACIONALIS) return RACIONALIS;

 function "/" (X,Y : RACIONALIS) return RACIONALIS ;

end;

101

package body RACIONALIS_SZAM is

procedure KOZOS_NEVEZO (X,Y: in out RACIONALIS) is ...

function "=" ...

 function " +" ...

function "-" ...

function "*" ...

 function "/" ...

end RACIONALIS_SZAM;

A csomag specifikációjának csak látható része van. Ebben szerepel egy saját típus definíció

(RACIONALIS), amely a törtek értékeinek kezelésére való. A törtek reprezentációja egy

rekord segítségével történik, a számlálót és a nevezıt egy-egy mezıben tároljuk. A

reprezentáció meghatározza a tartományt is (a nevezı pl. csak pozitív egész lehet). Van

továbbá öt függvényspecifikáció, ezek adják meg a mőveletek specifikációját.

Érdekességként jegyezzük meg, hogy az Ada lehetıvé teszi, hogy a függvény neve ne csak

azonosító legyen. A beépített operátorok túlterhelhetıek. Az Adában ugyanis idézıjelek közé

tett speciális karaktereket is használhatunk a függvénynév megadásához. Példánkban a

szokásos aritmetikai operátorokat terheltük túl.

A csomag specifikációjában van alprogramspecifikáció, tehát kötelezı a törzs. Abban a teljes

alprogram deklarációkat meg kell adni. A mőveleteket úgy kell implementálni, hogy azok a

megfelelı törtaritmetikára jellemzı viselkedésmódot tükrözzék. Ezért szükséges a kívülrıl

nem elérhetı KOZOS_NEVEZO eljárás.

A fenti példánkban a RACIONALIS típus nem absztrakt adattípus. Mőveleteinek

implementációját ugyan elrejti, de a reprezentációját nem. A programozó önfegyelmére van

bízva, hogy az ilyen típusú eszközök értékeit csak a csomagbeli függvények segítségével

kezeli, vagy pedig a reprezentáló rekord mezıire külön-külön hivatkozik. Például a

SZAMLALO-hoz minden további nélkül hozzá tudunk adni egy számot, a NEVEZO-tıl

függetlenül.

Nézzük ezután, hogy az Ada csomagja hogyan szolgálja az adatabsztrakciót.

Az Adában a bezárást a privát (PRIVATE) típus és a csomag specifikációs részének kívülrıl

nem látható része együttesen teszi lehetıvé. A látható részben szerepelhet a privát

102

típusmegjelölés. A privát típusúnak deklarált objektumokra a nyelvbe beépített mőveletek

közül csak az egyenlıségvizsgálat (=) , és az értékadás (:=) alkalmazható. Tehát az így

deklarált eszközök értékeit kezelı mőveleteket a programozónak kell implementálnia. A

privát típus reprezentációjáról nem tudunk semmit.

Ha van a látható részben privát típussal deklarált eszköz, akkor kötelezı a nem látható rész

szerepeltetése. Itt kell megadni a reprezentációra vonatkozó összes információt.

Korábbi példánkban a RACIONALIS típusból csináljunk absztrakt adatípust. Ehhez a törzs

változatlanul hagyása mellett a specifikációt kell átalakítanunk a következı módon:

package RACIONALIS_SZAM is

 type RACIONALIS is private;

 function "=" (X,Y : RACIONALIS) return boolean;

 function " +" (X,Y : RACIONALIS) return RACIONALIS;

function "-" (X,Y : RACIONALIS) return RACIONALIS;

function "*" (X,Y : RACIONALIS) return RACIONALIS;

 function "/" (X,Y : RACIONALIS) return RACIONALIS ;

private

type RACIONALIS is

 record

 SZAMLALO : integer;

 NEVEZO : integer range 1..MAX_INTEGER;

 end record;

end;

A reprezentáció tehát átkerült a nem látható részbe, megvalósult a bezárás. Így most már csak

a szabályos hozzáférés és mőveletvégzés lehetséges.

Az Adában a privát típusnak létezik egy olyan változata, a korlátozott privát (LIMITED

PRIVATE) típus, amelyre még az egyenlıségvizsgálat és az értékátadás beépített mőveletek

sem alkalmazhatók. Ennek használatánál tehát ezen mőveleteket is a programozónak kell

implementálnia.

A korlátozott privát típus alkalmazásával csomagunk vázlata a következıképpen alakul:

103

package RACIONALIS_SZAM is

 type RACIONALIS is limited private;

 function ”=” (X,Y : RACIONALIS) return boolean;

 procedure ERTEKMASOLAS (X : out RACIONALIS; Y : R ACIONALIS);

 function ” +” (X,Y : RACIONALIS) return RACIONALIS;

function ”-” (X,Y : RACIONALIS) return RACIONALIS;

function ”*” (X,Y : RACIONALIS) return RACIONALIS;

 function ”/” (X,Y : RACIONALIS) return RACIONALIS ;

private

type RACIONALIS is

 record

 SZAMLALO : integer;

 NEVEZO : integer range 1..MAX_INTEGER;

 end record;

end;

package body RACIONALIS_SZAM is

procedure KOZOS_NEVEZO (X,Y: in out RACIONALIS) is ...

function "=" ...

procedure ERTEKMASOLAS ...

 function " +" ...

function "-" ...

function "*" ...

 function "/" ...

end RACIONALIS_SZAM;

Ha egy csomagspecifikáció látható részében változókat deklarálunk, akkor azok a változók

(amennyiben felhasználjuk ıket a csomagban deklarált alprogramokban) OWN tulajdonságú

változók lesznek, ezek két alprogramhívás közt megtartják értéküket (a változó befejezéskori

értékét tehát felhasználhatom a következı alprogramhíváskor). Ezzel az Ada további

kommunikációs lehetıséget biztosít az alprogramok között.

104

Itt jegyezzük meg, hogy a Turbo Pascal unitja csomag. Alakja:

UNIT név;

INTERFACE

 látható_deklarációk

IMPLEMENTATION

 nem_látható_deklarációk

BEGIN

 végrehajtható_utasítások

END.

105

8. AZ ADA FORDÍTÁSRÓL

8.1. Pragmák

A pragmák a program szövegében elhelyezkedı olyan utasítások, amelyek a fordító

mőködését befolyásolják. A fordítóprogramnak szólnak, szolgáltatást kérnek tıle, valamilyen

üzemmódot állítanak be, nem áll mögöttük közvetlen kód, de befolyásolhatják a kódot. A

pragmák egy része a program szövegének bármely pontján elhelyezhetı, másik része csak

kötött helyen használható.

Egy pragma szerkezete a következı:

PRAGMA név [(paraméter _lista)];

Egy paraméter felépítése:

[név =>] { azonosító | kifejezés } ;

A pragmák azon eszközrendszerek közé tartoznak, amelyeket az Ada hivatkozási nyelv csak

részben szabályoz, azaz az implementációk megvalósításai eltérhetnek egymástól. Az Ada

rendszerekben általában mintegy 50 féle pragma van.

Lássunk közülük néhányat:

INTERFACE(programnyelv_neve, alprogram_név);

Az adott alprogram specifikációja után kell megadni, és azt jelzi, hogy az adott alprogram

törzse az adott nyelven van megírva.

LIST ({ ON | OFF })

Fordítás közben a programszövegrıl lista készül a szabvány kimeneten (ON), vagy letiltjuk a

listázást (OFF). Bárhol elhelyezhetı.

Ha a fordító nem ismeri föl a pragma nevét, akkor ignorálja azt.

106

8.2. Fordítási egységek

Az Adában fordítási egység lehet:

− alprogram specifikáció

− alprogram törzs

− csomag specifikáció

− csomag törzs

− fordítási alegység

− valamint ezek tetszıleges kombinációja

Azokat a fordítási egységeket, amelyek nem függnek más fordítási egységtıl (nem alegységei

más fordítási egységnek), könyvtári egységnek hívja az Ada. Ilyen könyvtári egységet a

programozó tetszıleges számban hozhat létre. A könyvtári egységeknek külön egyedi nevük

van.

Ha valamely fordítási egységben használni akarok egy olyan eszközt, amely egy másik

fordítási egységben van benne, akkor az adott eszköz specifikációjának lefordítva kell lennie,

tehát elıbb kell lefordítani, mint azt, amiben hivatkozunk rá. Tehát a fıprogramot kell utoljára

megírni. Az Ada fordító fordítási idıben konzisztencia ellenırzést is végez.

Ha a specifikáció módosul, újra kell fordítani azt a fordítási egységet, amelyben a specifikáció

van, és azokat, amelyek hivatkoznak erre a módosult specifikációra. Ha csak az

implementáció változik, csak az azt tartalmazó fordítási egységet kell újrafordítanunk. Ennek

segítségével nagy programok fejlesztése mehet párhuzamosan, és a program módosítása is

egyszerőbb, valamint nı a biztonságos programírás lehetısége.

Minden fordítási egység kezdete elıtt meg kell adni egy ún. környezeti elıírást. Ennek

megadása a WITH utasítással történik, melyben azon könyvtári egységeket soroljuk fel,

amelyekre az adott fordítási egységben hivatkozunk, amelynek eszközeit felhasználjuk a

fordítási egységben.

Alakja:

WITH könyvtári_egység [, könyvtári_egység]...;

107

Az így megadott könyvtári egységek alkotják az adott fordítási egység környezetét. Ez a

fordítási egység ezen könyvtári egységek elemeit látja.

Az Adában kilenc szabvány könyvtári egység van, ezek alkotják magát az Ada rendszert.

Ezeket is szerepeltetni kell a környezeti elıírásban.

Van viszont a STANDARD nevő könyvtári egység, amelyet a fordítóprogram minden fordítási

egységhez automatikusan hozzáilleszt, ezt nem kell külön megadni. Ez tartalmazza az

alapvetı nyelvi eszközöket (pl. karakterkészlet, beépített típusok, stb.), melyek nélkül nem

írható program.

Azokat a fordítási egységeket hívjuk fordítási alegységnek, amelyek önállóan nem léteznek,

hanem egy másik fordítási egységhez kapcsolódnak.

Az Ada lehetıvé teszi, hogy akármelyik szinten beágyazott alprogram, csomag, taszk törzsét

ne a specifikációhoz kapcsolva adjuk meg, hanem ott csak jelezzük egy csonk segítségével,

hogy a törzs egy másik fordítási egységben mint fordítási alegység lesz lefordítva. Egy

fordítási alegység környezetét a csonk határozza meg, a fordítási alegységben a csonkot

tartalmazó programegység nevére kell hivatkozni. A csonkot tartalmazó fordítási egységet

mindig elıbb kell lefordítani, mint a kapcsolódó fordítási alegységet. Tetszıleges egymáshoz

kapcsolódó fordítási alegység sorozatot lehet létrehozni.

A csonkot a törzs helyett elhelyezett SEPARATE alapszó jelzi. Fordítási alegység elején a

csonkot a SEPARATE(név) formában kell hivatkozni.

A következıkben fordítási egységekre látunk példákat:

-- egyetlen fordítási egység

procedure FELDOLGOZO is

 package D is

 HATAR : constant:=1000;

 TABLA : array (1..HATAR) of integer;

 procedure RESTART;

 end;

108

package body D is

procedure RESTART is

 begin

 for N in 1..HATAR loop

 TABLA(N):=N;

 end loop;

 end;

 begin

 RESTART;

 end D;

procedure Q(X:integer) is

begin

...

D.TABLA(X):= D.TABLA(X) +1;

...

end Q;

begin

...

D.RESTART;

...

end FELDOLGOZO;

Itt egy eljárást látunk, ezen belül van egy csomag és egy másik eljárás. Fordítás után egy

FELDOLGOZO nevő könyvtári egység keletkezik.

Ez a programszöveg most egy fordítási egységet alkot, de feldarabolható három külön

fordítási egységre a következıképpen:

-- els ı fordítási egység

package D is

 HATAR : constant:=1000;

 TABLA : array (1..HATAR) of integer;

 procedure RESTART;

end D;

-- második fordítási egység

109

package body D is

 procedure RESTART is

 begin

 for N in 1..HATAR loop

 TABLA(N):=N;

 end loop;

 end;

begin

 RESTART;

end D;

-- harmadik fordítási egység

with D;

procedure FELDOLGOZO is

 procedure Q(X:integer) is

 begin

 ...

 D.TABLA(X):= D.TABLA(X) +1;

 ...

 end Q;

begin

...

D.RESTART;

...

end FELDOLGOZO;

Miután a hivatkozott eszközök specifikációjának már lefordítottnak kell lenniük, ezért elıször

fordítandó az elsı fordítási egység, majd a második és harmadik, tetszıleges sorrendben.

Példa fordítási alegységekre:

-- tartalmazó eljárás

procedure T is

 type REAL is digits 10;

 R,S : REAL:=1.0;

110

 package D is

 PI: constant:=3.14159;

 function F(X:REAL) return REAL;

 procedure G(X,Z:REAL);

 end;

 package body D is separate; -- csonk

 procedure Q(U:in out REAL) is separate; -- csonk

begin

 ...

 Q(R);

 ...

 D.G(R,S);

 ...

end T;

—- fordítási alegység

separate(T) –- hivatkozás a csonkra

 procedure Q(U : in out REAL) is

 begin

 ...

 end Q;

—- fordítási alegység

separate(T) –- hivatkozás a csonkra

 package body D is

 ...

 function F(X:REAL) return REAL is separate; -- csonk

 procedure G(Y,Z : real) is separate; -- csonk

 ...

 end D;

–- fordítási alegység

separate(T.D) –- hivatkozás a fordítási alegységbeli csonkra

111

function F(X:REAL) return REAL is

 . . .

end F;

procedure G(Y,Z:REAL) is

 . . .

end G;

112

9. KIVÉTELKEZELÉS

A kivételkezelési eszközrendszer azt teszi lehetıvé, hogy az operációs rendszertıl átvegyük a

megszakítások kezelését, felhozzuk azt a program szintjére. A kivételek olyan események,

amelyek megszakítást okoznak. A kivételkezelés az a tevékenység, amelyet a program végez,

ha egy kivétel következik be. Kivételkezelı alatt egy olyan programrészt fogunk érteni, amely

mőködésbe lép egy adott kivétel bekövetkezte után, reagálva az eseményre.

A kivételkezelés az eseményvezérlés lehetıségét teszi lehetıvé a programozásban.

Operációs rendszer szinten lehetıség van bizonyos megszakítások maszkolására. Ez a

lehetıség megvan nyelvi szinten is. Egyes kivételek figyelése letiltható vagy engedélyezhetı.

Egy kivétel figyelésének letiltása a legegyszerőbb kivételkezelés. Ekkor az esemény hatására a

megszakítás bekövetkezik, feljön programszintre, kiváltódik a kivétel, de a program nem vesz

róla tudomást, fut tovább. Természetesen nem tudjuk, hogy ennek milyen hatása lesz a

program további mőködésére, lehet, hogy az rosszul, vagy sehogy sem tudja folytatni

munkáját.

A kivételeknek általában van neve (amely gyakran az eseményhez kapcsolódó üzenet szerepét

játssza) és kódja (ami egy egész szám).

A kivételkezelés a PL/I-ben jelenik meg és az Ada is rendelkezik vele. A két nyelv kétfajta

kivételkezelési filozófiát vall. A PL/I azt mondja, hogy ha egy program futása folyamán

bekövetkezik egy kivétel, akkor az azért van, mert a program által realizált algoritmust nem

készítettük föl az adott esemény kezelésére, olyan szituáció következett be, amelyre speciális

módon kell reagálni. Ekkor keressük meg az esemény bekövetkeztének az okát, szüntessük

meg a speciális szituációt és térjünk vissza a program normál mőködéséhez, folytassuk a

programot ott, ahol a kivétel kiváltódott.

Az Ada szerint viszont, ha bekövetkezik a speciális szituáció, akkor hagyjuk ott az eredeti

tevékenységet, végezzünk olyan tevékenységet, ami adekvát a bekövetkezett eseménnyel és ne

térjünk vissza oda, ahol a kivétel kiváltódott.

A kivételkezelési eszközrendszerrel kapcsolatban a nyelveknek a következı kérdéseket kell

megválaszolni:

113

1. Milyen beépített kivételek vannak a nyelvben?

2. Definiálhat-e a programozó saját kivételt?

3. Milyenek a kivételkezelı hatásköri szabályai?

4. A kivételkezelés köthetı-e programelemekhez (kifejezés, utasítás, programegység)?

5. Hogyan folytatódik a program a kivételkezelés után?

6. Mi történik, ha kivételkezelıben következik be kivétel?

7. Van-e a nyelvben beépített kivételkezelı?

8. Van-e lehetıség arra, hogy bármely kivételt kezelı (általános) kivételkezelıt írjunk?

9. Lehet-e parametrizálni a kivételkezelıt?

Sem a PL/I-ben, sem az Adában nincs parametrizált és beépített kivételkezelı, a részleteket

illetıen pedig az alábbiakat mondják.

9.1. A PL/I kivételkezelése

A PL/I beépített kivételei a következık:

CONVERSION konverziós hiba

FIXEDOVERFLOW fixpontos túlcsordulás

OVERFLOW lebegıpontos túlcsordulás

UNDERFLOW lebegıpontos alulcsordulás

ZERODIVIDE nullával való osztás

SIZE mérethiba

SUBSCRIPTRANGE indextúllépés

STRINGRANGE

STRINGSIZE

CHECK[(azonosító)] nyomkövetés eszköze

AREA címzési hiba

ATTENTION külsı megszakítás

FINISH a program szabályos befejezıdése

114

ENDFILE(áll_név) állomány vége

ENDPAGE(áll_név) lap vége

KEY(áll_név) kulcshiba

NAME(áll_név)

RECORD(áll_név)

TRANSMIT(áll_név)

UNDEFINEDFILE(áll_név)

PENDING(áll_név)

ERROR általános kivétel

A programozó saját kivételt a

CONDITION(név)

formában tud deklarálni.

Az elsı öt beépített kivétel figyelése alapértelmezésben engedélyezett, de letiltható, a második

öté letiltott, de engedélyezhetı, a többié, és a programozói kivételeké mindig engedélyezett és

soha nem tiltható le.

Minden utasítás elıtt szerepelhet egy, a kivétel figyelésének letiltására vagy engedélyezésére

vonatkozó elıírás. Ha kerek zárójelek között megadunk tetszıleges számú kivételnevet,

vesszıvel elválasztva

(kivételnév [, kivételnév] …):utasítás

akkor ez az adott kivételek figyelésének engedélyezését jelenti.

Ha a kivételnév elıtt szerepel a NO, akkor az adott kivétel letiltását írtuk elı.

Például:

(NOZERODIVIDE, SIZE):IF ...

Ha egy blokk vagy alprogram kezdı utasítása elıtt szerepel az elıírás, akkor az az adott teljes

programegységre vonatkozik (melyen belül utasításonként felülbírálható), beleértve a

tartalmazott programegységeket is. Ha olyan utasítás elıtt áll, amelyben van kifejezés, akkor

115

csak a kifejezésre vonatkozik, nem pedig a teljes utasításra. Ha nincs kifejezés, akkor a teljes

utasításra vonatkozik.

Egy kivétel explicit kiváltására a

SIGNAL kivételnév;

utasítás szolgál. Programozói kivétel csak így váltható ki.

A kivételkezelı alakja:

ON kivételnév végrehajtható_utasítás;

Természetesen a végrehajtható utasítás helyén állhat blokk.

A program szövegében bárhol elhelyezhetı kivételkezelı.

A kivételkezelı hatásköre egy adott programegységben attól az idıponttól kezdıdik, amikor a

vezérlés áthaladt rajta, és tart

− egy másik ugyanerre a névre kiadott kivételkezelıig (mely fölülírja az elızı hatását),

− ugyanerre a névre kiadott REVERT kivételnév; utasításig (mely érvényteleníti a

legutolsónak kiadott ON-utasítás hatását),

− vagy a programegység befejezıdéséig,

beleértve a kivételkezelı hatáskörén belül meghívott minden egyes programegységet is.

A kivételkezelı hatásköre tehát dinamikus.

Ha egy programegységben bekövetkezik egy kivétel, akkor a futtató rendszer megnézi, hogy

az adott kivétel figyelése engedélyezett-e vagy sem. Ha letiltott, akkor folytatódik tovább a

programegység végrehajtása. Ha a kivétel figyelése engedélyezett, akkor megnézi a futtató

rendszer, hogy ezen a ponton van-e olyan látható kivételkezelı, amely az adott kivétel nevét

tartalmazza. Ha van ilyen, akkor lefut a kivételkezelı. Ha a kivételkezelıben van GOTO-

utasítás, akkor a megadott címkéjő utasításon folytatódik a program. Ha nem szerepel GOTO-

utasítás, akkor vagy azon az utasításra kerül vissza a vezérlés, amelyben bekövetkezett a

kivétel, vagy a következı utasításra. Ez a kivételtıl függ. Például CONVERSION esetén a hiba

okának megszüntetése után újra ugyanaz az utasítás kerül végrehajtásra, amely kiváltotta ezt a

116

kivételt. Aritmetikai hibák esetén, illetve saját kivételnél pedig a kivételt kiváltó utasítást

követı utasításon folytatódik a program futása.

Ha nincs az adott programegységben látható nevesített kivételkezelı, akkor visszalép a hívási

láncon és a hívóban keres ilyet. Ha a hívási láncon visszafelé lépkedve sehol sem talál ilyet,

akkor bekövetkezik az ERROR kivétel, és ezután erre próbál látható hatásos kivételkezelıt

találni. Az ON ERROR kivételkezelı kezeli le az összes nem nevesített kivételt, ez tehát az

általános kivételkezelı a PL/I-ben. Ha ilyen kivételkezelıt nem talál, akkor a vezérlés átkerül

az operációs rendszerhez, a program nem kezelte az adott kivételt.

A kivételkezelıben bekövetkezı kivételt a PL/I ugyanígy kezeli.

A PL/I rendelkezik a kivételkezelést elısegítı beépített, paraméter nélküli, csak

kivételkezelıben hívható függvényekkel, az ún. ON-függvényekkel. Ezek segítenek

behatárolni a kivételt kiváltó pontos eseményt, annak helyét, esetleg okát. Röviden áttekintünk

közülük néhányat:

− ONCODE: A hiba kódját adja meg. Több olyan beépített kivétel (pl. KEY) van, amely egy

eseménycsoportot nevez meg. Ekkor az egyedi eseményt csak a kódja alapján

azonosíthatjuk.

− ONCHAR: Konverziós hibáknál, folyamatos módú átvitelnél megadja azt a karaktert, amely

a hibát okozta. Ez a beépített függvény pszeudóváltozóként használható, azaz érték adható

neki. Tehát kicserélhetı a konverziós hibát okozó karakter, és újra lehet próbálkozni az

I/O-val.

− ONKEY: I/O hibánál a hibát okozó rekord elsıdleges kulcsát adja meg.

− ONLOCK: Azon alprogram nevével tér vissza, amelyben a kivétel bekövetkezett.

A kivételkezelı dinamikus hatáskörkezelésbıl problémák adódhatnak. A nevek

hatáskörkezelése statikus, a kivételkezelıé dinamikus, ez ellentmondáshoz vezethet. A

meghívott programegység örökli azon kivételkezelı hatását, amely a hívó programegységben

hatásossá válik. Ez veszélyes lehet, mert nemlokális ugrásokat eredményezhet. Ha egy

programegységben nem kezeljük az ott bekövetkezett kivételt, akkor lehet, hogy az egy, a

117

hívási láncban jóval korábban elhelyezkedı programegység olyan kivételkezelıjét aktivizálja,

amely teljesen hibás reagálást eredményez.

A PL/I-ben a saját kivételek nagyon jól használhatók a belövésnél, de nem igazán hatékonyak

futás közben.

Példa:

Egy szekvenciális állomány feldolgozásának mintája a PL/I-ben a következı lehet:

DECLARE F FILE;

1 S,

 2 AZON PICTURE '9999',

 2 EGYEB CHARACTER(91),

EOF BIT(1) INIT('0'B);

ON ENDFILE(F) EOF='1'B;

OPEN FILE(F);

READ FILE(F) INTO(S);

DO WHILE(¬EOF);

.

.

.

 READ FILE(F) INTO(S);

END;

9.2. Az Ada kivételkezelése

Az Ada beépített kivételei általában eseménycsoportot neveznek meg. Ezek a következık:

- CONSTRAINT_ERROR: Olyan eseménycsoport, amely akkor következik be, ha

- valamilyen deklarációs korlátozást megpróbálunk túllépni. Például indexhatár átlépése.

- NUMERIC_ERROR: Aritmetikai hibák, alul- ill. túlcsordulás, 0-val való osztás, stb.

118

- STORAGE_ERROR: Tárhiba (minden allokálási probléma ide tartozik): a tárrész,

amelyre hivatkoztunk nem áll rendelkezésre.

- TASKING_ERROR: Az adott taszkkal nem jöhet létre randevú.

- SELECT_ERROR: SELECT-utasítás hiba.

Alaphelyzetben minden kivétel figyelése engedélyezett, de egyes események figyelése

(bizonyos ellenırzések) letiltható. Erre egy pragma szolgál, melynek alakja:

SUPPRESS(név [,ON => { eszköznév | típus }])

A név a letiltandó esemény neve. Egyetlen eseményt azonosít, nem egyezik meg a beépített

kivételnevekkel. Lehetséges értékei:

- ACCESS_CHECK: címzés ellenırzés

- DISCRIMINANT_CHECK : rekord diszkriminánsának ellenırzése

- INDEX_CHECK: index ellenırzés

- LENGTH_CHECK: hossz ellenırzés

- RANGE_CHECK: tartomány ellenırzés

- DIVISION_CHECK: nullával való osztás ellenırzése

- OVERFLOW_CHECK: túlcsordulás ellenırzés

- STORAGE_CHECK: tárhely rendelkezésre állásának ellenırzése

Az eszköznév valamely programozói eszköz (pl. változó) nevét jelenti. Ha az opcionális

rész nem létezik, akkor a teljes programra vonatkozik a letiltás, ha igen, akkor az ott megadott

típusra , vagy az adott nevő eszközre.

Saját kivétel az EXCEPTION attribútummal deklarálható.

Kivételkezelı minden programegység törzsének végén, közvetlenül a záró END elıtt

helyezhetı el, alakja:

EXCEPTION

 WHEN kivételnév [, kivételnév]... => utasítások

 [WHEN kivételnév [, kivételnév]… => utasítások]...

 [WHEN OTHERS => utasítások]

119

Az utasítások rész tetszıleges számú és fajtájú végrehajtható utasításból állhat. WHEN-

ágból tetszıleges számú megadható, de legalább egy kötelezı. WHEN OTHERS ág viszont

legfeljebb egyszer szerepelhet, és utolsóként kell megadni. Ez a nem nevesített kivételek

kezelésére való (általános kivételkezelés).

A kivételkezelı a teljes programegységben, továbbá az abból meghívott programegységekben

látszik, ha azokban nem szerepel saját kivételkezelı. Tehát a kivételkezelı hatásköre az

Adában is dinamikus, az a hívási láncon öröklıdik.

Bármely kivételt explicit módon kiváltani a

RAISE kivételnév;

utasítással lehet. Programozói kivétel kiváltása csak így lehetséges.

Ha egy programegységben kiváltódik egy kivétel, akkor a futtató rendszer megvizsgálja, hogy

az adott kivétel figyelése le van-e tiltva. Ha igen, akkor a program fut tovább, különben a

programegység befejezi mőködését. Ezek után a futtató rendszer megnézi, hogy az adott

programegységen belül van-e kivételkezelı. Ha van, akkor megnézi, hogy annak van-e olyan

WHEN-ága, amelyben szerepel az adott kivétel neve. Ha van ilyen ág, akkor végrehajtja az ott

megadott utasításokat. Ha ezen utasítások között szerepel a GOTO-utasítás, akkor a megadott

címkén folytatódik a program. Ha nincs GOTO, akkor úgy folytatódik a program futása,

mintha a programegység szabályosan fejezıdött volna be. Ha a kivétel nincs nevesítve,

megnézi, hogy van-e WHEN OTHERS ág. Ha van, akkor az ott megadott utasítások hajtódnak

végre, és a program ugyanúgy folytatódik mint az elıbb. Ha nincs nevesítve a kivétel egyetlen

ágban sem, és nincs WHEN OTHERS ág, vagy egyáltalán nincs kivételkezelı, akkor az adott

programegység továbbadja a kivételt. Ez azt jelenti, hogy a kivétel kiváltódik a hívás helyén,

és a fenti folyamat ott kezdıdik elırıl. Tehát a hívási láncon visszafelé lépkedve keres

megfelelı kivételkezelıt. Ha a hívási lánc elejére ér, és ott sem talál kivételkezelıt, akkor a

program a kivételt nem kezelte, és a vezérlés átadódik az operációs rendszernek.

Kivételkezelıben kiváltott kivétel azonnal továbbadódik.

Csak a kivételkezelıben alkalmazható a

120

RAISE;

utasítás, amely újra kiváltja azt a kivételt, amely aktivizálta a kivételkezelıt. Ez viszont az

adott kivétel azonnali továbbadását eredményezi.

Deklarációs utasításban kiváltódott kivétel azonnal továbbadódik. Csomagban bárhol

bekövetkezett és ott nem kezelt kivétel beágyazott csomag esetén továbbadódik a tartalmazó

programegységnek, fordítási egység szintő csomagnál viszont a fıprogram félbeszakad.

A kivételkezelı dinamikus hatásköre itt is ugyanazokat a problémákat veti föl, mint a PL/I-

ben. Az egyetlen különbség, hogy a hívási lánc programegységei szabályosan befejezıdnek.

Az Ada fordító nem tudja ellenırizni a kivételkezelık mőködését.

Az Adában a saját kivételeknek alapvetı szerepük van a programírásban, egyfajta

kommunikációt tesznek lehetıvé a programegységek között az eseményvezérlés révén.

Példa:

FUNCTION FAKT(N : NATURAL) RETURN FLOAT IS

BEGIN

 IF N=1 THEN RETURN 1.0;

 ELSE RETURN FLOAT(N)*FAKT(N-1);

 END IF;

EXCEPTION

 WHEN NUMERIC_ERROR => RETURN FLOAT_MAX;

END;

Ha olyan paraméterrel hívom meg a függvényt, amelyre a faktoriális értéke túl nagy, akkor

kivételkezelés nélkül túlcsordulás következne be, így viszont a függvény a maximális

lebegıpontos értékkel tér vissza.

121

10. GENERIKUS PROGRAMOZÁS

A generikus programozási paradigma az újrafelhasználhatóság és így a procedurális

absztrakció eszköze. Ez a paradigma ortogonális az összes többi paradigmára, tehát bármely

programozási nyelvbe beépíthetı ilyen eszközrendszer. A generikus programozás lényege,

hogy egy paraméterezhetı forrásszöveg-mintát adunk meg. Ezt a mintaszöveget a fordító

kezeli. A mintaszövegbıl aktuális paraméterek segítségével elıállítható egy konkrét szöveg,

ami aztán lefordítható. Az újrafelhasználás ott érhetı tetten, hogy egy mintaszövegbıl

tetszıleges számú konkrét szöveg generálható. És ami talán a leglényegesebb, hogy a

mintaszöveg típussal is paraméterezhetı.

Most az Ada lehetıségeit vizsgáljuk meg.

Az Ada generikus alakja:

GENERIC formális_paraméter_lista

törzs

A törzs egy teljes alprogram vagy csomag deklarációja, amiben szerepelnek a formális

paraméterek. A generikus formális paraméterei változók, típusok és alprogramspecifikációk

lehetnek. A formális_paraméter_lista alakja:

[{ változódeklaráció |

TYPE név IS { (<>) | RANGE <> | DELTA <> | DIGITS <> | tömbtípus

 | mutatótípus | [LIMITED] PRIVATE } |

WITH alprogram_specifikáció [IS név] |

WITH alprogram_specifikáció IS <> } ;]…

Konkrét alprogramot vagy csomagot ebbıl a mintaszövegbıl a következı utasítás segítségével

lehet generáltatni:

{ PROCEDURE | FUNCTION | PACKAGE } generált_név

IS NEW generikus_név [(aktuális_paraméter_lista)];

122

A generikust így „hívjuk” meg. Ennek során lejátszódik a paraméterkiértékelés és a

paraméterátadás.

A generikus formális paramétereinek száma mindig fix. A paraméterkiértékelésnél a sorrendi

kötés az alapértelmezés, de alkalmazható a név szerinti kötés is. Az alprogramspecifikáció

formális paraméterekhez az IS szerepeltetése esetén nem szükséges aktuális paramétert adni.

Változóhoz azonos típusú konstans kifejezés, alprogramspecifikációhoz megfelelı

specifikációjú eljárás- vagy függvénynevet adhatunk meg aktuális paraméternek. Típus

formális paraméter esetén az aktuális paraméter rendre (a szintaktikai leírásban megadott

sorrendet követve) egy sorszámozott, egész, fixpontos, lebegıpontos, tömb, mutató vagy

tetszıleges típus neve lehet.

A paraméterátadás változónál érték, típusnévnél név szerint történik. Alprogram specifikáció

esetén, ha megadunk aktuális alprogram nevet, akkor a generált szövegben ez a név jelenik

meg. Ha nem adunk meg aktuális alprogram nevet, akkor a generált név az IS után

megadott név lesz, vagy IS <> esetén a generált név meg fog egyezni a formális paraméter

nevével.

Példaként nézzük azt a generikus csomagot, ami a verem absztrakt adattípust implementálja:

generic

 MERET : integer;

 type ELEM is private;

 package VERMEK is

 type VEREM is limited private;

 procedure PUSH(S:in out VEREM; E:in ELEM);

 procedure POP(S:in out VEREM; E:out ELEM);

 TELE,URES : exception;

 private

 type VEREM is

 record

 HELY:array(1..MERET) of ELEM;

 INDEX:integer range 0..MERET:=0;

 end record;

 end;

123

 package body VERMEK is

 procedure PUSH(S:in out VEREM; E:in ELEM) is

 begin

 if S.INDEX=MERET then raise TELE; end if;

 S.INDEX:= S.INDEX+1;

 S.HELY(S.INDEX):=E;

 end PUSH;

 procedure POP(S:in out VEREM; E:out ELEM) is

 begin

 if S.INDEX=0 then raise URES; end if;

 E:=S.HELY(S.INDEX);

 S.INDEX:=S.INDEX-1;

 end POP;

 end VERMEK;

A generikusnak két formális paramétere van, a MERET a verem méretét, az ELEM a veremben

tárolandó elemek típusát határozza meg. Ez utóbbi korlátozott privát típusú, tehát

generáláskor bármilyen típusnév megadható hozzá aktuális paraméterként. Ezáltal tetszıleges

típusú elemeket tartalmazó, tetszıleges mérető verem kezelését megvalósító konkrét csomag

generálható belıle.

A vermet egydimenziós tömbbel reprezentáljuk. A verem LIFO viselkedését a két mővelet

(PUSH és POP) megfelelıen implementálja. A két szélsıséges szituációt (a verem üres és tele

van) saját kivételek kiváltásával jelezzük. A csomagban nincs kivételkezelés, tehát ezek a

kivételek továbbadódnak a hívási környezetbe, hiszen az adott eseményt értelmesen csak ott

lehet lekezelni.

A következıkben két konkrét veremkezelı csomag generálását láthatjuk:

package EGESZ_VEREM is new VERMEK(ELEM=>integer, ME RET=>1024);

package LOGIKAI_VEREM is new VERMEK(100, boolean);

Az elsı esetben név szerinti kötést, a másodikban sorrendi kötést alkalmaztunk.

124

11. PÁRHUZAMOS PROGRAMOZÁS

A Neumann-architektúrán felépülı gépek szekvenciálisak: a processzor a programnak

megfelelı sorrendben hajtja végre az utasításokat elemi lépésenként.

Egy processzor által éppen végrehajtott gépi kódú programot folyamatnak vagy szálnak

hívunk. Ha ezek a mőködı kódok az erıforrásokat kizárólagosan birtokolják, akkor

folyamatról, ha bizonyos erıforrásokat közösen birtokolhatnak, akkor szálakról beszélünk.

A folyamatok kezelése operációs rendszer szinten történik (l. Operációs rendszerek 1). A

kérdés az, hogy nyelvi szinten milyen eszközök állnak rendelkezésünkre ezek

leprogramozásához.

A párhuzamos programozás nyelvi alapfogalmai:

Kommunikáció: A folyamatok kommunikálnak egymással, adatcserét folytatnak.

Szinkronizáció: Az operációs rendszer szinkronizációs eszközein túl, nyelvi szinten lényeges

az idıbeli szinkronizáció. A párhuzamosan futó folyamatoknak bizonyos idıpillanatokban

találkozniuk kell. Elıfordul, hogy a szinkronizációs ponton keresztül történik adatcsere, a

szinkronizációs ponton keresztül zajlik a kommunikáció. Például olyan információt vár az

egyik a másiktól, ami nélkül nem tud továbbhaladni.

Konkurencia: A folyamatok vetélkednek a programbeli erıforrásokért.

Kölcsönös kizárás: Mivel a folyamatok kizárólagosan birtokolják az erıforrásokat, biztosítani

kell, hogy amíg az egyik folyamat módosítja az adatot, addig a másik folyamat ne

használhassa fel azt.

A párhuzamos programozási eszközrendszer elıször a PL/I-ben jelent meg. Létezik a

Pascalnak és a C-nek is olyan változata, amely ebben az irányban bıvíti tovább a nyelvet.

Azok az algoritmusok, amelyekkel eddig találkoztunk, szekvenciális algoritmusok, de

léteznek párhuzamos algoritmusok is a problémák megoldására. Ezen algoritmusokon belül az

egyszerre elvégezhetı mőveleteket egyszerre végezzük el.

A programozási nyelveknek a párhuzamos programozás megvalósításához rendelkezniük kell

eszközzel:

125

– a folyamatok kódjának megadására,

– a folyamatok elindítására és befejeztetésére,

– a kölcsönös kizárás kérésére,

– a szinkronizációra,

– a kommunikáció megvalósítására,

– a folyamatok mőködésének felfüggesztésére,

– a folyamatok prioritásának meghatározására,

– a folyamatok ütemezésére.

126

12. A TASZK

Az Adában a taszk mint programegység szolgál a párhuzamos programozás megvalósítására.

A taszk tehát az a nyelvi eszköz, amely mögött folyamat áll. A taszk mint programegység

önállóan nem létezik, csak egy másik programegységbe beágyazva jelenhet meg a program

szövegében. A taszkot tartalmazó programegységet szülıegységnek hívjuk. Egy

szülıegységen belül akárhány testvértaszk elhelyezhetı. Ezek azonos szinten deklarált

taszkok. A taszkok tetszıleges mélységben egymásba ágyazhatók. A szülıegység és a

testvértaszkok törzse mögötti folyamatok mőködnek egymással párhuzamosan.

Többprocesszoros rendszerek esetén elképzelhetı, hogy minden taszk más-más processzoron

fut. Ez a valódi párhuzamosság. Egyprocesszoros rendszerek is programozhatók párhuzamos

módon, ekkor az operációs rendszer szimulálja a párhuzamosságot. Ez a virtuális

párhuzamosság.

Egy taszk akkor kezdi el a mőködését, amikor elindul a szülıegysége. Ez egy kezdeti

szinkronizáció. Tehát az Adában az ütemezést a program szerkezete dönti el, vagyis

lényegében a programozó ütemez.

Egy taszk befejezi a mőködését:

− ha elfogytak az utasításai,

− ha a szülıegysége vagy egy testvértaszkja befejezteti a mőködését az ABORT név;

utasítással,

− explicit módon befejezteti saját mőködését külön utasítással.

A szülıegység akkor fejezıdik be, ha ı, mint programegység befejezıdött, és ha az összes

általa tartalmazott testvértaszk befejezıdött. Ez egyfajta végszinkronizációs pont a

szülıegység számára.

A taszknak két része van, specifikáció és törzs. Formálisan a következıképpen néz ki:

127

TASK [TYPE] név

[IS entry _deklarációk

END [név]] ;

TASK BODY név IS

 [deklarációk]

BEGIN

 végrehajtható _utasítások

 [kivételkezel ı]

END [név];

A specifikációs részben ún. entry-specifikációk deklarálhatók, ezek segítségével belépési

pontokat adhatunk meg. Ezek formálisan olyanok, mint az eljárások specifikációi, csak az

alapszó ENTRY, nem PROCEDURE. Ezek a szinkronizáció eszközei az Adában.

Létrehozható taszk típus, ez egy korlátozott privát típusnak tekinthetı.

A felhasználásuk módja szerint megkülönbözetünk két fajta taszkot. Passzív taszkok azok a

taszkok, amelyek valamilyen szolgáltatást nyújtanak. Ezek specifikációs részében entry-

specifikációk állnak, melyek leírják a szolgáltatás jellegét. Aktív taszkok azok a taszkok,

amelyek igénybe eszik ezeket a szolgáltatásokat.

A szinkronizációt az Ada randevúnak hívja. Az aktív taszk egy entry-hívással képez egy

randevúpontot. Ez formálisan megegyezik az eljáráshívással.

A passzív taszkon belül minden egyes entry-specifikációhoz meg kell adni legalább egy

elfogadó utasítást, melynek alakja:

ACCEPT entry _név [(formális _paraméter _lista)]

[DO végrehajtható_utasítások END [entry _név]] ;

A passzív taszk egy ilyen elfogadó utasítással képez egy randevúpontot. A passzív taszk által

fölajánlott szolgáltatások a DO és END között vannak leírva.

Alaphelyzetben a randevú a következı módon megy végbe. A randevúhoz kell egy aktív

taszk, amely meghív egy entryt, és egy passzív, amelyben a megfelelı elfogadó utasítás van.

128

Elindul a két taszk, szekvenciálisan hajtja végre az utasításokat, amíg egy randevúponthoz

nem ér valamelyikük. Amelyik hamarabb ér a randevúponthoz, az bevárja a másikat, tehát

addig a mőködését felfüggeszti. A randevú elsısorban a szinkronizáció eszköze az Adában, de

van lehetıség a randevúban történı adatcserére is, erre szolgálnak a belépési pont formális

paraméterei.

Ha mindkét taszk odaért a randevúponthoz, akkor az IN és IN OUT paraméterek esetén

információ adódik át az aktív taszktól a passzív felé. Ezután, ha van DO-END rész, akkor az

végrehajtódik, a randevú végén pedig az OUT és IN OUT paraméterek segítségével a passzív

taszk felıl mozog információ az aktív taszk felé. Tehát a randevúban szinkronizáció mindig

van, kommunikáció és közös tevékenység pedig lehetséges.

A taszkok kommunikálhatnak a szülıegységben deklarált, a testvértaszkok számára globális

változók segítségével is. Ezeket egyidıben használhatja ez összes testvértaszk. A közösen

használt változókra a kölcsönös kizárást egy pragma segítségével biztosíthatjuk, ennek alakja:

SHARED(változó_név)

A szülıegység deklarációs részében kell megadni, ahol a változó deklarációja is szerepel.

Egy taszk specifikációs részében helyezhetı el a következı pragma, melynek segítségével a

taszkhoz prioritás rendelhetı:

PRIORITY(kifejezés)

Egy alacsonyabb prioritású vagy prioritás nélküli taszk soha nem akadályozhatja magasabb

prioritású taszk munkáját.

Ha valamely passzív taszk egy adott szolgáltatását több aktív taszk akarja igénybe venni

egyidejőleg, akkor az aktív taszkok egy prioritásos várakozási sorba kerülnek.

Minden taszk törzsében elhelyezhetı a

DELAY kifejezés;

késleltetı utasítás. A kifejezés nemnegatív, egész értékő, decimális számrendszerben

értendı szám, amely a késleltetést adja meg másodpercben. Az adott taszk ennyi idıre

felfüggeszti a mőködését.

129

A randevú bekövetkezte a taszkokban befolyásolható a SELECT-utasítás segítségével. Ezen

utasítás szerepe más-más az aktív és a passzív taszk esetén. Az aktív taszk ugyanis mindig

maga hív meg egy szolgáltatást jelentı belépési pontot, a passzív taszk viszont nem tudja

sohasem, hogy egy elfogadó utasítás által felkínált szolgáltatást igénybe akar-e venni

valamikor majd egy aktív taszk.

Az aktív taszkokban a SELECT-utasításnak két formája alkalmazható.

Feltételes randevúra szolgáló SELECT:

SELECT

 entry_hívás

 [végrehajtható_utasítások]

ELSE

 végrehajtható_utasítások

END SELECT;

Ha az entry_hívás által kezdeményezett randevú azonnal létrejöhet, akkor végbemegy,

ezután végrehajtódnak az esetlegesen megadott egyéb utasítások, és a taszk kilép a SELECT-

utasításból, ha viszont nem, akkor az aktív taszk nem vár, hanem „póttevékenységet” végez,

azaz az ELSE-ágban lévı utasításokat hajtja végre, és kilép a SELECT-utasításból.

Idızített randevúra szolgáló SELECT:

SELECT

 entry_hívás

 [végrehajtható_utasítások]

ELSE

 késleltet ı_utasítás

 [végrehajtható_utasítások]

END SELECT;

Ha az entry_hívás által kezdeményezett randevú azonnal létrejöhet, akkor végbemegy,

ezután végrehajtódnak az esetlegesen megadott egyéb utasítások, és a taszk kilép a SELECT-

utasításból, ha viszont nem, akkor az aktív taszk várakozik a késleltetı utasításban megadott

130

ideig, miközben újra és újra megpróbál randevúzni, és csak az adott idı letelte után hajtja

végre az esetlegesen megadott „póttevékenységet” és lép ki a SELECT-utasításból.

A passzív taszkban elhelyezhetı SELECT:

SELECT

 [WHEN feltétel =>] alternatíva

 [OR [WHEN feltétel =>] alternatíva]…

 [ELSE végrehajtható_utasítások]

END SELECT;

Egy alternatíva alakja:

− elfogadó alternatíva:

 elfogadó_utasítás [végrehajtható_utasítások]

− késleltetı alternatíva:

 késleltet ı_utasítás [végrehajtható_utasítások]

− befejeztetı utasítás:

 TERMINATE;

Legalább egy elfogadó alternatíva szükséges, de akármennyi lehet. A késleltetı alternatívából

bármennyi, befejeztetıbıl maximum egy szerepelhet. A késleltetı és a befejeztetı alternatíva

kizárja egymást.

Egy alternatívát nyíltnak nevezünk, ha vagy nem szerepel elıtte WHEN feltétel , vagy

szerepel, de a feltétel igaz. Egyébként az alternatíva zárt.

Amikor egy ilyen SELECT-utasításhoz ér a passzív taszk, akkor

− Kiértékelıdnek a feltételek és eldıl, hogy mely alternatívák nyíltak és mely alternatívák

zártak.

− Azon nyílt alternatívákban, melyekben DELAY-utasítás van, kiértékelıdnek a megadott

kifejezések és eldılnek a várakozási idık.

− Egy nyílt elfogadó alternatíva kiválasztható, ha létezik olyan aktív taszk, amely ezzel a

ponttal randevúzni akar (meghívta ezt az entryt). Ekkor a randevú végbemegy,

131

végrehajtódnak az esetlegesen megadott egyéb utasítások és a taszk kilép a SELECT-

utasításból. Ha egyszerre több kiválasztható elfogadó alternatíva van, bármelyik

végrehajtódhat. Nem determinisztikus, hogy melyik randevú hajtódik végre, de mindig

csak egyetlen randevú mehet végbe.

− Egy nyílt késleltetı alternatíva kiválasztható, ha nincs kiválasztható elfogadó alternatíva.

Ha több kiválasztható késleltetı alternatíva van, akkor a legkisebb várakozási idejőt

választja ki. Ekkor a passzív taszk a megadott ideig várakozik, és közben vizsgálja, hogy

nem futott-e be valamelyik nyílt elfogadó alternatívához randevú kérés. Ha igen

végbemegy a randevú, ha nem, akkor a várakozási idı letelte után végrehajtja az

esetlegesen megadott egyéb utasításokat, majd kilép a SELECT-utasításból.

− Nyílt befejeztetı alternatíva akkor választható ki, ha a testvértaszkok, a szülıegység és

minden, az adott taszk által tartalmazott taszk befejezte a mőködését. Ekkor a taszk

befejezi a mőködését.

− Ha nincs kiválasztható nyílt alternatíva, és van ELSE-ág, akkor végrehajtódnak az ott

megadott utasítások, és a taszk kilép a SELECT-utasításból. Ha nincsen ELSE-ág, akkor a

taszk belefut egy végtelen várakozásba, és közben nézi, hogy egy nyílt alternatíva nem

válik-e kiválaszthatóvá, vagy egy zárt nyílttá és kiválaszthatóvá.

− Ha minden alternatíva zárt, és van ELSE-ág, akkor végrehajtódnak az ott megadott

utasítások, és a taszk kilép a SELECT-utasításból. Ha viszont nincs ELSE-ág, akkor

bekövetkezik a SELECT_ERROR kivétel.

Aktív taszk csak olyan passzív taszkkal tud randevúzni, amelyik még mőködik. Ha egy olyan

taszkkal akar randevúzni egy taszk, amelyikkel nem lehetséges (mert például már befejezte a

mőködését), akkor kiváltódik a TASKING_ERROR kivétel.

A kivételkezelés szabályai a taszkok esetén némileg kiegészülnek. Ha egy kivétel randevúban

következik be, akkor az a randevúban résztvevı mindkét taszkban kiváltódik. Viszont vannak

olyan kivételek, amelyek csak taszkban következhetnek be, így azok kezelését is csak

taszkban lehet megoldani. Ezért az Ada azt mondja, hogy ha egy taszkban bekövetkezik egy

kivétel, és azt nem kezeljük, akkor az nem adódik tovább.

132

Példa:

Adva van egy folyamat, amelyik karaktereket állít elı a saját ütemének megfelelıen. Van egy

másik folyamat, ami felhasználja a termelt karaktereket szintén a saját ütemének megfelelıen.

Nincsenek szinkronban, párhuzamosan dolgoznak. Írjunk programot erre a problémára!

Írjunk egy termelı, egy fogyasztó aktív taszkot és egy passzív taszkot, amely fogadja, tárolja

illetve átadja az karaktereket! Kell hozzájuk egy tartalmazó szülıegység, melynek egyetlen

feladata a szinkronizáció. Legyen ez az alábbi blokk.

begin

 -- a taszkok deklarációja

 null;

end;

A termelı és a fogyasztó taszk törzsében legyen egy-egy végtelen ciklus:

loop

 -- a karakter el ıállítása

 BUFFER.WRITE(CHAR);

 exit when CHAR=END_OF_CHAR;

end loop;

loop

 BUFFER.READ(CHAR);

 -- a karakter feldolgozása

 exit when CHAR=END_OF_CHAR;

end loop;

A passzív taszk egy ciklikus reprezentációval kezelt sorban tárolja az adatokat:

task BUFFER is

 entry READ(C : out character);

 entry WRITE(C : in character);

end;

133

task body BUFFER is

 POOL_SIZE : constant integer:=100;

 POOL : array (1..POOL_SIZE) of character;

 COUNT : integer range 0..POOL_SIZE:=0;

 IN_INDEX, OUT_INDEX : integer range 1..POOL_SIZE:= 1;

begin

 loop

 select

 when COUNT < POOL_SIZE =>

 accept WRITE (C : in character) do

 POOL(IN_INDEX):=C; end;

 IN_INDEX:=IN_INDEX mod POOL_SIZE+1;

 COUNT:=COUNT+1;

 or when COUNT > 0 =>

 accept READ(C : out character) do

 C:=POOL(OUT_INDEX); end;

 OUT_INDEX:= OUT_INDEX mod POOL_SIZE-1;

 COUNT:=COUNT-1;

 or terminate;

 end select;

 end loop;

end BUFFER;

A törzs egy végtelen ciklus, amelyen belül egyetlen SELECT-utasítás van. A SELECT

feladata a szinkronizáció. Három ága van, melyek közül a befejeztetı alternatíva mindig

nyílt. Elindul a szülıegység, és azonnal be is fejezi a mőködését, várva hogy a taszkok is véget

érjenek. A három taszk belefut a végtelen ciklusba. Az elsı randevút a termelı taszkkal hajtja

végre a passzív taszk, majd kilép a SELECT-bıl. Mivel végtelen ciklusról van szó, azonnal

újból a SELECT-re kerül a vezérlés. A két aktív taszk elıbb-utóbb kilép a végtelen ciklusból

az EXIT-utasítással, és elér a törzsének a végére, befejezvén a mőködését. A szülıegység már

várakozik, tehát kiválaszthatóvá válik a befejeztetı alternatíva, a folyamatok lezárulnak.

134

13. INPUT/OUTPUT

Az I/O az a területe a programnyelveknek, ahol azok leginkább eltérnek egymástól. Az I/O

platform-, operációs rendszer-, implementációfüggı. Egyes nyelvek nem is tartalmaznak

eszközt ennek megvalósítására, eleve az implementációra bízzák a megoldást.

Az I/O az az eszközrendszer a programnyelvekben, amely a perifériákkal történı

kommunikációért felelıs, amely az operatív tárból oda küld adatokat, vagy onnan vár

adatokat. Az I/O középpontjában az állomány áll. A programnyelvi állományfogalom

megfelel az absztrakt állományfogalomnak (l. Adatszerkezetek és algoritmusok). Egy

programban a logikai állomány egy olyan programozási eszköz, amelynek neve van, és

amelynél az absztrakt állományjellemzık (rekordfelépítés, rekordformátum, elérés, szerkezet,

blokkolás, rekordazonosító stb.) attribútumként jelennek meg. A fizikai állomány pedig a

szokásos operációs rendszer szintő, konkrét, a perifériákon megjelenı, az adatokat tartalmazó

állomány.

Egy állomány funkció szerint lehet:

− input állomány: a feldolgozás elıtt már léteznie kell, és a feldolgozás során változatlan

marad, csak olvasni lehet belıle,

− output állomány: a feldolgozás elıtt nem létezik, a feldolgozás hozza létre, csak írni lehet

bele,

− input-output állomány: általában létezik a feldolgozás elıtt és létezik a feldolgozás után is,

de a tartalma megváltozik, olvasni és írni is lehet.

Az I/O során adatok mozognak a tár és a periféria között. A tárban is, és a periférián is van

valamilyen ábrázolási mód. Kérdés, hogy az adatmozgatás közben történik-e konverzió.

Ennek megfelelıen létezik kétféle adatátviteli mód: a folyamatos (van konverzió) és a bináris

vagy rekord módú (nincs konverzió).

A folyamatos módú adatátvitelnél a tárban és a periférián eltér a reprezentáció. Ebben az

esetben a nyelvek a periférián az adatokat egy folytonos karaktersorozatnak tekintik, a tárban

pedig a típusnak megfelelı belsı ábrázolás által definiált bitsorozatok vannak. Az adatátvitel

135

ekkor egyedi adatok átvitelét jelenti konverzióval. Olvasáskor meg kell mondania, hogy a

folytonos karaktersorozatot hogyan tördeljük fel olyan karaktercsoportokra, amelyek az egyedi

adatokat jelentik, és hogy az adott karaktercsoport milyen típusú adatot jelent. Íráskor pedig

rendelkezni kell arról, hogy a tárbeli, adott típusú adatot reprezentáló bitsorozatból a folytonos

karaktersorozatban melyik helyen és hány karaktert alkotva jelenjen meg az egyedi adat.

A nyelvekben ezek megadására három alapvetı eszközrendszer alakult ki:

− formátumos módú adatátvitel: minden egyes egyedi adathoz a formátumok segítségével

explicit módon meg kell adni a kezelendı karakterek darabszámát és a típust.

− szerkesztett módú adatátvitel: minden egyes egyedi adathoz meg kell adni egy maszkot,

amely szerkesztı és átviendı karakterekbıl áll. A maszk elemeinek száma határozza meg

a kezelendı karakterek darabszámát, a szerkesztı karakterek megadják, hogy az adott

pozíción milyen kategóriájú karakternek kell megjelennie, a többi karakter változtatás

nélkül átvitelre kerül.

− listázott módú adatátvitel: itt a folytonos karaktersorozatban magában vannak a tördelést

végzı speciális karakterek, amelyek az egyedi adatokat elhatárolják egymástól, a típusra

nézve pedig nincs explicit módon megadott információ.

A bináris adatátvitel esetén az adatok a tárban és a periférián ugyanúgy jelennek meg. Ez csak

háttértárakkal való kommunikációnál jöhet szóba. Az átvitel alapja itt a rekord.

Ha egy programban állományokkal akarunk dolgozni, akkor a következıket kell

végrehajtanunk:

1. Deklaráció: A logikai állományt mindig deklarálni kell az adott nyelv szabályainak

megfelelıen. El kell látni a megfelelı névvel és attribútumokkal. Minden nyelv definiálja,

hogy milyen állományfogalommal dolgozik. Egyes nyelvek azt mondják, hogy a funkció is

attribútum, tehát a deklarációnál eldıl.

2. Összerendelés: Ennek során a logikai állománynak megfeleltetünk egy fizikai állományt.

Ezt a megfeleltetés vagy a program szövegében, nyelvi eszközzel történik (a fizikai

állomány csak itt jelenik meg), vagy a program szövegén kívül, operációs rendszer szinten

136

végezzük azt el. Innentıl kezdve csak a logikai állománynévvel dolgozunk, de a

tevékenység mindig a mögötte álló fizikai állományra vonatkozik.

3. Állomány megnyitása: Egy állománnyal csak akkor tudunk dolgozni, ha megnyitottuk.

Megnyitáskor operációs rendszer rutinok futnak le, ellenırizve, hogy a logikai állomány

attribútumai és a fizikai állomány jellemzıi megfelelnek-e egymásnak. Egy állomány

funkciója a megnyitásnál is eldılhet bizonyos nyelvekben (pl. „inputra nyitunk”). Ekkor a

program futása folyamán ugyanazt az állományt más-más funkcióra is megnyithatjuk.

4. Feldolgozás: Ha az állományt megnyitottuk, akkor abba írhatunk, vagy olvashatunk

belıle. Az olvasást realizáló eszköznél meg kell adni a logikai állomány nevét és

folyamatos módú adatátvitelnél egy tetszıleges változólistát. Ekkor a felsorolt változók

értékkomponensüket az adott állományból kapják meg. Formátumos átvitelnél minden

változóhoz egy formátumot, szerkesztettnél egy maszkot meg kell adni. Listázott átvitelnél

a konverziót a változók típusa határozza meg. Bináris átvitelnél általában egy (ritkán több)

változó adható meg, melynek rekord típusúnak kell lenni.

A kiíró eszközrendszerben a logikai állomány neve mellett egy kifejezéslistát kell

szerepeltetni. A kifejezések kiértékelıdnek, és ezen értékek kiírásra kerülnek. A

kifejezésekhez itt is egyenként szükségesek a formátumok, illetve a maszkok. Listázottnál

a kifejezés típusa a meghatározó. Bináris átvitelnél a kifejezésnek rekordot kell

szolgáltatnia.

5. Lezárás: A lezárás ismét operációs rendszer rutinokat aktivizál. Azért nagyon fontos, mert

a könyvtárak információinak aktualizálása ilyenkor történik meg. Output és input- output

állományokat le kell zárni, input állományokat pedig illik lezárni. A lezárás megszünteti a

kapcsolatot a logikai állomány és a fizikai állomány között. A nyelvek általában azt

mondják, hogy a program szabályos befejezıdésekor az összes megnyitott állomány

automatikusan lezáródik.

A programozási nyelvek a programozó számára megengedik azt, hogy input-output esetén ne

állományokban gondolkozzon, hanem az írás-olvasást úgy képzelje el, hogy az közvetlenül

valamelyik perifériával történik. Ezt hívjuk implicit állománynak. A megfelelı logikai és

fizikai állomány most is létezik standard nevekkel és jellemzıkkel, de ezt a futtató rendszer

137

automatikusan kezeli. Tehát az implicit állományt nem kell deklarálni, összerendelni,

megnyitni és lezárni. Az implicit input állomány a szabvány rendszerbemeneti periféria

(általában a billentyőzet), az implicit output állomány a szabvány rendszerkimeneti periféria

(általában a képernyı). A programozó bármely állományokkal kapcsolatos tevékenységet

elvégezhet explicit módon (pl. az implicit output állományhoz hozzárendelheti a nyomtatót).

Ha az író és olvasó eszközben nem adjuk meg a logikai állomány nevét, akkor a mővelet az

implicit állománnyal történik.

13.1. Az egyes nyelvek I/O eszközei

FORTRAN :

Szeriális, szekvenciális és direkt állományt tud kezelni. Eszközrendszere szegényes. Csak fix

rekordformátumot tud kezelni. İ vezeti be a formátumos adatátvitelt. A listázott átvitel a

késıbbi verziókba kerül be. Létezik benne a bináris adatátvitel, azonban nem rekordonként,

hanem egyedi adatokként.

CCOOBBOOLL ::

Erıs I/O eszközrendszere van. Mindig konvertál. A COBOL vezeti be a szerkesztett átvitelt.

Szeriális, szekvenciális, direkt, indexelt és invertált állományszerkezetet is ismer, de egyszerre

csak egy másodlagos kulcs szerint tud keresni. Általában fix rekordformátumot kezel.

Blokkolás lehetséges.

PPLL //II ::

Kiemelkedıen a legjobb állománykezelési eszközrendszerrel dolgozik. Az összes

állományszerkezetet, adatátviteli módot, rekordformátumot és blokkolási lehetıséget ismeri és

kezeli.

PPAASSCCAALL ::

Állománykezelési eszközrendszere szegényes. Fix és változó rekordformátumú szeriális

állományt kezel. Az egyes implementációk ismerik a bináris és a folyamatos módú (a

formátumos és a listázott egyfajta keverékeként) átvitelt, és esetlegesen közvetlen eléréssel

dolgoznak. Blokkolás nincs. Nincs I/O utasítás, beépített alprogramokkal dolgozik.

138

C:

Az I/O eszközrendszer nem része a nyelvnek. Standard könyvtári függvények állnak

rendelkezésére. Létezik a bináris és a folyamatos módú átvitel, ez utóbbinál egy formátumos

és egy szerkesztett átvitel keverékeként. Szeriális szerkezetet kezel fix és változó

rekordformátummal. Az I/O függvények minimálisan egy karakter vagy karaktercsoport,

illetve egy bájt vagy bájtcsoport írását és olvasását teszik lehetıvé.

Ada:

Minden perifériát tud nyelvi eszközökkel kezelni. Az Adának sem része az I/O, csomagok

segítségével valósítja meg azt. Léteznek az alábbi csomagok:

- SEQUENTIAL_IO: Szekvenciális állományok kezelésére szolgál. Indexelt szekvenciális

állománnyal is tud dolgozni.

- DIRECT_IO: Direkt állomány kezelésére szolgál.

- TEXT_IO: Szöveges állomány kezelésére szolgál.

- LOW_LEVEL_IO: Tetszıleges perifériával való kommunikáció biztosítása nyelvi

eszközökkel.

- IO_EXCEPTIONS: Az I/O kivételek kezelésénél van jelentısége.

A logikai állomány deklarálása és fizikai állománnyal való összerendelése után a megnyitott

állomány funkciója a programon belül dinamikusan változtatható, például egy kivétel

bekövetkeztekor. Lezáráskor elıírható, hogy az állomány megmaradjon vagy törlıdjön.

139

14. IMPLEMENTÁCIÓS KÉRDÉSEK

Az eljárásorientált programozási nyelvek a rendelkezésükre álló memóriát általában a

következı területekre osztják fel futás közben:

Statikus terület: ez tartalmazza a kódszegmenst és a futtató rendszer rutinjait.

Rendszer verem: tárolja az aktiváló rekordokat.

Dinamikus terület: A mutató típusú eszközökkel kezelt dinamikus konstrukciók helyezkednek

el benne.

Sok nyelvi implementáció úgy kezeli a memóriát, hogy a szabad tárterület a verem és a

dinamikus terület között van, tehát ezek egymás rovására növekszenek.

A kódszegmens a program gépi nyelvő utasításait, rendszerinformációkat és a literálok

táblázatait tartalmazza.

Az eljárásorientált programozási nyelvek a programegységek futásidejő kezeléséhez, a hívási

lánc implementálásához az ún. aktiváló rekordot használják. Ennek felépítése az alábbi:

Dinamikus kapcsoló: Ez egy mutató típusú mezı, amely a hívó programegység aktiváló

rekordját címzi. A hívási környezet érhetı el vele, és a programegység szabályos

befejezıdésekor az aktiváló rekord törlésénél van alapvetı szerepe.

Statikus kapcsoló: Ez egy mutató típusú mezı, amely a tartalmazó programegység aktiváló

rekordját címzi. Statikus hatáskörkezelésnél ennek segítségével érhetı el a tartalmazó

környezet.

Visszatérési cím: A kódszegmens azon címe, ahol a programegység szabályos befejezése

esetén a programot folytatni kell.

Lokális változók

Formális paraméterek (csak alprogram esetén)

Visszatérési érték (csak függvény esetén)

Az egyszerő típusú lokális változók számára a típusukhoz tartozó belsı ábrázolásnak

(fixpontos, lebegıpontos, logikai, karakteres, cím, felsorolásos) megfelelıen foglalódik le a

140

tárterület. Az összetett típusúaknál már bonyolultabb a helyzet. Tömböknél általános, hogy a

lefoglalt tárterület elején egy ún. tömbleíró helyezkedik el, amely tartamazza dimenziónként

az indexek alsó és felsı határát, az elemek típusát és az egy elem tárolásához szükséges bájtok

számát. Ezután pedig jönnek az elemek sor- vagy oszlopfolytonosan. A rekord típusnál a

mezık típusa dönt, ezek egymás után helyezkednek el. Változó hosszúságú rekordtípusnál a

helyfoglalás a maximális méretre történik. Sztringeknél egyaránt szóba jöhet a fix és a változó

hosszon való tárolás, az utóbbinál hosszmegadással, illetve végjellel. Halmaz esetén kevés

elemszámnál karakterisztikus függvény, nagy elemszám esetén kulcstranszformációs táblázat

alkalmazása a szokásos.

A formális paraméterek számára lefoglalt tárterület a paraméterátadástól függ. Érték szerinti

esetben a formális paraméter típusának megfelelı tárterület szükséges. Cím és eredmény

szerinti esetben egy cím tárolásához szükséges bájtmennyiség foglalódik le. Érték-eredmény

szerintinél pedig az elızı kettı. A név és szöveg szerinti paraméterátadás esetén ide egy

paraméter nélküli rendszer rutin hívása kerül. Ez mindig lefut, amikor a formális paraméterre

hivatkozás történik. Feladata a szövegkörnyezet meghatározása és abban az aktuális paraméter

kiértékelése, aztán a formális paraméterek nevének felülírása.

Az aktiváló rekordok a veremben tárolódnak. A verem alján mindig a fıprogram aktiváló

rekordja van. Szabályos program befejezéskor a verem kiürül. Amikor meghívunk egy

alprogramot vagy blokkot, akkor felépül hozzá az aktiváló rekord, és az a verem tetejére kerül

(innentıl aktív az adott programegység), és mindig az a programegység mőködik, amelynek

aktiváló rekordja a verem tetején van. Szabályos befejezıdéskor az aktiváló rekord törlıdik

Taszkok esetén (egy processzoron) egy „kaktusz” verem épül föl. A szülıegység aktiváló

rekordja elhelyezıdik a verem tejére, és az általa meghívott nem taszk programegységek

aktiváló rekordjai pedig fölé kerülnek. A testvértaszkok mindegyikéhez felépül egy-egy olyan

verem, melynek az alján a szülıegység aktiváló rekordja van. Ezek a vermek egyidejőleg

léteznek, és tartalmazzák az adott taszk által létrehozott hívási lánc aktiváló rekordjait. A

szülıegység aktiváló rekordja csak akkor törölhetı, ha minden testvértaszkjának verme

kiürült.

141

IRODALOMJEGYZÉK

Bergin, T. J. – Gibson, R. G.: History of Programming Languages, Addison-Wesley, 1996.

Horowitz, E.: Magas szintő programnyelvek, Mőszaki, 1987.

Juhász I. – Kósa M. – Pánovics J.: C példatár, Panem, 2005.

Kernighan, B. W. – Ritchie, D. M.: A C programozási nyelv, Mőszaki, 2006.

Kósa M. – Pánovics J.: Példatár a Programozás 1 tárgyhoz, elektronikus jegyzet, DE IK.

Marcotty, M. – Ledgard, H.: The World of Programming Languages, Springer-Verlag, 1987.

Nyékiné Gaizler Judit (szerk.): Az Ada95 programozási nyelv, ELTE Eötvös Kiadó, 1998.

Nyékiné Gaizler Judit (szerk.): Programozási nyelvek, Kiskapu, 2003.

Pyle, I. C.: Az Ada programozási nyelv, Mőszaki, 1987.

Scott M. L.: Programming Language Pragmatics, Morgan Kaufmann, 2006.

Sebesta, R. W.: Concepts of Programming Languages, Addison-Wesley, 2007.

Sethi, R.: Programming Languages, Concepts and Constructs, Addison-Wesley, 1996.

Watt D. A.: Programming Language Design Concepts, Wiley, 2006.

The Programming Language Ada, Reference Manual, Lecture Notes in Computer Science 106,

 Springer-Verlag, 1981.

http://www.hitmill.com/programming/c.html

http://www.adahome.com/

http://www.engin.umd.umich.edu/CIS/course.des/cis400/algol/algol.html

http://www.cobolreport.com/index.asp

http://www.fortran.com/

http://www.merlyn.demon.co.uk/pascal.htm

http://home.nycap.rr.com/pflass/pli.htm

