Adatbazisrendszerek megvalositasa 1

Irodalom: Hector Garcia-Molina — Jeffrey D. Ullman — Jennifer Widom:
Adatbazisrendszerek megvaldsitasa, 8. és 9. fejezet

Elofeltétel: Adatbazisrendszerek targy.

Tartalom: Rendszerhibak és a kivédésiikre szolgald naplozasi technikék; konkurenciakezelés.
Bevezetés

Az adatbazis-kezelo rendszer alkotorészei

Felhasznaldo/alkalmazas A datbazis-adm inisztrator

lekérdezések,

tranzakcios parancsok DDL-parancsok
modositisok
Lekérdezés- Tranzakci6- DDL-
forditd kezeld fordito
X
\
lekérdezésterv \\
\
\
\
\ .
Végrehajtd- \ R Napldézo és / Konkurencia-
v P> /
motor \\ helyreallité / kezeld
/
—_— Y A—
Y. : ya— : i
index-, fajl- és N I / |
\ | / |
rekordigények \\ | / |
\ /
AN | / |1
. \ | /
Index-/fajl-/ \ | /
\ \ / Zartabla
rekordkezeld \ \ | /
\ \ | /
R \ | /
\ \ /
\ \ | /
lapparancsok AN \ | ,
\ \ | /
AN /
LU
Puffer-
(€ --=======--- > Pufferek
kezeld
lap I/0

Tar- -
¢ ---mmcmmcaaaa
kezeld

Az abran egy teljes adatbdzis-kezeld rendszer vazat lathatjuk. Az egyvonalas dobozok a rendszer
alkotorészeit jelentik, mig a dupla dobozok memoriabeli adatszerkezeteket reprezentalnak. A folytonos
vonalak jelolik az olyan vezérlésatadast, ahol adatok is dramlanak, a szaggatott vonalak pedig csak az
adatmozgast jelolik. Az adatbazis-kezeld rendszerrel kapcsolatos kdlcsonhatasok dontd tobbsége az abra

bal oldalan 1évd utvonalat koveti. A felhaszndlod vagy az alkalmazoi program olyan miikodést indit el,
amelynek nincs hatasa az adatbazissémara, viszont hatassal lehet az adatbazis tartalmara (modosito utasitas
esetén), illetve adatokat gytijthet ki az adatbazisbol (lekérdezés esetén). Két olyan utvonal van, amely
mentén a felhasznalo cselekménye hatast gyakorol az adatbazisra:

1. A lekérdezés megvalaszolasa. A lekérdezésfordité elemzi és optimalizalja a lekérdezést. Az eredményiil
kapott lekérdezés-végrehajtasi tervet (roviden lekérdezéstervet) vagy a lekérdezés megvalaszolasdhoz
sziikséges tevékenységek sorozatat tovabbitja a végrehajtdémotornak. A végrehajtomotor kisebb
adatdarabokra (tipikusan rekordokra) vonatkozo kérések sorozatat adja at az eréforras-kezeldnek. Az
eréforras-kezeld ismeri a relaciokat tartalmazé adatfajlokat, a fajlok rekordjainak formatumat, méretét
és az indexfajlokat is. Az indexfajlok segitenek abban, hogy az adatfajlok elemeit gyorsan meg lehessen
taldlni. Az adatkéréseket az eréforras-kezeld leforditja lapokra, és ezeket a kéréseket tovabbitja a
pufferkezelonek. A pufferkezeld feladata, hogy a mésodlagos adattarolon (altaldban lemezen) tarolt
adatok megfeleld részét hozza be a kozponti memoria puffereibe. A pufferek és a lemez kozti adatatvitel
egysége altalaban egy lap vagy egy lemezblokk. A pufferkezeld informaciot cserél a tarkezel6vel, hogy
megkapja az adatokat a lemezrdl. Megtorténhet, hogy a tarkezel6 az operacids rendszer parancsait IS
igénybe veszi, de tipikusabb, hogy az adatbdzis-kezeld a parancsait kozvetleniil a lemezvezérldhoz
intézi.

2. A tranzakcio feldolgozasa. A lekérdezéseket és mas tevékenységeket tranzakciokba csoportosithatjuk.
A tranzakcidk olyan munkaegységek, amelyeket atomosan és mas tranzakcioktol latszolag elkiilonitve
kell végrehajtani. Gyakran minden egyes lekérdezés vagy modositds dnmagaban is egy tranzakcio.
Ezenkiviil a tranzakcid végrehajtasanak tartosnak kell lennie, ami azt jelenti, hogy barmelyik befejezett
tranzakci6 hatasat még akkor is meg kell tudni 6rizni, ha a rendszer 6sszeomlik a tranzakcid befejezése
utani pillanatban. A tranzakciofeldolgozot két £6 részre osztjuk:

a) Konkurenciavezérlés-kezel6 vagy iitemezé (scheduler): a tranzakciok elkiilonitésének és
atomossaganak biztositasaért felelds.
b) Naplozdis- és helyredllitis-kezeld: a tranzakciok atomossagaért és tartossagaért felels.

A tranzakcio

A tranzakcio (transaction) az adatbazis-miiveletek végrehajtasi egysége, amely DML-beli utasitasokbol all,
¢és a kovetkezo tulajdonsagokkal rendelkezik:

e Atomossdg (atomicity): a tranzakcid ,,mindent vagy semmit” jellegii végrehajtasa (vagy teljesen
végrehajtjuk, vagy egyaltalan nem hajtjuk végre).

e Konzisztenciamegdrzés (consistency preservation): az a feltétel, hogy a tranzakcié megdérizze az
adatbazis konzisztencidjat, azaz a tranzakcio végrehajtasa utan is teljesiiljenek az adatbazisban eldirt
konzisztenciamegszoritasok (integritdsi megszoritdsok), azaz az adatelemekre és a kozottik 1évo
kapcsolatokra vonatkozo6 elvarasok.

o Elkiilonités (isolation): az a tény, hogy minden tranzakcionak latszolag ugy kell lefutnia, mintha ez alatt
az 1d6 alatt semmilyen masik tranzakcidt sem hajtanank végre.

o Tartossag (durability): az a feltétel, hogy ha egyszer egy tranzakcid befejezddott, akkor mar soha tobbé
nem veszhet el a tranzakcidonak az adatbazison kifejtett hatasa.

Ezek a tranzakcié ACID-tulajdonsagai (ACID properties). A konzisztenciamegérzést mindig adottnak
tekintjiik (lasd késobb: korrektség alapelve), a masik hdrom tulajdonsagot viszont az adatbazis-kezeld
rendszernek kell biztositania, bar ettdl idonként eltekintiink. Ha egy ad hoc utasitast adunk az SQL-
rendszernek, akkor minden lekérdezés vagy adatbazis-modositd utasitds egy tranzakcid. Amennyiben
beagyazott SQL-interfészt hasznalva a programoz6 késziti el a tranzakciot, akkor egy tranzakcidban tobb
SQL-lekérdezés és -modositas szerepelhet. A tranzakcio ilyenkor altalaban egy DML-utasitassal kezd6dik,

¢s egy COMMIT vagy ROLLBACK utasitassal végzddik. Ha a tranzakcio valamely utasitdsa egy triggert
aktivizal, akkor az is a tranzakcid részének tekintendd, akarcsak a trigger altal kivaltott tovabbi triggerek.
(A trigger olyan programrész, amely bizonyos események bekovetkeztekor automatikusan lefut.)

A tranzakcio feldolgozdsa

A tranzakcidfeldolgozo biztositja az adatok konkurens elérését és a helyreéllithatosagot (resiliency) a
tranzakciok korrekt végrehajtasaval. A tranzakciokezel6 fogadja az alkalmazas tranzakcios utasitasait. Az
alkalmazas azt is megmondja a tranzakciokezeldnek, hogy mikor kezdddnek és végzddnek a tranzakciok,
¢s még egyeb informaciot is ad az alkalmazas elvarésairdl (példaul lehet, hogy nem akarja megkdvetelni
az atomossagot). A tranzakciéfeldolgozo a kovetkezd feladatokat hajtja végre:

1. Naplozas: Annak érdekében, hogy a tartdssdgot biztositani lehessen, az adatbazis minden valtozasat
kiilon feljegyezziik (naplozzuk) lemezen. A naplokezeld (log manager) tobbféle eljarasmod koziil
valasztja ki azt, amelyiket kovetni fog. Ezek az eljarasmodok biztositjak azt, hogy teljesen mindegy,
mikor torténik a rendszerhiba vagy a rendszer 0sszeomlasa, a helyreallitas-kezeld meg fogja tudni
vizsgalni a valtozdsok napldjat, és ez alapjan vissza tudja allitani az adatbazist valamilyen konzisztens
allapotaba. A naplokezeld eloszor a pufferekbe irja a naplot, és egyeztet a pufferkezeldvel, hogy a
pufferek alkalmas iddpillanatokban garantdltan irddjanak ki lemezre, ahol mar az adatok tulélhetik a
rendszer 6sszeomlasat.

2. Konkurenciavezérlés: A tranzakcidknak ugy kell latszédniuk, mintha egymastol fiiggetleniil,
elkiilonitve végeznénk el oket. A legtobb rendszerben igazabdl sok tranzakciot kell egyszerre
végrehajtani. gy aztan az iitemez6 (konkurenciavezérlés-kezel6) feladata, hogy meghatarozza az
Osszetett tranzakciok résztevékenységeinek egy olyan sorrendjét, amely biztositja azt, hogy ha ebben a
sorrendben hajtjuk végre a tranzakciok elemi tevékenységeit, akkor az 0sszhatds megegyezik azzal,
mintha a tranzakciokat tulajdonképpen egyenként és egységes egészként hajtottuk volna végre. A
tipikus litemez0 ezt a munkat azaltal 1atja el, hogy az adatbazis bizonyos részeire elhelyezett zarakat
(lock) karbantartja. Ezek a zarak megakadalyoznak két tranzakciot abban, hogy rossz kolcsonhatassal
hasznaljak ugyanazt az adatrészt. A zarakat rendszerint a kozponti memoria zdrtabldjaban (lock table)
tarolja a rendszer (lasd abra). Az iitemez0 azzal befolyasolja a lekérdezések és mas adatbazis-miiveletek
végrehajtasat, hogy megtiltja a végrehajtomotornak, hogy hozzanyuljon az adatbézis zar ala helyezett
részeihez.

3. Holtpont feloldasa: A tranzakciok az litemezd altal engedélyezett zarak alapjan versenyeznek az
er6forrasokért. fgy eléfordulhat, hogy olyan helyzetbe keriilnek, amelyben egyikiiket sem lehet
folytatni, mert mindegyiknek sziiksége lenne valamire, amit egy madsik tranzakci6é birtokol. A
tranzakcidkezeld feladata, hogy ilyenkor kézbeavatkozzon, és tordljon (abortaljon) egy vagy tobb
tranzakciot ugy, hogy a tobbit mar folytatni lehessen.

A rendszerhibak kezelése

A kérdés az, milyen technikédkkal lehet biztositani a helyreéllithatosagot, azaz hogyan tudjuk megdrizni az
adatok integritasat rendszerhibak eléforduldsakor. Az adatoknak nem szabad sériilniiik tobb hibamentes
lekérdezés vagy adatbdzis-modositas egyszerre torténd végrehajtasakor sem, ezzel a konkurenciavezérlés
foglalkozik.

A helyreallithatosag biztositasara az elsédleges technika a naplozas (logging), amely valamilyen
biztonsdgos modszerrel rogziti az adatbazisban végrehajtott modositasok torténetét. Harom kiilonbozo
modszert tanulményozunk: a semmisségi (undo), a helyrehoz6 (redo) és a semmisségi/helyrehozé
(undo/redo) naplézést. Foglalkozunk tovabba a helyredllitassal (recovery), azzal az eljarassal, amikor a
naplot felhasznalva az adatbazist konzisztens allapotba hozzuk, valamint az archivalassal (dump, backup),

3

mellyel biztosithatjuk, hogy az adatbazis nemcsak az ideiglenes rendszerhibdkat, de a teljes adatbazis
elveszitését is tulélje.

A hibk fajtdi

Az adatbdzis lekérdezése vagy modositasa soran szamos dolog hibat okozhat a billentylizeten tortént
adatbeviteli hibaktol kezdve az adatbazist tarold lemez elhelyezésére szolgald helyiségben torténd
robbandsig.

Hibas adatbevitel: Ezek a hibak gyakran nem észrevehetdk. Ha példaul a felhasznalo eliit egy szdmot
egy telefonszamban, akkor az adat még tigy néz ki, mint egy telefonszam, csak éppen tartalmilag hibas
lesz. Ha viszont kihagy egy szamjegyet a telefonszambol, akkor mar formailag is hibas (ha
megkoveteliink egy rogzitett formatumot). A modern adatbazis-kezelé rendszerek szamos
szoftverelemet biztositanak a fentiekhez hasonl6 adatbeviteli hibak felismerésére. Példaul az SQL2 és
az SQL3 szabvanyokban az adatbazis tervezdje megadhat eldirasokat, mint példaul kulcsra, kiilsé
kulcsra vagy értékekre vonatkoz6d megszoritasokat (hogy példaul a telefonszamnak 10 jegybol kell
allnia). A triggerek azok a programok, amelyek bizonyos tipusi médositasok (példaul egy relacidoba
torténd beszlras) esetén hajtodnak végre, annak ellenérzésére, hogy a frissen bevitt adatok
megfelelnek-e az adatbazis-tervezo altal megszabott eldirasoknak.

Késziilekhibak: A lemezegységek olyan helyi hibai, melyek egy vagy tobb bit megvaltozasat okozzak,
a lemez szektoraihoz rendelt paritas-ellendrzéssel megbizhatoan felismerheték. A lemezegységek
jelentds sériilése, elsdsorban az ir6-olvaséd fejek katasztrofai, az egész lemez olvashatatlannd valasat
okozhatjak. Az ilyen hibdkat 4ltaldban az alabbi megoldasok segitségével kezelik:

1. A RAID-médszerek (Redundant Array of Independent Disks) valamelyikének hasznalataval az
elveszett lemez tartalma visszatoltheto.

2. Az archivalas hasznalataval az adatbazisrol masolatot készitiink valamilyen eszkozre (példaul
szalagra vagy optikai lemezre). A mentést rendszeresen kell végezni vagy teljes, vagy ndvekményes
(csak az el6z6 mentés oOta tortént valtozasokat archivaljuk) mentést haszndlva. A mentett anyagot
az adatbazistol biztonsagos tavolsagban kell tarolnunk.

3. Az adatbazisrdl fenntarthatunk elosztott, on-line masolatokat. Ebben az esetben biztositanunk kell
a masolatok konzisztencijat.

Katasztrofalis hibak: Ebbe a kategoridba soroljuk azokat a helyzeteket, amikor az adatbazist tartalmazo
eszkoz teljesen tonkremegy robbanas, tliz, vandalizmus vagy akar virusok kovetkeztében. A RAID
ekkor nem segit, mert az dsszes lemez és a paritas-ellen6rz6 lemezeik is egyszerre hasznalhatatlanna
valnak. A masik két biztonsagi megoldas viszont alkalmazhato katasztrofalis hibak esetén is.

Rendszerhibak: Minden tranzakcionak van dllapota, mely azt képviseli, hogy mi tortént eddig a
tranzakcioban. Az éllapot tartalmazza a tranzakcié kodjaban a végrehajtas pillanatnyi helyét és a
tranzakcid Osszes lokalis valtozojanak értékét. A rendszerhibak azok a problémak, melyek a tranzakcio
allapotanak elvesztését okozzak. Tipikus rendszerhibdk az aramkimaradasbodl és a szoftverhibakbol
ereddk, hiszen ezek a memoria tartalmanak feliilirasaval jarhatnak. Ha egy rendszerhiba bekovetkezik,
onnantdl kezdve nem tudjuk, hogy a tranzakcié mely részei keriiltek mar végrehajtasra, beleértve az
adatbazis-modositasokat is. A tranzakcid ismételt futtatidsaval nem biztos, hogy a problémat korrigalni
tudjuk (példaul egy mezdnek eggyel vald novelése esetén). Az ilyen jellegli problémék legfontosabb
ellenszere minden adatbazis-valtoztatas naplozasa egy elkiiloniilt, nem illékony naplofajlban, lehetové
téve ezzel a visszaallitast, ha az sziikséges. Ehhez hibavédett naplozasi mechanizmusra van sziikség.

A naplokezeld és a tranzakciokezeld

A tranzakcidk korrekt végrehajtasanak biztositdsa a tranzakciokezeld feladata. A tranzakcidkezeld
részrendszer egy sor feladatot lat el, tobbek kozott

e jelzéseket ad at a naplokezeldnek gy, hogy a sziikséges informacié naplobejegyzés formdban a
napldéban tarolhato legyen;

e Dbiztositja, hogy a parhuzamosan végrehajtott tranzakciok ne zavarhassak egymas mikodését
(litemezes).

A tranzakcidkezelOt €s kapcsolatait az alabbi dbra mutatja:

Lekérdezés- | Tranzakcio- Naplo-
feldolgozo kezeld kezeld
\
Puffer- - | Helyreallitéas-
kezeld] kezeld

A tranzakciokezel6 a tranzakcid tevékenységeirdl iizeneteket kiild a naplokezelonek, {izen a
pufferkezel6nek arra vonatkozodan, hogy a pufferek tartalmat szabad-e vagy kell-e lemezre masolni, és tizen
a lekérdezésfeldolgozonak arrdl, hogy a tranzakcioban eldirt lekérdezéseket vagy mas adatbazis-
miiveleteket kell végrehajtania.

A naplokezel6 a naplot tartja karban. Egyiitt kell miikddnie a pufferkezeldvel, hiszen a naplozando
informacio elsédlegesen a memoriapufferekben jelenik meg, és bizonyos idénként a pufferek tartalmat
lemezre kell masolni. A naplo (adat 1évén) a lemezen tertiletet foglal el, ahogy ez az abran is latszik.

Ha baj van, akkor a helyreallitas-kezeld aktivizalodik. Megvizsgalja a naplot, és ha sziikséges, a naplot
hasznélva helyredllitja az adatokat. A lemez elérése most is a pufferkezeldn at torténik.

A tranzakciok korrekt végrehajtasa

Definidlnunk kell, mit értiink korrekt végrehajtas alatt. Feltessziik, hogy az adatbazis elemekbdl all. Az
adatbaziselem (database element) a fizikai adatbazisban tartolt adatok egyfajta funkcionalis egysége,
amelynek értékét tranzakciokkal lehet elérni (kiolvasni) vagy modositani (kiirni). Az elemek alatt érthetiink
relaciot (vagy OO megfeleldjét, az osztalykiterjedést), relacidsort (vagy OO megfeleldjét, az objektumot)
vagy lemezblokkot, illetve -lapot. Ez utobbi a legjobb valasztas a napldzas szempontjabdl, mivel ekkor a
puffer egyszer(i elemekbdl fog allni, és ezzel elkeriilheté néhany sulyos probléma, példaul amikor az
adatbazis valamely elemének egy része van csak a nem illékony memoridban (a lemezen).

Az adatbazis Osszes elemének pillanatnyi értékét az adatbazis dllapotanak (database state) nevezziik.
Bizonyos adatbazis-allapotokat konzisztensnek (consistent) tekintiink, mig a tobbi adatbazis-allapotot
inkonzisztensnek (inconsistent) mindsitjilk. A konzisztens allapotok kielégitik az adatbazissémara
vonatkozo6 Osszes explicit megszoritast (explicit constraint) és implicit megszoritast (implicit constraint),
melyek az adatbazis tervezdjének elgondolasaiban szerepelnek. Az explicit megszoritdsok betartdsat az
adatbazis-kezeld rendszer kényszeriteni tudja azzal, hogy az olyan tranzakciokat, melyek megsértik az
eldirt osszefiiggéseket, a rendszer visszautasitja, igy az adatbazisban semmilyen véltoztatds nem torténik.
Az implicit megszoritasok azok, amelyeket nem tudunk egzakt modon jellemezni. Az egyetlen
lehetéséglink az ilyen megszoritdsok betartasanak biztositdsara annak feltételezése, hogy ha valaki jogot
kap az adatbazis modositasara, akkor neki legyen joga annak eldontésére is, hogy melyek az elvart implicit
megszoritasok.

A tranzakciokra vonatkozo alapvetd feltevésiink a korrektség alapelve (correctness principle): Ha a
tranzakciét minden mas tranzakciétol fiiggetleniil (egyediil) és rendszerhiba nélkiil végrehajtjuk, és ha
indulésakor az adatbazis konzisztens allapotban volt, akkor a tranzakcid befejezése utan is konzisztens
allapotban lesz (elkiilonités + atomossag —> konzisztenciamegdrzés). A korrektség alapelvéhez
kapcsolodik a naplézés technikdja és a konkurenciavezérlési mechanizmus. Két lehetdség inkonzisztens
allapot eldidézésére:

e Nem teljesiil a tranzakcié atomossag tulajdonsdga: ha a tranzakcidnak csak egy részét sikeriilt
végrehajtani, akkor nagy esélylink van arra, hogy az altala eldallitott adatbazis-allapot nem lesz
konzisztens.

e A parhuzamosan végrehajtott tranzakciok jo eséllyel inkonzisztens allapothoz vezetnek, hacsak meg
nem tesziink bizonyos megel6zd 1épéseket.

A tranzakciok alaptevékenységei

A tranzakci6 €s az adatbazis kdlcsonhatasdnak harom fontos helyszine van:

1. az adatbazis elemeit tartalmazo6 lemezblokkok tertilete;
2. apufferkezeld altal hasznalt virtualis vagy valés memoriateriilet;
3. atranzakcidé memoriateriilete.

Ahhoz, hogy a tranzakci6 egy adatbaziselemet beolvashasson, azt el6bb memoriapuffer(ek)be kell behozni,
ha még nincs ott. Ezt kdvetden tudja a puffer(ek) tartalméat a tranzakcid a sajat memoriateriiletére beolvasni.
Az adatbaziselem 0 értékének kiirasa forditott sorrendben torténik: az 0j értéket a tranzakcio alakitja ki a
sajat memoriateriiletén, majd ez az 0j érték masolodik at a megfeleld puffer(ek)be. Fontos, hogy egy
tranzakci6 sohasem modosithatja egy adatbaziselem értékét kdzvetleniil a lemezen!

A pufferek tartalmat vagy azonnal lemezre lehet irni, vagy nem; az erre vonatkozé dontés altalaban a
pufferkezelé joga. A napl6zé rendszer hasznalatanak egyik lefdbb 1épése a rendszerhibakbol valo
helyreéllithatosag biztositdsa érdekében a pufferkezelé 0Osztonzése a pufferbeli blokkok megfeleld
idépontban torténd lemezre irasara. Ugyanakkor a lemez I/O-miiveletek szdménak csokkentésére az
adatbazis-kezeld rendszerek megengedhetik a moddositdsoknak csak az illékony memoridban torténd
végrehajtasat, legalabbis bizonyos ideig és bizonyos feltételek teljesiilése esetén.

A kiilonbozd teriiletek kozotti adatmozgasokat megvaldsitdo alapmiiveletek leirasara a kovetkezd
jelolésrendszert vezetjiik be:

1. INPUT (X): Az X adatbaziselemet tartalmaz6 lemezblokk masoldsa a memoriapufferbe.

2. READ (X, t): Az X adatbaziselem bemasolasa a tranzakcio t lokalis valtozojaba. Részletesebben: ha
az X adatbaziselemet tartalmaz6 blokk nincs a memoriapufferben, akkor elébb végrehajtdédik
INPUT (X) . Ezutan kapja meg a t lokalis valtozo X értékét.

3. WRITE (X,t): A t lokalis valtoz6 tartalma az X adatbaziselem memoriapufferbeli tartalmaba
masolodik. Részletesebben: ha az X adatbaziselemet tartalmazé blokk nincs a memoriapufferben, akkor
elébb végrehajtodik INPUT (X) . Ezutan masolodik at a t lokalis valtozo értéke a pufferbeli X-be.

4, OUTPUT (X) : Az X adatbaziselemet tartalmazo6 puffer kimasoldsa lemezre.

A fenti muveleteknek akkor van értelmiik, ha feltételezziik, hogy az adatbaziselemek elférnek egy-egy
lemezblokkban és igy egy-egy pufferben is, azaz feltételezhetjiik, hogy az adatbaziselemek pontosan a
blokkok. Adatbaziselem lehet egy relaciosor is, ha a relaciés séma nem engedi meg nagyobb sorok
eléfordulasat, mint amennyi hely egy blokkban rendelkezésre all. Ha az adatbaziselem t6bb blokkot foglal
el, akkor ugy is tekinthetjiik, hogy az adatbaziselem minden blokkméreti része Onmagiban egy
adatbaziselem. A napl6zasi mechanizmus, amelyet arra hasznalunk, hogy a tranzakcio6 ne fejezédhessen be
az X kiirasa nélkiil, atomos; azaz vagy lemezre irja X Osszes blokkjat, vagy semmit sem ir ki. A
tovabbiakban feltételezziik, hogy az adatbaziselem nem nagyobb egy blokknal.

A READ ¢s a WRITE miiveleteket a tranzakcidk hasznaljak, az INPUT és OUTPUT miveleteket a
pufferkezel6 alkalmazza, illetve bizonyos feltételek mellett az OUTPUT miiveletet a naplozasi rendszer is
hasznalja.

Példa. Annak bemutatasara, hogy a tranzakcid mikor és hogyan hasznalja a fenti alapmiveleteket, tegyiik
fel, hogy az adatbazis két, A és B eleme tartalménak az adatbazis minden konzisztens allapotaban meg kell
egyeznie. A T tranzakcid tartalmazza a kovetkezo két 1épést:

A := A*2;

B := B*2;

Ha a tranzakciora az egyetlen konzisztenciaelvaras az A = B, tovabba ha T konzisztens adatbazis-allapotban
indul, és tevékenységét rendszerhiba, valamint a parhuzamosan miikddoé tranzakcidkkal valo kdlesonhatas
nélkiil be tudja fejezni, akkor az adatbazis befejezéskori allapotanak is konzisztensnek kell lennie. Ekkor T
megdupldzva két azonos tartalmu elem értékét, kap két 0j, azonos értékii elemet.

T végrehajtasa maga utdn vonja A és B lemezrdl vald beolvasasat, az aritmetikai miveletek a T lokalis
valtozoiban keriilnek végrehajtasra, végiil A és B 10j értékei visszairasra keriilnek a puffereikbe. T-t hat
lényeges 1épésbdl allonak tekinthetjiik:

READ(A,t); t := t*2; WRITE (A, t):;

READ(B,t); t := t*2; WRITE(B,t);

Ehhez még hozziadddik az, hogy a pufferkezeld Onalldan végrehajt OUTPUT lépéseket a pufferek
tartalmanak lemezre torténd visszairasa végett. Legyen kezdetben A =B =8. Az A és B pufferbeli és
lemezen tarolt értékei és a T tranzakcid t lokalis véaltozdjanak értékei 1épésenként a kovetkezok:

Tevékenység t M-A | M-B | D-A | D-B
READ (A, t) 8 8 8 8
t o= t*2 16 8 8 8
WRITE (A, t) 16 16 8 8
READ (B, t) 8 16 8 8 8
t 1= t*2 16 16 8 8 8
WRITE (B, t) 16 16 16 8 8
OUTPUT (A) 16 16 16 8
OUTPUT (B) 16 16 16 16

T els6 Iépésben beolvassa A-t, mely igény a pufferkezeloben kivaltja az INPUT (A) miveletet, ha A még
nincs a pufferben. A értéke a READ utasitas hatasara a T tranzakcido memoriateriiletére, a t valtozoba is
bemasolodik. A kovetkezé 1épés megduplazza t tartalmat, ennek nincs hatasa sem A pufferbeli, sem A
lemezen tarolt értékére. A harmadik 1épés irja t-t A pufferébe, ennek nincs hatdsa A lemezen tarolt értékére.

A kovetkez6 harom 1épés ugyanez, csak B-re vonatkozoan. Végiil az utolso két 1épésben masolodik A és B
lemezre.

Figyeljik meg, hogy ezen Iépések Osszességének végrehajtdsa alatt az adatbazis konzisztenciaja
megorzodik. Ha az OUTPUT (A) végrehajtasa eldtt rendszerhiba fordul eld, akkor ennek nincs hatésa a
lemezen tarolt adatbazisra, az még olyan, mintha T egyaltalan nem is miikodott volna, igy a konzisztencia
megorzOdott. Ha rendszerhiba all eld az OUTPUT (A) végrehajtasa utdn, de még az OUTPUT (B)
végrehajtasa elott, akkor az adatbazis inkonzisztens allapotban marad. Azt nem tudjuk biztositani, hogy
ilyen szituacio soha el6 ne forduljon, de 1épéseket tehetlink azért, hogy amikor mégis bekovetkezik, akkor
a problémat elharithassuk: vagy A ¢és B értékének 8-ra vald visszallitasaval, vagy mindketté 16-ra
novelésével.

Példa. Tegyiik fel, hogy az adatbazisra vonatkozd konzisztenciamegszoritas: 0 < A < B. Allapitsuk meg,
hogy a kovetkez6 tranzakciok megorzik-e az adatbazis konzisztenciajat!

a) A :=A + B; B :=A + B;
b) B := A+ B; A :=2A + B;
C)A:=B +1; B:=2A+1;

Semmisségi (undo) naplozas

Az els6 kérdés, hogy milyen uton biztosithatd a tranzakciok atomossaga. A naplo (Iog) nem mas, mint
naplobejegyzések (log records) sorozata, melyek mindegyike arrol tartalmaz valami informéciot, hogy mit
tett egy tranzakcid. A tranzakci6 tevékenysége nyomon kovethetd azaltal, hogy a tranzakcié miikodésének
hatésa 1épésenként naplozddik, és ez minden tranzakciodra érvényes.

Ha rendszerhiba fordul eld, akkor a naplo segitségével rekonstrudlhatd, hogy a tranzakcio mit tett a hiba
fellépéséig. A naplot (az archivmentéssel egylitt) hasznalhatjuk akkor is, amikor eszkozhiba keletkezik a
naplot nem tarold lemezen. Altaldnossagban a katasztrofik hatasanak kijavitasat kovetéen a tranzakciok
hatasat meg kell ismételni, €s az altaluk adatbazisba irt 0j értékeket ismételten ki kell irni. Egyes tranzakciok
hataséat viszont vissza kivanjuk vonni, azaz kérjiikk az adatbazis visszaallitasat olyan allapotba, mintha a
tekintett tranzakcié nem is miikodott volna.

Az els6 naplozasi stilus, melyet semmisségi (undo, visszavondsi) naplozasnak neveznek, csak az utdbbi
tipusu helyreéllitasra alkalmas. Ha nem teljesen biztos, hogy a tranzakcid hatdsai teljesen befejezddtek €s
lemezen tarolodtak, akkor minden olyan valtoztatdst, melyet a tranzakcio tehetett az adatbazisban,
semmissé kell tenni, azaz az adatbazist vissza kell allitani a tranzakciéo miikodése el6tti allapotaba.

Naplobejegyzések

Ugy kell tekinteniink, hogy a naplo mint fajl kizarélag bOvitésre van megnyitva. Tranzakci6
végrehajtasakor a naplokezeld feladata, hogy minden fontos eseményt a napléban régzitsen. A napld
blokkjai mindenkor naplobejegyzésekkel vannak feltdltve, mindegyik bejegyzés egy-egy napldzando
eseményre vonatkozik. A naploblokkokat elsdédlegesen a memoridban hozza 1étre a rendszer, €és a
pufferkezeld az adatbazis tobbi blokkjahoz hasonldan kezeli 6ket. A naploblokkokat, amint csak lehetséges,
a nem illékony tarolora irja a rendszer.

A naplozas minden tipusa a naplobejegyzésnek szamos formdjat hasznalja. Egyelore a kovetkezokkel
foglalkozunk:

1. <START T>: Ez a bejegyzés jelzi a T tranzakcid (végrehajtasanak) elkezdddését.

2. <COMMIT T>: A T tranzakcido rendben befejez0dott, az adatbazis elemein mar semmi tovabbi
modositast nem kivan végrehajtani. Minthogy azt nem tudjuk feliigyelni, hogy a pufferkezelé mikor
dont a memoriablokkok lemezre mésolasardl, igy altaldban nem lehetiink biztosak abban, hogy ha
meglatjuk a <COMMIT T> naplobejegyzést, akkor a valtoztatdsok a lemezen mar megtorténtek. Ha
ragaszkodunk ahhoz, hogy a modositasok mar a lemezen is megtorténjenek, ezt az igényt a
naplokezeldnek kell kikényszeritenie (mint példaul a semmisségi napldzas esetén).

3. <ABORT T>: A T tranzakcié nem tudott sikeresen befejez6dni. Ha a T tranzakci6 abortalt (a
normalisnal korabban befejezddott), az altala tett valtoztatasokat nem kell a lemezre mdasolni. A
tranzakcidkezeld feladata annak biztositasa, hogy az ilyen valtoztatasok ne jelenjenek meg a lemezen,
vagy ha volt valami hatasuk a lemezen, akkor az torlédjon. Az abortalt tranzakcid hatasainak
helyreallitasaval késébb foglalkozunk. Az abortalas oka lehet egy hiba a tranzakci6 kédjaban (példaul
0-val valo osztas), melyet a tranzakcio kilovésével kezel a rendszer; de az adatbazis-kezel6 rendszer is
abortalhat egy tranzakciot példaul holtponti helyzetben (lasd késdbb).

4. <T,X,v>. EZ a modositasi bejegyzés. Jelentése: A T tranzakcid modositotta az X adatbaziselemet,
melynek moddositas eldtti értéke v volt. A modositasi bejegyzés altal leirt valtoztatas rendesen csak a
memoriaban tortént meg, a lemezen nem; azaz a naplobejegyzés a WRITE tevékenységre vonatkozik,
nem pedig az OUTPUT-ra! A semmisségi naplozas nem rogziti az adatbaziselem 0j értékét, csak a
modositas elotti értéket. A semmisségi naplézast alkalmazo rendszerekben a helyreallitas-kezeld
feladata a tranzakcid lehetséges hatdsainak semmissé tétele, amelyhez elegendd csak a régi érték
tarolasa.

Felmeriilhet a kérdés, hogy milyen nagy a modositast leird naplobejegyzés. Ha az adatbaziselemek
lemezblokkok, és a modositast leird naplobejegyzés tartalmazza az adatbaziselem régi (mddositas elotti)
értékét (vagy mind a régi, mind az 0j értékét, amint azt az undo/redo napldézasnal latni fogjuk), akkor
el6fordulhat, hogy a napldbejegyzés a blokknal nagyobb méretii lesz. Ez nem feltétlen probléma, mert —
minden hagyomdnyos fajlhoz hasonléan — a naplot lemezblokkok sorozatanak tekinthetjilk, mely
bajtsorozatot tartalmaz, a (technikai) blokkhataroktol fiiggetleniil. Ezaltal méd nyilik a napld tomoritésére
is. Példaul bizonyos koriilmények kozott csak a modositasokat kell naploznunk, azaz csak a tranzakci6 altal
modositott sor érintett attriblitumainak neveit €s azok régi értékeit.

A semmisségi naplozas szabdlyai

Ahhoz, hogy a rendszerhibak utani helyreallitdsra a semmisségi naplozast hasznalhassuk, a tranzakcioknak
két eldirast kell kielégitenitik:

Ui:Ha a T tranzakcié moédositja az X adatbaziselemet, akkor a <T, X, v> tipusu naplobejegyzést azt
megeldézden kell lemezre irni, hogy X 0j értékét lemezre irna a rendszer (write-ahead logging; WAL).

Uz: Ha a tranzakci6 hibamentesen teljesen befejezddott, akkor a COMMI T naplobejegyzést csak azt kovetden
szabad lemezre irni, hogy a tranzakcio altal modositott 0sszes adatbaziselem mar lemezre irddott, ezutdn
viszont a lehetd leggyorsabban.

Osszefoglalva: az egy tranzakciohoz tartozé lemezre irdsokat a kovetkezd sorrendben kell megtenni:

1. az adatbaziselemek moddositasara vonatkozo naplobejegyzések;
2. maguk a mddositott adatbaziselemek;
3. a COMMIT naplobejegyzés.

Az els6 két [épés az egyes modositasokra vagy modositasok csoportjaira vonatkozoéan dnmagéban, kiilon-
kiilon is végrehajthato (nem kell a tranzakci6 6sszes modositasara csoportosan megtenni).

A naplobejegyzések lemezre irasanak kikényszeritésére a naplokezeldnek sziiksége van a FLUSH LOG
miveletre, mely felszdlitja a pufferkezel6t az dsszes korabban még ki nem irt naploblokk lemezre valo
kiirdsdra. A FLUSH LOG miiveletet a tevékenységek kozé fogjuk iktatni.

Példa. A semmisségi naplozas fényében vizsgaljuk meg Ujra a korabbi példdban megismert tranzakciot.
Kibdovitjiik a korabbi tablazatot, bemutatvan a naplobejegyzéseket is €s a naplokiirasi tevékenységet is a T
tranzakci6 végrehajtasa sorn:

Lépés | Tevékenység t M-A | MB | D-A | D-B Naplo

1) <START T>
2) | READ (A, t) 8 8 8 8

3) |t = t*2 16 8 8 8

4) | WRITE (A, t) 16 16 8 8| <T,A,8>
5) | READ (B, t) 8 16 8 8 8

6) | £t = t*2 16 16 8 8 8

7) | WRITE (B, t) 16 16 16 8 8 | <T,B, 8>
8) | FLUSH LOG

9) | OUTPUT (A) 16 16 16 8
10) | OUTPUT (B) 16 16 16 16
11) <COMMIT T>
12) | FLUSH LOG

Az els6, ami torténik, az a <START T> bejegyzés naploba irdsa. Utdna jon A beolvasdsa, majd t
modositdsa, melynek nincs semmilyen hatasa sem a lemezen tarolt adatbdzisra, sem annak
memoriapufferben taldlhat6 egyetlen részére sem. A 2) és 3) 1épés nem igényel naplobejegyzest, mert nincs
hatasuk az adatbazisra.

A 4) Iépés A 1 értékének pufferbe irdsa. Ezen modositasra vonatkozik a <T, A, 8> naplobejegyzés, mely
azt rogziti, hogy A korabbi értékét (8) T megvaltoztatta. Lathato, hogy az 11j érték (16) nincs megemlitve a
semmisségi napldzas naplojaban.

A kovetkez6 harom 1épésben ugyanaz hajtédik végre B-re vonatkozdan, mint kordbban A-ra. E pontona T
tranzakcid rendben befejezddott, tevékenységét véglegesiteni kell. A és B értékét lemezre kell masolni,
betartva a semmisségi naplozas két szabalyat, a kovetkezo 1épéseknek kotott sorrendben kell megtorténnie.

Elsd, hogy A ¢és B addig nem mésolhato lemezre, amig a modositast leird naplobejegyzések lemezre nem
keriilnek. Ezt a 8) 1épéssel biztositjuk: a FLUSH LOG hatasara az eddigi 6sszes naplobejegyzés lemezre
ir6dik. E kiirast kovetden a 9) és 10) 1épések A-t és B-t lemezre masoljak. Ezeket a 1épéseket a pufferkezeld
valdsitja meg.

Ekkor lehetséges a T tranzakcio teljes €s sikeres befejezése, ezt jelzendd a 11) 1épésben a <COMMIT T>
bejegyzés a naploba irodik. Végiil a 12) 1épésben ismét ki kell adni a FLUSH LOG utasitast azért, hogy
biztositsuk a <COMMIT T> naplobejegyzés lemezre valo kiirasat. Enélkiil, bar olyan helyzetben vagyunk,
hogy a tranzakci6 teljesen és hibamentesen befejezddott, ennek a naplo késdbbi elemzésekor esetleg nem
fogjuk nyomat taldlni. Az ilyen szituaciok olyan furcsa viselkedést eredményezhetnek, hogy hiba esetén a
felhasznalo azt tapasztalja, hogy a tranzakci6 hibamentesen befejezddott, a lemezre kiirt modositasok mégis
semmissé valtak, a tranzakciot ugyanis abortaltnak tekinti a rendszer.

A fentiek alapjan azt gondolhatnank, hogy az egyes tranzakcidkhoz tartozo6 tevékenységek elkiiloniilten
hajtodnak végre. Az adatbazis-kezeld rendszernek viszont szdmos tranzakcid szimultan kezelését kell
megoldania. fgy egy T tranzakcid naplobejegyzései a naploban mas tranzakciok bejegyzéseivel
keveredhetnek. Ha a tobbi tranzakcid valamelyike is a naplé lemezre irasat kezdeményezi, akkor a T-re
vonatkozo6 naplobejegyzések esetleg mar kordbban lemezre keriilnek, mint ahogy azt a tranzakcié eldirja.
Ebbdl persze nem szarmazik probléma. A <COMMIT T> napldobejegyzést igysem fogjuk a T OUTPUT
utasitasai végrehajtasanak befejezésénél korabban kiirni, ezzel biztositani tudjuk, hogy a moddositott
adatbazisértékek elobb megjelenjenek a lemezen, mint a COMMIT naplobejegyzés.

10

Kényes helyzet 4ll viszont eld, ha két adatbaziselem kozos blokkban talalhaté. Ilyenkor az egyik lemezre
irdsa maga utan vonja a masik kiirasat is. Legrosszabb esetben az egyik adatbaziselem tul korai kiirdsaval
megsértjik az U szabalyt. Ez sziikségessé tehet tovabbi eldirdsokat a tranzakciora nézve azért, hogy a
semmisségi naplozasi moddszer haszndlhatdo legyen. Példaul valamilyen zarolasi modszert kell
alkalmaznunk annak megeldzésére, hogy két tranzakcid egyszerre ugyanazon blokkot haszndlja. Ilyen
problémak akkor jelentkeznek, amikor az adatbaziselemek blokkok részei. Emiatt célszera
adatbaziselemnek a blokkot tekinteni.

Helyredllitas a semmisségi naplozas haszndlatdaval

Tételezziik fel, hogy rendszerhiba tortént. Eléfordulhat, hogy egy adott tranzakcio altal végzett adatbazis-
modositasok koziil egyesek mar lemezre irddtak, mig masok (melyeket ugyanez a tranzakcié hajtott végre)
még nem. Ha igy tortént, a tranzakcid nem atomosan hajtoédott végre, igy az adatbazis inkonzisztens
allapotba keriilhetett. A helyreéllitas-kezeld feladata a napld haszndlatdval az adatbazist konzisztens
allapotba visszaallitani.

Eloszor a legegyszeriibb helyreallitas-kezel6 modszerrel foglalkozunk, mely a teljes naplot latja,
fiiggetlentil annak méretétdl. Késobb egy sokkal finomabb megkozelitést néziink meg, amikor
ellendrzépont periodikus készitésével a rendszer korlatozza azt a tadvolsagot, ameddig a helyreallitas-
kezlonek a korabbi torténéseket vizsgalnia kell.

A helyreallitas-kezeld els6 feladata a tranzakcidok felosztasa sikeresen befejezett és nem befejezett
tranzakciokra. Ha taladlhat6 <COMMIT T> napldbejegyzés, akkor az U, szabalynak megfeleléen a T
tranzakci6 altal végrehajtott 3sszes adatbazis-modositas mar korabban lemezre irodott. gy a T tranzakcié
Onmagaban a hiba fellépésekor nem hagyhatta az adatbazist inkonzisztens allapotban.

Ha a napléban taldlunk <START T> bejegyzést, de nem talalunk sem <COMMIT T>, sem <ABORT T>
bejegyzést, akkor a T tranzakcio végrehajthatott az adatbazisban olyan modositasokat, melyek még a hiba
fellépése elott lemezre irodtak, mig mas valtoztatasok még a memoriapufferekben sem torténtek meg, vagy
ott megtorténtek ugyan, de a lemezre mar nem irddtak ki. Illyen esetben a T nem komplett tranzakcio, €s
hatasat semmissé kell tenni, azaz a T altal modositott adatbaziselemek értékeit vissza kell allitani a korabbi
értékeikre. Az U; szabaly betartasa biztositja, hogy ha T a hiba jelentkezése eldtt X értékét modositotta,
akkor még ez el6tt a lemezen 1év6 naploba kellett kiirodni egy <T, X, v> bejegyzésnek. Igy a helyreallitas
soran modunkban 4ll a v értéket az X adatbaziselembe visszairni. Felmeriilhet a kérdés, hogy X értéke nem
v-e amugy is az adatbazisban, de nem is érdemes ezt ellendrizni.

Minthogy a napldban szamos rendesen befejezett €s teljesen be nem fejezett tranzakcidé nyomat talalhatjuk,
¢és ezek kozil tobb tranzakcid modosithatta az X adatbaziselemet is, nagyon tigyelniink kell arra, hogy
milyen sorrendben allitjuk vissza X korabbi tartalmat. Ezért a helyreallitds-kezeld a naplot a végérdl kezdi
atvizsgalni. Amint halad a napld atvizsgalasaval, megjegyzi mindazon T tranzakciokat, melyekre
vonatkozoan a naploban <COMMIT T> vagy <ABORT T> bejegyzést talalt. Ahogy halad visszafelé, és
elér egy <T, X, v> bejegyzésig, akkor a kovetkez6 lehetdségek vannak:

e haugyanerre a T tranzakciora vonatkoz6 COMMIT bejegyzéssel mar talalkozott, akkor nincs teenddje,
hiszen T rendesen és teljesen befejezddott, hatasait tehat nem kell semmissé tenni;

e ha ABORT bejegyzéssel talalkozott a T tranzakciora vonatkozoan, akkor sincs teenddje, ebben az
esetben ugyanis T-t egyszer mar helyreallitottuk;

e minden més esetben T nem komplett tranzakcid, ekkor a helyredllitas-kezeld X értékét v-re cseréli.

11

Miutan a helyreallitas-kezel6 végrehajtotta a fenti valtoztatasokat, minden nem komplett T tranzakciora
vonatkozéan <ABORT T> bejegyzést ir a naploba, és kivaltja annak naplofajlba valo kiirasat is
(FLUSH LOG). Ekkor folytatodhat az adatbazis normal hasznalata, 0j tranzakciok indulhatnak.

Példa. Tekintsiik at, hogy mi torténik, ha a fenti példaban kiilonb6z6 idépontokban rendszerhiba kdvetkezik
be:

1. A hibaa 12) Iépést kovetden jelentkezett. Tudjuk, hogy ekkor a <COMMIT T> bejegyzést mar lemezre
irta a rendszer. A hiba kezelése soran a T tranzakci6 hatasait nem kell visszallitani, a T-re vonatkozo
0sszes naplobejegyzést a helyreallitas-kezeld figyelmen kiviil hagyhatja.

2. A hiba a 11) és 12) Iépések kozott jelentkezett. Ekkor eléfordulhat, hogy a COMMIT bejegyzést
tartalmazd naplobejegyzés mar lemezre irddott, példaul ha a naplobejegyzés kiirasat egy masik
tranzakci6 mar kérte a pufferkezel6tél. Ha igy tortént, akkor T-re vonatkozodlag a hiba kezelése az 1.
esethez hasonl6. Ha azonban a COMMIT bejegyzés a lemezen nem talalhato, akkor a helyreallitas-kezeld
a T tranzakciot befejezetlennek tekinti. Ahogy olvassa a naplot visszafelé, el6szor a <T, B, 8>
bejegyzést fogja megtaldlni (a T tranzakciora vonatkozoélag). Ennek megfeleloen a lemezen B
tartalmaba 8-at ir vissza. Majd a <T, A, 8> naplobejegyz¢és miatt A tartalméba is 8 keriil. Végezetiil
<ABORT T> bejegyzést ir a napldba és a lemezre.

3. Haahibaa 10) és 11) Iépések kozott 1épett fel, akkor a COMMIT bejegyzés még biztosan nem tortént
meg, tehat T befejezetlen, hatasainak semmissé tétele a 2. esetnek megfeleléen torténik.

4. A 8) és 10) Iépések kozott bekovetkezd hiba fellépésekor az el6zo esethez hasonléoan T hatasait
semmissé kell tenni. Az egyetlen kiilonbség, hogy az A és/vagy B modositdsa még nem jelent meg a
lemezen. Ettdl fiiggetleniil mindkét adatbaziselem korabbi értékét (8) allitja vissza a rendszer.

5. Amennyiben a hiba a 8) 1épésnél korabban jelentkezik, akkor még az sem biztos, hogy a T tranzakciora
vonatkozo naplobejegyzések koziil barmi is lemezre keriilt. Az Uz szabaly miatt azonban tudjuk, hogy
miel6tt az A ¢és/vagy B adatbdziselemek a lemezen moédosulndnak, a megfeleld modositasi
naplobejegyzésnek a naploban meg kell jelennie. Igy ha T médositotta is a lemezen A és/vagy B értékét,
a megfeleld naplobejegyzés hatasara a helyreéllitas-kezeld semmissé teszi ezeket a modositasokat.

Tegyiik fel, hogy egy korabbi hiba utani helyreallitas kozben ismét rendszerhiba 1ép fel. A semmisségi (€s
a masik kettd) naplozas oly modon van megtervezve, hogy a kordbbi érték valtoztatas eldtti tarolasa
kovetkeztében a helyredllitd 1épések idempotensek, ami azt jelenti, hogy a helyredllitdo tevékenyseég
tobbszori végrehajtasa pontosan ugyanolyan hatast, mint egyszeri végrehajtasa. Ha talalunk egy <T, X, v>
naplobejegyzést, akkor nem szamit, hogy X értéke mar v, X értékét (esetleg ismételten) v-re allithatjuk.
Hasonl6an semmi problémat nem okoz, ha a helyreallitasi folyamat egészét (vagy félbemaradt részét)
tobbszor megismételjiik.

Az ellenorzopont-képzés

Mint lattuk, a helyreallitas elvben a teljes naplo atvizsgalasat igényli. Semmisségi naplozés esetén ha egy
tranzakci6 a COMMIT naplobejegyzést mar kiirta a naploba, akkor az ezen tranzakciora vonatkozo
naplobejegyzésekre a helyredllitds soran nincs mar sziikség (hacsak nem kivanjuk késébb elemezni a
tranzakcidkat). Gondolhatnank arra, hogy a tranzakciéra vonatkozd, a COMMIT-ot megel6zd
naplobejegyzéseket torolhetnénk a naplobol, de ezt nem mindig tehetjiik meg. Ennek oka az, hogy gyakran
sok tranzakcié miikodik egyszerre, és ha a naplét egy tranzakcid befejezése utan csonkitanank, esetleg
elveszitenénk mas, még aktiv tranzakcidkra vonatkozo bejegyzéseket, igy nem tudnank a naplot a
helyreallitasra hasznalni.

12

E probléma megoldasara a legegyszeriibb mod, ha a naplora vonatkozoéan ismétléddden ellendrzépontokat
(checkpoint) képeziink. Kétféle ellendrzépont-képzés 1étezik: egyszeri €s a rendszer miikodése kozbeni.
Az egyszerl ellendrzOpont-képzés a kovetkezOképpen torténik:

1. Uj tranzakcioinditasi kérések kiszolgalasanak letiltasa.

2. A még aktiv tranzakciok helyes ¢€s teljes befejezésének vagy abortalasanak és a COMMIT vagy ABORT
bejegyzés naploba irasanak kivarasa.

3. A naplo lemezre valo kiirasa (FLUSH LOG).

4. <CKPT> naplobejegyzés képzése €s kiirdsa a napldba, majd ujra FLUSH LOG.

5. Tranzakcioinditasi kérések kiszolgalasa.

Az ellendrzdpont kiirasat megeldzden végrehajtott tranzakciok mind befejezddtek, és az U, szabalynak
megfelelden modositasaik lemezre keriiltek. Ennek megfeleléen ezen tranzakciok tevékenységére nézve
egy esetleges késébbi hiba elharitdsakor mar nem igényel a rendszer helyreallitast. A helyreallitas soran a
naplot a végétdl visszafelé csak a <CKPT> bejegyzésig kell elemezni azért, hogy a nem befejezett
tranzakciokat azonositsuk. Amikor a <CKPT> bejegyzést megtalaljuk, ebbdl tudjuk, hogy mar lattuk az
Osszes befejezetlen tranzakciot. Mivel az ellendrzépont-képzés alatt Gjabb tranzakcidé nem indulhatott,
latnunk kellett a befejezetlen tranzakciokhoz tartozd Osszes naplobejegyzést. Ezért nem sziikséges a
<CKPT> bejegyzésnél korabbi naplorészt elemezniink, és — hacsak mas okbol nincs szilikségiink rd —
biztonsaggal torolhetjiik vagy feliilirhatjuk.

Példa. Tekintsiik az alabbi naplorészletet:

<START Ti1>
<T1,A, 5>
<START T2>
<T»,B,10>
<T»,C, 15>
<T1,D, 20>
<COMMIT Ti1>
<COMMIT T2>
<CKPT>
<START T3>
<Ts,E, 25>
<Ts,F,30>

Tegyiik fel, hogy a 4. bejegyzés utan ugy dontiink, hogy ellenérzépontot hozunk 1étre. Minthogy T1 és T»
aktiv tranzakciok, meg kell varnunk befejezddésiiket, mielétt a <CKPT> bejegyzést a naploba irnank.
Tegyiik fel, hogy a naplorészlet végén rendszerhiba 1ép fel. A naplot a végétdl visszafelé elemezve Ts-at
fogjuk az egyetlen be nem fejezett tranzakcionak talalni, igy E és F korabbi értékeit kell csak
visszaallitanunk. Amikor megtaldljuk a <CKPT> bejegyzést, tudjuk, hogy nem kell a korabbi
naplobejegyzéseket elemeznlink, végeztiink az adatbazis allapotanak helyrehozasaval.

Felmeriilhet a kérdés, hogy hogyan talaljuk meg az utols6 naplobejegyzést. A napld 1ényegében egy f3jl,
melynek blokkjai tartalmazzak a naplobejegyzéseket. A blokk még ki nem toltott részeit tiresként jeloljiik.
Ha a bejegyzéseket soha nem irjuk feliil, akkor a helyreéllitas-kezeld az utols6 bejegyzést tigy keresi meg,
hogy megkeresi az elsé iires bejegyzést, €s az ezt megel6zd bejegyzes a f4jl utolsd érvényes bejegyzése.
Ha viszont a régi naplobejegyzéseket feliilirjuk, akkor a naplobejegyzéseket egyedi, ndvekvd sorszammal
kell ellatnunk:

23| 4 5 6 7 8
9 110 | 11
Ekkor azt a bejegyzést kell megtalalnunk, melynek nagyobb a sorszama, mint a kvetkezdé: ez a bejegyzés
a naplo pillanatnyi vége. A gyakorlatban a nagyméretii naplo tobb f4jl egyesitése is lehet. Logikailag ekkor
is egy fajlnak tekintjiik, és a végét a megfeleld részfajlban keressiik.

13

Ellendrzopont-képzés a rendszer miikodése kozben

Az egyszerl ellendrzOpont-képzési technika problémadja, hogy gyakorlatilag le kell allitani a rendszer

miikodését az ellendrzépont elkésziiltéig. Minthogy az aktiv tranzakciok még hosszabb iddt igényelhetnek

a normalis vagy abnormalis befejezddésiikig, a felhaszndlé szaméara a rendszer leallitottnak tlinhet. Egy

joval bonyolultabb modszerrel, a miikodés kozbeni ellendrzépont-képzéssel (nonquiescent checkpointing)

elérjiik, hogy az ellendrzépont-képzés alatt 01j tranzakciok induldsat ne kelljen sziineteltetni. E modszer

1épései:

1. <START CKPT (T4i,...,Tx) > naplobejegyzés készitése és lemezre irasa (FLUSH LOG). Ti,...,Tx az
éppen aktiv tranzakciok nevei.

2. Meg kell varni a Ti,...,Tx tranzakciok mindegyikének normalis vagy abnormalis befejez6dését, nem
tiltva kdzben ujabb tranzakciok inditasat.

3. Haa Ti,...,Tx tranzakcidok mindegyike befejezddott, akkor <END CKPT> naplobejegyzés elkészitése
¢és lemezre irasa (FLUSH LOG).

Az ilyen tipust napl6 felhasznalasaval a kovetkezoképpen tudunk rendszerhiba utan helyreallitani: a naplot
a végétdl visszafelé elemezve megtaldljuk az 6sszes nem befejezett tranzakciot, régi értékére visszaallitjuk
az ezen tranzakciok altal megvaltoztatott adatbaziselemek tartalmat. Két eset fordulhat el aszerint, hogy
visszafelé olvasvan a naplot az <END CKPT> vagy a <START CKPT (Ti,...,Tx) > naplobejegyzést
talaljuk elobb:

e Haelébb az <END CKPT> naplobejegyzéssel talalkozunk, akkor tudjuk, hogy az 6sszes még be nem
fejezett tranzakciora vonatkozo naplobejegyzést a legkdzelebbi korabbi <START CKPT (Ty,...,Tx) >
naplobejegyzésig megtalaljuk. Ott viszont megallhatunk, az annal korabbiakat akar el is dobhatjuk.

e Amennyiben a <START CKPT (T1,...,Tx) > naplobejegyzéssel talalkozunk elébb, az azt jelenti, hogy
a katasztrofa az ellendrzépont-képzés kozben fordult eld. Ennek kovetkeztében a T+,...,Tx tranzakcidk
nem fejezédtek be (legalabbis nem tudtuk a befejezddést regisztralni) a hiba fellépéséig. Ekkor a be
nem fejezett tranzakciok koziil a legkordbban kezdddott tranzakcid induldsdig kell a naploban
visszakeresniink, annal kordbbra nem. Az ezt megel6z6 olyan START CKPT bejegyzés, amelyhez
tartozik END CKPT, biztosan megel6zi a keresett 6sszes tranzakcio inditasat leiro bejegyzéseket. Ha a
START CKPT el6tt olyan START CKPT bejegyzést talalunk, amelyhez nem tartozik END CKPT,
akkor ez azt jelenti, hogy kordbban is ellendrzépont-képzés kdzben tortént rendszerhiba. Az ilyen
»ellendrzépont-kezdeményeket” figyelmen kiviil kell hagyni. Ezenfeliil, ha az ugyanazon tranzakciora
vonatkoz6 naplobejegyzéseket dsszelancoljuk, akkor nem kell a naplé minden bejegyzését atnézniink
ahhoz, hogy megtalaljuk a még be nem fejezett tranzakcidkra vonatkozo bejegyzéseket, elegendd csak
az adott tranzakcid bejegyzéseinek lancan visszafelé haladnunk.

Altalanos szabéalyként elmondhato, hogy ha egy <END CKPT> naplobejegyzést kiirunk lemezre, akkor az
azt megel6z6 START CKPT bejegyzésnél korabbi naplobejegyzéseket tordlhetjiik.

Példa. Tekintsiik az alabbi naplorészletet:

<START Ti1>
<Ti1,A,5>

<START Ty>
<T»,B,10>

<START CKPT (T, T2)>
<T2,C, 15>

<START T3>

<T1,D, 20>

<COMMIT Ti1>

<T3,E, 25>

14

<COMMIT Ty>
<END CKPT>
<Ts3,F,30>

Most ugy dontlink, hogy miikodés kozbeni ellendrzépontot hozunk Iétre a 4. bejegyzés utan. Minthogy e
pillanatban T és T aktiv tranzakciok, ezért kell az 5. bejegyzést felirnunk. Tegyiik fel, hogy amig T: és
T, befejezddésére varunk, azalatt egy harmadik tranzakcié (T3) is elkezdddik.

Tegyiik fel, hogy a naplorészlet végén rendszerhiba 1¢ép fel. A naplot a végétdl visszafelé vizsgalva tgy
fogjuk talalni, hogy T3 egy be nem fejezett tranzakcid, ezért hatasait semmissé kell tenni. Az utolso
naplébejegyzés arrdl informal benniinket, hogy az F adatbaziselembe a 30 értéket kell visszaallitani.
Amikor az <END CKPT> naplobejegyzést talaljuk, tudjuk, hogy az 6sszes be nem fejezett tranzakciod a
megel6z0 START CKPT naplobejegyzés utan indulhatott csak el. Tovabb haladva visszafel¢, megtalaljuk
a <Ts3,E, 25> bejegyzést, mely megmondja nekiink, hogy az E adatbaziselem értékét 25-re kell
visszaallitani. Ezen bejegyzés és a START CKPT naplobejegyzés kozott tovabbi elindult, de be nem
fejez0dott tranzakciora vonatkozo bejegyzést nem taldlunk, igy az adatbazison mast mar nem kell
megvaltoztatnunk.

Tegytik fel most, hogy az ellendrzdpont-képzés kdzben tortént katasztrofa, a <Ts, E, 25> bejegyzés utan.
Visszafelé elemezve a naplot, azonositjuk a T3, majd a T» tranzakciokat, melyek nincsenek befejezve, tehat
helyreallit6 modositdsokat kell tenniink. Amikor megtaldljuk a <START CKPT (Ti,T»2)>
naplobejegyzést, megtudjuk, hogy az egyetlen tovabbi olyan tranzakcid, mely lehetséges, hogy nincs
befejezve, a T1. Minthogy azonban a <COMMIT T:> bejegyzést mar lattuk, ebbdl tudjuk, hogy T: nem be
nem fejezett tranzakcid. Lattuk mar tovabba a <START Ts> bejegyzést is, igy mar tudjuk, hogy csak addig
kell folytatnunk a napld elemzését, amig a T> START bejegyzését meg nem taldljuk. Ekozben még a B
adatbaziselem értékét is visszaallitjuk 10-re.

Helyrehozo (redo) naplozas

A semmisségi naplozas természetes €s egyszerl stratégiat valosit meg a naplo kezelésére és rendszerhibak
esetén a visszaallitasra, de a probléma megoldasanak nem ez az egyetlen lehetséges megkozelitése. A
semmisségi naplozas potencialis problémaja az, hogy csak azutan tudjuk befejezni a tranzakcidt, hogy az
Osszes adatbdzis-modositdsa lemezre irddott. Olykor a lemezmiiveletekkel tudnank takarékoskodni, ha
megengednénk, hogy az adatbazis-mddositasokat csak a memoridban végezzék a tranzakcidk, mikdzben a
napld az eseményeket rogziti, azért, hogy katasztrotfa esetén is biztonsagban legyen az adatbazis.

Az adatbaziselemek lemezre valdo azonnali visszairdsanak kényszerét elkeriilhetjiik, ha a helyrehozo
naplozas (redo logging) modszerét valasztjuk. Az alapvetd kiilonbségek a semmisségi €s a helyrehozé
naplozas kozott az alabbiak:

e Amigasemmisségi naplozas a helyredllitas sordn a be nem fejezett tranzakciok hatdsait semmissé teszi,
a befejezett tranzakciok hatasait pedig nem modositja, addig a helyrehoz6 naplozas figyelmen kiviil
hagyja a be nem fejezett tranzakciokat, és megismétli a normalisan befejezettek altal végrehajtott
valtoztatasokat.

e A semmisségi naplézds megkivanja az adatbaziselemek lemezen valé moddositdsdt a COMMIT
naplébejegyzés lemezre irdsa eldtt, a helyrehoz6 naplozas viszont a COMMIT napldbejegyzés lemezre
irasat varja el, miel6tt barmit is valtoztatna a lemezen 1év6 adatbazisban.

e A semmisségi naplozas Ux és Uz szabalyainak betartdsa mellett csak a modositott adatbaziselemek régi
tartalmat kell megdrizniink az esetleges visszaallitas biztositasahoz, a helyrehozé naplozassal torténd
helyreallitdishoz a moddositott elemek 1j értékére van sziikség. Emiatt a helyrehozo naplozés

15

naplobejegyzései ugyanolyan formdjuak, de mds a jelentésiik, mint a semmisségi naplozasnal
alkalmazottaké.

A helyrehozo naplozas szabalyai

A helyrehoz6 naplozas az adatbaziselemek modositasat a naplobejegyzésben az 1ij értékkel képviseli (nem
pedig a régivel, mint a semmisségi naplozasnal). Ez a bejegyzés ugyanugy néz ki, mint a semmisségi
naplozasnal hasznalt: <T, X, v>, a jelentése azonban mas: a T tranzakci6 az X adatbaziselemnek a v értéket
adta. E bejegyzésben az X régi értékét nem jelzi semmi. Ha egy T tranzakcié mddositja egy X adatbaziselem
értekét, akkor egy <T, X, v> bejegyzést kell a naploba irni.

Az adatbaziselemek és a naplobejegyzések lemezre keriilésének sorrendjét az alabbi egyszerii szabaly irja
le:

Ri: Miel6tt az adatbazis barmely X elemét a lemezen modositanank, sziikséges, hogy az X ezen
modositasara vonatkozo dsszes naplobejegyzés, azaz <T, X, v> és <COMMIT T>, lemezre keriiljon.

Minthogy a COMMIT bejegyzést csak akkor irhatjuk a naploba, ha a tranzakcié teljesen és hibamentesen
befejez0dott, igy az csak a modositadsokat leird bejegyzések utan allhat, ezért tigy is 0sszegezhetjiik az Ry
szabalyt, hogy ha helyrehoz6 naplézast hasznalunk, akkor az egy tranzakciora vonatkozo6 lemezre irasoknak
a kovetkezd sorrendben kell megtorténnitik:

1. az adatbaziselemek moddositasat leird naplobejegyzések lemezre irasa;
2. a COMMIT naplobejegyzés lemezre irdsa;
3. az adatbaziselemek értékének tényleges cseréje a lemezen.

Példa. Nézziik meg a kordbban megismert tranzakcidt helyrehozo6 naplozas haszndlatival:

Lépés | Tevékenység t M-A | M-B | D-A | D-B Naplo

1) <START T>
2) | READ (A, t) 8 8 8 8

3) |t = £*2 16 8 8 8

4) | WRITE (A, t) 16 16 8 8 | <T,A,16>
5) | READ (B, t) 8 16 8 8 8

6) | £ = t*2 16 16 8 8 8

7) | WRITE (B, t) 16 16 16 8 8| <T,B,16>
8) <COMMIT T>
9) | FLUSH LOG
10) | OUTPUT (A) 16 16 16 8
11) | OUTPUT (B) 16 16 16 16

A fobb kiilonbségek a semmisségi €s a helyrehozd napldzés hasznélata kozott tehat a kovetkezok: A
modositasi bejegyzésekben A €s B 1 értéke szerepel, nem a régi. A COMMIT bejegyzés korabbra kertilt, a
8) Iépésbe. Ezt kovetden a napld lemezre irasat kivalto FLUSH LOG kdvetkezik, igy a T tranzakcid 4ltal
végrehajtott modositasokat leird dsszes naplobejegyzés lemezre irddik. Csak ezt kovetden keriil lemezre A
és B Uj érteke. Az abran ezen uj értékek kiirasat a kozvetleniil kovetkezd 10) és 11) 1épésekben lathatjuk,
bar a gyakorlatban ezekre esetleg csak késébb kertil sor.

Helyredallitas a helyrehozo naplozas hasznalataval

A helyrehoz6 naplozas Ri szabalyanak fontos kdvetkezménye, hogy ha a naploban nincs <COMMIT T>
bejegyzés, akkor tudjuk, hogy a T tranzakcié nem hajtott végre az adatbazisban modositast a lemezen. igy
a be nem fejezett (nem teljes) tranzakciok a helyreallitas soran ugy tekinthetok, mintha meg sem torténtek
volna. Problémat a befejezett tranzakcidk jelenthetnek, mert nem tudjuk, hogy az altaluk elvégzett

16

adatbazis-valtoztatasok koziil melyek irodtak mar lemezre. Szerencsére a helyrehoz6 naplézas naploja
éppen azon informaciokat (az 0j értékeket) tartalmazza, melyekre sziikségiink van a helyreallitashoz. Ezen
uj értékeket kell lemezre irnunk, attol fiiggetleniil, hogy esetleg mar kordbban is kiirdédtak. A
rendszerkatasztréfa bekovetkezése utan a helyrehozo naplézassal torténd helyreallitdshoz a kovetkezoket
kell tenniink:

1. Meghatarozzuk a befejezett tranzakciokat (COMMIT).

2. Elemezziik a naplét az elejétdl kezdve. Minden <T, X, v> naplobejegyzés esetén:
a) Ha T nem befejezett tranzakcid, akkor nem kell tenni semmit.
b) Ha T befejezett tranzakcid, akkor v értéket kell irni az X adatbaziselembe.

3. Minden T be nem fejezett tranzakciora vonatkozéoan <ABORT T> naplobejegyzést kell a naploba irni,
¢és a naplot ki kell irni lemezre (FLUSH LOG).

Példa. Nézziik meg, hogyan lehet a fenti példaban a helyredllitast elvégezni a kiilonb6z6 pillanatokban
bekovetkezd katasztrofak esetén:

1. Haakatasztrofa a 9) 1épés utan barmikor kovetkezik be, akkor a <COMMIT T> bejegyzés mar lemezen
van. A helyreallité rendszer T-t befejezett tranzakcioként azonositja. Amikor a naplot az elejétol kezdve
elemzi,a<T,A, 16> ¢ésa<T, B, 16> bejegyzések hatasara a helyreallitas-kezel6 az A és B adatbazis-
elemekbe a 16 értéket irja. Ha a katasztrofa a 10) és 11) 1épések kozott kovetkezett be, akkor A Gjrairasa
redundans ugyan, de B irasa lényeges lépés az adatbazis konzisztens allapotanak eléréséhez.
Amennyiben a hiba a 11) 1épést kovetden keletkezett, akkor mindkét adatbaziselem 1) értékének
lemezre irasa redundans, de semmi gondot nem 0koz.

2. Ha a hiba a 8) és 9) Iépések kozott jelentkezik, akkor bar a <COMMIT T> bejegyzeés mar a naploba
kertilt, de nem biztos, hogy lemezre irodott. Ha lemezre kertilt, akkor a helyreéllitasi eljaras az 1. esetnek
megfelelden torténik, ha nem, akkor pedig a 3. esetnek megfelelden.

3. Ha a katasztrofa a 8) 1épést megel6zden keletkezik, akkor <COMMIT T> naplobejegyzés még biztosan
nem keriilt lemezre, igy T be nem fejezett tranzakcionak tekintendd. Ennek megfelelden A és B értékeit
a lemezen még nem valtoztatta meg a T tranzakcio, tehat nincs mit helyreallitani. Végil egy
<ABORT T> bejegyzést irunk a naploba.

Mivel sok befejezett tranzakciod is adhatott 11j értéket ugyanazon X adatbaziselemnek, ezért a helyrehozo
naplozés alkalmazasakor a naplot a korabbi bejegyzésektdl a késdbbiek felé (idérendben) haladva kell
elemezniink. Igy érhetd el, hogy X adatbazisbeli végsd értéke a normalisan befejez6dott tranzakcidk altal
utoljara adott legyen. Ugyanazt az allapotot érjiik el tehat, mint ami a semmisségi naplozasnal a naplo
visszafelé elemzésével volt elérhetd.

Helyrehozo naplozas ellenorzopont-képzés haszndlatdval

A semmisségi naplozasnal latottakhoz hasonléan a helyrehoz6 napldzas naplojaba is illeszthetiink
ellendérzépontokat. A helyrehoz6 naplozasnal azonban 1j probléma jelentkezik: minthogy a befejez0dott
tranzakciok moédositasainak lemezre irdsa a befejezddés utan sokkal késdbb is torténhet, igy az e
vonatkozasban ugyanazon pillanatban aktiv tranzakciok szdmdat nincs értelme korlatozni, tehat nincs
értelme az egyszerli ellendrzépont-képzésnek. Tekintet nélkiil arra, hogy az ellendrzépont-képzés alatt
tranzakcidk induldsat megengedjiik vagy sem, a kulcsfeladat — amit meg kell tenniink az ellenérzépont-
készités kezdete és befejezése kozotti iddben — az Osszes olyan adatbédziselem lemezre vald kiirasa,
melyeket befejezett tranzakciok modositottak, és még nem voltak lemezre kiirva. Ennek megvalositasahoz
a pufferkezelonek nyilvan kell tartania a piszkos puffereket (dirty buffers), melyekben mar végrehajtott, de
lemezre még ki nem irt modositasokat tarol. Azt is tudnunk kell, hogy mely tranzakciok mely puffereket
modositottak.

17

Masrészrol viszont be tudjuk fejezni az ellendrzOpont-képzést az aktiv tranzakciok (normalis vagy
abnormalis) befejezésének kivarasa nélkiil, mert 6k ekkor még amugy sem engedélyezik lapjaik lemezre
irasat. A helyrehozé naplozasban a mitkodés kdzbeni ellendrzépont-képzés a kovetkezdkbdl all:

1. <START CKPT (Ty,...,Tx) > naplobejegyzés elkészitése €s lemezre irasa, ahol Ti,...,Tx az Osszes
éppen aktiv tranzakcio.

2. Az Osszes olyan adatbaziselem kiirasa lemezre, melyeket olyan tranzakciok irtak pufferekbe, melyek a
START CKPT naploba irdsakor mar befejezddtek, de puffereik lemezre még nem kertiltek.

3. <END CKPT> bejegyzés napldba irasa, €s a napld lemezre irasa.

Példa. Tekintsiik az alabbi naplorészletet:

<START Ti1>
<Ti1,A, 5>
<START T2>
<COMMIT Ti1>
<T,B,10>
<START CKPT (T2) >
<T2,C, 15>
<START T3>
<T3,D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Amikor az ellenérzépont-képzés elkezdddott, csak T2 volt aktiv, de a T: altal A-ba irt érték még nem biztos,
hogy lemezre keriilt. Ha még nem, akkor A-t lemezre kell méasolnunk, miel6tt az ellenérzépont-képzést
befejezhetnénk. A naplo érzékelteti, hogy az ellendrzOpont-képzés befejezéséig mas események is
bekovetkezhetnek: T, a C adatbaziselem tartalmat modositja, elindul egy 0j tranzakcioé (Ts), és modositja
D értékét. Az ellendrzépont-képzés befejezése utdn mar csak a T2 és Ts tranzakciok befejezddése tortént
meg.

Visszadllitas az ellenorzopont-képzéssel kiegészitett helyrehozo tipusu naplozassal

Mint a semmisségi naplozasnal, most is az ellendrzépontok naploba illesztése segit a naplo atvizsgaldsanak
korlatozasaban. Most is két eset fordulhat el6:

e Tegylik fel, hogy a katasztrofa el6tt a naploba feljegyzett utolsd ellendrzépont-bejegyzés
<END CKPT>. Ekkor tudjuk, hogy az olyan értékek, melyeket olyan tranzakciok irtak, melyek a
<START CKPT (T4,...,Tx) > naplobejegyzés megtétele elott befejezddtek, mar biztosan lemezre
kertiltek, igy nem kell veliik foglalkoznunk. Foglalkoznunk kell viszont a Ti-kkel és az ellendrzépont
kialakitadsanak megkezdése utan indul6 tranzakciokkal: ezeknek lehetnek olyan adatbazis-modositasaik,
melyek még nem keriiltek lemezre, pedig a tranzakcidé mar befejez6dott. Ekkor olyan visszaallitast kell
tenniink, amilyenrél mar szd volt, azzal a kiilonbséggel, hogy figyelmiinket azon tranzakcidkra
korlatozhatjuk, melyek az utols6 <START CKPT (Ti,...,Tx) > naplobejegyzésben a Ti-k kozott
szerepelnek, vagy ezen naplobejegyzést kovetden indultak el. A naploban vald keresés sordn a
legkorabbi <START T;> naplobejegyzésig kell visszamenniink, annél kordbbra nem. Ezek a START
naplobejegyzések akarhany korabbi ellendrzépontnal elébb is felbukkanhatnak. Ahogy a semmisségi
naplézasnal, az adott tranzakcidkra vonatkozo6 naplobejegyzések visszafelé keresése segit megtalalni a
szdmunkra éppen fontos bejegyzéseket.

e Tegylik fel, hogy a naploba feljegyzett utolso ellenérzépont-bejegyzés a <START CKPT (T41,...,Tx) >.
Nem lehetlink abban biztosak, hogy az ezt megel6zden befejezett tranzakcidk altal modositott

18

adatbaziselemek mar lemezre iroédtak. Ezért az el6z6 <END CKPT> bejegyzéshez tartozo
<START CKPT (S1,...,Sn) > bejegyzésig vissza kell keresnilink, és helyre kell allitanunk az olyan
befejezddott tranzakciok tevékenységének eredményeit, melyek ez utobbi
<START CKPT (S1,...,5n) > bejegyzés utan indultak, vagy az S;-k koziil valok.

Példa. Tekintsiik ismét az elébbi naplorészletet. Ha a katasztrofa a végén 1ép fel, akkor visszafelé keresve
megtalaljuk az <END CKPT> bejegyzést. Ekkor tudjuk, hogy a helyreallitas szempontjabdl elegendd csak
azon tranzakciokat figyelembe venni, melyek vagy a <START CKPT (T2) > bejegyzés felirasat kvetden
indultak, vagy szerepelnek e bejegyzés listdjaban (most csak T-). Igy a vizsgalandé tranzakciohalmazunk
a (T2, T3). <COMMIT T,> és <COMMIT T3> bejegyzéseket talalunk, ebbdl tudjuk, hogy mindkét
tranzakcid hatasat helyre kell allitanunk. A naploban visszafelé meg kell keresniink a <START Tz>
bejegyzést, és innen mar idérendben haladva a napléban a kdvetkezd mddositasi bejegyzéseket talaljuk a
T, éS T3 befejezett tranzakcidkra vonatkozdan: <T,, B, 10>, <T2, C, 15> és <T3, D, 20>. Mivel azt nem
tudjuk, hogy ezen valtoztatasok a lemezen mar megtorténtek-e, ezért most a lemezre ujrairjuk a B,aC ésa
D tartalmat, megfeleléen 10, 15 és 20 értékeket adva nekik.

Tegyiik fel, hogy a katasztrofa a <COMMIT T,> és a <COMMIT Ts> bejegyzések kozott tortént. A
helyreallitds az elébbi esethez hasonlo, azzal a kiilonbséggel, hogy T3 nem befejezett tranzakcio, ennek
megfeleléen a <T3, D, 20> helyreallitast nem kell végrehajtani. D értékét tehat a helyreallitas soran nem
valtoztatjuk meg, hacsak a vizsgalt naplérészben talalhatod, masik tranzakciora vonatkoz6 bejegyzés miatt
meg nem kell valtoztatnunk. A helyreallitast kovetden egy <ABORT T3> bejegyzést irunk a naploba.

Ha a hiba az <END CKPT> bejegyzést megelézben Iépett fel, akkor az utolsd eldtti START CKPT
bejegyzést kell megkeresniink (melynek mar van <END CKPT> parja), és annak listajabol tudjuk meg,
melyek az aktiv tranzakciok. Ha nem talalunk korabbi ellenérzépont-bejegyzést, akkor mindenképpen a
naplé elejére kell menniink. Igy esetiinkben az egyediili befejezett tranzakcionak T:-et fogjuk talalni, ezért
a <Ti, A, 5> tevékenységet helyredllitjuk. A helyreallitdst kovetden <ABORT T2> és <ABORT T3>
bejegyzést irunk a napldba.

Minthogy a tranzakciok tobb ellenérzépont készitésekor is aktivak lehetnek, célszeri lehet, hogy a
<START CKPT (Ty,...,Tx) > naplobejegyzésbe nemcsak az aktiv tranzakciok neveit, hanem olyan
mutatokat is elhelyezziink, melyek az aktiv tranzakciok induldsat leird bejegyzések naplobeli helyét adjak
meg. Igy eljarva biztonsaggal meg tudjuk allapitani, hogy a naplé mely korabbi részeit torolhetjiik. Amikor
<END CKPT> bejegyzést irunk a naploba, akkor tudjuk, hogy a naploban mar sosem kell kordbbra
visszatekinteniink, mint ahol a T; aktiv tranzakcidra vonatkozé legkorabbi <START T:> bejegyzést
talaljuk. Kovetkezésképpen az ezen START hejegyzést megel6z6 bejegyzések tordlhetok.

Semmisségi/helyrehozo (undo/redo) naplozas

Lathattuk, hogy a naplozas két kiilonb6z0 megkozelitése abban mutat eltérést, hogy a naplé az
adatbaziselemek értékének modositasa esetén a régi vagy az 0j értéket tartalmazza. Mindkét modszernek
vannak bizonyos hatranyai is:

e A semmisségi naplozas alkalmazisa megkoveteli, hogy az adatokat a tranzakcid befejezésekor
nyomban lemezre irjuk, ezzel (esetleg jelentdsen) noveljiik a végrehajtando lemezmiiveletek szamat.

e A helyrehozo naplozas minden modositott adatbdzisblokk pufferben tartasat igényli egészen a
tranzakci6 rendes és teljes befejezéséig, igy a napld kezelésével egyiitt (esetleg jelentdsen) noveljiik a
tranzakcidk atlagos pufferigényét.

e Mindkét naplozasi modszer az ellendrzépont képzése kdzben ellentétes igényeket tdmaszt a pufferek
lemezre irdsa szempontjabdl, kivéve, ha az adatbaziselemek teljes blokkok vagy blokkok sokasaga.

19

P¢éldaul ha a puffer tartalmaz egy A adatbaziselemet, melyet egy rendesen és teljesen befejezett
tranzakcié modositott, ¢és tartalmaz egy B adatbaziselemet is, melyet olyan tranzakcié modositott,
melyre vonatkozoan a COMMIT bejegyzés még nem keriilt lemezre, akkor — az Ri szabalynak
megfeleléen — a puffer lemezre masolasat igényeljiik A miatt, viszont tiltjuk ennek megtételét B miatt.

A semmisségi/helyrehozé (undo/redo) naplozas a tevékenységek elvégzési sorrendjének rugalmassagat
noveli azaltal, hogy bdviti a naplézott informaciok korét.

A semmisségi/helyrehozo naplozds szabdlyai

A semmisségi/helyrehoz6 naplozas — egyetlen kiilonbséggel — ugyanolyan tipust napldbejegyzéseket
hasznal, mint a napl6zas masik két modszere. E modszerben az adatbaziselem értékének modositasat leird
naplébejegyzés négykomponensii: a <T, X, v, w> naplobejegyzés azt jelenti, hogy a T tranzakci6é az
adatbazis X elemének korabbi v értékét w-re mddositotta. A semmisségi/helyrehozd naplozast alkalmazo
rendszernek a kovetkezo eldirast kell betartania:

UR1: Miel6tt az adatbazis barmely X elemének értékét — valamely T tranzakcio altal végzett modositas
miatt — a lemezen modositanank, ezt megelézéen a <T, X, v, w> modositast leird naplobejegyzésnek
lemezre kell keriilnie.

A semmisségi/helyrehoz6 naplozas UR: szabdlya csak azokat a feltételeket kényszeriti, amelyek a
semmisségi €s a helyrehoz6 naplozasi szabalyok mindegyikében szerepelnek. Ezéltal a <COMMIT T>
bejegyzés megeldzheti, de kovetheti is az adatbaziselemek lemezen torténd barmilyen megvaltoztatasat.

Példa. Nézziikk meg a szokasos példankat semmisségi/helyrehozo6 napldzas hasznélatéval:

Lépés | Tevékenység t M-A | M-B | D-A | D-B Naplo

1) <START T>
2) | READ (A, t) 8 8 8 8

3) | £ = t*2 16 8 8 8

4) | WRITE (A, t) 16 16 8 8| <T,A,8,16>
5) | READ (B, t) 8 16 8 8 8

6) |t = t*2 16 16 8 8 8

7) | WRITE (B, t) 16 16 16 8 8| <T,B,8,16>
8) | FLUSH LOG

9) | OUTPUT (A) 16 16 16 8
10) <COMMIT T>
11) | OUTPUT (B) 16 16 16 16

A modositast leiré naplobejegyzések az A és B adatbaziselemeknek mind a régi, mind az 0j értékét
tartalmazzak. Ebben a sorozatban a <COMMIT T> naplobejegyzés kiirasat az A és B adatbaziselemek
lemezre valo irasa kozé tettiik. A 10) 1épés keriilhetett volna a 8) vagy 9) 1épés elé, vagy a 11) 1épés mogé
IS.

Helyredllitas a semmisségi/helyrehozo naplozas haszndlatdaval

Amikor a semmisségi/helyrehozd naplozast haszndljuk, és helyreéllitasra kényszeriiliink, akkor a
modositast leird naplobejegyzésben megtaldljuk mind a T tranzakcid hatdsainak semmissé tételéhez
sziikséges régi, mind a T tranzakcid hatasainak helyreallitdsahoz sziikséges 0 adatbaziselem-értékeket. A
semmisségi/helyrehozé maddszer alapelvei a kovetkezok:

1. A legkorabbitol kezdve allitsuk helyre minden befejezett tranzakcid hatasat.
2. A legutolsotdl kezdve tegyiik semmissé minden be nem fejezett tranzakcid tevékenységeit.

20

Nem elég a kett6 koziil az egyik, mindkét eljarasra sziikségiink van. A rugalmassag lehetévé teszi, hogy a
COMMIT bejegyzés és a lemezen végrehajtott adatbazis-modositasok egymashoz viszonyitott sorrendje
kotetlen legyen, igy el6fordulhat az is, hogy egy befejezett tranzakcid néhany vagy 6sszes valtoztatdsa még
nem keriilt lemezre, és az is, hogy egy be nem fejezett tranzakcido néhany vagy Osszes valtoztatdsa mar
lemezen is megtortént.

Példa. A hiba fellépésének id6pontja fiiggvényében kiillonbozo helyreallitasi lehetdségeink vannak:

1. Ha a katasztrofa a <COMMIT T> naplobejegyzés lemezre irasat kovetéen fordul eld, akkor T-t
befejezett tranzakcionak tekintjikk. 16-ot irunk mind 2A-ba, mind B-be. Az események jelenlegi
sorrendjében A-nak mar 16 a tartalma, de B-nek lehet, hogy nem, aszerint, hogy a hiba a 11) 1épés el6tt
vagy utan kovetkezett be.

2. Ha a katasztrofa a <COMMIT T> naplobejegyzés lemezre irasat megel6zden kovetkezett be, akkor T
befejezetlen tranzakcionak szamit. Ez esetben A és B korabbi értéke, 8 irodik lemezre. Ha a hiba a 9) és
10) Iépések kozott kovetkezett be, akkor A értéke mar 16 volt a lemezen, és emiatt a 8-ra valod
visszaallitas feltétleniil sziikséges. Ebben a konkrét példaban a B értéke nem igényelne visszaallitast
(mert még meg sem valtozott), ha pedig a hiba a 9) 1&pés el6tt kovetkezik be, akkor A sem igényelné a
visszaallitast. Mivel altaldban nem lehetiink biztosak abban, hogy a visszaallitas sziikséges-e vagy sem,
igy azt (a biztonsag kedvéért) mindig végre kell hajtanunk.

A semmisségi naplozashoz hasonldéan a semmisségi/helyrehozo naplozas is olyan viselkedést mutat, hogy
a tranzakci6 a felhaszndlo szamara korrekten befejezettnek tlinik, de még a <COMMIT T> naplobejegyzés
lemezre Kkertilése el6tt fellépett hiba utani helyreallitas soran a rendszer a tranzakcio hatasait semmissé teszi
ahelyett, hogy helyreallitotta volna. Amennyiben ez a lehetdség problémat jelent, akkor a
semmisségi/helyrehozd naplozas sordn egy tovabbi szabalyt célszerii bevezetni:

UR2: A <COMMIT T> naplobejegyzést nyomban lemezre kell irni, amint megjelenik a napléban.
Ennek teljesitéséért a fenti példaban a 10) Iépés utan egy FLUSH LOG lépést kell beiktatnunk.

Nem adtuk meg azt, hogy a semmisségi vagy a helyrehozo 1épést tessziik meg elébb. Eléfordulhat, hogy a
T tranzakcid rendben és teljesen befejezddott, és emiatt helyreallitasa soran egy X adatbaziselem T altal
kialakitott értékét rekonstrualjuk, melyet viszont egy be nem fejezett, és ezért visszaallitandd U tranzakcio
kordbban modositott. A probléma nem az, hogy eldszor helyreallitjuk X értékét, és aztan allitjuk vissza U
eldttire, vagy forditva. E szituacidban egyik ut sem helyes, mert a végsd adatbazis-allapot nagy
valdszintiséggel igy is, tigy is inkonzisztens lesz.

A gyakorlatban az adatbazis-kezeld rendszereknek a modositasok naplozasandl tobbet kell tenniiik.
Biztositaniuk kell, hogy ilyen szituaciok ne fordulhassanak eld. Ezzel a konkurenciakezelés foglalkozik.
Késdbb megnézziik, hogyan biztosithatd T és U elkiilonitése, amivel az ugyanazon X adatbaziselemen valo
kolesonhatasuk elkeriilhetd.

Semmisségi/helyrehozo naplozas ellenorzopont-képzéssel

A mikodés kozbeni ellendrzOpont-képzés valamivel egyszerlibb a semmisségi/helyrehoz6 naplozas
alkalmazasakor, mint a mésik két napldzasi modszernél. Csak a kovetkezoket kell tenniink:

1. Irjunk a napléba <START CKPT (Ti,...,Tx) > naplobejegyzést, ahol Ti,...,Tx az éppen aktiv
tranzakcidk, majd irjuk a naplot lemezre.

2. 1Irjuk lemezre az dsszes piszkos puffert, tehat azokat, melyek egy vagy tobb modositott adatbaziselemet
tartalmaznak. A helyrehoz6 naplozastol eltérden itt az 6sszes piszkos puffert lemezre irjuk, nem csak a
mar befejezett tranzakcidk altal modositottakat.

3. Irjunk <END CKPT> naplébejegyzést a naploba, majd irjuk a naplét lemezre.

21

A semmisségi/helyrehozé napldzas altal a lemezre irasok sorrendjére vonatkozodan biztositott rugalmassag
miatt megengedhetjilk a be nem fejezett tranzakciok valtoztatdsainak lemezre valo kiirdsat. Igy
megengedhetjiik a teljes blokknal kisebb adatbaziselemek hasznalatat is, melyek k6zos pufferbe keriilnek.

Példa. Tekintsiik az alabbi naplorészletet:

<START Ti1>
<Ti1,A,4,5>
<START T2>
<COMMIT Ti1>
<T2,B,9,10>

<START CKPT (T2) >
<T;,C,14,15>
<START T3>
<T3,D,19,20>
<END CKPT>
<COMMIT Ty>
<COMMIT T3>

A példa megegyezik a helyrehozé naplézasnal felirt példaval, csak a modositasi bejegyzések valtoztak,
hogy megfeleljenek a semmisségi/helyrehoz6 napldzés szabalyainak. Az egyszeriiség kedvéért minden régi
érték eggyel kisebb az 101 értéknél.

Az ellenérzOpont képzésének kezdetekor T, az egyetlen aktiv tranzakcid. Minthogy ez a naplo
semmisségi/helyrehozd naplo, igy lehetséges, hogy a T altal B-nek adott 1j érték (10) lemezre irodik, ami
nem volt megengedett a helyrehozé naplozasban. Most 1ényegtelen, hogy ez a lemezre iras mikor torténik
meg. Az ellendrzépont képzése alatt biztosan lemezre irjuk B-t (ha még nem keriilt oda), mivel minden
piszkos (valtozasban érintett) puffert kiirunk lemezre. Hasonloan A-t — melyet a befejezett T, tranzakciod
alakitott ki — is lemezre fogjuk irni, ha még nem kertilt oda.

Ha a katasztr6fa ezen eseménysorozat végén jelentkezik, akkor T,-t és Tz-at teljesen és rendesen
befejezett tranzakcionak tekintjik. A T: tranzakcid az ellendrzOpontnal korabbi. Minthogy
<END CKPT> bejegyzést taldlunk a naploban, igy T:-rdl biztosan tudjuk, hogy teljesen és rendesen
befejez6dott, valamint az altala elvégzett modositdsok lemezre irddtak. Ezért a T. és Tz altal
végrehajtott modositasok helyreadllitandok, T: pedig figyelmen kiviil hagyhat6. Amikor olyan
tranzakci6 hatésait allitjuk helyre, mint amilyen a T, is, akkor a naploban nem kell a
<START CKPT (T2)> bejegyzésnél kordbbra visszatekinteni, mert tudjuk, hogy a T. éaltal az
ellendrzépont-képzést megeldézden elvégzett modositasok az ellendrzépont képzése alatt lemezre
irodtak.

Masik példaként tegyiik fel, hogy a katasztrofa éppen a <COMMIT T3> bejegyzés lemezre irdsa elott
fordult eld. Ekkor T»-t befejezett, Ts-at pedig befejezetlen tranzakcionak kell tekinteniink. T»
tevékenységét helyreallitando C értékét a lemezen 15-re irjuk; B-t mar nem kell 10-re irnunk a lemezen,
mert tudjuk, hogy ez mar lemezre keriilt az <END CKPT> el6tt. A helyredllité naplozastol eltérden T3
hat4sait semmissé tessziik, azaz a lemezen D tartalmat 19-re irjuk. Ha T3 az ellendrzépont-képzés eldtt
mar aktiv tranzakci6 lett volna, akkor a naploban a START CKPT bejegyzésben szereplO befejezetlen
tranzakciok koziil a legkorabban elindult T: tranzakci6 <START T:> bejegyzéséig kellene
visszakeresniink, hogy megtalaljuk a T; (most T, vagy T3) semmissé teendd tevékenységeit leiro
naplobejegyzéseket. A helyrehozo 1épést viszont most is elég a START CKPT bejegyzéstol
végrehajtani.

Ha a katasztrofa az <END CKPT> bejegyzés elott 1€p fel, akkor figyelmen kiviil hagyjuk az utols6
START CKPT bejegyzést, €s a fentieknek megfeleléen jarunk el.

22

Az eszkozok meghibasodasanak kezelése

A naplozéssal a rendszerhibék ellen védekezhetiink, amelyek kdvetkeztében legfeljebb a memoridban tarolt
ideiglenes adatok vesznek el, de a lemezr6l semmi nem veszhet el. Ugyanakkor komoly hibat okoz egy
vagy tobb lemez elvesztése. Az adatbazist a naplobol elméletileg akkor tudjuk rekonstrualni, ha:

e anaplot tarold lemez kiilonbozik az adatbazist tartalmazé lemez(ek)tol;
e anaplot sosem dobjuk el az ellenérzépont-képzést kdvetden;
e anaplo helyrehozé vagy semmisségi/helyrehozd tipust, igy az 0j értékeket (is) tarolja.

Ugyanakkor a napl6 esetleg az adatbazisnal is gyorsabban novekedhet, igy nem praktikus a naplét 6rokre
megorizni.

Az archivmenteés

Az eszkozok meghibasodasanak kezelésére az egyik modszer az archivalds (archiving), az adatbazis
masolatanak elkészitése egy vagy tobb, az adatbazisétdl kiillonb6z6 adathordozon. Ha lehetséges, lezarjuk
az adatbazist addig, amig elkészitjiik a biztonsadgi masolatot (backup) valamely taroloeszk6zon (példaul
optikai lemezen vagy magnesszalagon), majd a biztonsagi masolatot az adatbazistdl tavol, biztonsagos
helyen taroljuk. A biztonsagi masolat megdrzi az adatbazis mentéskori allapotat, és ha eszkozhiba 1ép fel,
akkor a mentésbdl az adatbazis ezen allapotat vissza tudjuk allitani.

A naplo hasznalataval sokkal frissebb allapotot tudunk rekonstrudlni. Ha a biztonsagi masolat készitése
utan tortént adatbazis-valtozasokrol keletkezd naplot megdrizzik, €s az tulélte az eszkdz meghibasodasat,
akkor a hiba utdn (esetleg masik lemezen) visszadllitva a biztonsagi mésolatot, a naplé felhasznalasaval a
mentés Ota tortént adatbazis-valtozasokat is at tudjuk vezetni az adatbazison. A naplorol, amilyen gyorsan
csak lehet, tavoli mésolatot készitiink. Ezzel a naplo elvesztése ellen védekezhetiink. Igy ha a naplé az
adatokkal egyiitt elveszik is, akkor még mindig hasznalhatjuk az adatbazis mentését és a napld tavoli
masolatat az adatbazis visszaallitdsara, egészen addig a pillanatig, amikor a naplé utols6 atvitele tortént a
tavoli masolatara.

Ha az adatbazis nagy, akkor a biztonsagi mentés elkészitése (kiirasa) hosszas folyamat. Altalanosan bevalt,
hogy nem mentik a teljes adatbazist minden archivald alkalommal. Ezért a mentésnek két szintjét
kiilonboztetjiik meg:

o teljes mentés (full dump), amikor az egész adatbazisrdl masolat késziil;
e novekményes mentés (incremental dump), amikor az adatbazisnak csak azon elemeirdl készitiink
masolatot, melyek az utolso teljes vagy ndvekményes mentés 6ta megvaltoztak.

Lehetséges a mentésnek tobb szintjét is hasznalni: a teljes mentést 0-dik szintlinek tekintjiik, az i-edik szintii
mentésen pedig azt a mentést értjiik, amely az utolsé i-edik, illetve annal alacsonyabb szintli mentés ota
megvaltozott elemek masolatat tartalmazza. Egy 1) i-edik szintli mentés készitésekor az i-nél magasabb
szintli mentéseket toroljiik, vagy visszaallitaskor figyelmen kiviil hagyjuk.

Az adatbazist a teljes mentésbdl és a megfeleld novekményes mentésekbdl tudjuk rekonstrudlni, a
helyrehoz6 vagy a semmisségi/helyrehozé naplozas rendszerhiba utani visszaallitasi folyamatahoz hasonlo
modszerrel. Visszamasoljuk a teljes mentést, majd az ezt kovetd legkorabbi ndvekményes mentéstdl kezdve
végrehajtjuk a novekményes mentésekben tarolt valtoztatisokat. Tobbszintli mentés esetén a 0-nal
magasabb szintli mentéseket szintszdm szerint ndvekvéleg, az azonos szintszdmu mentéseket pedig
idorendi sorrendben vessziik figyelembe. A ndvekményes mentések az adatoknak csak azt a kis részét
érintik, amely az utolsé6 mentés ota valtozott meg, igy ezek kevesebb helyet igényelnek, és gyorsabban
menthetdk, mint a teljes mentés.

23

Felmertilhet a kérdés, hogy miért nem csak a naplot mentjiik, hiszen a naplé hasznéalataval egy régi
mentésbol is helyreallithatnank az adatbazist. Nem nyilvanval6, hogy milyen gyakran célszerli biztonsagi
mentést késziteni, ez az adatbazis méretén és tipikus modositasi fokan mulik. Amig az adatbazisnak naponta
esetleg csak kis része valtozik, addig a naplozandé modositasok tomege egy egész év folyaman sokkal
nagyobb lehet, mint maga az adatbazis. Ha soha nem archivalunk, akkor a naplé soha nem csonkolhat6, és
a naplo tarolasi/kezelési koltsége hamar tullépheti az adatbazis masolatanak tarolasi koltségét.

Archivalas mitkodeés kozben

Az eldbbiekben bemutatott, egyszeriinek latszo archivaldssal az a probléma, hogy sok adatbazist nem lehet
lezarni arra az idSre, amig a biztonsagi mentést elkészitjikk. Igy — a miikodés kozbeni ellendrzépont-
képzéshez hasonléan — meg kell oldanunk a miikédés kézbeni archivalast (nonquiescent archiving) is. A
miikédés kozbeni ellendrzépont-képzés megkisérli az indulasakori adatbazis-allapotot lemezre irni. Az
ellendérzépont 1étrehozasdnak kornyékén keletkezett kis naplorészletre tdmaszkodva az adatbazis
allapotdban tortént minden olyan eltérést rendbe tudunk hozni, melyet az okozott, hogy az ellenérzépont
képzése alatt 1j tranzakciok indulhattak és lemezirasok torténhettek.

Ehhez hasonléan a miikddés kozbeni archivalds megbizhatdéan tud az adatbazisrdl olyan masolatot
késziteni, ami az archivalas kezdetének tobbé-kevésbé megfeleld adatbazis-allapotot rogziti. Ugyanakkor
a mentés alatti percekben vagy oOrdkban az adatbazis miikddése sok adatbaziselemet cserélhet. Ha az
adatbazis mentésbdl vald visszadllitasa sziikéges, akkor a mentés alatt keletkezett naplobejegyzések
felhasznalasaval az adatbazis konzisztens allapota allithatd eld. Az ellendrzépont képzésekor tehat az
adatokat a memoriabdl a lemezre vissziik, és a napl6 lehet6veé teszi a rendszerhibak utani helyreéllitast, mig
archivalaskor az adatokat a lemezrél masodlagos hattértarolora vissziik, és az archivmentés a naploval
lehetdvé teszi az eszkdzhibak utani helyreallitast.

A miikddés kozbeni archivalas az adatbazis elemeit valamely fix sorrendben masolja, mialatt megeshet,
hogy ezen elemeket az éppen végrehajtott tranzakciok modositjak. Ennek eredményeként megtorténhet,
hogy a biztonsagi mentésbe masolt adatbaziselem értéke nem ugyanaz, mint a mentés megkezdésekor volt.
Amig a mentés alatt keletkezett naplét megorizziik, addig az eltérések a napld felhaszndlasaval
korrigalhatok.

Példa. Tegyiik fel, hogy adatbazisunk 4 elembdl all: A, B, C és D. Ezek értéke az archivalas kezdetekor
rendre 1, 2, 3, 4. A mentés kdzben A értéke 5-re, C értéke 6-ra, B értéke 7-re modosul. Az adatbaziselemeket
a mentéskor sorban masoljuk az archivumba, az események sorrendje pedig legyen a kovetkezo:

Lemez Mentés

A
A := 5

B
C := 6

C
B =7

D

Ekkor noha az adatbazis tartalma a mentés kezdetekor 1, 2, 3, 4 volt, a mentés végére pedig 5, 7, 6, 4 lett,
a mentett archivumba 1, 2, 6, 4 keriilt, jollehet ilyen adatbazis-allapot a mentés ideje alatt nem is fordult
eld.

Részletesebben a biztonsagi mentés (archivum) elkészitése a kovetkezo 1épésekbdl all. Feltételezziik, hogy
az alkalmazott naplozasi modszer a helyrehozo vagy a semmisségi/helyrehozé modszerek valamelyike; a
semmisségi naplozas nem alkalmas a miikodés kozbeni archivaldssal valo haszndlatra (bovebben lasd a
példa utan).

24

1. A<START DUMP> bejegyzés napldba irasa.

Az alkalmazott napl6zéasi médnak megfeleld ellendrzépont kialakitasa.

3. A menteni kivant adatlemez(ek) teljes vagy ndvekményes mentésének végrehajtasa, iigyelve arra, hogy
az adatok masolata (a mentés) biztonsagos, tavoli helyre keriiljon.

4. Gondoskodjunk arrél is, hogy a napld sziikséges részérdl is masolat késziiljon, és az is biztonsagos,
tavoli helyre keriiljon. A mentett naplorész tartalmazza legaldbb a 2. pontbeli ellendrzépont-képzés
kozben keletkezett naplobejegyzéseket, melyeknek tal kell élniiik az adatbazist hordoz6 eszkoz
meghibasodasat.

5. <END DUMP> bejegyzés naploba irasa.

N

A mentés befejezésekor biztonsaggal eldobhatjuk a naplonak azt a részét, amelyre nincs sziikség a 2.
pontban végrehajtott ellendrzépont-képzéshez tartozé helyreallitasi folyamat szabalyai szerint.

Példa. Tegyiik fel, hogy a fenti adatbazis mentés kézbeni modositasait két tranzakcio, T1 (mely A-t és B-t
modositotta) és T» (mely C-t modositotta) végezte, melyek a mentés kezdetekor aktivak voltak.
Semmisségi/helyrehoz6 naplozasi modszert alkalmazva a mentés alatti események lehetséges
naplobejegyzései a kovetkezok:

<START DUMP>
<START CKPT (T, T2)>
<Ti,A,1,5>
<T,,C,3,6>

<COMMIT To>
<T:,B,2,7>

<END CKPT>

a mentés befejezése

<END DUMP>

Lathato, hogy T1 nem fejezddott be a mentés befejezéséig. Az eléggé valdsziniitlen, hogy egy tranzakcid a
teljes mentés egész ideje alatt aktiv maradjon, de ez a lehet6ség nem befolyasolja a bemutatandd
helyreallitdsi modszer helyességét.

Most mar az is lathatd, hogy miért nem haszndlhaté a semmisségi naplozads a miikodés kozbeni
archivalassal. Tegyiik fel, hogy a <START CKPT (T, T2) > bejegyzés utan elindul egy Ts tranzakcio,
amely modositja A értékét, majd B értékét, aztan rendesen befejezddik, tehat egy <COMMIT T3> is a
naploba keriil, de csak az <END CKPT> bejegyzés naploba keriilése utan (azaz a mentés kozben). Mivel
semmisségi napldzas esetén az OUTPUT miiveletek a moddositasi bejegyzés naploba irasat kovetden
barmikor lefuthatnak, ezért eléfordulhat, hogy A értékét annak modositdsa utan, de B értékét annak
modositasa eloétt archivaljuk. A helyreallitas folyamén a T3z tranzakcioval nem foglalkozunk, mert
megtalaltuk a napléban a <COMMIT T3> bejegyzést, igy olyan eredményt kapunk, mintha T3 nem
atomosan hajtodott volna végre. Helyrehozo naplozast hasznalva ilyen eset nem fordulhat eld, mert akkor
OUTPUT miivelet csak a COMMIT utan futhat le, és igy vagy nem torténik valtoztatas a lemezen (ha nincs
COMMIT), vagy ,,ujra lejatsszuk™ a tranzakciot (ha van COMMIT). Semmisségi/helyrehoz6 naplozas esetén
pedig minden tranzakciot vagy semmissé tesziink (ha nincs COMMIT), vagy helyreallitunk (ha van
COMMTIT), tehat szintén nem fordulhat el6 nem atomos viselkedés.

Helyredllitas az archivmentés és a naplo haszndlataval
Tegyiik fel, hogy késziilékhiba 1épett fel, és az adatbazist rekonstrudlnunk kell. A helyreallitast a legutolso

biztonsagi mentés és a naplo tavoli mentése felhasznalasaval végezziik. A kovetkezd 1épéseket hajtjuk
végre:

25

1. Az adatbazis visszaallitasa a biztonsadgi mentésbdl:

a) Meg kell keresni a legutolso teljes mentést, beléle rekonstrualni az adatbazist.

b) Ha vannak késébbi novekményes mentések, akkor ezeket idérendi sorrendben hasznalva
modositjuk az adatbazist. Tobbszintli mentés esetén az 1. szinttdl kezdve sorban az Gsszes szint
Osszes mentését alkalmazni kell (szintenként, azon beliil idérendben).

2. Modositjuk az adatbazist a napld katasztrofat talélt részével, a naplozasi modszernek megfeleld
helyreallitasi eljarast hasznalva.

Példa. Tegyiik fel, hogy a fenti példaban szerepld biztonsadgi mentés elkészitését kovetden torténik
eszkozmeghibésodas, és a napld ezt tulélte. Azért, hogy az eljarast érdekesebbé tegyiik, tekintsiik ugy, hogy
a naplo katasztrofat tulélt részében nincs <COMMIT T:> bejegyzés, van viszont <COMMIT T.>. Az
adatbazist el0szor a biztonsagi mentésbol visszatoltjiik, igy A, B, C, D értékei rendre 1, 2, 6, 4 lesznek.

Ezutan a naplot vessziik eld. Minthogy T» befejezett tranzakcio, helyreallitjuk azon 1€pés hatasat, amely C
értékét 6-ra modositotta. Példankban C értéke mar 6, de el6fordulhatna, hogy

e C mentése azt megeldzden tortént, hogy C értékét a T» tranzakcid modositotta volna;

e a mentésben C-nek késobb kapott értéke van, mely értéket olyan tranzakcié allitott be, melyre
vonatkozo COMMIT bejegyzést a naploban vagy talalunk, vagy nem. C értékét a mentésben talalt értékre
akkor allitjuk, ha az ezt beallitd tranzakcido COMMIT bejegyzEését megtalaljuk.

Minthogy T: gyanithatéoan nem befejezett tranzakcidé (mert COMMIT bejegyzését nem talaljuk), igy T1
hatasait semmissé kell tenniink. A T:-re vonatkozo6 naplobejegyzések hasznalatdval meg tudjuk allapitani,
hogy A értékét 1-re, B értékét 2-re kell visszaallitanunk. Eléfordulhat persze, hogy a mentésen ez az értékiik,
de ettdl eltérd értékeik is lehetnek, ha A és/vagy B modositott értéke archivalodott. (Ez a mddositasnak és
a mentésnek az idobeli sorrendjétodl fiigg.)

Az Oracle naplozasi és archivalasi rendszere

Az alabbi informdaciok forrasa az Oracle Database Administrator’s Guide és az Oracle Database Backup
and Recovery User’s Guide.

A naplo

Egy szerverpéldany rendszerhibaja esetén az Oracle az online napléfajlokat hasznélja az adatbazis
automatikus helyreéllitdsdhoz. A példany-helyreallitas (instance recovery) azonnal megtorténik, amint a
példany wjraindul a rendszerhiba utdn. A helyreallitasi miiveletek alapja a naplo (redo log), amely az
adatbazis valtozasait tarolja, amint azok bekovetkeznek. Minden Oracle szerverpéldany rendelkezik egy
naploval, amellyel védekezhetiink a rendszerhibak ellen. Két részbdl 4ll: az online és az archivalt naplobol.

Az online naplo két vagy tobb online naplofajlbol all, amelyek naplobejegyzésekkel (redo record vagy redo
entry) vannak feltoltve, ezeket pedig vdltozdasvektorok (change vector) alkotjak. A valtozasvektorok az
adatbazis egy blokkjanak a valtozéasardl tartalmaznak informacidkat. Ha példaul megvaltoztatunk egy
fizetési értéket egy alkalmazottakra vonatkozd adatokat tarold tablaban, egy 0j naplobejegyzés jon 1étre
egy-egy valtozasvektorral a tablat tartalmaz6 adatfjl blokkjanak, az undo szegmens blokkjanak és az undo
szegmens tranzakcios tablajanak a valtozasardl (lasd késobb). A naplobejegyzések ideiglenesen az SGA
(System Global Area) memoriapuffereiben tarolodnak, amelyeket a Log Writer (LGWR) hattérfolyamat
folyamatosan ir ki valamelyik naplofajlba. (Az SGA tartalmazza az adatbaziselemeket tarolo puffereket is,
amelyeket pedig a Database Writer hattérfolyamat ir lemezre.) Ha egy felhasznaloi folyamat befejezte egy
tranzakci6 végrehajtdsat, akkor a LGWR a tranzakcidohoz tartozd naplobejegyzéseket az SGA

26

http://docs.oracle.com/database/121/ADMIN/toc.htm
http://docs.oracle.com/database/121/BRADV/toc.htm
http://docs.oracle.com/database/121/BRADV/toc.htm

memoriapuffereibdl az egyik naplofajlba irja, €s hozzajuk rendel egy id6bélyeget (System change number,
SCN), amellyel a befejezett tranzakcio naplobejegyzéseit azonosithatjuk. A rendszer csak azutan értesiti a
felhasznaloi folyamatot, hogy a tranzakcio véglegesitodott, miutan az adott tranzakcidra vonatkozd Gsszes
naplobejegyzés lemezre keriilt. A naplobejegyzések azelott is lemezre irddhatnak, mieldtt a megfeleld
tranzakci6 véglegesitddne. Ha a naplé memoriapufferei megtelnek, vagy egy masik tranzakcio
véglegesitddik, a LGWR az 0sszes naplobejegyzést lemezre irja, még akkor is, ha ezek egy része nincs
véglegesitve. Ha sziikséges, ezek a valtozdsok semmissé tehetok.

Ahogy emlitettiik, az online naplo két vagy tobb naplofajlbol all. Az Oracle egyszerre csak egy naplofajlt
hasznal a naplobejegyzések kiirasara. Azt a naplofajlt, amelyikbe a LGWR éppen ir, aktualis naplofajlnak
nevezziik. Azokat a naplofajlokat, amelyek sziikségesek egy példany-helyreéllitashoz (azaz a benne tarolt
valtozasok még nem mind irddtak lemezre), aktiv naplofajloknak, amelyekre pedig nincs sziikség (azaz a
benne tarolt valtozasok mar mind lemezre irédtak), inaktiv naplofajloknak nevezziik. Azért van sziikség
legalabb két allomanyra, hogy az egyik akkor is elérhetd legyen a naplobejegyzések irasara, mialatt a masik
épp archivalas alatt all (ha az adatbazis ARCHIVELOG modban van). Az online naplofajlok ciklikusan
toltédnek fol. Amikor az aktualis naplofajl megtelt, a LGWR a kovetkezd elérhetd naplofajlt kezdi el
feltolteni. Amikor az utolso elérhetd naplofajl is megtelt, akkor Gjra az elsét kezdi el irni, ujrakezdve a kort.
A megtelt naplofajlok attol fliggden lesznek Gjra elérhetok a LGWR szamara, hogy a napl6 archivalasa be
van-e kapcsolva. Ha nem (az adatbazis NOARCHIVELOG moddban van), akkor egy megtelt naplofajl akkor
lesz elérhet6, ha mar inaktivva valt. Ha az archivalas be van kapcsolva (az adatbazis ARCHIVELOG
modban van), akkor egy megtelt naplofajl akkor lesz elérhetd, ha mar inaktivva valt, és a naplofajlt mar
archivalta az egyik archivalo hattérfolyamat (ARCn).

Naplovaltasnak (log switch) nevezziik azt a pillanatot, amikor a rendszer befejezi az egyik naplofajl irdsat,
¢s elkezdi egy masikét. Naplovaltas altalaban akkor torténik, amikor az aktualis naplofajl teljesen megtelt,
¢s az irast a kovetkez6 naplofajlban kell folytatni. Bedllithatjuk azonban, hogy szabalyos id6kozonként is
torténjen naplovaltas, fiiggetleniil attdl, hogy az aktualis naplofajl megtelt-e mar. Ezenkiviil manualisan is
kérhetiink naplovaltast. Valahanyszor naplovaltas torténik, az Oracle egy 0 sorszamot (log sequence
number) rendel ahhoz a napléfajlhoz, amibe a LGWR megkezdi az irast. Amikor a rendszer archivalja a
naplofijlokat, az archivalt naplé meg6rzi a sorszdmat. Az a naplofajl, amit Gjra elkezdiink haszndlni, a
soron kovetkez$ sorszamot kapja meg. igy tehat minden online vagy archivalt naplofajl egyedileg
azonosithatd a sorszamaval. Helyreallitas soran az Oracle a szilikséges archivalt vagy online naplofajlokat
a sorszamaik szerinti ndvekvo sorrendben alkalmazza.

Magénak a naplonak a meghibasodasa ellen védekezhetiink a multiplexelt online naplé (multiplexed redo
log) segitségével, ami azt jelenti, hogy a napld kettd vagy tobb egyenértékii masolata kezelhetd
automatikusan. Ha multiplexeljiik a naplofajlokat, a LGWR parhuzamosan ugyanazokat az informaciokat
irja a kiilonb6zd egyenértékli naplofajlokba, ezaltal kikiiszobolve az egyikiikk megsériilésébdl eredd
adatvesztést. Legjobb, ha a masolatok kiilonb6z6 lemezeken vannak, mert ha az egyik lemez megsériil,
akkor a napl6 tobbi mésolata még mindig rendelkezésre all a helyreallitashoz. Azonban még ha a masolatok
ugyanazon a lemezen vannak is, a redundéns tarolas segithet kivédeni a szektorhibékat, allomanyszerkezeti
hibakat stb.

Lehetdség van tehat arra, hogy a megtelt online naploféjlokat archivaljuk, mieldtt Ujra felhasznalnank dket.
Az archivalt (offline) naplo (archived redo log) az ilyen archivalt naplofajlokbol tevodik dssze. A
naplofajlok archivalasa csak akkor lehetséges, ha az adatbazis ARCHIVELOG moédban fut. Az archivalas
lehet automatikus vagy manualis.

NOARCHIVELOG mddban az online naplofajlok archivalasa nem lehetséges. Az adatbazis vezérlfajlja
jelzi, hogy a megtelt naplofajlokat nem sziikséges archivalni. Igy amikor egy megtelt naplofajl inaktivva
valik egy naplovaltast kdvetden, azt a fajlt a LGWR ujra felhasznalhatja. NOARCHIVELOG modban az
adatbazis csak rendszerhiba utdn allithato helyre, eszkdzhiba esetén nem. A helyreallitashoz csak az online
naplofajlokban tarolt legfrissebb adatbazis-modositasokat haszndlhatjuk fel. Ha NOARCHIVELOG
modban eszkozhiba kovetkezik be, akkor csak a legfrissebb teljes mentés idOpontjaig allithatjuk vissza az

27

adatbazist, az azt kovetd tranzakciok hatasa elvész. NOARCHIVELOG mddban nem végezhetiink online
tablateriilet-mentést, és nem is haszndlhatjuk fel a korabban, ARCHIVELOG modban késziilt online
tablateriilet-mentéseket. Egy NOARCHIVELOG moédban miikddé adatbazist csak teljes mentésbol
allithatunk vissza, amely az adatbazis zart allapotaban késziilt. Emiatt NOARCHIVELOG modban célszerti
az adatbazisrdl rendszeresen teljes mentést késziteni.

ARCHIVELOG moddban a naploé archivaldsa be van kapcsolva. Az adatbazis vezérlofajlja jelzi, hogy a
megtelt naplofajlokat nem hasznélhatja fel Gjra a LGWR, amig azok nincsenek archivéalva. A megtelt
naplofajlok egy naplovaltast kovetden archivalhatok. A naplofajlok archivaldsanak az alabbi eldnyei
vannak:

e Az adatbazis mentése az online €s archivalt naplofajlokkal egyiitt garantélja, hogy minden véglegesitett
tranzakcid helyreallithat6 az operacids rendszer vagy a lemez meghibdsodasa esetén.

e Haelérhetdek az archivalt naplofajlok, akkor egy miikodés kozben készitett mentést is felhasznalhatunk
a helyreallitashoz.

e Fenntarthatunk az adatbdzisunkrol egy masolatot, amelyet az eredeti adatbdzis archivalt naplojanak a
masolatra torténd folyamatos alkalmazaséaval tarthatunk naprakészen.

Az Oracle az online naplot kizarolag helyreallitdsra hasznalja. Az adminisztratorok azonban egy SQL
interfészen keresztiil lekérdezéseket hajthatnak végre rajta a LogMiner naploelemz6 eszk6z segitségével.
A naplofijlok ugyanis hasznos informacidkat szolgaltathatnak a korabbi adatbazis-tevékenységekrol.

Minden Oracle adatbazis rendelkezik egy vezérlofdjllal (control file), amely egy kisméreti binaris
allomany, €s az adatbazis fizikai szerkezetérdl tarol informaciokat. A vezérl6fajl tartalmazza

az adatbazis nevét,

az adatbazishoz tartozo6 adat- és naplofajlok nevét és helyét,
az adatbazis 1étrehozasanak idejét,

az aktualis napldsorszamot,

ellendérzépont-informaciokat.

Az adatbazis normalis miikodéséhez az Oracle szervernek irdsi modban el kell tudnia érni a vezérl6fajlt.
Nélkiile nem lehet csatlakozni az adatbazishoz, és nehézkes a helyredllitds. A vezérl6fajl az adatbazissal
egy idében jon létre. Alapértelmezésben az adatbazis 1étrehozéasakor a vezérlofajlnak legalabb egy példanya
(néhany operacids rendszer esetén eleve tobb példanya) is Iétrejon. A legjobb, ha minden Oracle adatbazis
legalabb két vezérlofajllal rendelkezik, mindegyik kiilonb6z6 fizikai adathordozon: ez a multiplexelt
vezérldfajl (multiplexed control file). Ha egy vezérlofajl lemezhiba miatt megsériil, a hozza tartozo
szerverpéeldanyt le kell allitani. A lemezhiba elhdritdsa utan a sériilt vezérl6f4jl helyreallithaté a masik
lemezen tarolt ép példanyanak felhasznalasaval, és a szerverpéldany Gjraindithat6. Ebben az esetben nincs
sziikség eszkozhiba utani helyreallitasra.

Az undo informdciok

Az Oracle a semmisségi és a helyrehozo naplozas egy specialis kombinaciojat valositja meg. Ahogy lattuk,
a tranzakciok helyrehozasahoz sziikséges informaciokat (az adatbazisblokkok modositott értékeit) az online
naplé tartalmazza. A tranzakciok hatasainak semmissé tételéhez sziikséges informaciok pedig alapesetben
egy vagy tobb undo tablateriileten (undo tablespace) tarolodnak (vagy mas tablateriileten elhelyezkedd
rollback szegmensekben — lasd késébb). Ez azt jelenti, hogy az Oracle az undo adatokat az adatbazisban
tarolja, nem kiils6 naplofajlokban. Az undo adatok tehat ugyanolyan blokkokban helyezkednek el, mint az
adatbazis mas adatai, és ezen blokkok valtozéasai ugyanugy naplozasra keriilnek. Az Oracle igy hatékonyan,
kiils6 naplofijlok olvasasa nélkiil tud hozzaférni az undo adatokhoz. Az undo tablateriilet a tranzakcidok
altal modositott adatok régi értékeit tarolja attol fiiggetleniil, hogy ezek a tranzakciok véglegesitettek-e vagy

28

sem. Az undo informaciokat hasznaljuk egy aktiv tranzakcio visszagorgetésére, egy megszakadt tranzakcio
helyreallitasara, az olvasasi konzisztencia biztositasara és flashback miiveletek végrehajtasara is.

Az undo tablateriilet undo szegmensekbsl (undo segment), azok pedig undo bejegyzésekbsl (undo record
vagy undo entry) allnak. Egy undo bejegyzés tobbek kozott a megvaltozott attriblitum(ok) azonositojat
(cimét), a modositast végz6 tranzakciés miveletet, az annak hatasat semmissé tevo utasitast és az
attribtum(ok) régi értékét tarolja. Az undo bejegyzés mindig elébb keriil lemezre, mint ahogy az
adatbazisban megtorténik a megfeleld attribitumok modositdsa. Az ugyanazon tranzakcidhoz tartozo
bejegyzések 0ssze vannak lancolva, igy konnyen visszakereshetok, ha az adott tranzakciot vissza kell
gorgetni.

Az undo tablateriileten minden undo szegmenshez tartozik egy tranzakcios tabla (transaction table), amely
az adott undo szegmenst hasznald tranzakciok azonositoit tartalmazza. Minden tranzakcios tabla fix szamu
bejegyzésbol (slotbdl) all. Ez a szdm az adatblokk méretétdl fiigg, amit viszont az operacids rendszer
hataroz meg. Minden bejegyzéshez egy tranzakcio tartozik. Az Oracle sorban rendeli hozzé a tranzakcidkat
a tranzakcios tabla szabad elemeihez. Ha a tabla betelik, el6lr6l kezdi felhasznalni a szabad elemeket. Egy
elem akkor valik szabadda, ha az altala képviselt tranzakcid véglegesitodott. Ha minden elem aktiv
tranzakciohoz tartozik, akkor egy ijabb tranzakcionak véarakoznia kell, amig valamelyik elem fel nem
szabadul.

Ha egy tranzakci6 befejez6dott, akkor a ra vonatkozd undo bejegyzésekre visszagorgetési vagy tranzakcio-
helyreallitasi célbol ugyan nincs tobbé sziikség, azonban mégsem tordlheték, mert elképzelhetd, hogy még
a tranzakci6 befejezddése eldtt elindult egy olyan lekérdezés, amelyhez sziikség van a modositott adatok
régi értékeire (ezt nevezzik olvasasi konzisztencianak — lasd Az Oracle konkurenciavezérlési technikdja
cimii részt). Ezenkiviil a flashback miiveletek sikeressége is a régebbi undo adatok elérhetdségén mulhat.
Ezen okok miatt a régi undo informaciokat a lehetd legtovabb célszerii megdrizni.

Ha egy adatbazist a Database Configuration Assistant (DBCA) segédprogrammal hozunk Iétre,
automatikusan 1étrejon egy UNDOTBSI1 nevii undo tablatertilet is. Sajat undo tablateriilet is készithetd a
CREATE DATABASE vagy a CREATE UNDO TABLESPACE utasitds segitségével. Amikor a
szerverpéldany elindul, automatikusan kivalasztja az elso elérhet6 undo tablateriiletet. Ha nincs ilyen, akkor
a rendszer undo tablateriilet nélkiil indul el, és a SYSTEM tablatertiiletet hasznalja az undo bejegyzések
tarolasara, ez azonban nem ajanlott. Ha az adatbazis t6bb undo tablateriilettel rendelkezik, a hasznalni
kivant undo tablateriiletet magunk is megadhatjuk az UNDO TABLESPACE paraméter segitségével.

A példany-helyreallitas lépései

Amikor egy undo bejegyzés az undo szegmensbe keriil, a naploban errdl is késziil egy naplobejegyzés,
hiszen az undo tablateriiletek — mas tablateriiletekhez hasonléan — az adatbazis részét képezik. Ez azt
eredményezi, hogy az online napl6 a permanens objektumokra vonatkoz6 undo informaciokat is tarolja. Az
adatbazisban bekdvetkez6 minden egyes valtoztatds hatdsara tehat 1étrejon egy undo bejegyzés a modositott
attribltum(ok) régi értékével, egy naplobejegyzés a moddositott adatokat tartalmazo adatblokkok uj
értékével, valamint egy masik naplobejegyzés az undo bejegyzést tartalmazo adatblokk 0 értékével.

A példany-helyreallitas els6é 1épése a rolling forward (vagy cache recovery), amelynek soran az online
naploban feljegyzett valtozasokat atvezetjiik az adatbazisra. A naplét elegendd az utolso ellenérzéponttol
kezdddden atvizsgalni. Az ellendrzépont garantdlja, hogy minden olyan véglegesitett modositas, amelynek
az SCN ¢értéke kisebb az ellendrzéponténadl, lemezre keriilt. Az ellenérzépont pozicidja (SCN értéke)
szamos esetben modosulhat, példdul amikor a Database Writer hattérfolyamat lemezre irja a piszkos
puffereket.

A rolling forward 1épés utan kapott adatbazis nagy valoszinliséggel inkonzisztens lesz. Ezutan minden
olyan modositast, amely nem volt véglegesitve, semmissé kell tenni. Mivel az online napléban az undo
adatok is feljegyzésre keriiltek, a rolling forward 1épés a megfeleld undo szegmenseket is helyreallitja. Az

29

Oracle ezek alapjan semmissé tesz az adatbazisban minden olyan nem véglegesitett modositast, amely a
rendszerhiba bekovetkezése el6tt vagy a rolling forward 1épés alatt keletkezett. Ez a 1épés a rolling back
(vagy transaction recovery).

Az undo informdciok kezelésének modjai

Az undo informaciok menedzselése két modon torténhet: automatikus (automatic undo management) és
manudalis (manual undo management) modban. Automatikus modban az Oracle automatikusan kezeli az
undo szegmenseket az undo tablateriileteken, nincs sziikség felhasznaléi beavatkozasra. Ez az
alapértelmezett mod egy Ujonnan telepitett adatbazis esetén. Manualis modban nem hasznalunk undo
tablateriiletet, az undo informaciok rollback szegmensekben (rollback segment), azaz felhasznald altal
kezelt undo szegmensekben tarolédnak. A rollback szegmensek altal elfoglalt tarteriilet kezelése Osszetett
feladat, és nagy terhet r6 a DBA-ra.

Mentes es visszaallitas

A mentés ¢és visszaallitas kozéppontjaban az adatbazist alkoté adatdllomanyok fizikai mentése all, amely
lehetdvé teszi az adatbazis késobbi rekonstrukcidjat. Az Oracle az RMAN nevi parancssori eszkozt ajanlja
az adatbazis hatékony mentésére és visszaallitasara. Az RMAN védelme az adatfajlokra, a vezérl6fajlokra,
a szerverparamétereket tartalmazo fajlokra és az archivalt naplofajlokra terjed ki. Ezek az allomanyok
szlikségesek az adatbazis rekonstrudlasdhoz. Az RMAN-t Ggy tervezték, hogy szorosan egyiittmiikodjon az
adatbazisszerverrel, blokk szint(i hibafelismerést biztositva a mentés és a visszaallitds soran. A mentés
soran optimalizalja a tarhelyfoglalast az allomanyok multiplexelésével és tomoritéssel, valamint tdimogatja
a vezetd szalagos és egyéb taroloeszkozoket. A mentési eljaras fizikai szinten zajlik, igy véd az alloményok
sériilései (pl. egy adatfajl véletlen letorlése vagy egy lemezmeghajtdé meghibasodésa) ellen. Az RMAN
pillanat-visszaallitasra is alkalmas, kikiiszobolve bizonyos logikai hibakat, amikor mas technikak (pl. a
flashback miiveletek) mar nem hasznalhatok.

NOARCHIVELOG moddban a megtelt inaktiv naplofajlok feliilirhatok. Ilyenkor az adatbazis védve van a
rendszerhibak ellen, de nincs védve a késziilékhibak ellen. ARCHIVELOG mddban a megtelt naplofajlok
archivalasra keriilnek. Ekkor az adatbazis mind a rendszerhibak, mind a késziilékhibak ellen védve van,
viszont tovabbi hardveres eréforrasokra lehet sziikség.

Egy adatfajl teljes mentése (full backup) magaban foglalja az allomany 6sszes blokkjat. A novekményes
mentés (incremental backup) csak azokat a blokkokat masolja, amelyek modosulnak a mentések kozott. A
nulladik szintii névekményes mentés — amely az adatfajl Osszes blokkjat masolja — hasznalhatd egy
novekményes mentési stratégia kiinduldpontjaként. Az elsd szintii névekményes mentés csak azokat a
blokkokat masolja, amelyek az utolsé nulladik vagy elsd szintli mentés 6ta megvaltoztak. Egy elsd szintli
mentés lehet kumulativ (cumulative), ha tartalmazza az 6sszes megvaltozott blokkot az utolsé nulladik
szintli mentés ota, vagy differencialis (differential), ha csak az utols6 nulladik vagy elsd szintli mentés 6ta
tortént valtozasokat tartalmazza. A tipikus ndvekményes mentési stratégiak szabalyos 1dokozonként (pl.
naponta) készitenek elsd szintli mentéseket. Visszaallitas soran az RMAN automatikusan alkalmazza mind
andovekményes mentéseket, mind a naplot, hogy rekonstrudlja az adatbazis egy kivant idodpontbeli allapotat.

A mentés lehet konzisztens vagy inkonzisztens. A konzisztens mentés az adatbazis konzisztens allapotaban
késziil. Az adatbazis konzisztens lesz, miutan leallitottuk a SHUTDOWN NORMAL, a SHUTDOWN
IMMEDIATE vagy a SHUTDOWN TRANSACTIONAL paranccsal. A konzisztens ledllitds garantdlja,
hogy minden naplozott modositas lemezre irodik. Ha ezutan mountoljuk az adatbazist, és készitiink egy
mentést, akkor késObb eszkdz-helyredllitas nélkiil visszaallithatjuk és megnyithatjuk az adatbazist.
Természetesen azonban elveszitjiilk a mentés készitése utan futott tranzakciok hatasat.

30

Minden olyan mentést, amely nem konzisztens, inkonzisztensnek neveziink. Egy nyitott adatbazisrol
késziilt mentés mindig inkonzisztens, mint ahogy egy rendszerhiba utani vagy egy SHUTDOWN ABORT
paranccsal leéllitott adatbazisrol késziilt mentés is. Ha az adatbazist inkonzisztens mentésbdl allitjuk vissza,
elészor eszkoz-helyredllitast (media recovery) kell végezniink, miel6tt megnyithatnank az adatbazist.
Ennek soran a naploban jelen 1évo, a mentés elkészitését kovetden bekdvetkezett valtozasokat alkalmazzuk
az adatfijlokra. Az RMAN nem engedi meg inkonzisztens mentések készitését, ha az adatbazis
NOARCHIVELOG modban van. Ha azonban az adatbazis ARCHIVELOG moédban van, és mentjiik az
archivalt naplot és az adatfajlokat, az inkonzisztens mentések egy jol mikodé mentési €s helyreallitasi
stratégia alapjat képezhetik. Az inkonzisztens mentések nagyobb rendelkezésre allast kindlnak, mert nem
kell leallitanunk az adatbazist ahhoz, hogy teljes védelmet biztositd mentéseket készithessiink.

Az eszkoz-helyreallitashoz sziikség van egy vezérl6fajlra, az adatfajlokra (amelyeket tipikusan mentésbol
allitunk vissza), valamint az online és archivalt naplofajlokra, amelyek az adatfajlok mentése oOta tortént
valtozasokat tartalmazzak. Az eszkoz-helyredllitast leggyakrabban késziilékhibdk (pl. egy allomany vagy
egy lemez elvesztése) vagy felhasznaloi hibak (pl. egy tabla tartalmanak a letorlése) utani helyreallitasra
hasznaljuk.

Az eszkoz-helyreallitas lehet teljes visszaallitas (complete recovery) vagy pillanat-visszadllitas (point-in-
time recovery). A teljes visszaallitas vonatkozhat kiilon az egyes adatfajlokra, tablateriiletekre vagy az
egész adatbazisra. A pillanat-visszaallitds rendszerint a teljes adatbdzisra vonatkozik (vagy az RMAN
segitségével néha csak egyes tablateriiletekre). Teljes visszaallitds esetén visszamdsoljuk a mentett
adatfgjlokat, majd alkalmazzuk r4juk az archivalt és online naplofijlokban leirt modositasokat. Az
adatbazis a hiba idépontjaban fennall6 allapotaba kertil vissza, és adatvesztés nélkiil megnyithat6. Pillanat-
visszaallitas esetén az adatbazist egy felhasznal6 altal valasztott multbeli iddpillanatban fennall6 allapotédba
allitjuk vissza. El6szor visszamdasoljuk az adott iddpillanat elott készitett mentésbol az adatfajlokat,
valamint az archivalt naplofajlok teljes halmazat a mentés készitésének idejétdl a kivalasztott idépontig.
Ezutan atvezetjiik a mentéstdl az adott idépontig végrehajtott modositasokat az adatfajlokra. A kivalasztott
id6pont utani modositasokat figyelmen kiviil hagyjuk.

31

Konkurenciavezérlés

A tranzakciok kozotti egymasra hatds az adatbazis-allapot inkonzisztenssé valasat okozhatja, még akkor is,
amikor a tranzakciok kiilon-kiillon megdrzik a konzisztenciat, ¢és rendszerhiba sem tortént. Ezért
valamiképpen szabalyoznunk kell, hogy a kiilonbozd tranzakcidk egyes lépései milyen sorrendben
kovetkezzenek egymas utan. A Iépések szabalyozasanak feladatat az adatbazis-kezeld rendszer iitemezo
(scheduler) része végzi. Azt az altalanos folyamatot, amely biztositja, hogy a tranzakcidk egyidejii
végrehajtasa soran megdrizzek a konzisztenciat, konkurenciavezérlésnek (concurrency control) nevezziik.

Amint a tranzakcidk az adatbaziselemek olvasasat és irasat kérik, ezek a kérések az titemez6ho6z keriilnek,
amely legtobbszor kozvetleniil végrehajtja azokat. Amennyiben a sziikséges adatbdziselem nincs a
pufferben, eldszor a pufferkezelét hivja meg. Bizonyos esetekben azonban nem biztonsdgos azonnal
végrehajtani a kéréseket. Az litemezonek ekkor késleltetnie kell a kérést, sot bizonyos esetben abortalnia
kell a kérést kiad6 tranzakciot.

Soros és sorba rendezheto iitemezések

A konkurenciavezérlés tanulmanyozasat azzal kezdjik, hogy megvizsgaljuk, a konkurensen végrehajtott
tranzakciok milyen feltételekkel tudjak megdrizni az adatbazis-allapot konzisztenciajat. Az alapfeltevésiink
az volt, hogy ha minden egyes tranzakciot elkiilonitve hajtunk végre (anélkiil, hogy mas tranzakcid
konkurensen futna), akkor az adatbazist konzisztens allapotbol konzisztens allapotba alakitjuk (korrektség
alapelve). A gyakorlatban azonban a tranzakciok altalaban més tranzakciokkal egyidejlileg futnak, emiatt
ez az elv kozvetleniil nem hasznéalhatd. Olyan litemezéseket kell alkalmaznunk, amelyek biztositjak, hogy
ugyanazt az eredményt allitjak eld, mintha a tranzakcidkat egyesével hajtottuk volna végre.

Utemezések

Az iitemezés (schedule) egy vagy tobb tranzakcio6 altal végrehajtott 1ényeges miiveletek idérendben vett
sorozata, amelyben az egy tranzakciohoz tartoz6 miiveletek sorrendje megegyezik a tranzakcioban
megadott sorrenddel. A konkurenciakezelés szempontjabdl a lényeges olvasasi és irasi miiveletek a
kdzponti memoria puffereiben torténnek, nem pedig a lemezen. Tehat csak a READ és WRITE miiveletek
sorrendje szamit, amikor a konkurencidval foglalkozunk, az INPUT ¢és OUTPUT miveleteket figyelmen
kiviil hagyjuk.

Példa. Tekintsiink két tranzakciot és az adatbazison kifejtett hatasukat, amikor egy meghatarozott
sorrendben hajtjuk végre a miiveleteiket:

T T
READ (A, t) READ (A, s)
t := t+100 s 1= s*2
WRITE (A, t) WRITE (A, s)
READ (B, t) READ (B, s)
t := t+100 s = g8*2
WRITE (B, t) WRITE (B, s)

t és s Ti-nek és To-nek lokalis valtozoi, nem adatbaziselemek. Tételezziik fel, hogy az egyetlen
konzisztenciamegszoritas az A = B. Mivel T1 A-hoz és B-hez is hozzaad 100-at, és T» A-t és B-t is
megszorozza 2-vel, tudjuk, hogy az egyes tranzakciok egymastol elkiilonitve futva megdrzik a
konzisztenciat.

32

Soros iitemezések

Azt mondjuk, hogy egy litemezés soros (serial schedule), ha benne barmely két T és T’ tranzakciora
teljesiil, hogy ha T-nek van olyan miivelete, amely megel6zi T’ valamelyik miiveletét, akkor T Gsszes
mivelete megelézi T’ valamennyi miiveletét. Masképpen fogalmazva az litemezés ugy épil fel a
tranzakcids miiveletekbdl, hogy eldszor az egyik tranzakcio 0sszes miveletét tartalmazza, azutan egy masik
tranzakcid 0sszes muveletét stb., mikozben nem cseréli fel a miiveleteket.

Példa. A fenti tranzakcioknak két soros litemezése van, az egyikben T1 megel6zi T2-t, a masikban T» el6zi
meg Ti-et. Legyen a kezdeti allapot A = B = 25. Ekkor a két iitemezés a kdvetkezéképpen alakul:

Ty T> A B Ty T> A B

READ (A, t) 25 READ (A, s) 25

t := t+100 S := s8*2

WRITE (A, t) 125 WRITE (A, s) 50

READ (B, t) 25 READ (B, s) 25

t := t+100 S 1= s*2

WRITE (B, t) 125 WRITE (B, s) 50
READ (A, s) 125 READ (A, t) 50
S 1= s*2 t := t+100
WRITE (A, s) 250 WRITE (A, t) 150
READ (B, s) 125 READ (B, t) 50
S := s*2 t := t+100
WRITE (B, s) 250 WRITE (B, t) 150

Lathatjuk, hogy A és B végso értéke kiilonbozo a két litemezésben, de nem is a végeredmény a kdzponti

"wor

kérdés addig, amig a konzisztenciat megérizziik. Altaldban nem varjuk el, hogy az adatbazis végsé allapota

fiiggetlen legyen a tranzakcidk végrehajtasanak sorrend;jétol.

A soros litemezést ugy abrazolhatjuk, hogy a miiveleteket a végrehajtasuk sorrendjében felsoroljuk. Mivel
a soros iitemezésben a miiveletek sorrendje csak magatol a tranzakciok sorrendjétdl fligg, ezért a soros
itemezést elegendd a tranzakciok felsorolasaval megadni, példaul: (T1, T2), illetve (T2, T1).

Sorba rendezheto iitemezések

A tranzakciokra vonatkozd korrektségi elv szerint minden soros litemezés megorzi az adatbazis
konzisztenciajat. Kérdés, hogy van-e mas iitemezés is, amely szintén biztositja a konzisztencia
megmaradasat. A vélasz igen, ahogy azt a kovetkezé példa mutatja. Altalaban azt mondjuk, hogy egy
litemezés sorba rendezheté (serializable schedule), ha ugyanolyan hatassal van az adatbazis allapotara, mint
ugyanazon tranzakciok valamelyik soros tlitemezése, fliggetleniil az adatbazis kezdeti allapotatol.

Példa. Tekintsiik a fenti két tranzakcio kovetkez6 két Gitemezését:

T1 Ty A B T1 Ty A B
READ (A, t) 25 READ (A, t) 25
t := t+100 t := t+100
WRITE (A, t) 125 WRITE (A, t) 125
READ (A, s) 125 READ (A, s) 125
S := s*2 S := s*2
WRITE (A, s) 250 WRITE (A, s) 250
READ (B, t) 25 READ (B, s) 25
t := t+100 S := s*2
WRITE (B, t) 125 WRITE (B, s) 50
READ (B, s) 125 READ (B, t) 50
S := s*2 t := t+100
WRITE (B, s) 250 WRITE (B, t) 150

33

Az els6 példa egy sorba rendezhetd, de nem soros iitemezést ad meg. Ebben az {itemezésben T, azutdn van
hatassal A-ra, miutan T:1 volt, de mieldtt T1 hatassal lenne B-re. Mégis azt latjuk, hogy a két tranzakcid
hatasa megegyezik a (T1, T2) soros litemezés hatdsaval. Ezt konnyll belatni tetszéleges konzisztens
kiindulasi allapotra: A =B = c-bél kiindulva A-nak is és B-nek is 2(c + 100) lesz az értéke, tehat a
konzisztenciat mindig megdrizziik.

A masodik példaban szerepl6 iitemezés viszont nem sorba rendezhetd. Itt T1 dolgozik elébb A-val, viszont
T, dolgozik elébb B-vel, ennek hatasaként masképpen kell kiszamolnunk A-t és B-t: A :=2(A + 100),
B := 2B + 100. Az ilyen viselkedést a kiilonboz6 konkurenciavezérlési technikakkal el kell kertilniink.

A tranzakcio szemantikdjanak hatdasa

A sorbarendezhetdség eldontéséhez eddig a tranzakciok miiveleteinek a sorrendjét néztiik meg. Azonban a
tranzakciok részletei is szdmitanak, ahogyan ezt a kdvetkez6 példabol lathatjuk:

Példa. Tekintsiik az alabbi {litemezést, amely csak a T, altal végrehajtott szamitasokban kiilonbozik a
legutolso példanktol, mégpedig abban, hogy nem 2-vel szorozza meg A-t és B-t, hanem 1-gyel:

T1 T, A B
READ (A, t) 25
t := t+100
WRITE (A, t) 125
READ (A, s) 125
s := s*1
WRITE (A, s) | 125
READ (B, s) 25
s := s*1
WRITE (B, s) 25
READ (B, t) 25
t := t+100
WRITE (B, t) 125

A ¢és B erteke az litemezés végén megegyezik, €s konnyen ellendrizhetjiik, hogy a konzisztens kezdeti
allapottol fliggetleniil a végallapot is konzisztens lesz. Valojaban az egyetlen végallapot az, amelyet vagy
a(T1, T2) vagy a (Tz, T1) soros litemezés eredményez.

Felmertilhet a kérdeés, hogy mi értelme van a T» tranzakcionak. Valojaban tobb elfogadhato tranzakciot
helyettesithetnénk a helyére, amely A-t és B-t valtozatlanul hagyna. T> példaul lehetne olyan tranzakcio,
amely csak kiiratja A-t és B-t. Vagy a felhasznalotol kérhet be adatokat, hogy kiszamoljon egy F tényez6t,
amivel beszorozza a-t és B-t, és el6fordulhat olyan felhasznaloi input, amelyre F = 1.

Sajnos az litemezd szamdra nem redlis a tranzakcios szamitdsok részleteinek figyelembevétele. Mivel a
tranzakciok gyakran tartalmaznak altaldnos célil programozasi nyelven irt kodokat éppugy, mint SQL
nyelvll utasitdsokat, néha nagyon nehéz megvalaszolni azokat a kérdéseket, mint példaul ,,ez a tranzakcid
A-tegy 1-t61 kiilonbozo értékkel szorozta-e meg”. Az litemezdnek azonban latnia kell a tranzakcidk olvasési
¢s irasi kéréseit, igy tudhatja, hogy az egyes tranzakcidk mely adatbaziselemeket olvastak be, és mely
elemek valtozhattak meg. Az litemez0d feladatanak egyszerisitésére megszokott a kovetkezo feltétel:

e Barmely A adatbaziselemnek egy T tranzakcid olyan értéket ir be, amely az adatbazis-allapottol fiigg
oly modon, hogy ne forduljon el6 aritmetikai egybeesés.

Mas szoval: ha T tudna A-ra olyan hatassal lenni, hogy az adatbazis-allapot inkonzisztenssé valjon, akkor
T ezt meg is teszi. Ezt a feltevést késbb pontositjuk, amikor a sorbarendezhetdség biztositasara adunk meg
feltételeket.

34

A tranzakciok és az iitemezések jelolése

Ha elfogadjuk, hogy egy tranzakcio altal végrehajtott pontos szamitasok tetszélegesek lehetnek, akkor nem
sziikséges a helyi szamitasi 1épések részleteit nézniink. Csak a tranzakciok altal végrehajtott olvasasok és
irasok szamitanak, igy a tranzakcidkat €s az litemezéseket rovidebben jeldlhetjiik. Ekkor ro (X) és wr (X)
tranzakciomiiveletek, és azt jelentik, hogy a T tranzakcid olvassa, illetve irja az X adatbaziselemet.
Tovabba, mivel a tranzakcidinkat altalaban T+, T, ...-vel fogjuk jeldlni, ezért megallapodunk abban, hogy
ri (X) és wi (X) ugyanazt jeloli, mint rri (X), illetve wrs (X).

Példa. A fenti példakban szerepld tranzakciok az alabbi modon irhatok fel:

Tiir1(A); w1 (A),;, r1(B); wi(B),
Toir2 (A),w2(A), r2(B); w2 (B),

Nem emlitettiik sehol a t és s lokalis valtozokat, és nem jeldltiik azt sem, hogy mi tortént a beolvasas utan
A-val és B-vel. Mindezt ugy értelmezziik, hogy az adatbaziselemek megvaltozasaban a ,,legrosszabbat
fogjuk feltételezni™.

Masik példaként nézziik meg a T1 és T» tranzakciok korabban felirt sorba rendezhetd litemezését:
ri(A);wi(A);r2(A) ;w2 (A);r1(B);wi(B); r2(B);w2(B);
Pontositva a jelolést:

1. Egy tranzakcio miiveletét r; (X) vagy wi (X) formaban fejezzik ki, amely azt jelenti, hogy a T:
tranzakci6 olvassa, illetve irja az X adatbaziselemet.

2. EQy Ti tranzakcio az i indexii muveletekbdl allé sorozat.

3. A T tranzakcidhalmaz egy S iitemezése olyan miiveletek sorozata, amelyben minden T halmazbeli T:
tranzakciora teljesiil, hogy T: miiveletei ugyanabban a sorrendben fordulnak elé S-ben, mint ahogy

crer

atlapolasa (interleaving).

Konfliktus-sorbarendezhetéség

Most egy olyan elégséges feltételt adunk meg, amely biztositja egy litemezés sorbarendezhetdségét. A
forgalomban 1évd rendszerek litemezdi a tranzakciok sorbarendezhetdségére éltalaban ezt az erdsebb
feltételt biztositjak, amelyet konfliktus-sorbarendezhetéségnek neveziink. Ez a konfliktus fogalmon alapul:
A konfliktus (conflict) vagy konfliktuspadr két olyan egymast kovetd miivelet az litemezésben, amelyeknek
ha a sorrendjét felcseréljiik, akkor legalabb az egyik tranzakcid viselkedése megvaltozhat. Egy tranzakcio
két szomszédos miiveletét mindig konfliktusnak tekintjiik.

Konfliktusok

Vegyiik észre, hogy a legtobb miiveletpar nincs konfliktusban a fenti értelemben. Legyen Ti és T két
kiilonb6z6 tranzakeid (1 # 7).

1. ri(X); ry(Y); sohasem konfliktus, még akkor sem, ha X = Y, mivel egyik 1épés sem valtoztatja meg
az értékeket.

2. ri(X);w;(Y); nincs konfliktusban, feltéve, hogy X # Y, mivel T; irhatja Y-t, mieldtt T; beolvasta X-
et, X értéke ett6l ugyanis nem valtozik. Annak sincs hatasa T5-re, hogy T; olvassa X-et, ugyanis ez nincs
hatassal arra, hogy milyen értéket ir T Y-ba.

3. wi (X); rs(Y); nincs konfliktusban, ha X # Y, ugyanazért, amiért a 2. pontban.

35

4. wi (X); w5 (Y);sincs konfliktusban, ha X = Y.
Masrészt harom esetben nem cserélhetjiik fel a miiveletek sorrendjét:

a) Ugyanannak a tranzakcionak két mivelete, példaul r: (X); wi (Y); konfliktus, mivel egyetlen
tranzakcion beliil a miiveletek sorrendje rogzitett, és az adatbazis-kezelO rendszer ezt a sorrendet nem
rendezheti at.

b) Kiilonb6z6 tranzakciok ugyanarra az adatbaziselemre vonatkozd irasa, példaul ws (X); wy (X);
konfliktus, mivel X értéke az marad, amit T4 szamolt ki. Ha felcseréljiik a sorrendjiiket, akkor pedig X-
nek a T; altal kiszamolt értéke marad meg. Az a feltevésiink, hogy ,,nincs egybeesés”, azt adja, hogy a
T; és a Ty altal kiirt értékek lehetnek kiilonbozdek, és ezért az adatbazis valamelyik kezdeti allapotara
kiilonbozni fognak.

¢) Kiilonb6z6 tranzakciok altal ugyanazon adatbaziselem olvasasa és irasa is konfliktus, azaz r; (X);
wy (X); éswi (X); Iy (X);is konfliktus. Ha atvisszik wy (X) -et r; (X) el¢, akkor a T; altal olvasott X-
beli érték az lesz, amit a T kiirt, amirdl pedig feltételeztiik, hogy nem sziikségképpen egyezik meg X
korabbi értékével. Tehat r; (X) és w5 (X) sorrendjének cseréje befolyéasolja, hogy T: milyen értéket
olvas X-bél, ez pedig befolyasolja T: mikodését.

Levonhatjuk a kovetkeztetést, hogy kiilonb6zd tranzakciok barmely két miiveletének sorrendje
felcserélhetd, hacsak nem:

1. ugyanarra az adatbaziselemre vonatkoznak, és
2. legalabb az egyik miivelet iras.

Ezt az elvet kiterjesztve tetszéleges litemezést véve annyi nem konfliktusos cserét készithetiink, amennyit
csak kivanunk, abbdl a célbol, hogy az tlitemezést soros iitemezéssé alakitsuk at. Ha ezt meg tudjuk tenni,
akkor az eredeti litemezés sorba rendezhetd volt, ugyanis az adatbazis allapotdra vald hatasa valtozatlan
marad minden nemkonfliktusos cserével.

Azt mondjuk, hogy két iitemezés konfliktusekvivalens (conflict-equivalent), ha szomszédos miveletek
nemkonfliktusos cseréinek sorozataval az egyiket atalakithatjuk a masikkd. Azt mondjuk, hogy egy
titemezés konfliktus-sorbarendezheté (conflict-serializable schedule), ha konfliktusekvivalens ugyanazon
tranzakcidk valamely soros iitemezésével. A konfliktus-sorbarendezhetdség elégséges feltétele a
sorbarendezhet6ségnek, vagyis egy konfliktus-sorbarendezhetd litemezés sorba rendezhetd litemezés is
egyben. Azonban a konfliktus-sorbarendezhetéség nem sziikséges ahhoz, hogy egy ilitemezés sorba
rendezhetd legyen, mégis altalaban ezt a feltételt ellendrzik a forgalomban 1évd rendszerek iitemezdi,
amikor a sorbarendezhetdséget kell biztositaniuk.

Példa. Legyen az litemezés a kovetkezd:
ri(A);wi(A);r2(A);w2(A);r1(B);wi(B); r2(B);w2(B);

Azt allitjuk, hogy ez az iitemezés konfliktus-sorbarendezhetd. A kovetkezd cserékkel ez az iitemezés
atalakithato a (T1, T2) soros iitemezéssé, ahol az Osszes Ti-beli miivelet megel6zi az Osszes To-beli
miiveletet:

r1(A),wi(A);r2(A) ;w2 (A),r1(B);wi(B), r2(B);w2(B),
r1(A),wi(A),;r2(A);r1(B),w2(A);w1(B), r2(B);w2(B),
r1(A);wi(A), r1(B);r2(A);w2(A), w1 (B);r2(B);w2(B),
ri(A);wi(A);ri(B);r2(A);wi(B) w2 (A);r2(B);w2(B);
r1(A),wi(A), r1(B);wi(B);, r2(A),w2(A); r2(B);w2(B),

Felmertil a kérdés, hogy miért nem sziikséges a konfliktus-sorbarendezhetdség a sorbarendezhetdséghez.
Korabban mar lattunk erre egy példat, amikor a tranzakcid szemantikdjat figyelembe véve allapithattuk
csak meg a sorbarendezhetdséget. Akkor megnéztiik, hogy a T» altal végrehajtott specidlis szamitdsok miatt
miért volt az litemezés sorba rendezhetd. Pedig az az litemezés nem konfliktus-sorbarendezhetd, ugyanis

36

A-t T, irja el6bb, B-t pedig T2. Mivel sem A irasat, sem B irasat nem lehet atrendezni, semmilyen modon
nem keriilhet T1 0sszes miivelete T, 6sszes muvelete elé, sem forditva.

Vannak olyan sorba rendezhetd, de nem konfliktus-sorbarendezhet6 litemezések is, amelyek nem fiiggnek
a tranzakciok altal végrehajtott szamitasoktol. Tekintslik példaul a T, T» és T3 tranzakcidkat, amelyek
mindegyike X értékét irja. T1 és T» Y-nak is ir értéket, miel6tt X-nek irnanak értéket. Az egyik lehetséges
litemezes, amely éppen soros is, a kovetkezo:

S1twi (Y); wi(X) 5wz (Y); w2 (X); ws(X);

Az 3, litemezés X értékének a T3 altal irt értéket, Y értékének pedig a T, altal irt értéket adja. Ugyanezt
végzi a kovetkezo litemezés is:

Szt w1 (Y) ;w2 (Y);we (X); wi (X); ws(X);

Intuicié alapjan atgondolva annak, hogy T:1 és T» milyen értéket ir X-be, nincs hatdsa, ugyanis T feliilirja
X értékét. Emiatt S1 €s S» X-nek is és Y-nak is ugyanazt az értéket adja. Mivel S1 soros iitemezés, €s S»-
nek barmely adatbazis-allapotra ugyanaz a hatdsa, mint Si-nek, ezért S, sorba rendezhetd. Ugyanakkor
mivel nem tudjuk felcserélni w1 (X) -et wz (X) -szel, igy cseréken keresztiil nem lehet S»-t valamelyik soros
litemezéssé atalakitani. Tehat S sorba rendezhet6, de nem konfliktus-sorbarendezheto.

Megelozesi grafok és teszt a konfliktus-sorbarendezhetoségre

Viszonylag konnyli megvizsgalnunk egy S tlitemezést, és eldonteniink, hogy konfliktus-sorbarendezhets-e
vagy nem. Az az alapétlet, hogy ha valahol konfliktusban allé6 miiveletek szerepelnek S-ben, akkor az
ezeket a miveleteket végrehajté tranzakcioknak ugyanabban a sorrendben kell eléfordulniuk a
konfliktusekvivalens soros iitemezésekben, mint ahogyan az S-ben voltak. Tehat a konfliktusban 4llo
miveletparok megszoritast adnak a feltételezett konfliktusekvivalens soros ilitemezésben a tranzakciok
sorrendjére. Ha ezek a megszoritdssok nem mondanak ellent egymdsnak, akkor talalhatunk
konfliktusekvivalens soros iitemezést. Ha pedig ellentmondanak egymésnak, akkor tudjuk, hogy nincs ilyen
soros iitemezés.

Adott a T1 és T2 (T1 # T2), esetleg tovabbi tranzakcioknak egy S iitemezése. Azt mondjuk, hogy T
megeldzi T»-t, ha van a T1-ben olyan A; miivelet és a T»-ben olyan 2, miivelet, hogy

1. A: megel6zi As-t S-ben,
2. A1 és Ay ugyanarra az adatbaziselemre vonatkoznak, és
3. A1 és Az koziil legalabb az egyik irds miivelet.

Masképpen fogalmazva: A: és Ax konfliktuspart alkotna, ha szomszédos miiveletek lennének. Jellése:
T1 <s T». Lathato, hogy ezek pontosan azok a feltételek, amikor nem lehet felcserélni A: és Az sorrendjét.
Tehat A1 az A el6tt szerepel barmely S-sel konfliktusekvivalens iitemezésben. Ebbél az kovetkezik, hogy
ha ezek koziil az litemezések koziil az egyik soros litemezés, akkor abban T1-nek meg kell eléznie T»-t.

Ezeket a megeldzéseket a megelozési grafban (precedence graph) Osszegezhetjiik. A megeldzési graf
csomopontjai az S iitemezés tranzakcidi. Ha a tranzakcidkat T:-vel jeldljiik, akkor a T:-nek megfeleld
csomopontot az i egésszel. Az i csomoOpontbol a § csomopontba vezet irdnyitott €1, ha T; <s T.

Példa. A kovetkezo S litemezés a T1, T és T3 tranzakciokat tartalmazza:
Sir2(A),r1(B);w2(A);r3(A),w1(B);w3(A), r2(B);w2(B),

Az S litemezéshez tartozo megeldzési graf a kovetkezo:

O——0

37

Ha az A-val kapcsolatos miiveleteket nézziik meg, akkor tobb okot taldlunk, hogy miért igaz a T, <s Ts.
Példaul r, (A) az S-benws (A) elott all, és wy (A) az r3 (A) ésaws (A) eldttis all. A harom észrevételiink
koziil barmelyik elegendd, hogy igazoljuk, valéban vezet ¢l 2-bol 3-ba a megeldzési gratban. Hasonlo
modon ha megnézziik a B-vel kapcsolatos miiveleteket, akkor szintén tobb okot talalunk, hogy miért igaz
a T1 <g T2. Példaul az r; (B) miivelet a wo (B) mivelet elott ll. Tehat az S megel6zési grafban 1-bdl 2-
be szintén vezet ¢él. Ez a két ¢l és csak ez a két ¢l az, amelyeket az S litemezésben szereplé miiveletek
sorrendjébdl tudunk ellendrizni.

Van egy egyszerl szabaly, amivel megmondhatjuk, hogy egy S iitemezés konfliktus-sorbarendezhetd-e:

e Rajzoljuk fel s megelézési grafjat, és nézziik meg, tartalmaz-e kort! Ha igen, akkor S nem konfliktus-
sorbarendezhetd, ha nem, akkor az, és ekkor a csomoépontok barmelyik topologikus sorrendje megadja
a konfliktusekvivalens soros sorrendet.

Egy kormentes graf csomopontjainak topologikus sorrendje a csomopontok barmely olyan rendezése,
amelyben minden a — b élre az a csomopont megeldzi a b csomopontot a topologikus rendezésben.

Példa. A fenti megeldzési graf kormentes, igy az S ltemezés konfliktus-sorbarendezhets. A
csomopontoknak, azaz a tranzakcioknak csak egyetlen sorrendje van, amely konzisztens a graf éleivel, ez
pedig a (Ti, T2, T3). S-et tehat at lehet alakitani olyan iitemezéssé, amelyben a harom tranzakcio
mindegyikének az 6sszes miivelete ugyanebben a sorrendben van, €s ez a soros tlitemezés:

S'ir1(B),wi(B), r2(A),; w2 (A),; r2(B);w2(B), r3(A),ws(A),

Ahhoz, hogy belassuk, megkaphatjuk S-bdl S’ -t szomszédos elemek cseréjével, az elsd észrevételiink,
hogy az r:1 (B) -t konfliktus nélkiil az r> (2) elé hozhatjuk. Ezutan harom cserével a w1 (B) -t kdzvetleniil
az ri (B) utanra tudjuk vinni, ugyanis mindegyik kdzbeesé miivelet az A-ra vonatkozik. Ezutdn az r> (B) -t
¢s a wy (B) -t csak az A-ra vonatkozé miiveleteken keresztiil at tudjuk vinni pontosan a wy (A) utani
helyzetbe, amivel megkapjuk S’ -t.

Példa. Tekintsiik az alabbi titemezést:
Siir2(A);r1(B);w2(A), r2(B); r3(A), w1 (B); w3 (A);,w2(B),

S1 csak abban kiilonbozik S-t6l, hogy az r»> (B) miivelet harom hellyel el6bb szerepel. Az A-ra vonatkoz6
miiveleteket megvizsgalva most is csak a T, <s1 T3 megeldzési kapcsolathoz jutunk. De ha B-t vizsgaljuk,
akkor nemcsak T1 <s1 T> teljesiil (ugyanis r1 (B) és w1 (B) a wz (B) el6tt szerepel), hanem T2 <s1 T1 IS
(ugyanis r» (B) aw: (B) el6tt fordul el6). Emiatt az S1 ilitemezéshez tartozo megel6zési graf a kovetkezo:

Ez a graf nyilvanvaldan tartalmaz kort (ciklikus), ezért arra kovetkeztethetiink, hogy S1 nem konfliktus-
sorbarendezhetd, ugyanis intuicid alapjan lathatjuk, hogy barmely konfliktusekvivalens soros litemezésben
T1-nek T el6tt is és utan is kellene allnia, tehat nem 1étezik ilyen litemezés.

Miért miikodik a megelozési grdafon alapulo tesztelés?

Lattuk, hogy a megeldzési gratban a kor tul sok megszoritast jelent a feltételezett konfliktusekvivalens
soros litemezésre nézve. Azaz ha létezika T1 — T2 — ... = Tn — T1 n darab tranzakciobol allo kor, akkor
a feltételezett soros sorrendben T: miiveleteinek meg kell eléznilik a T.-ben szerepld miiveleteket,
amelyeknek meg kell el6zniiik a Ts-belieket és igy tovabb egészen Tn-ig. De T, miiveletei emiatt a T-

38

belick mogott vannak, ugyanakkor meg is kellene elézniiik a T:-belieket a T, — T: él miatt. Ebbél
kovetkezik, hogy ha a megeldzési graf tartalmaz kort, akkor az iitemezés nem konfliktus-sorbarendezheto.

A masik irdnyt egy kicsit nehezebb beladtnunk. Azt kell megmutatnunk, hogy amikor a megel6zési graf
kormentes, akkor az litemezés miuveletei atrendezhetok szomszédos muveletek szabalyos cseréivel ugy,
hogy az {itemezés egy soros iitemezéssé¢ valjon. Ha ezt meg tudjuk tenni, akkor bebizonyitottuk, hogy
minden kormentes megeldzési graffal rendelkezd ilitemezés konfliktus-sorbarendezhetd. A bizonyitas az
litemezésben részt vevo tranzakciok szdma szerinti indukcidval torténik:

Alapeset: Ha n = 1, vagyis csak egyetlen tranzakciobdl all az litemezés, akkor az mar nmagaban soros,
tehat biztosan konfliktus-sorbarendezhetd.

Indukeci6: Legyen S a T1, T2, ..., Tn n darab tranzakci6é miiveleteibdl all6 litemezés. Tételezziik fel, hogy
S-nek kormentes megeldzési grafja van. Ha egy véges graf kormentes, akkor van legalabb egy olyan
csomopontja, amelybe nem vezet ¢él. Legyen a T; tranzakcidonak megfelelé i csomopont egy ilyen
csomoépont. Mivel az i csomdpontba nem vezet €l, nincs S-ben olyan A miivelet, amely

1. valamelyik T5 (i # j) tranzakciora vonatkozik,
2. T; valamely miiveletét megeldzi, és
3. ezzel a mivelettel konfliktusban van.

Ha lenne ilyen, akkor a megel6zési gratban lennie kellene egy élnek a 5 csomdpontbdl az i csomoOpontba
(hiszen ekkor T3 megel6zi T:-t), marpedig az i csomopontba nem vezet él.

fgy lehetséges, hogy T: minden miiveletét S legelejére mozgatjuk at, mikézben megtartjuk a sorrendjiiket.
Az iitemezés most a kovetkez6 alaku:

(T; miiveletei) (a tobbi n—1 tranzakcidé miveletei)

Most tekintsiik S masodik részét, vagyis a Ti-t6l kiillonbdz6 dsszes tranzakcionak a miveleteit. Mivel ezek
a miveletek egymashoz viszonyitva ugyanabban a sorrendben vannak, mint ahogyan S-ben voltak, ennek
a masodik résznek a megeldzési grafjat megkapjuk S megelézési grafjabol, ha elhagyjuk beldle az 1
csomopontot és az ebbdl a csomopontbdl kimend éleket.

Mivel az eredeti megeldzési graf kormentes volt, és csomdpontok, illetve élek torlésével nem valhatott
ciklikussa, ezért a masodik rész megeldzési grafja is kormentes. Tovabba, mivel a masodik része n-1
tranzakciot tartalmaz, alkalmazzuk ré az indukciods feltevést. fgy tudjuk, hogy a masodik rész miiveletei
szomszédos miveletek szabalyos cseréivel atrendezhetok soros iitemezéssé. Ily modon magat S-et
alakitottuk at olyan soros litemezéss¢, amelyben T: miiveletei allnak legeldl, és a tobbi tranzakcié miiveletei
ezutan kovetkeznek valamilyen soros sorrendben. Az indukcidt belattuk, és igy kovetkezik, hogy minden
olyan iitemezés, amelynek kdrmentes a megeldzési grafja, konfliktus-sorbarendezhetd.

A sorbarendezhetéség biztositasa zarakkal

Képzeljiink el egy olyan tranzakciohalmazt, amely megszoritasok nélkiil hajtja végre a miiveleteit. Ezek a
miveletek is egy titemezést alkotnak, de nem valoszini, hogy ez az iitemezés sorba rendezheté lenne. Az
titemez0 feladata az, hogy megakadalyozza az olyan miiveleti sorrendeket, amelyek nem sorba rendezhetd
itemezésekhez vezetnek. El0szor az iitemezd legaltalanosabb szerkezetét tekintjiik, olyat, amelyben az
adatbaziselemekre kiadott zdrak (lock) akadalyozzak meg a nem sorba rendezhetd viselkedést. Roviden
arrol van sz0, hogy a tranzakciok zaroljak azokat az adatbaziselemeket, amelyekhez hozzaférnek, hogy
megakadalyozzak azt, hogy ugyanakkor mas tranzakciok is hozzaférjenek ezekhez az elemekhez, mivel
ekkor felmeriilne a nem sorbarendezhetdség kockazata.

39

El6szor egy leegyszertisitett zaroldsi sémaval vezetjiik be a zarolas fogalmat. Ebben a sémaban csak egyféle
zar van, amelyet a tranzakcioknak meg kell kapniuk az adatbaziselemre, ha barmilyen miiveletet végre
akarnak hajtani rajta. Késobb sokkal valdsabb zarolasi sémakat tanulmanyozunk, kiilonb6z6 zdrmodokkal.

Zarak

Az iitemez0 felelds azért, hogy fogadja a tranzakcioktol érkezo kéréseket, €s vagy megengedi a miiveletek
végrehajtasat, vagy addig késlelteti, amikor mar biztonsdgosan végre tudja hajtani dket. Nézziik meg,
hogyan iranyitja ezt a dontést a zartabla (lock table) felhasznalasaval.

Az lenne az idedlis, ha az litemez0 akkor és csak akkor tovabbitana egy kérést, ha annak végrehajtdsa nem
vezethetne inkonzisztens adatbazis-allapothoz, miutan az Osszes aktiv tranzakcidt vagy véglegesen
végrehajtottuk, vagy abortaltuk (vagyis sikerteleniil befejeztiik). Ezt a kérdést viszont til nehéz lenne valds
idében eldonteni. fgy minden iitemezd csak egy egyszerii tesztet hajt végre a sorbarendezhetdség
eldontésére, azonban letilthat olyan miiveleteket is, amelyek O©Onmagukban nem vezetnének
inkonzisztencidhoz. A zdrolasi iitemezé, mint a legtdbb litemezd, a konfliktus-sorbarendezhetdséget
koveteli meg, pedig — mint azt mar lattuk — ez er6sebb kdvetelmény, mint a sorbarendezhetdség.

Ha az Utemez6 zarakat hasznal, akkor a tranzakcioknak — az adatbaziselemek olvasasan és irasan feliil —
zarakat kell kérniiik és feloldaniuk. A zarak hasznalatanak két értelemben is helyesnek kell lennie: mind a
tranzakciok szerkezetére, mind pedig az litemezések szerkezetére alkalmazva:

o Tranzakciok konzisztencidja (consistency of transactions): A miiveletek és a zarak az alabbi elvarasok
szerint kapcsolodnak egymashoz:

1. A tranzakci6 csak akkor olvashat vagy irhat egy elemet, ha mar korabban zérolta azt, ¢s még nem
oldotta fel a zarat.
2. Ha egy tranzakci6 zarol egy elemet, akkor késébb azt fel kell szabaditania.

o Az iitemezések jogszeriisége (legality of schedules): A zarak értelme feleljen meg a szandék szerinti
elvardsnak: nem zarolhatja két tranzakci6 ugyanazt az elemet, csak Uigy, ha az egyik el6bb mar feloldotta
a zarat.

Kibdvitjiik a jeloléseinket a zarolas és a feloldas miiveletekkel:

1; (X):aT; tranzakcid az X adatbaziselemre zaroldst kér (lock).
ui (X):a T; tranzakcio az X adatbaziselem zdroldsat feloldja (unlock).

fgy a tranzakciok konzisztenciafeltétele és az iitemezések jogszeriiségének a feltétele a kovetkezképpen
is kimondhato6:

e Haegy T; tranzakcidban van egy ri (X) vagy egy wi (X) mivelet, akkor van korabban egy 1; (X)
miivelet, és van késobb egy u; (X) miivelet, de a zarolas €s az irds/olvasas kozott nincs u; (X) .

e Ha egy iitemezésben van olyan 1: (X) miivelet, amelyet 15 (X) kovet, akkor e két miivelet kozott
lennie kell egy ui (X) miiveletnek.

Példa. Tekintsiik a legels6 példankat, amelyben T1 hozzaad az A és B adatbaziselemekhez 100-at, T» pedig
megduplazza az értékiiket. Most ugy adjuk meg a tranzakcidkat, hogy a zdrolasi és az aritmetikai
miiveleteket is leirjuk, bar rendszerint a szamitdsokat nem abrdzoljuk ebben a jeldlésben, ugyanis az
iitemez0 sem tudja azt figyelembe venni, amikor arrél dont, hogy engedélyezze vagy elutasitsa a kéréseket:

Tii11(A);r1(A);A = A+100;wi(A),u1(A);11(B);,; r1(B);B := B+100;w1(B);u1(B);
T2i12(A); r2(A);A = A*2;w2(A),uz2(A); 12(B), r2(B);B := B*2, w2 (B),;uz(B);

40

Mindkét tranzakcio konzisztens. Mindkettd felszabaditja az A-ra és B-re kiadott zarakat. Tovabba
mindketté csak olyan 1épésekben dolgozik A-n és B-n, melyeket megel6zéen mar zaroltdk az elemet, és
még nem oldottak fel a zar alol.

T, T, A B
Li(A); ri(A); 25
A := A+100;
w1 (A); ui(A); 125
1, (A); ra2(A); 125
A := A*2;
wy (A); uz(A); 250
1,(B); r2(B); 25
B := B*2;
w2 (B); u2(B); 50
1.(B); r1(B); 50
B := B+100;
w1 (B); ui(B); 150

Az abran a két tranzakcionak egy jogszeril ilitemezése lathatd, ugyanis a két tranzakcidé sohasem zérolja
egyidejiileg A-t vagy B-t. Pontosabban: T» nem végzi el az 1, (A) miiveletet, csak miutan T1 végrehajtotta
u1 (A)-t, és T1 nem végzi el az 1: (B) miiveletet, csak miutan T, végrehajtotta u, (B) -t. Lathatjuk a
kiszdmitott értékek nyomon kovetésével, hogy bar ez az litemezés jogszerili, mégsem sorba rendezhetd.
Nemsokara latni fogunk egy tovabbi feltételt (a kétfazisu zarolast), amivel biztosithatjuk, hogy a jogszeri
titemezések konfliktus-sorbarendezhetdk legyenek.

A zarolasi iitemez0

A zarolason alapul¢ litemezo feladata, hogy akkor és csak akkor engedélyezze a kérések végrehajtasat, ha
azok jogszeri litemezéseket eredményeznek. Ezt a dontést segiti a zdrtdabla, amely minden
adatbaziselemhez megadja azt a tranzakciot, ha van ilyen, amelyik pillanatnyilag zarolja az adott elemet. A
zartabla szerkezetérol késdbb lesz sz6. Ha viszont csak egyféle zarolds van, mint ahogyan eddig
feltételeztiik, akkor ugy tekinthetjik a tablat, mint (X, T) parokbol allo6 Zarolésok (elem,
tranzakcid) relacidt, ahol a T tranzakcid zéarolja az X adatbaziselemet. Az ilitemezOnek csak le kell
kérdeznie ezt a relaciot, illetve egyszerli INSERT és DELETE utasitasokkal kell modositania.

Példa. A fenti példaban lathato iitemezés jogszerti, igy a zarolasi iitemez6 engedélyezhetné az dsszes kérést
abban a sorrendben, ahogyan beérkeznek. Néha azonban el6fordulhat, hogy nem lehet engedélyezni a
kéréseket. Hajtsunk végre a T1 és T2 tranzakcidkon egy aprod, de 1ényeges valtoztatast, mégpedig azt, hogy
T1 és T2 is eldbb zarolja B-t, és csak azutan oldja fel A zarolasat:

Ti:11(A);ra(A);A = A+100;wi(A); 11 (B),ui(A);r1(B);B := B+100; w1 (B),ui(B);
Tor12(A);r2(A);A 1= A*2;w2(A); 12(B);u2(A),; r2(B),;B 1= B*2,;w2(B), uz(B);
Tq Ty A B
1, (A); ri(A); 25
A := A+100;
wi(A); 11 (B); ui(A); 125
12(A); r2(A); 125
A = A*2;
wy (A) ; 250
1, (B) ; elutasitva
ri1(B); B := B+100; 25
w1 (B); u1(B); 125
1(B); ux(A); r2(B); 125
B := B*2;
w2 (B); uz2(B); 250

41

Az é4bran lathatd, hogy amikor a modositott {itemezésben T, kéri B zdrolasat, az litemezdnek el kell
utasitania ezt a kérést, hiszen T, még zarolja B-t. igy T» 4ll, és a kovetkezd miiveleteket a T tranzakcio
végzi. Végiill T1 végrehajtja u1 (B) -t, amely felszabaditja B-t. T, most mar zarolhatja B-t, amelyet a
kovetkez6 1épésben végre is hajt. Lathatd, hogy mivel T2-nek varakoznia kellett, ezért B-t akkor szorozza
meg 2-vel, miutan T1 mar hozzaadott 100-at, és ez konzisztens adatbazis-allapotot eredményez.

A kétfazisu zarolds

Van egy meglepo feltétel, amellyel biztositani tudjuk, hogy konzisztens tranzakciok jogszerii litemezése
konfliktus-sorbarendezhetd legyen. Ezt a feltételt, amelyet a gyakorlatban elterjedt zarolasi rendszerek
leginkabb kovetnek, kétfazisu zdarolasnak (two-phase locking, 2PL) nevezziik:

e Minden tranzakcioban minden zarolasi miivelet megel6zi az 6sszes zarfeloldasi miiveletet.

A ,.két fazis” abbol adodik, hogy az elsd fazisban csak zaroldsokat adunk ki, a mésodik fazisban pedig csak
megsziintetiink zarolasokat. A kétfazisu zarolds — a konzisztencidhoz hasonléan — a tranzakcidban a
miiveletek sorrendjére egy feltétel. Azt a tranzakcidt, amely eleget tesz a 2PL feltételnek, kétfdzisu zarolasu
tranzakcionak (two-phase-locked transaction) vagy 2PL tranzakcionak nevezzik.

Példa. Az els6 példankban a tranzakcidok nem tesznek eleget a kétfazis zarolasi szabalynak. Példaul T
eldbb oldja fel A zarolasat, mint zarolja B-t. A masodik példaban talalhato tranzakciok azonban mar eleget
tesznek a 2PL feltételnek. Lathatd, hogy mind T1, mind T2 A-t és B-t is az els6 6t miiveleten beliil zarolja,
¢s a kovetkezd 6t miiveleten beliil feloldja a zarakat. Ha 6sszehasonlitjuk a két abrat, azt is latjuk, hogy a
kétfazisu zarolasu tranzakciok hogyan mikddnek egylitt az litemezdvel a konzisztencia biztositasara, mig
anem 2PL tranzakciok esetén el6fordulhat inkonzisztencia.

Miért miikodik a kétfazisu zarolas?

Igaz, bar kozel sem nyilvanvalo, hogy a 2PL példankban észlelt elonyei altalaban is érvényesek. Intuicid
alapjan mindegyik kétfazist zarolasu tranzakciorol azt gondolhatjuk, hogy rogton végrehajtasra keriilnek,
amint az els6 zarfeloldasi kérés kiadasra keriil. A 2PL tranzakciok egy S litemezésével konfliktusekvivalens
soros litemezésben a tranzakcidk ugyanabban a sorrendben vannak, mint amilyenben az els6 zarfeloldasaik.

Megnézziik, hogyan lehet konzisztens, kétfadzisi zarolasu tranzakcidok barmely S jogszerll iitemezését
atalakitani konfliktusekvivalens soros iitemezéssé. A konverzidt legjobban az S-ben részt vevo tranzakciok
széma (n) szerinti indukcidval tudjuk leirni. Lényeges, hogy a konfliktusekvivalencia csak az olvasasi ¢és
irasi miiveletekre vonatkozik. Amikor felcseréljiik az olvasasok €s irasok sorrendjét, akkor figyelmen kiviil
hagyjuk a zarolasi és zarfeloldasi miiveleteket. Amikor megkaptuk az olvasasi és irdsi miiveletek sorrendjét,
akkor tigy helyezziik el koréjiik a zarolasi €s zarfeloldasi miiveleteket, ahogyan azt a kiilonb6z6 tranzakciok
megkovetelik. Mivel minden tranzakcio felszabaditja az Osszes zarolast a tranzakcid befejezése el6tt,
tudjuk, hogy a soros ilitemezés jogszerti lesz.

Alapeset: Ha n = 1, vagyis csak egyetlen tranzakciobol all az litemezés, akkor az mar onmagéban soros,
tehat biztosan konfliktus-sorbarendezhetd.

Indukcié: Legyen S a T1, To, ..., Tn n darab konzisztens, kétfazisu zarolasu tranzakciéo muveleteibol alld
litemezes, €s legyen T; az a tranzakcio, amelyik a teljes S iitemezésben a legels6 zarfeloldasi miiveletet
végzi, mondjuk u; (X) -t. Azt allitjuk, hogy T: 0sszes olvasasi €s irasi miiveletét az iitemezés legelejére
tudjuk vinni anélkiil, hogy konfliktusmiiveleteken kellene athaladnunk.

42

Tekintsik T; valamelyik miveletét, mondjuk w; (Y)-t. Megelézheti-e ezt S-ben valamely
konfliktusmuivelet, példaul w; (Y)? Ha igy lenne, akkor az S {itemezésben az u; (Y) ¢és az 1;: (Y)
miveletek az alabbi mdédon helyezkednének el a miiveletsorozatban:

e Wi (Y) s s ug (YY) e Li(Y) s o wi (YY) .

Mivel T; az els6, amelyik zarat old fel, igy S-ben u; (X) megeldzi u; (Y) -t, vagyis S a kovetkezOképpen
néz ki:

Lo Wi (Y) s s ui (X)) e us (YY) s oo Li(Y) s ees wi (YY) L
Az u; (X) miuvelet allhat wy (Y) eldtt is. Mindkét esetben u; (X) 1: (Y) eldtt van, ami azt jelenti, hogy
T: nem kétfazisi zaroldsu, amint azt feltételeztiik. Ahogyan belattuk, hogy nem Iétezhetnek

konfliktusparok az irasra, ugyantgy be lehet latni barmely két lehetséges miiveletre — az egyiket T;-bél, a
masikat pedig egy T:-t6l kiilonboz6 T5-bdl valasztva —, hogy nem lehetnek konfliktusparok.

Bebizonyitottuk, hogy valoban S legelejére lehet vinni T: 0sszes miiveletét konfliktusmentes olvasési és
irasi miiveletekbdl allé miiveletparok cseréjével. Ezutan elhelyezhetjiik T: zaroldsi és zarfeloldési
miiveleteit. igy S a kovetkezd alakba irhato at:

(T; miiveletei) (a tobbi n—1 tranzakcidé miveletei)

Az n-1 tranzakciobdl allé mésodik rész szintén konzisztens 2PL tranzakciokbol allo jogszeri iitemezés,
igy alkalmazhatjuk ra az indukcios feltevést. Atalakitjuk a masodik részt konfliktusekvivalens soros
litemezéssé, igy a teljes S konfliktus-sorbarendezhetévé valt.

A holtpont kockazata

Az egyik probléma, amelyet nem lehet a kétfazisu zarolassal megoldani, a holtpontok (deadlock)
bekovetkezésének a lehetdsége, vagyis amikor az litemez0 arra kényszeriti a tranzakciokat, hogy ,,0rokké”
varakozzanak egy olyan adatbaziselemre vonatkozd zarra, amelyet egy masik tranzakcid tart zarolva.
Példakeént tekintsiik a megszokott 2PL tranzakcioinkat, de most T2 A el6tt dolgozza fel B-t:

Tii11(A);r1(A),A = A+100;w1(A), 11 (B);ui(A), r1(B);B := B+100; w1 (B);u1(B);
T2:12(B);r2(B);B := B*2;w2(B); 12(A);u2(B); r2(A);A = A*2;w2(A);uz(A);

A tranzakcids miiveletek egy lehetséges végrehajtasa a kovetkezo:

T1 Ty A B
1, (A); ri(A); 25
1(B); r2(B); 25
A := A+100;
B := B*2;
wi (A) ; 125
w2 (B) ; 50
1: (B) ; elutasitva 1, (A) ; elutasitva

Most egyik tranzakcid sem folytatodhat, hanem 6rokké varakozniuk kell. Lathato, hogy nem tudjuk mind
a két tranzakciot folytatni, ugyanis ha igy lenne, akkor az adatbazis végs6 allapotaban nem teljesiilhetne
A =B.

Ha a holtpont mar bekdvetkezett, akkor altalaban nem lehet a helyzeten ugy javitani, hogy minden
tranzakci6 tovabbléphessen, azaz legalabb egy tranzakciot vissza kell gorgetni: abortalni kell, majd
yjrainditani.

43

A holtpontkezelés problémaja két 6 iranybol kozelithetd meg: vagy valahogy rajoviink, hogy néhany
tranzakcio holtpontra jutott, és ebbdl a helyzetbdl keresiink Kiutat (holtpontérzékelés), vagy mar eleve ugy
kezeljiik a tranzakciokat, hogy soha ne juthassanak holtpontra (holtpontmegeldzés).

A holtpontok érzékelésére és feloldasara a legegyszeriibb megoldast az idotullépés (timeout) modszere
adja. Id6korlatot vezetiink be, amely arra vonatkozik, hogy az egyes tranzakciok mennyi ideig lehetnek
aktivak, €s ha ezt a hatart tullépik, akkor visszagorgetjiik oket. Példaul egy egyszerli rendszerben, ahol a
tipikus tranzakciok ezredmasodpercek alatt lefutnak, az egyperces idokorlatnak tényleg csak a holtpontra
jutott tranzakciokra lenne hatasa. De ha van néhany Osszetettebb tranzakcid is, akkor az iddtullépés
bekovetkezéséhez hosszabb id6t valaszthatunk.

Vegyiik észre, hogy ha a holtpontra jutott tranzakcio tullépi az idokorlatjat, akkor a tobbi eréforrassal egyiitt
az eddig birtokolt zarjairdl is lemond. Igy tehat van esély arra, hogy a holtponton all6 tobbi tranzakcid még
azelott be tudja fejezni a tevékenységét, mielott kifutna az idobol. De mivel a holtpontra jutott tranzakciok
valdsziniileg koriilbeliil ugyanabban az idépontban indultak (kiilonben az egyik befejez6dott volna, még
mieldtt a masik elkezdddik), az is lehetséges, hogy a rendszer hamis idétullépéseket érzékel, azaz tgy
gorgeti vissza a tranzakcidkat, hogy azok mar taljutottak a kozds holtponton.

A holtpontérzékelésnek egy kifinomultabb moddszere a vdrakozasi grdf (waits-for graph) hasznalata,
amelyben azt tartjuk nyilvan, hogy melyik tranzakcidé melyik masik tranzakci6 altal birtokolt zarakra var.
Ezt a modszert nemcsak a mar kialakult holtpontok érzékelésére, hanem azok kialakuldsanak megeldzésére
is hasznalhatjuk. Mi most az utobbit tekintjiik, ami azzal jar, hogy a varakozasi grafot egész ido alatt nyilvan
kell tartanunk, és az olyan miiveleteket, amelyek kovetkeztében a grafban kor alakulna ki, nem szabad
megengedniink.

Latni fogjuk, hogy a zartablaban minden X adatbaziselemhez létezik egy lista, amelyben azon tranzakcidok
mellett, amelyek arra varnak, hogy zarolhassak x-et, azok is fel vannak sorolva, amelyek rendelkeznek x
zarjaval. A vérakozasi graf csucsai a listaban taldlhato tranzakcioknak felelnek meg. A grafban irdnyitott
¢l fut T-b6l U-ba, ha létezik olyan A adatbaziselem, melyre

1. U zarolja A-t,
2. T arra var, hogy zarolhassa A-t, és
3. T csak akkor kapja meg A zarjat, ha elészor U lemond rola.

Ha nincsen (iranyitott) kor a grafban, akkor végiil minden tranzakcio be tudja fejezni a mitkodését. Lesz
legalabb egy olyan tranzakcid, amelyik nem var semelyik masikra, igy ez biztosan befejezddhet. Ekkor
viszont megint lesz legalabb egy tranzakcid, amelyik nem varakozik, ezért tovabbléphet, és igy tovabb.

Ha azonban a graf nem kormentes, akkor a korben részt vevo tranzakciok nem léphetnek tovabb, azaz
holtpontra jutottak. A holtpontmegel6zési stratégia tehat abbol all, hogy minden olyan tranzakciot
visszagorgetiink, amelynek valami olyan igénye van, ami kort idézne eld a varakozasi grafban.

Példa. Tegyiik fel, hogy az alabbi négy tranzakcioval rendelkeziink, amelyek mindegyike eldszor olvas egy
adatbaziselemet, majd ir egy masikat:

T 11 (A);r1(A); 11 (B);wi(B);ui(A);u(B);
T2: 12(C) 5 r2(C) 5 12 (A); w2 (A);uz(C) uz(A),
T3: 13(B); r3(B); 13(C);w3(C);us(B);us(C);
Ta: 14(D);ra(D); 1a(A);wa(A);us(D);us(A),

44

Lépés T1 T, T, T,
1) | 1.(A); ri(RA);
2) 12(C); r2(C);
3) 15(B); r3(B);
4 1:(D); re(D);
o) 1, (A7) ; elutasitva
6) 15(C) ; elutasitva
N 14 (A) ; elutasitva
8) | 11(B) ; elutasitva

A fenti abran egy lehetséges litemezés kezdeti szakasza lathatd. Az elsé négy lépésben mindegyik
tranzakcio zarolja azt az elemet, amelyet olvasni szeretne. Az 5) 1épésben T, megprobalja zarolni A-t, de
nem tudja, mert a zar mar T birtokdban van. T tehat varakozik T:-re, ezért a varakozasi grafba berajzolunk
egy ¢lt a To-nek megfeleld csticsbol a T1-nek megfeleld csucs felé.

Hasonldan, a 6) 1épésben T3 nem tudja zarolni C-t T» miatt, a 7) Iépésben pedig T. vall kudarcot A
zarolasaval T1 miatt. Az ebben az allapotban egyelére kormentes varakozasi graf a kovetkezo:

4

A 8) lépésben Ti-nek varnia kell B zaroladsdval T3 miatt. Ha megengednénk T:-nek, hogy varjon erre a
zarra, akkor T1, T2 és T3 mentén kor jonne létre a varakozasi grafban, ahogy ezt az aldbbi dbra is mutatja:

@

Mivel a korben mindegyik tranzakcid arra var, hogy a masik befejez6djon, egyik sem tud tovabblépni,
vagyis ennek a harom tranzakcionak a részvételével holtpont alakul ki. Véletlen egybeesés, hogy T4 sem
fejez6dhet be annak ellenére, hogy nincs benne a korben. Az § elérejutdsa ugyanis T1 tovabblépésén mulik.

Mivel a kort okozd tranzakciokat visszagorgetjiik, igy tesziink Ti-gyel is. A varakozési graf a

kovetkezdképpen alakul:

®

T, feloldja A zarolasat, amelyet vagy T-, vagy T4 vesz at. Tegyiik fel, hogy a zar T» birtokaba keril. T»
befejezddik, ezaltal feloldodik a zar A-n és C-n. Most Ts, amely C-t akarja zarolni, és T4 IS, amely A-t,
lezarulhat. Valamivel késObb T:-et Gjrainditjuk, de nem kaphatja meg sem A, sem B zarjat, amig T2, T3 és
T4 be nem fejezodott.

45

Kiilonbo6zo zarmodu zarolasi rendszerek

A fentebb vazolt zarolasi séma bemutatja a zarolas mogott allo legfobb elveket, de tul egyszerti ahhoz, hogy
a gyakorlatban is hasznéalhatdé séma legyen. Az a legfobb probléma, hogy a T tranzakcionak akkor is
zarolnia kell az X adatbaziselemet, ha csak olvasni akarja X-et, irni nem. Nem kertilhetjiik el a zarolast
ekkor sem, mert ha nem zarolnank, akkor esetleg egy masik tranzakcio6 azalatt irna X-be 0j értéket, mialatt
T aktiv, ami nem sorba rendezhetd viselkedést okoz. Masrészrél pedig miért is ne olvashatna tobb
tranzakcid egyidejiileg X értékét mindaddig, amig egyiknek sincs engedélyezve, hogy irja.

Osztott és kizardlagos zarak

Mivel ugyanannak az adatbaziselemnek két olvasdsi miivelete nem eredményez konfliktust, igy ahhoz,
hogy az olvasdsi miveleteket egy bizonyos sorrendbe soroljuk, nincs sziikség zarolasra vagy mas
konkurenciavezérlési miikodésre. Mint mar emlitettiik, tovabbra is sziikséges azt az elemet is zarolni,
amelyet olvasunk, ugyanis ennek az elemnek az irasat nem szabad kozben megengedniink. Az irdshoz
sziikséges zar viszont ,,erésebb”, mint az olvasashoz sziikséges zar, mivel ennek mind az olvasasokat, mind
az irasokat meg kell akadalyoznia.

Ez indokolja, hogy bevezessiik a legelterjedtebb zarolasi sémat, amely két kiillonb6zo zarat alkalmaz: az
osztott zarakat (Shared locks) vagy olvasasi zarakat, és a kizdarolagos zdrakat (exclusive locks) vagy irdsi
zarakat. Intuici6 alapjan tetszlleges X adatbdziselemet vagy egyszer lehet zarolni kizardlagosan, vagy
akarhanyszor lehet zarolni osztottan, ha még nincs kizarolagosan zarolva. Amikor irni akarjuk X-et, akkor
X-en kizardlagos zérral kell rendelkezniink, de ha csak olvasni akarjuk, akkor X-en akdr osztott, akar
kizardlagos zar megfelel. Feltételezziik, hogy ha olvasni akarjuk X-et, de irni nem, akkor elényben
részesitjiik az osztott zarolast.

Az s1; (X) jelolést hasznaljuk arra, hogy a T; tranzakcid osztott zarat kér az X adatbaziselemre, az x1; (X)
jelolést pedig arra, hogy a T kizarolagos zarat kér X-re. Tovabbra is u; (X) -szel jeloljiik, hogy T feloldja
X zarasat, vagyis felszabaditja X-et minden zar alol.

Az elézdekben targyalt harom kovetelmény (a tranzakciok konzisztencidja, a tranzakciok 2PL feltétele és
az itemezések jogszerlisége) mindegyikének van megfeleldje az osztott/kizardlagos zarolasi rendszerben:

1. Tranzakciok konzisztencidja: Nem irhatunk kizarolagos zar fenntartdsa nélkiil, és nem olvashatunk
valamilyen zar fenntartasa nélkiil. Pontosabban fogalmazva: barmely T: tranzakcidban

a) az ri (X) olvasasi miiveletet meg kell, hogy elézze egy s1; (X) vagy egy x1: (X) ugy, hogy
kdzben nincs u; (X) ;
b) aw; (X) irasi miveletet meg kell, hogy el6zze egy x1; (X) gy, hogy kdzben nincs u; (X) .

Minden zérolast kdvetnie kell egy ugyanannak az elemnek a zarolasat feloldo miiveletnek.

2. Tranzakciok kétfazisu zaroldasa:. A zarolasoknak meg kell el6znilik a zarak feloldasat. Pontosabban
fogalmazva: barmely T; kétfazisu zarolasu tranzakcioban egyetlen s1: (X) vagy x1i (X) miveletet
sem elézhet meg egyetlen u; (Y) miivelet sem semmilyen Y-ra.

3. Az iitemezések jogszeriisége: Egy elemet vagy egyetlen tranzakci6 zarol kizardlagosan, vagy tobb is
zarolhatja osztottan, de a kettd egyszerre nem lehet. Pontosabban fogalmazva:

a) Ha x1i(X) szerepel egy iitemezésben, akkor ezutdn nem kovetkezhet x14 (X) vagy slj (X)
valamely i-t6l kiilonbz6 j-re anélkiil, hogy kézben ne szerepelne u; (X) .

b) Ha s1; (X) szerepel egy litemezésben, akkor ezutin nem kovetkezhet x14 (X) valamely i-t6l
kiilonboz6 j-re anélkiil, hogy kdzben ne szerepelne u; (X) .

46

Az engedélyezett, hogy egy tranzakcid ugyanazon elemre kérjen és tartson mind osztott, mind kizardlagos
zarat, feltéve, hogy ezzel nem keriil konfliktusba mas tranzakcidk zéarolasaival. Ha a tranzakcidk eldre
tudnak, milyen zéarakra lesz szilikségiik, akkor biztosan csak a kizardlagos zarolast kérnék, de ha nem
lathatok eldre a zarolasi igények, lehetséges, hogy egy tranzakcid osztott és kizarolagos zarakat is kér
kiilonb6z6 idépontokban.

Példa. Tekintslik az alabbi, osztott és kizarolagos zarakat haszndld két tranzakcidonak egy lehetséges
litemezését:

T1is1l1(A); r1(A); x11(B); r1(B); w1 (B);u1(A),; ur(B),
T2isl2(A); r2(A); slz2(B); r2(B);uz(A);uz2(B),

T, is és T2 is olvassa A-t és B-t, de csak T irja B-t, és egyik sem irja A-t.

T1 T2
sli(A); ri(A);

x11 (B) ; elutasitva

x11(B); r1(B); wi(B);
ur(A); ui(B);

Az dbran T1 és T, miiveleteinek olyan litemezése lathatd, amelyet T1 kezd A osztott zarolasaval. Ezutan T»
kovetkezik, A és B mindegyikét osztottan zarolja. Most T1-nek lenne sziiksége B kizardlagos zaroldsara,
ugyanis olvassa is és irja is B-t. Viszont nem kaphatja meg a kizarélagos zarat, hiszen T>-nek mar osztott
zarja van B-n. Igy az iitemez§ varakozni kényszeriti Ti-et. Végiil T, feloldja B zarjat, és ekkor T:
befejezddhet.

A vazolt litemezés konfliktus-sorbarendezhet6. A konfliktusekvivalens soros sorrend a (T2, T1), hidba
kezd6dott T1 elébb. Nem bizonyitjuk, de konzisztens 2PL tranzakciok jogszerli litemezése konfliktus-
sorbarendezhetd; ugyanazok a meggondolasok alkalmazhatok az osztott és kizdrdlagos zarakra is, mint
korabban. Az 4bran T, el6bb old fel zarat, mint T1, igy azt varjuk, hogy T> megelzi Ti-et a SOros
sorrendben. Megvizsgalva az olvasasi €s irdsi miiveleteket, észrevehetd, hogy r1 (A) -t T, 6sszes miiveletén
at ugyan hatra tudjuk cserélgetni, de w1 (B) -t nem tudjuk r, (B) elé vinni, ami pedig sziikséges lenne
ahhoz, hogy T: megelézze T»-t egy konfliktusekvivalens soros iitemezésben.

Kompatibilitasi matrixok

Ha t6bb zarmoédot hasznalunk, akkor az {itemezOnek valamilyen elvre van sziiksége ahhoz, hogy mikor
engedélyezzen egy zarolasi kérést, ha mar adva vannak mas zarak is azon az adatbaziselemen. Bar az
osztott/kizarolagos rendszerek egyszerliek, a gyakorlatban léteznek a zarolasi modoknak Osszetettebb
rendszerei is. A zarolast engedélyezd elvek kovetkezd fogalmait eldbb az egyszerli osztott/kizardlagos
rendszerek kdrnyezetében vezetjiik be.

A kompatibilitasi matrix minden egyes zarmodhoz rendelkezik egy-egy sorral és egy-egy oszloppal. A
sorok egy masik tranzakcio altal az X elemre elhelyezett zaraknak, az oszlopok pedig az X-re kért
zarmodoknak felelnek meg. A kompatibilitdsi matrix hasznalatanak szabalya a zarolast engedélyezd
dontésekre az alabbi:

e Egy X adatbaziselemre C modu zéarat akkor és csak akkor engedélyezhetiink, ha a tdblazat minden olyan
R sorara, amelyre mas tranzakcid mar zarolta X-et R modban, a C oszlopban ,,igen” szerepel.

Példa. Az abran osztott (S) és kizarolagos (X) zarak kompatibilitasi matrixa lathato:

47

| s X
S | igen nem
X | nem nem

Az S oszlop azt mondja meg, hogy akkor engedélyezhetiink osztott zarat egy elemre, ha arra az elemre
jelenleg is legfeljebb csak osztott zarak vannak. Az X oszlop azt mondja meg, hogy csak akkor
engedélyezhetiink kizardlagos zarat, ha jelenleg nincs mas zar az elemen. Lathato, hogy ezek a szabalyok

crer

Zarak felminositése

Az a T tranzakcid, amelyik osztott zarat helyez X-re, ,,baratsagos” a tobbi tranzakciohoz, ugyanis a tobbinek
Is lehetdsége van X-et T-vel egy idében olvasni. A kérdés az, hogy még baratsagosabb-e az a T tranzakcio,
amelyik beolvasni és 1 értékkel irni akarja X-et gy, hogy eldbb csak osztott zarat tesz X-re, majd késébb,
amikor T mar készen all az 0j érték beirasara, akkor felmindsiti a zarat kizarolagossa, vagyis késébb kéri X
kizardlagos zarolasat azon til, hogy mar osztott zérat tart fenn X-en. Nincs akadalya, hogy a tranzakcio
ugyanarra az adatbaziselemre jabb, kiillonb6z6 zdrmodu kéréseket adjon ki. Tovabbra is fenntartjuk azt a
megszokott jelolést, hogy u: (X) a T: tranzakcio altal elhelyezett dsszes zarat feloldja X-en, bar be lehetne
vezetni zarolasi modoktdl fiiggd feloldasi miiveleteket, ha lenne hasznuk.

Pontosan fogalmazva: Azt mondjuk, hogy a T tranzakcié felmindsiti (upgrade) az 1, zarjat az Li-nél
domindnsabb L, zarra az X adatbaziselemen, ha L, zarat kér X-re, amelyen mar birtokol egy L, zarat. L,
dominansabb 11-nél, ha a kompatibilitdsi matrixban L, sordban/oszlopdban minden olyan poziciéban
,hem” all, amelyben L, sordban/oszlopaban ,,nem” all. Példaul az SX zaroléasi séma esetén X dominansabb
S-nél. (X egyébként minden zarmodnal dominansabb barmelyik zarolasi séma esetén, hiszen X soraban és
oszlopaban is minden pozicidéban ,,nem” szerepel.)

Példa. A kovetkez6 példaban a T tranzakcid T,-vel konkurensen tudja végrehajtani a szamitésait, amely
nem lenne lehetséges, ha T:1 kezdetben kizér6lagosan zarolta volna B-t. A két tranzakci6 a kovetkezo:

Ti:s1l1(A); r1(A);sli1(B);r1(B);x11(B);w1(B);u1(A);u(B);
T2:sl2(A);r2(A),s12(B);r2(B);uz2(A); u2(B);

Itt T1 beolvassa A-t és B-t, és végrehajtja a (valosziniileg hosszadalmas) szamitasokat veliik, és a legvégén
az eredményt beirja B 0j értékének. T1 elébb osztottan zarolja B-t, majd késébb, miutan az A-val és B-vel
kapcsolatos szdmitasait befejezte, kér egy kizarolagos zarat B-re. A T» tranzakcid csak olvassa A-t és B-t,

nem ir rajuk.

T T>
sli(A); ri(A);
sla(A); r2(A);
sl2(B); r2(B);
sli(B); ri(B);
x11 (B) ; elutasitva
uz (A); u2(B);
x11(B); wi(B);
ui (A); ui(B);

Az abra a miiveletek egy lehetséges litemezését mutatja. T2 egy osztott zarat kap B-re T eldtt, de a negyedik
sorban T is képes osztottan zarolni B-t. gy T rendelkezésére all A is és B is, és az értékeik felhasznalasaval
végre tudja hajtani a szdmitasokat. Amikor T: megprobalja B-n a zarat felmindsiteni kizarolagossa, az
litemez0 a kérést elutasitja, és arra kényszeriti T1-et, hogy varjon addig, amig T, felszabaditja a B-n 1évo
zarat. Ezutan T1 megkapja a kizarolagos zarat, kiirja B-t, és befejezddik a tranzakcio.

48

Ha T1 a kezdéskor kért volna kizarolagos zarat B-re, miel6tt beolvasta volna, akkor ezt a kérést az iitemezd
elutasitotta volna, ugyanis T2-nek mar volt egy osztott zarja B-n. T1 nem tudta volna elvégezni a szamitasait
B beolvasasa nélkiil, igy T1-nek sokkal tobb dolga lett volna, miutan T, felszabaditotta a zarakat. T1 tehat
késobb fejezddott volna be, ha csak kizardlagos zarat hasznalt volna B-n, mint amikor a felmindsitd
stratégiat alkalmazta.

Példa. Sajnos a felmindsités valogatas nélkiili alkalmazésa a holtpontok 11j forrasat jelenti. Tételezziik fel,
hogy T1 és T- is beolvassa az A adatbaziselemet, és egy 1j értéket ir vissza A-ba. Ha mindkét tranzakcio a
felmindsitéssel dolgozik, akkor el6bb osztott zarat kapnak A-ra, és azutdn mindsitik ezt at kizarélagossa,
igy az alabbi eseménysorozat kovetkezhet be, amikor T1 és T2 kozel egyidejiileg kezdddik:

Tl T2

sli(A);
slz(A);
x11 (A) ; elutasitva
x1, (A) ; elutasitva

T1 és T2 is kaphat osztott zarat A-ra. Ezutdn mindketté megprébalja ezt felmindsiteni kizardlagossa, de az
litemez0 mindkett6t varakozasra kényszeriti, hiszen a masik mar osztottan zéarolja A-t. Emiatt egyikiik
végrehajtasa sem folytatddhat; vagy mindkettonek 6rokosen kell varakoznia, vagy addig kell varakozniuk,
amig a rendszer fel nem fedezi, hogy holtpont alakult ki, abortalja valamelyik tranzakciot, és a masiknak
engedélyezi A-ra a kizardlagos zérat.

Modositasi zarak

A fenti holtpontproblémat el tudjuk keriilni egy harmadik zarolasi mod, az Ggynevezett modositasi zarak
(update lock) hasznalataval. Az ul; (X) moddositasi zar a T; tranzakcionak csak X olvaséaséara ad jogot, X
irasara nem. KésObb azonban csak a modositasi zarat lehet felmindsiteni irasira, az olvasasi zarat nem (azt
csak modositasira). Modositasi zarat akkor is engedélyezhetiink X-en, ha X osztott médon mar zarolva van,
ha azonban X-en mar van egy modositasi zar, akkor ez megakadalyozza, hogy X barmilyen mas (ijabb zarat
(akar osztott, akar modositasi, akar kizardlagos zarat) kapjon. Ennek az az oka, hogy ha nem utasitanank el
ezeket az ujabb zaroladsokat, akkor el6fordulhat, hogy a moddositdsinak soha sem lenne lehetdsége

kizardolagossa valo felmindsitésre, ugyanis mindig valamilyen mas zar lenne X-en (a modositasi zar tehat
nemcsak a holtpontproblémat oldja meg, hanem a ki¢heztetés problémajat is).

Ez a szabély nem szimmetrikus kompatibilitasi matrixot eredményez, ugyanis az U mddositasi zar gy néz
ki, mintha osztott zar lenne, amikor kérjiik, és gy néz ki, mintha kizarélagos zar lenne, amikor méar megvan.
Emiatt az U és az S zarak oszlopai megegyeznek, valamint U és X sorai is megegyeznek:

| s X U
S| igen nem igen
X | nem nem nem
U | nem nem nem

Ne feledjiik azonban, hogy van egy tovabbi feltétel az iitemezések jogszeriiségére vonatkozdan, amely nem
jelenik meg a matrixban: egy olyan tranzakcid, amelynek van osztott zarja egy X adatbaziselemen, de nincs
modositasi zarja, nem kaphat kizar6lagos zéarat X-re, noha altaldban nem tiltjuk, hogy egy tranzakcié tobb
zarat is fenntartson ugyanazon az elemen.

Példa. A moddositasi zarak hasznalata nem befolyéasolja a korabbi példat. A harmadik miivelet az lenne,
hogy T: moddositasi zarat tenne B-re, nem pedig osztott zarat. A modositasi zarat megkapna, ugyanis csak
osztott zadrak vannak B-n, €s ugyanaz a miiveletsorozat fordulna elé.

49

Modositasi zarakkal megsziintethet6 viszont a holtpontprobléma. Most mind T+, mind T elébb modositasi
zarat kér A-n, majd késobb kizarolagos zarat. T1 és T2 egy lehetséges leirasa az alabbi:

Tiiuli (A); r1(A); x11(A); wi (
Toiulz (A);, r2(A); x12(A); wa (

z22Z
S
RS

A korabbinak megfelelé eseménysorozat pedig a kovetkezo:

T1 T2
uli(A); ri(a);

ul, (A) ; elutasitva
x11(A); wi(A); ui(A);

ulz2(a); r2(a);

x12(A); w2(A); u2(A);

Itt T,-t elutasitjuk, amelyik masodikként kérte A modositasi zarolasat. Miutdn T: befejezodott, T»
folytatodhat. A zérolasi rendszer hatékonyan megakadalyozta T1 és T» konkurens végrehajtasat, ebben a
példaban viszont lényeges mennyiségli konkurens végrehajtds vagy holtpontot, vagy inkonzisztens
adatbazis-allapotot eredményez.

Novelesi zarak

Egy masik érdekes zarolasi mod, amely bizonyos helyzetekben hasznos lehet, a névelési zdr. Szamos
tranzakcionak csak az a hatasa az adatbazison, hogy noveli vagy csokkenti a tarolt értéket. Ilyen példaul,
amikor pénzt utalunk 4t az egyik bankszamldr6l a masikra, vagy amikor egy repiildjegyeket arusitd
tranzakci6 csokkenti az adott gépen a szabad iil6helyek szamat.

A novelési miiveletek érdekes tulajdonsaga, hogy tetszéleges sorrendben kiszamithatok, ugyanis ha két
tranzakci6 egy-egy konstanst ad hozza ugyanahhoz az adatbaziselemhez, akkor nem szamit, hogy melyiket
hajtjuk végre elébb. Masrészt a ndvelés nem cserélhetd fel sem az olvasassal, sem az irdssal. Ha azel6tt
vagy azutan olvassuk be A-t, hogy valaki ndvelte, kiilonb6z6 értékeket kapunk, és ha azeldtt vagy azutan
noveljik A-t, hogy mas tranzakcio 4j értéket irt be A-ba, akkor is kiilonboz6 értékei lesznek A-nak az
adatbazisban.

Vezesslink be egy 0j miiveletet, a ndvelési miiveletet (increment action), és jeloljik INC (A, c)-vel. Ez a
miivelet megnoveli az A adatbaziselem (ami ilyenkor mindig attribltum) értékét c-vel, amelyrdl
feltételezziik, hogy egyszerli szam konstans. Ha c negativ, akkor valdjaban csokkentést hajtunk végre. A
gyakorlatban az INC miiveletet a relaciosor egy attributumara alkalmazzuk, annak ellenére, hogy maga a
sor, és nem az attributum a zarolhat6 elem.

Formadlisan az INC (A, c¢) miivelet a kovetkezd 1épések atomi végrehajtasara szolgal: READ (A, t) ;
t := t+c; WRITE (A, t);. Az atomisagnak ez az alakja alsobb szintli, mint a tranzakcidknak a
zarolasok altal timogatott atomisaga.

Sziikségiink van a novelési miiveletnek megfeleld novelési zarra (increment lock), amelyet i1 (X) -szel
jeloliink. Jelentése: a T; tranzakcid novelési zarat kér az X adatbaziselemre. Az inc; (X) roviditést arra a
miiveletre hasznaljuk, amelyben a T: tranzakcido megndveli az X adatbaziselemet valamely konstanssal.
Annak, hogy pontosan mennyi ez a konstans, nincs jelentosége.

A novelési miiveletek és zarak 1étezése sziikségessé teszi, hogy tobb helyen moddositsuk a konzisztens
tranzakciok, a konfliktusok ¢€s a jogszert litemezések definicioit. A véltoztatasok az aldbbiak:

a) Egy konzisztens tranzakci6 csak akkor végezheti el X-en a ndvelési miiveletet, ha egyidejlileg novelési
(vagy kizarolagos) zarat tart fenn rajta. A ndvelési zar viszont nem teszi lehetdvé sem az olvasasi, sem
az irasi miiveleteket.

50

b) Az inc; (X) mivelet konfliktusban all ry (X) -szel és w (X) -szel is j # i-re, de nem all konfliktusban
incs (X) -szel.

c) Egy jogszerl iitemezésben barmennyi tranzakcié barmikor fenntarthat X-en ndvelési zarat. Ha viszont
egy tranzakcid novelési zarat tart fenn X-en, akkor egyidejlileg semelyik mas tranzakcié sem tarthat
fenn sem osztott, sem kizdrolagos zarat X-en. Ezeket a kovetelményeket a kompatibilitdsi matrix
segitségével fejezziik ki:

| s X [
S | igen nem nem
X | nem nem nem
I | nem nem igen

Példa. Tekintsiink két tranzakciot, mindkettd beolvassa az A adatbaziselemet, és azutan noveli B-t. Lehet,
hogy A-t adjak hozza B-hez, vagy egy olyan konstanssal novelik B-t, amelynek kiszamitasa valamilyen mas
modon fiigg A-tol.

Ti:sli(A);ri1(A);11:1(B);inci(B);ui(A);u1(B);

To:slo(A);r2(A);112(B); inc2(B);u2(A);ux(B);

Lathato, hogy a tranzakciok konzisztensek, hiszen csak akkor végeznek ndvelést, amikor novelési zarral

rendelkeznek, és csak akkor olvasnak, amikor osztott zarat tartanak fenn. T1 és T2 egy lehetséges iitemezése
a kovetkezo6:

T1 TZ
sli(A); ri(A);

slz(A); r2(A);
i12(B); incz2(B);
i1:(B); inci(B);
uz (A); uz2(B);
ui (A); ui(B);

T1 olvassa el@szor A-t, azutan T beolvassa 2A-t, és ndveli B-t. Ezutan viszont T1-nek is megengedjiik, hogy
novelési zarat kapjon B-re, és folytatddjon. Az iitemezdnek egyik kérést sem kell késleltetnie. Példaul
tételezziik fel, hogy T1 noveli B-t A-val, T» pedig ndveli B-t 2A-val. Barmelyik sorrendben végrehajthatjuk
a tranzakciokat, ugyanis A értéke nem valtozik, és a novelést is barmely sorrendben elvégezhetjiik.
Masképpen kifejezve: nézziik meg a nem zarolasi miiveletek sorozatat az iitemezésben:

S:r1(A); r2(A); incz (B); inci1 (B);

Az utolsé miiveletet, inc: (B) -t, elérébb tudjuk hozni a masodik helyre, ugyanis ez nincs konfliktusban
ugyanannak az elemnek egy masik ndvelésével, és biztosan nincs konfliktusban egy masik elem
olvasasaval. A cseréknek ez a sorozata mutatja, hogy S konfliktusekvivalens a kovetkezd soros
litemezéssel:

ri1(A);inci1(B); r2(A); incz (B);

Hasonléan tudjuk az elsé miiveletet, r1 (A) -t, cserékkel a harmadik helyre héatrébb vinni, amely azt a soros
litemezést adja, amelyben T, megeldzi T1-et.

A zarolasi iitemezo6 felépitése
Eddig mar szdmos zarolasi sémat lattunk, most megnézziik, hogyan mikddik egy olyan iitemezd, amely

ezek koziil a sémak koziil hasznalja valamelyiket. Itt csak a kovetkezd elveken alapuld egyszeri iitemezd
felépitéset tekintjiik:

o1

1. Maguk a tranzakciok nem kérnek zarakat, vagy figyelmen kiviil hagyjuk, hogy ezt teszik. Az iitemezd
feladata, hogy zarolasi muveleteket szirjon be az adatokhoz hozzaférd olvasasi, irasi, illetve egyéb
miiveletek soraba.

2. Nem a tranzakciok, hanem az iitemez0 oldja fel a zarakat, mégpedig akkor, amikor a tranzakcidkezeld
a tranzakcio véglegesitésére vagy abortalasara késziil.

Zarolasi mitveleteket beszuro iitemezo

Tranzakcidok

READ (A) ; WRITE (B) ;

COMMIT ;

Utemezé 1. része

- LOCK (A); READC(A) ;

Utemezd Il. része

READ (A) ; WRITE (B) ;

Az 4bra egy olyan két részbdl all6 iitemez6t mutat be, amely READ, WRITE, COMMIT és ABORT kéréseket
fogad a tranzakcioktol. Az iitemezd karbantartja a zartablat, amelyet — bar méasodlagosan tarolt adatként
abrazoltunk — lehet, hogy részben vagy egészben a kdzponti memoridban tarolunk. A zartabla altal hasznalt
kozponti memoria altaldban nem a lekérdezés-végrehajtas €és a naplozas altal hasznalt pufferteriilet része.
A zértabla az adatbazis-kezeld rendszernek csak egy komponense, és az operacios rendszer foglal szdmara
helyet, ugyantigy, mint az adatbazis-kezelo rendszer tobbi kodjanak és belso adatainak.

A tranzakciok altal kért miiveletek az iitemez6n jutnak keresztiil, €s az adatbazison keriilnek végrehajtasra
altalaban azonnal. Bizonyos koriilmények esetén viszont késleltetett a tranzakcio, zarolasra var, €s a kérései
még nem jutottak el az adatbdzishoz. Az litemezd két része a kovetkezd miiveleteket hajtja végre:

1. Az 1 rész fogadja a tranzakciok altal generalt kérések sorat, és minden adatbazis-hozzaférési miivelet
elé beszurja a megfeleld zarolasi miiveletet. Az iitemezd 1. részének kell tehat kivalasztania a megfeleld
zarolasi modot az iitemez0 altal hasznalt zarmodok halmazabol. Az adatbazis-hozzaférési €s zarolasi
miveleteket ezutan atkiildi a II. részhez (a COMMIT és ABORT miiveleteket nem).

2. A 1L rész fogadja az 1. részen keresztiil érkez6 zarolasi és adatbazis-hozzaférési miiveletek sorozatat.
Eldonti, hogy a T tranzakcid késleltetett-e (mivel zaroldsra var). Ha igen, akkor magat a miiveletet
késlelteti, azaz hozzéadja azoknak a miiveleteknek a listdjahoz, amelyeket a T tranzakcionak még végre
kell hajtania. Ha T nem késleltetett, vagyis az Osszes eldzdleg kért zar mar engedélyezve van, akkor
megnézi, hogy milyen miiveletet kell végrehajtania.

a) Ha a miivelet adatbazis-hozzaférés, akkor tovabbitja az adatbazishoz, és végrehajtja.
b) Ha zarolasi mivelet érkezik, akkor megvizsgalja a zartablat, hogy a zar engedélyezhet6-e. Ha igen,
akkor ugy modositja a zartablat, hogy az az éppen engedélyezett zarat is tartalmazza. Ha nem, akkor

52

egy olyan bejegyzést készit a zartdblaban, amely jelzi a zarolasi kérést. Az ilitemez0 I1. része ezutan
késlelteti a T tranzakcid tovabbi miiveleteit mindaddig, amig nem tudja engedélyezni a zarat.

3. Amikor a T tranzakciot véglegesitjik vagy abortaljuk, akkor a tranzakciokezeld COMMIT, illetve
ABORT miuveletek kiildésével értesiti az 1. részt, hogy oldja fel az dsszes T altal fenntartott zarat. Ha
barmelyik tranzakcid varakozik ezen zarfeloldasok valamelyikére, akkor az 1. rész értesiti a II. részt.

4. Amikor a II. rész értesiil, hogy egy X adatbaziselemen felszabadult egy zar, akkor eldonti, hogy melyik
az a tranzakcio, vagy melyek azok a tranzakcidk, amelyek megkapjak a zarat X-re. A tranzakciok,
amelyek megkaptdk a zarat, a késleltetett miiveleteik koziil annyit végrehajtanak, amennyit csak végre
tudnak hajtani mindaddig, amig vagy befejezédnek, vagy egy masik olyan zarolési kéréshez érkeznek
el, amely nem engedélyezheto.

Példa. Ha csak egymodu zarak vannak, akkor az {itemez6 1. részének a feladata egyszer(i. Ha barmilyen
miveletet lat az X adatbaziselemen, és még nem szart be zarolasi kérést X-re az adott tranzakcidohoz, akkor
beszurja a kérést. Amikor véglegesitjiik vagy abortaljuk a tranzakciot, az I. rész torolheti ezt a tranzakciot,
miutan feloldotta a zarakat, igy az I. részhez igényelt memoria nem né korlatlanul.

Amikor tobbmddu zarak vannak, az litemezOnek sziiksége lehet arra, hogy azonnal értesiiljon, milyen
késébbi miiveletek fognak eldfordulni ugyanazon az adatbaziselemen. Nézziik meg ujbol az
osztott/kizarolagos/modositasi zarak esetét, a felmindsitésnél latott példaban szerepld tranzakciokat
hasznalva. Zarolasok nélkiil a tranzakciok a kovetkezok:

T1:r1(A), r1(B);wi(B),;
T2ir2(A); r2(B),

Az iitemez0 1. részéhez kuldott lizenetnek nemcsak az olvasasi és irasi kéréseket kell tartalmaznia, hanem
az ugyanazon az elemen bekovetkezd késébbi miiveletekre vonatkozo jelzést is. Amikor példaul az r1 (B)
érkezik be, az litemezOnek tudnia kell, hogy lesz-e késébb w1 (B) miivelet (vagy lehet-e ilyen miivelet, ha
a T: tranzakcié kodjaban eldgazés szerepel). Tobb modon valhat elérhetdvé az informéci6. Példaul ha a
tranzakcio egy lekérdezés, akkor tudjuk, hogy semmit sem fog irni. Ha a tranzakci6 egy SQL-adatbazist
modositd utasitas, akkor a lekérdezd processzor azonnal megadhatja azokat az adatbaziselemeket,
amelyeket olvashatunk és irhatunk is egyben. Ha a tranzakcio6 egy beagyazott SQL-program, akkor a fordito
hozza tud férni az 6sszes SQL-utasitashoz (és csakis ezekkel lehet irni az adatbazisba), és meghatarozhatja,
mely adatbaziselemek esélyesek az irasra.

A példankban tételezziik fel, hogy a felmindsités példajaban bemutatott sorrendben kovetkeznek be az
események. Ekkor T1 el@szor r1 (A) -t adja ki. Mivel nincs késdbb kizarolagos zarra vald felmindsités erre
a zarra, az litemez0 beszlrja s11 (A) -t az ri1 (A) elé. Ezutan T, kérései (r2 (A) és r2 (B)) érkeznek az
litemez6hdz. Megint nincs késdbb felmindsités, igy az litemezd 1. része a kdvetkezd miiveletsorozatot adja
Ki: sl (A); r2(RA);s12(B);r2(B);.

Ezutén az r: (B) miivelet érkezik be az litemez6hoz azzal a figyelmeztetéssel, hogy ezt a zérat fel lehet
mindsiteni. Az litemezd 1. része ekkor kibocsatja ul: (B); ri (B);-t a II. résznek, amely megnézi a
zartablat, és azt talalja, hogy T1 engedélyezheti a modositasi zarat B-re, ugyanis csak osztott zarak vannak
B-n.

Amikor a w1 (B) mivelet beérkezik az litemezO6hoz, az 1. rész kibocsatja x11 (B); w1 (B) ;-t. A II. rész
viszont nem teljesitheti az x 11 (B) kérést, ugyanis T>-nek mar van osztott zarja B-n. T:-nek ezt a miiveletét
és az ezutani miveleteit késlelteti, egyben tarolja a késObbi végrehajtdshoz. Végiil T» végrehajtja a
véglegesitést, és az 1. rész feloldja a zarakat A-n és B-n. Ugyanekkor felfedezi, hogy T: varakozik B
zérolasara. Ertesiti a II. részt, amely az x1; (B) zarolast most mér végrehajthatonak talalja. Beviszi ezt a
zarat a zartablaba, és folytatja T1 tarolt miiveleteinek a végrehajtasat mindaddig, ameddig tudja. Esetiinkben
T befejezodik.

53

A zartabla

A datbaziselem Zarolasiinformacidok

Csoportos mod: U

Varakozik-e:igen

Lista:
N /

Tranz. M od Var? Tkov. Kov.

T, S nem / \

T T
<

T, X igen /

Absztrakt szinten a zartdbla egy olyan relacio, amely Osszekapcsolja az adatbaziselemeket a rajuk
vonatkoz6 zaroldsi informéciokkal, ahogyan ezt az dbra mutatja. Azok az elemek, amelyek nincsenek
zéarolva, nem fordulnak el6 a tablaban, igy a méret csak a zarolt elemek szaméval aranyos, nem pedig a
teljes adatbéazis méretével.

Az abran egy példat lathatunk arra, hogy milyen informaciok talalhatok egy zartablabejegyzésnél. Ez a
példa feltételezi, hogy az litemezd az osztott/kizardlagos/modositasi (SXU) zarsémat alkalmazza. Egy
tipikus A adatbaziselemhez a bejegyzés a kovetkez6 komponensekbdl all:

1. A csoportos mod (group mode) a legszigorubb feltételek Osszefoglaldsa, amivel egy tranzakcid
szembesiil, amikor egy 0j zarolast kér A-n, azaz a csoportos mod az A-n jelenleg fenntartott zarmodok
koziil a legdominansabb. Ahelyett, hogy 0sszehasonlitandnk a zarolasi kérést a tobbi tranzakcionak
ugyanazon az elemen fenntartott minden zarolasaval, egyszeriisithetjiik az engedélyezési/elutasitasi
dontést azzal, hogy a kérést csak a csoportos moddal hasonlitjuk 6ssze. (A zéarolaskezeldnek viszont
foglalkoznia kell azzal a lehetdséggel, hogy a kérést kiad6 tranzakcionak mar van egy masik modban
zarja ugyanazon az elemen. Példaul az SXU zarolasi rendszerre vonatkoztatva, a zarolaskezeld
elfogadhat egy X zarra vonatkozo6 kérést, ha az igénylé tranzakcidé pont az, amely U zarat tart fenn
ugyanazon az elemen. Azoknal a rendszereknél, amelyek nem tdmogatjak, hogy egy tranzakcio egy
elemen tobb zarat is tartson, a csoportos mod mindig megadja mindazt, amit a zarolaskezeldnek tudnia
kell.) Az SXU zarolasi sémakhoz egyszerii a szabaly:

Egy csoportos modban:

a) S aztjelenti, hogy csak osztott zarak vannak;
b) U azt jelenti, hogy egy modositasi zar van, és lehet még egy vagy tobb osztott zar is;
c) X azt jelenti, hogy csak egy kizar6lagos zar van, €s semmilyen mas zar nincs.

A tobbi zéarolasi sémahoz is mindig taldlunk a csoportos mod 6sszegzésének megfeleld rendszert.

2. A vdrakozasi bit (waiting bit) azt adja meg, hogy van-e legalabb egy tranzakcio, amely A zarolasara
varakozik.

54

3. Az 0Osszes olyan tranzakciot leird lista, amelyek vagy jelenleg zaroljadk A-t, vagy A zaroldsara
varakoznak. Hasznos informéciok, amelyeket minden listabejegyzés tartalmazhat:

a) a zarolast fenntart6 vagy a zarolasra varé tranzakcio neve;
b) ennek a zarnak a médja;
C) atranzakci6 fenntartja-e a zarat, vagy varakozik-¢ a zarra.

Az abran két lancolas szerepel minden bejegyzésnél. Az egyik magukhoz az adatbéziselemre vonatkozo
bejegyzésekhez tartozik, a masik (Tkov.) pedig egy bizonyos tranzakcio Osszes bejegyzését lancolja
Ossze. Az utobbi akkor hasznalhat6, amikor a tranzakciot véglegesitjilk vagy abortaljuk, igy kénnyen
megtalalhatjuk az 0sszes zarat, amelyet fel kell oldanunk.

A zarolasi kérések kezelése

Tételezziik fel, hogy a T tranzakcio zarat kér A-ra. Ha nincs A-ra bejegyzés a zartablaban, akkor biztos,
hogy zérak sincsenek A-n, igy létrehozhatjuk a bejegyzést, és engedélyezhetjiik a kérést. Ha a zartablaban
1étezik bejegyzés A-ra, akkor ezt felhasznaljuk a zarolasi kéréssel kapcsolatos dontésiinkben. Megkeressiik
a csoportos modot, amely az abran U, vagyis mddositasi. Amikor mar van modositasi zar egy elemen, akkor
semmilyen mas zarat nem engedélyezhetiink (kivéve azt az esetet, amikor maga T tartja fenn az U zarat, és
a tobbi zar kompatibilis T kérésével). Tehat T-nek ezt a kérését elutasitjuk, és egy bejegyzést helyeziink el
a listdban, amely szerint T zarat kért, és a varakozasi bitet igazra allitjuk.

Ha a csoportos mod X, vagyis kizarolagos lenne, akkor ugyanez torténne. Ha azonban a csoportos mod S,
vagyis osztott lenne, akkor lehetne adni egy masik osztott vagy mddositasi zarat. Ebben az esetben a
listaban a T-hez tartozo6 varakozasi bitet hamisra, a csoportos méodot pedig U-ra kellene allitani, ha az j zar
modositasi zar, egyébként pedig a csoportos méd S maradna. Akér adtunk engedélyt a zarolasra, akar nem,
az Uj listabejegyzést megfelelden belancoljuk a két mutaton keresztiil. Lathato, hogy akar engedélyezziik a
zérat, akdr nem, a zartdblaban a bejegyzés megadja az {litemezOnek azt, amit tudnia kell, anélkiil hogy
megvizsgalna a zarolasok listajat.

A zarfeloldasok kezelése

Most tételezziik fel, hogy a T tranzakcio feloldja az A-n 1évo zéarakat. Ekkor T bejegyzését A-ra a listaban
toroljiik. Ha a T 4ltal fenntartott zar nem egyezik meg a csoportos méoddal (példaul T egy S zarat tart fenn,
mig a csoportos mod U), akkor nincs okunk, hogy megvaltoztassuk a csoportos mdédot. Ha viszont a T altal
fenntartott zar van a csoportos modban, akkor meg kell vizsgalnunk a teljes listat, hogy megtalaljuk az 0j
csoportos modot. Az abran lathatd példaban csak egyetlen U zar lehet egy elemen, igy ha azt a zarat
feloldjuk, az 0j csoportos mod csak S lehetne (ha maradt még osztott zar), vagy semmi (ha nincs més zar
jelenleg fenntartva). (Valojaban sohasem lesz ,,semmi” a csoportos mdd, ugyanis ha nincs sem zar, sem
zarolasi kérés egy elemen, akkor nincs bejegyzés sem a zartablaban erre az elemre. Csak zarolasi kérés
meglévo zar nélkil pedig szintén nem fordulhat el6.) Ha a csoportos mod X, akkor tudjuk, hogy nincsenek
mas zaroldsok, ha pedig a csoportos mod S, akkor el kell donteniink, hogy van-e tovabbi osztott zar.

Ha a varakozasi bit igaz, akkor engedélyezniink kell egy vagy tobb zarat a kért zarak listajarol. Tobb
kiilonboz6 megkozelités lehetséges, mindegyiknek megvan a sajat elénye:

1. Elsé beérkezett elsd kiszolgaldsa (first-come-first-served): Azt a zarolasi kérést engedélyezziik, amelyik
a legrégebb ota varakozik. Ez a stratégia azt biztositja, hogy ne legyen ki¢heztetés, vagyis a tranzakcio
ne varjon 6rokké egy zarra.

2. Elsobbségadas az osztott zaraknak (priority to shared locks): El6szor az 0sszes varakozd osztott zarat
engedélyezziik. Ezutdn egy modositasi zarolast engedélyeziink, ha varakozik ilyen. A kizardlagos

55

zarolast csak akkor engedélyezziik, ha semmilyen maés igény nem varakozik. Ez a stratégia csak akkor
engedi a ki¢heztetést, ha a tranzakcidé U vagy X zérolasra var.

3. Elsébbségadas a felmindsitésnek (priority to upgrading): Ha van olyan U zarral rendelkez6 tranzakcio,
amely X zarra valo felminésitésre var, akkor ezt engedélyezziik el6bb. Maskiilonben a fent emlitett
stratégidk valamelyikét kovetjiik.

Adatbaziselemekbol allo hierarchiak kezelése

Térjlink vissza a kiilonféle zarolasi sémak feltarasahoz. Kiilondsen két olyan problémara 6sszpontositunk,
amelyek akkor meriilnek fel, amikor fastruktura tartozik az adatainkhoz:

1. Az elsé fajta fastruktara, amelyet figyelembe vesziink, a zéarolhaté elemek (zarolasi egységek)
hierarchidja. Megvizsgaljuk, hogyan engedélyeziink zaroldst mind a nagy elemekre, mint példaul a
relaciokra, mind a kisebb elemekre, mint példaul a relacié néhany sorat tartalmazéd blokkokra vagy
egyedi sorokra.

2. A masik lényeges hierarchiafajtdt képezik a konkurenciavezérlési rendszerekben azok az adatok,
amelyek Onmagukban faszervezésiiek. Ilyenek példaul a B-fa-indexek. A B-fak csomopontjait
adatbaziselemeknek tekinthetjiik, igy viszont az eddig tanult zaroldsi sémakat szegényesen
hasznalhatjuk, emiatt egy uj megkozelitésre van sziikségiink.

Tobbszoros szemcesézettségii zarak

A kiilonb6z06 rendszerek kiilonb6z6 méretli adatbaziselemeket zarolnak, mint példaul relacidkat, sorokat,
lapokat vagy blokkokat. Bizonyos alkalmazasoknal a kis adatbaziselemek elonydsek, mig mésoknal a nagy
elemek nyujtjak a legtobbet.

Példa. Tekintsiink egy banki adatbazist. Ha a relaciokat kezeljiik adatbaziselemekként, akkor igy csak egy
zarat tudunk kiadni arra a teljes relaciora, amely a szamlak egyenlegét adja meg, ezért a rendszer nagyon
kis konkurenciat engedélyezne. Mivel a legtobb tranzakcid a szamlak egyenlegét valtoztatja, a legtobb
tranzakcionak kizarélagosan kellene zarolnia a szamlaegyenlegeket tartalmazé relaciot. Igy csak egyetlen
befizetést vagy kivételt tudnank egyidejlileg elvégezni, nem szdmitana, hogy hany olyan processzor van,
amely alkalmas lenne ezeknek a tranzakcioknak az elvégzésére. Jobb megkozelités, hogy egyedi lapokat
vagy adatblokkokat zarolunk. fgy két olyan szamla, amelyekhez tartozo sorok kiilon blokkokban vannak,
egyidejiileg modosithat6. Ez biztositja szinte a teljes konkurenciat, amely elérhetd a rendszerben. A masik
véglet az lenne, ha minden egyes sorra biztositandnk zéarolast, igy barmilyen szamlahalmazt egyszerre
tudnank modositani, de a zdraknak ennyire finom szemcséssége valdszinlileg nem érné meg a sok
faradsagot.

Masik példaként tekintsiink egy dokumentumokbdl allé adatbazist. Ezeket a dokumentumokat idénként
szerkeszteni szoktak, €s a legtobb tranzakcio teljes dokumentumokhoz fér hozza. Az adatbaziselem ésszerti
megvalasztasa ekkor a teljes dokumentum. Mivel a legtobb tranzakcio csak olvasasi tranzakcio (vagyis nem
végez irdsi miiveletet), a zarolas csak azért sziikséges, hogy elkeriiljiik a dokumentumok szerkesztés
kozbeni olvasasat. Ha kisebb szemcsézettségli elemeket zarolnank, mint példaul bekezdéseket, mondatokat
vagy szavakat, akkor ennek semmilyen eldnyét sem latnank, viszont sokkal koltségesebb lenne. Az egyetlen
tevékenység, amelyet a kisebb szemcsézettségli zarak tdmogatnanak, hogy a dokumentum egy részét
tudnank olvasni a dokumentum szerkesztése kozben is.

Bizonyos alkalmazasok mind a nagy, mind a kis szemcsézettségli zarakat tudjak alkalmazni. Példaul a fent
vazolt banki adatbazisnal vildgos, hogy blokk vagy sor szintli zarolas is szlikséges, de néhany esetben a
teljes szamlareldcio zarolésa is szlikséges lehet, példaul azért, hogy ellendrizziik a szamlékat. De ha osztott
zarat tesziink a szamlareldciéra annak érdekében, hogy kiszdmoljunk a reldcion valamilyen

56

csoportfiiggvényt, és egyidejlileg az egyéni szamlak soraihoz kizarélagos zarat adunk, ez kdnnyen nem
sorba rendezhetd viselkedéshez vezethet, ugyanis a relacioé valojaban megvaltozik, amig egy feltehetéen
befagyasztott masolatat olvassuk a csoportfiiggvényes lekérdezéshez.

Figyelmezteto zdarak

A probléma megoldasahoz, hogy hogyan kezeljik az ujfajta zarolassal kapcsolatos, kiilonféle
szemcsézettségll zarakat, bevezetjiik a figyelmezteto zarakat. Ezek a zarak akkor hasznosak, amikor zarolési
egységek beagyazott vagy hierarchikus strukturakat mutatnak, amint azt az alabbi dbran lathatjuk:

Relaciok

Itt az adatbéziselemek harom szintjét kiilonboztetjiikk meg:

1. arelaciok a legnagyobb zarolhato elemek;
2. minden relaci6 egy vagy tobb blokkbol vagy lapbol épiil fel, amelyekben a soraik vannak;
3. minden blokk egy vagy tobb sort tartalmaz.

A zarolasi egységek hierarchidjan a zarak kezelésére szolgalo szabalyok alkotjak a figyelmeztetd protokollt
(warning protocol), amely tartalmazza mind a ,,k6zonséges”, mind a ,.figyelmeztetd” zarakat. A zarolasi
sémat ugy adjuk meg, hogy a kozonséges zarak S és X (osztott és kizardlagos) lehetnek. A figyelmeztetd
zarakat a kozonséges zarak elé helyezett | (intention) el6taggal jeloljiik. Példaul IS azt jelenti, hogy
szandékunkban all osztott zarat kapni egy részelemen. A figyelmeztetd protokoll szabalyai:

1. Ahhoz, hogy elhelyezziink egy kozonséges S vagy X zarat valamely elemen, a hierarchia gyokerénél
kell kezdentink.

2. Ha mar anndl az elemnél tartunk, amelyet zarolni akarunk, akkor nem kell tovabb folytatnunk, hanem
kérjiik az S vagy X zérolast arra az elemre.

3. Ha az elem, amelyet zarolni szeretnénk, lejjebb van a hierarchidban, akkor elhelyeziink egy
figyelmeztetést ezen a csomdponton. Vagyis ha osztott zarat szeretnénk kérni egy részelemen, akkor
ebben a csomopontban egy IS zarat kériink, ha pedig kizarolagos zéarat szeretnénk kérni egy részelemen,
akkor ebben a csomodpontban egy IX zarat kériink. Amikor a jelenlegi csomopontban kért zarat
megkaptuk, akkor ennek a csomopontnak azzal az utdd csomdpontjaval folytatjuk, amelyikhez tartozo
részfa tartalmazza azt a csomopontot, amelyet zarolni kivanunk. Ezutan megfeleléen a 2. vagy 3.
1épéssel folytatjuk mindaddig, amig el nem érjiik a keresett csomopontot.

Ahhoz, hogy eldontsiik, engedélyezhetjiik-e ezek koziil a zarak koziil valamelyiket, vagy sem, a kovetkezd
kompatibilitasi matrixot hasznaljuk:

IS | igen igen igen nem
IX | igen igen nem nem
S | igen nem igen nem
X | nem nem nem nem

57

Ennek a matrixnak az értelmezéséhez el6szor nézziikk meg az IS oszlopot. Ha IS zarat kériink egy N
csomopontban, az N egy leszarmazottjat szandékozzuk olvasni. Ez a szdndék csak abban az esetben okozhat
problémat, ha egy masik tranzakci6 kordbban mar jogosultta valt arra, hogy az N altal reprezentalt teljes
zarolasi egységet feliilirja, ezért van ,,nem” az X-hez tartoz6 sorban. Ha mas tranzakci6 azt tervezi, hogy
N-nek csak egy részelemét irja (ezért az N csomoOponton egy IX zarat helyezett el), akkor lehetdségiink van
arra, hogy engedélyezziik az IS zarat N-en, és a konfliktust alsobb szinten oldhatjuk meg, ha az irasi és
olvasasi szandék valdban egy kozos elemre vonatkozik.

Most tekintsiik az 1X-hez tartozo oszlopot. Ha az N csomdpont egy részelemét szandékozzuk irni, akkor
meg kell akadalyoznunk az N altal képviselt teljes elem olvasasat vagy irdsat. Ezért van ,,nem” az S és az
X zarmddok sordban. Azonban az IS oszloppal kapcsolatban leirtaknak megfeleléen més tranzakcid, amely
egy részelemet olvas vagy ir, a potencialis konfliktusokat az adott szinten kezeli le, igy az 1X nincs
konfliktusban egy masik IX-szel vagy IS-sel N-en.

Nézziikk most az S-hez tartozd oszlopot. Az N csomodpontnak megfeleltetett elem olvasasa nincs
konfliktusban sem egy masik olvasasi zarral N-en, sem egy olvasasi zarral N egy részelemén, amelyet N-en
egy IS reprezental. Emiatt ,,igen”-t talalunk az S és az IS soraban is. Azonban egy X vagy egy IX azt jelenti,
hogy mas tranzakci6 irni fogja legalabb egy részét az N altal reprezentalt elemnek. Ezért nem tudjuk
engedélyezni N teljes olvasasat. Ezt fejezik ki a megfeleld ,,nem” bejegyzések.

Végiil az X oszlopban csak ,,nem” bejegyzések vannak. Nem tudjuk megengedni az N csomopont egyik
részének irasat sem, ha mas tranzakcionak mar joga van arra, hogy olvassa vagy irja N-et, vagy arra, hogy
megszerezze ezt a jogot N egy részelemére.

Példa. Tekintsiik a kdvetkezd relaciot:

Film(filmCim, év, hossz, studidéNév)

Tételezziik fel, hogy a teljes relaciora és az egyedi sorokra koveteliink zarolast. Legyen T1 egy olyan
tranzakci6, amely az alabbi kérdést tartalmazza:

SELECT * FROM Film WHERE filmCim = ’King Kong’;

T: azzal kezdddik, hogy IS médon zarolja a teljes relaciot. Ezutan veszi az egyedi sorokat, és S moda
zarolast ad ki azokra, amelyekben a £1 1mCim a megadottal egyezik (legyen két ilyen sor).

Tételezziik fel, hogy mialatt az elsd lekérdezést végezziik, elkezdddik a T tranzakcid, amely a sorok év
komponensét valtoztatja meg:

UPDATE Film SET év = 1939 WHERE filmCim = ’'Elfajta a szél’;

Ekkor T»>-nek sziiksége van a relacio IX modu zarolasara, ugyanis azt tervezi, hogy 01 értéket ir be az egyik
sorba. Ez kompatibilis T1-nek a relaciora vonatkozo IS zarolasaval, igy a zarat engedélyezziik. Amikor T»
elérkezik az ,,Elfujta a szél” cimi filmhez tartozé sorhoz, ezen a soron nem talél zarat, igy megkapja az X
modu zérat, és modositja a sort. Ha T2 a ,,King Kong” cimi filmek valamelyikéhez probalt volna uj értéket
beirni, akkor varnia kellett volna, amig T: felszabaditja az S zarakat, ugyanis az S és az X nem
kompatibilisek. Az abran lathatjuk a zarak kollekcigjat:

T,—IS Film
T2—V ‘ \
King Kong King Kong Elfijta a szél
T:-S T:-S T,—X

58

Csoportos mod a szandékzarolasokhoz

A fenti kompatibilitasi matrix olyan helyzetet mutat be, amelyet eddig még nem lattunk a zarmodok erejét
illetéen. A korabbi zaroldsi sémak tObbségében valahanyszor lehetdségiink volt arra, hogy egy
adatbaziselemet egyszerre kétféle modban is zaroljunk, ezek koziil az egyik dominansabb volt a masiknal.
Példéaul az SXU zarolasi séma esetén U dominansabb S-nél, X pedig mindketténél. Egy elénye annak, hogy
tudjuk, mindig van egy domindns zar egy elemen, az, hogy tobb zarolas hatdsat 6ssze tudjuk foglalni egy
csoportos moddal.

A figyelmeztetd zarakat is alkalmazd zéarolasi séma esetén az S és az IX modok koziil egyik sem
dominansabb a masiknal. Tovabba egy elemet az S és IX modok mindegyikében zarolhatunk egyidejiileg,
feltéve hogy ugyanaz a tranzakcio kérte a zarolast. (Vigyazzunk, hogy a ,nem” bejegyzések a
kompatibilitasi matrixban csak azokra a zarakra alkalmazhatok, amelyeket mas tranzakciok tartanak fenn.)
Egy tranzakcié mindkét zarolast kérheti, ha egy teljes elemet akar beolvasni, és azutan a részelemeknek
egy valodi részhalmazat akarja irni. Ha egy tranzakcionak S és IX zarolasai is vannak egy elemen, akkor
ez korlatozza a tobbi tranzakciot olyan mértékben, ahogy barmelyik zar teszi. Vagyis elképzelhetiink egy
Uj SIX zéarolasi modot, amelynek sorai és oszlopai a ,,nem” bejegyzést tartalmazzdk az IS bejegyzés
kivételével mindenhol. Az SIX zarolasi mod csoportmodként szolgal, ha van olyan tranzakcid, amelynek
van S, illetve IX modu, de nincs X moda zarolasa.

Elképzelhetjiilk ugyanezt a helyzetet a ndvelési zarolasokra, vagyis egy tranzakcido S és | modban is
fenntarthatna zarakat. Ez a helyzet viszont ekvivalens az X mddu zarolassal, igy ekkor X-et hasznalhatnank
csoportos modként.

Nem ismételheto olvasas és a fantomok

Tegyiik fel, hogy van egy T tranzakcid, amelyben egy lekérdezés sorokat valogat ki egy relaciobol. Ezutan
egy T. tranzakcid modosit vagy torol a tablabol olyan sorokat, amelyek eleget tesznek a lekérdezés
feltételének. Ha ezutan T Gjra megprobalja beolvasni ezeket a sorokat, azt fogja tapasztalni, hogy bizonyos
sorok megvaltoztak vagy eltiintek. Ezt a szituaciot nem ismételheté olvasasnak (nonrepeatable read vagy
fuzzy read) nevezziik. A nem ismételhet6 olvasassal az a probléma, hogy mast eredményez a lekérdezés
masodszori végrehajtasa, mint az els6. A tranzakcid viszont elvarhatja, hogy ha tobbszor végrehajtja
ugyanazt a lekérdezést, akkor mindig ugyanazt az eredményt kapja.

Ugyanez a helyzet akkor is, ha a T tranzakcidé nem t6r6l vagy modosit, hanem beszir olyan sorokat,
amelyek eleget tesznek a lekérdezés feltételének. A lekérdezés masodszori futtatdsakor most is mas
eredményt kapunk, mint az els6 alkalommal. Ennek az az oka, hogy olyan sorok jelentek meg a relacidban,
amelyek az els6 futtataskor még nem is 1éteztek. Az ilyen sorokat nevezziik fantomoknak (phantom).

A fenti jelenségek olyan ritkan fordulnak elé a gyakorlatban, hogy a legtobb adatbazis-kezelé rendszer
alapértelmezésben nem is figyel rajuk; annak ellenére, hogy mindkét jelenség nem sorbarendezhetd
viselkedést eredményezhet. A felhasznalo azonban kérheti, hogy a nem ismételhetd olvasasok és/vagy a
fantomolvasasok ne fordulhassanak eld egy tranzakci6 végrehajtasa soran. Ehhez a tranzakcio elkiilonitési
szintjét kell modositani (1asd késobb).

A nem ismételhet6 olvasasokat konnyli megakadalyozni: T1-nek osztott zarat kell kérnie a lekérdezés éltal
kivalasztott sorokra. T igy nem tudja azokat kizarolagosan zarolni, amig T1 be nem fejezddik vagy nem
abortal. Konnyen megelézhetjiik a fantomolvasasokat is, ha tobbszords szemcsézettségli zarakat
hasznalunk: a T tranzakcionak X modban kell zarolnia a teljes relaciot, miel6tt 4j sorokat sztrna be. Mivel
T: korabban IS moédban zarolta a reldciot, ezt a kérést az iitemezd eldszor elutasitja, és csak akkor
engedélyezi, amikor a T1 tranzakci6é mar befejez6dott, elkeriilve ezaltal a nem sorbarendezhet6 viselkedést.

59

Faprotokoll

Eddig a bedgyazott szerkezeti adatbaziselemekbdl létrehozott fakkal foglalkoztunk, amelyekben a
gyerekek a sziilok részei voltak. Most maguknak az elemeknek a kapcsolati sémajabol allo fa strukturakkal
foglalkozunk. Az adatbaziselemek diszjunkt adatdarabok, azonban csak egyféleképpen, a sziilokon
keresztiil lehet elérni egy csomopontot. A B-fak az ilyen tipusu adatoknak fontos példai. Tudjuk, hogy csak
egy bizonyos utvonalon jutunk el egy elemhez, és ez lényeges szabadsagot ad nekiink abban, hogy a
kétfazisu zarolasi megkozelitéstdl eltéréd modon kezeljiik a zarakat.

A fa alapu zarolasok inditékai

Tekintsiink egy B-fa-indexet egy olyan rendszerben, amely az egyedi csomopontokat (blokkokat) zarolhato
adatbaziselemekként kezeli. A csomopont a zarolas szemcsézettségének a megfeleld szintje, ugyanis nem
elényos, ha kisebb darabokat kezeliink elemekként. Ha pedig a teljes B-fat kezeljiik adatbaziselemként,
akkor ez megakadalyozza az index olyan konkurens hasznalatit, mint amilyen elérheté a kdvetkezOkben
targyalt miikddési mechanizmus segitségével.

Ha a zd&rmddoknak egy szabvanyos halmazat hasznaljuk (mint az osztott, kizarélagos és mddositasi zarak),
valamint hasznaljuk a kétfazist zarolast, akkor a B-fa konkurens hasznalata szinte lehetetlen. Ennek az az
oka, hogy az indexet hasznal6 minden tranzakcionak a B-fa gyokér csomdpontjat kell eldszor zarolnia. Ha
a tranzakci6 2PL, akkor nem oldhatja fel a gyokéren a zarolast, amig meg nem szerezte az 0sszes zarat,
amelyre sziiksége van, mind a B-fa csomdpontjain, mind pedig mas adatbaziselemeken. Tovabba mivel
elvben barmely tranzakcio, amely beszirasokat vagy torléseket végez, a B-fa gyokerének az atirasaval
fejezodhet be, a tranzakcionak legalabb egy modositasi zarolasra sziiksége van a gyokér csomdponton
(vagy kizarolagosra, ha nincs méodositasi mod). igy csak egyetlen nem csak olvasasi tranzakcio6 férhet hozza
barmikor a B-fdhoz.

Mégis az esetek tobbségében majdnem kozvetleniil levezethetjiik, hogy egy B-fa gyokér csomdpontjat nem
kell atirni, még akkor sem, ha a tranzakcié beszur vagy toérdl egy sort. Példaul ha a tranzakcid beszlr egy
sort, de a gyOkérnek az a gyereke, amelyhez hozzafériink, nincs teljesen tele, akkor tudjuk, hogy a beszuras
nem gylriizik fel a gyokérig. Hasonldan, ha a tranzakcio egyetlen sort tordl, és a gyokérnek abban a
gyerekében, amelyhez hozzafértiink, a minimalisnal tobb kulcs €s mutatd van, akkor biztosak lehetiink
abban, hogy a gyokér nem valtozik meg.

fgy amikor a tranzakcié a gyokérnek egyik gyereke felé iranyul, és észleli azt a (teljesen szokvanyos)
helyzetet, ami kizarja a gyokér atirasat (azaz latja, hogy a gyokér biztosan nem valtozik meg), azonnal
szeretnénk feloldani a gyokéren a zarat. Ugyanezt a megfigyelést alkalmazhatjuk a B-fa barmely bels6
csomopontjanak a zarolasara is, bar a konkurens B-fanal a legtobb lehetdség abbdl szarmazik, hogy a
gyokéren a zarat koran oldjuk fel. Sajnos a gyokéren 1év6 zarolas korai feloldasa ellentmond a 2PL-nek,
igy nem lehetiink biztosak abban, hogy a B-fahoz hozzaférd tranzakcioknak az litemezése sorba rendezhetd
lesz. A megoldas egy specialis protokoll a B-fadkhoz hasonl6 fa struktirdji adatokhoz hozzaférd tranzakciok
részére. A protokoll ellentmond a 2PL-nek, de azt a tényt hasznalja, hogy az elemekhez val6 hozzaférés
lefelé halad a fan a sorbarendezhetdség biztositasa érdekében.

Fa szerkezetii adatok hozzaférési szabalyai

Az alabbi megszoritasok a zarakon a faprotokollt (tree protocol) adjak. Tételezziik fel, hogy csak egyféle
zar van, amelyet az 1; (X) alaku zarolasi kérésekkel abrazolunk, de ezt az Otletet barmely zarolasi
modokbol all6 halmazra altalanosithatjuk. Tételezziik fel, hogy a tranzakcidk konzisztensek, az litemezések
jogszeriiek (vagyis az litemez0 csak akkor engedélyezi a kért zarolasokat, ha azok nincsenek konfliktusban

60

azokkal a zarakkal, amelyek mar a csomdponton vannak), és ugyanakkor nincs kétfazisi zéarolasi
kovetelmény a tranzakciokon.

1.

2.

3.
4.

Egy tranzakcidnak az elsd zarja a fa barmely csomdpontjan lehet. (A fenti példaban az elsé zarnak
mindig a gyokéren kell lennie, mivel a B-fa keres6fa, amelyben a keresés mindig a gyokértdl indul.)
Réakovetkezd zéarakat csak akkor lehet szerezni, ha a tranzakcionak jelenleg van zarja a sziild
csomoponton.

A csomopontok zarjat barmikor feloldhatjuk.

Egy tranzakcié nem zarolhatja ujbol azt a csomdpontot, amelyen feloldotta a zarat, még akkor sem, ha
még tartja a csomopont sziildjén a zarat.

Példa. Az alabbi adbra a csomoOpontok hierarchidjat, a tablazat pedig ezeken az adatokon harom tranzakcié
miiveleteit mutatja:

T, T, T
Li(A); ri(A);
1:(B); r1(B);
1:(C); r1(C);
w1 (A); ui(A);
1:(D); r:1(D);
w1 (B); ui(B);
1,(B); r2(B);
13(E); r3(E);
w1 (D) ui (D)

1, (E) ; elutasitva

13(F); r3(F);
w3 (F); us(F);
13(G); r3(G);
w3 (E); us(E);

’
’

w2 (E); u2(E)

T1 az A gyokéren kezdddik, és lefelé folytatddik B, C és D felé. T» B-n kezdddik, €s az E felé probal haladni,
de elGszor elutasitjuk, ugyanis Ts-nak mar van zarja E-n. A Ts tranzakcid E-n kezddédik, és folytatja F-fel
¢és G-vel. T1 nem 2PL tranzakcio, ugyanis A-n elébb toroljiik a zarat, mint hogy megszerezziik a zarat D-n.
Hasonlo6an T3 sem 2PL tranzakcio, de T» véletleniil éppen 2PL.

Miért miikodik a faprotokoll?

A faprotokoll jogszerli litemezésben részt vevd konzisztens tranzakciokon konfliktus-sorbarendezhetd
litemezést eredményez. A kovetkezOképpen definialhatjuk a megeldzési sorrendet: Azt mondjuk, hogy T
megeldzi Ts-t az S litemezésben (T: <s T5), ha a Ti és T5 tranzakciok egyrészt kozosen zarolnak egy
csomopontot, masrészt T: zarolja a csomopontot eldszor.

61

Példa. A fenti példa S iitemezésében T és T» kdzosen zaroljak B-t, és T zarolja elészor. gy T1 <s T.. Azt
talaljuk még, hogy T2 és T3 kozosen zaroljak E-t, és T3 zdrolja eldszor, tehat Tz <s To. T1 és T3z kozott
viszont nincs megelézés, hiszen nincs olyan csomopont, amelyet kézosen zarolnak. Az ezekbdl a
megeldzési relaciokbol levezetett megel6zési graf a kovetkezo abran lathato:

Ha a fent definialt megel6zési relaciok alapjan rajzolt megeldzési graf nem tartalmaz kort, akkor azt allitjuk,
hogy a tranzakciok barmely topologikus sorrendje egy ekvivalens soros litemezés. Ebben a példaban vagy
a (T1, T3, T2) vagy a (Ts, T1, T2) az ekvivalens soros iitemezés. Ennek az az oka, hogy az ilyen soros
litemezésben minden egyes csomdponthoz ugyanabban a sorrendben nyulnak a tranzakciok, mint az eredeti
litemezésben.

Ahhoz, hogy megértsiik, hogy a fent leirt megel6zési graf miért lesz kdrmentes, ha betartjuk a faprotokoll
szabalyait, el6szor vegylik észre a kovetkezot:

e Ha két tranzakci6 kdzosen zarol néhany elemet, akkor ugyanabban a sorrendben zéroljadk mindegyiket.

Bizonyitas: Tekintsiink valamilyen T és U tranzakciokat, amelyek két vagy tobb elemet kdzdsen zarolnak.
Minden tranzakcid fa formdju halmazat zarolja az elemeknek, és a két fa metszete maga is fa. Mivel most
T és U kozosen zarolnak elemeket, a metszet nem lehet iires fa. Emiatt van egy ,,legmagasabb” X elem,
amelyet T és U is zarol. Tételezziik fel, hogy T zarolja X-et el6szor, de van egy masik Y elem, amelyet U
elobb zarol, mint T. Ekkor az elemekbdl allo faban van ut X-bol Y-ba, és T-nek is és U-nak is zarolnia kell
minden elemet az ut mentén, ugyanis egyik sem zarolhat Ggy egy csomopontot, hogy ne lenne mar a
sziil6jén zarja.

Tekintsiik az elsé olyan elemet az it mentén, amelyet U zarol el6szor, legyen ez Z. Ekkor T el6bb zarolja
z-nek a P sziiljét, mint U. Ekkor viszont T még mindig tartja a zarolast P-n, amikor zarolja Z-t, igy U még
nem zarolhatta P-t, amikor z-t zarolja. Az nem lehet, hogy 7 lenne az elsé elem, amelyet T és U kdzOsen
zarolnak, mivel mindkettd zarolta az 6sét, X-et (amely lehet P is, csak Z nem). Igy U addig nem zarolhatja
Z-t, amig meg nem szerezte P-N a zarat, amely viszont azutan van, hogy T zarolta Z-t. Arra kovetkeztetiink,
hogy T megel6zi U-t minden csomdpontban, amelyet kozosen zarolnak.

T zarolja

elébb

U zarolja

elébbd

U zarolja

elébb

62

Most tekintsiik a T4, T2, ..., Tn tranzakciok tetszoleges halmazat, amely eleget tesz a faprotokollnak, és az
S iitemezésnek megfelelden zarolja a fa valamely csomoOpontjait. Azok a tranzakcidk, amelyek zaroljak a
gyokeret, ezt valamilyen sorrendben végzik, és olyan szabaly alapjan, amelyet éppen megfigyeltiink:

e Ha T; elébb zarolja a gyokeret, mint T5, akkor T: minden T;-vel k6zbsen zarolt csomopontot el6bb
zarol, mint T5. Vagyis T: <s T5, de nem igaz Ty <s T;.

A fa csomdpontjainak szdma szerinti teljes indukciéval megmutathatjuk, hogy a teljes tranzakciohalmazhoz
létezik az S-sel ekvivalens soros sorrend:

Alapeset: Ha csak egyetlen csomopont van, a gyokér, akkor ahogyan mar megfigyeltiik, a megfeleld
sorrend az, amelyben a tranzakciok a gyokeret zaroljak.

Indukcio: Ha egynél tobb csomdpont van a faban, tekintsiik a gyokér mindegyik részfajahoz az olyan
tranzakciokbol all6 halmazt, amelyek egy vagy tobb csomopontot zarolnak abban a részfaban. A gyokeret
zérolo tranzakciok tobb részfahoz is tartozhatnak, de egy olyan tranzakci6, amely nem zarolja a gyokeret,
csak egyetlen részfahoz tartozik. Példaul a fenti tdblazatban talalhaté tranzakciok koziil csak T1 zarolja a
gyokeret, és az mindkét részfahoz tartozik: a B gyokeri és a C gyokerti fahoz is. T2 és T3 viszont csak a B
gyoker(i fahoz tartozik.

Az indukcids feltevés szerint 1étezik soros sorrend az dsszes olyan tranzakcidhoz, amelyek ugyanabban a
tetszéleges részfaban zarolnak csomopontokat. Csupan egybe kell olvasztanunk a kiilonb6z6 részfakhoz
tartozo soros sorrendeket. Mivel a tranzakcioknak ezekben a listaiban csak azok a tranzakciok kozosek,
amelyek zaroljdk a gyokeret, és megallapitottuk, hogy ezek a tranzakciok minden kdzds csomopontot
ugyanabban a sorrendben zarolnak, ahogy a gyokeret zaroljak, nem fordulhat el két gyokeret zarolo
tranzakci6 kiillonb6z6 sorrendben két részlistan. Pontosabban: ha T: és T eléfordul a gydkér valamely C
gyermekéhez tartozo listan, akkor ezek C-t ugyanabban a sorrendben zaroljak, mint a gydkeret, €s emiatt a
listan is ebben a sorrendben fordulnak eld. Igy felépithetjiik a soros sorrendet a teljes tranzakciohalmazhoz
azokbdl a tranzakcidkbol kiindulva, amelyek a gyokeret zaroljak, a megfeleld sorrendjiikben, és
beleolvasztjuk azokat a tranzakciokat, amelyek nem zéroljdk a gydkeret, a részfak soros sorrendjével
konzisztens tetszoleges sorrendben.

Példa. Legyen T+, T, ..., T10 10 darab tranzakcio, és ezekbdl T+, T2 €s T3 ugyanebben a sorrendben zarolja
a gyokeret. Tegyiik fel, hogy a gyokérnek van két gyereke, az elsét T1-t6] T--ig zaroljak a tranzakciok, a
masikat pedig Tz, T3, Ts, To €és Tio zarolja. Legyen az els6 részfdhoz a soros sorrend
(T4, T1, Ts, T2, Ts, T3, T7). Ennek a sorrendnek T:-et, T»-t és Ts-at ebben a sorrendben kell tartalmaznia.
A masik részfahoz tartozo6 soros sorrend legyen (Ts, T2, To, T10, T3). Mint az el6z6 esetben, a T2 és T3
tranzakciok, amelyek a gyokeret zaroljak, abban a sorrendben fordulnak eld, ahogyan a gyokeret zaroltak.

Ezeknek a tranzakcioknak a soros sorrendjére felallitott megszoritasokat a kdvetkezd dbra mutatja:

A folyamatos nyilak a gyokér elsé gyerekének a rendezése szerinti megszoritasokat jelolik, a szaggatott
nyilak pedig a masik gyereknél 1évo rendezést jelolik. Ennek a grafnak tobb topologikus sorrendje 1étezik,
az egyik: (T4, Ts, T1, Ts, T2, To, Ts, T10, T3, T7).

63

Konkurenciavezérlés idobélyegzokkel

A kovetkezOkben a zarolastol kiillonbozo két masik modszert néziink meg, amelyeket néhany rendszerben
hasznalnak a tranzakcidk sorbarendezhetdségének biztositasara:

1. Idébélyegzés (timestamping, timestamp ordering — TO): Minden tranzakcidhoz hozzarendeliink egy
,1dObélyegz6t”. Minden adatbaziselem utolsd olvaséasat és irasat végzoé tranzakcid idobélyegzojét
rogzitjiikk, ¢és Osszehasonlitjuk ezeket az értékeket, hogy biztositsuk, hogy a tranzakciok
1dobélyegzdinek megfeleld soros iitemezés ekvivalens legyen a tranzakciok tényleges litemezésével.

2. Ervényesités (validation): Megvizsgaljuk a tranzakciok id6bélyegzdit és az adatbaziselemeket, amikor
a tranzakcid véglegesitésre keriil. Ezt az eljarast a tranzakciok érvényesitésének nevezziikk. Az a soros
iitemezés, amely az érvényesitési idejiik alapjan rendezi a tranzakciokat, ekvivalens kell, hogy legyen
a tényleges iitemezéssel.

Mindkét megkdzelités optimista abban az értelemben, hogy feltételezik, nem fordul el6 nem sorba
rendezhetd viselkedés, €s csak akkor tisztdzza a helyzetet, amikor ez nyilvanvaléan nem teljesiil. Ezzel
ellentétben minden zaroldsi modszer azt feltételezi, hogy ,,a dolgok rosszra fordulnak”, hacsak a
tranzakcidkat azonnal meg nem akadélyozzék abban, hogy nem sorba rendezhetd viselkedésiik alakuljon
ki. Az optimista megkdozelitések abban kiilonbdznek a zarolasoktol, hogy az egyetlen ellenszeriik, amikor
valami rosszra fordul, hogy azt a tranzakciot, amely nem sorba rendezhetd viselkedést okozna, abortaljak,
majd gjrainditjak. A zéarolasi litemezdk ezzel ellentétben késleltetik a tranzakcidkat, de nem abortaljak dket,
hacsak nem alakul ki holtpont. (Késleltetés az optimista megkozelitések esetén is el6fordulhat, annak
érdekében, hogy kevesebb abortalasra legyen sziikség.) Altaldban az optimista iitemezSk akkor jobbak a
zérolasinal, amikor sok tranzakcid csak olvasasi miiveleteket hajt végre, ugyanis az ilyen tranzakciok
onmagukban soha nem okozhatnak nem sorba rendezhetd viselkedést.

1débélyegzik

Annak érdekében, hogy az iddbélyegzést konkurenciavezérlési modszerként hasznaljuk, az litemezének
minden egyes T tranzakciohoz hozza kell rendelnie egy egyedi szamot, a TS (T) idébélyegzdt (timestamp).
Az idébélyegzdket novekvd sorrendben kell kiadni abban az idOpontban, amikor a tranzakcio az
elinditasarol eldszor értesiti az litemezdt. Két lehetséges megkdzelités az idobélyegzok generalasdhoz:

a) Az egyik lehet6ség, hogy az idébélyegzoket a rendszerodra felhasznalasaval hozzuk Iétre, feltéve, hogy
az itemez0 nem milkddik annyira gyorsan, hogy két tranzakcidhoz ugyanazt az értéket rendelné
1d6ébélyegzdként.

b) A masik megkozelités szerint az iitemez6 karbantart egy szamlalot. Minden alkalommal, amikor egy
tranzakci6 elindul, a szamlalo novekszik eggyel, és ez az 0 érték lesz a tranzakcid idobélyegzdje. Ebben
a megkozelitésben az idObélyegzOknek semmi koziik sincs az 1d6hoz, azonban azzal a — barmely

1débélyegz6-generald rendszer esetén sziikséges — fontos tulajdonsaggal rendelkeznek, miszerint egy
késobb elinditott tranzakcid nagyobb idébélyegzdt kap, mint egy korabban elinditott tranzakcio.

Béarmelyik modszert is hasznaljuk az id6bélyegzdk generaldséara, az litemezének karban kell tartania a
jelenleg aktiv tranzakcidk és idobélyegzdik tablajat.

Ahhoz, hogy 1ddbélyegzoket haszndljunk konkurenciavezérlési modszerként, minden egyes X
adatbaziselemhez hozza kell rendelniink két idébélyegzot és esetlegesen egy tovabbi bitet:

1. RT (X): X olvasasi ideje (read time), amely a legmagasabb id6bélyegzd, ami egy olyan tranzakciéhoz
tartozik, amely mar olvasta X-et.

2. WT (X): X irési ideje (write time), amely a legmagasabb iddbélyegzd, ami egy olyan tranzakciohoz
tartozik, amely mar irta X-et.

64

3. C(X): X véglegesitési bitje (commit bit), amely akkor és csak akkor igaz, ha a legijabb tranzakcio,
amely X-et irta, mar véglegesitve van. Ez a bit nem feltétleniil sziikséges, és az a célja, hogy elkeriiljiik
azt a helyzetet, amelyben egy T tranzakcio egy masik U tranzakcio altal irt adatokat olvas be, és utana
U-t abortaljuk. Ez a probléma, amikor T nem véglegesitett adatok ,,piszkos olvasasat” hajtja végre, az
adatbézis-allapot inkonzisztenssé valasat is okozhatja. igy barmely iitemez6hoz sziikség van olyan
mechanizmusra, amely megakadalyozza a piszkos olvasast (bar a gyakorlatban az adatbazis-kezeld
rendszerek altalaban a felhasznalora bizzak, hogy megengedhetk-e a piszkos olvasasok; lasd késobb a
,,hem olvasasbiztos” tranzakcioelkiilonitési szintet).

Fizikailag nem megvalosithato viselkedések

Hogy megértsiik az id6bélyegzon alapuld litemezd felépitését €s szabalyait, tudnunk kell, hogy az litemezd
feltételezi, hogy a tranzakciok idObélyegzd szerinti sorrendje egyuttal olyan soros sorrend, amely a
végrehajtas sorrendjét is jelenti. Igy az iitemezé feladata azon tal, hogy hozzarendeli az idébélyegzéket a
tranzakciokhoz, és modositja RT-t, WT-t s C-t az egyes adatbaziselemekhez kotédéen, még az is, hogy
ellendrzi, amikor egy olvasds vagy iras fordul eld, hogy az gy tortént volna-e valds idében is, ha minden
tranzakciot azonnal, az id6bélyegzd altal jelzett id6pillanatban hajtottunk volna végre. Ha nem, akkor azt
mondjuk, hogy a viselkedés fizikailag nem megvalosithato (physically unrealizable behavior). Kétféle
probléma meriilhet fel:

1. Tul késdi olvasds (read too late): A T: tranzakcid megprobalja olvasni az X adatbaziselemet, de X irasi
ideje azt jelzi, hogy X jelenlegi értékét azutan irtuk, miutan T1-et mar elméletileg végrehajtottuk, vagyis
TS (T1) <WT (X). A kovetkez6 abra mutatja ezt a problémat:

w2 (X)

A vizszintes tengely jelenti a valos id6t. A szaggatott vonalak kapcsoljak Ossze a tényleges eseményt
azzal az id6ponttal, amikor a tranzakcidk idObélyegzdje szerint elméletileg végre kellett volna hajtani
az eseményt. Latjuk, hogy a T» tranzakciot a T1 tranzakcid utan inditottuk el, mégis X értékét elébb irta,
mint hogy T: beolvasta volna. T:-nek nem a T altal irt értéket kellene olvasnia, ugyanis elméletileg
T»-t T1 utén hajtjuk végre. T:-nek viszont nincs mas valasztasa, ugyanis X-nek a T altal irt értéke az
egyetlen, amelyet T: most be tud olvasni. A megoldas, hogy Ti-et abortaljuk, amikor ez a probléma
felmertil.

2. Tul késéi iras (write too late): A T. tranzakcidé megprobalja irni az X adatbaziselemet, de X olvasasi
ideje azt jelzi, hogy van egy masik tranzakcio is, amelynek a T 4ltal beirt értéket kellene olvasnia, &m
ehelyett mas értéket olvas, vagyis TS (T1) <RT (X). A kdvetkezd dbra mutatja ezt a problémat:

65

Az abra egy T» tranzakcidt mutat, amelyet T1 utan inditottunk el, mégis elébb olvassa X-et, mint T-
nek lehetdsége lett volna irni. Amikor T1 megprébalja irni X-et, ugy talaljuk, hogy RT (X) > TS (T1),
ami azt jelenti, hogy a T» tranzakcié mar beolvasta X-et, amelyet elméletileg T1 végrehajtasa utan kellett
volna elvégeznie.

A piszkos adatok problémdi

Van egy problémakbdl all6 osztaly, amelynek kezelésére bevezették a véglegesitési bitet. A problémak
egyike a ,,piszkos olvasas”, amelyet a kdvetkezd dbra szemléltet:

w1 (X)

T,) ABORT (T;)

Itt a T» tranzakci6 olvassa X-et, amelyet utoljara T irt. T1 idébélyegzdje kisebb, mint T»-¢€, és a valosdgban
a T, altali olvasés a T, altali irds utan torténik, tehat ugy tiinik, hogy az esemény fizikailag megvalosithato.
Mégis lehetséges, hogy miutan T, beolvasta a T altal X-be irt értéket, a T1 tranzakciot abortaljuk; példaul
azért, mert T: talalt valami hibat a sajat miikodésében (példaul nullaval valod osztas), vagy az ilitemezd
kényszeriti ki T, abortalasat, mivel az valamilyen fizikailag nem megvalosithatd viselkedést eredményezd
miiveletet probalt végezni. Igy, bar nincs fizikailag nem megvalosithato abban, hogy T olvassa X-et, mégis
jobb a T, altali olvasast azutanra elhalasztani, hogy T:1 véglegesitését vagy abortalasat mar elvégeztiik,
kiilonben az iitemezésiink nem lesz konfliktus-sorbarendezhet6. Azt, hogy T: még nincs véglegesitve,
onnan tudjuk, hogy a C (X) véglegesitési bit hamis.

A piszkos olvasés problémaja véglegesitési bit nélkiil is megoldhatd: Amikor abortalunk egy T tranzakciot,
meg kell nézniink, hogy vannak-e olyan tranzakciok, amelyek olvastak egy vagy tobb T altal irt
adatbaziselemet. Ha igen, akkor azokat is abortalnunk kell. Ebbdl aztan tovabbi abortalasok
kovetkezhetnek, azokbol megint ujabbak, és igy tovabb. Ezt a szitudcidt kaszkddolt visszagorgetésnek
(cascading rollback) nevezziik. Ez a megoldéas azonban alacsonyabb fokt konkurenciat engedélyez, mint a
véglegesitési bit bevezetése és a késleltetés, rdadasul eléfordulhat, hogy nem helyredllithato iitemezést
(nonrecoverable schedule) kapunk. Ez abban az esetben kovetkezik be, ha az egyik abortaland6 tranzakciot
mar véglegesitettiik.

Drasztikus, de nagyon egyszeri megoldas a piszkos olvasas problémajara, hogy minden olyan tranzakciot
abortalunk, amely piszkos adatot szeretne olvasni. Végiil megoldast jelenthet a tobbvaltozatu idobélyegzés
alkalmazasa is (1asd késobb).

Egy masik lehetséges problémat a kdvetkezd abra szemléltet:

66

v

T(‘Tz) COMMITT(TI) ABOEIT (T>)

Itt T2, a T1-nél késébbi idébélyegzdvel rendelkezd tranzakcid irja elészor X-et. Amikor T: irni probal, a
megfelel6 miivelet semmit sem végez, tehat elhagyhat6. Nyilvanvaloan nincs mas Ts tranzakcid, amelynek
X-bol a T altal beirt értéket kellene beolvasnia, €és ehelyett a T, altal irt értéket olvasnd, ugyanis ha Ts
megprobalna olvasni X-et, abortalnia kellene a tul késéi olvasas miatt. X késObbi olvasasainal a T altal irt
értéket kell olvasni, vagy X még késobbi, de nem T: altal irt értékét. Ezt az Gtletet, miszerint azokat az
irasokat kihagyhatjuk, amelyeknél késobbi irasi ideji irast mar elvégeztiink, Thomas-féle irasi szabalynak
(Thomas’ write rule) nevezziik.

A Thomas-féle irasi szaballyal azonban van egy lényegi probléma. Ha T»-t kés6bb abortaljuk, amint az az
abran lathat6, akkor X-nek a T altal irt értékét ki kell torolniink, tovabba az el6z0 értéket és irdsi idot vissza
kell allitanunk. Minthogy Ti-et véglegesitettiik, ugy latszik, hogy X T: éaltal irt értékét kell a késdbbi
olvasasokhoz hasznalnunk. Mi viszont kihagytuk a T altali irast, és mar tul késd, hogy helyrehozhassuk
ezt a hibat.

A problémat a kovetkezoképpen kezelhetjiik: Amikor a T: tranzakci6 irja az X adatbaziselemet, és azt
latjuk, hogy X irasi ideje nagyobb T: id6bélyegzjénél (azaz TS (T1) <WT (X)), valamint hogy az X-et ir6
tranzakcio (T2) még nincs véglegesitve (azaz C (X) hamis), akkor T:-et késleltetjiik mindaddig, amig C (X)
igazza nem valik; vagy azért, mert T, véglegesitodik, vagy azért, mert abortal. Ha T, véglegesitodik, akkor
T, irasat elhagyjuk, ha viszont abortél, akkor végrehajtjuk.

Természetesen most is 1étezik masik megoldas: a fenti feltételek teljesiilése esetén T1-et a késleltetés helyett
egyszerlien visszagorgetjiik. Nyilvan ez a megoldas alacsonyabb foku konkurenciat engedélyez, mint a
véglegesitési bit bevezetése és a késleltetés, raadasul ha a piszkos olvasasokat is visszagorgetéssel kezeljiik,
akkor ez az abortalas tovabb noveli a kaszkadolt visszagorgetés és a nem helyreallithatd litemezés
kockézatat. Végiil a harmadik megoldés ebben az esetben is a tobbvaltozati idobelyegzés alkalmazasa.

Lathato, hogy az id6bélyegzési technika alapvéltozataban (amikor nem hasznalunk véglegesitési bitet és
nincs késleltetés) nem léphet fel holtponti helyzet, eléfordulhat viszont kaszkadolt visszagdrgetés €s nem
helyreallithatd tlitemezés.

Az idobélyegzon alapulo iitemezések szabdlyai

Osszegezhetjiik azokat a szabalyokat, amelyeket az iddbélyegzdket hasznald iitemezének kdvetnie kell
ahhoz, hogy biztosan konfliktus-sorbarendezhetd iitemezést kapjunk. Mi most az id6bélyegzésnek a
véglegesitési bittel bovitett valtozatat tekintjiik. Az litemezOnek egy T tranzakciotdl érkezd olvasasi vagy
irasi kérésre adott valaszaban az alabbi valasztasai lehetnek:

a) Engedélyezi a kérést.

b) Abortalja T-t (ha T ,,megsérti a fizikai valosagot”), és egy 0j id6bélyegzOvel ujrainditja. Azt az
abortalast, amelyet Gjrainditas kovet, gyakran visszagorgetésnek (rollback) nevezziik.

c) Késlelteti T-t, és késobb donti el, mi torténjen (ha a kérés olvasas, és az olvasas piszkos is lehet, illetve
ha a kérés iras, és alkalmazhato lehet a Thomas-féle irasi szabaly).

67

A szabalyok a kovetkezok:
1. Tegyiik fel, hogy az litemez8hoz érkezd kérés rr (X) :
a) HaTS(T) >WT (X), az olvasas fizikailag megvaldsithato:

1) Ha C(X) igaz vagy TS (T) =WT (X), engedélyezziik a kérést. Ha TS (T) > RT (X), akkor
RT (X) (=TS (T), egyébként nem valtoztatjuk meg RT (X) -et.

i) HaC (X) hamisés TS (T) >WT (X), késleltessiik T-t addig, amig C (X) igazza nem valik (azaz
az X-et utoljara ir6 tranzakcio nem véglegesitddik vagy abortal).

b) Ha TS (T) <WT (X), az olvasas fizikailag nem megvalosithaté: Visszagorgetjiik T-t, vagyis
abortaljuk, és gjrainditjuk egy 1), nagyobb idébélyegzdvel.

2. Tegyiik fel, hogy az litemez6hoz érkezd kérés wr (X) :

a) HaTsS(T) 2RT (X) és TS (T) >WT (X), az iras fizikailag megvaldsithato, és az alabbiakat kell
végrehajtani:
i) Xuj értékének beirasa;
i) WT(X) :=TS(T);
i) C (X) :=hamis.

b) Ha TS (T) >RT (X), de TS(T) <WT (X), akkor az iras fizikailag megvalosithatd, de X-nek mar
egy késobbi értéke van.

1) HaC (X) igaz, az X el6z6 irasat végzo tranzakcid véglegesitve van, igy egyszeriien figyelmen
kiviil hagyjuk X T altali irasat; megengedjiik, hogy T folytatddjon, és ne valtoztassa meg az
adatbazist.

i) Ha viszont C (X) hamis, akkor késleltetniink kell T-t, mégpedig az 1. a) ii) pontban leirtak
szerint.

C) HaTS(T) <RT (X), az iras fizikailag nem megvalosithato, és T-t vissza kell gorgetniink.

3. Tegyiik fel, hogy az litemezOhoz érkezo kérés T véglegesitése (COMMIT T). Meg kell talalnunk (egy,
az litemez0 altal karbantartott lista alapjan) az Osszes olyan X adatbaziselemet, amelybe T irt utoljara
(WT (X) =TS (T)), és allitsuk be a hozzajuk tartozé6 C (X) biteket igazra. Ha vannak X
,véglegesitésére” varakozo tranzakciok az 1.a)1ii) és a 2.b) ii) pontoknak megfeleléen (ezeket a
tranzakciokat az litemez0 egy masik listajan talaljuk meg), akkor meg kell ismételniink ezen tranzakcidok
olvasasi vagy irasi kisérleteit.

4. Tegyiik fel, hogy az iitemez6hoz érkezd kérés T abortalasa (ABORT T) vagy visszagOrgetése, mint az
1.b) vagy a 2. ¢) esetben. Ekkor visszavonjuk az abortalt tranzakcidé azon irasait, amelyek olyan X
adatbaziselemekre vonatkoznak, amelyekre WT (X) = TS (T). Ez azt jelenti, hogy visszaallitjuk ezen
adatbaziselemeknek és azok irasi idejének régi értékét (azt, amelyik a legnagyobb irasi id6hoz tartozik),
valamint igazra allitjuk a véglegesitési bitet, ha az irasi 1d6hoz tartozo tranzakcid mar véglegesitodott.
Ezenkiviil ,,visszavonjuk™ T olvasasait is, azaz visszaallitjuk az olyan T 4ltal olvasott adatbaziselemek
olvasasi idejének régi (legnagyobb) értékét, amelyekre RT (X) =TS (T). Ezutan barmely olyan
tranzakciora, amely egy X elem T altali irasa miatt varakozik (1. a) ii) és 2. b) ii)), meg kell ismételniink
az olvasasi vagy irasi kisérletet, és meglatjuk, hogy a miivelet most jogszerti-e.

Példa. A kovetkezd éabran harom tranzakcido (Ti, T2 és Tz) litemezése lathatdo, amelyek harom
adatbaziselemhez (2, B és C) férnek hozza:

68

T T> T3 A B C
200 150 175 RT=0 RT=0 RT=0
WT=0 WT =0 WT=0
C=1igaz C=igaz C=1igaz
r1(B); RT =200
r2(A); RT =150
r3(C); RT=175
w1 (B); WT =200
C=hamis
w1 (A) ; WT =200
C=hamis
w2 (C) ;
abortal RT=0
véglegesitédik C=1igaz C=1igaz
w3 (A) ;

Az események eldfordulasanak ideje szokas szerint lefelé nd. Legyen kezdetben minden adatbaziselemhez
az olvasasi és az irdsi id6 is 0. A tranzakciok abban a pillanatban kapnak idébélyegzdt, amikor értesitik az
litemezOt az elinditdsukrol. Most példaul bar T: hajtja végre az elsé adathozzaférést, mégsem neki van a
legkisebb idébélyegzdje. Tegyiik fel, hogy T az elsd, amelyik az inditasarol értesiti az titemez6t, Ts volt a
kovetkezo, és T1-et inditottuk el utoljara.

Az els6 miiveletben T: beolvassa B-t. Mivel B irasi ideje kisebb, mint T1 id6bélyegzbje, ez az olvasas
fizikailag megvalodsithato, és engedélyezziik a végrehajtast. B olvasasi idejét 200-ra, T:1 idobélyegzdjére
allitjuk. A masodik és a harmadik olvasasi miivelet hasonloan jogszerii, és mindegyik adatbaziselem
olvasasi idejének értékét az Ot olvasod tranzakcid idobélyegzdjére allitjuk.

A negyedik 1épésben T irja B-t. Mivel B olvasasi ideje nem nagyobb, mint T:1 idébélyegzdje, az iras
fizikailag megvalosithat6. Mivel B irasi ideje nem nagyobb, mint T1 idObélyegzdje, ténylegesen végre kell
hajtanunk az irast. Amikor ezt elvégeztiik, B irasi idejét 200-ra noveljiik, amely az 6t feliilird T tranzakcio
idébélyegzdje. Ezutan hasonldan jarunk el A-val.

Ezutan T> megprobalja irni C-t. C-t viszont mar beolvasta a T3 tranzakcio, amelyet elméletileg a 175-0s
idépontban hajtottunk végre, mig T>-nek az értéket a 150-es idSpontban kellett volna beirnia. Igy T» olyan
dologgal probalkozik, amely fizikailag nem megvaldsithatd viselkedést eredményezne, tehat To-t vissza
kell gorgetniink.

Az utolso 1épés, hogy T3 irja A-t. Mivel A olvasasi ideje (150) kevesebb, mint T3 idébélyegzdje (175), az
irds jogszerli. Viszont A-nak mar egy késébbi értéke van tarolva ebben az adatbaziselemben, mégpedig a
T altal — elméletileg a 200-as id6pontban — beirt érték. Ts-at tehat nem gorgetjiik vissza, de be sem irjuk
az értéket. (Feltessziik, hogy T1 id6kozben véglegesitddott.)

Tobbvaltozatu idobélyegzés

Az id6bélyegzés egyik fontos valtozata, a tobbvdltozatu idébélyegzés (multiversion timestamping,
multiversion timestamp ordering — MVTO, multiversion concurrency control — MVCC) karbantartja az
adatbaziselemek régi valtozatait is a magéban az adatbazisban tarolt jelenlegi valtozaton kiviil. A cél az,
hogy megengedjiink olyan rr (X) olvasisokat, amelyek egyébként a T tranzakcid abortalasat okoznék
(ugyanis X jelenlegi valtozatat egy T-nél késébbi tranzakcio irta feliil). Ilyenkor T-t X megfelel6 régebbi
valtozatanak beolvasasaval folytatjuk. A modszer kiilondsen hasznos, ha az adatbaziselemek lemezblokkok
vagy lapok, ugyanis ekkor csak annyit kell a pufferkezelonek biztositania, hogy bizonyos blokkok a
memoridban legyenek, amelyek néhany jelenleg aktiv tranzakcid szdmara hasznosak lehetnek.

Példa. Tekintsiik a kovetkezd abran szerepld, az A adatbaziselemhez hozzaférd tranzakcidkat:

69

T To T3 Ty A
150 200 175 225 RT=0
WT =0
r1(A); RT =150
w1 (A) ; WT =150
r2(A); RT =200
w2 (A) ; WT =200
r3(A);
abortal
rqs(A); RT =225

Ezek a tranzakciok egy hagyomanyos, idObélyegzon alapuld iitemezd alatt mitkddnek. Amikor Ts
megprobalja olvasni A-t, azt talalja, hogy WT (A) nagyobb, mint a sajat idébélyegzdje, igy abortalni kell.
Viszont megvan A-nak a T: altal irt, és a T, altal felilirt régi értéke, amely alkalmas lenne Ts-nak, hogy
olvassa. Ebben a valtozatdban A-nak 150 volt az irasi ideje, ami kevesebb, mint T3 175-6s idobélyegzdje.
Ha A-nak ez a régi értéke hozzaférhetd lenne, T3 engedélyt kaphatna az olvasasra, még ha ez A-nak nem is
a ,,jelenlegi” értéke.

A tobbvaltozatl id6bélyegzést hasznalo ilitemezd az alabbiakban kiilonbozik a fent leirt litemez6tol:

1. Amikor egy 0j wr (X) iras fordul eld, ha ez jogszerili, akkor az X adatbaziselemnek egy 0j valtozatat
hozzuk 1étre, amelynek az irasi ideje TS (T), és X¢-vel fogunk ra hivatkozni, ahol t = TS (T).

2. Amikor egy rr (X) olvasas fordul el6, az iitemez6 megkeresi X-nek azt az X: valtozatat, amelyre
t < TS (T), de nincs mas X+ valtozata, amelyre t < t’ < TS (T) lenne. Vagyis X-nek azt a valtozatat
olvassa be T, amelyet T elméleti végrehajtasa el6tt kozvetlentl irtak.

Az irasi idoket egy elem valtozataihoz rendeljiik, és soha nem valtoztatjuk meg.

Az olvasési idOket szintén rendelhetjiik a valtozatokhoz. Arra hasznaljuk dket, hogy ne kelljen
visszautasitanunk bizonyos irasokat, mégpedig azokat, amelyek ideje nagyobb vagy egyenld, mint az
Ot idében kozvetleniil megel6zd valtozat olvasasi ideje. Ha csak az utolsé valtozat olvasasi idejét
tartanank nyilvan, akkor az ilyen irasokat el kellene utasitanunk. A problémat a kovetkez6 abra
szemlélteti:

RT50:60 RT100:110

A
} . }
X5 ! X100
70-es idobelyegzoji
tranzakcid irasa

X valtozatai Xso €s X100. Xs0 & 60-as iddpontban olvasasra keriilt, és megjelent a 70-es id6bélyegzdjii T
tranzakci6 altali 0j irds. Ez az irds jogszerli, mert RTs0 < TS (T) . Ha csak az utols6 valtozat 110-es
olvasasi idejét tarolnank, akkor errél az irdsrol nem tudnénk eldonteni, hogy jogszerii-e, ezért
abortalnunk kellene T-t.

5. Amikor egy X: valtozat t irasi ideje olyan, hogy nincs t-nél kisebb idobélyegzdjii aktiv tranzakcio,
akkor torolhetjiik X-nek az X¢-t megel6z6 valtozatait.

Példa. Tekintsiik 0jbol az el6zd példaban szerepld miiveleteket, de most hasznaljunk tobbvaltozata
1dobélyegzeést:

70

T T> Ts Ty Ao A1sp Az00
150 200 175 225 RT=0
ri(A); olvasés,
RT =150
w1 (A) ; létrehozas,
RT =150
r2(A); olvasas,
RT =200
w2 (A) ; 1étrehozas,
RT =200
r3(A); olvasas
rqs(A); olvasés,
RT =225

A-nak harom valtozata 1étezik: Ao, amelyik a tranzakciok elinditasa el6tt 1étezik, A1s0, amelyet T irt, és
Azoo, amelyet T irt. Az abra mutatja azt az eseménysorozatot, amikor az egyes valtozatokat 1étrehozzuk,
illetve beolvassuk. Ts-at most nem kell abortalni, ugyanis be tudja olvasni A-nak egy korabbi valtozatat.

A tobbvaltozatu id6bélyegzés tehat kikiiszoboli a tul késoi olvasasokat. Mi a helyzet a piszkos olvaséssal
¢és a Thomas-féle irasi szabaly problémajaval? Piszkos olvasas most is eléfordulhat, de most nemcsak a
tranzakci6 késleltetésével vagy abortalasaval tehetiink ellene, hanem azzal is, hogy olvasaskor megkeressiik
az adatbaziselem utolso olyan valtozatat, amelyet vagy maga az olvasd tranzakcid, vagy egy, az olvaso
tranzakci6 induldsakor mar véglegesitett tranzakcié hozott létre. gy sosem olvasunk piszkos adatot, nem
kell késleltetniink egy tranzakcidt sem, rdadasul nem fordulhat el til késoéi iras sem, hiszen a ,,tal késon
ird” tranzakcié még nem lehetett véglegesitve az olvasd tranzakcié indulasakor, amelynek emiatt nincs
szilksége a ,,tal késon irt” értékre. Ezt a technikdt (amelyet az Oracle is alkalmaz) pillanatkép-
elkiilonitésnek (snapshot isolation) nevezziik. Hatranya, hogy nem garantalja a sorbarendezhetdséget.

A Thomas-féle irasi szabaly pedig nem alkalmazhato tobbvaltozati idobélyegzés esetén (legalabbis eredeti
form4jaban), még akkor is létrehozzuk az adatbaziselem ,,11j” valtozatat, ha az régebbi, mint a legljabb
valtozat.

1dobélyegzok és zaroldasok

Altalaban az idébélyegzés azokban a helyzetekben kival, amikor a tranzakciok tobbsége csak olvasasi,
vagy ritka az az eset, hogy konkurens tranzakciok ugyanazt az elemet probaljak meg olvasni €s irni. Az
erdsen konfliktusos helyzetekben jobb a zarolasokat hasznélni. Ehhez az 6kolszabalyhoz az érvek az
alabbiak:

e A zarolasok gyakran késleltetik a tranzakciokat azzal, hogy a zarakra varnak, és még holtpontok is
kialakulhatnak, amikor néhany tranzakcio hosszl ideje varakozik, és ekkor az egyiket vissza kell
gorgetni.

e Idobélyegzés hasznalatakor viszont ha a konkurens tranzakciok gyakran olvasnak és irnak ko6zos
elemeket, akkor a visszagorgetés lesz gyakori, ami még tobb késedelmet okoz, mint egy zarolasi
rendszer.

Bizonyos rendszerek érdekes kompromisszumot alkalmaznak: Az litemez0 felosztja a tranzakciokat csak
olvasasi tranzakciokra és olvasasi/irasi tranzakciokra. Az olvasasi/irdsi tranzakcidkat kétfazisi zarolast
hasznalva hajtjuk végre tigy, hogy a zarolt elemek hozzaférését megakadalyozzuk a tobbi tranzakcionak. A
csak olvasési tranzakciokat a tobbvaltozatu idobélyegzéssel hajtjuk végre. Amikor az olvasasi/irasi
tranzakciok létrehozzék egy adatbaziselem 1) valtozatait, ezeket a valtozatokat tigy kezeljiik, ahogyan
fentebb leirtuk. Egy csak olvasasi tranzakcionak megenged;jiik, hogy egy adatbaziselem barmelyik olyan
valtozatat olvassa, amely korabban jott 1étre, mint a tranzakci6 idébélyegzdje. Csak olvasasi tranzakciokat
emiatt soha nem kell abortalnunk, és csak nagyon ritkan kell késleltetniink.

71

Konkurenciavezérlés érvényesitéssel

Az érvényesités (validation, Kung—Robinson-modell) az optimista konkurenciavezérlés masik tipusa,
amelyben a tranzakcidknak megengedjiik, hogy zéarolasok nélkiil hozzaférjenek az adatokhoz, ¢és a
megfeleld idében ellendrizziik a tranzakcid sorba rendezhetd viselkedését. Az érvényesités alapvetden
abban kiilonbozik az idObélyegzéstdl, hogy itt az litemezd nyilvantartast vezet arrol, mit tesznek az aktiv
tranzakcié irni kezdene értékeket az adatbéaziselemekbe, egy ,.érvényesitési fazison” megy keresztiil,
amikor a beolvasott és kiirando elemek halmazait 0sszehasonlitjuk mas aktiv tranzakciok irdsainak
halmazaival. Ha fellép a fizikailag nem megvalosithatd viselkedés kockazata, a tranzakciot visszagorgetjiik.

Az érvényesitésen alapulo iitemezo felépitése

Ha az érvényesitést hasznaljuk konkurenciavezérlési médszerként, az litemezdnek meg kell adnunk minden
T tranzakcidhoz a T altal olvasott és a T altal irt adatbaziselemek halmazat: RS (T) az olvasdsi halmaz,
WS (T) az irdsi halmaz. A tranzakciokat harom fazisban hajtjuk végre:

1. Olvasas. Az els6 fazisban a tranzakci6 beolvassa az adatbazisbol az 6sszes sziikséges elemet az olvasasi
halmazaba, majd kiszamitja a lokalis valtozdiban az Osszes eredményt, amelyet ki fog irni, ezzel
meghatarozva az irasi halmazt is.

2. Ervényesités. A masodik fazisban az iitemez6 érvényesiti a tranzakciot oly modon, hogy 6sszehasonlitja
az olvasasi és irasi halmazait a tobbi tranzakcidéval. Az érvényesitési eljarast késobb részletezziik. Ha
az érvényesités hibat jelez, akkor a tranzakciot visszagorgetjiik, egyébként pedig folytatddik a harmadik
fazissal.

3. [Irds. A harmadik fazisban a tranzakci6 az irasi halmazaban 1év3 elemek értékeit kiirja az adatbazisba.

Intuitiv alapon minden sikeresen érvényesitett tranzakciorol azt gondolhatjuk, hogy az érvényesités
pillanataban keriilt végrehajtasra. igy az érvényesitésen alapulé iitemez6 a tranzakciok feltételezett soros
sorrendjével dolgozik. Annak a dontésnek az alapja, hogy érvényesitsen-e egy tranzakciot vagy sem, az,
hogy a tranzakciok viselkedése konzisztens legyen ezzel a soros sorrenddel. A dontés segitéséhez az
titemez6 fenntart harom halmazt:

1. KEZD: a mar elinditott, de még nem teljesen érvényesitett tranzakciok halmaza. Ebben a halmazban az
titemez6 minden T tranzakciohoz karbantartja KEZD (T) -t, amely T inditasanak id6pontja.

2. ERV: amar érvényesitett, de a harmadik fazisban az irasokat még be nem fejezett tranzakciok halmaza.
Ebben a halmazban az {itemezd minden T tranzakcidhoz karbantartja KEZD(T)-t, és T
érvényesitésekor ERV (T)-t. ERV (T) az az id6, amikor T végrehajtasat gondoljuk a végrehajtas
feltételezett soros sorrendjében.

3. BEF: a harmadik fazist befejezett tranzakciok halmaza. Ezekhez a T tranzakciokhoz az litemezd rogziti
KEZD (T) -t, ERV (T) -t, és T befejezésekor BEF (T) -t. Elméletben ez a halmaz nd, de — mint latni
fogjuk — nem kell megjegyezniink a T tranzakcidt, ha BEF (T) <KEZD (U) barmely U aktiv

tranzakciora (vagyis VYU € KEZD U ERV esetén). Az litemezd igy idénként tisztogathatja a BEF
halmazt, hogy megakadalyozza méretének korlatlan novekedését.

Az érvényesitési szabdlyok

Ha az iitemezd elvégzi a fenti halmazok karbantartdsat, akkor segitségiikkel észlelheti a tranzakciok
feltételezett soros sorrendjének (azaz a tranzakciok érvényesitési sorrendjének) barmely lehetséges

72

megsértését. A szabalyok megértése végett eldszor vizsgaljuk meg, hogy mi lehet hibas, amikor a T
tranzakciot megprobaljuk érvényesiteni:
1. Tegyiik fel, hogy van olyan U tranzakcio, melyre teljestilnek a kovetkez6 feltételek:
a) U e ERV U BEF, vagyis U-t mar érvényesitettiik.
b) BEF (U) >KEZD (T), vagyis U nem fejez8dott be T inditasa eldtt. (Ha U € ERV, vagyis U még
nem fejez0dott be T érvényesitésekor, akkor BEF (U) technikailag nem definiélt, de az biztos, hogy

KEZD (T) -nél nagyobbnak kell lennie.)
C) RS (T) NWS (U) #J, legyen X egy eleme ennek a halmaznak.

Ekkor lehetséges, hogy U azutén irja X-et, miutan T olvassa azt (,,tul korai olvasés”). Elképzelhetd az
IS, hogy U még nem irta X-et. Az el6bbi eset a kovetkez6 abran lathato:

rr (X)

T

KEZD (U) KEZD(T) ER

A szaggatott vonalak kapcsoljak Ossze a valos idejii eseményeket azzal az idovel, amikor be kellett
volna kdvetkezniiik, ha a tranzakciokat az érvényesités pillanatdban hajtottuk volna végre. Mivel nem
tudjuk, hogy T beolvasta-e az U-tdl szarmazo értéket, vissza kell gorgetniink T-t, hogy elkeriiljiik annak
kockézatat, hogy T és U miiveletei nem lesznek konzisztensek a feltételezett soros sorrenddel.

2. Tegyiik fel, hogy van olyan U tranzakcio, melyre teljesiilnek a kovetkezo feltételek:

a) U € ERV, vagyis U-t mar érvényesitettiik.

b) BEF (U) > ERV (T), vagyis U-t nem fejeztiik be, mielStt T az érvényesitési fazisaba lépett. (Ez a
feltétel valojaban mindig teljesiil, mivel U még biztosan nem fejezddott be.)

C) WS(T) NWS (U) # I, legyen X egy eleme ennek a halmaznak.

Ekkor a lehetséges problémat a kovetkezo abra szemlélteti:

—>l¢---
—
—

ERV (U) ERV (T) BEF (U)

Mind T-nek, mind U-nak irnia kell X értékét, és ha megengedjiik T érvényesitését, lehetséges, hogy U
eldtt fogja irni X-et (,,tal korai irds”). Mivel nem lehetiink biztosak a dolgunkban, visszagorgetjiik T-t,
hogy biztosan ne szegjlik meg azt a feltételezett soros sorrendet, amelyben T koveti U-t.

A fent leirt két problémaval keriilhetiink csak olyan helyzetbe, amikor a T altal végzett miivelet fizikailag
nem megvalosithatd. Az 1. esetben ha U T elinditasa el6tt fejez6dott volna be, akkor T biztosan olyan x
értéket olvasna, amelyet vagy U, vagy valamely kés6bbi tranzakcio irt. A 2. esetben ha U T érvényesitése
elétt fejezddik be, akkor biztos, hogy U T elbtt irta X-et. Ezek alapjan a T tranzakcid érvényesitésére
vonatkoz6 észrevételeinket az aldbbi szaballyal foglalhatjuk 6ssze:

73

e Osszehasonlitjuk RS (T) -t WS (U) -val, és ellendrizziik, hogy RS (T) N WS (U) =& minden olyan
érvényesitett U-ra, amely még nem fejez8dott be T elinditasa eldtt, vagyis U € ERV U BEF ¢és
BEF (U) >KEZD(T).

e Osszehasonlitjuk WS (T) -t WS (U) -val, és ellendrizziik, hogy WS (T) N WS (U) =& minden olyan
érvényesitett U-ra, amely még nem fejez6dott be T érvényesitése eldtt, vagyis U € ERV és
BEF (U) > ERV(T).

Példa.
RS = {B} RS ={A, D}
Ws = {D} ws ={a, C}
U W
T \Y%

RS ={A, B} RS={B}
ws={a,c} ws={D E}

Az abra egy idOvonalat abrazol, amely mentén négy tranzakcio (T, U, V és W) végrehajtasi és érvényesitési
kisérletei lathatok. I-vel jeloltiik az inditast, X-szel az érvényesitést, O-val pedig a befejezést. Az abran
lathatok az egyes tranzakciok olvasasi €s irdsi halmazai. T-t inditjuk el elsének, de U-t érvényesitjiik
elészor.

1. Amikor U-t érvényesitjiik, nincs mas érvényesitett tranzakcio, igy nem kell semmit sem ellendrizniink.
U-t érvényesitjiik, és beirjuk az 0j értéket a D adatbaziselembe.

2. Amikor T-t érvényesitjiik, U mar érvényesitve van, de még nincs befejezve. igy ellendrizniink kell, hogy
T-nek sem az olvasasi, sem az irasi halmazaban nincs semmi kozos WS (U) = {D}-vel. Mivel
RS (T) ={A, B} ésWS (T) ={A, C}, mindkét halmazzal a metszet iires, tehat T-t érvényesitjiik.

3. Amikor V-t érvényesitjiik, U mar érvényesitve van és befejez6dott, T pedig szintén érvényesitve van,
de még nem fejezédott be. Tovabba V-t U befejezédése el6tt inditottuk el. Igy dssze kell hasonlitanunk
mind RS (V) -t, mind WS (V) -t WS (T) -vel, azonban csak RS (V) -t kell dsszehasonlitanunk WS (U) -
val. Az eredmények:

e RS (V) NWS(T) ={B}n{A, C}=0;
e WS (V) nWS(T) ={D,E}n{a, C}=0;
e RS (V) NnWS(U) ={B}n{D}=0.

Ezek alapjan V-t érvényesitjiik.

4. Amikor w-t érvényesitjiik, azt tapasztaljuk, hogy U mar W elinditasa el6tt befejezodott, igy nem kell
elvégezniink W €s U Osszehasonlitasat. T W érvényesitése eldtt fejezodott be, de nem fejezodott be W
elinditasa el6tt, ezért csak RS (W) -t kell 6sszehasonlitanunk WS (T) -vel. V mar érvényesitve van, de
még nem fejez6dott be, igy Ossze kell hasonlitanunk mind RS (W) -t, mind WS (W) -t WS (V) -vel. Az
eredmények:

e RS (W) NWS(T) ={A, D} {a,C}={A};
e RS (W) mWs (V) ={A, D} {D, E} ={D},
o WS(W) NWs (V) ={a,C}n{D,E}=0C.

74

Mivel a metszetek nem mind iiresek, W-t nem érvényesitjiik, hanem visszagorgetjiik, igy nem ir értéket
sem A-ba, sem C-be.

Tobbprocesszoros rendszerek esetén ha tobb iitemezd végzi a feldolgozast, akkor lehet, hogy egyszerre
érvényesitenek tobb tranzakcidt. Ebben az esetben a tobbprocesszoros rendszer olyan szinkronizacids
mikodésére kell tamaszkodnunk, amely biztositja, hogy az érvényesités atomi tevékenységként kertiljon
végrehajtasra. Egyprocesszoros rendszereken ha csak egy iitemezd fut, akkor azt gondolhatjuk az
érvényesitésrol és az litemezd tobbi tevékenységérdl, hogy egy pillanat alatt hajtédnak végre. Ebben az
esetben tehat nem fordulhat eld, hogy egy tranzakcid érvényesitése egy masik tranzakcio érvényesitése alatt
fejezddik be.

A harom konkurenciavezérlési technika mukodésének osszehasonlitasa

A sorbarendezhetdség biztositdsahoz harom megkdzelitést néztlink meg: a zarolast, az idobélyegzést és az
érvényesitést. Hasonlitsuk ket 6ssze el6szor a tarigény szempontjabol:

e Zarolads: A zartabla altal lefoglalt tar a zarolt adatbaziselemek szamaval aranyos.

o ldobélyegzés: Egy naiv megvalodsitdsban minden adatbaziselem olvasasi és irdsi idejéhez sziikségiink
van tarra, akar hozzafériink az adott elemhez, akar nem. Egy koriiltekintobb megvalositas azonban az
Osszes olyan iddbélyegz6t minusz végtelen értékiinek tekinti, amely a legkorabbi aktiv tranzakcional
korabbi tranzakcidhoz tartozik, és nem rogziti ezeket. Ez esetben a zartablaval analog méreti tdblaban
tudjuk tarolni az olvasési és irasi idoket, amelyben csak a legtijabban elért adatbdziselemek szerepelnek.

e Ervényesités: Tarat hasznalunk az idébélyegzékhoz és minden jelenleg aktiv tranzakcid olvasési/irasi
halmazaihoz, hozzavéve még egy par olyan tranzakciot, amelyek azutan fejez6dnek be, miutan
valamelyik jelenleg aktiv tranzakci6 elkezdddott.

gy mindegyik megkozelitésben az Osszes aktiv tranzakciora felhasznalt tir a tranzakciok altal elért
adatbaziselemek szdmanak az Osszegével megkozelitdleg ardnyos. Az id6bélyegzés és az érvényesités
kicsit tobb helyet hasznalhat fel, ugyanis nyomon kell kovetniink a kordbban véglegesitett tranzakciok
bizonyos hozzaféréseit, amelyeket a zartdbla nem rogzitene. Az érvényesitéssel kapcsolatban egy 1ényeges
probléma, hogy a tranzakcidhoz tartozo irdsi halmazt az irasok elvégzése eldtt kell mar ismerniink (de a
tranzakci6 szamitasainak befejezddése utan).

Osszehasonlithatjuk a mddszereket abbdl a szempontbol is, hogy késleltetés nélkiil befejezédnek-e a
tranzakciok. A harom modszer hatékonysaga attol fligg, hogy vajon a tranzakciok kozotti egymasra hatas
erds vagy gyenge, azaz milyen valoszinliséggel akar egy tranzakcid hozzaférni egy olyan elemhez,
amelyhez egy konkurens tranzakcidé mar hozzafért:

e A zarolas késlelteti a tranzakcidkat, azonban elkertili a visszagorgetéseket, még ha erds is az egymasra
hatds. Az 1dObélyegzés és az érvényesités nem késlelteti a tranzakcidkat, azonban visszagorgetést
okozhatnak, amely a késleltetésnek egy problémasabb formaja, azonfeliil er6forrasokat is pazarol.

e Ha gyenge az egymasra hatds, akkor sem az idObélyegzés, sem az érvényesités nem okoz sok
visszagorgetést, és elonydsebbek lehetnek a zarolasnal, ugyanis ezeknek altalaban alacsonyabbak a
koltségei, mint a zarolasi litemezdnek.

e Amikor sziikséges a visszagorgetés, az idObélyegzés hamarabb feltarja a problémakat, mint az
érvényesités, amely mindig hagyja, hogy a tranzakcid elvégezze az Osszes belsé munkajat, mieldtt
megnézné, hogy vissza kell-e gorgetni a tranzakciot.

75

Az Oracle konkurenciavezérlési technikaja

Az alabbi informéaciok forrasa az Oracle Database Concepts — Data Concurrency and Consistency.

Az Oracle a Kkétfazisu zarolds ¢és a pillanatkép-elkiilonités kombinaciojat hasznalja a
konkurenciavezérléshez. Felhasznalodi szinten a zarolasi egység lehet a tdbla vagy annak egy sora. A zarakat
az litemez6 automatikusan helyezi el és oldja fel, de lehetdség van arra is, hogy a felhasznal6 (alkalmazas)
kérjen zarat.

Az olvasasi konzisztencia szintjei

Az Oracle minden lekérdezés szamara biztositja az utasitas szintii olvasasi konzisztenciat, azaz a lekérdezés
altal olvasott adatok véglegesitettek, és egy iddpillanatbodl (alapértelmezésben a lekérdezés kezdetének
pillanatabol) szarmaznak. Emiatt a lekérdezés sohasem olvas piszkos (nem véglegesitett) adatot, és nem
latja azokat a valtoztatasokat sem, amelyeket a lekérdezés végrehajtasa alatt véglegesitett tranzakciok
eszkozoltek. Kérhetjiik egy tranzakcid Osszes lekérdezése szamara is az olvasasi konzisztencia biztositasat,
€z a tranzakcio szintii olvasasi konzisztencia. Ezt tigy érhetjiik el, hogy a tranzakciot sorba rendezhet6 vagy
csak olvasas modban futtatjuk (lasd lejjebb). Ekkor a tranzakcio altal tartalmazott dsszes lekérdezés a
tranzakci6 inditasakor fennalld adatbazis-allapotot latja, kivéve a tranzakcid altal korabban végrehajtott
modositasokat.

A kétféle olvasasi konzisztencia biztositasahoz az adatbazisszervernek egy olvasaskonzisztens adathalmazt
kell el6allitania, amikor egy tabla egyszerre lekérdezés és modositas alatt is all. E cél eléréséhez az Oracle
az undo informaciokat hasznalja fel. Amikor egy felhasznalé adatmoédositast hajt végre, az Oracle undo
bejegyzéseket készit, amelyeket undo (vagy rollback) szegmensekbe ir. Az undo szegmensek taroljak azon
adatok régi értékeit, amelyeket még nem véglegesitett vagy nemrég véglegesitett tranzakciok valtoztattak
meg. Igy ugyanazon adatnak tobb, kiilonbozé idépontokbol szarmazé valtozata 1étezhet az adatbazisban.
Az adatbazisszerver az adatok kiilonb6z6 idépontokban 1étez6 pillanatképeit hasznalja fel arra, hogy
biztositsa az adatok olvasaskonzisztens nézeteit és lehetdvé tegye a nemblokkold lekérdezéseket (lasd
késobb). Amint egy lekérdezés vagy tranzakcié megkezdi mikodését, meghatarozodik a system change
number (SCN) aktualis értéke. Az SCN a blokkokhoz mint adatbaziselemekhez tartoz6 idobélyegzének
tekinthetd. Ahogy a lekérdezés olvassa az adatblokkokat, az Oracle 6sszehasonlitja azok SCN-jét (utolséd
modositasanak ,,idejét”) az aktualis lekérdezés SCN értékével, és csak az annal nem nagyobb SCN-nel
rendelkez6 véglegesitett blokkokat olvassa be a tabla teriiletérdl. A nagyobb SCN-nel rendelkezd blokkok
esetén az undo adatokbol rekonstrualja az adott blokk azon verzidjat, amelyhez a legnagyobb olyan SCN
érték tartozik, amely kisebb, mint a lekérdezése, és mar véglegesitett tranzakcid hozta létre. Ezeket a
rekonstrudlt adatblokkokat konzisztens olvasasi klonoknak (consistent read clones) nevezziik. A kovetkezd
abra illusztralja a folyamatot:

76

http://docs.oracle.com/database/121/CNCPT/consist.htm

SELECT ...
(SCN: 10023)

10021

10021

> 10008
10008 (Undo

/ Szegmens
> 10021

10011 (

10021

\

Eléfordulhat, hogy az undo szegmensbdl mar nem allithat6 eld a keresett blokk sziikséges korabbi véltozata.
Ha az undo informaciok menedzselése automatikus, akkor l1étezik egy aktualis undo megtartasi idé (undo
retention period), amely az a minimalis id6tartam, ameddig az Oracle megprobalja megtartani a régi undo
informaciokat, miel6tt feliilirna Oket. Azokat a régi (véglegesitett tranzakcidohoz tartozd) undo
bejegyzéseket, amelyek régebbiek az aktualis undo megtartasi idénél, lejartnak (expired) nevezziik; ezek
feltilirhatok jabb tranzakcidk bejegyzéseivel. Az undo megtartasi idonél kisebb idejii régi bejegyzések
nem lejartak, ezeket az Oracle igyekszik megtartani a konzisztens olvasasok és a flashback mtiveletek (egy
tabla valamely multbéli allapotan végrehajtott miiveletek) biztositasahoz.

Ha az undo tablateriilet az AUTOEXTEND opcioval lett 1étrehozva (a DBCA altal automatikusan
1étrehozott UNDOTBS1 példaul ilyen), akkor az Oracle gy allitja be dinamikusan az undo megtartasi idét,
hogy az valamivel nagyobb legyen, mint a rendszer leghosszabb ideig futdé aktiv lekérdezésének a
végrehajtasi ideje. Ha a lejart undo informaciok altal elfoglalt tarteriilet fogyoban van, akkor — a nem lejart
undo informaciok feliilirasa helyett — megndveli a tablateriilet méretét. Ha a tablateriilethez megadtuk a
MAXSIZE opciot, és a tablateriilet mérete eléri az abban megadott méretet, akkor nem lejart undo
bejegyzések is feliilirddhatnak.

Ha az undo tablateriilet fix méretii, akkor az Oracle tgy allitja be dinamikusan az undo megtartasi idét,
hogy az a lehetd legnagyobb legyen a tablateriilet nagysagat és a rendszer terheltségét figyelembe véve. Ez
a lehet6 legnagyobb megtartasi 1d6 altaldban lényegesen nagyobb, mint a leghosszabb ideig futd aktiv
lekérdezés végrehajtasi ideje. Ha tul kicsire méretezziik az undo tdblateriiletet, akkor a hosszan futo
tranzakciok abortalhatnak egy ,,snapshot too old” hibaiizenet kiséretében, ami azt jelenti, hogy nincs
elegendd undo informdcio6 az olvasasi konzisztencia biztositasahoz.

Ha garantalni szeretnénk a hosszan futd lekérdezések vagy a flashback miiveletek sikeres végrehajtasat,
kérhetjlik a megtartasi garanciat (retention guarantee). Ekkor az Oracle soha nem irja feliil a nem lejart
undo bejegyzéseket, még akkor sem, ha emiatt az 0j tranzakciok nem tudnak lefutni (mivel nincs hely az

77

undo bejegyzéseik tarolasara). A megtartasi garancia nélkiil az adatbazisszerver feliilirhatja a nem lejart
undo bejegyzéseket, ha kevés a tarhely, ezaltal csokkentve a megtartasi idot.

A tranzakcioelkiilonitési szintek

Az SQL92 ANSIISO szabvany a tranzakcidelkiilonités négy szintjét definidlja, amelyek abban
kiilonboznek egymastol, hogy az alabbi harom jelenség koziil melyeket engedélyezik:

piszkos olvasas: a tranzakci6 olyan adatot olvas, amelyet egy masik, még nem véglegesitett tranzakcio
irt;

nem ismételhetoé (fuzzy) olvasdas: a tranzakciod ujraolvas olyan adatokat, amelyeket mar koradbban
beolvasott, és azt talalja, hogy egy mésik, mar véglegesitett tranzakcidé mddositotta vagy tordlte oket;
fantomok olvasasa: a tranzakci6 ujra végrehajt egy lekérdezést, amely egy adott keresési feltételnek
eleget tevo sorokkal tér vissza, €s azt talalja, hogy egy masik, mar véglegesitett tranzakcio tovabbi
sorokat szurt be, amelyek szintén eleget tesznek a feltételnek.

A négy tranzakcioelkiilonitési szint a kovetkezo:

Elkiilonitési szint Piszkos olvasas Nem ismételheté olvasas Fantomok olvasasa
nem olvasasbiztos lehetséges lehetséges lehetséges

(read uncommitted)

olvasasbiztos (read committed) nem lehetséges lehetséges lehetséges
megismételheto olvasas nem lehetséges nem lehetséges lehetséges

(repeatable read)

sorba rendezhetd (serializable) nem lehetséges nem lehetséges nem lehetséges

Az Oracle ezek koziil az olvasasbiztos és a sorba rendezhetd elkiilonitési szinteket ismeri, valamint egy
csak olvasds (read-only) modot, amely nem része a szabvanynak.

Olvasasbiztos: Ez az alapértelmezett tranzakcioelkiilonitési szint. Egy tranzakcié minden lekérdezése
csak a lekérdezés (és nem a tranzakcio) elinditasa eldtt véglegesitett adatokat latja. Piszkos olvasas
sohasem torténik. A lekérdezés két végrehajtasa kozott azonban a lekérdezés altal olvasott adatokat mas
tranzakciok megvaltoztathatjak, ezért el6fordulhat nem ismételhetd olvasas és fantomok olvasasa is.
Olyan kornyezetekben célszerii ezt a szintet valasztani, amelyekben varhatdan kevés tranzakcid kertil
egymassal konfliktusba.

Sorba rendezheto: A sorba rendezhetd tranzakcidk csak a tranzakcid elinditdsa eldtt véglegesitett
valtozasokat 1atjak, valamint azokat, amelyeket maga a tranzakcid hajtott végre INSERT, UPDATE ¢€s
DELETE utasitasok segitségével. A sorba rendezhetd tranzakciok nem hajtanak végre nem ismételhetd
olvasasokat, és nem olvasnak fantomokat. Ezt a szintet olyan kdrnyezetekben célszeri hasznalni,
amelyekben nagy adatbazisok vannak, és rovidek a tranzakciok, amelyek csak kevés sort modositanak,
valamint ha kicsi az esélye annak, hogy két konkurens tranzakci6é ugyanazokat a sorokat modositja,
illetve ahol a hosszu (sokaig futd) tranzakciok els@sorban csak olvasasi tranzakciok. Az Oracle csak
akkor engedi egy sor modositdsat egy sorba rendezhetd tranzakcidonak, ha az adott sor korabbi
valtoztatasait olyan tranzakciok hajtottdk végre, amelyek még a sorba rendezhetd tranzakcié elinditasa
elott véglegesitddtek. Amennyiben egy sorba rendezhetd tranzakcié megprobal modositani vagy tordlni
egy sort, amelyet egy olyan tranzakcidé valtoztatott meg, amely a sorba rendezhetd tranzakcid
inditasakor még nem véglegesitddott, az Oracle hibaiizenetet ad: ,,Cannot serialize access for this
transaction”. Ne feledjiik, hogy a neve ellenére a sorba rendezheto elkiilonitési szint valgjaban
pillanatkép-elkiilonitést hasznal, és nem garantalja a sorbarendezhetoséget!

78

o Csakolvasas: A csak olvasas elkiilonitési szint hasonld a sorba rendezheto elkiilonitési szinthez, kivéve
hogy a csak olvas6 tranzakciok nem engedik meg az adatmddositast a tranzakcidban, hacsak nem a
SYS felhasznal6 futtatja azt. A csak olvasé tranzakciok igy nem futhatnak bele a fent leirt hibaba. Ez
az elkiilonitési szint akkor hasznos, ha olyan jelentéseket készitiink, amelyek tartalmanak
konzisztensnek kell lennie a tranzakcié kezdetekor fennallo adatbézis-allapottal.

Az elkiilonitési szintet a kovetkezd utasitasok valamelyikének a tranzakcid elején torténd kiadasaval
adhatjuk meg:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET TRANSACTION READ ONLY;

A zarolasi rendszer

Mind az olvasasbiztos, mind a sorba rendezhet6 tranzakciok hasznaljak a sor szintii zarolast, ezaltal egy T
tranzakcionak varnia kell, ha olyan sort probal irni, amelyet egy még nem véglegesitett konkurens U
tranzakcié modositott. T megvarja, mig U véglegesitodik vagy abortal, és felszabaditja a zarat. Ha U abortal,
akkor T végrehajthatja a korabban zarolt sor modositasat, fliggetleniil az elkiilonitési szintjét6l, mintha U
nem is létezett volna. Ha azonban U véglegesitddik, akkor T csak akkor hajthatja végre a modositast, ha az
elkiilonitési szintje az olvasasbiztos. Egy sorba rendezhetd tranzakcid ilyenkor ,,Cannot serialize access”
hibatizenetet ad, mert U modositasanak véglegesitése T kezdete utan tortént.

A zarakat az Oracle automatikusan kezeli, amikor SQL-utasitasokat hajt végre. Mindig a legkevésbé
szigorti zdrmodot alkalmazza, igy biztositja a legmagasabb foku konkurenciat. Lehetdség van arra is, hogy
a felhasznal6 kérjen zarat.

Egy tranzakcioban szereplé SQL-utasitasoknak adott zarak altaldban a tranzakcid befejez6déséig
fennmaradnak (kétfazisti zarolas). Az Oracle akkor szabaditja fel a zarakat, amikor a tranzakcio
véglegesitddik vagy abortal. Ezenkiviil egy mentési pont utdn kapott zarak akkor is felszabadulnak, ha
visszagorgetjlik a tranzakciot @ mentési pontig. Ilyenkor azonban csak olyan tranzakciok kaphatjdk meg a
most felszabadul6 eréforrasok zarjait, amelyek nem varakoztak az eddig zarolt er6forrasokra. A varakozo
tranzakciok tovabb varakoznak, amig az eredeti tranzakciot nem véglegesitjiik, vagy teljesen vissza nem
gorgetjiik.

Zartipusok

Az Oracle a zarakat a kovetkez0 altalanos kategoriakba sorolja:

e DML-zarak (adatzarak): az adatok védelmére szolgalnak;
e DDL-zarak (szotarzarak): a sémaobjektumok (pl. tablak) szerkezetének a védelmére valok;
e Dels6 zarak: a bels6 adatszerkezetek, adatfajlok védelmére szolgalnak, kezelésiik teljesen automatikus.

DML-zarak két szinten léteznek: vannak sor szintli zarak (TX) és tabla szintti zarak (TM). A DML-
utasitdsok hatasara a tranzakciok mindkét szinten automatikusan kapjak a zarakat. Sorok szintjén csak
egyféle zarmod 1étezik, a kizardlagos. A tobbvaltozatu idébélyegzés €s a sor szintli zarolds kombinécioja
azt eredményezi, hogy a tranzakciok csak akkor versengenek az adatokeért, ha ugyanazokat a sorokat
probaljak meg elérni. Az Oracle olvasokra és irdkra vonatkozo zarolasi szabalyai a kovetkezok:

e Egy sor csak akkor keriil zarolasra, ha modositja egy iro.

e Egy sor irdja blokkolja (késlelteti) ugyanazon sor egy konkurens ir¢jat.

e Egy olvas6 sosem blokkol egy irdt, hacsak az olvasé nem a SELECT ... FOR UPDATE utasitast
hasznalja, amely zarolja is a beolvasott sorokat.

79

e Egy ir6 sosem blokkol egy olvasét. Ha egy ir6 modosit egy sort, az Oracle az undo adatokat hasznalja,
hogy a sor konzisztens nézetét biztositsa az olvasoknak.

A FOR UPDATE nélkiili lekérdezések tehat sohasem jarnak zarolasokkal, igy mas tranzakciok is
lekérdezhetik vagy akar modosithatjak a lekérdezett tablat, akar a kérdéses sorokat is. Mivel a FOR
UPDATE nélkiili lekérdezések — zarolasok hijan — nem blokkolhatnak mas miiveleteket, az Oracle gyakran
hivja az ilyen lekérdezéseket nemblokkolo lekérdezéseknek. Masrészt a lekérdezések sohasem varnak
zarfeloldasra, mindig végrehajtodhatnak.

Egy tranzakcié TX zarat kap minden egyes sorra, amelyet az alabbi utasitasok modositanak: INSERT,
UPDATE, DELETE, MERGE vagy SELECT ... FOR UPDATE. Ha egy tranzakcio zarat kap egy sorra, akkor
a sort tartalmazé tablara is zarat kap, hogy elkeriiljiik az olyan DDL-utasitdsokat, amelyek feliilirndk a
tranzakci6 valtoztatasait.

Egy tranzakci6 TM zarat kap, ha a tdblat az alabbi utasitdsok modositjdk: INSERT, UPDATE, DELETE,
MERGE, SELECT ... FOR UPDATE vagy LOCK TABLE. Tablak szintjén 6tféle zarmodot kiilonboztetiink
meg: row share (RS) vagy subshare (SS), row exclusive (RX) vagy subexclusive (SX), share (S), share
row exclusive (SRX) vagy share-subexclusive (SSX) és exclusive (X). A kovetkez6 tablazat sszefoglalja,
hogy az egyes utasitaisok milyen zdrmédot vonnak maguk utdn, és hogy milyen zarmddokkal
kompatibilisek:

SQL -utasitas Zarmod RS RX S SRX X
SELECT ... FROM té&bla - I I I I I
INSERT INTO tébla RX I I N N N
UPDATE tébla RX I I N N N
MERGE INTO tébla RX I I N N N
DELETE FROM tébla RX I I N N N
SELECT ... FROM té&bla ... FOR UPDATE RX I I N N N
LOCK TABLE tédbla IN ROW SHARE MODE RS I I I I N
LOCK TABLE tédbla IN ROW EXCLUSIVE MODE RX I I N N N
LOCK TABLE tédbla IN SHARE MODE S I N I N N
LOCK TABLE tébla IN SRX I N N N N
SHARE ROW EXCLUSIVE MODE
LOCK TABLE téabla IN EXCLUSIVE MODE X N N N N N

" Igen, ha egy masik tranzakcié nem tart fenn konfliktusos sor szintti zarat, kiilonben vérakozik.
Az egyes zarmodok részletesen a kovetkezok:

e Az RS zar azt jelzi, hogy a zarat fenntart6 tranzakcid sorokat zarolt a tdblaban, és késObb modositani
kivanja 6ket. Az RS a legkevésbé szigorti zarmod, amely a legmagasabb foku konkurenciat biztositja.

e Az RX zar éltalaban azt jelzi, hogy a zarat fenntart6 tranzakcié modositotta a tabla egyes sorait, vagy
kiadott egy SELECT ... FOR UPDATE utasitast.

e Ha egy tranzakcido S zarat birtokol egy tablan, akkor mas tranzakcio csak lekérdezheti a tablat
(SELECT ... FOR UPDATE hasznalata nélkiil). Mddositasok csak akkor megengedettek, ha csak
egyetlen tranzakcionak van S zarja a tablan. Mivel tobb tranzakcio is fenntarthat egyidejiileg S zarat
ugyanazon a tablan, ez a zar nem elegendd a tdbla mddosithatosdganak biztositasahoz.

e Az SRX zér szigorubb az S zarnal. Egy adott tablan egy iddpillanatban csak egy tranzakci6 tarthat fenn
SRX zérat. Més tranzakciok csak lekérdezhetik a tablat (a SELECT ... FOR UPDATE kivételével), de
nem modosithatjak.

e Az X a legszigorubb zarmdd, amely kizardlagos irdsi hozzaférést biztosit az ilyen zarat birtokld
tranzakcidonak. Egy adott tablan egy idOpillanatban csak egy tranzakci6 tarthat fenn X zarat.

A modositd6 DML-utasitasok és a SELECT ... FOR UPDATE utasitas az €rintett sorokra kizarélagos sor
szintli zarakat helyeznek, igy mas tranzakciok nem moddosithatjdk vagy tordlhetik a zarolt sorokat, amig a
zarakat elhelyezé tranzakcid nem véglegesitddik vagy abortal. A moddositd utasitast tartalmazo
tranzakcidnak a sor szintli zdrakon kiviil az érintett sorokat tartalmazo6 tablara is sziiksége van legalabb egy

80

RX modu zarra. Ha a tartalmazd tranzakcido mar fenntart egy S, SRX vagy X zarat a kérdéses tablan
(amelyek szigortibbak az RX zarnal), akkor az RX zarra nincs sziikség, ha pedig RS zarat tartott fenn, akkor
azt az Oracle automatikusan felmindsiti RX zarra.

Ha az utasitas alkérdést vagy implicit kérdést tartalmaz, akkor a lekérdezett sorok nem kapnak sor szintti
zarat. A DML-utasitasokba dgyazott alkérdések és implicit kérdések garantaltan konzisztensek a lekérdezés
kezdetekor fennallo adatbazis-allapottal, ¢s nem latjak a tartalmazd modositd utasitas altal véghezvitt
valtoztatasokat.

Egy tranzakcioban 1évé lekérdezés latja a tranzakcié korabbi modositdé utasitasai altal végrehajtott
valtoztatasokat, de nem latja mas tranzakciok nem véglegesitett modositéasait.

Zarak felminositése és kiterjesztése

Tablak szintjén az Oracle automatikusan felmindsit egy zarat er0sebb moduva, amikor sziikséges. Ha
példaul egy tranzakcié RS modu zérat tart fenn egy tablan, €s a tranzakcié egy DML-utasitasa mddositani
szeretné a tdbla néhany sorat, az RS mod automatikusan felmindsiil RX médra. Mivel sorok szintjén csak
egyfajta zarmdd 1étezik (kizarolagos), nincs sziikség felmindsitésre.

Zarak kiterjesztésének (lock escalation) nevezziik azt a folyamatot, amikor a szemcsézettség egy szintjén
(pl. sorok szintjén) 1év6 zarakat az adatbazis-kezeld rendszer a szemcsézettség egy magasabb szintjére (pl.
a tabla szintjére) emeli. P¢éld4aul ha a felhasznald sok sort zdrol egy tdblaban, egyes rendszerek ezeket
automatikusan kiterjesztik a teljes tdblara. Ezaltal csokken a zarak szama, viszont né a zarolt elemek
zarmoédjanak erdssége. Az Oracle nem alkalmazza a zérkiterjesztést, mivel az megndveli a holtpontok
kialakuldasédnak kockazatat. Tegyiik fel, hogy egy rendszer szeretné kiterjeszteni a T tranzakcio sor szintii
zarait a teljes tablara, de nem teheti meg a T tranzakci6 altal fenntartott zdrak miatt. Ha a T tranzakcionak
szintén sziiksége van a sor szintli zdrainak kiterjesztésére ugyanarra a tablara, holtpont alakul ki.

81

