
1

Adatbázisrendszerek megvalósítása 1

Irodalom: Hector Garcia-Molina – Jeffrey D. Ullman – Jennifer Widom:

Adatbázisrendszerek megvalósítása, 8. és 9. fejezet

Előfeltétel: Adatbázisrendszerek tárgy.

Tartalom: Rendszerhibák és a kivédésükre szolgáló naplózási technikák; konkurenciakezelés.

Bevezetés

Az adatbázis-kezelő rendszer alkotórészei

F e l h a s z n á l ó / a l k a l m a z á s

L e k é r d e z é s -

f o r d í t ó

l e k é r d e z é s e k ,

m ó d o s í t á s o k

V é g r e h a j t ó -

m o t o r

l e k é r d e z é s t e r v

I n d e x - / f á j l - /

r e k o r d k e z e l ő

i n d e x - , f á j l - é s

r e k o r d i g é n y e k

P u f f e r -

k e z e l ő

l a p p a r a n c s o k

T á r -

k e z e l ő

l a p I / O

T á r

A d a t b á z i s - a d m i n i s z t r á t o r

D D L -

f o r d í t ó

D D L - p a r a n c s o k

T r a n z a k c i ó -

k e z e l ő

t r a n z a k c i ó s p a r a n c s o k

N a p l ó z ó é s

h e l y r e á l l í t ó

K o n k u r e n c i a -

k e z e l ő

P u f f e r e k

Z á r t á b l a

Az ábrán egy teljes adatbázis-kezelő rendszer vázát láthatjuk. Az egyvonalas dobozok a rendszer

alkotórészeit jelentik, míg a dupla dobozok memóriabeli adatszerkezeteket reprezentálnak. A folytonos

vonalak jelölik az olyan vezérlésátadást, ahol adatok is áramlanak, a szaggatott vonalak pedig csak az

adatmozgást jelölik. Az adatbázis-kezelő rendszerrel kapcsolatos kölcsönhatások döntő többsége az ábra

2

bal oldalán lévő útvonalat követi. A felhasználó vagy az alkalmazói program olyan működést indít el,

amelynek nincs hatása az adatbázissémára, viszont hatással lehet az adatbázis tartalmára (módosító utasítás

esetén), illetve adatokat gyűjthet ki az adatbázisból (lekérdezés esetén). Két olyan útvonal van, amely

mentén a felhasználó cselekménye hatást gyakorol az adatbázisra:

1. A lekérdezés megválaszolása. A lekérdezésfordító elemzi és optimalizálja a lekérdezést. Az eredményül

kapott lekérdezés-végrehajtási tervet (röviden lekérdezéstervet) vagy a lekérdezés megválaszolásához

szükséges tevékenységek sorozatát továbbítja a végrehajtómotornak. A végrehajtómotor kisebb

adatdarabokra (tipikusan rekordokra) vonatkozó kérések sorozatát adja át az erőforrás-kezelőnek. Az

erőforrás-kezelő ismeri a relációkat tartalmazó adatfájlokat, a fájlok rekordjainak formátumát, méretét

és az indexfájlokat is. Az indexfájlok segítenek abban, hogy az adatfájlok elemeit gyorsan meg lehessen

találni. Az adatkéréseket az erőforrás-kezelő lefordítja lapokra, és ezeket a kéréseket továbbítja a

pufferkezelőnek. A pufferkezelő feladata, hogy a másodlagos adattárolón (általában lemezen) tárolt

adatok megfelelő részét hozza be a központi memória puffereibe. A pufferek és a lemez közti adatátvitel

egysége általában egy lap vagy egy lemezblokk. A pufferkezelő információt cserél a tárkezelővel, hogy

megkapja az adatokat a lemezről. Megtörténhet, hogy a tárkezelő az operációs rendszer parancsait is

igénybe veszi, de tipikusabb, hogy az adatbázis-kezelő a parancsait közvetlenül a lemezvezérlőhöz

intézi.

2. A tranzakció feldolgozása. A lekérdezéseket és más tevékenységeket tranzakciókba csoportosíthatjuk.

A tranzakciók olyan munkaegységek, amelyeket atomosan és más tranzakcióktól látszólag elkülönítve

kell végrehajtani. Gyakran minden egyes lekérdezés vagy módosítás önmagában is egy tranzakció.

Ezenkívül a tranzakció végrehajtásának tartósnak kell lennie, ami azt jelenti, hogy bármelyik befejezett

tranzakció hatását még akkor is meg kell tudni őrizni, ha a rendszer összeomlik a tranzakció befejezése

utáni pillanatban. A tranzakciófeldolgozót két fő részre osztjuk:

a) Konkurenciavezérlés-kezelő vagy ütemező (scheduler): a tranzakciók elkülönítésének és

atomosságának biztosításáért felelős.

b) Naplózás- és helyreállítás-kezelő: a tranzakciók atomosságáért és tartósságáért felelős.

A tranzakció

A tranzakció (transaction) az adatbázis-műveletek végrehajtási egysége, amely DML-beli utasításokból áll,

és a következő tulajdonságokkal rendelkezik:

 Atomosság (atomicity): a tranzakció „mindent vagy semmit” jellegű végrehajtása (vagy teljesen

végrehajtjuk, vagy egyáltalán nem hajtjuk végre).

 Konzisztenciamegőrzés (consistency preservation): az a feltétel, hogy a tranzakció megőrizze az

adatbázis konzisztenciáját, azaz a tranzakció végrehajtása után is teljesüljenek az adatbázisban előírt

konzisztenciamegszorítások (integritási megszorítások), azaz az adatelemekre és a közöttük lévő

kapcsolatokra vonatkozó elvárások.

 Elkülönítés (isolation): az a tény, hogy minden tranzakciónak látszólag úgy kell lefutnia, mintha ez alatt

az idő alatt semmilyen másik tranzakciót sem hajtanánk végre.

 Tartósság (durability): az a feltétel, hogy ha egyszer egy tranzakció befejeződött, akkor már soha többé

nem veszhet el a tranzakciónak az adatbázison kifejtett hatása.

Ezek a tranzakció ACID-tulajdonságai (ACID properties). A konzisztenciamegőrzést mindig adottnak

tekintjük (lásd később: korrektség alapelve), a másik három tulajdonságot viszont az adatbázis-kezelő

rendszernek kell biztosítania, bár ettől időnként eltekintünk. Ha egy ad hoc utasítást adunk az SQL-

rendszernek, akkor minden lekérdezés vagy adatbázis-módosító utasítás egy tranzakció. Amennyiben

beágyazott SQL-interfészt használva a programozó készíti el a tranzakciót, akkor egy tranzakcióban több

SQL-lekérdezés és -módosítás szerepelhet. A tranzakció ilyenkor általában egy DML-utasítással kezdődik,

3

és egy COMMIT vagy ROLLBACK utasítással végződik. Ha a tranzakció valamely utasítása egy triggert

aktivizál, akkor az is a tranzakció részének tekintendő, akárcsak a trigger által kiváltott további triggerek.

(A trigger olyan programrész, amely bizonyos események bekövetkeztekor automatikusan lefut.)

A tranzakció feldolgozása

A tranzakciófeldolgozó biztosítja az adatok konkurens elérését és a helyreállíthatóságot (resiliency) a

tranzakciók korrekt végrehajtásával. A tranzakciókezelő fogadja az alkalmazás tranzakciós utasításait. Az

alkalmazás azt is megmondja a tranzakciókezelőnek, hogy mikor kezdődnek és végződnek a tranzakciók,

és még egyéb információt is ad az alkalmazás elvárásairól (például lehet, hogy nem akarja megkövetelni

az atomosságot). A tranzakciófeldolgozó a következő feladatokat hajtja végre:

1. Naplózás: Annak érdekében, hogy a tartósságot biztosítani lehessen, az adatbázis minden változását

külön feljegyezzük (naplózzuk) lemezen. A naplókezelő (log manager) többféle eljárásmód közül

választja ki azt, amelyiket követni fog. Ezek az eljárásmódok biztosítják azt, hogy teljesen mindegy,

mikor történik a rendszerhiba vagy a rendszer összeomlása, a helyreállítás-kezelő meg fogja tudni

vizsgálni a változások naplóját, és ez alapján vissza tudja állítani az adatbázist valamilyen konzisztens

állapotába. A naplókezelő először a pufferekbe írja a naplót, és egyeztet a pufferkezelővel, hogy a

pufferek alkalmas időpillanatokban garantáltan íródjanak ki lemezre, ahol már az adatok túlélhetik a

rendszer összeomlását.

2. Konkurenciavezérlés: A tranzakcióknak úgy kell látszódniuk, mintha egymástól függetlenül,

elkülönítve végeznénk el őket. A legtöbb rendszerben igazából sok tranzakciót kell egyszerre

végrehajtani. Így aztán az ütemező (konkurenciavezérlés-kezelő) feladata, hogy meghatározza az

összetett tranzakciók résztevékenységeinek egy olyan sorrendjét, amely biztosítja azt, hogy ha ebben a

sorrendben hajtjuk végre a tranzakciók elemi tevékenységeit, akkor az összhatás megegyezik azzal,

mintha a tranzakciókat tulajdonképpen egyenként és egységes egészként hajtottuk volna végre. A

tipikus ütemező ezt a munkát azáltal látja el, hogy az adatbázis bizonyos részeire elhelyezett zárakat

(lock) karbantartja. Ezek a zárak megakadályoznak két tranzakciót abban, hogy rossz kölcsönhatással

használják ugyanazt az adatrészt. A zárakat rendszerint a központi memória zártáblájában (lock table)

tárolja a rendszer (lásd ábra). Az ütemező azzal befolyásolja a lekérdezések és más adatbázis-műveletek

végrehajtását, hogy megtiltja a végrehajtómotornak, hogy hozzányúljon az adatbázis zár alá helyezett

részeihez.

3. Holtpont feloldása: A tranzakciók az ütemező által engedélyezett zárak alapján versenyeznek az

erőforrásokért. Így előfordulhat, hogy olyan helyzetbe kerülnek, amelyben egyiküket sem lehet

folytatni, mert mindegyiknek szüksége lenne valamire, amit egy másik tranzakció birtokol. A

tranzakciókezelő feladata, hogy ilyenkor közbeavatkozzon, és töröljön (abortáljon) egy vagy több

tranzakciót úgy, hogy a többit már folytatni lehessen.

A rendszerhibák kezelése

A kérdés az, milyen technikákkal lehet biztosítani a helyreállíthatóságot, azaz hogyan tudjuk megőrizni az

adatok integritását rendszerhibák előfordulásakor. Az adatoknak nem szabad sérülniük több hibamentes

lekérdezés vagy adatbázis-módosítás egyszerre történő végrehajtásakor sem, ezzel a konkurenciavezérlés

foglalkozik.

A helyreállíthatóság biztosítására az elsődleges technika a naplózás (logging), amely valamilyen

biztonságos módszerrel rögzíti az adatbázisban végrehajtott módosítások történetét. Három különböző

módszert tanulmányozunk: a semmisségi (undo), a helyrehozó (redo) és a semmisségi/helyrehozó

(undo/redo) naplózást. Foglalkozunk továbbá a helyreállítással (recovery), azzal az eljárással, amikor a

naplót felhasználva az adatbázist konzisztens állapotba hozzuk, valamint az archiválással (dump, backup),

4

mellyel biztosíthatjuk, hogy az adatbázis nemcsak az ideiglenes rendszerhibákat, de a teljes adatbázis

elveszítését is túlélje.

A hibák fajtái

Az adatbázis lekérdezése vagy módosítása során számos dolog hibát okozhat a billentyűzeten történt

adatbeviteli hibáktól kezdve az adatbázist tároló lemez elhelyezésére szolgáló helyiségben történő

robbanásig.

 Hibás adatbevitel: Ezek a hibák gyakran nem észrevehetők. Ha például a felhasználó elüt egy számot

egy telefonszámban, akkor az adat még úgy néz ki, mint egy telefonszám, csak éppen tartalmilag hibás

lesz. Ha viszont kihagy egy számjegyet a telefonszámból, akkor már formailag is hibás (ha

megkövetelünk egy rögzített formátumot). A modern adatbázis-kezelő rendszerek számos

szoftverelemet biztosítanak a fentiekhez hasonló adatbeviteli hibák felismerésére. Például az SQL2 és

az SQL3 szabványokban az adatbázis tervezője megadhat előírásokat, mint például kulcsra, külső

kulcsra vagy értékekre vonatkozó megszorításokat (hogy például a telefonszámnak 10 jegyből kell

állnia). A triggerek azok a programok, amelyek bizonyos típusú módosítások (például egy relációba

történő beszúrás) esetén hajtódnak végre, annak ellenőrzésére, hogy a frissen bevitt adatok

megfelelnek-e az adatbázis-tervező által megszabott előírásoknak.

 Készülékhibák: A lemezegységek olyan helyi hibái, melyek egy vagy több bit megváltozását okozzák,

a lemez szektoraihoz rendelt paritás-ellenőrzéssel megbízhatóan felismerhetők. A lemezegységek

jelentős sérülése, elsősorban az író-olvasó fejek katasztrófái, az egész lemez olvashatatlanná válását

okozhatják. Az ilyen hibákat általában az alábbi megoldások segítségével kezelik:

1. A RAID-módszerek (Redundant Array of Independent Disks) valamelyikének használatával az

elveszett lemez tartalma visszatölthető.

2. Az archiválás használatával az adatbázisról másolatot készítünk valamilyen eszközre (például

szalagra vagy optikai lemezre). A mentést rendszeresen kell végezni vagy teljes, vagy növekményes

(csak az előző mentés óta történt változásokat archiváljuk) mentést használva. A mentett anyagot

az adatbázistól biztonságos távolságban kell tárolnunk.

3. Az adatbázisról fenntarthatunk elosztott, on-line másolatokat. Ebben az esetben biztosítanunk kell

a másolatok konzisztenciáját.

 Katasztrofális hibák: Ebbe a kategóriába soroljuk azokat a helyzeteket, amikor az adatbázist tartalmazó

eszköz teljesen tönkremegy robbanás, tűz, vandalizmus vagy akár vírusok következtében. A RAID

ekkor nem segít, mert az összes lemez és a paritás-ellenőrző lemezeik is egyszerre használhatatlanná

válnak. A másik két biztonsági megoldás viszont alkalmazható katasztrofális hibák esetén is.

 Rendszerhibák: Minden tranzakciónak van állapota, mely azt képviseli, hogy mi történt eddig a

tranzakcióban. Az állapot tartalmazza a tranzakció kódjában a végrehajtás pillanatnyi helyét és a

tranzakció összes lokális változójának értékét. A rendszerhibák azok a problémák, melyek a tranzakció

állapotának elvesztését okozzák. Tipikus rendszerhibák az áramkimaradásból és a szoftverhibákból

eredők, hiszen ezek a memória tartalmának felülírásával járhatnak. Ha egy rendszerhiba bekövetkezik,

onnantól kezdve nem tudjuk, hogy a tranzakció mely részei kerültek már végrehajtásra, beleértve az

adatbázis-módosításokat is. A tranzakció ismételt futtatásával nem biztos, hogy a problémát korrigálni

tudjuk (például egy mezőnek eggyel való növelése esetén). Az ilyen jellegű problémák legfontosabb

ellenszere minden adatbázis-változtatás naplózása egy elkülönült, nem illékony naplófájlban, lehetővé

téve ezzel a visszaállítást, ha az szükséges. Ehhez hibavédett naplózási mechanizmusra van szükség.

5

A naplókezelő és a tranzakciókezelő

A tranzakciók korrekt végrehajtásának biztosítása a tranzakciókezelő feladata. A tranzakciókezelő

részrendszer egy sor feladatot lát el, többek között

 jelzéseket ad át a naplókezelőnek úgy, hogy a szükséges információ naplóbejegyzés formában a

naplóban tárolható legyen;

 biztosítja, hogy a párhuzamosan végrehajtott tranzakciók ne zavarhassák egymás működését

(ütemezés).

A tranzakciókezelőt és kapcsolatait az alábbi ábra mutatja:

Lekérdezés-

feldolgozó

Adat

Napló-

kezelő

Tranzakció-

kezelő

Puffer-

kezelő

Helyreállítás-

kezelő

Napló

A tranzakciókezelő a tranzakció tevékenységeiről üzeneteket küld a naplókezelőnek, üzen a

pufferkezelőnek arra vonatkozóan, hogy a pufferek tartalmát szabad-e vagy kell-e lemezre másolni, és üzen

a lekérdezésfeldolgozónak arról, hogy a tranzakcióban előírt lekérdezéseket vagy más adatbázis-

műveleteket kell végrehajtania.

A naplókezelő a naplót tartja karban. Együtt kell működnie a pufferkezelővel, hiszen a naplózandó

információ elsődlegesen a memóriapufferekben jelenik meg, és bizonyos időnként a pufferek tartalmát

lemezre kell másolni. A napló (adat lévén) a lemezen területet foglal el, ahogy ez az ábrán is látszik.

Ha baj van, akkor a helyreállítás-kezelő aktivizálódik. Megvizsgálja a naplót, és ha szükséges, a naplót

használva helyreállítja az adatokat. A lemez elérése most is a pufferkezelőn át történik.

A tranzakciók korrekt végrehajtása

Definiálnunk kell, mit értünk korrekt végrehajtás alatt. Feltesszük, hogy az adatbázis elemekből áll. Az

adatbáziselem (database element) a fizikai adatbázisban tártolt adatok egyfajta funkcionális egysége,

amelynek értékét tranzakciókkal lehet elérni (kiolvasni) vagy módosítani (kiírni). Az elemek alatt érthetünk

relációt (vagy OO megfelelőjét, az osztálykiterjedést), relációsort (vagy OO megfelelőjét, az objektumot)

vagy lemezblokkot, illetve -lapot. Ez utóbbi a legjobb választás a naplózás szempontjából, mivel ekkor a

puffer egyszerű elemekből fog állni, és ezzel elkerülhető néhány súlyos probléma, például amikor az

adatbázis valamely elemének egy része van csak a nem illékony memóriában (a lemezen).

6

Az adatbázis összes elemének pillanatnyi értékét az adatbázis állapotának (database state) nevezzük.

Bizonyos adatbázis-állapotokat konzisztensnek (consistent) tekintünk, míg a többi adatbázis-állapotot

inkonzisztensnek (inconsistent) minősítjük. A konzisztens állapotok kielégítik az adatbázissémára

vonatkozó összes explicit megszorítást (explicit constraint) és implicit megszorítást (implicit constraint),

melyek az adatbázis tervezőjének elgondolásaiban szerepelnek. Az explicit megszorítások betartását az

adatbázis-kezelő rendszer kényszeríteni tudja azzal, hogy az olyan tranzakciókat, melyek megsértik az

előírt összefüggéseket, a rendszer visszautasítja, így az adatbázisban semmilyen változtatás nem történik.

Az implicit megszorítások azok, amelyeket nem tudunk egzakt módon jellemezni. Az egyetlen

lehetőségünk az ilyen megszorítások betartásának biztosítására annak feltételezése, hogy ha valaki jogot

kap az adatbázis módosítására, akkor neki legyen joga annak eldöntésére is, hogy melyek az elvárt implicit

megszorítások.

A tranzakciókra vonatkozó alapvető feltevésünk a korrektség alapelve (correctness principle): Ha a

tranzakciót minden más tranzakciótól függetlenül (egyedül) és rendszerhiba nélkül végrehajtjuk, és ha

indulásakor az adatbázis konzisztens állapotban volt, akkor a tranzakció befejezése után is konzisztens

állapotban lesz (elkülönítés + atomosság –> konzisztenciamegőrzés). A korrektség alapelvéhez

kapcsolódik a naplózás technikája és a konkurenciavezérlési mechanizmus. Két lehetőség inkonzisztens

állapot előidézésére:

 Nem teljesül a tranzakció atomosság tulajdonsága: ha a tranzakciónak csak egy részét sikerült

végrehajtani, akkor nagy esélyünk van arra, hogy az általa előállított adatbázis-állapot nem lesz

konzisztens.

 A párhuzamosan végrehajtott tranzakciók jó eséllyel inkonzisztens állapothoz vezetnek, hacsak meg

nem teszünk bizonyos megelőző lépéseket.

A tranzakciók alaptevékenységei

A tranzakció és az adatbázis kölcsönhatásának három fontos helyszíne van:

1. az adatbázis elemeit tartalmazó lemezblokkok területe;

2. a pufferkezelő által használt virtuális vagy valós memóriaterület;

3. a tranzakció memóriaterülete.

Ahhoz, hogy a tranzakció egy adatbáziselemet beolvashasson, azt előbb memóriapuffer(ek)be kell behozni,

ha még nincs ott. Ezt követően tudja a puffer(ek) tartalmát a tranzakció a saját memóriaterületére beolvasni.

Az adatbáziselem új értékének kiírása fordított sorrendben történik: az új értéket a tranzakció alakítja ki a

saját memóriaterületén, majd ez az új érték másolódik át a megfelelő puffer(ek)be. Fontos, hogy egy

tranzakció sohasem módosíthatja egy adatbáziselem értékét közvetlenül a lemezen!

A pufferek tartalmát vagy azonnal lemezre lehet írni, vagy nem; az erre vonatkozó döntés általában a

pufferkezelő joga. A naplózó rendszer használatának egyik lefőbb lépése a rendszerhibákból való

helyreállíthatóság biztosítása érdekében a pufferkezelő ösztönzése a pufferbeli blokkok megfelelő

időpontban történő lemezre írására. Ugyanakkor a lemez I/O-műveletek számának csökkentésére az

adatbázis-kezelő rendszerek megengedhetik a módosításoknak csak az illékony memóriában történő

végrehajtását, legalábbis bizonyos ideig és bizonyos feltételek teljesülése esetén.

A különböző területek közötti adatmozgásokat megvalósító alapműveletek leírására a következő

jelölésrendszert vezetjük be:

1. INPUT(X): Az X adatbáziselemet tartalmazó lemezblokk másolása a memóriapufferbe.

2. READ(X,t): Az X adatbáziselem bemásolása a tranzakció t lokális változójába. Részletesebben: ha

az X adatbáziselemet tartalmazó blokk nincs a memóriapufferben, akkor előbb végrehajtódik

INPUT(X). Ezután kapja meg a t lokális változó X értékét.

7

3. WRITE(X,t): A t lokális változó tartalma az X adatbáziselem memóriapufferbeli tartalmába

másolódik. Részletesebben: ha az X adatbáziselemet tartalmazó blokk nincs a memóriapufferben, akkor

előbb végrehajtódik INPUT(X). Ezután másolódik át a t lokális változó értéke a pufferbeli X-be.

4. OUTPUT(X): Az X adatbáziselemet tartalmazó puffer kimásolása lemezre.

A fenti műveleteknek akkor van értelmük, ha feltételezzük, hogy az adatbáziselemek elférnek egy-egy

lemezblokkban és így egy-egy pufferben is, azaz feltételezhetjük, hogy az adatbáziselemek pontosan a

blokkok. Adatbáziselem lehet egy relációsor is, ha a relációs séma nem engedi meg nagyobb sorok

előfordulását, mint amennyi hely egy blokkban rendelkezésre áll. Ha az adatbáziselem több blokkot foglal

el, akkor úgy is tekinthetjük, hogy az adatbáziselem minden blokkméretű része önmagában egy

adatbáziselem. A naplózási mechanizmus, amelyet arra használunk, hogy a tranzakció ne fejeződhessen be

az X kiírása nélkül, atomos; azaz vagy lemezre írja X összes blokkját, vagy semmit sem ír ki. A

továbbiakban feltételezzük, hogy az adatbáziselem nem nagyobb egy blokknál.

A READ és a WRITE műveleteket a tranzakciók használják, az INPUT és OUTPUT műveleteket a

pufferkezelő alkalmazza, illetve bizonyos feltételek mellett az OUTPUT műveletet a naplózási rendszer is

használja.

Példa. Annak bemutatására, hogy a tranzakció mikor és hogyan használja a fenti alapműveleteket, tegyük

fel, hogy az adatbázis két, A és B eleme tartalmának az adatbázis minden konzisztens állapotában meg kell

egyeznie. A T tranzakció tartalmazza a következő két lépést:

A := A*2;

B := B*2;

Ha a tranzakcióra az egyetlen konzisztenciaelvárás az A = B, továbbá ha T konzisztens adatbázis-állapotban

indul, és tevékenységét rendszerhiba, valamint a párhuzamosan működő tranzakciókkal való kölcsönhatás

nélkül be tudja fejezni, akkor az adatbázis befejezéskori állapotának is konzisztensnek kell lennie. Ekkor T

megduplázva két azonos tartalmú elem értékét, kap két új, azonos értékű elemet.

T végrehajtása maga után vonja A és B lemezről való beolvasását, az aritmetikai műveletek a T lokális

változóiban kerülnek végrehajtásra, végül A és B új értékei visszaírásra kerülnek a puffereikbe. T-t hat

lényeges lépésből állónak tekinthetjük:

READ(A,t); t := t*2; WRITE(A,t);

READ(B,t); t := t*2; WRITE(B,t);

Ehhez még hozzáadódik az, hogy a pufferkezelő önállóan végrehajt OUTPUT lépéseket a pufferek

tartalmának lemezre történő visszaírása végett. Legyen kezdetben A = B = 8. Az A és B pufferbeli és

lemezen tárolt értékei és a T tranzakció t lokális változójának értékei lépésenként a következők:

Tevékenység t M–A M–B D–A D–B

READ(A,t) 8 8 8 8
t := t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t := t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 8
OUTPUT(B) 16 16 16 16

T első lépésben beolvassa A-t, mely igény a pufferkezelőben kiváltja az INPUT(A) műveletet, ha A még

nincs a pufferben. A értéke a READ utasítás hatására a T tranzakció memóriaterületére, a t változóba is

bemásolódik. A következő lépés megduplázza t tartalmát, ennek nincs hatása sem A pufferbeli, sem A

lemezen tárolt értékére. A harmadik lépés írja t-t A pufferébe, ennek nincs hatása A lemezen tárolt értékére.

8

A következő három lépés ugyanez, csak B-re vonatkozóan. Végül az utolsó két lépésben másolódik A és B

lemezre.

Figyeljük meg, hogy ezen lépések összességének végrehajtása alatt az adatbázis konzisztenciája

megőrződik. Ha az OUTPUT(A) végrehajtása előtt rendszerhiba fordul elő, akkor ennek nincs hatása a

lemezen tárolt adatbázisra, az még olyan, mintha T egyáltalán nem is működött volna, így a konzisztencia

megőrződött. Ha rendszerhiba áll elő az OUTPUT(A) végrehajtása után, de még az OUTPUT(B)

végrehajtása előtt, akkor az adatbázis inkonzisztens állapotban marad. Azt nem tudjuk biztosítani, hogy

ilyen szituáció soha elő ne forduljon, de lépéseket tehetünk azért, hogy amikor mégis bekövetkezik, akkor

a problémát elháríthassuk: vagy A és B értékének 8-ra való visszállításával, vagy mindkettő 16-ra

növelésével.

Példa. Tegyük fel, hogy az adatbázisra vonatkozó konzisztenciamegszorítás: 0  A  B. Állapítsuk meg,

hogy a következő tranzakciók megőrzik-e az adatbázis konzisztenciáját!

a) A := A + B; B := A + B;

b) B := A + B; A := A + B;

c) A := B + 1; B := A + 1;

Semmisségi (undo) naplózás

Az első kérdés, hogy milyen úton biztosítható a tranzakciók atomossága. A napló (log) nem más, mint

naplóbejegyzések (log records) sorozata, melyek mindegyike arról tartalmaz valami információt, hogy mit

tett egy tranzakció. A tranzakció tevékenysége nyomon követhető azáltal, hogy a tranzakció működésének

hatása lépésenként naplózódik, és ez minden tranzakcióra érvényes.

Ha rendszerhiba fordul elő, akkor a napló segítségével rekonstruálható, hogy a tranzakció mit tett a hiba

fellépéséig. A naplót (az archívmentéssel együtt) használhatjuk akkor is, amikor eszközhiba keletkezik a

naplót nem tároló lemezen. Általánosságban a katasztrófák hatásának kijavítását követően a tranzakciók

hatását meg kell ismételni, és az általuk adatbázisba írt új értékeket ismételten ki kell írni. Egyes tranzakciók

hatását viszont vissza kívánjuk vonni, azaz kérjük az adatbázis visszaállítását olyan állapotba, mintha a

tekintett tranzakció nem is működött volna.

Az első naplózási stílus, melyet semmisségi (undo, visszavonási) naplózásnak neveznek, csak az utóbbi

típusú helyreállításra alkalmas. Ha nem teljesen biztos, hogy a tranzakció hatásai teljesen befejeződtek és

lemezen tárolódtak, akkor minden olyan változtatást, melyet a tranzakció tehetett az adatbázisban,

semmissé kell tenni, azaz az adatbázist vissza kell állítani a tranzakció működése előtti állapotába.

Naplóbejegyzések

Úgy kell tekintenünk, hogy a napló mint fájl kizárólag bővítésre van megnyitva. Tranzakció

végrehajtásakor a naplókezelő feladata, hogy minden fontos eseményt a naplóban rögzítsen. A napló

blokkjai mindenkor naplóbejegyzésekkel vannak feltöltve, mindegyik bejegyzés egy-egy naplózandó

eseményre vonatkozik. A naplóblokkokat elsődlegesen a memóriában hozza létre a rendszer, és a

pufferkezelő az adatbázis többi blokkjához hasonlóan kezeli őket. A naplóblokkokat, amint csak lehetséges,

a nem illékony tárolóra írja a rendszer.

A naplózás minden típusa a naplóbejegyzésnek számos formáját használja. Egyelőre a következőkkel

foglalkozunk:

1. <START T>: Ez a bejegyzés jelzi a T tranzakció (végrehajtásának) elkezdődését.

9

2. <COMMIT T>: A T tranzakció rendben befejeződött, az adatbázis elemein már semmi további

módosítást nem kíván végrehajtani. Minthogy azt nem tudjuk felügyelni, hogy a pufferkezelő mikor

dönt a memóriablokkok lemezre másolásáról, így általában nem lehetünk biztosak abban, hogy ha

meglátjuk a <COMMIT T> naplóbejegyzést, akkor a változtatások a lemezen már megtörténtek. Ha

ragaszkodunk ahhoz, hogy a módosítások már a lemezen is megtörténjenek, ezt az igényt a

naplókezelőnek kell kikényszerítenie (mint például a semmisségi naplózás esetén).

3. <ABORT T>: A T tranzakció nem tudott sikeresen befejeződni. Ha a T tranzakció abortált (a

normálisnál korábban befejeződött), az általa tett változtatásokat nem kell a lemezre másolni. A

tranzakciókezelő feladata annak biztosítása, hogy az ilyen változtatások ne jelenjenek meg a lemezen,

vagy ha volt valami hatásuk a lemezen, akkor az törlődjön. Az abortált tranzakció hatásainak

helyreállításával később foglalkozunk. Az abortálás oka lehet egy hiba a tranzakció kódjában (például

0-val való osztás), melyet a tranzakció kilövésével kezel a rendszer; de az adatbázis-kezelő rendszer is

abortálhat egy tranzakciót például holtponti helyzetben (lásd később).

4. <T,X,v>: Ez a módosítási bejegyzés. Jelentése: A T tranzakció módosította az X adatbáziselemet,

melynek módosítás előtti értéke v volt. A módosítási bejegyzés által leírt változtatás rendesen csak a

memóriában történt meg, a lemezen nem; azaz a naplóbejegyzés a WRITE tevékenységre vonatkozik,

nem pedig az OUTPUT-ra! A semmisségi naplózás nem rögzíti az adatbáziselem új értékét, csak a

módosítás előtti értéket. A semmisségi naplózást alkalmazó rendszerekben a helyreállítás-kezelő

feladata a tranzakció lehetséges hatásainak semmissé tétele, amelyhez elegendő csak a régi érték

tárolása.

Felmerülhet a kérdés, hogy milyen nagy a módosítást leíró naplóbejegyzés. Ha az adatbáziselemek

lemezblokkok, és a módosítást leíró naplóbejegyzés tartalmazza az adatbáziselem régi (módosítás előtti)

értékét (vagy mind a régi, mind az új értékét, amint azt az undo/redo naplózásnál látni fogjuk), akkor

előfordulhat, hogy a naplóbejegyzés a blokknál nagyobb méretű lesz. Ez nem feltétlen probléma, mert –

minden hagyományos fájlhoz hasonlóan – a naplót lemezblokkok sorozatának tekinthetjük, mely

bájtsorozatot tartalmaz, a (technikai) blokkhatároktól függetlenül. Ezáltal mód nyílik a napló tömörítésére

is. Például bizonyos körülmények között csak a módosításokat kell naplóznunk, azaz csak a tranzakció által

módosított sor érintett attribútumainak neveit és azok régi értékeit.

A semmisségi naplózás szabályai

Ahhoz, hogy a rendszerhibák utáni helyreállításra a semmisségi naplózást használhassuk, a tranzakcióknak

két előírást kell kielégíteniük:

U1: Ha a T tranzakció módosítja az X adatbáziselemet, akkor a <T,X,v> típusú naplóbejegyzést azt

megelőzően kell lemezre írni, hogy X új értékét lemezre írná a rendszer (write-ahead logging; WAL).

U2: Ha a tranzakció hibamentesen teljesen befejeződött, akkor a COMMIT naplóbejegyzést csak azt követően

szabad lemezre írni, hogy a tranzakció által módosított összes adatbáziselem már lemezre íródott, ezután

viszont a lehető leggyorsabban.

Összefoglalva: az egy tranzakcióhoz tartozó lemezre írásokat a következő sorrendben kell megtenni:

1. az adatbáziselemek módosítására vonatkozó naplóbejegyzések;

2. maguk a módosított adatbáziselemek;

3. a COMMIT naplóbejegyzés.

Az első két lépés az egyes módosításokra vagy módosítások csoportjaira vonatkozóan önmagában, külön-

külön is végrehajtható (nem kell a tranzakció összes módosítására csoportosan megtenni).

10

A naplóbejegyzések lemezre írásának kikényszerítésére a naplókezelőnek szüksége van a FLUSH LOG

műveletre, mely felszólítja a pufferkezelőt az összes korábban még ki nem írt naplóblokk lemezre való

kiírására. A FLUSH LOG műveletet a tevékenységek közé fogjuk iktatni.

Példa. A semmisségi naplózás fényében vizsgáljuk meg újra a korábbi példában megismert tranzakciót.

Kibővítjük a korábbi táblázatot, bemutatván a naplóbejegyzéseket is és a naplókiírási tevékenységet is a T

tranzakció végrehajtása során:

Lépés Tevékenység t M–A M–B D–A D–B Napló

1) <START T>

2) READ(A,t) 8 8 8 8

3) t := t*2 16 8 8 8

4) WRITE(A,t) 16 16 8 8 <T,A,8>

5) READ(B,t) 8 16 8 8 8

6) t := t*2 16 16 8 8 8

7) WRITE(B,t) 16 16 16 8 8 <T,B,8>

8) FLUSH LOG

9) OUTPUT(A) 16 16 16 8

10) OUTPUT(B) 16 16 16 16

11) <COMMIT T>

12) FLUSH LOG

Az első, ami történik, az a <START T> bejegyzés naplóba írása. Utána jön A beolvasása, majd t

módosítása, melynek nincs semmilyen hatása sem a lemezen tárolt adatbázisra, sem annak

memóriapufferben található egyetlen részére sem. A 2) és 3) lépés nem igényel naplóbejegyzést, mert nincs

hatásuk az adatbázisra.

A 4) lépés A új értékének pufferbe írása. Ezen módosításra vonatkozik a <T,A,8> naplóbejegyzés, mely

azt rögzíti, hogy A korábbi értékét (8) T megváltoztatta. Látható, hogy az új érték (16) nincs megemlítve a

semmisségi naplózás naplójában.

A következő három lépésben ugyanaz hajtódik végre B-re vonatkozóan, mint korábban A-ra. E ponton a T

tranzakció rendben befejeződött, tevékenységét véglegesíteni kell. A és B értékét lemezre kell másolni,

betartva a semmisségi naplózás két szabályát, a következő lépéseknek kötött sorrendben kell megtörténnie.

Első, hogy A és B addig nem másolható lemezre, amíg a módosítást leíró naplóbejegyzések lemezre nem

kerülnek. Ezt a 8) lépéssel biztosítjuk: a FLUSH LOG hatására az eddigi összes naplóbejegyzés lemezre

íródik. E kiírást követően a 9) és 10) lépések A-t és B-t lemezre másolják. Ezeket a lépéseket a pufferkezelő

valósítja meg.

Ekkor lehetséges a T tranzakció teljes és sikeres befejezése, ezt jelzendő a 11) lépésben a <COMMIT T>

bejegyzés a naplóba íródik. Végül a 12) lépésben ismét ki kell adni a FLUSH LOG utasítást azért, hogy

biztosítsuk a <COMMIT T> naplóbejegyzés lemezre való kiírását. Enélkül, bár olyan helyzetben vagyunk,

hogy a tranzakció teljesen és hibamentesen befejeződött, ennek a napló későbbi elemzésekor esetleg nem

fogjuk nyomát találni. Az ilyen szituációk olyan furcsa viselkedést eredményezhetnek, hogy hiba esetén a

felhasználó azt tapasztalja, hogy a tranzakció hibamentesen befejeződött, a lemezre kiírt módosítások mégis

semmissé váltak, a tranzakciót ugyanis abortáltnak tekinti a rendszer.

A fentiek alapján azt gondolhatnánk, hogy az egyes tranzakciókhoz tartozó tevékenységek elkülönülten

hajtódnak végre. Az adatbázis-kezelő rendszernek viszont számos tranzakció szimultán kezelését kell

megoldania. Így egy T tranzakció naplóbejegyzései a naplóban más tranzakciók bejegyzéseivel

keveredhetnek. Ha a többi tranzakció valamelyike is a napló lemezre írását kezdeményezi, akkor a T-re

vonatkozó naplóbejegyzések esetleg már korábban lemezre kerülnek, mint ahogy azt a tranzakció előírja.

Ebből persze nem származik probléma. A <COMMIT T> naplóbejegyzést úgysem fogjuk a T OUTPUT

utasításai végrehajtásának befejezésénél korábban kiírni, ezzel biztosítani tudjuk, hogy a módosított

adatbázisértékek előbb megjelenjenek a lemezen, mint a COMMIT naplóbejegyzés.

11

Kényes helyzet áll viszont elő, ha két adatbáziselem közös blokkban található. Ilyenkor az egyik lemezre

írása maga után vonja a másik kiírását is. Legrosszabb esetben az egyik adatbáziselem túl korai kiírásával

megsértjük az U1 szabályt. Ez szükségessé tehet további előírásokat a tranzakcióra nézve azért, hogy a

semmisségi naplózási módszer használható legyen. Például valamilyen zárolási módszert kell

alkalmaznunk annak megelőzésére, hogy két tranzakció egyszerre ugyanazon blokkot használja. Ilyen

problémák akkor jelentkeznek, amikor az adatbáziselemek blokkok részei. Emiatt célszerű

adatbáziselemnek a blokkot tekinteni.

Helyreállítás a semmisségi naplózás használatával

Tételezzük fel, hogy rendszerhiba történt. Előfordulhat, hogy egy adott tranzakció által végzett adatbázis-

módosítások közül egyesek már lemezre íródtak, míg mások (melyeket ugyanez a tranzakció hajtott végre)

még nem. Ha így történt, a tranzakció nem atomosan hajtódott végre, így az adatbázis inkonzisztens

állapotba kerülhetett. A helyreállítás-kezelő feladata a napló használatával az adatbázist konzisztens

állapotba visszaállítani.

Először a legegyszerűbb helyreállítás-kezelő módszerrel foglalkozunk, mely a teljes naplót látja,

függetlenül annak méretétől. Később egy sokkal finomabb megközelítést nézünk meg, amikor

ellenőrzőpont periodikus készítésével a rendszer korlátozza azt a távolságot, ameddig a helyreállítás-

kezlőnek a korábbi történéseket vizsgálnia kell.

A helyreállítás-kezelő első feladata a tranzakciók felosztása sikeresen befejezett és nem befejezett

tranzakciókra. Ha található <COMMIT T> naplóbejegyzés, akkor az U2 szabálynak megfelelően a T

tranzakció által végrehajtott összes adatbázis-módosítás már korábban lemezre íródott. Így a T tranzakció

önmagában a hiba fellépésekor nem hagyhatta az adatbázist inkonzisztens állapotban.

Ha a naplóban találunk <START T> bejegyzést, de nem találunk sem <COMMIT T>, sem <ABORT T>

bejegyzést, akkor a T tranzakció végrehajthatott az adatbázisban olyan módosításokat, melyek még a hiba

fellépése előtt lemezre íródtak, míg más változtatások még a memóriapufferekben sem történtek meg, vagy

ott megtörténtek ugyan, de a lemezre már nem íródtak ki. Ilyen esetben a T nem komplett tranzakció, és

hatását semmissé kell tenni, azaz a T által módosított adatbáziselemek értékeit vissza kell állítani a korábbi

értékeikre. Az U1 szabály betartása biztosítja, hogy ha T a hiba jelentkezése előtt X értékét módosította,

akkor még ez előtt a lemezen lévő naplóba kellett kiíródni egy <T,X,v> bejegyzésnek. Így a helyreállítás

során módunkban áll a v értéket az X adatbáziselembe visszaírni. Felmerülhet a kérdés, hogy X értéke nem

v-e amúgy is az adatbázisban, de nem is érdemes ezt ellenőrizni.

Minthogy a naplóban számos rendesen befejezett és teljesen be nem fejezett tranzakció nyomát találhatjuk,

és ezek közül több tranzakció módosíthatta az X adatbáziselemet is, nagyon ügyelnünk kell arra, hogy

milyen sorrendben állítjuk vissza X korábbi tartalmát. Ezért a helyreállítás-kezelő a naplót a végéről kezdi

átvizsgálni. Amint halad a napló átvizsgálásával, megjegyzi mindazon T tranzakciókat, melyekre

vonatkozóan a naplóban <COMMIT T> vagy <ABORT T> bejegyzést talált. Ahogy halad visszafelé, és

elér egy <T,X,v> bejegyzésig, akkor a következő lehetőségek vannak:

 ha ugyanerre a T tranzakcióra vonatkozó COMMIT bejegyzéssel már találkozott, akkor nincs teendője,

hiszen T rendesen és teljesen befejeződött, hatásait tehát nem kell semmissé tenni;

 ha ABORT bejegyzéssel találkozott a T tranzakcióra vonatkozóan, akkor sincs teendője, ebben az

esetben ugyanis T-t egyszer már helyreállítottuk;

 minden más esetben T nem komplett tranzakció, ekkor a helyreállítás-kezelő X értékét v-re cseréli.

12

Miután a helyreállítás-kezelő végrehajtotta a fenti változtatásokat, minden nem komplett T tranzakcióra

vonatkozóan <ABORT T> bejegyzést ír a naplóba, és kiváltja annak naplófájlba való kiírását is

(FLUSH LOG). Ekkor folytatódhat az adatbázis normál használata, új tranzakciók indulhatnak.

Példa. Tekintsük át, hogy mi történik, ha a fenti példában különböző időpontokban rendszerhiba következik

be:

1. A hiba a 12) lépést követően jelentkezett. Tudjuk, hogy ekkor a <COMMIT T> bejegyzést már lemezre

írta a rendszer. A hiba kezelése során a T tranzakció hatásait nem kell visszállítani, a T-re vonatkozó

összes naplóbejegyzést a helyreállítás-kezelő figyelmen kívül hagyhatja.

2. A hiba a 11) és 12) lépések között jelentkezett. Ekkor előfordulhat, hogy a COMMIT bejegyzést

tartalmazó naplóbejegyzés már lemezre íródott, például ha a naplóbejegyzés kiírását egy másik

tranzakció már kérte a pufferkezelőtől. Ha így történt, akkor T-re vonatkozólag a hiba kezelése az 1.

esethez hasonló. Ha azonban a COMMIT bejegyzés a lemezen nem található, akkor a helyreállítás-kezelő

a T tranzakciót befejezetlennek tekinti. Ahogy olvassa a naplót visszafelé, először a <T,B,8>

bejegyzést fogja megtalálni (a T tranzakcióra vonatkozólag). Ennek megfelelően a lemezen B

tartalmába 8-at ír vissza. Majd a <T,A,8> naplóbejegyzés miatt A tartalmába is 8 kerül. Végezetül

<ABORT T> bejegyzést ír a naplóba és a lemezre.

3. Ha a hiba a 10) és 11) lépések között lépett fel, akkor a COMMIT bejegyzés még biztosan nem történt

meg, tehát T befejezetlen, hatásainak semmissé tétele a 2. esetnek megfelelően történik.

4. A 8) és 10) lépések között bekövetkező hiba fellépésekor az előző esethez hasonlóan T hatásait

semmissé kell tenni. Az egyetlen különbség, hogy az A és/vagy B módosítása még nem jelent meg a

lemezen. Ettől függetlenül mindkét adatbáziselem korábbi értékét (8) állítja vissza a rendszer.

5. Amennyiben a hiba a 8) lépésnél korábban jelentkezik, akkor még az sem biztos, hogy a T tranzakcióra

vonatkozó naplóbejegyzések közül bármi is lemezre került. Az U1 szabály miatt azonban tudjuk, hogy

mielőtt az A és/vagy B adatbáziselemek a lemezen módosulnának, a megfelelő módosítási

naplóbejegyzésnek a naplóban meg kell jelennie. Így ha T módosította is a lemezen A és/vagy B értékét,

a megfelelő naplóbejegyzés hatására a helyreállítás-kezelő semmissé teszi ezeket a módosításokat.

Tegyük fel, hogy egy korábbi hiba utáni helyreállítás közben ismét rendszerhiba lép fel. A semmisségi (és

a másik kettő) naplózás oly módon van megtervezve, hogy a korábbi érték változtatás előtti tárolása

következtében a helyreállító lépések idempotensek, ami azt jelenti, hogy a helyreállító tevékenység

többszöri végrehajtása pontosan ugyanolyan hatású, mint egyszeri végrehajtása. Ha találunk egy <T,X,v>

naplóbejegyzést, akkor nem számít, hogy X értéke már v, X értékét (esetleg ismételten) v-re állíthatjuk.

Hasonlóan semmi problémát nem okoz, ha a helyreállítási folyamat egészét (vagy félbemaradt részét)

többször megismételjük.

Az ellenőrzőpont-képzés

Mint láttuk, a helyreállítás elvben a teljes napló átvizsgálását igényli. Semmisségi naplózás esetén ha egy

tranzakció a COMMIT naplóbejegyzést már kiírta a naplóba, akkor az ezen tranzakcióra vonatkozó

naplóbejegyzésekre a helyreállítás során nincs már szükség (hacsak nem kívánjuk később elemezni a

tranzakciókat). Gondolhatnánk arra, hogy a tranzakcióra vonatkozó, a COMMIT-ot megelőző

naplóbejegyzéseket törölhetnénk a naplóból, de ezt nem mindig tehetjük meg. Ennek oka az, hogy gyakran

sok tranzakció működik egyszerre, és ha a naplót egy tranzakció befejezése után csonkítanánk, esetleg

elveszítenénk más, még aktív tranzakciókra vonatkozó bejegyzéseket, így nem tudnánk a naplót a

helyreállításra használni.

13

E probléma megoldására a legegyszerűbb mód, ha a naplóra vonatkozóan ismétlődően ellenőrzőpontokat

(checkpoint) képezünk. Kétféle ellenőrzőpont-képzés létezik: egyszerű és a rendszer működése közbeni.

Az egyszerű ellenőrzőpont-képzés a következőképpen történik:

1. Új tranzakcióindítási kérések kiszolgálásának letiltása.

2. A még aktív tranzakciók helyes és teljes befejezésének vagy abortálásának és a COMMIT vagy ABORT

bejegyzés naplóba írásának kivárása.

3. A napló lemezre való kiírása (FLUSH LOG).

4. <CKPT> naplóbejegyzés képzése és kiírása a naplóba, majd újra FLUSH LOG.

5. Tranzakcióindítási kérések kiszolgálása.

Az ellenőrzőpont kiírását megelőzően végrehajtott tranzakciók mind befejeződtek, és az U2 szabálynak

megfelelően módosításaik lemezre kerültek. Ennek megfelelően ezen tranzakciók tevékenységére nézve

egy esetleges későbbi hiba elhárításakor már nem igényel a rendszer helyreállítást. A helyreállítás során a

naplót a végétől visszafelé csak a <CKPT> bejegyzésig kell elemezni azért, hogy a nem befejezett

tranzakciókat azonosítsuk. Amikor a <CKPT> bejegyzést megtaláljuk, ebből tudjuk, hogy már láttuk az

összes befejezetlen tranzakciót. Mivel az ellenőrzőpont-képzés alatt újabb tranzakció nem indulhatott,

látnunk kellett a befejezetlen tranzakciókhoz tartozó összes naplóbejegyzést. Ezért nem szükséges a

<CKPT> bejegyzésnél korábbi naplórészt elemeznünk, és – hacsak más okból nincs szükségünk rá –

biztonsággal törölhetjük vagy felülírhatjuk.

Példa. Tekintsük az alábbi naplórészletet:

<START T1>

<T1,A,5>

<START T2>

<T2,B,10>

<T2,C,15>

<T1,D,20>

<COMMIT T1>

<COMMIT T2>

<CKPT>

<START T3>

<T3,E,25>

<T3,F,30>

Tegyük fel, hogy a 4. bejegyzés után úgy döntünk, hogy ellenőrzőpontot hozunk létre. Minthogy T1 és T2

aktív tranzakciók, meg kell várnunk befejeződésüket, mielőtt a <CKPT> bejegyzést a naplóba írnánk.

Tegyük fel, hogy a naplórészlet végén rendszerhiba lép fel. A naplót a végétől visszafelé elemezve T3-at

fogjuk az egyetlen be nem fejezett tranzakciónak találni, így E és F korábbi értékeit kell csak

visszaállítanunk. Amikor megtaláljuk a <CKPT> bejegyzést, tudjuk, hogy nem kell a korábbi

naplóbejegyzéseket elemeznünk, végeztünk az adatbázis állapotának helyrehozásával.

Felmerülhet a kérdés, hogy hogyan találjuk meg az utolsó naplóbejegyzést. A napló lényegében egy fájl,

melynek blokkjai tartalmazzák a naplóbejegyzéseket. A blokk még ki nem töltött részeit üresként jelöljük.

Ha a bejegyzéseket soha nem írjuk felül, akkor a helyreállítás-kezelő az utolsó bejegyzést úgy keresi meg,

hogy megkeresi az első üres bejegyzést, és az ezt megelőző bejegyzés a fájl utolsó érvényes bejegyzése.

Ha viszont a régi naplóbejegyzéseket felülírjuk, akkor a naplóbejegyzéseket egyedi, növekvő sorszámmal

kell ellátnunk:

1

9

2

10

3

11

4 5 6 7 8

Ekkor azt a bejegyzést kell megtalálnunk, melynek nagyobb a sorszáma, mint a következőé: ez a bejegyzés

a napló pillanatnyi vége. A gyakorlatban a nagyméretű napló több fájl egyesítése is lehet. Logikailag ekkor

is egy fájlnak tekintjük, és a végét a megfelelő részfájlban keressük.

14

Ellenőrzőpont-képzés a rendszer működése közben

Az egyszerű ellenőrzőpont-képzési technika problémája, hogy gyakorlatilag le kell állítani a rendszer

működését az ellenőrzőpont elkészültéig. Minthogy az aktív tranzakciók még hosszabb időt igényelhetnek

a normális vagy abnormális befejeződésükig, a felhasználó számára a rendszer leállítottnak tűnhet. Egy

jóval bonyolultabb módszerrel, a működés közbeni ellenőrzőpont-képzéssel (nonquiescent checkpointing)

elérjük, hogy az ellenőrzőpont-képzés alatt új tranzakciók indulását ne kelljen szüneteltetni. E módszer

lépései:

1. <START CKPT(T1,…,Tk)> naplóbejegyzés készítése és lemezre írása (FLUSH LOG). T1,…,Tk az

éppen aktív tranzakciók nevei.

2. Meg kell várni a T1,…,Tk tranzakciók mindegyikének normális vagy abnormális befejeződését, nem

tiltva közben újabb tranzakciók indítását.

3. Ha a T1,…,Tk tranzakciók mindegyike befejeződött, akkor <END CKPT> naplóbejegyzés elkészítése

és lemezre írása (FLUSH LOG).

Az ilyen típusú napló felhasználásával a következőképpen tudunk rendszerhiba után helyreállítani: a naplót

a végétől visszafelé elemezve megtaláljuk az összes nem befejezett tranzakciót, régi értékére visszaállítjuk

az ezen tranzakciók által megváltoztatott adatbáziselemek tartalmát. Két eset fordulhat elő aszerint, hogy

visszafelé olvasván a naplót az <END CKPT> vagy a <START CKPT(T1,…,Tk)> naplóbejegyzést

találjuk előbb:

 Ha előbb az <END CKPT> naplóbejegyzéssel találkozunk, akkor tudjuk, hogy az összes még be nem

fejezett tranzakcióra vonatkozó naplóbejegyzést a legközelebbi korábbi <START CKPT(T1,…,Tk)>

naplóbejegyzésig megtaláljuk. Ott viszont megállhatunk, az annál korábbiakat akár el is dobhatjuk.

 Amennyiben a <START CKPT(T1,…,Tk)> naplóbejegyzéssel találkozunk előbb, az azt jelenti, hogy

a katasztrófa az ellenőrzőpont-képzés közben fordult elő. Ennek következtében a T1,…,Tk tranzakciók

nem fejeződtek be (legalábbis nem tudtuk a befejeződést regisztrálni) a hiba fellépéséig. Ekkor a be

nem fejezett tranzakciók közül a legkorábban kezdődött tranzakció indulásáig kell a naplóban

visszakeresnünk, annál korábbra nem. Az ezt megelőző olyan START CKPT bejegyzés, amelyhez

tartozik END CKPT, biztosan megelőzi a keresett összes tranzakció indítását leíró bejegyzéseket. Ha a

START CKPT előtt olyan START CKPT bejegyzést találunk, amelyhez nem tartozik END CKPT,

akkor ez azt jelenti, hogy korábban is ellenőrzőpont-képzés közben történt rendszerhiba. Az ilyen

„ellenőrzőpont-kezdeményeket” figyelmen kívül kell hagyni. Ezenfelül, ha az ugyanazon tranzakcióra

vonatkozó naplóbejegyzéseket összeláncoljuk, akkor nem kell a napló minden bejegyzését átnéznünk

ahhoz, hogy megtaláljuk a még be nem fejezett tranzakciókra vonatkozó bejegyzéseket, elegendő csak

az adott tranzakció bejegyzéseinek láncán visszafelé haladnunk.

Általános szabályként elmondható, hogy ha egy <END CKPT> naplóbejegyzést kiírunk lemezre, akkor az

azt megelőző START CKPT bejegyzésnél korábbi naplóbejegyzéseket törölhetjük.

Példa. Tekintsük az alábbi naplórészletet:

<START T1>

<T1,A,5>

<START T2>

<T2,B,10>

<START CKPT(T1,T2)>

<T2,C,15>

<START T3>

<T1,D,20>

<COMMIT T1>

<T3,E,25>

15

<COMMIT T2>

<END CKPT>

<T3,F,30>

Most úgy döntünk, hogy működés közbeni ellenőrzőpontot hozunk létre a 4. bejegyzés után. Minthogy e

pillanatban T1 és T2 aktív tranzakciók, ezért kell az 5. bejegyzést felírnunk. Tegyük fel, hogy amíg T1 és

T2 befejeződésére várunk, azalatt egy harmadik tranzakció (T3) is elkezdődik.

Tegyük fel, hogy a naplórészlet végén rendszerhiba lép fel. A naplót a végétől visszafelé vizsgálva úgy

fogjuk találni, hogy T3 egy be nem fejezett tranzakció, ezért hatásait semmissé kell tenni. Az utolsó

naplóbejegyzés arról informál bennünket, hogy az F adatbáziselembe a 30 értéket kell visszaállítani.

Amikor az <END CKPT> naplóbejegyzést találjuk, tudjuk, hogy az összes be nem fejezett tranzakció a

megelőző START CKPT naplóbejegyzés után indulhatott csak el. Tovább haladva visszafelé, megtaláljuk

a <T3,E,25> bejegyzést, mely megmondja nekünk, hogy az E adatbáziselem értékét 25-re kell

visszaállítani. Ezen bejegyzés és a START CKPT naplóbejegyzés között további elindult, de be nem

fejeződött tranzakcióra vonatkozó bejegyzést nem találunk, így az adatbázison mást már nem kell

megváltoztatnunk.

Tegyük fel most, hogy az ellenőrzőpont-képzés közben történt katasztrófa, a <T3,E,25> bejegyzés után.

Visszafelé elemezve a naplót, azonosítjuk a T3, majd a T2 tranzakciókat, melyek nincsenek befejezve, tehát

helyreállító módosításokat kell tennünk. Amikor megtaláljuk a <START CKPT(T1,T2)>

naplóbejegyzést, megtudjuk, hogy az egyetlen további olyan tranzakció, mely lehetséges, hogy nincs

befejezve, a T1. Minthogy azonban a <COMMIT T1> bejegyzést már láttuk, ebből tudjuk, hogy T1 nem be

nem fejezett tranzakció. Láttuk már továbbá a <START T3> bejegyzést is, így már tudjuk, hogy csak addig

kell folytatnunk a napló elemzését, amíg a T2 START bejegyzését meg nem találjuk. Eközben még a B

adatbáziselem értékét is visszaállítjuk 10-re.

Helyrehozó (redo) naplózás

A semmisségi naplózás természetes és egyszerű stratégiát valósít meg a napló kezelésére és rendszerhibák

esetén a visszaállításra, de a probléma megoldásának nem ez az egyetlen lehetséges megközelítése. A

semmisségi naplózás potenciális problémája az, hogy csak azután tudjuk befejezni a tranzakciót, hogy az

összes adatbázis-módosítása lemezre íródott. Olykor a lemezműveletekkel tudnánk takarékoskodni, ha

megengednénk, hogy az adatbázis-módosításokat csak a memóriában végezzék a tranzakciók, miközben a

napló az eseményeket rögzíti, azért, hogy katasztrófa esetén is biztonságban legyen az adatbázis.

Az adatbáziselemek lemezre való azonnali visszaírásának kényszerét elkerülhetjük, ha a helyrehozó

naplózás (redo logging) módszerét választjuk. Az alapvető különbségek a semmisségi és a helyrehozó

naplózás között az alábbiak:

 Amíg a semmisségi naplózás a helyreállítás során a be nem fejezett tranzakciók hatásait semmissé teszi,

a befejezett tranzakciók hatásait pedig nem módosítja, addig a helyrehozó naplózás figyelmen kívül

hagyja a be nem fejezett tranzakciókat, és megismétli a normálisan befejezettek által végrehajtott

változtatásokat.

 A semmisségi naplózás megkívánja az adatbáziselemek lemezen való módosítását a COMMIT

naplóbejegyzés lemezre írása előtt, a helyrehozó naplózás viszont a COMMIT naplóbejegyzés lemezre

írását várja el, mielőtt bármit is változtatna a lemezen lévő adatbázisban.

 A semmisségi naplózás U1 és U2 szabályainak betartása mellett csak a módosított adatbáziselemek régi

tartalmát kell megőriznünk az esetleges visszaállítás biztosításához, a helyrehozó naplózással történő

helyreállításhoz a módosított elemek új értékére van szükség. Emiatt a helyrehozó naplózás

16

naplóbejegyzései ugyanolyan formájúak, de más a jelentésük, mint a semmisségi naplózásnál

alkalmazottaké.

A helyrehozó naplózás szabályai

A helyrehozó naplózás az adatbáziselemek módosítását a naplóbejegyzésben az új értékkel képviseli (nem

pedig a régivel, mint a semmisségi naplózásnál). Ez a bejegyzés ugyanúgy néz ki, mint a semmisségi

naplózásnál használt: <T,X,v>, a jelentése azonban más: a T tranzakció az X adatbáziselemnek a v értéket

adta. E bejegyzésben az X régi értékét nem jelzi semmi. Ha egy T tranzakció módosítja egy X adatbáziselem

értékét, akkor egy <T,X,v> bejegyzést kell a naplóba írni.

Az adatbáziselemek és a naplóbejegyzések lemezre kerülésének sorrendjét az alábbi egyszerű szabály írja

le:

R1: Mielőtt az adatbázis bármely X elemét a lemezen módosítanánk, szükséges, hogy az X ezen

módosítására vonatkozó összes naplóbejegyzés, azaz <T,X,v> és <COMMIT T>, lemezre kerüljön.

Minthogy a COMMIT bejegyzést csak akkor írhatjuk a naplóba, ha a tranzakció teljesen és hibamentesen

befejeződött, így az csak a módosításokat leíró bejegyzések után állhat, ezért úgy is összegezhetjük az R1

szabályt, hogy ha helyrehozó naplózást használunk, akkor az egy tranzakcióra vonatkozó lemezre írásoknak

a következő sorrendben kell megtörténniük:

1. az adatbáziselemek módosítását leíró naplóbejegyzések lemezre írása;

2. a COMMIT naplóbejegyzés lemezre írása;

3. az adatbáziselemek értékének tényleges cseréje a lemezen.

Példa. Nézzük meg a korábban megismert tranzakciót helyrehozó naplózás használatával:

Lépés Tevékenység t M–A M–B D–A D–B Napló

1) <START T>

2) READ(A,t) 8 8 8 8

3) t := t*2 16 8 8 8

4) WRITE(A,t) 16 16 8 8 <T,A,16>

5) READ(B,t) 8 16 8 8 8

6) t := t*2 16 16 8 8 8

7) WRITE(B,t) 16 16 16 8 8 <T,B,16>

8) <COMMIT T>

9) FLUSH LOG

10) OUTPUT(A) 16 16 16 8

11) OUTPUT(B) 16 16 16 16

A főbb különbségek a semmisségi és a helyrehozó naplózás használata között tehát a következők: A

módosítási bejegyzésekben A és B új értéke szerepel, nem a régi. A COMMIT bejegyzés korábbra került, a

8) lépésbe. Ezt követően a napló lemezre írását kiváltó FLUSH LOG következik, így a T tranzakció által

végrehajtott módosításokat leíró összes naplóbejegyzés lemezre íródik. Csak ezt követően kerül lemezre A

és B új értéke. Az ábrán ezen új értékek kiírását a közvetlenül következő 10) és 11) lépésekben láthatjuk,

bár a gyakorlatban ezekre esetleg csak később kerül sor.

Helyreállítás a helyrehozó naplózás használatával

A helyrehozó naplózás R1 szabályának fontos következménye, hogy ha a naplóban nincs <COMMIT T>

bejegyzés, akkor tudjuk, hogy a T tranzakció nem hajtott végre az adatbázisban módosítást a lemezen. Így

a be nem fejezett (nem teljes) tranzakciók a helyreállítás során úgy tekinthetők, mintha meg sem történtek

volna. Problémát a befejezett tranzakciók jelenthetnek, mert nem tudjuk, hogy az általuk elvégzett

17

adatbázis-változtatások közül melyek íródtak már lemezre. Szerencsére a helyrehozó naplózás naplója

éppen azon információkat (az új értékeket) tartalmazza, melyekre szükségünk van a helyreállításhoz. Ezen

új értékeket kell lemezre írnunk, attól függetlenül, hogy esetleg már korábban is kiíródtak. A

rendszerkatasztrófa bekövetkezése után a helyrehozó naplózással történő helyreállításhoz a következőket

kell tennünk:

1. Meghatározzuk a befejezett tranzakciókat (COMMIT).

2. Elemezzük a naplót az elejétől kezdve. Minden <T,X,v> naplóbejegyzés esetén:

a) Ha T nem befejezett tranzakció, akkor nem kell tenni semmit.

b) Ha T befejezett tranzakció, akkor v értéket kell írni az X adatbáziselembe.

3. Minden T be nem fejezett tranzakcióra vonatkozóan <ABORT T> naplóbejegyzést kell a naplóba írni,

és a naplót ki kell írni lemezre (FLUSH LOG).

Példa. Nézzük meg, hogyan lehet a fenti példában a helyreállítást elvégezni a különböző pillanatokban

bekövetkező katasztrófák esetén:

1. Ha a katasztrófa a 9) lépés után bármikor következik be, akkor a <COMMIT T> bejegyzés már lemezen

van. A helyreállító rendszer T-t befejezett tranzakcióként azonosítja. Amikor a naplót az elejétől kezdve

elemzi, a <T,A,16> és a <T,B,16> bejegyzések hatására a helyreállítás-kezelő az A és B adatbázis-

elemekbe a 16 értéket írja. Ha a katasztrófa a 10) és 11) lépések között következett be, akkor A újraírása

redundáns ugyan, de B írása lényeges lépés az adatbázis konzisztens állapotának eléréséhez.

Amennyiben a hiba a 11) lépést követően keletkezett, akkor mindkét adatbáziselem új értékének

lemezre írása redundáns, de semmi gondot nem okoz.

2. Ha a hiba a 8) és 9) lépések között jelentkezik, akkor bár a <COMMIT T> bejegyzés már a naplóba

került, de nem biztos, hogy lemezre íródott. Ha lemezre került, akkor a helyreállítási eljárás az 1. esetnek

megfelelően történik, ha nem, akkor pedig a 3. esetnek megfelelően.

3. Ha a katasztrófa a 8) lépést megelőzően keletkezik, akkor <COMMIT T> naplóbejegyzés még biztosan

nem került lemezre, így T be nem fejezett tranzakciónak tekintendő. Ennek megfelelően A és B értékeit

a lemezen még nem változtatta meg a T tranzakció, tehát nincs mit helyreállítani. Végül egy

<ABORT T> bejegyzést írunk a naplóba.

Mivel sok befejezett tranzakció is adhatott új értéket ugyanazon X adatbáziselemnek, ezért a helyrehozó

naplózás alkalmazásakor a naplót a korábbi bejegyzésektől a későbbiek felé (időrendben) haladva kell

elemeznünk. Így érhető el, hogy X adatbázisbeli végső értéke a normálisan befejeződött tranzakciók által

utoljára adott legyen. Ugyanazt az állapotot érjük el tehát, mint ami a semmisségi naplózásnál a napló

visszafelé elemzésével volt elérhető.

Helyrehozó naplózás ellenőrzőpont-képzés használatával

A semmisségi naplózásnál látottakhoz hasonlóan a helyrehozó naplózás naplójába is illeszthetünk

ellenőrzőpontokat. A helyrehozó naplózásnál azonban új probléma jelentkezik: minthogy a befejeződött

tranzakciók módosításainak lemezre írása a befejeződés után sokkal később is történhet, így az e

vonatkozásban ugyanazon pillanatban aktív tranzakciók számát nincs értelme korlátozni, tehát nincs

értelme az egyszerű ellenőrzőpont-képzésnek. Tekintet nélkül arra, hogy az ellenőrzőpont-képzés alatt

tranzakciók indulását megengedjük vagy sem, a kulcsfeladat – amit meg kell tennünk az ellenőrzőpont-

készítés kezdete és befejezése közötti időben – az összes olyan adatbáziselem lemezre való kiírása,

melyeket befejezett tranzakciók módosítottak, és még nem voltak lemezre kiírva. Ennek megvalósításához

a pufferkezelőnek nyilván kell tartania a piszkos puffereket (dirty buffers), melyekben már végrehajtott, de

lemezre még ki nem írt módosításokat tárol. Azt is tudnunk kell, hogy mely tranzakciók mely puffereket

módosították.

18

Másrészről viszont be tudjuk fejezni az ellenőrzőpont-képzést az aktív tranzakciók (normális vagy

abnormális) befejezésének kivárása nélkül, mert ők ekkor még amúgy sem engedélyezik lapjaik lemezre

írását. A helyrehozó naplózásban a működés közbeni ellenőrzőpont-képzés a következőkből áll:

1. <START CKPT(T1,…,Tk)> naplóbejegyzés elkészítése és lemezre írása, ahol T1,…,Tk az összes

éppen aktív tranzakció.

2. Az összes olyan adatbáziselem kiírása lemezre, melyeket olyan tranzakciók írtak pufferekbe, melyek a

START CKPT naplóba írásakor már befejeződtek, de puffereik lemezre még nem kerültek.

3. <END CKPT> bejegyzés naplóba írása, és a napló lemezre írása.

Példa. Tekintsük az alábbi naplórészletet:

<START T1>

<T1,A,5>

<START T2>

<COMMIT T1>

<T2,B,10>

<START CKPT(T2)>

<T2,C,15>

<START T3>

<T3,D,20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

Amikor az ellenőrzőpont-képzés elkezdődött, csak T2 volt aktív, de a T1 által A-ba írt érték még nem biztos,

hogy lemezre került. Ha még nem, akkor A-t lemezre kell másolnunk, mielőtt az ellenőrzőpont-képzést

befejezhetnénk. A napló érzékelteti, hogy az ellenőrzőpont-képzés befejezéséig más események is

bekövetkezhetnek: T2 a C adatbáziselem tartalmát módosítja, elindul egy új tranzakció (T3), és módosítja

D értékét. Az ellenőrzőpont-képzés befejezése után már csak a T2 és T3 tranzakciók befejeződése történt

meg.

Visszaállítás az ellenőrzőpont-képzéssel kiegészített helyrehozó típusú naplózással

Mint a semmisségi naplózásnál, most is az ellenőrzőpontok naplóba illesztése segít a napló átvizsgálásának

korlátozásában. Most is két eset fordulhat elő:

 Tegyük fel, hogy a katasztrófa előtt a naplóba feljegyzett utolsó ellenőrzőpont-bejegyzés

<END CKPT>. Ekkor tudjuk, hogy az olyan értékek, melyeket olyan tranzakciók írtak, melyek a

<START CKPT(T1,…,Tk)> naplóbejegyzés megtétele előtt befejeződtek, már biztosan lemezre

kerültek, így nem kell velük foglalkoznunk. Foglalkoznunk kell viszont a Ti-kkel és az ellenőrzőpont

kialakításának megkezdése után induló tranzakciókkal: ezeknek lehetnek olyan adatbázis-módosításaik,

melyek még nem kerültek lemezre, pedig a tranzakció már befejeződött. Ekkor olyan visszaállítást kell

tennünk, amilyenről már szó volt, azzal a különbséggel, hogy figyelmünket azon tranzakciókra

korlátozhatjuk, melyek az utolsó <START CKPT(T1,…,Tk)> naplóbejegyzésben a Ti-k között

szerepelnek, vagy ezen naplóbejegyzést követően indultak el. A naplóban való keresés során a

legkorábbi <START Ti> naplóbejegyzésig kell visszamennünk, annál korábbra nem. Ezek a START

naplóbejegyzések akárhány korábbi ellenőrzőpontnál előbb is felbukkanhatnak. Ahogy a semmisségi

naplózásnál, az adott tranzakciókra vonatkozó naplóbejegyzések visszafelé keresése segít megtalálni a

számunkra éppen fontos bejegyzéseket.

 Tegyük fel, hogy a naplóba feljegyzett utolsó ellenőrzőpont-bejegyzés a <START CKPT(T1,…,Tk)>.

Nem lehetünk abban biztosak, hogy az ezt megelőzően befejezett tranzakciók által módosított

19

adatbáziselemek már lemezre íródtak. Ezért az előző <END CKPT> bejegyzéshez tartozó

<START CKPT(S1,…,Sm)> bejegyzésig vissza kell keresnünk, és helyre kell állítanunk az olyan

befejeződött tranzakciók tevékenységének eredményeit, melyek ez utóbbi

<START CKPT(S1,…,Sm)> bejegyzés után indultak, vagy az Si-k közül valók.

Példa. Tekintsük ismét az előbbi naplórészletet. Ha a katasztrófa a végén lép fel, akkor visszafelé keresve

megtaláljuk az <END CKPT> bejegyzést. Ekkor tudjuk, hogy a helyreállítás szempontjából elegendő csak

azon tranzakciókat figyelembe venni, melyek vagy a <START CKPT(T2)> bejegyzés felírását követően

indultak, vagy szerepelnek e bejegyzés listájában (most csak T2). Így a vizsgálandó tranzakcióhalmazunk

a (T2, T3). <COMMIT T2> és <COMMIT T3> bejegyzéseket találunk, ebből tudjuk, hogy mindkét

tranzakció hatását helyre kell állítanunk. A naplóban visszafelé meg kell keresnünk a <START T2>

bejegyzést, és innen már időrendben haladva a naplóban a következő módosítási bejegyzéseket találjuk a

T2 és T3 befejezett tranzakciókra vonatkozóan: <T2,B,10>, <T2,C,15> és <T3,D,20>. Mivel azt nem

tudjuk, hogy ezen változtatások a lemezen már megtörténtek-e, ezért most a lemezre újraírjuk a B, a C és a

D tartalmát, megfelelően 10, 15 és 20 értékeket adva nekik.

Tegyük fel, hogy a katasztrófa a <COMMIT T2> és a <COMMIT T3> bejegyzések között történt. A

helyreállítás az előbbi esethez hasonló, azzal a különbséggel, hogy T3 nem befejezett tranzakció, ennek

megfelelően a <T3,D,20> helyreállítást nem kell végrehajtani. D értékét tehát a helyreállítás során nem

változtatjuk meg, hacsak a vizsgált naplórészben található, másik tranzakcióra vonatkozó bejegyzés miatt

meg nem kell változtatnunk. A helyreállítást követően egy <ABORT T3> bejegyzést írunk a naplóba.

Ha a hiba az <END CKPT> bejegyzést megelőzően lépett fel, akkor az utolsó előtti START CKPT

bejegyzést kell megkeresnünk (melynek már van <END CKPT> párja), és annak listájából tudjuk meg,

melyek az aktív tranzakciók. Ha nem találunk korábbi ellenőrzőpont-bejegyzést, akkor mindenképpen a

napló elejére kell mennünk. Így esetünkben az egyedüli befejezett tranzakciónak T1-et fogjuk találni, ezért

a <T1,A,5> tevékenységet helyreállítjuk. A helyreállítást követően <ABORT T2> és <ABORT T3>

bejegyzést írunk a naplóba.

Minthogy a tranzakciók több ellenőrzőpont készítésekor is aktívak lehetnek, célszerű lehet, hogy a

<START CKPT(T1,…,Tk)> naplóbejegyzésbe nemcsak az aktív tranzakciók neveit, hanem olyan

mutatókat is elhelyezzünk, melyek az aktív tranzakciók indulását leíró bejegyzések naplóbeli helyét adják

meg. Így eljárva biztonsággal meg tudjuk állapítani, hogy a napló mely korábbi részeit törölhetjük. Amikor

<END CKPT> bejegyzést írunk a naplóba, akkor tudjuk, hogy a naplóban már sosem kell korábbra

visszatekintenünk, mint ahol a Ti aktív tranzakcióra vonatkozó legkorábbi <START Ti> bejegyzést

találjuk. Következésképpen az ezen START bejegyzést megelőző bejegyzések törölhetők.

Semmisségi/helyrehozó (undo/redo) naplózás

Láthattuk, hogy a naplózás két különböző megközelítése abban mutat eltérést, hogy a napló az

adatbáziselemek értékének módosítása esetén a régi vagy az új értéket tartalmazza. Mindkét módszernek

vannak bizonyos hátrányai is:

 A semmisségi naplózás alkalmazása megköveteli, hogy az adatokat a tranzakció befejezésekor

nyomban lemezre írjuk, ezzel (esetleg jelentősen) növeljük a végrehajtandó lemezműveletek számát.

 A helyrehozó naplózás minden módosított adatbázisblokk pufferben tartását igényli egészen a

tranzakció rendes és teljes befejezéséig, így a napló kezelésével együtt (esetleg jelentősen) növeljük a

tranzakciók átlagos pufferigényét.

 Mindkét naplózási módszer az ellenőrzőpont képzése közben ellentétes igényeket támaszt a pufferek

lemezre írása szempontjából, kivéve, ha az adatbáziselemek teljes blokkok vagy blokkok sokasága.

20

Például ha a puffer tartalmaz egy A adatbáziselemet, melyet egy rendesen és teljesen befejezett

tranzakció módosított, és tartalmaz egy B adatbáziselemet is, melyet olyan tranzakció módosított,

melyre vonatkozóan a COMMIT bejegyzés még nem került lemezre, akkor – az R1 szabálynak

megfelelően – a puffer lemezre másolását igényeljük A miatt, viszont tiltjuk ennek megtételét B miatt.

A semmisségi/helyrehozó (undo/redo) naplózás a tevékenységek elvégzési sorrendjének rugalmasságát

növeli azáltal, hogy bővíti a naplózott információk körét.

A semmisségi/helyrehozó naplózás szabályai

A semmisségi/helyrehozó naplózás – egyetlen különbséggel – ugyanolyan típusú naplóbejegyzéseket

használ, mint a naplózás másik két módszere. E módszerben az adatbáziselem értékének módosítását leíró

naplóbejegyzés négykomponensű: a <T,X,v,w> naplóbejegyzés azt jelenti, hogy a T tranzakció az

adatbázis X elemének korábbi v értékét w-re módosította. A semmisségi/helyrehozó naplózást alkalmazó

rendszernek a következő előírást kell betartania:

UR1: Mielőtt az adatbázis bármely X elemének értékét – valamely T tranzakció által végzett módosítás

miatt – a lemezen módosítanánk, ezt megelőzően a <T,X,v,w> módosítást leíró naplóbejegyzésnek

lemezre kell kerülnie.

A semmisségi/helyrehozó naplózás UR1 szabálya csak azokat a feltételeket kényszeríti, amelyek a

semmisségi és a helyrehozó naplózási szabályok mindegyikében szerepelnek. Ezáltal a <COMMIT T>

bejegyzés megelőzheti, de követheti is az adatbáziselemek lemezen történő bármilyen megváltoztatását.

Példa. Nézzük meg a szokásos példánkat semmisségi/helyrehozó naplózás használatával:

Lépés Tevékenység t M–A M–B D–A D–B Napló

1) <START T>

2) READ(A,t) 8 8 8 8

3) t := t*2 16 8 8 8

4) WRITE(A,t) 16 16 8 8 <T,A,8,16>

5) READ(B,t) 8 16 8 8 8

6) t := t*2 16 16 8 8 8

7) WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

8) FLUSH LOG

9) OUTPUT(A) 16 16 16 8

10) <COMMIT T>

11) OUTPUT(B) 16 16 16 16

A módosítást leíró naplóbejegyzések az A és B adatbáziselemeknek mind a régi, mind az új értékét

tartalmazzák. Ebben a sorozatban a <COMMIT T> naplóbejegyzés kiírását az A és B adatbáziselemek

lemezre való írása közé tettük. A 10) lépés kerülhetett volna a 8) vagy 9) lépés elé, vagy a 11) lépés mögé

is.

Helyreállítás a semmisségi/helyrehozó naplózás használatával

Amikor a semmisségi/helyrehozó naplózást használjuk, és helyreállításra kényszerülünk, akkor a

módosítást leíró naplóbejegyzésben megtaláljuk mind a T tranzakció hatásainak semmissé tételéhez

szükséges régi, mind a T tranzakció hatásainak helyreállításához szükséges új adatbáziselem-értékeket. A

semmisségi/helyrehozó módszer alapelvei a következők:

1. A legkorábbitól kezdve állítsuk helyre minden befejezett tranzakció hatását.

2. A legutolsótól kezdve tegyük semmissé minden be nem fejezett tranzakció tevékenységeit.

21

Nem elég a kettő közül az egyik, mindkét eljárásra szükségünk van. A rugalmasság lehetővé teszi, hogy a

COMMIT bejegyzés és a lemezen végrehajtott adatbázis-módosítások egymáshoz viszonyított sorrendje

kötetlen legyen, így előfordulhat az is, hogy egy befejezett tranzakció néhány vagy összes változtatása még

nem került lemezre, és az is, hogy egy be nem fejezett tranzakció néhány vagy összes változtatása már

lemezen is megtörtént.

Példa. A hiba fellépésének időpontja függvényében különböző helyreállítási lehetőségeink vannak:

1. Ha a katasztrófa a <COMMIT T> naplóbejegyzés lemezre írását követően fordul elő, akkor T-t

befejezett tranzakciónak tekintjük. 16-ot írunk mind A-ba, mind B-be. Az események jelenlegi

sorrendjében A-nak már 16 a tartalma, de B-nek lehet, hogy nem, aszerint, hogy a hiba a 11) lépés előtt

vagy után következett be.

2. Ha a katasztrófa a <COMMIT T> naplóbejegyzés lemezre írását megelőzően következett be, akkor T

befejezetlen tranzakciónak számít. Ez esetben A és B korábbi értéke, 8 íródik lemezre. Ha a hiba a 9) és

10) lépések között következett be, akkor A értéke már 16 volt a lemezen, és emiatt a 8-ra való

visszaállítás feltétlenül szükséges. Ebben a konkrét példában a B értéke nem igényelne visszaállítást

(mert még meg sem változott), ha pedig a hiba a 9) lépés előtt következik be, akkor A sem igényelné a

visszaállítást. Mivel általában nem lehetünk biztosak abban, hogy a visszaállítás szükséges-e vagy sem,

így azt (a biztonság kedvéért) mindig végre kell hajtanunk.

A semmisségi naplózáshoz hasonlóan a semmisségi/helyrehozó naplózás is olyan viselkedést mutat, hogy

a tranzakció a felhasználó számára korrekten befejezettnek tűnik, de még a <COMMIT T> naplóbejegyzés

lemezre kerülése előtt fellépett hiba utáni helyreállítás során a rendszer a tranzakció hatásait semmissé teszi

ahelyett, hogy helyreállította volna. Amennyiben ez a lehetőség problémát jelent, akkor a

semmisségi/helyrehozó naplózás során egy további szabályt célszerű bevezetni:

UR2: A <COMMIT T> naplóbejegyzést nyomban lemezre kell írni, amint megjelenik a naplóban.

Ennek teljesítéséért a fenti példában a 10) lépés után egy FLUSH LOG lépést kell beiktatnunk.

Nem adtuk meg azt, hogy a semmisségi vagy a helyrehozó lépést tesszük meg előbb. Előfordulhat, hogy a

T tranzakció rendben és teljesen befejeződött, és emiatt helyreállítása során egy X adatbáziselem T által

kialakított értékét rekonstruáljuk, melyet viszont egy be nem fejezett, és ezért visszaállítandó U tranzakció

korábban módosított. A probléma nem az, hogy először helyreállítjuk X értékét, és aztán állítjuk vissza U

előttire, vagy fordítva. E szituációban egyik út sem helyes, mert a végső adatbázis-állapot nagy

valószínűséggel így is, úgy is inkonzisztens lesz.

A gyakorlatban az adatbázis-kezelő rendszereknek a módosítások naplózásánál többet kell tenniük.

Biztosítaniuk kell, hogy ilyen szituációk ne fordulhassanak elő. Ezzel a konkurenciakezelés foglalkozik.

Később megnézzük, hogyan biztosítható T és U elkülönítése, amivel az ugyanazon X adatbáziselemen való

kölcsönhatásuk elkerülhető.

Semmisségi/helyrehozó naplózás ellenőrzőpont-képzéssel

A működés közbeni ellenőrzőpont-képzés valamivel egyszerűbb a semmisségi/helyrehozó naplózás

alkalmazásakor, mint a másik két naplózási módszernél. Csak a következőket kell tennünk:

1. Írjunk a naplóba <START CKPT(T1,…,Tk)> naplóbejegyzést, ahol T1,…,Tk az éppen aktív

tranzakciók, majd írjuk a naplót lemezre.

2. Írjuk lemezre az összes piszkos puffert, tehát azokat, melyek egy vagy több módosított adatbáziselemet

tartalmaznak. A helyrehozó naplózástól eltérően itt az összes piszkos puffert lemezre írjuk, nem csak a

már befejezett tranzakciók által módosítottakat.

3. Írjunk <END CKPT> naplóbejegyzést a naplóba, majd írjuk a naplót lemezre.

22

A semmisségi/helyrehozó naplózás által a lemezre írások sorrendjére vonatkozóan biztosított rugalmasság

miatt megengedhetjük a be nem fejezett tranzakciók változtatásainak lemezre való kiírását. Így

megengedhetjük a teljes blokknál kisebb adatbáziselemek használatát is, melyek közös pufferbe kerülnek.

Példa. Tekintsük az alábbi naplórészletet:

<START T1>

<T1,A,4,5>

<START T2>

<COMMIT T1>

<T2,B,9,10>

<START CKPT(T2)>

<T2,C,14,15>

<START T3>

<T3,D,19,20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

A példa megegyezik a helyrehozó naplózásnál felírt példával, csak a módosítási bejegyzések változtak,

hogy megfeleljenek a semmisségi/helyrehozó naplózás szabályainak. Az egyszerűség kedvéért minden régi

érték eggyel kisebb az új értéknél.

Az ellenőrzőpont képzésének kezdetekor T2 az egyetlen aktív tranzakció. Minthogy ez a napló

semmisségi/helyrehozó napló, így lehetséges, hogy a T2 által B-nek adott új érték (10) lemezre íródik, ami

nem volt megengedett a helyrehozó naplózásban. Most lényegtelen, hogy ez a lemezre írás mikor történik

meg. Az ellenőrzőpont képzése alatt biztosan lemezre írjuk B-t (ha még nem került oda), mivel minden

piszkos (változásban érintett) puffert kiírunk lemezre. Hasonlóan A-t – melyet a befejezett T1 tranzakció

alakított ki – is lemezre fogjuk írni, ha még nem került oda.

 Ha a katasztrófa ezen eseménysorozat végén jelentkezik, akkor T2-t és T3-at teljesen és rendesen

befejezett tranzakciónak tekintjük. A T1 tranzakció az ellenőrzőpontnál korábbi. Minthogy

<END CKPT> bejegyzést találunk a naplóban, így T1-ről biztosan tudjuk, hogy teljesen és rendesen

befejeződött, valamint az általa elvégzett módosítások lemezre íródtak. Ezért a T2 és T3 által

végrehajtott módosítások helyreállítandók, T1 pedig figyelmen kívül hagyható. Amikor olyan

tranzakció hatásait állítjuk helyre, mint amilyen a T2 is, akkor a naplóban nem kell a

<START CKPT(T2)> bejegyzésnél korábbra visszatekinteni, mert tudjuk, hogy a T2 által az

ellenőrzőpont-képzést megelőzően elvégzett módosítások az ellenőrzőpont képzése alatt lemezre

íródtak.

 Másik példaként tegyük fel, hogy a katasztrófa éppen a <COMMIT T3> bejegyzés lemezre írása előtt

fordult elő. Ekkor T2-t befejezett, T3-at pedig befejezetlen tranzakciónak kell tekintenünk. T2

tevékenységét helyreállítandó C értékét a lemezen 15-re írjuk; B-t már nem kell 10-re írnunk a lemezen,

mert tudjuk, hogy ez már lemezre került az <END CKPT> előtt. A helyreállító naplózástól eltérően T3

hatásait semmissé tesszük, azaz a lemezen D tartalmát 19-re írjuk. Ha T3 az ellenőrzőpont-képzés előtt

már aktív tranzakció lett volna, akkor a naplóban a START CKPT bejegyzésben szereplő befejezetlen

tranzakciók közül a legkorábban elindult Ti tranzakció <START Ti> bejegyzéséig kellene

visszakeresnünk, hogy megtaláljuk a Ti (most T2 vagy T3) semmissé teendő tevékenységeit leíró

naplóbejegyzéseket. A helyrehozó lépést viszont most is elég a START CKPT bejegyzéstől

végrehajtani.

 Ha a katasztrófa az <END CKPT> bejegyzés előtt lép fel, akkor figyelmen kívül hagyjuk az utolsó

START CKPT bejegyzést, és a fentieknek megfelelően járunk el.

23

Az eszközök meghibásodásának kezelése

A naplózással a rendszerhibák ellen védekezhetünk, amelyek következtében legfeljebb a memóriában tárolt

ideiglenes adatok vesznek el, de a lemezről semmi nem veszhet el. Ugyanakkor komoly hibát okoz egy

vagy több lemez elvesztése. Az adatbázist a naplóból elméletileg akkor tudjuk rekonstruálni, ha:

 a naplót tároló lemez különbözik az adatbázist tartalmazó lemez(ek)től;

 a naplót sosem dobjuk el az ellenőrzőpont-képzést követően;

 a napló helyrehozó vagy semmisségi/helyrehozó típusú, így az új értékeket (is) tárolja.

Ugyanakkor a napló esetleg az adatbázisnál is gyorsabban növekedhet, így nem praktikus a naplót örökre

megőrizni.

Az archívmentés

Az eszközök meghibásodásának kezelésére az egyik módszer az archiválás (archiving), az adatbázis

másolatának elkészítése egy vagy több, az adatbázisétól különböző adathordozón. Ha lehetséges, lezárjuk

az adatbázist addig, amíg elkészítjük a biztonsági másolatot (backup) valamely tárolóeszközön (például

optikai lemezen vagy mágnesszalagon), majd a biztonsági másolatot az adatbázistól távol, biztonságos

helyen tároljuk. A biztonsági másolat megőrzi az adatbázis mentéskori állapotát, és ha eszközhiba lép fel,

akkor a mentésből az adatbázis ezen állapotát vissza tudjuk állítani.

A napló használatával sokkal frissebb állapotot tudunk rekonstruálni. Ha a biztonsági másolat készítése

után történt adatbázis-változásokról keletkező naplót megőrizzük, és az túlélte az eszköz meghibásodását,

akkor a hiba után (esetleg másik lemezen) visszaállítva a biztonsági másolatot, a napló felhasználásával a

mentés óta történt adatbázis-változásokat is át tudjuk vezetni az adatbázison. A naplóról, amilyen gyorsan

csak lehet, távoli másolatot készítünk. Ezzel a napló elvesztése ellen védekezhetünk. Így ha a napló az

adatokkal együtt elveszik is, akkor még mindig használhatjuk az adatbázis mentését és a napló távoli

másolatát az adatbázis visszaállítására, egészen addig a pillanatig, amikor a napló utolsó átvitele történt a

távoli másolatára.

Ha az adatbázis nagy, akkor a biztonsági mentés elkészítése (kiírása) hosszas folyamat. Általánosan bevált,

hogy nem mentik a teljes adatbázist minden archiváló alkalommal. Ezért a mentésnek két szintjét

különböztetjük meg:

 teljes mentés (full dump), amikor az egész adatbázisról másolat készül;

 növekményes mentés (incremental dump), amikor az adatbázisnak csak azon elemeiről készítünk

másolatot, melyek az utolsó teljes vagy növekményes mentés óta megváltoztak.

Lehetséges a mentésnek több szintjét is használni: a teljes mentést 0-dik szintűnek tekintjük, az i-edik szintű

mentésen pedig azt a mentést értjük, amely az utolsó i-edik, illetve annál alacsonyabb szintű mentés óta

megváltozott elemek másolatát tartalmazza. Egy új i-edik szintű mentés készítésekor az i-nél magasabb

szintű mentéseket töröljük, vagy visszaállításkor figyelmen kívül hagyjuk.

Az adatbázist a teljes mentésből és a megfelelő növekményes mentésekből tudjuk rekonstruálni, a

helyrehozó vagy a semmisségi/helyrehozó naplózás rendszerhiba utáni visszaállítási folyamatához hasonló

módszerrel. Visszamásoljuk a teljes mentést, majd az ezt követő legkorábbi növekményes mentéstől kezdve

végrehajtjuk a növekményes mentésekben tárolt változtatásokat. Többszintű mentés esetén a 0-nál

magasabb szintű mentéseket szintszám szerint növekvőleg, az azonos szintszámú mentéseket pedig

időrendi sorrendben vesszük figyelembe. A növekményes mentések az adatoknak csak azt a kis részét

érintik, amely az utolsó mentés óta változott meg, így ezek kevesebb helyet igényelnek, és gyorsabban

menthetők, mint a teljes mentés.

24

Felmerülhet a kérdés, hogy miért nem csak a naplót mentjük, hiszen a napló használatával egy régi

mentésből is helyreállíthatnánk az adatbázist. Nem nyilvánvaló, hogy milyen gyakran célszerű biztonsági

mentést készíteni, ez az adatbázis méretén és tipikus módosítási fokán múlik. Amíg az adatbázisnak naponta

esetleg csak kis része változik, addig a naplózandó módosítások tömege egy egész év folyamán sokkal

nagyobb lehet, mint maga az adatbázis. Ha soha nem archiválunk, akkor a napló soha nem csonkolható, és

a napló tárolási/kezelési költsége hamar túllépheti az adatbázis másolatának tárolási költségét.

Archiválás működés közben

Az előbbiekben bemutatott, egyszerűnek látszó archiválással az a probléma, hogy sok adatbázist nem lehet

lezárni arra az időre, amíg a biztonsági mentést elkészítjük. Így – a működés közbeni ellenőrzőpont-

képzéshez hasonlóan – meg kell oldanunk a működés közbeni archiválást (nonquiescent archiving) is. A

működés közbeni ellenőrzőpont-képzés megkísérli az indulásakori adatbázis-állapotot lemezre írni. Az

ellenőrzőpont létrehozásának környékén keletkezett kis naplórészletre támaszkodva az adatbázis

állapotában történt minden olyan eltérést rendbe tudunk hozni, melyet az okozott, hogy az ellenőrzőpont

képzése alatt új tranzakciók indulhattak és lemezírások történhettek.

Ehhez hasonlóan a működés közbeni archiválás megbízhatóan tud az adatbázisról olyan másolatot

készíteni, ami az archiválás kezdetének többé-kevésbé megfelelő adatbázis-állapotot rögzíti. Ugyanakkor

a mentés alatti percekben vagy órákban az adatbázis működése sok adatbáziselemet cserélhet. Ha az

adatbázis mentésből való visszaállítása szükéges, akkor a mentés alatt keletkezett naplóbejegyzések

felhasználásával az adatbázis konzisztens állapota állítható elő. Az ellenőrzőpont képzésekor tehát az

adatokat a memóriából a lemezre visszük, és a napló lehetővé teszi a rendszerhibák utáni helyreállítást, míg

archiváláskor az adatokat a lemezről másodlagos háttértárolóra visszük, és az archívmentés a naplóval

lehetővé teszi az eszközhibák utáni helyreállítást.

A működés közbeni archiválás az adatbázis elemeit valamely fix sorrendben másolja, mialatt megeshet,

hogy ezen elemeket az éppen végrehajtott tranzakciók módosítják. Ennek eredményeként megtörténhet,

hogy a biztonsági mentésbe másolt adatbáziselem értéke nem ugyanaz, mint a mentés megkezdésekor volt.

Amíg a mentés alatt keletkezett naplót megőrizzük, addig az eltérések a napló felhasználásával

korrigálhatók.

Példa. Tegyük fel, hogy adatbázisunk 4 elemből áll: A, B, C és D. Ezek értéke az archiválás kezdetekor

rendre 1, 2, 3, 4. A mentés közben A értéke 5-re, C értéke 6-ra, B értéke 7-re módosul. Az adatbáziselemeket

a mentéskor sorban másoljuk az archívumba, az események sorrendje pedig legyen a következő:

Lemez Mentés

 A

A := 5

 B

C := 6

 C

B := 7

 D

Ekkor noha az adatbázis tartalma a mentés kezdetekor 1, 2, 3, 4 volt, a mentés végére pedig 5, 7, 6, 4 lett,

a mentett archívumba 1, 2, 6, 4 került, jóllehet ilyen adatbázis-állapot a mentés ideje alatt nem is fordult

elő.

Részletesebben a biztonsági mentés (archívum) elkészítése a következő lépésekből áll. Feltételezzük, hogy

az alkalmazott naplózási módszer a helyrehozó vagy a semmisségi/helyrehozó módszerek valamelyike; a

semmisségi naplózás nem alkalmas a működés közbeni archiválással való használatra (bővebben lásd a

példa után).

25

1. A <START DUMP> bejegyzés naplóba írása.

2. Az alkalmazott naplózási módnak megfelelő ellenőrzőpont kialakítása.

3. A menteni kívánt adatlemez(ek) teljes vagy növekményes mentésének végrehajtása, ügyelve arra, hogy

az adatok másolata (a mentés) biztonságos, távoli helyre kerüljön.

4. Gondoskodjunk arról is, hogy a napló szükséges részéről is másolat készüljön, és az is biztonságos,

távoli helyre kerüljön. A mentett naplórész tartalmazza legalább a 2. pontbeli ellenőrzőpont-képzés

közben keletkezett naplóbejegyzéseket, melyeknek túl kell élniük az adatbázist hordozó eszköz

meghibásodását.

5. <END DUMP> bejegyzés naplóba írása.

A mentés befejezésekor biztonsággal eldobhatjuk a naplónak azt a részét, amelyre nincs szükség a 2.

pontban végrehajtott ellenőrzőpont-képzéshez tartozó helyreállítási folyamat szabályai szerint.

Példa. Tegyük fel, hogy a fenti adatbázis mentés közbeni módosításait két tranzakció, T1 (mely A-t és B-t

módosította) és T2 (mely C-t módosította) végezte, melyek a mentés kezdetekor aktívak voltak.

Semmisségi/helyrehozó naplózási módszert alkalmazva a mentés alatti események lehetséges

naplóbejegyzései a következők:

<START DUMP>

<START CKPT(T1,T2)>

<T1,A,1,5>

<T2,C,3,6>

<COMMIT T2>

<T1,B,2,7>

<END CKPT>

a mentés befejezése
<END DUMP>

Látható, hogy T1 nem fejeződött be a mentés befejezéséig. Az eléggé valószínűtlen, hogy egy tranzakció a

teljes mentés egész ideje alatt aktív maradjon, de ez a lehetőség nem befolyásolja a bemutatandó

helyreállítási módszer helyességét.

Most már az is látható, hogy miért nem használható a semmisségi naplózás a működés közbeni

archiválással. Tegyük fel, hogy a <START CKPT(T1,T2)> bejegyzés után elindul egy T3 tranzakció,

amely módosítja A értékét, majd B értékét, aztán rendesen befejeződik, tehát egy <COMMIT T3> is a

naplóba kerül, de csak az <END CKPT> bejegyzés naplóba kerülése után (azaz a mentés közben). Mivel

semmisségi naplózás esetén az OUTPUT műveletek a módosítási bejegyzés naplóba írását követően

bármikor lefuthatnak, ezért előfordulhat, hogy A értékét annak módosítása után, de B értékét annak

módosítása előtt archiváljuk. A helyreállítás folyamán a T3 tranzakcióval nem foglalkozunk, mert

megtaláltuk a naplóban a <COMMIT T3> bejegyzést, így olyan eredményt kapunk, mintha T3 nem

atomosan hajtódott volna végre. Helyrehozó naplózást használva ilyen eset nem fordulhat elő, mert akkor

OUTPUT művelet csak a COMMIT után futhat le, és így vagy nem történik változtatás a lemezen (ha nincs

COMMIT), vagy „újra lejátsszuk” a tranzakciót (ha van COMMIT). Semmisségi/helyrehozó naplózás esetén

pedig minden tranzakciót vagy semmissé teszünk (ha nincs COMMIT), vagy helyreállítunk (ha van

COMMIT), tehát szintén nem fordulhat elő nem atomos viselkedés.

Helyreállítás az archívmentés és a napló használatával

Tegyük fel, hogy készülékhiba lépett fel, és az adatbázist rekonstruálnunk kell. A helyreállítást a legutolsó

biztonsági mentés és a napló távoli mentése felhasználásával végezzük. A következő lépéseket hajtjuk

végre:

26

1. Az adatbázis visszaállítása a biztonsági mentésből:

a) Meg kell keresni a legutolsó teljes mentést, belőle rekonstruálni az adatbázist.

b) Ha vannak későbbi növekményes mentések, akkor ezeket időrendi sorrendben használva

módosítjuk az adatbázist. Többszintű mentés esetén az 1. szinttől kezdve sorban az összes szint

összes mentését alkalmazni kell (szintenként, azon belül időrendben).

2. Módosítjuk az adatbázist a napló katasztrófát túlélt részével, a naplózási módszernek megfelelő

helyreállítási eljárást használva.

Példa. Tegyük fel, hogy a fenti példában szereplő biztonsági mentés elkészítését követően történik

eszközmeghibásodás, és a napló ezt túlélte. Azért, hogy az eljárást érdekesebbé tegyük, tekintsük úgy, hogy

a napló katasztrófát túlélt részében nincs <COMMIT T1> bejegyzés, van viszont <COMMIT T2>. Az

adatbázist először a biztonsági mentésből visszatöltjük, így A, B, C, D értékei rendre 1, 2, 6, 4 lesznek.

Ezután a naplót vesszük elő. Minthogy T2 befejezett tranzakció, helyreállítjuk azon lépés hatását, amely C

értékét 6-ra módosította. Példánkban C értéke már 6, de előfordulhatna, hogy

 C mentése azt megelőzően történt, hogy C értékét a T2 tranzakció módosította volna;

 a mentésben C-nek később kapott értéke van, mely értéket olyan tranzakció állított be, melyre

vonatkozó COMMIT bejegyzést a naplóban vagy találunk, vagy nem. C értékét a mentésben talált értékre

akkor állítjuk, ha az ezt beállító tranzakció COMMIT bejegyzését megtaláljuk.

Minthogy T1 gyaníthatóan nem befejezett tranzakció (mert COMMIT bejegyzését nem találjuk), így T1

hatásait semmissé kell tennünk. A T1-re vonatkozó naplóbejegyzések használatával meg tudjuk állapítani,

hogy A értékét 1-re, B értékét 2-re kell visszaállítanunk. Előfordulhat persze, hogy a mentésen ez az értékük,

de ettől eltérő értékeik is lehetnek, ha A és/vagy B módosított értéke archiválódott. (Ez a módosításnak és

a mentésnek az időbeli sorrendjétől függ.)

Az Oracle naplózási és archiválási rendszere

Az alábbi információk forrása az Oracle Database Administrator’s Guide és az Oracle Database Backup

and Recovery User’s Guide.

A napló

Egy szerverpéldány rendszerhibája esetén az Oracle az online naplófájlokat használja az adatbázis

automatikus helyreállításához. A példány-helyreállítás (instance recovery) azonnal megtörténik, amint a

példány újraindul a rendszerhiba után. A helyreállítási műveletek alapja a napló (redo log), amely az

adatbázis változásait tárolja, amint azok bekövetkeznek. Minden Oracle szerverpéldány rendelkezik egy

naplóval, amellyel védekezhetünk a rendszerhibák ellen. Két részből áll: az online és az archivált naplóból.

Az online napló két vagy több online naplófájlból áll, amelyek naplóbejegyzésekkel (redo record vagy redo

entry) vannak feltöltve, ezeket pedig változásvektorok (change vector) alkotják. A változásvektorok az

adatbázis egy blokkjának a változásáról tartalmaznak információkat. Ha például megváltoztatunk egy

fizetési értéket egy alkalmazottakra vonatkozó adatokat tároló táblában, egy új naplóbejegyzés jön létre

egy-egy változásvektorral a táblát tartalmazó adatfájl blokkjának, az undo szegmens blokkjának és az undo

szegmens tranzakciós táblájának a változásáról (lásd később). A naplóbejegyzések ideiglenesen az SGA

(System Global Area) memóriapuffereiben tárolódnak, amelyeket a Log Writer (LGWR) háttérfolyamat

folyamatosan ír ki valamelyik naplófájlba. (Az SGA tartalmazza az adatbáziselemeket tároló puffereket is,

amelyeket pedig a Database Writer háttérfolyamat ír lemezre.) Ha egy felhasználói folyamat befejezte egy

tranzakció végrehajtását, akkor a LGWR a tranzakcióhoz tartozó naplóbejegyzéseket az SGA

http://docs.oracle.com/database/121/ADMIN/toc.htm
http://docs.oracle.com/database/121/BRADV/toc.htm
http://docs.oracle.com/database/121/BRADV/toc.htm

27

memóriapuffereiből az egyik naplófájlba írja, és hozzájuk rendel egy időbélyeget (system change number,

SCN), amellyel a befejezett tranzakció naplóbejegyzéseit azonosíthatjuk. A rendszer csak azután értesíti a

felhasználói folyamatot, hogy a tranzakció véglegesítődött, miután az adott tranzakcióra vonatkozó összes

naplóbejegyzés lemezre került. A naplóbejegyzések azelőtt is lemezre íródhatnak, mielőtt a megfelelő

tranzakció véglegesítődne. Ha a napló memóriapufferei megtelnek, vagy egy másik tranzakció

véglegesítődik, a LGWR az összes naplóbejegyzést lemezre írja, még akkor is, ha ezek egy része nincs

véglegesítve. Ha szükséges, ezek a változások semmissé tehetők.

Ahogy említettük, az online napló két vagy több naplófájlból áll. Az Oracle egyszerre csak egy naplófájlt

használ a naplóbejegyzések kiírására. Azt a naplófájlt, amelyikbe a LGWR éppen ír, aktuális naplófájlnak

nevezzük. Azokat a naplófájlokat, amelyek szükségesek egy példány-helyreállításhoz (azaz a benne tárolt

változások még nem mind íródtak lemezre), aktív naplófájloknak, amelyekre pedig nincs szükség (azaz a

benne tárolt változások már mind lemezre íródtak), inaktív naplófájloknak nevezzük. Azért van szükség

legalább két állományra, hogy az egyik akkor is elérhető legyen a naplóbejegyzések írására, mialatt a másik

épp archiválás alatt áll (ha az adatbázis ARCHIVELOG módban van). Az online naplófájlok ciklikusan

töltődnek föl. Amikor az aktuális naplófájl megtelt, a LGWR a következő elérhető naplófájlt kezdi el

feltölteni. Amikor az utolsó elérhető naplófájl is megtelt, akkor újra az elsőt kezdi el írni, újrakezdve a kört.

A megtelt naplófájlok attól függően lesznek újra elérhetők a LGWR számára, hogy a napló archiválása be

van-e kapcsolva. Ha nem (az adatbázis NOARCHIVELOG módban van), akkor egy megtelt naplófájl akkor

lesz elérhető, ha már inaktívvá vált. Ha az archiválás be van kapcsolva (az adatbázis ARCHIVELOG

módban van), akkor egy megtelt naplófájl akkor lesz elérhető, ha már inaktívvá vált, és a naplófájlt már

archiválta az egyik archiváló háttérfolyamat (ARCn).

Naplóváltásnak (log switch) nevezzük azt a pillanatot, amikor a rendszer befejezi az egyik naplófájl írását,

és elkezdi egy másikét. Naplóváltás általában akkor történik, amikor az aktuális naplófájl teljesen megtelt,

és az írást a következő naplófájlban kell folytatni. Beállíthatjuk azonban, hogy szabályos időközönként is

történjen naplóváltás, függetlenül attól, hogy az aktuális naplófájl megtelt-e már. Ezenkívül manuálisan is

kérhetünk naplóváltást. Valahányszor naplóváltás történik, az Oracle egy új sorszámot (log sequence

number) rendel ahhoz a naplófájlhoz, amibe a LGWR megkezdi az írást. Amikor a rendszer archiválja a

naplófájlokat, az archivált napló megőrzi a sorszámát. Az a naplófájl, amit újra elkezdünk használni, a

soron következő sorszámot kapja meg. Így tehát minden online vagy archivált naplófájl egyedileg

azonosítható a sorszámával. Helyreállítás során az Oracle a szükséges archivált vagy online naplófájlokat

a sorszámaik szerinti növekvő sorrendben alkalmazza.

Magának a naplónak a meghibásodása ellen védekezhetünk a multiplexelt online napló (multiplexed redo

log) segítségével, ami azt jelenti, hogy a napló kettő vagy több egyenértékű másolata kezelhető

automatikusan. Ha multiplexeljük a naplófájlokat, a LGWR párhuzamosan ugyanazokat az információkat

írja a különböző egyenértékű naplófájlokba, ezáltal kiküszöbölve az egyikük megsérüléséből eredő

adatvesztést. Legjobb, ha a másolatok különböző lemezeken vannak, mert ha az egyik lemez megsérül,

akkor a napló többi másolata még mindig rendelkezésre áll a helyreállításhoz. Azonban még ha a másolatok

ugyanazon a lemezen vannak is, a redundáns tárolás segíthet kivédeni a szektorhibákat, állományszerkezeti

hibákat stb.

Lehetőség van tehát arra, hogy a megtelt online naplófájlokat archiváljuk, mielőtt újra felhasználnánk őket.

Az archivált (offline) napló (archived redo log) az ilyen archivált naplófájlokból tevődik össze. A

naplófájlok archiválása csak akkor lehetséges, ha az adatbázis ARCHIVELOG módban fut. Az archiválás

lehet automatikus vagy manuális.

NOARCHIVELOG módban az online naplófájlok archiválása nem lehetséges. Az adatbázis vezérlőfájlja

jelzi, hogy a megtelt naplófájlokat nem szükséges archiválni. Így amikor egy megtelt naplófájl inaktívvá

válik egy naplóváltást követően, azt a fájlt a LGWR újra felhasználhatja. NOARCHIVELOG módban az

adatbázis csak rendszerhiba után állítható helyre, eszközhiba esetén nem. A helyreállításhoz csak az online

naplófájlokban tárolt legfrissebb adatbázis-módosításokat használhatjuk fel. Ha NOARCHIVELOG

módban eszközhiba következik be, akkor csak a legfrissebb teljes mentés időpontjáig állíthatjuk vissza az

28

adatbázist, az azt követő tranzakciók hatása elvész. NOARCHIVELOG módban nem végezhetünk online

táblaterület-mentést, és nem is használhatjuk fel a korábban, ARCHIVELOG módban készült online

táblaterület-mentéseket. Egy NOARCHIVELOG módban működő adatbázist csak teljes mentésből

állíthatunk vissza, amely az adatbázis zárt állapotában készült. Emiatt NOARCHIVELOG módban célszerű

az adatbázisról rendszeresen teljes mentést készíteni.

ARCHIVELOG módban a napló archiválása be van kapcsolva. Az adatbázis vezérlőfájlja jelzi, hogy a

megtelt naplófájlokat nem használhatja fel újra a LGWR, amíg azok nincsenek archiválva. A megtelt

naplófájlok egy naplóváltást követően archiválhatók. A naplófájlok archiválásának az alábbi előnyei

vannak:

 Az adatbázis mentése az online és archivált naplófájlokkal együtt garantálja, hogy minden véglegesített

tranzakció helyreállítható az operációs rendszer vagy a lemez meghibásodása esetén.

 Ha elérhetőek az archivált naplófájlok, akkor egy működés közben készített mentést is felhasználhatunk

a helyreállításhoz.

 Fenntarthatunk az adatbázisunkról egy másolatot, amelyet az eredeti adatbázis archivált naplójának a

másolatra történő folyamatos alkalmazásával tarthatunk naprakészen.

Az Oracle az online naplót kizárólag helyreállításra használja. Az adminisztrátorok azonban egy SQL

interfészen keresztül lekérdezéseket hajthatnak végre rajta a LogMiner naplóelemző eszköz segítségével.

A naplófájlok ugyanis hasznos információkat szolgáltathatnak a korábbi adatbázis-tevékenységekről.

Minden Oracle adatbázis rendelkezik egy vezérlőfájllal (control file), amely egy kisméretű bináris

állomány, és az adatbázis fizikai szerkezetéről tárol információkat. A vezérlőfájl tartalmazza

 az adatbázis nevét,

 az adatbázishoz tartozó adat- és naplófájlok nevét és helyét,

 az adatbázis létrehozásának idejét,

 az aktuális naplósorszámot,

 ellenőrzőpont-információkat.

Az adatbázis normális működéséhez az Oracle szervernek írási módban el kell tudnia érni a vezérlőfájlt.

Nélküle nem lehet csatlakozni az adatbázishoz, és nehézkes a helyreállítás. A vezérlőfájl az adatbázissal

egy időben jön létre. Alapértelmezésben az adatbázis létrehozásakor a vezérlőfájlnak legalább egy példánya

(néhány operációs rendszer esetén eleve több példánya) is létrejön. A legjobb, ha minden Oracle adatbázis

legalább két vezérlőfájllal rendelkezik, mindegyik különböző fizikai adathordozón: ez a multiplexelt

vezérlőfájl (multiplexed control file). Ha egy vezérlőfájl lemezhiba miatt megsérül, a hozzá tartozó

szerverpéldányt le kell állítani. A lemezhiba elhárítása után a sérült vezérlőfájl helyreállítható a másik

lemezen tárolt ép példányának felhasználásával, és a szerverpéldány újraindítható. Ebben az esetben nincs

szükség eszközhiba utáni helyreállításra.

Az undo információk

Az Oracle a semmisségi és a helyrehozó naplózás egy speciális kombinációját valósítja meg. Ahogy láttuk,

a tranzakciók helyrehozásához szükséges információkat (az adatbázisblokkok módosított értékeit) az online

napló tartalmazza. A tranzakciók hatásainak semmissé tételéhez szükséges információk pedig alapesetben

egy vagy több undo táblaterületen (undo tablespace) tárolódnak (vagy más táblaterületen elhelyezkedő

rollback szegmensekben – lásd később). Ez azt jelenti, hogy az Oracle az undo adatokat az adatbázisban

tárolja, nem külső naplófájlokban. Az undo adatok tehát ugyanolyan blokkokban helyezkednek el, mint az

adatbázis más adatai, és ezen blokkok változásai ugyanúgy naplózásra kerülnek. Az Oracle így hatékonyan,

külső naplófájlok olvasása nélkül tud hozzáférni az undo adatokhoz. Az undo táblaterület a tranzakciók

által módosított adatok régi értékeit tárolja attól függetlenül, hogy ezek a tranzakciók véglegesítettek-e vagy

29

sem. Az undo információkat használjuk egy aktív tranzakció visszagörgetésére, egy megszakadt tranzakció

helyreállítására, az olvasási konzisztencia biztosítására és flashback műveletek végrehajtására is.

Az undo táblaterület undo szegmensekből (undo segment), azok pedig undo bejegyzésekből (undo record

vagy undo entry) állnak. Egy undo bejegyzés többek között a megváltozott attribútum(ok) azonosítóját

(címét), a módosítást végző tranzakciós műveletet, az annak hatását semmissé tevő utasítást és az

attribútum(ok) régi értékét tárolja. Az undo bejegyzés mindig előbb kerül lemezre, mint ahogy az

adatbázisban megtörténik a megfelelő attribútumok módosítása. Az ugyanazon tranzakcióhoz tartozó

bejegyzések össze vannak láncolva, így könnyen visszakereshetők, ha az adott tranzakciót vissza kell

görgetni.

Az undo táblaterületen minden undo szegmenshez tartozik egy tranzakciós tábla (transaction table), amely

az adott undo szegmenst használó tranzakciók azonosítóit tartalmazza. Minden tranzakciós tábla fix számú

bejegyzésből (slotból) áll. Ez a szám az adatblokk méretétől függ, amit viszont az operációs rendszer

határoz meg. Minden bejegyzéshez egy tranzakció tartozik. Az Oracle sorban rendeli hozzá a tranzakciókat

a tranzakciós tábla szabad elemeihez. Ha a tábla betelik, elölről kezdi felhasználni a szabad elemeket. Egy

elem akkor válik szabaddá, ha az általa képviselt tranzakció véglegesítődött. Ha minden elem aktív

tranzakcióhoz tartozik, akkor egy újabb tranzakciónak várakoznia kell, amíg valamelyik elem fel nem

szabadul.

Ha egy tranzakció befejeződött, akkor a rá vonatkozó undo bejegyzésekre visszagörgetési vagy tranzakció-

helyreállítási célból ugyan nincs többé szükség, azonban mégsem törölhetők, mert elképzelhető, hogy még

a tranzakció befejeződése előtt elindult egy olyan lekérdezés, amelyhez szükség van a módosított adatok

régi értékeire (ezt nevezzük olvasási konzisztenciának – lásd Az Oracle konkurenciavezérlési technikája

című részt). Ezenkívül a flashback műveletek sikeressége is a régebbi undo adatok elérhetőségén múlhat.

Ezen okok miatt a régi undo információkat a lehető legtovább célszerű megőrizni.

Ha egy adatbázist a Database Configuration Assistant (DBCA) segédprogrammal hozunk létre,

automatikusan létrejön egy UNDOTBS1 nevű undo táblaterület is. Saját undo táblaterület is készíthető a

CREATE DATABASE vagy a CREATE UNDO TABLESPACE utasítás segítségével. Amikor a

szerverpéldány elindul, automatikusan kiválasztja az első elérhető undo táblaterületet. Ha nincs ilyen, akkor

a rendszer undo táblaterület nélkül indul el, és a SYSTEM táblaterületet használja az undo bejegyzések

tárolására, ez azonban nem ajánlott. Ha az adatbázis több undo táblaterülettel rendelkezik, a használni

kívánt undo táblaterületet magunk is megadhatjuk az UNDO_TABLESPACE paraméter segítségével.

A példány-helyreállítás lépései

Amikor egy undo bejegyzés az undo szegmensbe kerül, a naplóban erről is készül egy naplóbejegyzés,

hiszen az undo táblaterületek – más táblaterületekhez hasonlóan – az adatbázis részét képezik. Ez azt

eredményezi, hogy az online napló a permanens objektumokra vonatkozó undo információkat is tárolja. Az

adatbázisban bekövetkező minden egyes változtatás hatására tehát létrejön egy undo bejegyzés a módosított

attribútum(ok) régi értékével, egy naplóbejegyzés a módosított adatokat tartalmazó adatblokkok új

értékével, valamint egy másik naplóbejegyzés az undo bejegyzést tartalmazó adatblokk új értékével.

A példány-helyreállítás első lépése a rolling forward (vagy cache recovery), amelynek során az online

naplóban feljegyzett változásokat átvezetjük az adatbázisra. A naplót elegendő az utolsó ellenőrzőponttól

kezdődően átvizsgálni. Az ellenőrzőpont garantálja, hogy minden olyan véglegesített módosítás, amelynek

az SCN értéke kisebb az ellenőrzőponténál, lemezre került. Az ellenőrzőpont pozíciója (SCN értéke)

számos esetben módosulhat, például amikor a Database Writer háttérfolyamat lemezre írja a piszkos

puffereket.

A rolling forward lépés után kapott adatbázis nagy valószínűséggel inkonzisztens lesz. Ezután minden

olyan módosítást, amely nem volt véglegesítve, semmissé kell tenni. Mivel az online naplóban az undo

adatok is feljegyzésre kerültek, a rolling forward lépés a megfelelő undo szegmenseket is helyreállítja. Az

30

Oracle ezek alapján semmissé tesz az adatbázisban minden olyan nem véglegesített módosítást, amely a

rendszerhiba bekövetkezése előtt vagy a rolling forward lépés alatt keletkezett. Ez a lépés a rolling back

(vagy transaction recovery).

Az undo információk kezelésének módjai

Az undo információk menedzselése két módon történhet: automatikus (automatic undo management) és

manuális (manual undo management) módban. Automatikus módban az Oracle automatikusan kezeli az

undo szegmenseket az undo táblaterületeken, nincs szükség felhasználói beavatkozásra. Ez az

alapértelmezett mód egy újonnan telepített adatbázis esetén. Manuális módban nem használunk undo

táblaterületet, az undo információk rollback szegmensekben (rollback segment), azaz felhasználó által

kezelt undo szegmensekben tárolódnak. A rollback szegmensek által elfoglalt tárterület kezelése összetett

feladat, és nagy terhet ró a DBA-ra.

Mentés és visszaállítás

A mentés és visszaállítás középpontjában az adatbázist alkotó adatállományok fizikai mentése áll, amely

lehetővé teszi az adatbázis későbbi rekonstrukcióját. Az Oracle az RMAN nevű parancssori eszközt ajánlja

az adatbázis hatékony mentésére és visszaállítására. Az RMAN védelme az adatfájlokra, a vezérlőfájlokra,

a szerverparamétereket tartalmazó fájlokra és az archivált naplófájlokra terjed ki. Ezek az állományok

szükségesek az adatbázis rekonstruálásához. Az RMAN-t úgy tervezték, hogy szorosan együttműködjön az

adatbázisszerverrel, blokk szintű hibafelismerést biztosítva a mentés és a visszaállítás során. A mentés

során optimalizálja a tárhelyfoglalást az állományok multiplexelésével és tömörítéssel, valamint támogatja

a vezető szalagos és egyéb tárolóeszközöket. A mentési eljárás fizikai szinten zajlik, így véd az állományok

sérülései (pl. egy adatfájl véletlen letörlése vagy egy lemezmeghajtó meghibásodása) ellen. Az RMAN

pillanat-visszaállításra is alkalmas, kiküszöbölve bizonyos logikai hibákat, amikor más technikák (pl. a

flashback műveletek) már nem használhatók.

NOARCHIVELOG módban a megtelt inaktív naplófájlok felülírhatók. Ilyenkor az adatbázis védve van a

rendszerhibák ellen, de nincs védve a készülékhibák ellen. ARCHIVELOG módban a megtelt naplófájlok

archiválásra kerülnek. Ekkor az adatbázis mind a rendszerhibák, mind a készülékhibák ellen védve van,

viszont további hardveres erőforrásokra lehet szükség.

Egy adatfájl teljes mentése (full backup) magában foglalja az állomány összes blokkját. A növekményes

mentés (incremental backup) csak azokat a blokkokat másolja, amelyek módosulnak a mentések között. A

nulladik szintű növekményes mentés – amely az adatfájl összes blokkját másolja – használható egy

növekményes mentési stratégia kiindulópontjaként. Az első szintű növekményes mentés csak azokat a

blokkokat másolja, amelyek az utolsó nulladik vagy első szintű mentés óta megváltoztak. Egy első szintű

mentés lehet kumulatív (cumulative), ha tartalmazza az összes megváltozott blokkot az utolsó nulladik

szintű mentés óta, vagy differenciális (differential), ha csak az utolsó nulladik vagy első szintű mentés óta

történt változásokat tartalmazza. A tipikus növekményes mentési stratégiák szabályos időközönként (pl.

naponta) készítenek első szintű mentéseket. Visszaállítás során az RMAN automatikusan alkalmazza mind

a növekményes mentéseket, mind a naplót, hogy rekonstruálja az adatbázis egy kívánt időpontbeli állapotát.

A mentés lehet konzisztens vagy inkonzisztens. A konzisztens mentés az adatbázis konzisztens állapotában

készül. Az adatbázis konzisztens lesz, miután leállítottuk a SHUTDOWN NORMAL, a SHUTDOWN

IMMEDIATE vagy a SHUTDOWN TRANSACTIONAL paranccsal. A konzisztens leállítás garantálja,

hogy minden naplózott módosítás lemezre íródik. Ha ezután mountoljuk az adatbázist, és készítünk egy

mentést, akkor később eszköz-helyreállítás nélkül visszaállíthatjuk és megnyithatjuk az adatbázist.

Természetesen azonban elveszítjük a mentés készítése után futott tranzakciók hatását.

31

Minden olyan mentést, amely nem konzisztens, inkonzisztensnek nevezünk. Egy nyitott adatbázisról

készült mentés mindig inkonzisztens, mint ahogy egy rendszerhiba utáni vagy egy SHUTDOWN ABORT

paranccsal leállított adatbázisról készült mentés is. Ha az adatbázist inkonzisztens mentésből állítjuk vissza,

először eszköz-helyreállítást (media recovery) kell végeznünk, mielőtt megnyithatnánk az adatbázist.

Ennek során a naplóban jelen lévő, a mentés elkészítését követően bekövetkezett változásokat alkalmazzuk

az adatfájlokra. Az RMAN nem engedi meg inkonzisztens mentések készítését, ha az adatbázis

NOARCHIVELOG módban van. Ha azonban az adatbázis ARCHIVELOG módban van, és mentjük az

archivált naplót és az adatfájlokat, az inkonzisztens mentések egy jól működő mentési és helyreállítási

stratégia alapját képezhetik. Az inkonzisztens mentések nagyobb rendelkezésre állást kínálnak, mert nem

kell leállítanunk az adatbázist ahhoz, hogy teljes védelmet biztosító mentéseket készíthessünk.

Az eszköz-helyreállításhoz szükség van egy vezérlőfájlra, az adatfájlokra (amelyeket tipikusan mentésből

állítunk vissza), valamint az online és archivált naplófájlokra, amelyek az adatfájlok mentése óta történt

változásokat tartalmazzák. Az eszköz-helyreállítást leggyakrabban készülékhibák (pl. egy állomány vagy

egy lemez elvesztése) vagy felhasználói hibák (pl. egy tábla tartalmának a letörlése) utáni helyreállításra

használjuk.

Az eszköz-helyreállítás lehet teljes visszaállítás (complete recovery) vagy pillanat-visszaállítás (point-in-

time recovery). A teljes visszaállítás vonatkozhat külön az egyes adatfájlokra, táblaterületekre vagy az

egész adatbázisra. A pillanat-visszaállítás rendszerint a teljes adatbázisra vonatkozik (vagy az RMAN

segítségével néha csak egyes táblaterületekre). Teljes visszaállítás esetén visszamásoljuk a mentett

adatfájlokat, majd alkalmazzuk rájuk az archivált és online naplófájlokban leírt módosításokat. Az

adatbázis a hiba időpontjában fennálló állapotába kerül vissza, és adatvesztés nélkül megnyitható. Pillanat-

visszaállítás esetén az adatbázist egy felhasználó által választott múltbeli időpillanatban fennálló állapotába

állítjuk vissza. Először visszamásoljuk az adott időpillanat előtt készített mentésből az adatfájlokat,

valamint az archivált naplófájlok teljes halmazát a mentés készítésének idejétől a kiválasztott időpontig.

Ezután átvezetjük a mentéstől az adott időpontig végrehajtott módosításokat az adatfájlokra. A kiválasztott

időpont utáni módosításokat figyelmen kívül hagyjuk.

32

Konkurenciavezérlés

A tranzakciók közötti egymásra hatás az adatbázis-állapot inkonzisztenssé válását okozhatja, még akkor is,

amikor a tranzakciók külön-külön megőrzik a konzisztenciát, és rendszerhiba sem történt. Ezért

valamiképpen szabályoznunk kell, hogy a különböző tranzakciók egyes lépései milyen sorrendben

következzenek egymás után. A lépések szabályozásának feladatát az adatbázis-kezelő rendszer ütemező

(scheduler) része végzi. Azt az általános folyamatot, amely biztosítja, hogy a tranzakciók egyidejű

végrehajtása során megőrizzék a konzisztenciát, konkurenciavezérlésnek (concurrency control) nevezzük.

Amint a tranzakciók az adatbáziselemek olvasását és írását kérik, ezek a kérések az ütemezőhöz kerülnek,

amely legtöbbször közvetlenül végrehajtja azokat. Amennyiben a szükséges adatbáziselem nincs a

pufferben, először a pufferkezelőt hívja meg. Bizonyos esetekben azonban nem biztonságos azonnal

végrehajtani a kéréseket. Az ütemezőnek ekkor késleltetnie kell a kérést, sőt bizonyos esetben abortálnia

kell a kérést kiadó tranzakciót.

Soros és sorba rendezhető ütemezések

A konkurenciavezérlés tanulmányozását azzal kezdjük, hogy megvizsgáljuk, a konkurensen végrehajtott

tranzakciók milyen feltételekkel tudják megőrizni az adatbázis-állapot konzisztenciáját. Az alapfeltevésünk

az volt, hogy ha minden egyes tranzakciót elkülönítve hajtunk végre (anélkül, hogy más tranzakció

konkurensen futna), akkor az adatbázist konzisztens állapotból konzisztens állapotba alakítjuk (korrektség

alapelve). A gyakorlatban azonban a tranzakciók általában más tranzakciókkal egyidejűleg futnak, emiatt

ez az elv közvetlenül nem használható. Olyan ütemezéseket kell alkalmaznunk, amelyek biztosítják, hogy

ugyanazt az eredményt állítják elő, mintha a tranzakciókat egyesével hajtottuk volna végre.

Ütemezések

Az ütemezés (schedule) egy vagy több tranzakció által végrehajtott lényeges műveletek időrendben vett

sorozata, amelyben az egy tranzakcióhoz tartozó műveletek sorrendje megegyezik a tranzakcióban

megadott sorrenddel. A konkurenciakezelés szempontjából a lényeges olvasási és írási műveletek a

központi memória puffereiben történnek, nem pedig a lemezen. Tehát csak a READ és WRITE műveletek

sorrendje számít, amikor a konkurenciával foglalkozunk, az INPUT és OUTPUT műveleteket figyelmen

kívül hagyjuk.

Példa. Tekintsünk két tranzakciót és az adatbázison kifejtett hatásukat, amikor egy meghatározott

sorrendben hajtjuk végre a műveleteiket:

T1 T2

READ(A,t) READ(A,s)

t := t+100 s := s*2

WRITE(A,t) WRITE(A,s)

READ(B,t) READ(B,s)

t := t+100 s := s*2

WRITE(B,t) WRITE(B,s)

t és s T1-nek és T2-nek lokális változói, nem adatbáziselemek. Tételezzük fel, hogy az egyetlen

konzisztenciamegszorítás az A = B. Mivel T1 A-hoz és B-hez is hozzáad 100-at, és T2 A-t és B-t is

megszorozza 2-vel, tudjuk, hogy az egyes tranzakciók egymástól elkülönítve futva megőrzik a

konzisztenciát.

33

Soros ütemezések

Azt mondjuk, hogy egy ütemezés soros (serial schedule), ha benne bármely két T és T’ tranzakcióra

teljesül, hogy ha T-nek van olyan művelete, amely megelőzi T’ valamelyik műveletét, akkor T összes

művelete megelőzi T’ valamennyi műveletét. Másképpen fogalmazva az ütemezés úgy épül fel a

tranzakciós műveletekből, hogy először az egyik tranzakció összes műveletét tartalmazza, azután egy másik

tranzakció összes műveletét stb., miközben nem cseréli fel a műveleteket.

Példa. A fenti tranzakcióknak két soros ütemezése van, az egyikben T1 megelőzi T2-t, a másikban T2 előzi

meg T1-et. Legyen a kezdeti állapot A = B = 25. Ekkor a két ütemezés a következőképpen alakul:

T1 T2 A B T1 T2 A B

READ(A,t) 25 READ(A,s) 25

t := t+100 s := s*2

WRITE(A,t) 125 WRITE(A,s) 50

READ(B,t) 25 READ(B,s) 25

t := t+100 s := s*2

WRITE(B,t) 125 WRITE(B,s) 50

 READ(A,s) 125 READ(A,t) 50

 s := s*2 t := t+100

 WRITE(A,s) 250 WRITE(A,t) 150

 READ(B,s) 125 READ(B,t) 50

 s := s*2 t := t+100

 WRITE(B,s) 250 WRITE(B,t) 150

Láthatjuk, hogy A és B végső értéke különböző a két ütemezésben, de nem is a végeredmény a központi

kérdés addig, amíg a konzisztenciát megőrizzük. Általában nem várjuk el, hogy az adatbázis végső állapota

független legyen a tranzakciók végrehajtásának sorrendjétől.

A soros ütemezést úgy ábrázolhatjuk, hogy a műveleteket a végrehajtásuk sorrendjében felsoroljuk. Mivel

a soros ütemezésben a műveletek sorrendje csak magától a tranzakciók sorrendjétől függ, ezért a soros

ütemezést elegendő a tranzakciók felsorolásával megadni, például: (T1, T2), illetve (T2, T1).

Sorba rendezhető ütemezések

A tranzakciókra vonatkozó korrektségi elv szerint minden soros ütemezés megőrzi az adatbázis

konzisztenciáját. Kérdés, hogy van-e más ütemezés is, amely szintén biztosítja a konzisztencia

megmaradását. A válasz igen, ahogy azt a következő példa mutatja. Általában azt mondjuk, hogy egy

ütemezés sorba rendezhető (serializable schedule), ha ugyanolyan hatással van az adatbázis állapotára, mint

ugyanazon tranzakciók valamelyik soros ütemezése, függetlenül az adatbázis kezdeti állapotától.

Példa. Tekintsük a fenti két tranzakció következő két ütemezését:

T1 T2 A B T1 T2 A B

READ(A,t) 25 READ(A,t) 25

t := t+100 t := t+100

WRITE(A,t) 125 WRITE(A,t) 125

 READ(A,s) 125 READ(A,s) 125

 s := s*2 s := s*2

 WRITE(A,s) 250 WRITE(A,s) 250

READ(B,t) 25 READ(B,s) 25

t := t+100 s := s*2

WRITE(B,t) 125 WRITE(B,s) 50

 READ(B,s) 125 READ(B,t) 50

 s := s*2 t := t+100

 WRITE(B,s) 250 WRITE(B,t) 150

34

Az első példa egy sorba rendezhető, de nem soros ütemezést ad meg. Ebben az ütemezésben T2 azután van

hatással A-ra, miután T1 volt, de mielőtt T1 hatással lenne B-re. Mégis azt látjuk, hogy a két tranzakció

hatása megegyezik a (T1, T2) soros ütemezés hatásával. Ezt könnyű belátni tetszőleges konzisztens

kiindulási állapotra: A = B = c-ből kiindulva A-nak is és B-nek is 2(c + 100) lesz az értéke, tehát a

konzisztenciát mindig megőrizzük.

A második példában szereplő ütemezés viszont nem sorba rendezhető. Itt T1 dolgozik előbb A-val, viszont

T2 dolgozik előbb B-vel, ennek hatásaként másképpen kell kiszámolnunk A-t és B-t: A := 2(A + 100),

B := 2B + 100. Az ilyen viselkedést a különböző konkurenciavezérlési technikákkal el kell kerülnünk.

A tranzakció szemantikájának hatása

A sorbarendezhetőség eldöntéséhez eddig a tranzakciók műveleteinek a sorrendjét néztük meg. Azonban a

tranzakciók részletei is számítanak, ahogyan ezt a következő példából láthatjuk:

Példa. Tekintsük az alábbi ütemezést, amely csak a T2 által végrehajtott számításokban különbözik a

legutolsó példánktól, mégpedig abban, hogy nem 2-vel szorozza meg A-t és B-t, hanem 1-gyel:

T1 T2 A B

READ(A,t) 25

t := t+100

WRITE(A,t) 125

 READ(A,s) 125

 s := s*1

 WRITE(A,s) 125

 READ(B,s) 25

 s := s*1

 WRITE(B,s) 25

READ(B,t) 25

t := t+100

WRITE(B,t) 125

A és B értéke az ütemezés végén megegyezik, és könnyen ellenőrizhetjük, hogy a konzisztens kezdeti

állapottól függetlenül a végállapot is konzisztens lesz. Valójában az egyetlen végállapot az, amelyet vagy

a (T1, T2) vagy a (T2, T1) soros ütemezés eredményez.

Felmerülhet a kérdés, hogy mi értelme van a T2 tranzakciónak. Valójában több elfogadható tranzakciót

helyettesíthetnénk a helyére, amely A-t és B-t változatlanul hagyná. T2 például lehetne olyan tranzakció,

amely csak kiíratja A-t és B-t. Vagy a felhasználótól kérhet be adatokat, hogy kiszámoljon egy F tényezőt,

amivel beszorozza A-t és B-t, és előfordulhat olyan felhasználói input, amelyre F = 1.

Sajnos az ütemező számára nem reális a tranzakciós számítások részleteinek figyelembevétele. Mivel a

tranzakciók gyakran tartalmaznak általános célú programozási nyelven írt kódokat éppúgy, mint SQL

nyelvű utasításokat, néha nagyon nehéz megválaszolni azokat a kérdéseket, mint például „ez a tranzakció

A-t egy 1-től különböző értékkel szorozta-e meg”. Az ütemezőnek azonban látnia kell a tranzakciók olvasási

és írási kéréseit, így tudhatja, hogy az egyes tranzakciók mely adatbáziselemeket olvasták be, és mely

elemek változhattak meg. Az ütemező feladatának egyszerűsítésére megszokott a következő feltétel:

 Bármely A adatbáziselemnek egy T tranzakció olyan értéket ír be, amely az adatbázis-állapottól függ

oly módon, hogy ne forduljon elő aritmetikai egybeesés.

Más szóval: ha T tudna A-ra olyan hatással lenni, hogy az adatbázis-állapot inkonzisztenssé váljon, akkor

T ezt meg is teszi. Ezt a feltevést később pontosítjuk, amikor a sorbarendezhetőség biztosítására adunk meg

feltételeket.

35

A tranzakciók és az ütemezések jelölése

Ha elfogadjuk, hogy egy tranzakció által végrehajtott pontos számítások tetszőlegesek lehetnek, akkor nem

szükséges a helyi számítási lépések részleteit néznünk. Csak a tranzakciók által végrehajtott olvasások és

írások számítanak, így a tranzakciókat és az ütemezéseket rövidebben jelölhetjük. Ekkor rT(X) és wT(X)

tranzakcióműveletek, és azt jelentik, hogy a T tranzakció olvassa, illetve írja az X adatbáziselemet.

Továbbá, mivel a tranzakcióinkat általában T1, T2, …-vel fogjuk jelölni, ezért megállapodunk abban, hogy

ri(X) és wi(X) ugyanazt jelöli, mint rTi(X), illetve wTi(X).

Példa. A fenti példákban szereplő tranzakciók az alábbi módon írhatók fel:

T1: r1(A); w1(A); r1(B); w1(B);

T2: r2(A); w2(A); r2(B); w2(B);

Nem említettük sehol a t és s lokális változókat, és nem jelöltük azt sem, hogy mi történt a beolvasás után

A-val és B-vel. Mindezt úgy értelmezzük, hogy az adatbáziselemek megváltozásában a „legrosszabbat

fogjuk feltételezni”.

Másik példaként nézzük meg a T1 és T2 tranzakciók korábban felírt sorba rendezhető ütemezését:

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

Pontosítva a jelölést:

1. Egy tranzakció műveletét ri(X) vagy wi(X) formában fejezzük ki, amely azt jelenti, hogy a Ti

tranzakció olvassa, illetve írja az X adatbáziselemet.

2. Egy Ti tranzakció az i indexű műveletekből álló sorozat.

3. A T tranzakcióhalmaz egy S ütemezése olyan műveletek sorozata, amelyben minden T halmazbeli Ti

tranzakcióra teljesül, hogy Ti műveletei ugyanabban a sorrendben fordulnak elő S-ben, mint ahogy

magában a Ti definíciójában szerepeltek. Azt mondjuk, hogy S az őt alkotó tranzakciók műveleteinek

átlapolása (interleaving).

Konfliktus-sorbarendezhetőség

Most egy olyan elégséges feltételt adunk meg, amely biztosítja egy ütemezés sorbarendezhetőségét. A

forgalomban lévő rendszerek ütemezői a tranzakciók sorbarendezhetőségére általában ezt az erősebb

feltételt biztosítják, amelyet konfliktus-sorbarendezhetőségnek nevezünk. Ez a konfliktus fogalmon alapul:

A konfliktus (conflict) vagy konfliktuspár két olyan egymást követő művelet az ütemezésben, amelyeknek

ha a sorrendjét felcseréljük, akkor legalább az egyik tranzakció viselkedése megváltozhat. Egy tranzakció

két szomszédos műveletét mindig konfliktusnak tekintjük.

Konfliktusok

Vegyük észre, hogy a legtöbb műveletpár nincs konfliktusban a fenti értelemben. Legyen Ti és Tj két

különböző tranzakció (i  j).

1. ri(X); rj(Y); sohasem konfliktus, még akkor sem, ha X = Y, mivel egyik lépés sem változtatja meg

az értékeket.

2. ri(X); wj(Y); nincs konfliktusban, feltéve, hogy X  Y, mivel Tj írhatja Y-t, mielőtt Ti beolvasta X-

et, X értéke ettől ugyanis nem változik. Annak sincs hatása Tj-re, hogy Ti olvassa X-et, ugyanis ez nincs

hatással arra, hogy milyen értéket ír Tj Y-ba.

3. wi(X); rj(Y); nincs konfliktusban, ha X  Y, ugyanazért, amiért a 2. pontban.

36

4. wi(X); wj(Y); sincs konfliktusban, ha X  Y.

Másrészt három esetben nem cserélhetjük fel a műveletek sorrendjét:

a) Ugyanannak a tranzakciónak két művelete, például ri(X); wi(Y); konfliktus, mivel egyetlen

tranzakción belül a műveletek sorrendje rögzített, és az adatbázis-kezelő rendszer ezt a sorrendet nem

rendezheti át.

b) Különböző tranzakciók ugyanarra az adatbáziselemre vonatkozó írása, például wi(X); wj(X);

konfliktus, mivel X értéke az marad, amit Tj számolt ki. Ha felcseréljük a sorrendjüket, akkor pedig X-

nek a Ti által kiszámolt értéke marad meg. Az a feltevésünk, hogy „nincs egybeesés”, azt adja, hogy a

Ti és a Tj által kiírt értékek lehetnek különbözőek, és ezért az adatbázis valamelyik kezdeti állapotára

különbözni fognak.

c) Különböző tranzakciók által ugyanazon adatbáziselem olvasása és írása is konfliktus, azaz ri(X);

wj(X); és wi(X); rj(X); is konfliktus. Ha átvisszük wj(X)-et ri(X) elé, akkor a Ti által olvasott X-

beli érték az lesz, amit a Tj kiírt, amiről pedig feltételeztük, hogy nem szükségképpen egyezik meg X

korábbi értékével. Tehát ri(X) és wj(X) sorrendjének cseréje befolyásolja, hogy Ti milyen értéket

olvas X-ből, ez pedig befolyásolja Ti működését.

Levonhatjuk a következtetést, hogy különböző tranzakciók bármely két műveletének sorrendje

felcserélhető, hacsak nem:

1. ugyanarra az adatbáziselemre vonatkoznak, és

2. legalább az egyik művelet írás.

Ezt az elvet kiterjesztve tetszőleges ütemezést véve annyi nem konfliktusos cserét készíthetünk, amennyit

csak kívánunk, abból a célból, hogy az ütemezést soros ütemezéssé alakítsuk át. Ha ezt meg tudjuk tenni,

akkor az eredeti ütemezés sorba rendezhető volt, ugyanis az adatbázis állapotára való hatása változatlan

marad minden nemkonfliktusos cserével.

Azt mondjuk, hogy két ütemezés konfliktusekvivalens (conflict-equivalent), ha szomszédos műveletek

nemkonfliktusos cseréinek sorozatával az egyiket átalakíthatjuk a másikká. Azt mondjuk, hogy egy

ütemezés konfliktus-sorbarendezhető (conflict-serializable schedule), ha konfliktusekvivalens ugyanazon

tranzakciók valamely soros ütemezésével. A konfliktus-sorbarendezhetőség elégséges feltétele a

sorbarendezhetőségnek, vagyis egy konfliktus-sorbarendezhető ütemezés sorba rendezhető ütemezés is

egyben. Azonban a konfliktus-sorbarendezhetőség nem szükséges ahhoz, hogy egy ütemezés sorba

rendezhető legyen, mégis általában ezt a feltételt ellenőrzik a forgalomban lévő rendszerek ütemezői,

amikor a sorbarendezhetőséget kell biztosítaniuk.

Példa. Legyen az ütemezés a következő:

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

Azt állítjuk, hogy ez az ütemezés konfliktus-sorbarendezhető. A következő cserékkel ez az ütemezés

átalakítható a (T1, T2) soros ütemezéssé, ahol az összes T1-beli művelet megelőzi az összes T2-beli

műveletet:

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B);

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B);

r1(A); w1(A); r1(B); r2(A); w1(B); w2(A); r2(B); w2(B);

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B);

Felmerül a kérdés, hogy miért nem szükséges a konfliktus-sorbarendezhetőség a sorbarendezhetőséghez.

Korábban már láttunk erre egy példát, amikor a tranzakció szemantikáját figyelembe véve állapíthattuk

csak meg a sorbarendezhetőséget. Akkor megnéztük, hogy a T2 által végrehajtott speciális számítások miatt

miért volt az ütemezés sorba rendezhető. Pedig az az ütemezés nem konfliktus-sorbarendezhető, ugyanis

37

A-t T1 írja előbb, B-t pedig T2. Mivel sem A írását, sem B írását nem lehet átrendezni, semmilyen módon

nem kerülhet T1 összes művelete T2 összes művelete elé, sem fordítva.

Vannak olyan sorba rendezhető, de nem konfliktus-sorbarendezhető ütemezések is, amelyek nem függnek

a tranzakciók által végrehajtott számításoktól. Tekintsük például a T1, T2 és T3 tranzakciókat, amelyek

mindegyike X értékét írja. T1 és T2 Y-nak is ír értéket, mielőtt X-nek írnának értéket. Az egyik lehetséges

ütemezés, amely éppen soros is, a következő:

S1: w1(Y); w1(X); w2(Y); w2(X); w3(X);

Az S1 ütemezés X értékének a T3 által írt értéket, Y értékének pedig a T2 által írt értéket adja. Ugyanezt

végzi a következő ütemezés is:

S2: w1(Y); w2(Y); w2(X); w1(X); w3(X);

Intuíció alapján átgondolva annak, hogy T1 és T2 milyen értéket ír X-be, nincs hatása, ugyanis T3 felülírja

X értékét. Emiatt S1 és S2 X-nek is és Y-nak is ugyanazt az értéket adja. Mivel S1 soros ütemezés, és S2-

nek bármely adatbázis-állapotra ugyanaz a hatása, mint S1-nek, ezért S2 sorba rendezhető. Ugyanakkor

mivel nem tudjuk felcserélni w1(X)-et w2(X)-szel, így cseréken keresztül nem lehet S2-t valamelyik soros

ütemezéssé átalakítani. Tehát S2 sorba rendezhető, de nem konfliktus-sorbarendezhető.

Megelőzési gráfok és teszt a konfliktus-sorbarendezhetőségre

Viszonylag könnyű megvizsgálnunk egy S ütemezést, és eldöntenünk, hogy konfliktus-sorbarendezhető-e

vagy nem. Az az alapötlet, hogy ha valahol konfliktusban álló műveletek szerepelnek S-ben, akkor az

ezeket a műveleteket végrehajtó tranzakcióknak ugyanabban a sorrendben kell előfordulniuk a

konfliktusekvivalens soros ütemezésekben, mint ahogyan az S-ben voltak. Tehát a konfliktusban álló

műveletpárok megszorítást adnak a feltételezett konfliktusekvivalens soros ütemezésben a tranzakciók

sorrendjére. Ha ezek a megszorítások nem mondanak ellent egymásnak, akkor találhatunk

konfliktusekvivalens soros ütemezést. Ha pedig ellentmondanak egymásnak, akkor tudjuk, hogy nincs ilyen

soros ütemezés.

Adott a T1 és T2 (T1  T2), esetleg további tranzakcióknak egy S ütemezése. Azt mondjuk, hogy T1

megelőzi T2-t, ha van a T1-ben olyan A1 művelet és a T2-ben olyan A2 művelet, hogy

1. A1 megelőzi A2-t S-ben,

2. A1 és A2 ugyanarra az adatbáziselemre vonatkoznak, és

3. A1 és A2 közül legalább az egyik írás művelet.

Másképpen fogalmazva: A1 és A2 konfliktuspárt alkotna, ha szomszédos műveletek lennének. Jelölése:

T1 <S T2. Látható, hogy ezek pontosan azok a feltételek, amikor nem lehet felcserélni A1 és A2 sorrendjét.

Tehát A1 az A2 előtt szerepel bármely S-sel konfliktusekvivalens ütemezésben. Ebből az következik, hogy

ha ezek közül az ütemezések közül az egyik soros ütemezés, akkor abban T1-nek meg kell előznie T2-t.

Ezeket a megelőzéseket a megelőzési gráfban (precedence graph) összegezhetjük. A megelőzési gráf

csomópontjai az S ütemezés tranzakciói. Ha a tranzakciókat Ti-vel jelöljük, akkor a Ti-nek megfelelő

csomópontot az i egésszel. Az i csomópontból a j csomópontba vezet irányított él, ha Ti <S Tj.

Példa. A következő S ütemezés a T1, T2 és T3 tranzakciókat tartalmazza:

S: r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

Az S ütemezéshez tartozó megelőzési gráf a következő:

 1 2 3

38

Ha az A-val kapcsolatos műveleteket nézzük meg, akkor több okot találunk, hogy miért igaz a T2 <S T3.

Például r2(A) az S-ben w3(A) előtt áll, és w2(A) az r3(A) és a w3(A) előtt is áll. A három észrevételünk

közül bármelyik elegendő, hogy igazoljuk, valóban vezet él 2-ből 3-ba a megelőzési gráfban. Hasonló

módon ha megnézzük a B-vel kapcsolatos műveleteket, akkor szintén több okot találunk, hogy miért igaz

a T1 <S T2. Például az r1(B) művelet a w2(B) művelet előtt áll. Tehát az S megelőzési gráfban 1-ből 2-

be szintén vezet él. Ez a két él és csak ez a két él az, amelyeket az S ütemezésben szereplő műveletek

sorrendjéből tudunk ellenőrizni.

Van egy egyszerű szabály, amivel megmondhatjuk, hogy egy S ütemezés konfliktus-sorbarendezhető-e:

 Rajzoljuk fel S megelőzési gráfját, és nézzük meg, tartalmaz-e kört! Ha igen, akkor S nem konfliktus-

sorbarendezhető, ha nem, akkor az, és ekkor a csomópontok bármelyik topologikus sorrendje megadja

a konfliktusekvivalens soros sorrendet.

Egy körmentes gráf csomópontjainak topologikus sorrendje a csomópontok bármely olyan rendezése,

amelyben minden a  b élre az a csomópont megelőzi a b csomópontot a topologikus rendezésben.

Példa. A fenti megelőzési gráf körmentes, így az S ütemezés konfliktus-sorbarendezhető. A

csomópontoknak, azaz a tranzakcióknak csak egyetlen sorrendje van, amely konzisztens a gráf éleivel, ez

pedig a (T1, T2, T3). S-et tehát át lehet alakítani olyan ütemezéssé, amelyben a három tranzakció

mindegyikének az összes művelete ugyanebben a sorrendben van, és ez a soros ütemezés:

S’: r1(B); w1(B); r2(A); w2(A); r2(B); w2(B); r3(A); w3(A);

Ahhoz, hogy belássuk, megkaphatjuk S-ből S’-t szomszédos elemek cseréjével, az első észrevételünk,

hogy az r1(B)-t konfliktus nélkül az r2(A) elé hozhatjuk. Ezután három cserével a w1(B)-t közvetlenül

az r1(B) utánra tudjuk vinni, ugyanis mindegyik közbeeső művelet az A-ra vonatkozik. Ezután az r2(B)-t

és a w2(B)-t csak az A-ra vonatkozó műveleteken keresztül át tudjuk vinni pontosan a w2(A) utáni

helyzetbe, amivel megkapjuk S’-t.

Példa. Tekintsük az alábbi ütemezést:

S1: r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

S1 csak abban különbözik S-től, hogy az r2(B) művelet három hellyel előbb szerepel. Az A-ra vonatkozó

műveleteket megvizsgálva most is csak a T2 <S1 T3 megelőzési kapcsolathoz jutunk. De ha B-t vizsgáljuk,

akkor nemcsak T1 <S1 T2 teljesül (ugyanis r1(B) és w1(B) a w2(B) előtt szerepel), hanem T2 <S1 T1 is

(ugyanis r2(B) a w1(B) előtt fordul elő). Emiatt az S1 ütemezéshez tartozó megelőzési gráf a következő:

1 2 3

Ez a gráf nyilvánvalóan tartalmaz kört (ciklikus), ezért arra következtethetünk, hogy S1 nem konfliktus-

sorbarendezhető, ugyanis intuíció alapján láthatjuk, hogy bármely konfliktusekvivalens soros ütemezésben

T1-nek T2 előtt is és után is kellene állnia, tehát nem létezik ilyen ütemezés.

Miért működik a megelőzési gráfon alapuló tesztelés?

Láttuk, hogy a megelőzési gráfban a kör túl sok megszorítást jelent a feltételezett konfliktusekvivalens

soros ütemezésre nézve. Azaz ha létezik a T1  T2  …  Tn  T1 n darab tranzakcióból álló kör, akkor

a feltételezett soros sorrendben T1 műveleteinek meg kell előzniük a T2-ben szereplő műveleteket,

amelyeknek meg kell előzniük a T3-belieket és így tovább egészen Tn-ig. De Tn műveletei emiatt a T1-

39

beliek mögött vannak, ugyanakkor meg is kellene előzniük a T1-belieket a Tn  T1 él miatt. Ebből

következik, hogy ha a megelőzési gráf tartalmaz kört, akkor az ütemezés nem konfliktus-sorbarendezhető.

A másik irányt egy kicsit nehezebb belátnunk. Azt kell megmutatnunk, hogy amikor a megelőzési gráf

körmentes, akkor az ütemezés műveletei átrendezhetők szomszédos műveletek szabályos cseréivel úgy,

hogy az ütemezés egy soros ütemezéssé váljon. Ha ezt meg tudjuk tenni, akkor bebizonyítottuk, hogy

minden körmentes megelőzési gráffal rendelkező ütemezés konfliktus-sorbarendezhető. A bizonyítás az

ütemezésben részt vevő tranzakciók száma szerinti indukcióval történik:

Alapeset: Ha n = 1, vagyis csak egyetlen tranzakcióból áll az ütemezés, akkor az már önmagában soros,

tehát biztosan konfliktus-sorbarendezhető.

Indukció: Legyen S a T1, T2, …, Tn n darab tranzakció műveleteiből álló ütemezés. Tételezzük fel, hogy

S-nek körmentes megelőzési gráfja van. Ha egy véges gráf körmentes, akkor van legalább egy olyan

csomópontja, amelybe nem vezet él. Legyen a Ti tranzakciónak megfelelő i csomópont egy ilyen

csomópont. Mivel az i csomópontba nem vezet él, nincs S-ben olyan A művelet, amely

1. valamelyik Tj (i  j) tranzakcióra vonatkozik,

2. Ti valamely műveletét megelőzi, és

3. ezzel a művelettel konfliktusban van.

Ha lenne ilyen, akkor a megelőzési gráfban lennie kellene egy élnek a j csomópontból az i csomópontba

(hiszen ekkor Tj megelőzi Ti-t), márpedig az i csomópontba nem vezet él.

Így lehetséges, hogy Ti minden műveletét S legelejére mozgatjuk át, miközben megtartjuk a sorrendjüket.

Az ütemezés most a következő alakú:

(Ti műveletei) (a többi n-1 tranzakció műveletei)

Most tekintsük S második részét, vagyis a Ti-től különböző összes tranzakciónak a műveleteit. Mivel ezek

a műveletek egymáshoz viszonyítva ugyanabban a sorrendben vannak, mint ahogyan S-ben voltak, ennek

a második résznek a megelőzési gráfját megkapjuk S megelőzési gráfjából, ha elhagyjuk belőle az i

csomópontot és az ebből a csomópontból kimenő éleket.

Mivel az eredeti megelőzési gráf körmentes volt, és csomópontok, illetve élek törlésével nem válhatott

ciklikussá, ezért a második rész megelőzési gráfja is körmentes. Továbbá, mivel a második része n-1

tranzakciót tartalmaz, alkalmazzuk rá az indukciós feltevést. Így tudjuk, hogy a második rész műveletei

szomszédos műveletek szabályos cseréivel átrendezhetők soros ütemezéssé. Ily módon magát S-et

alakítottuk át olyan soros ütemezéssé, amelyben Ti műveletei állnak legelöl, és a többi tranzakció műveletei

ezután következnek valamilyen soros sorrendben. Az indukciót beláttuk, és így következik, hogy minden

olyan ütemezés, amelynek körmentes a megelőzési gráfja, konfliktus-sorbarendezhető.

A sorbarendezhetőség biztosítása zárakkal

Képzeljünk el egy olyan tranzakcióhalmazt, amely megszorítások nélkül hajtja végre a műveleteit. Ezek a

műveletek is egy ütemezést alkotnak, de nem valószínű, hogy ez az ütemezés sorba rendezhető lenne. Az

ütemező feladata az, hogy megakadályozza az olyan műveleti sorrendeket, amelyek nem sorba rendezhető

ütemezésekhez vezetnek. Először az ütemező legáltalánosabb szerkezetét tekintjük, olyat, amelyben az

adatbáziselemekre kiadott zárak (lock) akadályozzák meg a nem sorba rendezhető viselkedést. Röviden

arról van szó, hogy a tranzakciók zárolják azokat az adatbáziselemeket, amelyekhez hozzáférnek, hogy

megakadályozzák azt, hogy ugyanakkor más tranzakciók is hozzáférjenek ezekhez az elemekhez, mivel

ekkor felmerülne a nem sorbarendezhetőség kockázata.

40

Először egy leegyszerűsített zárolási sémával vezetjük be a zárolás fogalmát. Ebben a sémában csak egyféle

zár van, amelyet a tranzakcióknak meg kell kapniuk az adatbáziselemre, ha bármilyen műveletet végre

akarnak hajtani rajta. Később sokkal valósabb zárolási sémákat tanulmányozunk, különböző zármódokkal.

Zárak

Az ütemező felelős azért, hogy fogadja a tranzakcióktól érkező kéréseket, és vagy megengedi a műveletek

végrehajtását, vagy addig késlelteti, amikor már biztonságosan végre tudja hajtani őket. Nézzük meg,

hogyan irányítja ezt a döntést a zártábla (lock table) felhasználásával.

Az lenne az ideális, ha az ütemező akkor és csak akkor továbbítana egy kérést, ha annak végrehajtása nem

vezethetne inkonzisztens adatbázis-állapothoz, miután az összes aktív tranzakciót vagy véglegesen

végrehajtottuk, vagy abortáltuk (vagyis sikertelenül befejeztük). Ezt a kérdést viszont túl nehéz lenne valós

időben eldönteni. Így minden ütemező csak egy egyszerű tesztet hajt végre a sorbarendezhetőség

eldöntésére, azonban letilthat olyan műveleteket is, amelyek önmagukban nem vezetnének

inkonzisztenciához. A zárolási ütemező, mint a legtöbb ütemező, a konfliktus-sorbarendezhetőséget

követeli meg, pedig – mint azt már láttuk – ez erősebb követelmény, mint a sorbarendezhetőség.

Ha az ütemező zárakat használ, akkor a tranzakcióknak – az adatbáziselemek olvasásán és írásán felül –

zárakat kell kérniük és feloldaniuk. A zárak használatának két értelemben is helyesnek kell lennie: mind a

tranzakciók szerkezetére, mind pedig az ütemezések szerkezetére alkalmazva:

 Tranzakciók konzisztenciája (consistency of transactions): A műveletek és a zárak az alábbi elvárások

szerint kapcsolódnak egymáshoz:

1. A tranzakció csak akkor olvashat vagy írhat egy elemet, ha már korábban zárolta azt, és még nem

oldotta fel a zárat.

2. Ha egy tranzakció zárol egy elemet, akkor később azt fel kell szabadítania.

 Az ütemezések jogszerűsége (legality of schedules): A zárak értelme feleljen meg a szándék szerinti

elvárásnak: nem zárolhatja két tranzakció ugyanazt az elemet, csak úgy, ha az egyik előbb már feloldotta

a zárat.

Kibővítjük a jelöléseinket a zárolás és a feloldás műveletekkel:

li(X): a Ti tranzakció az X adatbáziselemre zárolást kér (lock).

ui(X): a Ti tranzakció az X adatbáziselem zárolását feloldja (unlock).

Így a tranzakciók konzisztenciafeltétele és az ütemezések jogszerűségének a feltétele a következőképpen

is kimondható:

 Ha egy Ti tranzakcióban van egy ri(X) vagy egy wi(X) művelet, akkor van korábban egy li(X)

művelet, és van később egy ui(X) művelet, de a zárolás és az írás/olvasás között nincs ui(X).

 Ha egy ütemezésben van olyan li(X) művelet, amelyet lj(X) követ, akkor e két művelet között

lennie kell egy ui(X) műveletnek.

Példa. Tekintsük a legelső példánkat, amelyben T1 hozzáad az A és B adatbáziselemekhez 100-at, T2 pedig

megduplázza az értéküket. Most úgy adjuk meg a tranzakciókat, hogy a zárolási és az aritmetikai

műveleteket is leírjuk, bár rendszerint a számításokat nem ábrázoljuk ebben a jelölésben, ugyanis az

ütemező sem tudja azt figyelembe venni, amikor arról dönt, hogy engedélyezze vagy elutasítsa a kéréseket:

T1: l1(A); r1(A); A := A+100; w1(A); u1(A); l1(B); r1(B); B := B+100; w1(B); u1(B);

T2: l2(A); r2(A); A := A*2; w2(A); u2(A); l2(B); r2(B); B := B*2; w2(B); u2(B);

41

Mindkét tranzakció konzisztens. Mindkettő felszabadítja az A-ra és B-re kiadott zárakat. Továbbá

mindkettő csak olyan lépésekben dolgozik A-n és B-n, melyeket megelőzően már zárolták az elemet, és

még nem oldották fel a zár alól.

T1 T2 A B

l1(A); r1(A); 25

A := A+100;

w1(A); u1(A); 125

 l2(A); r2(A); 125

 A := A*2;

 w2(A); u2(A); 250

 l2(B); r2(B); 25

 B := B*2;

 w2(B); u2(B); 50

l1(B); r1(B); 50

B := B+100;

w1(B); u1(B); 150

Az ábrán a két tranzakciónak egy jogszerű ütemezése látható, ugyanis a két tranzakció sohasem zárolja

egyidejűleg A-t vagy B-t. Pontosabban: T2 nem végzi el az l2(A) műveletet, csak miután T1 végrehajtotta

u1(A)-t, és T1 nem végzi el az l1(B) műveletet, csak miután T2 végrehajtotta u2(B)-t. Láthatjuk a

kiszámított értékek nyomon követésével, hogy bár ez az ütemezés jogszerű, mégsem sorba rendezhető.

Nemsokára látni fogunk egy további feltételt (a kétfázisú zárolást), amivel biztosíthatjuk, hogy a jogszerű

ütemezések konfliktus-sorbarendezhetők legyenek.

A zárolási ütemező

A zároláson alapuló ütemező feladata, hogy akkor és csak akkor engedélyezze a kérések végrehajtását, ha

azok jogszerű ütemezéseket eredményeznek. Ezt a döntést segíti a zártábla, amely minden

adatbáziselemhez megadja azt a tranzakciót, ha van ilyen, amelyik pillanatnyilag zárolja az adott elemet. A

zártábla szerkezetéről később lesz szó. Ha viszont csak egyféle zárolás van, mint ahogyan eddig

feltételeztük, akkor úgy tekinthetjük a táblát, mint (X,T) párokból álló Zárolások(elem,

tranzakció) relációt, ahol a T tranzakció zárolja az X adatbáziselemet. Az ütemezőnek csak le kell

kérdeznie ezt a relációt, illetve egyszerű INSERT és DELETE utasításokkal kell módosítania.

Példa. A fenti példában látható ütemezés jogszerű, így a zárolási ütemező engedélyezhetné az összes kérést

abban a sorrendben, ahogyan beérkeznek. Néha azonban előfordulhat, hogy nem lehet engedélyezni a

kéréseket. Hajtsunk végre a T1 és T2 tranzakciókon egy apró, de lényeges változtatást, mégpedig azt, hogy

T1 és T2 is előbb zárolja B-t, és csak azután oldja fel A zárolását:

T1: l1(A); r1(A); A := A+100; w1(A); l1(B); u1(A); r1(B); B := B+100; w1(B); u1(B);

T2: l2(A); r2(A); A := A*2; w2(A); l2(B); u2(A); r2(B); B := B*2; w2(B); u2(B);

T1 T2 A B

l1(A); r1(A); 25

A := A+100;

w1(A); l1(B); u1(A); 125

 l2(A); r2(A); 125

 A := A*2;

 w2(A); 250

 l2(B); elutasítva

r1(B); B := B+100; 25

w1(B); u1(B); 125

 l2(B); u2(A); r2(B); 125

 B := B*2;

 w2(B); u2(B); 250

42

Az ábrán látható, hogy amikor a módosított ütemezésben T2 kéri B zárolását, az ütemezőnek el kell

utasítania ezt a kérést, hiszen T1 még zárolja B-t. Így T2 áll, és a következő műveleteket a T1 tranzakció

végzi. Végül T1 végrehajtja u1(B)-t, amely felszabadítja B-t. T2 most már zárolhatja B-t, amelyet a

következő lépésben végre is hajt. Látható, hogy mivel T2-nek várakoznia kellett, ezért B-t akkor szorozza

meg 2-vel, miután T1 már hozzáadott 100-at, és ez konzisztens adatbázis-állapotot eredményez.

A kétfázisú zárolás

Van egy meglepő feltétel, amellyel biztosítani tudjuk, hogy konzisztens tranzakciók jogszerű ütemezése

konfliktus-sorbarendezhető legyen. Ezt a feltételt, amelyet a gyakorlatban elterjedt zárolási rendszerek

leginkább követnek, kétfázisú zárolásnak (two-phase locking, 2PL) nevezzük:

 Minden tranzakcióban minden zárolási művelet megelőzi az összes zárfeloldási műveletet.

A „két fázis” abból adódik, hogy az első fázisban csak zárolásokat adunk ki, a második fázisban pedig csak

megszüntetünk zárolásokat. A kétfázisú zárolás – a konzisztenciához hasonlóan – a tranzakcióban a

műveletek sorrendjére egy feltétel. Azt a tranzakciót, amely eleget tesz a 2PL feltételnek, kétfázisú zárolású

tranzakciónak (two-phase-locked transaction) vagy 2PL tranzakciónak nevezzük.

Példa. Az első példánkban a tranzakciók nem tesznek eleget a kétfázisú zárolási szabálynak. Például T1

előbb oldja fel A zárolását, mint zárolja B-t. A második példában található tranzakciók azonban már eleget

tesznek a 2PL feltételnek. Látható, hogy mind T1, mind T2 A-t és B-t is az első öt műveleten belül zárolja,

és a következő öt műveleten belül feloldja a zárakat. Ha összehasonlítjuk a két ábrát, azt is látjuk, hogy a

kétfázisú zárolású tranzakciók hogyan működnek együtt az ütemezővel a konzisztencia biztosítására, míg

a nem 2PL tranzakciók esetén előfordulhat inkonzisztencia.

Miért működik a kétfázisú zárolás?

Igaz, bár közel sem nyilvánvaló, hogy a 2PL példánkban észlelt előnyei általában is érvényesek. Intuíció

alapján mindegyik kétfázisú zárolású tranzakcióról azt gondolhatjuk, hogy rögtön végrehajtásra kerülnek,

amint az első zárfeloldási kérés kiadásra kerül. A 2PL tranzakciók egy S ütemezésével konfliktusekvivalens

soros ütemezésben a tranzakciók ugyanabban a sorrendben vannak, mint amilyenben az első zárfeloldásaik.

Megnézzük, hogyan lehet konzisztens, kétfázisú zárolású tranzakciók bármely S jogszerű ütemezését

átalakítani konfliktusekvivalens soros ütemezéssé. A konverziót legjobban az S-ben részt vevő tranzakciók

száma (n) szerinti indukcióval tudjuk leírni. Lényeges, hogy a konfliktusekvivalencia csak az olvasási és

írási műveletekre vonatkozik. Amikor felcseréljük az olvasások és írások sorrendjét, akkor figyelmen kívül

hagyjuk a zárolási és zárfeloldási műveleteket. Amikor megkaptuk az olvasási és írási műveletek sorrendjét,

akkor úgy helyezzük el köréjük a zárolási és zárfeloldási műveleteket, ahogyan azt a különböző tranzakciók

megkövetelik. Mivel minden tranzakció felszabadítja az összes zárolást a tranzakció befejezése előtt,

tudjuk, hogy a soros ütemezés jogszerű lesz.

Alapeset: Ha n = 1, vagyis csak egyetlen tranzakcióból áll az ütemezés, akkor az már önmagában soros,

tehát biztosan konfliktus-sorbarendezhető.

Indukció: Legyen S a T1, T2, …, Tn n darab konzisztens, kétfázisú zárolású tranzakció műveleteiből álló

ütemezés, és legyen Ti az a tranzakció, amelyik a teljes S ütemezésben a legelső zárfeloldási műveletet

végzi, mondjuk ui(X)-t. Azt állítjuk, hogy Ti összes olvasási és írási műveletét az ütemezés legelejére

tudjuk vinni anélkül, hogy konfliktusműveleteken kellene áthaladnunk.

43

Tekintsük Ti valamelyik műveletét, mondjuk wi(Y)-t. Megelőzheti-e ezt S-ben valamely

konfliktusművelet, például wj(Y)? Ha így lenne, akkor az S ütemezésben az uj(Y) és az li(Y)

műveletek az alábbi módon helyezkednének el a műveletsorozatban:

…; wj(Y); …; uj(Y); …; li(Y); …; wi(Y); …

Mivel Ti az első, amelyik zárat old fel, így S-ben ui(X) megelőzi uj(Y)-t, vagyis S a következőképpen

néz ki:

…; wj(Y); …; ui(X); …; uj(Y); …; li(Y); …; wi(Y); …

Az ui(X) művelet állhat wj(Y) előtt is. Mindkét esetben ui(X) li(Y) előtt van, ami azt jelenti, hogy

Ti nem kétfázisú zárolású, amint azt feltételeztük. Ahogyan beláttuk, hogy nem létezhetnek

konfliktuspárok az írásra, ugyanúgy be lehet látni bármely két lehetséges műveletre – az egyiket Ti-ből, a

másikat pedig egy Ti-től különböző Tj-ből választva –, hogy nem lehetnek konfliktuspárok.

Bebizonyítottuk, hogy valóban S legelejére lehet vinni Ti összes műveletét konfliktusmentes olvasási és

írási műveletekből álló műveletpárok cseréjével. Ezután elhelyezhetjük Ti zárolási és zárfeloldási

műveleteit. Így S a következő alakba írható át:

(Ti műveletei) (a többi n-1 tranzakció műveletei)

Az n-1 tranzakcióból álló második rész szintén konzisztens 2PL tranzakciókból álló jogszerű ütemezés,

így alkalmazhatjuk rá az indukciós feltevést. Átalakítjuk a második részt konfliktusekvivalens soros

ütemezéssé, így a teljes S konfliktus-sorbarendezhetővé vált.

A holtpont kockázata

Az egyik probléma, amelyet nem lehet a kétfázisú zárolással megoldani, a holtpontok (deadlock)

bekövetkezésének a lehetősége, vagyis amikor az ütemező arra kényszeríti a tranzakciókat, hogy „örökké”

várakozzanak egy olyan adatbáziselemre vonatkozó zárra, amelyet egy másik tranzakció tart zárolva.

Példaként tekintsük a megszokott 2PL tranzakcióinkat, de most T2 A előtt dolgozza fel B-t:

T1: l1(A); r1(A); A := A+100; w1(A); l1(B); u1(A); r1(B); B := B+100; w1(B); u1(B);

T2: l2(B); r2(B); B := B*2; w2(B); l2(A); u2(B); r2(A); A := A*2; w2(A); u2(A);

A tranzakciós műveletek egy lehetséges végrehajtása a következő:

T1 T2 A B

l1(A); r1(A); 25

 l2(B); r2(B); 25

A := A+100;

 B := B*2;

w1(A); 125

 w2(B); 50

l1(B); elutasítva l2(A); elutasítva

Most egyik tranzakció sem folytatódhat, hanem örökké várakozniuk kell. Látható, hogy nem tudjuk mind

a két tranzakciót folytatni, ugyanis ha így lenne, akkor az adatbázis végső állapotában nem teljesülhetne

A = B.

Ha a holtpont már bekövetkezett, akkor általában nem lehet a helyzeten úgy javítani, hogy minden

tranzakció továbbléphessen, azaz legalább egy tranzakciót vissza kell görgetni: abortálni kell, majd

újraindítani.

44

A holtpontkezelés problémája két fő irányból közelíthető meg: vagy valahogy rájövünk, hogy néhány

tranzakció holtpontra jutott, és ebből a helyzetből keresünk kiutat (holtpontérzékelés), vagy már eleve úgy

kezeljük a tranzakciókat, hogy soha ne juthassanak holtpontra (holtpontmegelőzés).

A holtpontok érzékelésére és feloldására a legegyszerűbb megoldást az időtúllépés (timeout) módszere

adja. Időkorlátot vezetünk be, amely arra vonatkozik, hogy az egyes tranzakciók mennyi ideig lehetnek

aktívak, és ha ezt a határt túllépik, akkor visszagörgetjük őket. Például egy egyszerű rendszerben, ahol a

tipikus tranzakciók ezredmásodpercek alatt lefutnak, az egyperces időkorlátnak tényleg csak a holtpontra

jutott tranzakciókra lenne hatása. De ha van néhány összetettebb tranzakció is, akkor az időtúllépés

bekövetkezéséhez hosszabb időt választhatunk.

Vegyük észre, hogy ha a holtpontra jutott tranzakció túllépi az időkorlátját, akkor a többi erőforrással együtt

az eddig birtokolt zárjairól is lemond. Így tehát van esély arra, hogy a holtponton álló többi tranzakció még

azelőtt be tudja fejezni a tevékenységét, mielőtt kifutna az időből. De mivel a holtpontra jutott tranzakciók

valószínűleg körülbelül ugyanabban az időpontban indultak (különben az egyik befejeződött volna, még

mielőtt a másik elkezdődik), az is lehetséges, hogy a rendszer hamis időtúllépéseket érzékel, azaz úgy

görgeti vissza a tranzakciókat, hogy azok már túljutottak a közös holtponton.

A holtpontérzékelésnek egy kifinomultabb módszere a várakozási gráf (waits-for graph) használata,

amelyben azt tartjuk nyilván, hogy melyik tranzakció melyik másik tranzakció által birtokolt zárakra vár.

Ezt a módszert nemcsak a már kialakult holtpontok érzékelésére, hanem azok kialakulásának megelőzésére

is használhatjuk. Mi most az utóbbit tekintjük, ami azzal jár, hogy a várakozási gráfot egész idő alatt nyilván

kell tartanunk, és az olyan műveleteket, amelyek következtében a gráfban kör alakulna ki, nem szabad

megengednünk.

Látni fogjuk, hogy a zártáblában minden X adatbáziselemhez létezik egy lista, amelyben azon tranzakciók

mellett, amelyek arra várnak, hogy zárolhassák X-et, azok is fel vannak sorolva, amelyek rendelkeznek X

zárjával. A várakozási gráf csúcsai a listában található tranzakcióknak felelnek meg. A gráfban irányított

él fut T-ből U-ba, ha létezik olyan A adatbáziselem, melyre

1. U zárolja A-t,

2. T arra vár, hogy zárolhassa A-t, és

3. T csak akkor kapja meg A zárját, ha először U lemond róla.

Ha nincsen (irányított) kör a gráfban, akkor végül minden tranzakció be tudja fejezni a működését. Lesz

legalább egy olyan tranzakció, amelyik nem vár semelyik másikra, így ez biztosan befejeződhet. Ekkor

viszont megint lesz legalább egy tranzakció, amelyik nem várakozik, ezért továbbléphet, és így tovább.

Ha azonban a gráf nem körmentes, akkor a körben részt vevő tranzakciók nem léphetnek tovább, azaz

holtpontra jutottak. A holtpontmegelőzési stratégia tehát abból áll, hogy minden olyan tranzakciót

visszagörgetünk, amelynek valami olyan igénye van, ami kört idézne elő a várakozási gráfban.

Példa. Tegyük fel, hogy az alábbi négy tranzakcióval rendelkezünk, amelyek mindegyike először olvas egy

adatbáziselemet, majd ír egy másikat:

T1: l1(A); r1(A); l1(B); w1(B); u1(A); u1(B);

T2: l2(C); r2(C); l2(A); w2(A); u2(C); u2(A);

T3: l3(B); r3(B); l3(C); w3(C); u3(B); u3(C);

T4: l4(D); r4(D); l4(A); w4(A); u4(D); u4(A);

45

Lépés T1 T2 T3 T4

1) l1(A); r1(A);

2) l2(C); r2(C);

3) l3(B); r3(B);

4) l4(D); r4(D);

5) l2(A); elutasítva

6) l3(C); elutasítva

7) l4(A); elutasítva

8) l1(B); elutasítva

A fenti ábrán egy lehetséges ütemezés kezdeti szakasza látható. Az első négy lépésben mindegyik

tranzakció zárolja azt az elemet, amelyet olvasni szeretne. Az 5) lépésben T2 megpróbálja zárolni A-t, de

nem tudja, mert a zár már T1 birtokában van. T2 tehát várakozik T1-re, ezért a várakozási gráfba berajzolunk

egy élt a T2-nek megfelelő csúcsból a T1-nek megfelelő csúcs felé.

Hasonlóan, a 6) lépésben T3 nem tudja zárolni C-t T2 miatt, a 7) lépésben pedig T4 vall kudarcot A

zárolásával T1 miatt. Az ebben az állapotban egyelőre körmentes várakozási gráf a következő:

4

3 2 1

A 8) lépésben T1-nek várnia kell B zárolásával T3 miatt. Ha megengednénk T1-nek, hogy várjon erre a

zárra, akkor T1, T2 és T3 mentén kör jönne létre a várakozási gráfban, ahogy ezt az alábbi ábra is mutatja:

4

3 2 1

Mivel a körben mindegyik tranzakció arra vár, hogy a másik befejeződjön, egyik sem tud továbblépni,

vagyis ennek a három tranzakciónak a részvételével holtpont alakul ki. Véletlen egybeesés, hogy T4 sem

fejeződhet be annak ellenére, hogy nincs benne a körben. Az ő előrejutása ugyanis T1 továbblépésén múlik.

Mivel a kört okozó tranzakciókat visszagörgetjük, így teszünk T1-gyel is. A várakozási gráf a

következőképpen alakul:

4

3 2

T1 feloldja A zárolását, amelyet vagy T2, vagy T4 vesz át. Tegyük fel, hogy a zár T2 birtokába kerül. T2

befejeződik, ezáltal feloldódik a zár A-n és C-n. Most T3, amely C-t akarja zárolni, és T4 is, amely A-t,

lezárulhat. Valamivel később T1-et újraindítjuk, de nem kaphatja meg sem A, sem B zárját, amíg T2, T3 és

T4 be nem fejeződött.

46

Különböző zármódú zárolási rendszerek

A fentebb vázolt zárolási séma bemutatja a zárolás mögött álló legfőbb elveket, de túl egyszerű ahhoz, hogy

a gyakorlatban is használható séma legyen. Az a legfőbb probléma, hogy a T tranzakciónak akkor is

zárolnia kell az X adatbáziselemet, ha csak olvasni akarja X-et, írni nem. Nem kerülhetjük el a zárolást

ekkor sem, mert ha nem zárolnánk, akkor esetleg egy másik tranzakció azalatt írna X-be új értéket, mialatt

T aktív, ami nem sorba rendezhető viselkedést okoz. Másrészről pedig miért is ne olvashatná több

tranzakció egyidejűleg X értékét mindaddig, amíg egyiknek sincs engedélyezve, hogy írja.

Osztott és kizárólagos zárak

Mivel ugyanannak az adatbáziselemnek két olvasási művelete nem eredményez konfliktust, így ahhoz,

hogy az olvasási műveleteket egy bizonyos sorrendbe soroljuk, nincs szükség zárolásra vagy más

konkurenciavezérlési működésre. Mint már említettük, továbbra is szükséges azt az elemet is zárolni,

amelyet olvasunk, ugyanis ennek az elemnek az írását nem szabad közben megengednünk. Az íráshoz

szükséges zár viszont „erősebb”, mint az olvasáshoz szükséges zár, mivel ennek mind az olvasásokat, mind

az írásokat meg kell akadályoznia.

Ez indokolja, hogy bevezessük a legelterjedtebb zárolási sémát, amely két különböző zárat alkalmaz: az

osztott zárakat (shared locks) vagy olvasási zárakat, és a kizárólagos zárakat (exclusive locks) vagy írási

zárakat. Intuíció alapján tetszőleges X adatbáziselemet vagy egyszer lehet zárolni kizárólagosan, vagy

akárhányszor lehet zárolni osztottan, ha még nincs kizárólagosan zárolva. Amikor írni akarjuk X-et, akkor

X-en kizárólagos zárral kell rendelkeznünk, de ha csak olvasni akarjuk, akkor X-en akár osztott, akár

kizárólagos zár megfelel. Feltételezzük, hogy ha olvasni akarjuk X-et, de írni nem, akkor előnyben

részesítjük az osztott zárolást.

Az sli(X) jelölést használjuk arra, hogy a Ti tranzakció osztott zárat kér az X adatbáziselemre, az xli(X)

jelölést pedig arra, hogy a Ti kizárólagos zárat kér X-re. Továbbra is ui(X)-szel jelöljük, hogy Ti feloldja

X zárását, vagyis felszabadítja X-et minden zár alól.

Az előzőekben tárgyalt három követelmény (a tranzakciók konzisztenciája, a tranzakciók 2PL feltétele és

az ütemezések jogszerűsége) mindegyikének van megfelelője az osztott/kizárólagos zárolási rendszerben:

1. Tranzakciók konzisztenciája: Nem írhatunk kizárólagos zár fenntartása nélkül, és nem olvashatunk

valamilyen zár fenntartása nélkül. Pontosabban fogalmazva: bármely Ti tranzakcióban

a) az ri(X) olvasási műveletet meg kell, hogy előzze egy sli(X) vagy egy xli(X) úgy, hogy

közben nincs ui(X);

b) a wi(X) írási műveletet meg kell, hogy előzze egy xli(X) úgy, hogy közben nincs ui(X).

Minden zárolást követnie kell egy ugyanannak az elemnek a zárolását feloldó műveletnek.

2. Tranzakciók kétfázisú zárolása: A zárolásoknak meg kell előzniük a zárak feloldását. Pontosabban

fogalmazva: bármely Ti kétfázisú zárolású tranzakcióban egyetlen sli(X) vagy xli(X) műveletet

sem előzhet meg egyetlen ui(Y) művelet sem semmilyen Y-ra.

3. Az ütemezések jogszerűsége: Egy elemet vagy egyetlen tranzakció zárol kizárólagosan, vagy több is

zárolhatja osztottan, de a kettő egyszerre nem lehet. Pontosabban fogalmazva:

a) Ha xli(X) szerepel egy ütemezésben, akkor ezután nem következhet xlj(X) vagy slj(X)

valamely i-től különböző j-re anélkül, hogy közben ne szerepelne ui(X).

b) Ha sli(X) szerepel egy ütemezésben, akkor ezután nem következhet xlj(X) valamely i-től

különböző j-re anélkül, hogy közben ne szerepelne ui(X).

47

Az engedélyezett, hogy egy tranzakció ugyanazon elemre kérjen és tartson mind osztott, mind kizárólagos

zárat, feltéve, hogy ezzel nem kerül konfliktusba más tranzakciók zárolásaival. Ha a tranzakciók előre

tudnák, milyen zárakra lesz szükségük, akkor biztosan csak a kizárólagos zárolást kérnék, de ha nem

láthatók előre a zárolási igények, lehetséges, hogy egy tranzakció osztott és kizárólagos zárakat is kér

különböző időpontokban.

Példa. Tekintsük az alábbi, osztott és kizárólagos zárakat használó két tranzakciónak egy lehetséges

ütemezését:

T1: sl1(A); r1(A); xl1(B); r1(B); w1(B); u1(A); u1(B);

T2: sl2(A); r2(A); sl2(B); r2(B); u2(A); u2(B);

T1 is és T2 is olvassa A-t és B-t, de csak T1 írja B-t, és egyik sem írja A-t.

T1 T2

sl1(A); r1(A);

 sl2(A); r2(A);

 sl2(B); r2(B);

xl1(B); elutasítva

 u2(A); u2(B);

xl1(B); r1(B); w1(B);

u1(A); u1(B);

Az ábrán T1 és T2 műveleteinek olyan ütemezése látható, amelyet T1 kezd A osztott zárolásával. Ezután T2

következik, A és B mindegyikét osztottan zárolja. Most T1-nek lenne szüksége B kizárólagos zárolására,

ugyanis olvassa is és írja is B-t. Viszont nem kaphatja meg a kizárólagos zárat, hiszen T2-nek már osztott

zárja van B-n. Így az ütemező várakozni kényszeríti T1-et. Végül T2 feloldja B zárját, és ekkor T1

befejeződhet.

A vázolt ütemezés konfliktus-sorbarendezhető. A konfliktusekvivalens soros sorrend a (T2, T1), hiába

kezdődött T1 előbb. Nem bizonyítjuk, de konzisztens 2PL tranzakciók jogszerű ütemezése konfliktus-

sorbarendezhető; ugyanazok a meggondolások alkalmazhatók az osztott és kizárólagos zárakra is, mint

korábban. Az ábrán T2 előbb old fel zárat, mint T1, így azt várjuk, hogy T2 megelőzi T1-et a soros

sorrendben. Megvizsgálva az olvasási és írási műveleteket, észrevehető, hogy r1(A)-t T2 összes műveletén

át ugyan hátra tudjuk cserélgetni, de w1(B)-t nem tudjuk r2(B) elé vinni, ami pedig szükséges lenne

ahhoz, hogy T1 megelőzze T2-t egy konfliktusekvivalens soros ütemezésben.

Kompatibilitási mátrixok

Ha több zármódot használunk, akkor az ütemezőnek valamilyen elvre van szüksége ahhoz, hogy mikor

engedélyezzen egy zárolási kérést, ha már adva vannak más zárak is azon az adatbáziselemen. Bár az

osztott/kizárólagos rendszerek egyszerűek, a gyakorlatban léteznek a zárolási módoknak összetettebb

rendszerei is. A zárolást engedélyező elvek következő fogalmait előbb az egyszerű osztott/kizárólagos

rendszerek környezetében vezetjük be.

A kompatibilitási mátrix minden egyes zármódhoz rendelkezik egy-egy sorral és egy-egy oszloppal. A

sorok egy másik tranzakció által az X elemre elhelyezett záraknak, az oszlopok pedig az X-re kért

zármódoknak felelnek meg. A kompatibilitási mátrix használatának szabálya a zárolást engedélyező

döntésekre az alábbi:

 Egy X adatbáziselemre C módú zárat akkor és csak akkor engedélyezhetünk, ha a táblázat minden olyan

R sorára, amelyre más tranzakció már zárolta X-et R módban, a C oszlopban „igen” szerepel.

Példa. Az ábrán osztott (S) és kizárólagos (X) zárak kompatibilitási mátrixa látható:

48

 S X

S igen nem

X nem nem

Az S oszlop azt mondja meg, hogy akkor engedélyezhetünk osztott zárat egy elemre, ha arra az elemre

jelenleg is legfeljebb csak osztott zárak vannak. Az X oszlop azt mondja meg, hogy csak akkor

engedélyezhetünk kizárólagos zárat, ha jelenleg nincs más zár az elemen. Látható, hogy ezek a szabályok

az ütemezések jogszerűségének a definícióját tükrözik erre a zárolási rendszerre.

Zárak felminősítése

Az a T tranzakció, amelyik osztott zárat helyez X-re, „barátságos” a többi tranzakcióhoz, ugyanis a többinek

is lehetősége van X-et T-vel egy időben olvasni. A kérdés az, hogy még barátságosabb-e az a T tranzakció,

amelyik beolvasni és új értékkel írni akarja X-et úgy, hogy előbb csak osztott zárat tesz X-re, majd később,

amikor T már készen áll az új érték beírására, akkor felminősíti a zárat kizárólagossá, vagyis később kéri X

kizárólagos zárolását azon túl, hogy már osztott zárat tart fenn X-en. Nincs akadálya, hogy a tranzakció

ugyanarra az adatbáziselemre újabb, különböző zármódú kéréseket adjon ki. Továbbra is fenntartjuk azt a

megszokott jelölést, hogy ui(X) a Ti tranzakció által elhelyezett összes zárat feloldja X-en, bár be lehetne

vezetni zárolási módoktól függő feloldási műveleteket, ha lenne hasznuk.

Pontosan fogalmazva: Azt mondjuk, hogy a T tranzakció felminősíti (upgrade) az L1 zárját az L1-nél

dominánsabb L2 zárra az X adatbáziselemen, ha L2 zárat kér X-re, amelyen már birtokol egy L1 zárat. L2

dominánsabb L1-nél, ha a kompatibilitási mátrixban L2 sorában/oszlopában minden olyan pozícióban

„nem” áll, amelyben L1 sorában/oszlopában „nem” áll. Például az SX zárolási séma esetén X dominánsabb

S-nél. (X egyébként minden zármódnál dominánsabb bármelyik zárolási séma esetén, hiszen X sorában és

oszlopában is minden pozícióban „nem” szerepel.)

Példa. A következő példában a T1 tranzakció T2-vel konkurensen tudja végrehajtani a számításait, amely

nem lenne lehetséges, ha T1 kezdetben kizárólagosan zárolta volna B-t. A két tranzakció a következő:

T1: sl1(A); r1(A); sl1(B); r1(B); xl1(B); w1(B); u1(A); u1(B);

T2: sl2(A); r2(A); sl2(B); r2(B); u2(A); u2(B);

Itt T1 beolvassa A-t és B-t, és végrehajtja a (valószínűleg hosszadalmas) számításokat velük, és a legvégén

az eredményt beírja B új értékének. T1 előbb osztottan zárolja B-t, majd később, miután az A-val és B-vel

kapcsolatos számításait befejezte, kér egy kizárólagos zárat B-re. A T2 tranzakció csak olvassa A-t és B-t,

nem ír rájuk.

T1 T2

sl1(A); r1(A);

 sl2(A); r2(A);

 sl2(B); r2(B);

sl1(B); r1(B);

xl1(B); elutasítva

 u2(A); u2(B);

xl1(B); w1(B);

u1(A); u1(B);

Az ábra a műveletek egy lehetséges ütemezését mutatja. T2 egy osztott zárat kap B-re T1 előtt, de a negyedik

sorban T1 is képes osztottan zárolni B-t. Így T1 rendelkezésére áll A is és B is, és az értékeik felhasználásával

végre tudja hajtani a számításokat. Amikor T1 megpróbálja B-n a zárat felminősíteni kizárólagossá, az

ütemező a kérést elutasítja, és arra kényszeríti T1-et, hogy várjon addig, amíg T2 felszabadítja a B-n lévő

zárat. Ezután T1 megkapja a kizárólagos zárat, kiírja B-t, és befejeződik a tranzakció.

49

Ha T1 a kezdéskor kért volna kizárólagos zárat B-re, mielőtt beolvasta volna, akkor ezt a kérést az ütemező

elutasította volna, ugyanis T2-nek már volt egy osztott zárja B-n. T1 nem tudta volna elvégezni a számításait

B beolvasása nélkül, így T1-nek sokkal több dolga lett volna, miután T2 felszabadította a zárakat. T1 tehát

később fejeződött volna be, ha csak kizárólagos zárat használt volna B-n, mint amikor a felminősítő

stratégiát alkalmazta.

Példa. Sajnos a felminősítés válogatás nélküli alkalmazása a holtpontok új forrását jelenti. Tételezzük fel,

hogy T1 és T2 is beolvassa az A adatbáziselemet, és egy új értéket ír vissza A-ba. Ha mindkét tranzakció a

felminősítéssel dolgozik, akkor előbb osztott zárat kapnak A-ra, és azután minősítik ezt át kizárólagossá,

így az alábbi eseménysorozat következhet be, amikor T1 és T2 közel egyidejűleg kezdődik:

T1 T2

sl1(A);

 sl2(A);

xl1(A); elutasítva

 xl2(A); elutasítva

T1 és T2 is kaphat osztott zárat A-ra. Ezután mindkettő megpróbálja ezt felminősíteni kizárólagossá, de az

ütemező mindkettőt várakozásra kényszeríti, hiszen a másik már osztottan zárolja A-t. Emiatt egyikük

végrehajtása sem folytatódhat; vagy mindkettőnek örökösen kell várakoznia, vagy addig kell várakozniuk,

amíg a rendszer fel nem fedezi, hogy holtpont alakult ki, abortálja valamelyik tranzakciót, és a másiknak

engedélyezi A-ra a kizárólagos zárat.

Módosítási zárak

A fenti holtpontproblémát el tudjuk kerülni egy harmadik zárolási mód, az úgynevezett módosítási zárak

(update lock) használatával. Az uli(X) módosítási zár a Ti tranzakciónak csak X olvasására ad jogot, X

írására nem. Később azonban csak a módosítási zárat lehet felminősíteni írásira, az olvasási zárat nem (azt

csak módosításira). Módosítási zárat akkor is engedélyezhetünk X-en, ha X osztott módon már zárolva van,

ha azonban X-en már van egy módosítási zár, akkor ez megakadályozza, hogy X bármilyen más újabb zárat

(akár osztott, akár módosítási, akár kizárólagos zárat) kapjon. Ennek az az oka, hogy ha nem utasítanánk el

ezeket az újabb zárolásokat, akkor előfordulhat, hogy a módosításinak soha sem lenne lehetősége

kizárólagossá való felminősítésre, ugyanis mindig valamilyen más zár lenne X-en (a módosítási zár tehát

nemcsak a holtpontproblémát oldja meg, hanem a kiéheztetés problémáját is).

Ez a szabály nem szimmetrikus kompatibilitási mátrixot eredményez, ugyanis az U módosítási zár úgy néz

ki, mintha osztott zár lenne, amikor kérjük, és úgy néz ki, mintha kizárólagos zár lenne, amikor már megvan.

Emiatt az U és az S zárak oszlopai megegyeznek, valamint U és X sorai is megegyeznek:

 S X U

S igen nem igen

X nem nem nem

U nem nem nem

Ne feledjük azonban, hogy van egy további feltétel az ütemezések jogszerűségére vonatkozóan, amely nem

jelenik meg a mátrixban: egy olyan tranzakció, amelynek van osztott zárja egy X adatbáziselemen, de nincs

módosítási zárja, nem kaphat kizárólagos zárat X-re, noha általában nem tiltjuk, hogy egy tranzakció több

zárat is fenntartson ugyanazon az elemen.

Példa. A módosítási zárak használata nem befolyásolja a korábbi példát. A harmadik művelet az lenne,

hogy T1 módosítási zárat tenne B-re, nem pedig osztott zárat. A módosítási zárat megkapná, ugyanis csak

osztott zárak vannak B-n, és ugyanaz a műveletsorozat fordulna elő.

50

Módosítási zárakkal megszüntethető viszont a holtpontprobléma. Most mind T1, mind T2 előbb módosítási

zárat kér A-n, majd később kizárólagos zárat. T1 és T2 egy lehetséges leírása az alábbi:

T1: ul1(A); r1(A); xl1(A); w1(A); u1(A);

T2: ul2(A); r2(A); xl2(A); w2(A); u2(A);

A korábbinak megfelelő eseménysorozat pedig a következő:

T1 T2

ul1(A); r1(A);

 ul2(A); elutasítva

xl1(A); w1(A); u1(A);

 ul2(A); r2(A);

 xl2(A); w2(A); u2(A);

Itt T2-t elutasítjuk, amelyik másodikként kérte A módosítási zárolását. Miután T1 befejeződött, T2

folytatódhat. A zárolási rendszer hatékonyan megakadályozta T1 és T2 konkurens végrehajtását, ebben a

példában viszont lényeges mennyiségű konkurens végrehajtás vagy holtpontot, vagy inkonzisztens

adatbázis-állapotot eredményez.

Növelési zárak

Egy másik érdekes zárolási mód, amely bizonyos helyzetekben hasznos lehet, a növelési zár. Számos

tranzakciónak csak az a hatása az adatbázison, hogy növeli vagy csökkenti a tárolt értéket. Ilyen például,

amikor pénzt utalunk át az egyik bankszámláról a másikra, vagy amikor egy repülőjegyeket árusító

tranzakció csökkenti az adott gépen a szabad ülőhelyek számát.

A növelési műveletek érdekes tulajdonsága, hogy tetszőleges sorrendben kiszámíthatók, ugyanis ha két

tranzakció egy-egy konstanst ad hozzá ugyanahhoz az adatbáziselemhez, akkor nem számít, hogy melyiket

hajtjuk végre előbb. Másrészt a növelés nem cserélhető fel sem az olvasással, sem az írással. Ha azelőtt

vagy azután olvassuk be A-t, hogy valaki növelte, különböző értékeket kapunk, és ha azelőtt vagy azután

növeljük A-t, hogy más tranzakció új értéket írt be A-ba, akkor is különböző értékei lesznek A-nak az

adatbázisban.

Vezessünk be egy új műveletet, a növelési műveletet (increment action), és jelöljük INC(A,c)-vel. Ez a

művelet megnöveli az A adatbáziselem (ami ilyenkor mindig attribútum) értékét c-vel, amelyről

feltételezzük, hogy egyszerű szám konstans. Ha c negatív, akkor valójában csökkentést hajtunk végre. A

gyakorlatban az INC műveletet a relációsor egy attribútumára alkalmazzuk, annak ellenére, hogy maga a

sor, és nem az attribútum a zárolható elem.

Formálisan az INC(A,c) művelet a következő lépések atomi végrehajtására szolgál: READ(A,t);

t := t+c; WRITE(A,t);. Az atomiságnak ez az alakja alsóbb szintű, mint a tranzakcióknak a

zárolások által támogatott atomisága.

Szükségünk van a növelési műveletnek megfelelő növelési zárra (increment lock), amelyet ili(X)-szel

jelölünk. Jelentése: a Ti tranzakció növelési zárat kér az X adatbáziselemre. Az inci(X) rövidítést arra a

műveletre használjuk, amelyben a Ti tranzakció megnöveli az X adatbáziselemet valamely konstanssal.

Annak, hogy pontosan mennyi ez a konstans, nincs jelentősége.

A növelési műveletek és zárak létezése szükségessé teszi, hogy több helyen módosítsuk a konzisztens

tranzakciók, a konfliktusok és a jogszerű ütemezések definícióit. A változtatások az alábbiak:

a) Egy konzisztens tranzakció csak akkor végezheti el X-en a növelési műveletet, ha egyidejűleg növelési

(vagy kizárólagos) zárat tart fenn rajta. A növelési zár viszont nem teszi lehetővé sem az olvasási, sem

az írási műveleteket.

51

b) Az inci(X) művelet konfliktusban áll rj(X)-szel és wj(X)-szel is j  i-re, de nem áll konfliktusban

incj(X)-szel.

c) Egy jogszerű ütemezésben bármennyi tranzakció bármikor fenntarthat X-en növelési zárat. Ha viszont

egy tranzakció növelési zárat tart fenn X-en, akkor egyidejűleg semelyik más tranzakció sem tarthat

fenn sem osztott, sem kizárólagos zárat X-en. Ezeket a követelményeket a kompatibilitási mátrix

segítségével fejezzük ki:

 S X I

S igen nem nem

X nem nem nem

I nem nem igen

Példa. Tekintsünk két tranzakciót, mindkettő beolvassa az A adatbáziselemet, és azután növeli B-t. Lehet,

hogy A-t adják hozzá B-hez, vagy egy olyan konstanssal növelik B-t, amelynek kiszámítása valamilyen más

módon függ A-tól.

T1: sl1(A); r1(A); il1(B); inc1(B); u1(A); u1(B);

T2: sl2(A); r2(A); il2(B); inc2(B); u2(A); u2(B);

Látható, hogy a tranzakciók konzisztensek, hiszen csak akkor végeznek növelést, amikor növelési zárral

rendelkeznek, és csak akkor olvasnak, amikor osztott zárat tartanak fenn. T1 és T2 egy lehetséges ütemezése

a következő:

T1 T2

sl1(A); r1(A);

 sl2(A); r2(A);

 il2(B); inc2(B);

il1(B); inc1(B);

 u2(A); u2(B);

u1(A); u1(B);

T1 olvassa először A-t, azután T2 beolvassa A-t, és növeli B-t. Ezután viszont T1-nek is megengedjük, hogy

növelési zárat kapjon B-re, és folytatódjon. Az ütemezőnek egyik kérést sem kell késleltetnie. Például

tételezzük fel, hogy T1 növeli B-t A-val, T2 pedig növeli B-t 2A-val. Bármelyik sorrendben végrehajthatjuk

a tranzakciókat, ugyanis A értéke nem változik, és a növelést is bármely sorrendben elvégezhetjük.

Másképpen kifejezve: nézzük meg a nem zárolási műveletek sorozatát az ütemezésben:

S: r1(A); r2(A); inc2(B); inc1(B);

Az utolsó műveletet, inc1(B)-t, előrébb tudjuk hozni a második helyre, ugyanis ez nincs konfliktusban

ugyanannak az elemnek egy másik növelésével, és biztosan nincs konfliktusban egy másik elem

olvasásával. A cseréknek ez a sorozata mutatja, hogy S konfliktusekvivalens a következő soros

ütemezéssel:

r1(A); inc1(B); r2(A); inc2(B);

Hasonlóan tudjuk az első műveletet, r1(A)-t, cserékkel a harmadik helyre hátrébb vinni, amely azt a soros

ütemezést adja, amelyben T2 megelőzi T1-et.

A zárolási ütemező felépítése

Eddig már számos zárolási sémát láttunk, most megnézzük, hogyan működik egy olyan ütemező, amely

ezek közül a sémák közül használja valamelyiket. Itt csak a következő elveken alapuló egyszerű ütemező

felépítését tekintjük:

52

1. Maguk a tranzakciók nem kérnek zárakat, vagy figyelmen kívül hagyjuk, hogy ezt teszik. Az ütemező

feladata, hogy zárolási műveleteket szúrjon be az adatokhoz hozzáférő olvasási, írási, illetve egyéb

műveletek sorába.

2. Nem a tranzakciók, hanem az ütemező oldja fel a zárakat, mégpedig akkor, amikor a tranzakciókezelő

a tranzakció véglegesítésére vagy abortálására készül.

Zárolási műveleteket beszúró ütemező

Z á r t á b l a

T r a n z a k c i ó k

Ü t e m e z ő I . r é s z e

R E A D (A) ; W R I T E (B) ;

C O M M I T ; . . .

L O C K (A) ; R E A D (A) ; . . .

Ü t e m e z ő I I . r é s z e

R E A D (A) ; W R I T E (B) ; . . .

Az ábra egy olyan két részből álló ütemezőt mutat be, amely READ, WRITE, COMMIT és ABORT kéréseket

fogad a tranzakcióktól. Az ütemező karbantartja a zártáblát, amelyet – bár másodlagosan tárolt adatként

ábrázoltunk – lehet, hogy részben vagy egészben a központi memóriában tárolunk. A zártábla által használt

központi memória általában nem a lekérdezés-végrehajtás és a naplózás által használt pufferterület része.

A zártábla az adatbázis-kezelő rendszernek csak egy komponense, és az operációs rendszer foglal számára

helyet, ugyanúgy, mint az adatbázis-kezelő rendszer többi kódjának és belső adatainak.

A tranzakciók által kért műveletek az ütemezőn jutnak keresztül, és az adatbázison kerülnek végrehajtásra

általában azonnal. Bizonyos körülmények esetén viszont késleltetett a tranzakció, zárolásra vár, és a kérései

még nem jutottak el az adatbázishoz. Az ütemező két része a következő műveleteket hajtja végre:

1. Az I. rész fogadja a tranzakciók által generált kérések sorát, és minden adatbázis-hozzáférési művelet

elé beszúrja a megfelelő zárolási műveletet. Az ütemező I. részének kell tehát kiválasztania a megfelelő

zárolási módot az ütemező által használt zármódok halmazából. Az adatbázis-hozzáférési és zárolási

műveleteket ezután átküldi a II. részhez (a COMMIT és ABORT műveleteket nem).

2. A II. rész fogadja az I. részen keresztül érkező zárolási és adatbázis-hozzáférési műveletek sorozatát.

Eldönti, hogy a T tranzakció késleltetett-e (mivel zárolásra vár). Ha igen, akkor magát a műveletet

késlelteti, azaz hozzáadja azoknak a műveleteknek a listájához, amelyeket a T tranzakciónak még végre

kell hajtania. Ha T nem késleltetett, vagyis az összes előzőleg kért zár már engedélyezve van, akkor

megnézi, hogy milyen műveletet kell végrehajtania.

a) Ha a művelet adatbázis-hozzáférés, akkor továbbítja az adatbázishoz, és végrehajtja.

b) Ha zárolási művelet érkezik, akkor megvizsgálja a zártáblát, hogy a zár engedélyezhető-e. Ha igen,

akkor úgy módosítja a zártáblát, hogy az az éppen engedélyezett zárat is tartalmazza. Ha nem, akkor

53

egy olyan bejegyzést készít a zártáblában, amely jelzi a zárolási kérést. Az ütemező II. része ezután

késlelteti a T tranzakció további műveleteit mindaddig, amíg nem tudja engedélyezni a zárat.

3. Amikor a T tranzakciót véglegesítjük vagy abortáljuk, akkor a tranzakciókezelő COMMIT, illetve

ABORT műveletek küldésével értesíti az I. részt, hogy oldja fel az összes T által fenntartott zárat. Ha

bármelyik tranzakció várakozik ezen zárfeloldások valamelyikére, akkor az I. rész értesíti a II. részt.

4. Amikor a II. rész értesül, hogy egy X adatbáziselemen felszabadult egy zár, akkor eldönti, hogy melyik

az a tranzakció, vagy melyek azok a tranzakciók, amelyek megkapják a zárat X-re. A tranzakciók,

amelyek megkapták a zárat, a késleltetett műveleteik közül annyit végrehajtanak, amennyit csak végre

tudnak hajtani mindaddig, amíg vagy befejeződnek, vagy egy másik olyan zárolási kéréshez érkeznek

el, amely nem engedélyezhető.

Példa. Ha csak egymódú zárak vannak, akkor az ütemező I. részének a feladata egyszerű. Ha bármilyen

műveletet lát az X adatbáziselemen, és még nem szúrt be zárolási kérést X-re az adott tranzakcióhoz, akkor

beszúrja a kérést. Amikor véglegesítjük vagy abortáljuk a tranzakciót, az I. rész törölheti ezt a tranzakciót,

miután feloldotta a zárakat, így az I. részhez igényelt memória nem nő korlátlanul.

Amikor többmódú zárak vannak, az ütemezőnek szüksége lehet arra, hogy azonnal értesüljön, milyen

későbbi műveletek fognak előfordulni ugyanazon az adatbáziselemen. Nézzük meg újból az

osztott/kizárólagos/módosítási zárak esetét, a felminősítésnél látott példában szereplő tranzakciókat

használva. Zárolások nélkül a tranzakciók a következők:

T1: r1(A); r1(B); w1(B);

T2: r2(A); r2(B);

Az ütemező I. részéhez küldött üzenetnek nemcsak az olvasási és írási kéréseket kell tartalmaznia, hanem

az ugyanazon az elemen bekövetkező későbbi műveletekre vonatkozó jelzést is. Amikor például az r1(B)

érkezik be, az ütemezőnek tudnia kell, hogy lesz-e később w1(B) művelet (vagy lehet-e ilyen művelet, ha

a T1 tranzakció kódjában elágazás szerepel). Több módon válhat elérhetővé az információ. Például ha a

tranzakció egy lekérdezés, akkor tudjuk, hogy semmit sem fog írni. Ha a tranzakció egy SQL-adatbázist

módosító utasítás, akkor a lekérdező processzor azonnal megadhatja azokat az adatbáziselemeket,

amelyeket olvashatunk és írhatunk is egyben. Ha a tranzakció egy beágyazott SQL-program, akkor a fordító

hozzá tud férni az összes SQL-utasításhoz (és csakis ezekkel lehet írni az adatbázisba), és meghatározhatja,

mely adatbáziselemek esélyesek az írásra.

A példánkban tételezzük fel, hogy a felminősítés példájában bemutatott sorrendben következnek be az

események. Ekkor T1 először r1(A)-t adja ki. Mivel nincs később kizárólagos zárrá való felminősítés erre

a zárra, az ütemező beszúrja sl1(A)-t az r1(A) elé. Ezután T2 kérései (r2(A) és r2(B)) érkeznek az

ütemezőhöz. Megint nincs később felminősítés, így az ütemező I. része a következő műveletsorozatot adja

ki: sl2(A); r2(A); sl2(B); r2(B);.

Ezután az r1(B) művelet érkezik be az ütemezőhöz azzal a figyelmeztetéssel, hogy ezt a zárat fel lehet

minősíteni. Az ütemező I. része ekkor kibocsátja ul1(B); r1(B);-t a II. résznek, amely megnézi a

zártáblát, és azt találja, hogy T1 engedélyezheti a módosítási zárat B-re, ugyanis csak osztott zárak vannak

B-n.

Amikor a w1(B) művelet beérkezik az ütemezőhöz, az I. rész kibocsátja xl1(B); w1(B);-t. A II. rész

viszont nem teljesítheti az xl1(B) kérést, ugyanis T2-nek már van osztott zárja B-n. T1-nek ezt a műveletét

és az ezutáni műveleteit késlelteti, egyben tárolja a későbbi végrehajtáshoz. Végül T2 végrehajtja a

véglegesítést, és az I. rész feloldja a zárakat A-n és B-n. Ugyanekkor felfedezi, hogy T1 várakozik B

zárolására. Értesíti a II. részt, amely az xl1(B) zárolást most már végrehajthatónak találja. Beviszi ezt a

zárat a zártáblába, és folytatja T1 tárolt műveleteinek a végrehajtását mindaddig, ameddig tudja. Esetünkben

T1 befejeződik.

54

A zártábla

A

A d a t b á z i s e l e m Z á r o l á s i i n f o r m á c i ó k

C s o p o r t o s m ó d : U

V á r a k o z i k - e : i g e n

L i s t a :

T 1 S n e m

T r a n z . M ó d V á r ? T k ö v .

T 2 U n e m

T 3 X i g e n

K ö v .

Absztrakt szinten a zártábla egy olyan reláció, amely összekapcsolja az adatbáziselemeket a rájuk

vonatkozó zárolási információkkal, ahogyan ezt az ábra mutatja. Azok az elemek, amelyek nincsenek

zárolva, nem fordulnak elő a táblában, így a méret csak a zárolt elemek számával arányos, nem pedig a

teljes adatbázis méretével.

Az ábrán egy példát láthatunk arra, hogy milyen információk találhatók egy zártáblabejegyzésnél. Ez a

példa feltételezi, hogy az ütemező az osztott/kizárólagos/módosítási (SXU) zársémát alkalmazza. Egy

tipikus A adatbáziselemhez a bejegyzés a következő komponensekből áll:

1. A csoportos mód (group mode) a legszigorúbb feltételek összefoglalása, amivel egy tranzakció

szembesül, amikor egy új zárolást kér A-n, azaz a csoportos mód az A-n jelenleg fenntartott zármódok

közül a legdominánsabb. Ahelyett, hogy összehasonlítanánk a zárolási kérést a többi tranzakciónak

ugyanazon az elemen fenntartott minden zárolásával, egyszerűsíthetjük az engedélyezési/elutasítási

döntést azzal, hogy a kérést csak a csoportos móddal hasonlítjuk össze. (A zároláskezelőnek viszont

foglalkoznia kell azzal a lehetőséggel, hogy a kérést kiadó tranzakciónak már van egy másik módban

zárja ugyanazon az elemen. Például az SXU zárolási rendszerre vonatkoztatva, a zároláskezelő

elfogadhat egy X zárra vonatkozó kérést, ha az igénylő tranzakció pont az, amely U zárat tart fenn

ugyanazon az elemen. Azoknál a rendszereknél, amelyek nem támogatják, hogy egy tranzakció egy

elemen több zárat is tartson, a csoportos mód mindig megadja mindazt, amit a zároláskezelőnek tudnia

kell.) Az SXU zárolási sémákhoz egyszerű a szabály:

Egy csoportos módban:

a) S azt jelenti, hogy csak osztott zárak vannak;

b) U azt jelenti, hogy egy módosítási zár van, és lehet még egy vagy több osztott zár is;

c) X azt jelenti, hogy csak egy kizárólagos zár van, és semmilyen más zár nincs.

A többi zárolási sémához is mindig találunk a csoportos mód összegzésének megfelelő rendszert.

2. A várakozási bit (waiting bit) azt adja meg, hogy van-e legalább egy tranzakció, amely A zárolására

várakozik.

55

3. Az összes olyan tranzakciót leíró lista, amelyek vagy jelenleg zárolják A-t, vagy A zárolására

várakoznak. Hasznos információk, amelyeket minden listabejegyzés tartalmazhat:

a) a zárolást fenntartó vagy a zárolásra váró tranzakció neve;

b) ennek a zárnak a módja;

c) a tranzakció fenntartja-e a zárat, vagy várakozik-e a zárra.

Az ábrán két láncolás szerepel minden bejegyzésnél. Az egyik magukhoz az adatbáziselemre vonatkozó

bejegyzésekhez tartozik, a másik (Tköv.) pedig egy bizonyos tranzakció összes bejegyzését láncolja

össze. Az utóbbi akkor használható, amikor a tranzakciót véglegesítjük vagy abortáljuk, így könnyen

megtalálhatjuk az összes zárat, amelyet fel kell oldanunk.

A zárolási kérések kezelése

Tételezzük fel, hogy a T tranzakció zárat kér A-ra. Ha nincs A-ra bejegyzés a zártáblában, akkor biztos,

hogy zárak sincsenek A-n, így létrehozhatjuk a bejegyzést, és engedélyezhetjük a kérést. Ha a zártáblában

létezik bejegyzés A-ra, akkor ezt felhasználjuk a zárolási kéréssel kapcsolatos döntésünkben. Megkeressük

a csoportos módot, amely az ábrán U, vagyis módosítási. Amikor már van módosítási zár egy elemen, akkor

semmilyen más zárat nem engedélyezhetünk (kivéve azt az esetet, amikor maga T tartja fenn az U zárat, és

a többi zár kompatibilis T kérésével). Tehát T-nek ezt a kérését elutasítjuk, és egy bejegyzést helyezünk el

a listában, amely szerint T zárat kért, és a várakozási bitet igazra állítjuk.

Ha a csoportos mód X, vagyis kizárólagos lenne, akkor ugyanez történne. Ha azonban a csoportos mód S,

vagyis osztott lenne, akkor lehetne adni egy másik osztott vagy módosítási zárat. Ebben az esetben a

listában a T-hez tartozó várakozási bitet hamisra, a csoportos módot pedig U-ra kellene állítani, ha az új zár

módosítási zár, egyébként pedig a csoportos mód S maradna. Akár adtunk engedélyt a zárolásra, akár nem,

az új listabejegyzést megfelelően beláncoljuk a két mutatón keresztül. Látható, hogy akár engedélyezzük a

zárat, akár nem, a zártáblában a bejegyzés megadja az ütemezőnek azt, amit tudnia kell, anélkül hogy

megvizsgálná a zárolások listáját.

A zárfeloldások kezelése

Most tételezzük fel, hogy a T tranzakció feloldja az A-n lévő zárakat. Ekkor T bejegyzését A-ra a listában

töröljük. Ha a T által fenntartott zár nem egyezik meg a csoportos móddal (például T egy S zárat tart fenn,

míg a csoportos mód U), akkor nincs okunk, hogy megváltoztassuk a csoportos módot. Ha viszont a T által

fenntartott zár van a csoportos módban, akkor meg kell vizsgálnunk a teljes listát, hogy megtaláljuk az új

csoportos módot. Az ábrán látható példában csak egyetlen U zár lehet egy elemen, így ha azt a zárat

feloldjuk, az új csoportos mód csak S lehetne (ha maradt még osztott zár), vagy semmi (ha nincs más zár

jelenleg fenntartva). (Valójában sohasem lesz „semmi” a csoportos mód, ugyanis ha nincs sem zár, sem

zárolási kérés egy elemen, akkor nincs bejegyzés sem a zártáblában erre az elemre. Csak zárolási kérés

meglévő zár nélkül pedig szintén nem fordulhat elő.) Ha a csoportos mód X, akkor tudjuk, hogy nincsenek

más zárolások, ha pedig a csoportos mód S, akkor el kell döntenünk, hogy van-e további osztott zár.

Ha a várakozási bit igaz, akkor engedélyeznünk kell egy vagy több zárat a kért zárak listájáról. Több

különböző megközelítés lehetséges, mindegyiknek megvan a saját előnye:

1. Első beérkezett első kiszolgálása (first-come-first-served): Azt a zárolási kérést engedélyezzük, amelyik

a legrégebb óta várakozik. Ez a stratégia azt biztosítja, hogy ne legyen kiéheztetés, vagyis a tranzakció

ne várjon örökké egy zárra.

2. Elsőbbségadás az osztott záraknak (priority to shared locks): Először az összes várakozó osztott zárat

engedélyezzük. Ezután egy módosítási zárolást engedélyezünk, ha várakozik ilyen. A kizárólagos

56

zárolást csak akkor engedélyezzük, ha semmilyen más igény nem várakozik. Ez a stratégia csak akkor

engedi a kiéheztetést, ha a tranzakció U vagy X zárolásra vár.

3. Elsőbbségadás a felminősítésnek (priority to upgrading): Ha van olyan U zárral rendelkező tranzakció,

amely X zárrá való felminősítésre vár, akkor ezt engedélyezzük előbb. Máskülönben a fent említett

stratégiák valamelyikét követjük.

Adatbáziselemekből álló hierarchiák kezelése

Térjünk vissza a különféle zárolási sémák feltárásához. Különösen két olyan problémára összpontosítunk,

amelyek akkor merülnek fel, amikor fastruktúra tartozik az adatainkhoz:

1. Az első fajta fastruktúra, amelyet figyelembe veszünk, a zárolható elemek (zárolási egységek)

hierarchiája. Megvizsgáljuk, hogyan engedélyezünk zárolást mind a nagy elemekre, mint például a

relációkra, mind a kisebb elemekre, mint például a reláció néhány sorát tartalmazó blokkokra vagy

egyedi sorokra.

2. A másik lényeges hierarchiafajtát képezik a konkurenciavezérlési rendszerekben azok az adatok,

amelyek önmagukban faszervezésűek. Ilyenek például a B-fa-indexek. A B-fák csomópontjait

adatbáziselemeknek tekinthetjük, így viszont az eddig tanult zárolási sémákat szegényesen

használhatjuk, emiatt egy új megközelítésre van szükségünk.

Többszörös szemcsézettségű zárak

A különböző rendszerek különböző méretű adatbáziselemeket zárolnak, mint például relációkat, sorokat,

lapokat vagy blokkokat. Bizonyos alkalmazásoknál a kis adatbáziselemek előnyösek, míg másoknál a nagy

elemek nyújtják a legtöbbet.

Példa. Tekintsünk egy banki adatbázist. Ha a relációkat kezeljük adatbáziselemekként, akkor így csak egy

zárat tudunk kiadni arra a teljes relációra, amely a számlák egyenlegét adja meg, ezért a rendszer nagyon

kis konkurenciát engedélyezne. Mivel a legtöbb tranzakció a számlák egyenlegét változtatja, a legtöbb

tranzakciónak kizárólagosan kellene zárolnia a számlaegyenlegeket tartalmazó relációt. Így csak egyetlen

befizetést vagy kivételt tudnánk egyidejűleg elvégezni, nem számítana, hogy hány olyan processzor van,

amely alkalmas lenne ezeknek a tranzakcióknak az elvégzésére. Jobb megközelítés, hogy egyedi lapokat

vagy adatblokkokat zárolunk. Így két olyan számla, amelyekhez tartozó sorok külön blokkokban vannak,

egyidejűleg módosítható. Ez biztosítja szinte a teljes konkurenciát, amely elérhető a rendszerben. A másik

véglet az lenne, ha minden egyes sorra biztosítanánk zárolást, így bármilyen számlahalmazt egyszerre

tudnánk módosítani, de a záraknak ennyire finom szemcséssége valószínűleg nem érné meg a sok

fáradságot.

Másik példaként tekintsünk egy dokumentumokból álló adatbázist. Ezeket a dokumentumokat időnként

szerkeszteni szokták, és a legtöbb tranzakció teljes dokumentumokhoz fér hozzá. Az adatbáziselem ésszerű

megválasztása ekkor a teljes dokumentum. Mivel a legtöbb tranzakció csak olvasási tranzakció (vagyis nem

végez írási műveletet), a zárolás csak azért szükséges, hogy elkerüljük a dokumentumok szerkesztés

közbeni olvasását. Ha kisebb szemcsézettségű elemeket zárolnánk, mint például bekezdéseket, mondatokat

vagy szavakat, akkor ennek semmilyen előnyét sem látnánk, viszont sokkal költségesebb lenne. Az egyetlen

tevékenység, amelyet a kisebb szemcsézettségű zárak támogatnának, hogy a dokumentum egy részét

tudnánk olvasni a dokumentum szerkesztése közben is.

Bizonyos alkalmazások mind a nagy, mind a kis szemcsézettségű zárakat tudják alkalmazni. Például a fent

vázolt banki adatbázisnál világos, hogy blokk vagy sor szintű zárolás is szükséges, de néhány esetben a

teljes számlareláció zárolása is szükséges lehet, például azért, hogy ellenőrizzük a számlákat. De ha osztott

zárat teszünk a számlarelációra annak érdekében, hogy kiszámoljunk a reláción valamilyen

57

csoportfüggvényt, és egyidejűleg az egyéni számlák soraihoz kizárólagos zárat adunk, ez könnyen nem

sorba rendezhető viselkedéshez vezethet, ugyanis a reláció valójában megváltozik, amíg egy feltehetően

befagyasztott másolatát olvassuk a csoportfüggvényes lekérdezéshez.

Figyelmeztető zárak

A probléma megoldásához, hogy hogyan kezeljük az újfajta zárolással kapcsolatos, különféle

szemcsézettségű zárakat, bevezetjük a figyelmeztető zárakat. Ezek a zárak akkor hasznosak, amikor zárolási

egységek beágyazott vagy hierarchikus struktúrákat mutatnak, amint azt az alábbi ábrán láthatjuk:

R 1

B 3 B 1 B 2

t 1 t 2 t 3

R e l á c i ó k

B l o k k o k

S o r o k

Itt az adatbáziselemek három szintjét különböztetjük meg:

1. a relációk a legnagyobb zárolható elemek;

2. minden reláció egy vagy több blokkból vagy lapból épül fel, amelyekben a soraik vannak;

3. minden blokk egy vagy több sort tartalmaz.

A zárolási egységek hierarchiáján a zárak kezelésére szolgáló szabályok alkotják a figyelmeztető protokollt

(warning protocol), amely tartalmazza mind a „közönséges”, mind a „figyelmeztető” zárakat. A zárolási

sémát úgy adjuk meg, hogy a közönséges zárak S és X (osztott és kizárólagos) lehetnek. A figyelmeztető

zárakat a közönséges zárak elé helyezett I (intention) előtaggal jelöljük. Például IS azt jelenti, hogy

szándékunkban áll osztott zárat kapni egy részelemen. A figyelmeztető protokoll szabályai:

1. Ahhoz, hogy elhelyezzünk egy közönséges S vagy X zárat valamely elemen, a hierarchia gyökerénél

kell kezdenünk.

2. Ha már annál az elemnél tartunk, amelyet zárolni akarunk, akkor nem kell tovább folytatnunk, hanem

kérjük az S vagy X zárolást arra az elemre.

3. Ha az elem, amelyet zárolni szeretnénk, lejjebb van a hierarchiában, akkor elhelyezünk egy

figyelmeztetést ezen a csomóponton. Vagyis ha osztott zárat szeretnénk kérni egy részelemen, akkor

ebben a csomópontban egy IS zárat kérünk, ha pedig kizárólagos zárat szeretnénk kérni egy részelemen,

akkor ebben a csomópontban egy IX zárat kérünk. Amikor a jelenlegi csomópontban kért zárat

megkaptuk, akkor ennek a csomópontnak azzal az utód csomópontjával folytatjuk, amelyikhez tartozó

részfa tartalmazza azt a csomópontot, amelyet zárolni kívánunk. Ezután megfelelően a 2. vagy 3.

lépéssel folytatjuk mindaddig, amíg el nem érjük a keresett csomópontot.

Ahhoz, hogy eldöntsük, engedélyezhetjük-e ezek közül a zárak közül valamelyiket, vagy sem, a következő

kompatibilitási mátrixot használjuk:

 IS IX S X

IS igen igen igen nem

IX igen igen nem nem

S igen nem igen nem

X nem nem nem nem

58

Ennek a mátrixnak az értelmezéséhez először nézzük meg az IS oszlopot. Ha IS zárat kérünk egy N

csomópontban, az N egy leszármazottját szándékozzuk olvasni. Ez a szándék csak abban az esetben okozhat

problémát, ha egy másik tranzakció korábban már jogosulttá vált arra, hogy az N által reprezentált teljes

zárolási egységet felülírja, ezért van „nem” az X-hez tartozó sorban. Ha más tranzakció azt tervezi, hogy

N-nek csak egy részelemét írja (ezért az N csomóponton egy IX zárat helyezett el), akkor lehetőségünk van

arra, hogy engedélyezzük az IS zárat N-en, és a konfliktust alsóbb szinten oldhatjuk meg, ha az írási és

olvasási szándék valóban egy közös elemre vonatkozik.

Most tekintsük az IX-hez tartozó oszlopot. Ha az N csomópont egy részelemét szándékozzuk írni, akkor

meg kell akadályoznunk az N által képviselt teljes elem olvasását vagy írását. Ezért van „nem” az S és az

X zármódok sorában. Azonban az IS oszloppal kapcsolatban leírtaknak megfelelően más tranzakció, amely

egy részelemet olvas vagy ír, a potenciális konfliktusokat az adott szinten kezeli le, így az IX nincs

konfliktusban egy másik IX-szel vagy IS-sel N-en.

Nézzük most az S-hez tartozó oszlopot. Az N csomópontnak megfeleltetett elem olvasása nincs

konfliktusban sem egy másik olvasási zárral N-en, sem egy olvasási zárral N egy részelemén, amelyet N-en

egy IS reprezentál. Emiatt „igen”-t találunk az S és az IS sorában is. Azonban egy X vagy egy IX azt jelenti,

hogy más tranzakció írni fogja legalább egy részét az N által reprezentált elemnek. Ezért nem tudjuk

engedélyezni N teljes olvasását. Ezt fejezik ki a megfelelő „nem” bejegyzések.

Végül az X oszlopban csak „nem” bejegyzések vannak. Nem tudjuk megengedni az N csomópont egyik

részének írását sem, ha más tranzakciónak már joga van arra, hogy olvassa vagy írja N-et, vagy arra, hogy

megszerezze ezt a jogot N egy részelemére.

Példa. Tekintsük a következő relációt:

Film(filmCím, év, hossz, stúdióNév)

Tételezzük fel, hogy a teljes relációra és az egyedi sorokra követelünk zárolást. Legyen T1 egy olyan

tranzakció, amely az alábbi kérdést tartalmazza:

SELECT * FROM Film WHERE filmCím = ’King Kong’;

T1 azzal kezdődik, hogy IS módon zárolja a teljes relációt. Ezután veszi az egyedi sorokat, és S módú

zárolást ad ki azokra, amelyekben a filmCím a megadottal egyezik (legyen két ilyen sor).

Tételezzük fel, hogy mialatt az első lekérdezést végezzük, elkezdődik a T2 tranzakció, amely a sorok év

komponensét változtatja meg:

UPDATE Film SET év = 1939 WHERE filmCím = ’Elfújta a szél’;

Ekkor T2-nek szüksége van a reláció IX módú zárolására, ugyanis azt tervezi, hogy új értéket ír be az egyik

sorba. Ez kompatibilis T1-nek a relációra vonatkozó IS zárolásával, így a zárat engedélyezzük. Amikor T2

elérkezik az „Elfújta a szél” című filmhez tartozó sorhoz, ezen a soron nem talál zárat, így megkapja az X

módú zárat, és módosítja a sort. Ha T2 a „King Kong” című filmek valamelyikéhez próbált volna új értéket

beírni, akkor várnia kellett volna, amíg T1 felszabadítja az S zárakat, ugyanis az S és az X nem

kompatibilisek. Az ábrán láthatjuk a zárak kollekcióját:

Film T1–IS

T2–IX

King Kong King Kong Elfújta a szél

T1–S T1–S T2–X

59

Csoportos mód a szándékzárolásokhoz

A fenti kompatibilitási mátrix olyan helyzetet mutat be, amelyet eddig még nem láttunk a zármódok erejét

illetően. A korábbi zárolási sémák többségében valahányszor lehetőségünk volt arra, hogy egy

adatbáziselemet egyszerre kétféle módban is zároljunk, ezek közül az egyik dominánsabb volt a másiknál.

Például az SXU zárolási séma esetén U dominánsabb S-nél, X pedig mindkettőnél. Egy előnye annak, hogy

tudjuk, mindig van egy domináns zár egy elemen, az, hogy több zárolás hatását össze tudjuk foglalni egy

csoportos móddal.

A figyelmeztető zárakat is alkalmazó zárolási séma esetén az S és az IX módok közül egyik sem

dominánsabb a másiknál. Továbbá egy elemet az S és IX módok mindegyikében zárolhatunk egyidejűleg,

feltéve hogy ugyanaz a tranzakció kérte a zárolást. (Vigyázzunk, hogy a „nem” bejegyzések a

kompatibilitási mátrixban csak azokra a zárakra alkalmazhatók, amelyeket más tranzakciók tartanak fenn.)

Egy tranzakció mindkét zárolást kérheti, ha egy teljes elemet akar beolvasni, és azután a részelemeknek

egy valódi részhalmazát akarja írni. Ha egy tranzakciónak S és IX zárolásai is vannak egy elemen, akkor

ez korlátozza a többi tranzakciót olyan mértékben, ahogy bármelyik zár teszi. Vagyis elképzelhetünk egy

új SIX zárolási módot, amelynek sorai és oszlopai a „nem” bejegyzést tartalmazzák az IS bejegyzés

kivételével mindenhol. Az SIX zárolási mód csoportmódként szolgál, ha van olyan tranzakció, amelynek

van S, illetve IX módú, de nincs X módú zárolása.

Elképzelhetjük ugyanezt a helyzetet a növelési zárolásokra, vagyis egy tranzakció S és I módban is

fenntarthatna zárakat. Ez a helyzet viszont ekvivalens az X módú zárolással, így ekkor X-et használhatnánk

csoportos módként.

Nem ismételhető olvasás és a fantomok

Tegyük fel, hogy van egy T1 tranzakció, amelyben egy lekérdezés sorokat válogat ki egy relációból. Ezután

egy T2 tranzakció módosít vagy töröl a táblából olyan sorokat, amelyek eleget tesznek a lekérdezés

feltételének. Ha ezután T1 újra megpróbálja beolvasni ezeket a sorokat, azt fogja tapasztalni, hogy bizonyos

sorok megváltoztak vagy eltűntek. Ezt a szituációt nem ismételhető olvasásnak (nonrepeatable read vagy

fuzzy read) nevezzük. A nem ismételhető olvasással az a probléma, hogy mást eredményez a lekérdezés

másodszori végrehajtása, mint az első. A tranzakció viszont elvárhatja, hogy ha többször végrehajtja

ugyanazt a lekérdezést, akkor mindig ugyanazt az eredményt kapja.

Ugyanez a helyzet akkor is, ha a T2 tranzakció nem töröl vagy módosít, hanem beszúr olyan sorokat,

amelyek eleget tesznek a lekérdezés feltételének. A lekérdezés másodszori futtatásakor most is más

eredményt kapunk, mint az első alkalommal. Ennek az az oka, hogy olyan sorok jelentek meg a relációban,

amelyek az első futtatáskor még nem is léteztek. Az ilyen sorokat nevezzük fantomoknak (phantom).

A fenti jelenségek olyan ritkán fordulnak elő a gyakorlatban, hogy a legtöbb adatbázis-kezelő rendszer

alapértelmezésben nem is figyel rájuk; annak ellenére, hogy mindkét jelenség nem sorbarendezhető

viselkedést eredményezhet. A felhasználó azonban kérheti, hogy a nem ismételhető olvasások és/vagy a

fantomolvasások ne fordulhassanak elő egy tranzakció végrehajtása során. Ehhez a tranzakció elkülönítési

szintjét kell módosítani (lásd később).

A nem ismételhető olvasásokat könnyű megakadályozni: T1-nek osztott zárat kell kérnie a lekérdezés által

kiválasztott sorokra. T2 így nem tudja azokat kizárólagosan zárolni, amíg T1 be nem fejeződik vagy nem

abortál. Könnyen megelőzhetjük a fantomolvasásokat is, ha többszörös szemcsézettségű zárakat

használunk: a T2 tranzakciónak X módban kell zárolnia a teljes relációt, mielőtt új sorokat szúrna be. Mivel

T1 korábban IS módban zárolta a relációt, ezt a kérést az ütemező először elutasítja, és csak akkor

engedélyezi, amikor a T1 tranzakció már befejeződött, elkerülve ezáltal a nem sorbarendezhető viselkedést.

60

Faprotokoll

Eddig a beágyazott szerkezetű adatbáziselemekből létrehozott fákkal foglalkoztunk, amelyekben a

gyerekek a szülők részei voltak. Most maguknak az elemeknek a kapcsolati sémájából álló fa struktúrákkal

foglalkozunk. Az adatbáziselemek diszjunkt adatdarabok, azonban csak egyféleképpen, a szülőkön

keresztül lehet elérni egy csomópontot. A B-fák az ilyen típusú adatoknak fontos példái. Tudjuk, hogy csak

egy bizonyos útvonalon jutunk el egy elemhez, és ez lényeges szabadságot ad nekünk abban, hogy a

kétfázisú zárolási megközelítéstől eltérő módon kezeljük a zárakat.

A fa alapú zárolások indítékai

Tekintsünk egy B-fa-indexet egy olyan rendszerben, amely az egyedi csomópontokat (blokkokat) zárolható

adatbáziselemekként kezeli. A csomópont a zárolás szemcsézettségének a megfelelő szintje, ugyanis nem

előnyös, ha kisebb darabokat kezelünk elemekként. Ha pedig a teljes B-fát kezeljük adatbáziselemként,

akkor ez megakadályozza az index olyan konkurens használatát, mint amilyen elérhető a következőkben

tárgyalt működési mechanizmus segítségével.

Ha a zármódoknak egy szabványos halmazát használjuk (mint az osztott, kizárólagos és módosítási zárak),

valamint használjuk a kétfázisú zárolást, akkor a B-fa konkurens használata szinte lehetetlen. Ennek az az

oka, hogy az indexet használó minden tranzakciónak a B-fa gyökér csomópontját kell először zárolnia. Ha

a tranzakció 2PL, akkor nem oldhatja fel a gyökéren a zárolást, amíg meg nem szerezte az összes zárat,

amelyre szüksége van, mind a B-fa csomópontjain, mind pedig más adatbáziselemeken. Továbbá mivel

elvben bármely tranzakció, amely beszúrásokat vagy törléseket végez, a B-fa gyökerének az átírásával

fejeződhet be, a tranzakciónak legalább egy módosítási zárolásra szüksége van a gyökér csomóponton

(vagy kizárólagosra, ha nincs módosítási mód). Így csak egyetlen nem csak olvasási tranzakció férhet hozzá

bármikor a B-fához.

Mégis az esetek többségében majdnem közvetlenül levezethetjük, hogy egy B-fa gyökér csomópontját nem

kell átírni, még akkor sem, ha a tranzakció beszúr vagy töröl egy sort. Például ha a tranzakció beszúr egy

sort, de a gyökérnek az a gyereke, amelyhez hozzáférünk, nincs teljesen tele, akkor tudjuk, hogy a beszúrás

nem gyűrűzik fel a gyökérig. Hasonlóan, ha a tranzakció egyetlen sort töröl, és a gyökérnek abban a

gyerekében, amelyhez hozzáfértünk, a minimálisnál több kulcs és mutató van, akkor biztosak lehetünk

abban, hogy a gyökér nem változik meg.

Így amikor a tranzakció a gyökérnek egyik gyereke felé irányul, és észleli azt a (teljesen szokványos)

helyzetet, ami kizárja a gyökér átírását (azaz látja, hogy a gyökér biztosan nem változik meg), azonnal

szeretnénk feloldani a gyökéren a zárat. Ugyanezt a megfigyelést alkalmazhatjuk a B-fa bármely belső

csomópontjának a zárolására is, bár a konkurens B-fánál a legtöbb lehetőség abból származik, hogy a

gyökéren a zárat korán oldjuk fel. Sajnos a gyökéren lévő zárolás korai feloldása ellentmond a 2PL-nek,

így nem lehetünk biztosak abban, hogy a B-fához hozzáférő tranzakcióknak az ütemezése sorba rendezhető

lesz. A megoldás egy speciális protokoll a B-fákhoz hasonló fa struktúrájú adatokhoz hozzáférő tranzakciók

részére. A protokoll ellentmond a 2PL-nek, de azt a tényt használja, hogy az elemekhez való hozzáférés

lefelé halad a fán a sorbarendezhetőség biztosítása érdekében.

Fa szerkezetű adatok hozzáférési szabályai

Az alábbi megszorítások a zárakon a faprotokollt (tree protocol) adják. Tételezzük fel, hogy csak egyféle

zár van, amelyet az li(X) alakú zárolási kérésekkel ábrázolunk, de ezt az ötletet bármely zárolási

módokból álló halmazra általánosíthatjuk. Tételezzük fel, hogy a tranzakciók konzisztensek, az ütemezések

jogszerűek (vagyis az ütemező csak akkor engedélyezi a kért zárolásokat, ha azok nincsenek konfliktusban

61

azokkal a zárakkal, amelyek már a csomóponton vannak), és ugyanakkor nincs kétfázisú zárolási

követelmény a tranzakciókon.

1. Egy tranzakciónak az első zárja a fa bármely csomópontján lehet. (A fenti példában az első zárnak

mindig a gyökéren kell lennie, mivel a B-fa keresőfa, amelyben a keresés mindig a gyökértől indul.)

2. Rákövetkező zárakat csak akkor lehet szerezni, ha a tranzakciónak jelenleg van zárja a szülő

csomóponton.

3. A csomópontok zárját bármikor feloldhatjuk.

4. Egy tranzakció nem zárolhatja újból azt a csomópontot, amelyen feloldotta a zárat, még akkor sem, ha

még tartja a csomópont szülőjén a zárat.

Példa. Az alábbi ábra a csomópontok hierarchiáját, a táblázat pedig ezeken az adatokon három tranzakció

műveleteit mutatja:

B

A

C

D E

F G

T1 T2 T3

l1(A); r1(A);

l1(B); r1(B);

l1(C); r1(C);

w1(A); u1(A);

l1(D); r1(D);

w1(B); u1(B);

 l2(B); r2(B);

 l3(E); r3(E);

w1(D); u1(D);

w1(C); u1(C);

 l2(E); elutasítva

 l3(F); r3(F);

 w3(F); u3(F);

 l3(G); r3(G);

 w3(E); u3(E);

 l2(E); r2(E);

 w3(G); u3(G);

 w2(B); u2(B);

 w2(E); u2(E);

T1 az A gyökéren kezdődik, és lefelé folytatódik B, C és D felé. T2 B-n kezdődik, és az E felé próbál haladni,

de először elutasítjuk, ugyanis T3-nak már van zárja E-n. A T3 tranzakció E-n kezdődik, és folytatja F-fel

és G-vel. T1 nem 2PL tranzakció, ugyanis A-n előbb töröljük a zárat, mint hogy megszerezzük a zárat D-n.

Hasonlóan T3 sem 2PL tranzakció, de T2 véletlenül éppen 2PL.

Miért működik a faprotokoll?

A faprotokoll jogszerű ütemezésben részt vevő konzisztens tranzakciókon konfliktus-sorbarendezhető

ütemezést eredményez. A következőképpen definiálhatjuk a megelőzési sorrendet: Azt mondjuk, hogy Ti

megelőzi Tj-t az S ütemezésben (Ti <S Tj), ha a Ti és Tj tranzakciók egyrészt közösen zárolnak egy

csomópontot, másrészt Ti zárolja a csomópontot először.

62

Példa. A fenti példa S ütemezésében T1 és T2 közösen zárolják B-t, és T1 zárolja először. Így T1 <S T2. Azt

találjuk még, hogy T2 és T3 közösen zárolják E-t, és T3 zárolja először, tehát T3 <S T2. T1 és T3 között

viszont nincs megelőzés, hiszen nincs olyan csomópont, amelyet közösen zárolnak. Az ezekből a

megelőzési relációkból levezetett megelőzési gráf a következő ábrán látható:

1

2

3

Ha a fent definiált megelőzési relációk alapján rajzolt megelőzési gráf nem tartalmaz kört, akkor azt állítjuk,

hogy a tranzakciók bármely topologikus sorrendje egy ekvivalens soros ütemezés. Ebben a példában vagy

a (T1, T3, T2) vagy a (T3, T1, T2) az ekvivalens soros ütemezés. Ennek az az oka, hogy az ilyen soros

ütemezésben minden egyes csomóponthoz ugyanabban a sorrendben nyúlnak a tranzakciók, mint az eredeti

ütemezésben.

Ahhoz, hogy megértsük, hogy a fent leírt megelőzési gráf miért lesz körmentes, ha betartjuk a faprotokoll

szabályait, először vegyük észre a következőt:

 Ha két tranzakció közösen zárol néhány elemet, akkor ugyanabban a sorrendben zárolják mindegyiket.

Bizonyítás: Tekintsünk valamilyen T és U tranzakciókat, amelyek két vagy több elemet közösen zárolnak.

Minden tranzakció fa formájú halmazát zárolja az elemeknek, és a két fa metszete maga is fa. Mivel most

T és U közösen zárolnak elemeket, a metszet nem lehet üres fa. Emiatt van egy „legmagasabb” X elem,

amelyet T és U is zárol. Tételezzük fel, hogy T zárolja X-et először, de van egy másik Y elem, amelyet U

előbb zárol, mint T. Ekkor az elemekből álló fában van út X-ből Y-ba, és T-nek is és U-nak is zárolnia kell

minden elemet az út mentén, ugyanis egyik sem zárolhat úgy egy csomópontot, hogy ne lenne már a

szülőjén zárja.

Tekintsük az első olyan elemet az út mentén, amelyet U zárol először, legyen ez Z. Ekkor T előbb zárolja

Z-nek a P szülőjét, mint U. Ekkor viszont T még mindig tartja a zárolást P-n, amikor zárolja Z-t, így U még

nem zárolhatta P-t, amikor Z-t zárolja. Az nem lehet, hogy Z lenne az első elem, amelyet T és U közösen

zárolnak, mivel mindkettő zárolta az ősét, X-et (amely lehet P is, csak Z nem). Így U addig nem zárolhatja

Z-t, amíg meg nem szerezte P-n a zárat, amely viszont azután van, hogy T zárolta Z-t. Arra következtetünk,

hogy T megelőzi U-t minden csomópontban, amelyet közösen zárolnak.

T z á r o l j a

e l ő b b

X

P

Z

Y

U z á r o l j a

e l ő b b

U z á r o l j a

e l ő b b

63

Most tekintsük a T1, T2, …, Tn tranzakciók tetszőleges halmazát, amely eleget tesz a faprotokollnak, és az

S ütemezésnek megfelelően zárolja a fa valamely csomópontjait. Azok a tranzakciók, amelyek zárolják a

gyökeret, ezt valamilyen sorrendben végzik, és olyan szabály alapján, amelyet éppen megfigyeltünk:

 Ha Ti előbb zárolja a gyökeret, mint Tj, akkor Ti minden Tj-vel közösen zárolt csomópontot előbb

zárol, mint Tj. Vagyis Ti <S Tj, de nem igaz Tj <S Ti.

A fa csomópontjainak száma szerinti teljes indukcióval megmutathatjuk, hogy a teljes tranzakcióhalmazhoz

létezik az S-sel ekvivalens soros sorrend:

Alapeset: Ha csak egyetlen csomópont van, a gyökér, akkor ahogyan már megfigyeltük, a megfelelő

sorrend az, amelyben a tranzakciók a gyökeret zárolják.

Indukció: Ha egynél több csomópont van a fában, tekintsük a gyökér mindegyik részfájához az olyan

tranzakciókból álló halmazt, amelyek egy vagy több csomópontot zárolnak abban a részfában. A gyökeret

zároló tranzakciók több részfához is tartozhatnak, de egy olyan tranzakció, amely nem zárolja a gyökeret,

csak egyetlen részfához tartozik. Például a fenti táblázatban található tranzakciók közül csak T1 zárolja a

gyökeret, és az mindkét részfához tartozik: a B gyökerű és a C gyökerű fához is. T2 és T3 viszont csak a B

gyökerű fához tartozik.

Az indukciós feltevés szerint létezik soros sorrend az összes olyan tranzakcióhoz, amelyek ugyanabban a

tetszőleges részfában zárolnak csomópontokat. Csupán egybe kell olvasztanunk a különböző részfákhoz

tartozó soros sorrendeket. Mivel a tranzakcióknak ezekben a listáiban csak azok a tranzakciók közösek,

amelyek zárolják a gyökeret, és megállapítottuk, hogy ezek a tranzakciók minden közös csomópontot

ugyanabban a sorrendben zárolnak, ahogy a gyökeret zárolják, nem fordulhat elő két gyökeret zároló

tranzakció különböző sorrendben két részlistán. Pontosabban: ha Ti és Tj előfordul a gyökér valamely C

gyermekéhez tartozó listán, akkor ezek C-t ugyanabban a sorrendben zárolják, mint a gyökeret, és emiatt a

listán is ebben a sorrendben fordulnak elő. Így felépíthetjük a soros sorrendet a teljes tranzakcióhalmazhoz

azokból a tranzakciókból kiindulva, amelyek a gyökeret zárolják, a megfelelő sorrendjükben, és

beleolvasztjuk azokat a tranzakciókat, amelyek nem zárolják a gyökeret, a részfák soros sorrendjével

konzisztens tetszőleges sorrendben.

Példa. Legyen T1, T2, …, T10 10 darab tranzakció, és ezekből T1, T2 és T3 ugyanebben a sorrendben zárolja

a gyökeret. Tegyük fel, hogy a gyökérnek van két gyereke, az elsőt T1-től T7-ig zárolják a tranzakciók, a

másikat pedig T2, T3, T8, T9 és T10 zárolja. Legyen az első részfához a soros sorrend

(T4, T1, T5, T2, T6, T3, T7). Ennek a sorrendnek T1-et, T2-t és T3-at ebben a sorrendben kell tartalmaznia.

A másik részfához tartozó soros sorrend legyen (T8, T2, T9, T10, T3). Mint az előző esetben, a T2 és T3

tranzakciók, amelyek a gyökeret zárolják, abban a sorrendben fordulnak elő, ahogyan a gyökeret zárolták.

Ezeknek a tranzakcióknak a soros sorrendjére felállított megszorításokat a következő ábra mutatja:

5

2

8

1 4 6

9 10

3

7

A folyamatos nyilak a gyökér első gyerekének a rendezése szerinti megszorításokat jelölik, a szaggatott

nyilak pedig a másik gyereknél lévő rendezést jelölik. Ennek a gráfnak több topologikus sorrendje létezik,

az egyik: (T4, T8, T1, T5, T2, T9, T6, T10, T3, T7).

64

Konkurenciavezérlés időbélyegzőkkel

A következőkben a zárolástól különböző két másik módszert nézünk meg, amelyeket néhány rendszerben

használnak a tranzakciók sorbarendezhetőségének biztosítására:

1. Időbélyegzés (timestamping, timestamp ordering – TO): Minden tranzakcióhoz hozzárendelünk egy

„időbélyegzőt”. Minden adatbáziselem utolsó olvasását és írását végző tranzakció időbélyegzőjét

rögzítjük, és összehasonlítjuk ezeket az értékeket, hogy biztosítsuk, hogy a tranzakciók

időbélyegzőinek megfelelő soros ütemezés ekvivalens legyen a tranzakciók tényleges ütemezésével.

2. Érvényesítés (validation): Megvizsgáljuk a tranzakciók időbélyegzőit és az adatbáziselemeket, amikor

a tranzakció véglegesítésre kerül. Ezt az eljárást a tranzakciók érvényesítésének nevezzük. Az a soros

ütemezés, amely az érvényesítési idejük alapján rendezi a tranzakciókat, ekvivalens kell, hogy legyen

a tényleges ütemezéssel.

Mindkét megközelítés optimista abban az értelemben, hogy feltételezik, nem fordul elő nem sorba

rendezhető viselkedés, és csak akkor tisztázza a helyzetet, amikor ez nyilvánvalóan nem teljesül. Ezzel

ellentétben minden zárolási módszer azt feltételezi, hogy „a dolgok rosszra fordulnak”, hacsak a

tranzakciókat azonnal meg nem akadályozzák abban, hogy nem sorba rendezhető viselkedésük alakuljon

ki. Az optimista megközelítések abban különböznek a zárolásoktól, hogy az egyetlen ellenszerük, amikor

valami rosszra fordul, hogy azt a tranzakciót, amely nem sorba rendezhető viselkedést okozna, abortálják,

majd újraindítják. A zárolási ütemezők ezzel ellentétben késleltetik a tranzakciókat, de nem abortálják őket,

hacsak nem alakul ki holtpont. (Késleltetés az optimista megközelítések esetén is előfordulhat, annak

érdekében, hogy kevesebb abortálásra legyen szükség.) Általában az optimista ütemezők akkor jobbak a

zárolásinál, amikor sok tranzakció csak olvasási műveleteket hajt végre, ugyanis az ilyen tranzakciók

önmagukban soha nem okozhatnak nem sorba rendezhető viselkedést.

Időbélyegzők

Annak érdekében, hogy az időbélyegzést konkurenciavezérlési módszerként használjuk, az ütemezőnek

minden egyes T tranzakcióhoz hozzá kell rendelnie egy egyedi számot, a TS(T) időbélyegzőt (timestamp).

Az időbélyegzőket növekvő sorrendben kell kiadni abban az időpontban, amikor a tranzakció az

elindításáról először értesíti az ütemezőt. Két lehetséges megközelítés az időbélyegzők generálásához:

a) Az egyik lehetőség, hogy az időbélyegzőket a rendszeróra felhasználásával hozzuk létre, feltéve, hogy

az ütemező nem működik annyira gyorsan, hogy két tranzakcióhoz ugyanazt az értéket rendelné

időbélyegzőként.

b) A másik megközelítés szerint az ütemező karbantart egy számlálót. Minden alkalommal, amikor egy

tranzakció elindul, a számláló növekszik eggyel, és ez az új érték lesz a tranzakció időbélyegzője. Ebben

a megközelítésben az időbélyegzőknek semmi közük sincs az időhöz, azonban azzal a – bármely

időbélyegző-generáló rendszer esetén szükséges – fontos tulajdonsággal rendelkeznek, miszerint egy

később elindított tranzakció nagyobb időbélyegzőt kap, mint egy korábban elindított tranzakció.

Bármelyik módszert is használjuk az időbélyegzők generálására, az ütemezőnek karban kell tartania a

jelenleg aktív tranzakciók és időbélyegzőik tábláját.

Ahhoz, hogy időbélyegzőket használjunk konkurenciavezérlési módszerként, minden egyes X

adatbáziselemhez hozzá kell rendelnünk két időbélyegzőt és esetlegesen egy további bitet:

1. RT(X): X olvasási ideje (read time), amely a legmagasabb időbélyegző, ami egy olyan tranzakcióhoz

tartozik, amely már olvasta X-et.

2. WT(X): X írási ideje (write time), amely a legmagasabb időbélyegző, ami egy olyan tranzakcióhoz

tartozik, amely már írta X-et.

65

3. C(X): X véglegesítési bitje (commit bit), amely akkor és csak akkor igaz, ha a legújabb tranzakció,

amely X-et írta, már véglegesítve van. Ez a bit nem feltétlenül szükséges, és az a célja, hogy elkerüljük

azt a helyzetet, amelyben egy T tranzakció egy másik U tranzakció által írt adatokat olvas be, és utána

U-t abortáljuk. Ez a probléma, amikor T nem véglegesített adatok „piszkos olvasását” hajtja végre, az

adatbázis-állapot inkonzisztenssé válását is okozhatja. Így bármely ütemezőhöz szükség van olyan

mechanizmusra, amely megakadályozza a piszkos olvasást (bár a gyakorlatban az adatbázis-kezelő

rendszerek általában a felhasználóra bízzák, hogy megengedhetők-e a piszkos olvasások; lásd később a

„nem olvasásbiztos” tranzakcióelkülönítési szintet).

Fizikailag nem megvalósítható viselkedések

Hogy megértsük az időbélyegzőn alapuló ütemező felépítését és szabályait, tudnunk kell, hogy az ütemező

feltételezi, hogy a tranzakciók időbélyegző szerinti sorrendje egyúttal olyan soros sorrend, amely a

végrehajtás sorrendjét is jelenti. Így az ütemező feladata azon túl, hogy hozzárendeli az időbélyegzőket a

tranzakciókhoz, és módosítja RT-t, WT-t és C-t az egyes adatbáziselemekhez kötődően, még az is, hogy

ellenőrzi, amikor egy olvasás vagy írás fordul elő, hogy az úgy történt volna-e valós időben is, ha minden

tranzakciót azonnal, az időbélyegző által jelzett időpillanatban hajtottunk volna végre. Ha nem, akkor azt

mondjuk, hogy a viselkedés fizikailag nem megvalósítható (physically unrealizable behavior). Kétféle

probléma merülhet fel:

1. Túl késői olvasás (read too late): A T1 tranzakció megpróbálja olvasni az X adatbáziselemet, de X írási

ideje azt jelzi, hogy X jelenlegi értékét azután írtuk, miután T1-et már elméletileg végrehajtottuk, vagyis

TS(T1) < WT(X). A következő ábra mutatja ezt a problémát:

r1(X)

w2(X)

TS(T2) TS(T1)

A vízszintes tengely jelenti a valós időt. A szaggatott vonalak kapcsolják össze a tényleges eseményt

azzal az időponttal, amikor a tranzakciók időbélyegzője szerint elméletileg végre kellett volna hajtani

az eseményt. Látjuk, hogy a T2 tranzakciót a T1 tranzakció után indítottuk el, mégis X értékét előbb írta,

mint hogy T1 beolvasta volna. T1-nek nem a T2 által írt értéket kellene olvasnia, ugyanis elméletileg

T2-t T1 után hajtjuk végre. T1-nek viszont nincs más választása, ugyanis X-nek a T2 által írt értéke az

egyetlen, amelyet T1 most be tud olvasni. A megoldás, hogy T1-et abortáljuk, amikor ez a probléma

felmerül.

2. Túl késői írás (write too late): A T1 tranzakció megpróbálja írni az X adatbáziselemet, de X olvasási

ideje azt jelzi, hogy van egy másik tranzakció is, amelynek a T1 által beírt értéket kellene olvasnia, ám

ehelyett más értéket olvas, vagyis TS(T1) < RT(X). A következő ábra mutatja ezt a problémát:

66

w1(X)

r2(X)

TS(T2) TS(T1)

Az ábra egy T2 tranzakciót mutat, amelyet T1 után indítottunk el, mégis előbb olvassa X-et, mint T1-

nek lehetősége lett volna írni. Amikor T1 megpróbálja írni X-et, úgy találjuk, hogy RT(X) > TS(T1),

ami azt jelenti, hogy a T2 tranzakció már beolvasta X-et, amelyet elméletileg T1 végrehajtása után kellett

volna elvégeznie.

A piszkos adatok problémái

Van egy problémákból álló osztály, amelynek kezelésére bevezették a véglegesítési bitet. A problémák

egyike a „piszkos olvasás”, amelyet a következő ábra szemléltet:

r2(X)

w1(X)

TS(T2)

TS(T1)

ABORT(T1)

Itt a T2 tranzakció olvassa X-et, amelyet utoljára T1 írt. T1 időbélyegzője kisebb, mint T2-é, és a valóságban

a T2 általi olvasás a T1 általi írás után történik, tehát úgy tűnik, hogy az esemény fizikailag megvalósítható.

Mégis lehetséges, hogy miután T2 beolvasta a T1 által X-be írt értéket, a T1 tranzakciót abortáljuk; például

azért, mert T1 talált valami hibát a saját működésében (például nullával való osztás), vagy az ütemező

kényszeríti ki T1 abortálását, mivel az valamilyen fizikailag nem megvalósítható viselkedést eredményező

műveletet próbált végezni. Így, bár nincs fizikailag nem megvalósítható abban, hogy T2 olvassa X-et, mégis

jobb a T2 általi olvasást azutánra elhalasztani, hogy T1 véglegesítését vagy abortálását már elvégeztük,

különben az ütemezésünk nem lesz konfliktus-sorbarendezhető. Azt, hogy T1 még nincs véglegesítve,

onnan tudjuk, hogy a C(X) véglegesítési bit hamis.

A piszkos olvasás problémája véglegesítési bit nélkül is megoldható: Amikor abortálunk egy T tranzakciót,

meg kell néznünk, hogy vannak-e olyan tranzakciók, amelyek olvastak egy vagy több T által írt

adatbáziselemet. Ha igen, akkor azokat is abortálnunk kell. Ebből aztán további abortálások

következhetnek, azokból megint újabbak, és így tovább. Ezt a szituációt kaszkádolt visszagörgetésnek

(cascading rollback) nevezzük. Ez a megoldás azonban alacsonyabb fokú konkurenciát engedélyez, mint a

véglegesítési bit bevezetése és a késleltetés, ráadásul előfordulhat, hogy nem helyreállítható ütemezést

(nonrecoverable schedule) kapunk. Ez abban az esetben következik be, ha az egyik abortálandó tranzakciót

már véglegesítettük.

Drasztikus, de nagyon egyszerű megoldás a piszkos olvasás problémájára, hogy minden olyan tranzakciót

abortálunk, amely piszkos adatot szeretne olvasni. Végül megoldást jelenthet a többváltozatú időbélyegzés

alkalmazása is (lásd később).

Egy másik lehetséges problémát a következő ábra szemléltet:

67

w1(X)

w2(X)

TS(T2)

TS(T1) COMMIT(T1) ABORT(T2)

Itt T2, a T1-nél későbbi időbélyegzővel rendelkező tranzakció írja először X-et. Amikor T1 írni próbál, a

megfelelő művelet semmit sem végez, tehát elhagyható. Nyilvánvalóan nincs más T3 tranzakció, amelynek

X-ből a T1 által beírt értéket kellene beolvasnia, és ehelyett a T2 által írt értéket olvasná, ugyanis ha T3

megpróbálná olvasni X-et, abortálnia kellene a túl késői olvasás miatt. X későbbi olvasásainál a T2 által írt

értéket kell olvasni, vagy X még későbbi, de nem T1 által írt értékét. Ezt az ötletet, miszerint azokat az

írásokat kihagyhatjuk, amelyeknél későbbi írási idejű írást már elvégeztünk, Thomas-féle írási szabálynak

(Thomas’ write rule) nevezzük.

A Thomas-féle írási szabállyal azonban van egy lényegi probléma. Ha T2-t később abortáljuk, amint az az

ábrán látható, akkor X-nek a T2 által írt értékét ki kell törölnünk, továbbá az előző értéket és írási időt vissza

kell állítanunk. Minthogy T1-et véglegesítettük, úgy látszik, hogy X T1 által írt értékét kell a későbbi

olvasásokhoz használnunk. Mi viszont kihagytuk a T1 általi írást, és már túl késő, hogy helyrehozhassuk

ezt a hibát.

A problémát a következőképpen kezelhetjük: Amikor a T1 tranzakció írja az X adatbáziselemet, és azt

látjuk, hogy X írási ideje nagyobb T1 időbélyegzőjénél (azaz TS(T1) < WT(X)), valamint hogy az X-et író

tranzakció (T2) még nincs véglegesítve (azaz C(X) hamis), akkor T1-et késleltetjük mindaddig, amíg C(X)

igazzá nem válik; vagy azért, mert T2 véglegesítődik, vagy azért, mert abortál. Ha T2 véglegesítődik, akkor

T1 írását elhagyjuk, ha viszont abortál, akkor végrehajtjuk.

Természetesen most is létezik másik megoldás: a fenti feltételek teljesülése esetén T1-et a késleltetés helyett

egyszerűen visszagörgetjük. Nyilván ez a megoldás alacsonyabb fokú konkurenciát engedélyez, mint a

véglegesítési bit bevezetése és a késleltetés, ráadásul ha a piszkos olvasásokat is visszagörgetéssel kezeljük,

akkor ez az abortálás tovább növeli a kaszkádolt visszagörgetés és a nem helyreállítható ütemezés

kockázatát. Végül a harmadik megoldás ebben az esetben is a többváltozatú időbélyegzés alkalmazása.

Látható, hogy az időbélyegzési technika alapváltozatában (amikor nem használunk véglegesítési bitet és

nincs késleltetés) nem léphet fel holtponti helyzet, előfordulhat viszont kaszkádolt visszagörgetés és nem

helyreállítható ütemezés.

Az időbélyegzőn alapuló ütemezések szabályai

Összegezhetjük azokat a szabályokat, amelyeket az időbélyegzőket használó ütemezőnek követnie kell

ahhoz, hogy biztosan konfliktus-sorbarendezhető ütemezést kapjunk. Mi most az időbélyegzésnek a

véglegesítési bittel bővített változatát tekintjük. Az ütemezőnek egy T tranzakciótól érkező olvasási vagy

írási kérésre adott válaszában az alábbi választásai lehetnek:

a) Engedélyezi a kérést.

b) Abortálja T-t (ha T „megsérti a fizikai valóságot”), és egy új időbélyegzővel újraindítja. Azt az

abortálást, amelyet újraindítás követ, gyakran visszagörgetésnek (rollback) nevezzük.

c) Késlelteti T-t, és később dönti el, mi történjen (ha a kérés olvasás, és az olvasás piszkos is lehet, illetve

ha a kérés írás, és alkalmazható lehet a Thomas-féle írási szabály).

68

A szabályok a következők:

1. Tegyük fel, hogy az ütemezőhöz érkező kérés rT(X):

a) Ha TS(T)  WT(X), az olvasás fizikailag megvalósítható:

i) Ha C(X) igaz vagy TS(T) = WT(X), engedélyezzük a kérést. Ha TS(T) > RT(X), akkor

RT(X) := TS(T), egyébként nem változtatjuk meg RT(X)-et.

ii) Ha C(X) hamis és TS(T) > WT(X), késleltessük T-t addig, amíg C(X) igazzá nem válik (azaz

az X-et utoljára író tranzakció nem véglegesítődik vagy abortál).

b) Ha TS(T) < WT(X), az olvasás fizikailag nem megvalósítható: Visszagörgetjük T-t, vagyis

abortáljuk, és újraindítjuk egy új, nagyobb időbélyegzővel.

2. Tegyük fel, hogy az ütemezőhöz érkező kérés wT(X):

a) Ha TS(T)  RT(X) és TS(T)  WT(X), az írás fizikailag megvalósítható, és az alábbiakat kell

végrehajtani:

i) X új értékének beírása;

ii) WT(X) := TS(T);

iii) C(X) := hamis.

b) Ha TS(T)  RT(X), de TS(T) < WT(X), akkor az írás fizikailag megvalósítható, de X-nek már

egy későbbi értéke van.

i) Ha C(X) igaz, az X előző írását végző tranzakció véglegesítve van, így egyszerűen figyelmen

kívül hagyjuk X T általi írását; megengedjük, hogy T folytatódjon, és ne változtassa meg az

adatbázist.

ii) Ha viszont C(X) hamis, akkor késleltetnünk kell T-t, mégpedig az 1. a) ii) pontban leírtak

szerint.

c) Ha TS(T) < RT(X), az írás fizikailag nem megvalósítható, és T-t vissza kell görgetnünk.

3. Tegyük fel, hogy az ütemezőhöz érkező kérés T véglegesítése (COMMIT T). Meg kell találnunk (egy,

az ütemező által karbantartott lista alapján) az összes olyan X adatbáziselemet, amelybe T írt utoljára

(WT(X) = TS(T)), és állítsuk be a hozzájuk tartozó C(X) biteket igazra. Ha vannak X

„véglegesítésére” várakozó tranzakciók az 1. a) ii) és a 2. b) ii) pontoknak megfelelően (ezeket a

tranzakciókat az ütemező egy másik listáján találjuk meg), akkor meg kell ismételnünk ezen tranzakciók

olvasási vagy írási kísérleteit.

4. Tegyük fel, hogy az ütemezőhöz érkező kérés T abortálása (ABORT T) vagy visszagörgetése, mint az

1. b) vagy a 2. c) esetben. Ekkor visszavonjuk az abortált tranzakció azon írásait, amelyek olyan X

adatbáziselemekre vonatkoznak, amelyekre WT(X) = TS(T). Ez azt jelenti, hogy visszaállítjuk ezen

adatbáziselemeknek és azok írási idejének régi értékét (azt, amelyik a legnagyobb írási időhöz tartozik),

valamint igazra állítjuk a véglegesítési bitet, ha az írási időhöz tartozó tranzakció már véglegesítődött.

Ezenkívül „visszavonjuk” T olvasásait is, azaz visszaállítjuk az olyan T által olvasott adatbáziselemek

olvasási idejének régi (legnagyobb) értékét, amelyekre RT(X) = TS(T). Ezután bármely olyan

tranzakcióra, amely egy X elem T általi írása miatt várakozik (1. a) ii) és 2. b) ii)), meg kell ismételnünk

az olvasási vagy írási kísérletet, és meglátjuk, hogy a művelet most jogszerű-e.

Példa. A következő ábrán három tranzakció (T1, T2 és T3) ütemezése látható, amelyek három

adatbáziselemhez (A, B és C) férnek hozzá:

69

T1 T2 T3 A B C

200 150 175 RT = 0 RT = 0 RT = 0
 WT = 0 WT = 0 WT = 0
 C = igaz C = igaz C = igaz

r1(B); RT = 200

 r2(A); RT = 150

 r3(C); RT = 175
w1(B); WT = 200

C = hamis

w1(A); WT = 200

C = hamis

 w2(C);

 abortál RT = 0

véglegesítődik C = igaz C = igaz

 w3(A);

Az események előfordulásának ideje szokás szerint lefelé nő. Legyen kezdetben minden adatbáziselemhez

az olvasási és az írási idő is 0. A tranzakciók abban a pillanatban kapnak időbélyegzőt, amikor értesítik az

ütemezőt az elindításukról. Most például bár T1 hajtja végre az első adathozzáférést, mégsem neki van a

legkisebb időbélyegzője. Tegyük fel, hogy T2 az első, amelyik az indításáról értesíti az ütemezőt, T3 volt a

következő, és T1-et indítottuk el utoljára.

Az első műveletben T1 beolvassa B-t. Mivel B írási ideje kisebb, mint T1 időbélyegzője, ez az olvasás

fizikailag megvalósítható, és engedélyezzük a végrehajtást. B olvasási idejét 200-ra, T1 időbélyegzőjére

állítjuk. A második és a harmadik olvasási művelet hasonlóan jogszerű, és mindegyik adatbáziselem

olvasási idejének értékét az őt olvasó tranzakció időbélyegzőjére állítjuk.

A negyedik lépésben T1 írja B-t. Mivel B olvasási ideje nem nagyobb, mint T1 időbélyegzője, az írás

fizikailag megvalósítható. Mivel B írási ideje nem nagyobb, mint T1 időbélyegzője, ténylegesen végre kell

hajtanunk az írást. Amikor ezt elvégeztük, B írási idejét 200-ra növeljük, amely az őt felülíró T1 tranzakció

időbélyegzője. Ezután hasonlóan járunk el A-val.

Ezután T2 megpróbálja írni C-t. C-t viszont már beolvasta a T3 tranzakció, amelyet elméletileg a 175-ös

időpontban hajtottunk végre, míg T2-nek az értéket a 150-es időpontban kellett volna beírnia. Így T2 olyan

dologgal próbálkozik, amely fizikailag nem megvalósítható viselkedést eredményezne, tehát T2-t vissza

kell görgetnünk.

Az utolsó lépés, hogy T3 írja A-t. Mivel A olvasási ideje (150) kevesebb, mint T3 időbélyegzője (175), az

írás jogszerű. Viszont A-nak már egy későbbi értéke van tárolva ebben az adatbáziselemben, mégpedig a

T1 által – elméletileg a 200-as időpontban – beírt érték. T3-at tehát nem görgetjük vissza, de be sem írjuk

az értéket. (Feltesszük, hogy T1 időközben véglegesítődött.)

Többváltozatú időbélyegzés

Az időbélyegzés egyik fontos változata, a többváltozatú időbélyegzés (multiversion timestamping,

multiversion timestamp ordering – MVTO, multiversion concurrency control – MVCC) karbantartja az

adatbáziselemek régi változatait is a magában az adatbázisban tárolt jelenlegi változaton kívül. A cél az,

hogy megengedjünk olyan rT(X) olvasásokat, amelyek egyébként a T tranzakció abortálását okoznák

(ugyanis X jelenlegi változatát egy T-nél későbbi tranzakció írta felül). Ilyenkor T-t X megfelelő régebbi

változatának beolvasásával folytatjuk. A módszer különösen hasznos, ha az adatbáziselemek lemezblokkok

vagy lapok, ugyanis ekkor csak annyit kell a pufferkezelőnek biztosítania, hogy bizonyos blokkok a

memóriában legyenek, amelyek néhány jelenleg aktív tranzakció számára hasznosak lehetnek.

Példa. Tekintsük a következő ábrán szereplő, az A adatbáziselemhez hozzáférő tranzakciókat:

70

T1 T2 T3 T4 A

150 200 175 225 RT = 0
 WT = 0

r1(A); RT = 150
w1(A); WT = 150

 r2(A); RT = 200
 w2(A); WT = 200
 r3(A);

 abortál

 r4(A); RT = 225

Ezek a tranzakciók egy hagyományos, időbélyegzőn alapuló ütemező alatt működnek. Amikor T3

megpróbálja olvasni A-t, azt találja, hogy WT(A) nagyobb, mint a saját időbélyegzője, így abortálni kell.

Viszont megvan A-nak a T1 által írt, és a T2 által felülírt régi értéke, amely alkalmas lenne T3-nak, hogy

olvassa. Ebben a változatában A-nak 150 volt az írási ideje, ami kevesebb, mint T3 175-ös időbélyegzője.

Ha A-nak ez a régi értéke hozzáférhető lenne, T3 engedélyt kaphatna az olvasásra, még ha ez A-nak nem is

a „jelenlegi” értéke.

A többváltozatú időbélyegzést használó ütemező az alábbiakban különbözik a fent leírt ütemezőtől:

1. Amikor egy új wT(X) írás fordul elő, ha ez jogszerű, akkor az X adatbáziselemnek egy új változatát

hozzuk létre, amelynek az írási ideje TS(T), és Xt-vel fogunk rá hivatkozni, ahol t = TS(T).

2. Amikor egy rT(X) olvasás fordul elő, az ütemező megkeresi X-nek azt az Xt változatát, amelyre

t  TS(T), de nincs más Xt’ változata, amelyre t < t’  TS(T) lenne. Vagyis X-nek azt a változatát

olvassa be T, amelyet T elméleti végrehajtása előtt közvetlenül írtak.

3. Az írási időket egy elem változataihoz rendeljük, és soha nem változtatjuk meg.

4. Az olvasási időket szintén rendelhetjük a változatokhoz. Arra használjuk őket, hogy ne kelljen

visszautasítanunk bizonyos írásokat, mégpedig azokat, amelyek ideje nagyobb vagy egyenlő, mint az

őt időben közvetlenül megelőző változat olvasási ideje. Ha csak az utolsó változat olvasási idejét

tartanánk nyilván, akkor az ilyen írásokat el kellene utasítanunk. A problémát a következő ábra

szemlélteti:

R T 1 0 0 = 1 1 0

X 5 0 X 1 0 0

7 0 - e s i d ő b é l y e g z ő j ű

t r a n z a k c i ó í r á s a

R T 5 0 = 6 0

X változatai X50 és X100. X50 a 60-as időpontban olvasásra került, és megjelent a 70-es időbélyegzőjű T

tranzakció általi új írás. Ez az írás jogszerű, mert RT50  TS(T). Ha csak az utolsó változat 110-es

olvasási idejét tárolnánk, akkor erről az írásról nem tudnánk eldönteni, hogy jogszerű-e, ezért

abortálnunk kellene T-t.

5. Amikor egy Xt változat t írási ideje olyan, hogy nincs t-nél kisebb időbélyegzőjű aktív tranzakció,

akkor törölhetjük X-nek az Xt-t megelőző változatait.

Példa. Tekintsük újból az előző példában szereplő műveleteket, de most használjunk többváltozatú

időbélyegzést:

71

T1 T2 T3 T4 A0 A150 A200

150 200 175 225 RT = 0

r1(A); olvasás,

RT = 150

w1(A); létrehozás,

RT = 150

 r2(A); olvasás,

RT = 200

 w2(A); létrehozás,

RT = 200
 r3(A); olvasás

 r4(A); olvasás,

RT = 225

A-nak három változata létezik: A0, amelyik a tranzakciók elindítása előtt létezik, A150, amelyet T1 írt, és

A200, amelyet T2 írt. Az ábra mutatja azt az eseménysorozatot, amikor az egyes változatokat létrehozzuk,

illetve beolvassuk. T3-at most nem kell abortálni, ugyanis be tudja olvasni A-nak egy korábbi változatát.

A többváltozatú időbélyegzés tehát kiküszöböli a túl késői olvasásokat. Mi a helyzet a piszkos olvasással

és a Thomas-féle írási szabály problémájával? Piszkos olvasás most is előfordulhat, de most nemcsak a

tranzakció késleltetésével vagy abortálásával tehetünk ellene, hanem azzal is, hogy olvasáskor megkeressük

az adatbáziselem utolsó olyan változatát, amelyet vagy maga az olvasó tranzakció, vagy egy, az olvasó

tranzakció indulásakor már véglegesített tranzakció hozott létre. Így sosem olvasunk piszkos adatot, nem

kell késleltetnünk egy tranzakciót sem, ráadásul nem fordulhat elő túl késői írás sem, hiszen a „túl későn

író” tranzakció még nem lehetett véglegesítve az olvasó tranzakció indulásakor, amelynek emiatt nincs

szüksége a „túl későn írt” értékre. Ezt a technikát (amelyet az Oracle is alkalmaz) pillanatkép-

elkülönítésnek (snapshot isolation) nevezzük. Hátránya, hogy nem garantálja a sorbarendezhetőséget.

A Thomas-féle írási szabály pedig nem alkalmazható többváltozatú időbélyegzés esetén (legalábbis eredeti

formájában), még akkor is létrehozzuk az adatbáziselem „új” változatát, ha az régebbi, mint a legújabb

változat.

Időbélyegzők és zárolások

Általában az időbélyegzés azokban a helyzetekben kiváló, amikor a tranzakciók többsége csak olvasási,

vagy ritka az az eset, hogy konkurens tranzakciók ugyanazt az elemet próbálják meg olvasni és írni. Az

erősen konfliktusos helyzetekben jobb a zárolásokat használni. Ehhez az ökölszabályhoz az érvek az

alábbiak:

 A zárolások gyakran késleltetik a tranzakciókat azzal, hogy a zárakra várnak, és még holtpontok is

kialakulhatnak, amikor néhány tranzakció hosszú ideje várakozik, és ekkor az egyiket vissza kell

görgetni.

 Időbélyegzés használatakor viszont ha a konkurens tranzakciók gyakran olvasnak és írnak közös

elemeket, akkor a visszagörgetés lesz gyakori, ami még több késedelmet okoz, mint egy zárolási

rendszer.

Bizonyos rendszerek érdekes kompromisszumot alkalmaznak: Az ütemező felosztja a tranzakciókat csak

olvasási tranzakciókra és olvasási/írási tranzakciókra. Az olvasási/írási tranzakciókat kétfázisú zárolást

használva hajtjuk végre úgy, hogy a zárolt elemek hozzáférését megakadályozzuk a többi tranzakciónak. A

csak olvasási tranzakciókat a többváltozatú időbélyegzéssel hajtjuk végre. Amikor az olvasási/írási

tranzakciók létrehozzák egy adatbáziselem új változatait, ezeket a változatokat úgy kezeljük, ahogyan

fentebb leírtuk. Egy csak olvasási tranzakciónak megengedjük, hogy egy adatbáziselem bármelyik olyan

változatát olvassa, amely korábban jött létre, mint a tranzakció időbélyegzője. Csak olvasási tranzakciókat

emiatt soha nem kell abortálnunk, és csak nagyon ritkán kell késleltetnünk.

72

Konkurenciavezérlés érvényesítéssel

Az érvényesítés (validation, Kung–Robinson-modell) az optimista konkurenciavezérlés másik típusa,

amelyben a tranzakcióknak megengedjük, hogy zárolások nélkül hozzáférjenek az adatokhoz, és a

megfelelő időben ellenőrizzük a tranzakció sorba rendezhető viselkedését. Az érvényesítés alapvetően

abban különbözik az időbélyegzéstől, hogy itt az ütemező nyilvántartást vezet arról, mit tesznek az aktív

tranzakciók, ahelyett hogy az összes adatbáziselemhez feljegyezné az olvasási és írási időt. Mielőtt a

tranzakció írni kezdene értékeket az adatbáziselemekbe, egy „érvényesítési fázison” megy keresztül,

amikor a beolvasott és kiírandó elemek halmazait összehasonlítjuk más aktív tranzakciók írásainak

halmazaival. Ha fellép a fizikailag nem megvalósítható viselkedés kockázata, a tranzakciót visszagörgetjük.

Az érvényesítésen alapuló ütemező felépítése

Ha az érvényesítést használjuk konkurenciavezérlési módszerként, az ütemezőnek meg kell adnunk minden

T tranzakcióhoz a T által olvasott és a T által írt adatbáziselemek halmazát: RS(T) az olvasási halmaz,

WS(T) az írási halmaz. A tranzakciókat három fázisban hajtjuk végre:

1. Olvasás. Az első fázisban a tranzakció beolvassa az adatbázisból az összes szükséges elemet az olvasási

halmazába, majd kiszámítja a lokális változóiban az összes eredményt, amelyet ki fog írni, ezzel

meghatározva az írási halmazt is.

2. Érvényesítés. A második fázisban az ütemező érvényesíti a tranzakciót oly módon, hogy összehasonlítja

az olvasási és írási halmazait a többi tranzakcióéval. Az érvényesítési eljárást később részletezzük. Ha

az érvényesítés hibát jelez, akkor a tranzakciót visszagörgetjük, egyébként pedig folytatódik a harmadik

fázissal.

3. Írás. A harmadik fázisban a tranzakció az írási halmazában lévő elemek értékeit kiírja az adatbázisba.

Intuitív alapon minden sikeresen érvényesített tranzakcióról azt gondolhatjuk, hogy az érvényesítés

pillanatában került végrehajtásra. Így az érvényesítésen alapuló ütemező a tranzakciók feltételezett soros

sorrendjével dolgozik. Annak a döntésnek az alapja, hogy érvényesítsen-e egy tranzakciót vagy sem, az,

hogy a tranzakciók viselkedése konzisztens legyen ezzel a soros sorrenddel. A döntés segítéséhez az

ütemező fenntart három halmazt:

1. KEZD: a már elindított, de még nem teljesen érvényesített tranzakciók halmaza. Ebben a halmazban az

ütemező minden T tranzakcióhoz karbantartja KEZD(T)-t, amely T indításának időpontja.

2. ÉRV: a már érvényesített, de a harmadik fázisban az írásokat még be nem fejezett tranzakciók halmaza.

Ebben a halmazban az ütemező minden T tranzakcióhoz karbantartja KEZD(T)-t, és T

érvényesítésekor ÉRV(T)-t. ÉRV(T) az az idő, amikor T végrehajtását gondoljuk a végrehajtás

feltételezett soros sorrendjében.

3. BEF: a harmadik fázist befejezett tranzakciók halmaza. Ezekhez a T tranzakciókhoz az ütemező rögzíti

KEZD(T)-t, ÉRV(T)-t, és T befejezésekor BEF(T)-t. Elméletben ez a halmaz nő, de – mint látni

fogjuk – nem kell megjegyeznünk a T tranzakciót, ha BEF(T) < KEZD(U) bármely U aktív

tranzakcióra (vagyis U  KEZD  ÉRV esetén). Az ütemező így időnként tisztogathatja a BEF

halmazt, hogy megakadályozza méretének korlátlan növekedését.

Az érvényesítési szabályok

Ha az ütemező elvégzi a fenti halmazok karbantartását, akkor segítségükkel észlelheti a tranzakciók

feltételezett soros sorrendjének (azaz a tranzakciók érvényesítési sorrendjének) bármely lehetséges

73

megsértését. A szabályok megértése végett először vizsgáljuk meg, hogy mi lehet hibás, amikor a T

tranzakciót megpróbáljuk érvényesíteni:

1. Tegyük fel, hogy van olyan U tranzakció, melyre teljesülnek a következő feltételek:

a) U  ÉRV  BEF, vagyis U-t már érvényesítettük.

b) BEF(U) > KEZD(T), vagyis U nem fejeződött be T indítása előtt. (Ha U  ÉRV, vagyis U még

nem fejeződött be T érvényesítésekor, akkor BEF(U) technikailag nem definiált, de az biztos, hogy

KEZD(T)-nél nagyobbnak kell lennie.)

c) RS(T)  WS(U)  , legyen X egy eleme ennek a halmaznak.

Ekkor lehetséges, hogy U azután írja X-et, miután T olvassa azt („túl korai olvasás”). Elképzelhető az

is, hogy U még nem írta X-et. Az előbbi eset a következő ábrán látható:

wU(X)

rT(X)

KEZD(T) KEZD(U) ÉRV(U) ÉRV(T)

A szaggatott vonalak kapcsolják össze a valós idejű eseményeket azzal az idővel, amikor be kellett

volna következniük, ha a tranzakciókat az érvényesítés pillanatában hajtottuk volna végre. Mivel nem

tudjuk, hogy T beolvasta-e az U-tól származó értéket, vissza kell görgetnünk T-t, hogy elkerüljük annak

kockázatát, hogy T és U műveletei nem lesznek konzisztensek a feltételezett soros sorrenddel.

2. Tegyük fel, hogy van olyan U tranzakció, melyre teljesülnek a következő feltételek:

a) U  ÉRV, vagyis U-t már érvényesítettük.

b) BEF(U) > ÉRV(T), vagyis U-t nem fejeztük be, mielőtt T az érvényesítési fázisába lépett. (Ez a

feltétel valójában mindig teljesül, mivel U még biztosan nem fejeződött be.)

c) WS(T)  WS(U)  , legyen X egy eleme ennek a halmaznak.

Ekkor a lehetséges problémát a következő ábra szemlélteti:

wU(X)

wT(X)

ÉRV(U) ÉRV(T) BEF(U)

Mind T-nek, mind U-nak írnia kell X értékét, és ha megengedjük T érvényesítését, lehetséges, hogy U

előtt fogja írni X-et („túl korai írás”). Mivel nem lehetünk biztosak a dolgunkban, visszagörgetjük T-t,

hogy biztosan ne szegjük meg azt a feltételezett soros sorrendet, amelyben T követi U-t.

A fent leírt két problémával kerülhetünk csak olyan helyzetbe, amikor a T által végzett művelet fizikailag

nem megvalósítható. Az 1. esetben ha U T elindítása előtt fejeződött volna be, akkor T biztosan olyan X

értéket olvasna, amelyet vagy U, vagy valamely későbbi tranzakció írt. A 2. esetben ha U T érvényesítése

előtt fejeződik be, akkor biztos, hogy U T előtt írta X-et. Ezek alapján a T tranzakció érvényesítésére

vonatkozó észrevételeinket az alábbi szabállyal foglalhatjuk össze:

74

 Összehasonlítjuk RS(T)-t WS(U)-val, és ellenőrizzük, hogy RS(T)  WS(U) =  minden olyan

érvényesített U-ra, amely még nem fejeződött be T elindítása előtt, vagyis U  ÉRV  BEF és

BEF(U) > KEZD(T).

 Összehasonlítjuk WS(T)-t WS(U)-val, és ellenőrizzük, hogy WS(T)  WS(U) =  minden olyan

érvényesített U-ra, amely még nem fejeződött be T érvényesítése előtt, vagyis U  ÉRV és

BEF(U) > ÉRV(T).

Példa.

 RS = {B}

WS = {D}
 U

RS = {A, D}

WS = {A, C}
 W

 T

RS = {A, B}

WS = {A, C}

 V

RS = {B}

WS = {D, E}

Az ábra egy idővonalat ábrázol, amely mentén négy tranzakció (T, U, V és W) végrehajtási és érvényesítési

kísérletei láthatók. I-vel jelöltük az indítást, X-szel az érvényesítést, O-val pedig a befejezést. Az ábrán

láthatók az egyes tranzakciók olvasási és írási halmazai. T-t indítjuk el elsőnek, de U-t érvényesítjük

először.

1. Amikor U-t érvényesítjük, nincs más érvényesített tranzakció, így nem kell semmit sem ellenőriznünk.

U-t érvényesítjük, és beírjuk az új értéket a D adatbáziselembe.

2. Amikor T-t érvényesítjük, U már érvényesítve van, de még nincs befejezve. Így ellenőriznünk kell, hogy

T-nek sem az olvasási, sem az írási halmazában nincs semmi közös WS(U) = {D}-vel. Mivel

RS(T) = {A, B} és WS(T) = {A, C}, mindkét halmazzal a metszet üres, tehát T-t érvényesítjük.

3. Amikor V-t érvényesítjük, U már érvényesítve van és befejeződött, T pedig szintén érvényesítve van,

de még nem fejeződött be. Továbbá V-t U befejeződése előtt indítottuk el. Így össze kell hasonlítanunk

mind RS(V)-t, mind WS(V)-t WS(T)-vel, azonban csak RS(V)-t kell összehasonlítanunk WS(U)-

val. Az eredmények:

 RS(V)  WS(T) = {B}  {A, C} = ;

 WS(V)  WS(T) = {D, E}  {A, C} = ;

 RS(V)  WS(U) = {B}  {D} = .

Ezek alapján V-t érvényesítjük.

4. Amikor W-t érvényesítjük, azt tapasztaljuk, hogy U már W elindítása előtt befejeződött, így nem kell

elvégeznünk W és U összehasonlítását. T W érvényesítése előtt fejeződött be, de nem fejeződött be W

elindítása előtt, ezért csak RS(W)-t kell összehasonlítanunk WS(T)-vel. V már érvényesítve van, de

még nem fejeződött be, így össze kell hasonlítanunk mind RS(W)-t, mind WS(W)-t WS(V)-vel. Az

eredmények:

 RS(W)  WS(T) = {A, D}  {A, C} = {A};

 RS(W)  WS(V) = {A, D}  {D, E} = {D};

 WS(W)  WS(V) = {A, C}  {D, E} = .

75

Mivel a metszetek nem mind üresek, W-t nem érvényesítjük, hanem visszagörgetjük, így nem ír értéket

sem A-ba, sem C-be.

Többprocesszoros rendszerek esetén ha több ütemező végzi a feldolgozást, akkor lehet, hogy egyszerre

érvényesítenek több tranzakciót. Ebben az esetben a többprocesszoros rendszer olyan szinkronizációs

működésére kell támaszkodnunk, amely biztosítja, hogy az érvényesítés atomi tevékenységként kerüljön

végrehajtásra. Egyprocesszoros rendszereken ha csak egy ütemező fut, akkor azt gondolhatjuk az

érvényesítésről és az ütemező többi tevékenységéről, hogy egy pillanat alatt hajtódnak végre. Ebben az

esetben tehát nem fordulhat elő, hogy egy tranzakció érvényesítése egy másik tranzakció érvényesítése alatt

fejeződik be.

A három konkurenciavezérlési technika működésének összehasonlítása

A sorbarendezhetőség biztosításához három megközelítést néztünk meg: a zárolást, az időbélyegzést és az

érvényesítést. Hasonlítsuk őket össze először a tárigény szempontjából:

 Zárolás: A zártábla által lefoglalt tár a zárolt adatbáziselemek számával arányos.

 Időbélyegzés: Egy naiv megvalósításban minden adatbáziselem olvasási és írási idejéhez szükségünk

van tárra, akár hozzáférünk az adott elemhez, akár nem. Egy körültekintőbb megvalósítás azonban az

összes olyan időbélyegzőt mínusz végtelen értékűnek tekinti, amely a legkorábbi aktív tranzakciónál

korábbi tranzakcióhoz tartozik, és nem rögzíti ezeket. Ez esetben a zártáblával analóg méretű táblában

tudjuk tárolni az olvasási és írási időket, amelyben csak a legújabban elért adatbáziselemek szerepelnek.

 Érvényesítés: Tárat használunk az időbélyegzőkhöz és minden jelenleg aktív tranzakció olvasási/írási

halmazaihoz, hozzávéve még egy pár olyan tranzakciót, amelyek azután fejeződnek be, miután

valamelyik jelenleg aktív tranzakció elkezdődött.

Így mindegyik megközelítésben az összes aktív tranzakcióra felhasznált tár a tranzakciók által elért

adatbáziselemek számának az összegével megközelítőleg arányos. Az időbélyegzés és az érvényesítés

kicsit több helyet használhat fel, ugyanis nyomon kell követnünk a korábban véglegesített tranzakciók

bizonyos hozzáféréseit, amelyeket a zártábla nem rögzítene. Az érvényesítéssel kapcsolatban egy lényeges

probléma, hogy a tranzakcióhoz tartozó írási halmazt az írások elvégzése előtt kell már ismernünk (de a

tranzakció számításainak befejeződése után).

Összehasonlíthatjuk a módszereket abból a szempontból is, hogy késleltetés nélkül befejeződnek-e a

tranzakciók. A három módszer hatékonysága attól függ, hogy vajon a tranzakciók közötti egymásra hatás

erős vagy gyenge, azaz milyen valószínűséggel akar egy tranzakció hozzáférni egy olyan elemhez,

amelyhez egy konkurens tranzakció már hozzáfért:

 A zárolás késlelteti a tranzakciókat, azonban elkerüli a visszagörgetéseket, még ha erős is az egymásra

hatás. Az időbélyegzés és az érvényesítés nem késlelteti a tranzakciókat, azonban visszagörgetést

okozhatnak, amely a késleltetésnek egy problémásabb formája, azonfelül erőforrásokat is pazarol.

 Ha gyenge az egymásra hatás, akkor sem az időbélyegzés, sem az érvényesítés nem okoz sok

visszagörgetést, és előnyösebbek lehetnek a zárolásnál, ugyanis ezeknek általában alacsonyabbak a

költségei, mint a zárolási ütemezőnek.

 Amikor szükséges a visszagörgetés, az időbélyegzés hamarabb feltárja a problémákat, mint az

érvényesítés, amely mindig hagyja, hogy a tranzakció elvégezze az összes belső munkáját, mielőtt

megnézné, hogy vissza kell-e görgetni a tranzakciót.

76

Az Oracle konkurenciavezérlési technikája

Az alábbi információk forrása az Oracle Database Concepts — Data Concurrency and Consistency.

Az Oracle a kétfázisú zárolás és a pillanatkép-elkülönítés kombinációját használja a

konkurenciavezérléshez. Felhasználói szinten a zárolási egység lehet a tábla vagy annak egy sora. A zárakat

az ütemező automatikusan helyezi el és oldja fel, de lehetőség van arra is, hogy a felhasználó (alkalmazás)

kérjen zárat.

Az olvasási konzisztencia szintjei

Az Oracle minden lekérdezés számára biztosítja az utasítás szintű olvasási konzisztenciát, azaz a lekérdezés

által olvasott adatok véglegesítettek, és egy időpillanatból (alapértelmezésben a lekérdezés kezdetének

pillanatából) származnak. Emiatt a lekérdezés sohasem olvas piszkos (nem véglegesített) adatot, és nem

látja azokat a változtatásokat sem, amelyeket a lekérdezés végrehajtása alatt véglegesített tranzakciók

eszközöltek. Kérhetjük egy tranzakció összes lekérdezése számára is az olvasási konzisztencia biztosítását,

ez a tranzakció szintű olvasási konzisztencia. Ezt úgy érhetjük el, hogy a tranzakciót sorba rendezhető vagy

csak olvasás módban futtatjuk (lásd lejjebb). Ekkor a tranzakció által tartalmazott összes lekérdezés a

tranzakció indításakor fennálló adatbázis-állapotot látja, kivéve a tranzakció által korábban végrehajtott

módosításokat.

A kétféle olvasási konzisztencia biztosításához az adatbázisszervernek egy olvasáskonzisztens adathalmazt

kell előállítania, amikor egy tábla egyszerre lekérdezés és módosítás alatt is áll. E cél eléréséhez az Oracle

az undo információkat használja fel. Amikor egy felhasználó adatmódosítást hajt végre, az Oracle undo

bejegyzéseket készít, amelyeket undo (vagy rollback) szegmensekbe ír. Az undo szegmensek tárolják azon

adatok régi értékeit, amelyeket még nem véglegesített vagy nemrég véglegesített tranzakciók változtattak

meg. Így ugyanazon adatnak több, különböző időpontokból származó változata létezhet az adatbázisban.

Az adatbázisszerver az adatok különböző időpontokban létező pillanatképeit használja fel arra, hogy

biztosítsa az adatok olvasáskonzisztens nézeteit és lehetővé tegye a nemblokkoló lekérdezéseket (lásd

később). Amint egy lekérdezés vagy tranzakció megkezdi működését, meghatározódik a system change

number (SCN) aktuális értéke. Az SCN a blokkokhoz mint adatbáziselemekhez tartozó időbélyegzőnek

tekinthető. Ahogy a lekérdezés olvassa az adatblokkokat, az Oracle összehasonlítja azok SCN-jét (utolsó

módosításának „idejét”) az aktuális lekérdezés SCN értékével, és csak az annál nem nagyobb SCN-nel

rendelkező véglegesített blokkokat olvassa be a tábla területéről. A nagyobb SCN-nel rendelkező blokkok

esetén az undo adatokból rekonstruálja az adott blokk azon verzióját, amelyhez a legnagyobb olyan SCN

érték tartozik, amely kisebb, mint a lekérdezésé, és már véglegesített tranzakció hozta létre. Ezeket a

rekonstruált adatblokkokat konzisztens olvasási klónoknak (consistent read clones) nevezzük. A következő

ábra illusztrálja a folyamatot:

http://docs.oracle.com/database/121/CNCPT/consist.htm

77

SELECT ...

(SCN: 10023)

10021

10021

10024

10008

10024

10011

10021

10008

10021

Undo

szegmens

Előfordulhat, hogy az undo szegmensből már nem állítható elő a keresett blokk szükséges korábbi változata.

Ha az undo információk menedzselése automatikus, akkor létezik egy aktuális undo megtartási idő (undo

retention period), amely az a minimális időtartam, ameddig az Oracle megpróbálja megtartani a régi undo

információkat, mielőtt felülírná őket. Azokat a régi (véglegesített tranzakcióhoz tartozó) undo

bejegyzéseket, amelyek régebbiek az aktuális undo megtartási időnél, lejártnak (expired) nevezzük; ezek

felülírhatók újabb tranzakciók bejegyzéseivel. Az undo megtartási időnél kisebb idejű régi bejegyzések

nem lejártak, ezeket az Oracle igyekszik megtartani a konzisztens olvasások és a flashback műveletek (egy

tábla valamely múltbéli állapotán végrehajtott műveletek) biztosításához.

Ha az undo táblaterület az AUTOEXTEND opcióval lett létrehozva (a DBCA által automatikusan

létrehozott UNDOTBS1 például ilyen), akkor az Oracle úgy állítja be dinamikusan az undo megtartási időt,

hogy az valamivel nagyobb legyen, mint a rendszer leghosszabb ideig futó aktív lekérdezésének a

végrehajtási ideje. Ha a lejárt undo információk által elfoglalt tárterület fogyóban van, akkor – a nem lejárt

undo információk felülírása helyett – megnöveli a táblaterület méretét. Ha a táblaterülethez megadtuk a

MAXSIZE opciót, és a táblaterület mérete eléri az abban megadott méretet, akkor nem lejárt undo

bejegyzések is felülíródhatnak.

Ha az undo táblaterület fix méretű, akkor az Oracle úgy állítja be dinamikusan az undo megtartási időt,

hogy az a lehető legnagyobb legyen a táblaterület nagyságát és a rendszer terheltségét figyelembe véve. Ez

a lehető legnagyobb megtartási idő általában lényegesen nagyobb, mint a leghosszabb ideig futó aktív

lekérdezés végrehajtási ideje. Ha túl kicsire méretezzük az undo táblaterületet, akkor a hosszan futó

tranzakciók abortálhatnak egy „snapshot too old” hibaüzenet kíséretében, ami azt jelenti, hogy nincs

elegendő undo információ az olvasási konzisztencia biztosításához.

Ha garantálni szeretnénk a hosszan futó lekérdezések vagy a flashback műveletek sikeres végrehajtását,

kérhetjük a megtartási garanciát (retention guarantee). Ekkor az Oracle soha nem írja felül a nem lejárt

undo bejegyzéseket, még akkor sem, ha emiatt az új tranzakciók nem tudnak lefutni (mivel nincs hely az

78

undo bejegyzéseik tárolására). A megtartási garancia nélkül az adatbázisszerver felülírhatja a nem lejárt

undo bejegyzéseket, ha kevés a tárhely, ezáltal csökkentve a megtartási időt.

A tranzakcióelkülönítési szintek

Az SQL92 ANSI/ISO szabvány a tranzakcióelkülönítés négy szintjét definiálja, amelyek abban

különböznek egymástól, hogy az alábbi három jelenség közül melyeket engedélyezik:

 piszkos olvasás: a tranzakció olyan adatot olvas, amelyet egy másik, még nem véglegesített tranzakció

írt;

 nem ismételhető (fuzzy) olvasás: a tranzakció újraolvas olyan adatokat, amelyeket már korábban

beolvasott, és azt találja, hogy egy másik, már véglegesített tranzakció módosította vagy törölte őket;

 fantomok olvasása: a tranzakció újra végrehajt egy lekérdezést, amely egy adott keresési feltételnek

eleget tevő sorokkal tér vissza, és azt találja, hogy egy másik, már véglegesített tranzakció további

sorokat szúrt be, amelyek szintén eleget tesznek a feltételnek.

A négy tranzakcióelkülönítési szint a következő:

Elkülönítési szint Piszkos olvasás Nem ismételhető olvasás Fantomok olvasása

nem olvasásbiztos

(read uncommitted)

lehetséges lehetséges lehetséges

olvasásbiztos (read committed) nem lehetséges lehetséges lehetséges

megismételhető olvasás

(repeatable read)

nem lehetséges nem lehetséges lehetséges

sorba rendezhető (serializable) nem lehetséges nem lehetséges nem lehetséges

Az Oracle ezek közül az olvasásbiztos és a sorba rendezhető elkülönítési szinteket ismeri, valamint egy

csak olvasás (read-only) módot, amely nem része a szabványnak.

 Olvasásbiztos: Ez az alapértelmezett tranzakcióelkülönítési szint. Egy tranzakció minden lekérdezése

csak a lekérdezés (és nem a tranzakció) elindítása előtt véglegesített adatokat látja. Piszkos olvasás

sohasem történik. A lekérdezés két végrehajtása között azonban a lekérdezés által olvasott adatokat más

tranzakciók megváltoztathatják, ezért előfordulhat nem ismételhető olvasás és fantomok olvasása is.

Olyan környezetekben célszerű ezt a szintet választani, amelyekben várhatóan kevés tranzakció kerül

egymással konfliktusba.

 Sorba rendezhető: A sorba rendezhető tranzakciók csak a tranzakció elindítása előtt véglegesített

változásokat látják, valamint azokat, amelyeket maga a tranzakció hajtott végre INSERT, UPDATE és

DELETE utasítások segítségével. A sorba rendezhető tranzakciók nem hajtanak végre nem ismételhető

olvasásokat, és nem olvasnak fantomokat. Ezt a szintet olyan környezetekben célszerű használni,

amelyekben nagy adatbázisok vannak, és rövidek a tranzakciók, amelyek csak kevés sort módosítanak,

valamint ha kicsi az esélye annak, hogy két konkurens tranzakció ugyanazokat a sorokat módosítja,

illetve ahol a hosszú (sokáig futó) tranzakciók elsősorban csak olvasási tranzakciók. Az Oracle csak

akkor engedi egy sor módosítását egy sorba rendezhető tranzakciónak, ha az adott sor korábbi

változtatásait olyan tranzakciók hajtották végre, amelyek még a sorba rendezhető tranzakció elindítása

előtt véglegesítődtek. Amennyiben egy sorba rendezhető tranzakció megpróbál módosítani vagy törölni

egy sort, amelyet egy olyan tranzakció változtatott meg, amely a sorba rendezhető tranzakció

indításakor még nem véglegesítődött, az Oracle hibaüzenetet ad: „Cannot serialize access for this

transaction”. Ne feledjük, hogy a neve ellenére a sorba rendezhető elkülönítési szint valójában

pillanatkép-elkülönítést használ, és nem garantálja a sorbarendezhetőséget!

79

 Csak olvasás: A csak olvasás elkülönítési szint hasonló a sorba rendezhető elkülönítési szinthez, kivéve

hogy a csak olvasó tranzakciók nem engedik meg az adatmódosítást a tranzakcióban, hacsak nem a

SYS felhasználó futtatja azt. A csak olvasó tranzakciók így nem futhatnak bele a fent leírt hibába. Ez

az elkülönítési szint akkor hasznos, ha olyan jelentéseket készítünk, amelyek tartalmának

konzisztensnek kell lennie a tranzakció kezdetekor fennálló adatbázis-állapottal.

Az elkülönítési szintet a következő utasítások valamelyikének a tranzakció elején történő kiadásával

adhatjuk meg:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION READ ONLY;

A zárolási rendszer

Mind az olvasásbiztos, mind a sorba rendezhető tranzakciók használják a sor szintű zárolást, ezáltal egy T

tranzakciónak várnia kell, ha olyan sort próbál írni, amelyet egy még nem véglegesített konkurens U

tranzakció módosított. T megvárja, míg U véglegesítődik vagy abortál, és felszabadítja a zárat. Ha U abortál,

akkor T végrehajthatja a korábban zárolt sor módosítását, függetlenül az elkülönítési szintjétől, mintha U

nem is létezett volna. Ha azonban U véglegesítődik, akkor T csak akkor hajthatja végre a módosítást, ha az

elkülönítési szintje az olvasásbiztos. Egy sorba rendezhető tranzakció ilyenkor „Cannot serialize access”

hibaüzenetet ad, mert U módosításának véglegesítése T kezdete után történt.

A zárakat az Oracle automatikusan kezeli, amikor SQL-utasításokat hajt végre. Mindig a legkevésbé

szigorú zármódot alkalmazza, így biztosítja a legmagasabb fokú konkurenciát. Lehetőség van arra is, hogy

a felhasználó kérjen zárat.

Egy tranzakcióban szereplő SQL-utasításoknak adott zárak általában a tranzakció befejeződéséig

fennmaradnak (kétfázisú zárolás). Az Oracle akkor szabadítja fel a zárakat, amikor a tranzakció

véglegesítődik vagy abortál. Ezenkívül egy mentési pont után kapott zárak akkor is felszabadulnak, ha

visszagörgetjük a tranzakciót a mentési pontig. Ilyenkor azonban csak olyan tranzakciók kaphatják meg a

most felszabaduló erőforrások zárjait, amelyek nem várakoztak az eddig zárolt erőforrásokra. A várakozó

tranzakciók tovább várakoznak, amíg az eredeti tranzakciót nem véglegesítjük, vagy teljesen vissza nem

görgetjük.

Zártípusok

Az Oracle a zárakat a következő általános kategóriákba sorolja:

 DML-zárak (adatzárak): az adatok védelmére szolgálnak;

 DDL-zárak (szótárzárak): a sémaobjektumok (pl. táblák) szerkezetének a védelmére valók;

 belső zárak: a belső adatszerkezetek, adatfájlok védelmére szolgálnak, kezelésük teljesen automatikus.

DML-zárak két szinten léteznek: vannak sor szintű zárak (TX) és tábla szintű zárak (TM). A DML-

utasítások hatására a tranzakciók mindkét szinten automatikusan kapják a zárakat. Sorok szintjén csak

egyféle zármód létezik, a kizárólagos. A többváltozatú időbélyegzés és a sor szintű zárolás kombinációja

azt eredményezi, hogy a tranzakciók csak akkor versengenek az adatokért, ha ugyanazokat a sorokat

próbálják meg elérni. Az Oracle olvasókra és írókra vonatkozó zárolási szabályai a következők:

 Egy sor csak akkor kerül zárolásra, ha módosítja egy író.

 Egy sor írója blokkolja (késlelteti) ugyanazon sor egy konkurens íróját.

 Egy olvasó sosem blokkol egy írót, hacsak az olvasó nem a SELECT … FOR UPDATE utasítást

használja, amely zárolja is a beolvasott sorokat.

80

 Egy író sosem blokkol egy olvasót. Ha egy író módosít egy sort, az Oracle az undo adatokat használja,

hogy a sor konzisztens nézetét biztosítsa az olvasóknak.

A FOR UPDATE nélküli lekérdezések tehát sohasem járnak zárolásokkal, így más tranzakciók is

lekérdezhetik vagy akár módosíthatják a lekérdezett táblát, akár a kérdéses sorokat is. Mivel a FOR

UPDATE nélküli lekérdezések – zárolások híján – nem blokkolhatnak más műveleteket, az Oracle gyakran

hívja az ilyen lekérdezéseket nemblokkoló lekérdezéseknek. Másrészt a lekérdezések sohasem várnak

zárfeloldásra, mindig végrehajtódhatnak.

Egy tranzakció TX zárat kap minden egyes sorra, amelyet az alábbi utasítások módosítanak: INSERT,

UPDATE, DELETE, MERGE vagy SELECT … FOR UPDATE. Ha egy tranzakció zárat kap egy sorra, akkor

a sort tartalmazó táblára is zárat kap, hogy elkerüljük az olyan DDL-utasításokat, amelyek felülírnák a

tranzakció változtatásait.

Egy tranzakció TM zárat kap, ha a táblát az alábbi utasítások módosítják: INSERT, UPDATE, DELETE,

MERGE, SELECT … FOR UPDATE vagy LOCK TABLE. Táblák szintjén ötféle zármódot különböztetünk

meg: row share (RS) vagy subshare (SS), row exclusive (RX) vagy subexclusive (SX), share (S), share

row exclusive (SRX) vagy share-subexclusive (SSX) és exclusive (X). A következő táblázat összefoglalja,

hogy az egyes utasítások milyen zármódot vonnak maguk után, és hogy milyen zármódokkal

kompatibilisek:

SQL-utasítás Zármód RS RX S SRX X

SELECT … FROM tábla - I I I I I

INSERT INTO tábla RX I I N N N

UPDATE tábla RX I* I* N N N

MERGE INTO tábla RX I I N N N

DELETE FROM tábla RX I* I* N N N

SELECT … FROM tábla … FOR UPDATE RX I* I* N N N

LOCK TABLE tábla IN ROW SHARE MODE RS I I I I N

LOCK TABLE tábla IN ROW EXCLUSIVE MODE RX I I N N N

LOCK TABLE tábla IN SHARE MODE S I N I N N

LOCK TABLE tábla IN

SHARE ROW EXCLUSIVE MODE

SRX I N N N N

LOCK TABLE tábla IN EXCLUSIVE MODE X N N N N N
* Igen, ha egy másik tranzakció nem tart fenn konfliktusos sor szintű zárat, különben várakozik.

Az egyes zármódok részletesen a következők:

 Az RS zár azt jelzi, hogy a zárat fenntartó tranzakció sorokat zárolt a táblában, és később módosítani

kívánja őket. Az RS a legkevésbé szigorú zármód, amely a legmagasabb fokú konkurenciát biztosítja.

 Az RX zár általában azt jelzi, hogy a zárat fenntartó tranzakció módosította a tábla egyes sorait, vagy

kiadott egy SELECT … FOR UPDATE utasítást.

 Ha egy tranzakció S zárat birtokol egy táblán, akkor más tranzakció csak lekérdezheti a táblát

(SELECT … FOR UPDATE használata nélkül). Módosítások csak akkor megengedettek, ha csak

egyetlen tranzakciónak van S zárja a táblán. Mivel több tranzakció is fenntarthat egyidejűleg S zárat

ugyanazon a táblán, ez a zár nem elegendő a tábla módosíthatóságának biztosításához.

 Az SRX zár szigorúbb az S zárnál. Egy adott táblán egy időpillanatban csak egy tranzakció tarthat fenn

SRX zárat. Más tranzakciók csak lekérdezhetik a táblát (a SELECT … FOR UPDATE kivételével), de

nem módosíthatják.

 Az X a legszigorúbb zármód, amely kizárólagos írási hozzáférést biztosít az ilyen zárat birtokló

tranzakciónak. Egy adott táblán egy időpillanatban csak egy tranzakció tarthat fenn X zárat.

A módosító DML-utasítások és a SELECT … FOR UPDATE utasítás az érintett sorokra kizárólagos sor

szintű zárakat helyeznek, így más tranzakciók nem módosíthatják vagy törölhetik a zárolt sorokat, amíg a

zárakat elhelyező tranzakció nem véglegesítődik vagy abortál. A módosító utasítást tartalmazó

tranzakciónak a sor szintű zárakon kívül az érintett sorokat tartalmazó táblára is szüksége van legalább egy

81

RX módú zárra. Ha a tartalmazó tranzakció már fenntart egy S, SRX vagy X zárat a kérdéses táblán

(amelyek szigorúbbak az RX zárnál), akkor az RX zárra nincs szükség, ha pedig RS zárat tartott fenn, akkor

azt az Oracle automatikusan felminősíti RX zárrá.

Ha az utasítás alkérdést vagy implicit kérdést tartalmaz, akkor a lekérdezett sorok nem kapnak sor szintű

zárat. A DML-utasításokba ágyazott alkérdések és implicit kérdések garantáltan konzisztensek a lekérdezés

kezdetekor fennálló adatbázis-állapottal, és nem látják a tartalmazó módosító utasítás által véghezvitt

változtatásokat.

Egy tranzakcióban lévő lekérdezés látja a tranzakció korábbi módosító utasításai által végrehajtott

változtatásokat, de nem látja más tranzakciók nem véglegesített módosításait.

Zárak felminősítése és kiterjesztése

Táblák szintjén az Oracle automatikusan felminősít egy zárat erősebb módúvá, amikor szükséges. Ha

például egy tranzakció RS módú zárat tart fenn egy táblán, és a tranzakció egy DML-utasítása módosítani

szeretné a tábla néhány sorát, az RS mód automatikusan felminősül RX módra. Mivel sorok szintjén csak

egyfajta zármód létezik (kizárólagos), nincs szükség felminősítésre.

Zárak kiterjesztésének (lock escalation) nevezzük azt a folyamatot, amikor a szemcsézettség egy szintjén

(pl. sorok szintjén) lévő zárakat az adatbázis-kezelő rendszer a szemcsézettség egy magasabb szintjére (pl.

a tábla szintjére) emeli. Például ha a felhasználó sok sort zárol egy táblában, egyes rendszerek ezeket

automatikusan kiterjesztik a teljes táblára. Ezáltal csökken a zárak száma, viszont nő a zárolt elemek

zármódjának erőssége. Az Oracle nem alkalmazza a zárkiterjesztést, mivel az megnöveli a holtpontok

kialakulásának kockázatát. Tegyük fel, hogy egy rendszer szeretné kiterjeszteni a T1 tranzakció sor szintű

zárait a teljes táblára, de nem teheti meg a T2 tranzakció által fenntartott zárak miatt. Ha a T2 tranzakciónak

szintén szüksége van a sor szintű zárainak kiterjesztésére ugyanarra a táblára, holtpont alakul ki.

