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Az ábrán egy teljes adatbázis-kezelő rendszer vázát láthatjuk. Az egyvonalas dobozok a rendszer 

alkotórészeit jelentik, míg a dupla dobozok memóriabeli adatszerkezeteket reprezentálnak. A folytonos 

vonalak jelölik az olyan vezérlésátadást, ahol adatok is áramlanak, a szaggatott vonalak pedig csak az 

adatmozgást jelölik. Az adatbázis-kezelő rendszerrel kapcsolatos kölcsönhatások döntő többsége az ábra 
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bal oldalán lévő útvonalat követi. A felhasználó vagy az alkalmazói program olyan működést indít el, 

amelynek nincs hatása az adatbázissémára, viszont hatással lehet az adatbázis tartalmára (módosító utasítás 

esetén), illetve adatokat gyűjthet ki az adatbázisból (lekérdezés esetén). Két olyan útvonal van, amely 

mentén a felhasználó cselekménye hatást gyakorol az adatbázisra: 

1. A lekérdezés megválaszolása. A lekérdezésfordító elemzi és optimalizálja a lekérdezést. Az eredményül 

kapott lekérdezés-végrehajtási tervet (röviden lekérdezéstervet) vagy a lekérdezés megválaszolásához 

szükséges tevékenységek sorozatát továbbítja a végrehajtómotornak. A végrehajtómotor kisebb 

adatdarabokra (tipikusan rekordokra) vonatkozó kérések sorozatát adja át az erőforrás-kezelőnek. Az 

erőforrás-kezelő ismeri a relációkat tartalmazó adatfájlokat, a fájlok rekordjainak formátumát, méretét 

és az indexfájlokat is. Az indexfájlok segítenek abban, hogy az adatfájlok elemeit gyorsan meg lehessen 

találni. Az adatkéréseket az erőforrás-kezelő lefordítja lapokra, és ezeket a kéréseket továbbítja a 

pufferkezelőnek. A pufferkezelő feladata, hogy a másodlagos adattárolón (általában lemezen) tárolt 

adatok megfelelő részét hozza be a központi memória puffereibe. A pufferek és a lemez közti adatátvitel 

egysége általában egy lap vagy egy lemezblokk. A pufferkezelő információt cserél a tárkezelővel, hogy 

megkapja az adatokat a lemezről. Megtörténhet, hogy a tárkezelő az operációs rendszer parancsait is 

igénybe veszi, de tipikusabb, hogy az adatbázis-kezelő a parancsait közvetlenül a lemezvezérlőhöz 

intézi. 

2. A tranzakció feldolgozása. A lekérdezéseket és más tevékenységeket tranzakciókba csoportosíthatjuk. 

A tranzakciók olyan munkaegységek, amelyeket atomosan és más tranzakcióktól látszólag elkülönítve 

kell végrehajtani. Gyakran minden egyes lekérdezés vagy módosítás önmagában is egy tranzakció. 

Ezenkívül a tranzakció végrehajtásának tartósnak kell lennie, ami azt jelenti, hogy bármelyik befejezett 

tranzakció hatását még akkor is meg kell tudni őrizni, ha a rendszer összeomlik a tranzakció befejezése 

utáni pillanatban. A tranzakciófeldolgozót két fő részre osztjuk: 

a) Konkurenciavezérlés-kezelő vagy ütemező (scheduler): a tranzakciók elkülönítésének és 

atomosságának biztosításáért felelős. 

b) Naplózás- és helyreállítás-kezelő: a tranzakciók atomosságáért és tartósságáért felelős. 

A tranzakció 

A tranzakció (transaction) az adatbázis-műveletek végrehajtási egysége, amely DML-beli utasításokból áll, 

és a következő tulajdonságokkal rendelkezik: 

 Atomosság (atomicity): a tranzakció „mindent vagy semmit” jellegű végrehajtása (vagy teljesen 

végrehajtjuk, vagy egyáltalán nem hajtjuk végre). 

 Konzisztenciamegőrzés (consistency preservation): az a feltétel, hogy a tranzakció megőrizze az 

adatbázis konzisztenciáját, azaz a tranzakció végrehajtása után is teljesüljenek az adatbázisban előírt 

konzisztenciamegszorítások (integritási megszorítások), azaz az adatelemekre és a közöttük lévő 

kapcsolatokra vonatkozó elvárások. 

 Elkülönítés (isolation): az a tény, hogy minden tranzakciónak látszólag úgy kell lefutnia, mintha ez alatt 

az idő alatt semmilyen másik tranzakciót sem hajtanánk végre. 

 Tartósság (durability): az a feltétel, hogy ha egyszer egy tranzakció befejeződött, akkor már soha többé 

nem veszhet el a tranzakciónak az adatbázison kifejtett hatása. 

Ezek a tranzakció ACID-tulajdonságai (ACID properties). A konzisztenciamegőrzést mindig adottnak 

tekintjük (lásd később: korrektség alapelve), a másik három tulajdonságot viszont az adatbázis-kezelő 

rendszernek kell biztosítania, bár ettől időnként eltekintünk. Ha egy ad hoc utasítást adunk az SQL-

rendszernek, akkor minden lekérdezés vagy adatbázis-módosító utasítás egy tranzakció. Amennyiben 

beágyazott SQL-interfészt használva a programozó készíti el a tranzakciót, akkor egy tranzakcióban több 

SQL-lekérdezés és -módosítás szerepelhet. A tranzakció ilyenkor általában egy DML-utasítással kezdődik, 
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és egy COMMIT vagy ROLLBACK utasítással végződik. Ha a tranzakció valamely utasítása egy triggert 

aktivizál, akkor az is a tranzakció részének tekintendő, akárcsak a trigger által kiváltott további triggerek. 

(A trigger olyan programrész, amely bizonyos események bekövetkeztekor automatikusan lefut.) 

A tranzakció feldolgozása 

A tranzakciófeldolgozó biztosítja az adatok konkurens elérését és a helyreállíthatóságot (resiliency) a 

tranzakciók korrekt végrehajtásával. A tranzakciókezelő fogadja az alkalmazás tranzakciós utasításait. Az 

alkalmazás azt is megmondja a tranzakciókezelőnek, hogy mikor kezdődnek és végződnek a tranzakciók, 

és még egyéb információt is ad az alkalmazás elvárásairól (például lehet, hogy nem akarja megkövetelni 

az atomosságot). A tranzakciófeldolgozó a következő feladatokat hajtja végre: 

1. Naplózás: Annak érdekében, hogy a tartósságot biztosítani lehessen, az adatbázis minden változását 

külön feljegyezzük (naplózzuk) lemezen. A naplókezelő (log manager) többféle eljárásmód közül 

választja ki azt, amelyiket követni fog. Ezek az eljárásmódok biztosítják azt, hogy teljesen mindegy, 

mikor történik a rendszerhiba vagy a rendszer összeomlása, a helyreállítás-kezelő meg fogja tudni 

vizsgálni a változások naplóját, és ez alapján vissza tudja állítani az adatbázist valamilyen konzisztens 

állapotába. A naplókezelő először a pufferekbe írja a naplót, és egyeztet a pufferkezelővel, hogy a 

pufferek alkalmas időpillanatokban garantáltan íródjanak ki lemezre, ahol már az adatok túlélhetik a 

rendszer összeomlását. 

2. Konkurenciavezérlés: A tranzakcióknak úgy kell látszódniuk, mintha egymástól függetlenül, 

elkülönítve végeznénk el őket. A legtöbb rendszerben igazából sok tranzakciót kell egyszerre 

végrehajtani. Így aztán az ütemező (konkurenciavezérlés-kezelő) feladata, hogy meghatározza az 

összetett tranzakciók résztevékenységeinek egy olyan sorrendjét, amely biztosítja azt, hogy ha ebben a 

sorrendben hajtjuk végre a tranzakciók elemi tevékenységeit, akkor az összhatás megegyezik azzal, 

mintha a tranzakciókat tulajdonképpen egyenként és egységes egészként hajtottuk volna végre. A 

tipikus ütemező ezt a munkát azáltal látja el, hogy az adatbázis bizonyos részeire elhelyezett zárakat 

(lock) karbantartja. Ezek a zárak megakadályoznak két tranzakciót abban, hogy rossz kölcsönhatással 

használják ugyanazt az adatrészt. A zárakat rendszerint a központi memória zártáblájában (lock table) 

tárolja a rendszer (lásd ábra). Az ütemező azzal befolyásolja a lekérdezések és más adatbázis-műveletek 

végrehajtását, hogy megtiltja a végrehajtómotornak, hogy hozzányúljon az adatbázis zár alá helyezett 

részeihez. 

3. Holtpont feloldása: A tranzakciók az ütemező által engedélyezett zárak alapján versenyeznek az 

erőforrásokért. Így előfordulhat, hogy olyan helyzetbe kerülnek, amelyben egyiküket sem lehet 

folytatni, mert mindegyiknek szüksége lenne valamire, amit egy másik tranzakció birtokol. A 

tranzakciókezelő feladata, hogy ilyenkor közbeavatkozzon, és töröljön (abortáljon) egy vagy több 

tranzakciót úgy, hogy a többit már folytatni lehessen. 

A rendszerhibák kezelése 

A kérdés az, milyen technikákkal lehet biztosítani a helyreállíthatóságot, azaz hogyan tudjuk megőrizni az 

adatok integritását rendszerhibák előfordulásakor. Az adatoknak nem szabad sérülniük több hibamentes 

lekérdezés vagy adatbázis-módosítás egyszerre történő végrehajtásakor sem, ezzel a konkurenciavezérlés 

foglalkozik. 

A helyreállíthatóság biztosítására az elsődleges technika a naplózás (logging), amely valamilyen 

biztonságos módszerrel rögzíti az adatbázisban végrehajtott módosítások történetét. Három különböző 

módszert tanulmányozunk: a semmisségi (undo), a helyrehozó (redo) és a semmisségi/helyrehozó 

(undo/redo) naplózást. Foglalkozunk továbbá a helyreállítással (recovery), azzal az eljárással, amikor a 

naplót felhasználva az adatbázist konzisztens állapotba hozzuk, valamint az archiválással (dump, backup), 



4 

mellyel biztosíthatjuk, hogy az adatbázis nemcsak az ideiglenes rendszerhibákat, de a teljes adatbázis 

elveszítését is túlélje. 

A hibák fajtái 

Az adatbázis lekérdezése vagy módosítása során számos dolog hibát okozhat a billentyűzeten történt 

adatbeviteli hibáktól kezdve az adatbázist tároló lemez elhelyezésére szolgáló helyiségben történő 

robbanásig. 

 Hibás adatbevitel: Ezek a hibák gyakran nem észrevehetők. Ha például a felhasználó elüt egy számot 

egy telefonszámban, akkor az adat még úgy néz ki, mint egy telefonszám, csak éppen tartalmilag hibás 

lesz. Ha viszont kihagy egy számjegyet a telefonszámból, akkor már formailag is hibás (ha 

megkövetelünk egy rögzített formátumot). A modern adatbázis-kezelő rendszerek számos 

szoftverelemet biztosítanak a fentiekhez hasonló adatbeviteli hibák felismerésére. Például az SQL2 és 

az SQL3 szabványokban az adatbázis tervezője megadhat előírásokat, mint például kulcsra, külső 

kulcsra vagy értékekre vonatkozó megszorításokat (hogy például a telefonszámnak 10 jegyből kell 

állnia). A triggerek azok a programok, amelyek bizonyos típusú módosítások (például egy relációba 

történő beszúrás) esetén hajtódnak végre, annak ellenőrzésére, hogy a frissen bevitt adatok 

megfelelnek-e az adatbázis-tervező által megszabott előírásoknak. 

 Készülékhibák: A lemezegységek olyan helyi hibái, melyek egy vagy több bit megváltozását okozzák, 

a lemez szektoraihoz rendelt paritás-ellenőrzéssel megbízhatóan felismerhetők. A lemezegységek 

jelentős sérülése, elsősorban az író-olvasó fejek katasztrófái, az egész lemez olvashatatlanná válását 

okozhatják. Az ilyen hibákat általában az alábbi megoldások segítségével kezelik: 

1. A RAID-módszerek (Redundant Array of Independent Disks) valamelyikének használatával az 

elveszett lemez tartalma visszatölthető. 

2. Az archiválás használatával az adatbázisról másolatot készítünk valamilyen eszközre (például 

szalagra vagy optikai lemezre). A mentést rendszeresen kell végezni vagy teljes, vagy növekményes 

(csak az előző mentés óta történt változásokat archiváljuk) mentést használva. A mentett anyagot 

az adatbázistól biztonságos távolságban kell tárolnunk. 

3. Az adatbázisról fenntarthatunk elosztott, on-line másolatokat. Ebben az esetben biztosítanunk kell 

a másolatok konzisztenciáját. 

 Katasztrofális hibák: Ebbe a kategóriába soroljuk azokat a helyzeteket, amikor az adatbázist tartalmazó 

eszköz teljesen tönkremegy robbanás, tűz, vandalizmus vagy akár vírusok következtében. A RAID 

ekkor nem segít, mert az összes lemez és a paritás-ellenőrző lemezeik is egyszerre használhatatlanná 

válnak. A másik két biztonsági megoldás viszont alkalmazható katasztrofális hibák esetén is. 

 Rendszerhibák: Minden tranzakciónak van állapota, mely azt képviseli, hogy mi történt eddig a 

tranzakcióban. Az állapot tartalmazza a tranzakció kódjában a végrehajtás pillanatnyi helyét és a 

tranzakció összes lokális változójának értékét. A rendszerhibák azok a problémák, melyek a tranzakció 

állapotának elvesztését okozzák. Tipikus rendszerhibák az áramkimaradásból és a szoftverhibákból 

eredők, hiszen ezek a memória tartalmának felülírásával járhatnak. Ha egy rendszerhiba bekövetkezik, 

onnantól kezdve nem tudjuk, hogy a tranzakció mely részei kerültek már végrehajtásra, beleértve az 

adatbázis-módosításokat is. A tranzakció ismételt futtatásával nem biztos, hogy a problémát korrigálni 

tudjuk (például egy mezőnek eggyel való növelése esetén). Az ilyen jellegű problémák legfontosabb 

ellenszere minden adatbázis-változtatás naplózása egy elkülönült, nem illékony naplófájlban, lehetővé 

téve ezzel a visszaállítást, ha az szükséges. Ehhez hibavédett naplózási mechanizmusra van szükség. 
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A naplókezelő és a tranzakciókezelő 

A tranzakciók korrekt végrehajtásának biztosítása a tranzakciókezelő feladata. A tranzakciókezelő 

részrendszer egy sor feladatot lát el, többek között 

 jelzéseket ad át a naplókezelőnek úgy, hogy a szükséges információ naplóbejegyzés formában a 

naplóban tárolható legyen; 

 biztosítja, hogy a párhuzamosan végrehajtott tranzakciók ne zavarhassák egymás működését 

(ütemezés). 

A tranzakciókezelőt és kapcsolatait az alábbi ábra mutatja: 

 

Lekérdezés-

feldolgozó 

Adat 

Napló- 

kezelő 

Tranzakció-

kezelő 

Puffer- 

kezelő 

Helyreállítás-

kezelő 

Napló 

 

A tranzakciókezelő a tranzakció tevékenységeiről üzeneteket küld a naplókezelőnek, üzen a 

pufferkezelőnek arra vonatkozóan, hogy a pufferek tartalmát szabad-e vagy kell-e lemezre másolni, és üzen 

a lekérdezésfeldolgozónak arról, hogy a tranzakcióban előírt lekérdezéseket vagy más adatbázis-

műveleteket kell végrehajtania. 

A naplókezelő a naplót tartja karban. Együtt kell működnie a pufferkezelővel, hiszen a naplózandó 

információ elsődlegesen a memóriapufferekben jelenik meg, és bizonyos időnként a pufferek tartalmát 

lemezre kell másolni. A napló (adat lévén) a lemezen területet foglal el, ahogy ez az ábrán is látszik. 

Ha baj van, akkor a helyreállítás-kezelő aktivizálódik. Megvizsgálja a naplót, és ha szükséges, a naplót 

használva helyreállítja az adatokat. A lemez elérése most is a pufferkezelőn át történik. 

A tranzakciók korrekt végrehajtása 

Definiálnunk kell, mit értünk korrekt végrehajtás alatt. Feltesszük, hogy az adatbázis elemekből áll. Az 

adatbáziselem (database element) a fizikai adatbázisban tártolt adatok egyfajta funkcionális egysége, 

amelynek értékét tranzakciókkal lehet elérni (kiolvasni) vagy módosítani (kiírni). Az elemek alatt érthetünk 

relációt (vagy OO megfelelőjét, az osztálykiterjedést), relációsort (vagy OO megfelelőjét, az objektumot) 

vagy lemezblokkot, illetve -lapot. Ez utóbbi a legjobb választás a naplózás szempontjából, mivel ekkor a 

puffer egyszerű elemekből fog állni, és ezzel elkerülhető néhány súlyos probléma, például amikor az 

adatbázis valamely elemének egy része van csak a nem illékony memóriában (a lemezen). 
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Az adatbázis összes elemének pillanatnyi értékét az adatbázis állapotának (database state) nevezzük. 

Bizonyos adatbázis-állapotokat konzisztensnek (consistent) tekintünk, míg a többi adatbázis-állapotot 

inkonzisztensnek (inconsistent) minősítjük. A konzisztens állapotok kielégítik az adatbázissémára 

vonatkozó összes explicit megszorítást (explicit constraint) és implicit megszorítást (implicit constraint), 

melyek az adatbázis tervezőjének elgondolásaiban szerepelnek. Az explicit megszorítások betartását az 

adatbázis-kezelő rendszer kényszeríteni tudja azzal, hogy az olyan tranzakciókat, melyek megsértik az 

előírt összefüggéseket, a rendszer visszautasítja, így az adatbázisban semmilyen változtatás nem történik. 

Az implicit megszorítások azok, amelyeket nem tudunk egzakt módon jellemezni. Az egyetlen 

lehetőségünk az ilyen megszorítások betartásának biztosítására annak feltételezése, hogy ha valaki jogot 

kap az adatbázis módosítására, akkor neki legyen joga annak eldöntésére is, hogy melyek az elvárt implicit 

megszorítások. 

A tranzakciókra vonatkozó alapvető feltevésünk a korrektség alapelve (correctness principle): Ha a 

tranzakciót minden más tranzakciótól függetlenül (egyedül) és rendszerhiba nélkül végrehajtjuk, és ha 

indulásakor az adatbázis konzisztens állapotban volt, akkor a tranzakció befejezése után is konzisztens 

állapotban lesz (elkülönítés + atomosság –> konzisztenciamegőrzés). A korrektség alapelvéhez 

kapcsolódik a naplózás technikája és a konkurenciavezérlési mechanizmus. Két lehetőség inkonzisztens 

állapot előidézésére: 

 Nem teljesül a tranzakció atomosság tulajdonsága: ha a tranzakciónak csak egy részét sikerült 

végrehajtani, akkor nagy esélyünk van arra, hogy az általa előállított adatbázis-állapot nem lesz 

konzisztens. 

 A párhuzamosan végrehajtott tranzakciók jó eséllyel inkonzisztens állapothoz vezetnek, hacsak meg 

nem teszünk bizonyos megelőző lépéseket. 

A tranzakciók alaptevékenységei 

A tranzakció és az adatbázis kölcsönhatásának három fontos helyszíne van: 

1. az adatbázis elemeit tartalmazó lemezblokkok területe; 

2. a pufferkezelő által használt virtuális vagy valós memóriaterület; 

3. a tranzakció memóriaterülete. 

Ahhoz, hogy a tranzakció egy adatbáziselemet beolvashasson, azt előbb memóriapuffer(ek)be kell behozni, 

ha még nincs ott. Ezt követően tudja a puffer(ek) tartalmát a tranzakció a saját memóriaterületére beolvasni. 

Az adatbáziselem új értékének kiírása fordított sorrendben történik: az új értéket a tranzakció alakítja ki a 

saját memóriaterületén, majd ez az új érték másolódik át a megfelelő puffer(ek)be. Fontos, hogy egy 

tranzakció sohasem módosíthatja egy adatbáziselem értékét közvetlenül a lemezen! 

A pufferek tartalmát vagy azonnal lemezre lehet írni, vagy nem; az erre vonatkozó döntés általában a 

pufferkezelő joga. A naplózó rendszer használatának egyik lefőbb lépése a rendszerhibákból való 

helyreállíthatóság biztosítása érdekében a pufferkezelő ösztönzése a pufferbeli blokkok megfelelő 

időpontban történő lemezre írására. Ugyanakkor a lemez I/O-műveletek számának csökkentésére az 

adatbázis-kezelő rendszerek megengedhetik a módosításoknak csak az illékony memóriában történő 

végrehajtását, legalábbis bizonyos ideig és bizonyos feltételek teljesülése esetén. 

A különböző területek közötti adatmozgásokat megvalósító alapműveletek leírására a következő 

jelölésrendszert vezetjük be: 

1. INPUT(X): Az X adatbáziselemet tartalmazó lemezblokk másolása a memóriapufferbe. 

2. READ(X,t): Az X adatbáziselem bemásolása a tranzakció t lokális változójába. Részletesebben: ha 

az X adatbáziselemet tartalmazó blokk nincs a memóriapufferben, akkor előbb végrehajtódik 

INPUT(X). Ezután kapja meg a t lokális változó X értékét. 
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3. WRITE(X,t): A t lokális változó tartalma az X adatbáziselem memóriapufferbeli tartalmába 

másolódik. Részletesebben: ha az X adatbáziselemet tartalmazó blokk nincs a memóriapufferben, akkor 

előbb végrehajtódik INPUT(X). Ezután másolódik át a t lokális változó értéke a pufferbeli X-be. 

4. OUTPUT(X): Az X adatbáziselemet tartalmazó puffer kimásolása lemezre. 

A fenti műveleteknek akkor van értelmük, ha feltételezzük, hogy az adatbáziselemek elférnek egy-egy 

lemezblokkban és így egy-egy pufferben is, azaz feltételezhetjük, hogy az adatbáziselemek pontosan a 

blokkok. Adatbáziselem lehet egy relációsor is, ha a relációs séma nem engedi meg nagyobb sorok 

előfordulását, mint amennyi hely egy blokkban rendelkezésre áll. Ha az adatbáziselem több blokkot foglal 

el, akkor úgy is tekinthetjük, hogy az adatbáziselem minden blokkméretű része önmagában egy 

adatbáziselem. A naplózási mechanizmus, amelyet arra használunk, hogy a tranzakció ne fejeződhessen be 

az X kiírása nélkül, atomos; azaz vagy lemezre írja X összes blokkját, vagy semmit sem ír ki. A 

továbbiakban feltételezzük, hogy az adatbáziselem nem nagyobb egy blokknál. 

A READ és a WRITE műveleteket a tranzakciók használják, az INPUT és OUTPUT műveleteket a 

pufferkezelő alkalmazza, illetve bizonyos feltételek mellett az OUTPUT műveletet a naplózási rendszer is 

használja. 

Példa. Annak bemutatására, hogy a tranzakció mikor és hogyan használja a fenti alapműveleteket, tegyük 

fel, hogy az adatbázis két, A és B eleme tartalmának az adatbázis minden konzisztens állapotában meg kell 

egyeznie. A T tranzakció tartalmazza a következő két lépést: 

A := A*2; 

B := B*2; 

Ha a tranzakcióra az egyetlen konzisztenciaelvárás az A = B, továbbá ha T konzisztens adatbázis-állapotban 

indul, és tevékenységét rendszerhiba, valamint a párhuzamosan működő tranzakciókkal való kölcsönhatás 

nélkül be tudja fejezni, akkor az adatbázis befejezéskori állapotának is konzisztensnek kell lennie. Ekkor T 

megduplázva két azonos tartalmú elem értékét, kap két új, azonos értékű elemet. 

T végrehajtása maga után vonja A és B lemezről való beolvasását, az aritmetikai műveletek a T lokális 

változóiban kerülnek végrehajtásra, végül A és B új értékei visszaírásra kerülnek a puffereikbe. T-t hat 

lényeges lépésből állónak tekinthetjük: 

READ(A,t); t := t*2; WRITE(A,t); 

READ(B,t); t := t*2; WRITE(B,t); 

Ehhez még hozzáadódik az, hogy a pufferkezelő önállóan végrehajt OUTPUT lépéseket a pufferek 

tartalmának lemezre történő visszaírása végett. Legyen kezdetben A = B = 8. Az A és B pufferbeli és 

lemezen tárolt értékei és a T tranzakció t lokális változójának értékei lépésenként a következők: 

Tevékenység t M–A M–B D–A D–B 

READ(A,t) 8 8  8 8 
t := t*2 16 8  8 8 
WRITE(A,t) 16 16  8 8 
READ(B,t) 8 16 8 8 8 
t := t*2 16 16 8 8 8 
WRITE(B,t) 16 16 16 8 8 
OUTPUT(A)  16 16 16 8 
OUTPUT(B)  16 16 16 16 

T első lépésben beolvassa A-t, mely igény a pufferkezelőben kiváltja az INPUT(A) műveletet, ha A még 

nincs a pufferben. A értéke a READ utasítás hatására a T tranzakció memóriaterületére, a t változóba is 

bemásolódik. A következő lépés megduplázza t tartalmát, ennek nincs hatása sem A pufferbeli, sem A 

lemezen tárolt értékére. A harmadik lépés írja t-t A pufferébe, ennek nincs hatása A lemezen tárolt értékére. 
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A következő három lépés ugyanez, csak B-re vonatkozóan. Végül az utolsó két lépésben másolódik A és B 

lemezre. 

Figyeljük meg, hogy ezen lépések összességének végrehajtása alatt az adatbázis konzisztenciája 

megőrződik. Ha az OUTPUT(A) végrehajtása előtt rendszerhiba fordul elő, akkor ennek nincs hatása a 

lemezen tárolt adatbázisra, az még olyan, mintha T egyáltalán nem is működött volna, így a konzisztencia 

megőrződött. Ha rendszerhiba áll elő az OUTPUT(A) végrehajtása után, de még az OUTPUT(B) 

végrehajtása előtt, akkor az adatbázis inkonzisztens állapotban marad. Azt nem tudjuk biztosítani, hogy 

ilyen szituáció soha elő ne forduljon, de lépéseket tehetünk azért, hogy amikor mégis bekövetkezik, akkor 

a problémát elháríthassuk: vagy A és B értékének 8-ra való visszállításával, vagy mindkettő 16-ra 

növelésével. 

Példa. Tegyük fel, hogy az adatbázisra vonatkozó konzisztenciamegszorítás: 0  A  B. Állapítsuk meg, 

hogy a következő tranzakciók megőrzik-e az adatbázis konzisztenciáját! 

a) A := A + B; B := A + B; 

b) B := A + B; A := A + B; 

c) A := B + 1; B := A + 1; 

Semmisségi (undo) naplózás 

Az első kérdés, hogy milyen úton biztosítható a tranzakciók atomossága. A napló (log) nem más, mint 

naplóbejegyzések (log records) sorozata, melyek mindegyike arról tartalmaz valami információt, hogy mit 

tett egy tranzakció. A tranzakció tevékenysége nyomon követhető azáltal, hogy a tranzakció működésének 

hatása lépésenként naplózódik, és ez minden tranzakcióra érvényes. 

Ha rendszerhiba fordul elő, akkor a napló segítségével rekonstruálható, hogy a tranzakció mit tett a hiba 

fellépéséig. A naplót (az archívmentéssel együtt) használhatjuk akkor is, amikor eszközhiba keletkezik a 

naplót nem tároló lemezen. Általánosságban a katasztrófák hatásának kijavítását követően a tranzakciók 

hatását meg kell ismételni, és az általuk adatbázisba írt új értékeket ismételten ki kell írni. Egyes tranzakciók 

hatását viszont vissza kívánjuk vonni, azaz kérjük az adatbázis visszaállítását olyan állapotba, mintha a 

tekintett tranzakció nem is működött volna. 

Az első naplózási stílus, melyet semmisségi (undo, visszavonási) naplózásnak neveznek, csak az utóbbi 

típusú helyreállításra alkalmas. Ha nem teljesen biztos, hogy a tranzakció hatásai teljesen befejeződtek és 

lemezen tárolódtak, akkor minden olyan változtatást, melyet a tranzakció tehetett az adatbázisban, 

semmissé kell tenni, azaz az adatbázist vissza kell állítani a tranzakció működése előtti állapotába. 

Naplóbejegyzések 

Úgy kell tekintenünk, hogy a napló mint fájl kizárólag bővítésre van megnyitva. Tranzakció 

végrehajtásakor a naplókezelő feladata, hogy minden fontos eseményt a naplóban rögzítsen. A napló 

blokkjai mindenkor naplóbejegyzésekkel vannak feltöltve, mindegyik bejegyzés egy-egy naplózandó 

eseményre vonatkozik. A naplóblokkokat elsődlegesen a memóriában hozza létre a rendszer, és a 

pufferkezelő az adatbázis többi blokkjához hasonlóan kezeli őket. A naplóblokkokat, amint csak lehetséges, 

a nem illékony tárolóra írja a rendszer. 

A naplózás minden típusa a naplóbejegyzésnek számos formáját használja. Egyelőre a következőkkel 

foglalkozunk: 

1. <START T>: Ez a bejegyzés jelzi a T tranzakció (végrehajtásának) elkezdődését. 
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2. <COMMIT T>: A T tranzakció rendben befejeződött, az adatbázis elemein már semmi további 

módosítást nem kíván végrehajtani. Minthogy azt nem tudjuk felügyelni, hogy a pufferkezelő mikor 

dönt a memóriablokkok lemezre másolásáról, így általában nem lehetünk biztosak abban, hogy ha 

meglátjuk a <COMMIT T> naplóbejegyzést, akkor a változtatások a lemezen már megtörténtek. Ha 

ragaszkodunk ahhoz, hogy a módosítások már a lemezen is megtörténjenek, ezt az igényt a 

naplókezelőnek kell kikényszerítenie (mint például a semmisségi naplózás esetén). 

3. <ABORT T>: A T tranzakció nem tudott sikeresen befejeződni. Ha a T tranzakció abortált (a 

normálisnál korábban befejeződött), az általa tett változtatásokat nem kell a lemezre másolni. A 

tranzakciókezelő feladata annak biztosítása, hogy az ilyen változtatások ne jelenjenek meg a lemezen, 

vagy ha volt valami hatásuk a lemezen, akkor az törlődjön. Az abortált tranzakció hatásainak 

helyreállításával később foglalkozunk. Az abortálás oka lehet egy hiba a tranzakció kódjában (például 

0-val való osztás), melyet a tranzakció kilövésével kezel a rendszer; de az adatbázis-kezelő rendszer is 

abortálhat egy tranzakciót például holtponti helyzetben (lásd később). 

4. <T,X,v>: Ez a módosítási bejegyzés. Jelentése: A T tranzakció módosította az X adatbáziselemet, 

melynek módosítás előtti értéke v volt. A módosítási bejegyzés által leírt változtatás rendesen csak a 

memóriában történt meg, a lemezen nem; azaz a naplóbejegyzés a WRITE tevékenységre vonatkozik, 

nem pedig az OUTPUT-ra! A semmisségi naplózás nem rögzíti az adatbáziselem új értékét, csak a 

módosítás előtti értéket. A semmisségi naplózást alkalmazó rendszerekben a helyreállítás-kezelő 

feladata a tranzakció lehetséges hatásainak semmissé tétele, amelyhez elegendő csak a régi érték 

tárolása. 

Felmerülhet a kérdés, hogy milyen nagy a módosítást leíró naplóbejegyzés. Ha az adatbáziselemek 

lemezblokkok, és a módosítást leíró naplóbejegyzés tartalmazza az adatbáziselem régi (módosítás előtti) 

értékét (vagy mind a régi, mind az új értékét, amint azt az undo/redo naplózásnál látni fogjuk), akkor 

előfordulhat, hogy a naplóbejegyzés a blokknál nagyobb méretű lesz. Ez nem feltétlen probléma, mert – 

minden hagyományos fájlhoz hasonlóan – a naplót lemezblokkok sorozatának tekinthetjük, mely 

bájtsorozatot tartalmaz, a (technikai) blokkhatároktól függetlenül. Ezáltal mód nyílik a napló tömörítésére 

is. Például bizonyos körülmények között csak a módosításokat kell naplóznunk, azaz csak a tranzakció által 

módosított sor érintett attribútumainak neveit és azok régi értékeit. 

A semmisségi naplózás szabályai 

Ahhoz, hogy a rendszerhibák utáni helyreállításra a semmisségi naplózást használhassuk, a tranzakcióknak 

két előírást kell kielégíteniük: 

U1: Ha a T tranzakció módosítja az X adatbáziselemet, akkor a <T,X,v> típusú naplóbejegyzést azt 

megelőzően kell lemezre írni, hogy X új értékét lemezre írná a rendszer (write-ahead logging; WAL). 

U2: Ha a tranzakció hibamentesen teljesen befejeződött, akkor a COMMIT naplóbejegyzést csak azt követően 

szabad lemezre írni, hogy a tranzakció által módosított összes adatbáziselem már lemezre íródott, ezután 

viszont a lehető leggyorsabban. 

Összefoglalva: az egy tranzakcióhoz tartozó lemezre írásokat a következő sorrendben kell megtenni: 

1. az adatbáziselemek módosítására vonatkozó naplóbejegyzések; 

2. maguk a módosított adatbáziselemek; 

3. a COMMIT naplóbejegyzés. 

Az első két lépés az egyes módosításokra vagy módosítások csoportjaira vonatkozóan önmagában, külön-

külön is végrehajtható (nem kell a tranzakció összes módosítására csoportosan megtenni). 
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A naplóbejegyzések lemezre írásának kikényszerítésére a naplókezelőnek szüksége van a FLUSH LOG 

műveletre, mely felszólítja a pufferkezelőt az összes korábban még ki nem írt naplóblokk lemezre való 

kiírására. A FLUSH LOG műveletet a tevékenységek közé fogjuk iktatni. 

Példa. A semmisségi naplózás fényében vizsgáljuk meg újra a korábbi példában megismert tranzakciót. 

Kibővítjük a korábbi táblázatot, bemutatván a naplóbejegyzéseket is és a naplókiírási tevékenységet is a T 

tranzakció végrehajtása során: 

Lépés Tevékenység t M–A M–B D–A D–B Napló 

1)       <START T> 

2) READ(A,t) 8 8  8 8  

3) t := t*2 16 8  8 8  

4) WRITE(A,t) 16 16  8 8 <T,A,8> 

5) READ(B,t) 8 16 8 8 8  

6) t := t*2 16 16 8 8 8  

7) WRITE(B,t) 16 16 16 8 8 <T,B,8> 

8) FLUSH LOG       

9) OUTPUT(A)  16 16 16 8  

10) OUTPUT(B)  16 16 16 16  

11)       <COMMIT T> 

12) FLUSH LOG       

Az első, ami történik, az a <START T> bejegyzés naplóba írása. Utána jön A beolvasása, majd t 

módosítása, melynek nincs semmilyen hatása sem a lemezen tárolt adatbázisra, sem annak 

memóriapufferben található egyetlen részére sem. A 2) és 3) lépés nem igényel naplóbejegyzést, mert nincs 

hatásuk az adatbázisra. 

A 4) lépés A új értékének pufferbe írása. Ezen módosításra vonatkozik a <T,A,8> naplóbejegyzés, mely 

azt rögzíti, hogy A korábbi értékét (8) T megváltoztatta. Látható, hogy az új érték (16) nincs megemlítve a 

semmisségi naplózás naplójában. 

A következő három lépésben ugyanaz hajtódik végre B-re vonatkozóan, mint korábban A-ra. E ponton a T 

tranzakció rendben befejeződött, tevékenységét véglegesíteni kell. A és B értékét lemezre kell másolni, 

betartva a semmisségi naplózás két szabályát, a következő lépéseknek kötött sorrendben kell megtörténnie. 

Első, hogy A és B addig nem másolható lemezre, amíg a módosítást leíró naplóbejegyzések lemezre nem 

kerülnek. Ezt a 8) lépéssel biztosítjuk: a FLUSH LOG hatására az eddigi összes naplóbejegyzés lemezre 

íródik. E kiírást követően a 9) és 10) lépések A-t és B-t lemezre másolják. Ezeket a lépéseket a pufferkezelő 

valósítja meg. 

Ekkor lehetséges a T tranzakció teljes és sikeres befejezése, ezt jelzendő a 11) lépésben a <COMMIT T> 

bejegyzés a naplóba íródik. Végül a 12) lépésben ismét ki kell adni a FLUSH LOG utasítást azért, hogy 

biztosítsuk a <COMMIT T> naplóbejegyzés lemezre való kiírását. Enélkül, bár olyan helyzetben vagyunk, 

hogy a tranzakció teljesen és hibamentesen befejeződött, ennek a napló későbbi elemzésekor esetleg nem 

fogjuk nyomát találni. Az ilyen szituációk olyan furcsa viselkedést eredményezhetnek, hogy hiba esetén a 

felhasználó azt tapasztalja, hogy a tranzakció hibamentesen befejeződött, a lemezre kiírt módosítások mégis 

semmissé váltak, a tranzakciót ugyanis abortáltnak tekinti a rendszer. 

A fentiek alapján azt gondolhatnánk, hogy az egyes tranzakciókhoz tartozó tevékenységek elkülönülten 

hajtódnak végre. Az adatbázis-kezelő rendszernek viszont számos tranzakció szimultán kezelését kell 

megoldania. Így egy T tranzakció naplóbejegyzései a naplóban más tranzakciók bejegyzéseivel 

keveredhetnek. Ha a többi tranzakció valamelyike is a napló lemezre írását kezdeményezi, akkor a T-re 

vonatkozó naplóbejegyzések esetleg már korábban lemezre kerülnek, mint ahogy azt a tranzakció előírja. 

Ebből persze nem származik probléma. A <COMMIT T> naplóbejegyzést úgysem fogjuk a T OUTPUT 

utasításai végrehajtásának befejezésénél korábban kiírni, ezzel biztosítani tudjuk, hogy a módosított 

adatbázisértékek előbb megjelenjenek a lemezen, mint a COMMIT naplóbejegyzés. 
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Kényes helyzet áll viszont elő, ha két adatbáziselem közös blokkban található. Ilyenkor az egyik lemezre 

írása maga után vonja a másik kiírását is. Legrosszabb esetben az egyik adatbáziselem túl korai kiírásával 

megsértjük az U1 szabályt. Ez szükségessé tehet további előírásokat a tranzakcióra nézve azért, hogy a 

semmisségi naplózási módszer használható legyen. Például valamilyen zárolási módszert kell 

alkalmaznunk annak megelőzésére, hogy két tranzakció egyszerre ugyanazon blokkot használja. Ilyen 

problémák akkor jelentkeznek, amikor az adatbáziselemek blokkok részei. Emiatt célszerű 

adatbáziselemnek a blokkot tekinteni. 

Helyreállítás a semmisségi naplózás használatával 

Tételezzük fel, hogy rendszerhiba történt. Előfordulhat, hogy egy adott tranzakció által végzett adatbázis-

módosítások közül egyesek már lemezre íródtak, míg mások (melyeket ugyanez a tranzakció hajtott végre) 

még nem. Ha így történt, a tranzakció nem atomosan hajtódott végre, így az adatbázis inkonzisztens 

állapotba kerülhetett. A helyreállítás-kezelő feladata a napló használatával az adatbázist konzisztens 

állapotba visszaállítani. 

Először a legegyszerűbb helyreállítás-kezelő módszerrel foglalkozunk, mely a teljes naplót látja, 

függetlenül annak méretétől. Később egy sokkal finomabb megközelítést nézünk meg, amikor 

ellenőrzőpont periodikus készítésével a rendszer korlátozza azt a távolságot, ameddig a helyreállítás-

kezlőnek a korábbi történéseket vizsgálnia kell. 

A helyreállítás-kezelő első feladata a tranzakciók felosztása sikeresen befejezett és nem befejezett 

tranzakciókra. Ha található <COMMIT T> naplóbejegyzés, akkor az U2 szabálynak megfelelően a T 

tranzakció által végrehajtott összes adatbázis-módosítás már korábban lemezre íródott. Így a T tranzakció 

önmagában a hiba fellépésekor nem hagyhatta az adatbázist inkonzisztens állapotban. 

Ha a naplóban találunk <START T> bejegyzést, de nem találunk sem <COMMIT T>, sem <ABORT T> 

bejegyzést, akkor a T tranzakció végrehajthatott az adatbázisban olyan módosításokat, melyek még a hiba 

fellépése előtt lemezre íródtak, míg más változtatások még a memóriapufferekben sem történtek meg, vagy 

ott megtörténtek ugyan, de a lemezre már nem íródtak ki. Ilyen esetben a T nem komplett tranzakció, és 

hatását semmissé kell tenni, azaz a T által módosított adatbáziselemek értékeit vissza kell állítani a korábbi 

értékeikre. Az U1 szabály betartása biztosítja, hogy ha T a hiba jelentkezése előtt X értékét módosította, 

akkor még ez előtt a lemezen lévő naplóba kellett kiíródni egy <T,X,v> bejegyzésnek. Így a helyreállítás 

során módunkban áll a v értéket az X adatbáziselembe visszaírni. Felmerülhet a kérdés, hogy X értéke nem 

v-e amúgy is az adatbázisban, de nem is érdemes ezt ellenőrizni. 

Minthogy a naplóban számos rendesen befejezett és teljesen be nem fejezett tranzakció nyomát találhatjuk, 

és ezek közül több tranzakció módosíthatta az X adatbáziselemet is, nagyon ügyelnünk kell arra, hogy 

milyen sorrendben állítjuk vissza X korábbi tartalmát. Ezért a helyreállítás-kezelő a naplót a végéről kezdi 

átvizsgálni. Amint halad a napló átvizsgálásával, megjegyzi mindazon T tranzakciókat, melyekre 

vonatkozóan a naplóban <COMMIT T> vagy <ABORT T> bejegyzést talált. Ahogy halad visszafelé, és 

elér egy <T,X,v> bejegyzésig, akkor a következő lehetőségek vannak: 

 ha ugyanerre a T tranzakcióra vonatkozó COMMIT bejegyzéssel már találkozott, akkor nincs teendője, 

hiszen T rendesen és teljesen befejeződött, hatásait tehát nem kell semmissé tenni; 

 ha ABORT bejegyzéssel találkozott a T tranzakcióra vonatkozóan, akkor sincs teendője, ebben az 

esetben ugyanis T-t egyszer már helyreállítottuk; 

 minden más esetben T nem komplett tranzakció, ekkor a helyreállítás-kezelő X értékét v-re cseréli. 



12 

Miután a helyreállítás-kezelő végrehajtotta a fenti változtatásokat, minden nem komplett T tranzakcióra 

vonatkozóan <ABORT T> bejegyzést ír a naplóba, és kiváltja annak naplófájlba való kiírását is 

(FLUSH LOG). Ekkor folytatódhat az adatbázis normál használata, új tranzakciók indulhatnak. 

Példa. Tekintsük át, hogy mi történik, ha a fenti példában különböző időpontokban rendszerhiba következik 

be: 

1. A hiba a 12) lépést követően jelentkezett. Tudjuk, hogy ekkor a <COMMIT T> bejegyzést már lemezre 

írta a rendszer. A hiba kezelése során a T tranzakció hatásait nem kell visszállítani, a T-re vonatkozó 

összes naplóbejegyzést a helyreállítás-kezelő figyelmen kívül hagyhatja. 

2. A hiba a 11) és 12) lépések között jelentkezett. Ekkor előfordulhat, hogy a COMMIT bejegyzést 

tartalmazó naplóbejegyzés már lemezre íródott, például ha a naplóbejegyzés kiírását egy másik 

tranzakció már kérte a pufferkezelőtől. Ha így történt, akkor T-re vonatkozólag a hiba kezelése az 1. 

esethez hasonló. Ha azonban a COMMIT bejegyzés a lemezen nem található, akkor a helyreállítás-kezelő 

a T tranzakciót befejezetlennek tekinti. Ahogy olvassa a naplót visszafelé, először a <T,B,8> 

bejegyzést fogja megtalálni (a T tranzakcióra vonatkozólag). Ennek megfelelően a lemezen B 

tartalmába 8-at ír vissza. Majd a <T,A,8> naplóbejegyzés miatt A tartalmába is 8 kerül. Végezetül 

<ABORT T> bejegyzést ír a naplóba és a lemezre. 

3. Ha a hiba a 10) és 11) lépések között lépett fel, akkor a COMMIT bejegyzés még biztosan nem történt 

meg, tehát T befejezetlen, hatásainak semmissé tétele a 2. esetnek megfelelően történik. 

4. A 8) és 10) lépések között bekövetkező hiba fellépésekor az előző esethez hasonlóan T hatásait 

semmissé kell tenni. Az egyetlen különbség, hogy az A és/vagy B módosítása még nem jelent meg a 

lemezen. Ettől függetlenül mindkét adatbáziselem korábbi értékét (8) állítja vissza a rendszer. 

5. Amennyiben a hiba a 8) lépésnél korábban jelentkezik, akkor még az sem biztos, hogy a T tranzakcióra 

vonatkozó naplóbejegyzések közül bármi is lemezre került. Az U1 szabály miatt azonban tudjuk, hogy 

mielőtt az A és/vagy B adatbáziselemek a lemezen módosulnának, a megfelelő módosítási 

naplóbejegyzésnek a naplóban meg kell jelennie. Így ha T módosította is a lemezen A és/vagy B értékét, 

a megfelelő naplóbejegyzés hatására a helyreállítás-kezelő semmissé teszi ezeket a módosításokat. 

Tegyük fel, hogy egy korábbi hiba utáni helyreállítás közben ismét rendszerhiba lép fel. A semmisségi (és 

a másik kettő) naplózás oly módon van megtervezve, hogy a korábbi érték változtatás előtti tárolása 

következtében a helyreállító lépések idempotensek, ami azt jelenti, hogy a helyreállító tevékenység 

többszöri végrehajtása pontosan ugyanolyan hatású, mint egyszeri végrehajtása. Ha találunk egy <T,X,v> 

naplóbejegyzést, akkor nem számít, hogy X értéke már v, X értékét (esetleg ismételten) v-re állíthatjuk. 

Hasonlóan semmi problémát nem okoz, ha a helyreállítási folyamat egészét (vagy félbemaradt részét) 

többször megismételjük. 

Az ellenőrzőpont-képzés 

Mint láttuk, a helyreállítás elvben a teljes napló átvizsgálását igényli. Semmisségi naplózás esetén ha egy 

tranzakció a COMMIT naplóbejegyzést már kiírta a naplóba, akkor az ezen tranzakcióra vonatkozó 

naplóbejegyzésekre a helyreállítás során nincs már szükség (hacsak nem kívánjuk később elemezni a 

tranzakciókat). Gondolhatnánk arra, hogy a tranzakcióra vonatkozó, a COMMIT-ot megelőző 

naplóbejegyzéseket törölhetnénk a naplóból, de ezt nem mindig tehetjük meg. Ennek oka az, hogy gyakran 

sok tranzakció működik egyszerre, és ha a naplót egy tranzakció befejezése után csonkítanánk, esetleg 

elveszítenénk más, még aktív tranzakciókra vonatkozó bejegyzéseket, így nem tudnánk a naplót a 

helyreállításra használni. 
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E probléma megoldására a legegyszerűbb mód, ha a naplóra vonatkozóan ismétlődően ellenőrzőpontokat 

(checkpoint) képezünk. Kétféle ellenőrzőpont-képzés létezik: egyszerű és a rendszer működése közbeni. 

Az egyszerű ellenőrzőpont-képzés a következőképpen történik: 

1. Új tranzakcióindítási kérések kiszolgálásának letiltása. 

2. A még aktív tranzakciók helyes és teljes befejezésének vagy abortálásának és a COMMIT vagy ABORT 

bejegyzés naplóba írásának kivárása. 

3. A napló lemezre való kiírása (FLUSH LOG). 

4. <CKPT> naplóbejegyzés képzése és kiírása a naplóba, majd újra FLUSH LOG. 

5. Tranzakcióindítási kérések kiszolgálása. 

Az ellenőrzőpont kiírását megelőzően végrehajtott tranzakciók mind befejeződtek, és az U2 szabálynak 

megfelelően módosításaik lemezre kerültek. Ennek megfelelően ezen tranzakciók tevékenységére nézve 

egy esetleges későbbi hiba elhárításakor már nem igényel a rendszer helyreállítást. A helyreállítás során a 

naplót a végétől visszafelé csak a <CKPT> bejegyzésig kell elemezni azért, hogy a nem befejezett 

tranzakciókat azonosítsuk. Amikor a <CKPT> bejegyzést megtaláljuk, ebből tudjuk, hogy már láttuk az 

összes befejezetlen tranzakciót. Mivel az ellenőrzőpont-képzés alatt újabb tranzakció nem indulhatott, 

látnunk kellett a befejezetlen tranzakciókhoz tartozó összes naplóbejegyzést. Ezért nem szükséges a 

<CKPT> bejegyzésnél korábbi naplórészt elemeznünk, és – hacsak más okból nincs szükségünk rá – 

biztonsággal törölhetjük vagy felülírhatjuk. 

Példa. Tekintsük az alábbi naplórészletet: 

<START T1> 

<T1,A,5> 

<START T2> 

<T2,B,10> 

<T2,C,15> 

<T1,D,20> 

<COMMIT T1> 

<COMMIT T2> 

<CKPT> 

<START T3> 

<T3,E,25> 

<T3,F,30> 

Tegyük fel, hogy a 4. bejegyzés után úgy döntünk, hogy ellenőrzőpontot hozunk létre. Minthogy T1 és T2 

aktív tranzakciók, meg kell várnunk befejeződésüket, mielőtt a <CKPT> bejegyzést a naplóba írnánk. 

Tegyük fel, hogy a naplórészlet végén rendszerhiba lép fel. A naplót a végétől visszafelé elemezve T3-at 

fogjuk az egyetlen be nem fejezett tranzakciónak találni, így E és F korábbi értékeit kell csak 

visszaállítanunk. Amikor megtaláljuk a <CKPT> bejegyzést, tudjuk, hogy nem kell a korábbi 

naplóbejegyzéseket elemeznünk, végeztünk az adatbázis állapotának helyrehozásával. 

Felmerülhet a kérdés, hogy hogyan találjuk meg az utolsó naplóbejegyzést. A napló lényegében egy fájl, 

melynek blokkjai tartalmazzák a naplóbejegyzéseket. A blokk még ki nem töltött részeit üresként jelöljük. 

Ha a bejegyzéseket soha nem írjuk felül, akkor a helyreállítás-kezelő az utolsó bejegyzést úgy keresi meg, 

hogy megkeresi az első üres bejegyzést, és az ezt megelőző bejegyzés a fájl utolsó érvényes bejegyzése. 

Ha viszont a régi naplóbejegyzéseket felülírjuk, akkor a naplóbejegyzéseket egyedi, növekvő sorszámmal 

kell ellátnunk: 

1 

9 

2 

10 

3 

11 

4 5 6 7 8 

Ekkor azt a bejegyzést kell megtalálnunk, melynek nagyobb a sorszáma, mint a következőé: ez a bejegyzés 

a napló pillanatnyi vége. A gyakorlatban a nagyméretű napló több fájl egyesítése is lehet. Logikailag ekkor 

is egy fájlnak tekintjük, és a végét a megfelelő részfájlban keressük. 
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Ellenőrzőpont-képzés a rendszer működése közben 

Az egyszerű ellenőrzőpont-képzési technika problémája, hogy gyakorlatilag le kell állítani a rendszer 

működését az ellenőrzőpont elkészültéig. Minthogy az aktív tranzakciók még hosszabb időt igényelhetnek 

a normális vagy abnormális befejeződésükig, a felhasználó számára a rendszer leállítottnak tűnhet. Egy 

jóval bonyolultabb módszerrel, a működés közbeni ellenőrzőpont-képzéssel (nonquiescent checkpointing) 

elérjük, hogy az ellenőrzőpont-képzés alatt új tranzakciók indulását ne kelljen szüneteltetni. E módszer 

lépései: 

1. <START CKPT(T1,…,Tk)> naplóbejegyzés készítése és lemezre írása (FLUSH LOG). T1,…,Tk az 

éppen aktív tranzakciók nevei. 

2. Meg kell várni a T1,…,Tk tranzakciók mindegyikének normális vagy abnormális befejeződését, nem 

tiltva közben újabb tranzakciók indítását. 

3. Ha a T1,…,Tk tranzakciók mindegyike befejeződött, akkor <END CKPT> naplóbejegyzés elkészítése 

és lemezre írása (FLUSH LOG). 

Az ilyen típusú napló felhasználásával a következőképpen tudunk rendszerhiba után helyreállítani: a naplót 

a végétől visszafelé elemezve megtaláljuk az összes nem befejezett tranzakciót, régi értékére visszaállítjuk 

az ezen tranzakciók által megváltoztatott adatbáziselemek tartalmát. Két eset fordulhat elő aszerint, hogy 

visszafelé olvasván a naplót az <END CKPT> vagy a <START CKPT(T1,…,Tk)> naplóbejegyzést 

találjuk előbb: 

 Ha előbb az <END CKPT> naplóbejegyzéssel találkozunk, akkor tudjuk, hogy az összes még be nem 

fejezett tranzakcióra vonatkozó naplóbejegyzést a legközelebbi korábbi <START CKPT(T1,…,Tk)> 

naplóbejegyzésig megtaláljuk. Ott viszont megállhatunk, az annál korábbiakat akár el is dobhatjuk. 

 Amennyiben a <START CKPT(T1,…,Tk)> naplóbejegyzéssel találkozunk előbb, az azt jelenti, hogy 

a katasztrófa az ellenőrzőpont-képzés közben fordult elő. Ennek következtében a T1,…,Tk tranzakciók 

nem fejeződtek be (legalábbis nem tudtuk a befejeződést regisztrálni) a hiba fellépéséig. Ekkor a be 

nem fejezett tranzakciók közül a legkorábban kezdődött tranzakció indulásáig kell a naplóban 

visszakeresnünk, annál korábbra nem. Az ezt megelőző olyan START CKPT bejegyzés, amelyhez 

tartozik END CKPT, biztosan megelőzi a keresett összes tranzakció indítását leíró bejegyzéseket. Ha a 

START CKPT előtt olyan START CKPT bejegyzést találunk, amelyhez nem tartozik END CKPT, 

akkor ez azt jelenti, hogy korábban is ellenőrzőpont-képzés közben történt rendszerhiba. Az ilyen 

„ellenőrzőpont-kezdeményeket” figyelmen kívül kell hagyni. Ezenfelül, ha az ugyanazon tranzakcióra 

vonatkozó naplóbejegyzéseket összeláncoljuk, akkor nem kell a napló minden bejegyzését átnéznünk 

ahhoz, hogy megtaláljuk a még be nem fejezett tranzakciókra vonatkozó bejegyzéseket, elegendő csak 

az adott tranzakció bejegyzéseinek láncán visszafelé haladnunk. 

Általános szabályként elmondható, hogy ha egy <END CKPT> naplóbejegyzést kiírunk lemezre, akkor az 

azt megelőző START CKPT bejegyzésnél korábbi naplóbejegyzéseket törölhetjük. 

Példa. Tekintsük az alábbi naplórészletet: 

<START T1> 

<T1,A,5> 

<START T2> 

<T2,B,10> 

<START CKPT(T1,T2)> 

<T2,C,15> 

<START T3> 

<T1,D,20> 

<COMMIT T1> 

<T3,E,25> 
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<COMMIT T2> 

<END CKPT> 

<T3,F,30> 

Most úgy döntünk, hogy működés közbeni ellenőrzőpontot hozunk létre a 4. bejegyzés után. Minthogy e 

pillanatban T1 és T2 aktív tranzakciók, ezért kell az 5. bejegyzést felírnunk. Tegyük fel, hogy amíg T1 és 

T2 befejeződésére várunk, azalatt egy harmadik tranzakció (T3) is elkezdődik. 

Tegyük fel, hogy a naplórészlet végén rendszerhiba lép fel. A naplót a végétől visszafelé vizsgálva úgy 

fogjuk találni, hogy T3 egy be nem fejezett tranzakció, ezért hatásait semmissé kell tenni. Az utolsó 

naplóbejegyzés arról informál bennünket, hogy az F adatbáziselembe a 30 értéket kell visszaállítani. 

Amikor az <END CKPT> naplóbejegyzést találjuk, tudjuk, hogy az összes be nem fejezett tranzakció a 

megelőző START CKPT naplóbejegyzés után indulhatott csak el. Tovább haladva visszafelé, megtaláljuk 

a <T3,E,25> bejegyzést, mely megmondja nekünk, hogy az E adatbáziselem értékét 25-re kell 

visszaállítani. Ezen bejegyzés és a START CKPT naplóbejegyzés között további elindult, de be nem 

fejeződött tranzakcióra vonatkozó bejegyzést nem találunk, így az adatbázison mást már nem kell 

megváltoztatnunk. 

Tegyük fel most, hogy az ellenőrzőpont-képzés közben történt katasztrófa, a <T3,E,25> bejegyzés után. 

Visszafelé elemezve a naplót, azonosítjuk a T3, majd a T2 tranzakciókat, melyek nincsenek befejezve, tehát 

helyreállító módosításokat kell tennünk. Amikor megtaláljuk a <START CKPT(T1,T2)> 

naplóbejegyzést, megtudjuk, hogy az egyetlen további olyan tranzakció, mely lehetséges, hogy nincs 

befejezve, a T1. Minthogy azonban a <COMMIT T1> bejegyzést már láttuk, ebből tudjuk, hogy T1 nem be 

nem fejezett tranzakció. Láttuk már továbbá a <START T3> bejegyzést is, így már tudjuk, hogy csak addig 

kell folytatnunk a napló elemzését, amíg a T2 START bejegyzését meg nem találjuk. Eközben még a B 

adatbáziselem értékét is visszaállítjuk 10-re. 

Helyrehozó (redo) naplózás 

A semmisségi naplózás természetes és egyszerű stratégiát valósít meg a napló kezelésére és rendszerhibák 

esetén a visszaállításra, de a probléma megoldásának nem ez az egyetlen lehetséges megközelítése. A 

semmisségi naplózás potenciális problémája az, hogy csak azután tudjuk befejezni a tranzakciót, hogy az 

összes adatbázis-módosítása lemezre íródott. Olykor a lemezműveletekkel tudnánk takarékoskodni, ha 

megengednénk, hogy az adatbázis-módosításokat csak a memóriában végezzék a tranzakciók, miközben a 

napló az eseményeket rögzíti, azért, hogy katasztrófa esetén is biztonságban legyen az adatbázis. 

Az adatbáziselemek lemezre való azonnali visszaírásának kényszerét elkerülhetjük, ha a helyrehozó 

naplózás (redo logging) módszerét választjuk. Az alapvető különbségek a semmisségi és a helyrehozó 

naplózás között az alábbiak: 

 Amíg a semmisségi naplózás a helyreállítás során a be nem fejezett tranzakciók hatásait semmissé teszi, 

a befejezett tranzakciók hatásait pedig nem módosítja, addig a helyrehozó naplózás figyelmen kívül 

hagyja a be nem fejezett tranzakciókat, és megismétli a normálisan befejezettek által végrehajtott 

változtatásokat. 

 A semmisségi naplózás megkívánja az adatbáziselemek lemezen való módosítását a COMMIT 

naplóbejegyzés lemezre írása előtt, a helyrehozó naplózás viszont a COMMIT naplóbejegyzés lemezre 

írását várja el, mielőtt bármit is változtatna a lemezen lévő adatbázisban. 

 A semmisségi naplózás U1 és U2 szabályainak betartása mellett csak a módosított adatbáziselemek régi 

tartalmát kell megőriznünk az esetleges visszaállítás biztosításához, a helyrehozó naplózással történő 

helyreállításhoz a módosított elemek új értékére van szükség. Emiatt a helyrehozó naplózás 
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naplóbejegyzései ugyanolyan formájúak, de más a jelentésük, mint a semmisségi naplózásnál 

alkalmazottaké. 

A helyrehozó naplózás szabályai 

A helyrehozó naplózás az adatbáziselemek módosítását a naplóbejegyzésben az új értékkel képviseli (nem 

pedig a régivel, mint a semmisségi naplózásnál). Ez a bejegyzés ugyanúgy néz ki, mint a semmisségi 

naplózásnál használt: <T,X,v>, a jelentése azonban más: a T tranzakció az X adatbáziselemnek a v értéket 

adta. E bejegyzésben az X régi értékét nem jelzi semmi. Ha egy T tranzakció módosítja egy X adatbáziselem 

értékét, akkor egy <T,X,v> bejegyzést kell a naplóba írni. 

Az adatbáziselemek és a naplóbejegyzések lemezre kerülésének sorrendjét az alábbi egyszerű szabály írja 

le: 

R1: Mielőtt az adatbázis bármely X elemét a lemezen módosítanánk, szükséges, hogy az X ezen 

módosítására vonatkozó összes naplóbejegyzés, azaz <T,X,v> és <COMMIT T>, lemezre kerüljön. 

Minthogy a COMMIT bejegyzést csak akkor írhatjuk a naplóba, ha a tranzakció teljesen és hibamentesen 

befejeződött, így az csak a módosításokat leíró bejegyzések után állhat, ezért úgy is összegezhetjük az R1 

szabályt, hogy ha helyrehozó naplózást használunk, akkor az egy tranzakcióra vonatkozó lemezre írásoknak 

a következő sorrendben kell megtörténniük: 

1. az adatbáziselemek módosítását leíró naplóbejegyzések lemezre írása; 

2. a COMMIT naplóbejegyzés lemezre írása; 

3. az adatbáziselemek értékének tényleges cseréje a lemezen. 

Példa. Nézzük meg a korábban megismert tranzakciót helyrehozó naplózás használatával: 

Lépés Tevékenység t M–A M–B D–A D–B Napló 

1)       <START T> 

2) READ(A,t) 8 8  8 8  

3) t := t*2 16 8  8 8  

4) WRITE(A,t) 16 16  8 8 <T,A,16> 

5) READ(B,t) 8 16 8 8 8  

6) t := t*2 16 16 8 8 8  

7) WRITE(B,t) 16 16 16 8 8 <T,B,16> 

8)       <COMMIT T> 

9) FLUSH LOG       

10) OUTPUT(A)  16 16 16 8  

11) OUTPUT(B)  16 16 16 16  

A főbb különbségek a semmisségi és a helyrehozó naplózás használata között tehát a következők: A 

módosítási bejegyzésekben A és B új értéke szerepel, nem a régi. A COMMIT bejegyzés korábbra került, a 

8) lépésbe. Ezt követően a napló lemezre írását kiváltó FLUSH LOG következik, így a T tranzakció által 

végrehajtott módosításokat leíró összes naplóbejegyzés lemezre íródik. Csak ezt követően kerül lemezre A 

és B új értéke. Az ábrán ezen új értékek kiírását a közvetlenül következő 10) és 11) lépésekben láthatjuk, 

bár a gyakorlatban ezekre esetleg csak később kerül sor. 

Helyreállítás a helyrehozó naplózás használatával 

A helyrehozó naplózás R1 szabályának fontos következménye, hogy ha a naplóban nincs <COMMIT T> 

bejegyzés, akkor tudjuk, hogy a T tranzakció nem hajtott végre az adatbázisban módosítást a lemezen. Így 

a be nem fejezett (nem teljes) tranzakciók a helyreállítás során úgy tekinthetők, mintha meg sem történtek 

volna. Problémát a befejezett tranzakciók jelenthetnek, mert nem tudjuk, hogy az általuk elvégzett 
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adatbázis-változtatások közül melyek íródtak már lemezre. Szerencsére a helyrehozó naplózás naplója 

éppen azon információkat (az új értékeket) tartalmazza, melyekre szükségünk van a helyreállításhoz. Ezen 

új értékeket kell lemezre írnunk, attól függetlenül, hogy esetleg már korábban is kiíródtak. A 

rendszerkatasztrófa bekövetkezése után a helyrehozó naplózással történő helyreállításhoz a következőket 

kell tennünk: 

1. Meghatározzuk a befejezett tranzakciókat (COMMIT). 

2. Elemezzük a naplót az elejétől kezdve. Minden <T,X,v> naplóbejegyzés esetén: 

a) Ha T nem befejezett tranzakció, akkor nem kell tenni semmit. 

b) Ha T befejezett tranzakció, akkor v értéket kell írni az X adatbáziselembe. 

3. Minden T be nem fejezett tranzakcióra vonatkozóan <ABORT T> naplóbejegyzést kell a naplóba írni, 

és a naplót ki kell írni lemezre (FLUSH LOG). 

Példa. Nézzük meg, hogyan lehet a fenti példában a helyreállítást elvégezni a különböző pillanatokban 

bekövetkező katasztrófák esetén: 

1. Ha a katasztrófa a 9) lépés után bármikor következik be, akkor a <COMMIT T> bejegyzés már lemezen 

van. A helyreállító rendszer T-t befejezett tranzakcióként azonosítja. Amikor a naplót az elejétől kezdve 

elemzi, a <T,A,16> és a <T,B,16> bejegyzések hatására a helyreállítás-kezelő az A és B adatbázis-

elemekbe a 16 értéket írja. Ha a katasztrófa a 10) és 11) lépések között következett be, akkor A újraírása 

redundáns ugyan, de B írása lényeges lépés az adatbázis konzisztens állapotának eléréséhez. 

Amennyiben a hiba a 11) lépést követően keletkezett, akkor mindkét adatbáziselem új értékének 

lemezre írása redundáns, de semmi gondot nem okoz. 

2. Ha a hiba a 8) és 9) lépések között jelentkezik, akkor bár a <COMMIT T> bejegyzés már a naplóba 

került, de nem biztos, hogy lemezre íródott. Ha lemezre került, akkor a helyreállítási eljárás az 1. esetnek 

megfelelően történik, ha nem, akkor pedig a 3. esetnek megfelelően. 

3. Ha a katasztrófa a 8) lépést megelőzően keletkezik, akkor <COMMIT T> naplóbejegyzés még biztosan 

nem került lemezre, így T be nem fejezett tranzakciónak tekintendő. Ennek megfelelően A és B értékeit 

a lemezen még nem változtatta meg a T tranzakció, tehát nincs mit helyreállítani. Végül egy 

<ABORT T> bejegyzést írunk a naplóba. 

Mivel sok befejezett tranzakció is adhatott új értéket ugyanazon X adatbáziselemnek, ezért a helyrehozó 

naplózás alkalmazásakor a naplót a korábbi bejegyzésektől a későbbiek felé (időrendben) haladva kell 

elemeznünk. Így érhető el, hogy X adatbázisbeli végső értéke a normálisan befejeződött tranzakciók által 

utoljára adott legyen. Ugyanazt az állapotot érjük el tehát, mint ami a semmisségi naplózásnál a napló 

visszafelé elemzésével volt elérhető. 

Helyrehozó naplózás ellenőrzőpont-képzés használatával 

A semmisségi naplózásnál látottakhoz hasonlóan a helyrehozó naplózás naplójába is illeszthetünk 

ellenőrzőpontokat. A helyrehozó naplózásnál azonban új probléma jelentkezik: minthogy a befejeződött 

tranzakciók módosításainak lemezre írása a befejeződés után sokkal később is történhet, így az e 

vonatkozásban ugyanazon pillanatban aktív tranzakciók számát nincs értelme korlátozni, tehát nincs 

értelme az egyszerű ellenőrzőpont-képzésnek. Tekintet nélkül arra, hogy az ellenőrzőpont-képzés alatt 

tranzakciók indulását megengedjük vagy sem, a kulcsfeladat – amit meg kell tennünk az ellenőrzőpont-

készítés kezdete és befejezése közötti időben – az összes olyan adatbáziselem lemezre való kiírása, 

melyeket befejezett tranzakciók módosítottak, és még nem voltak lemezre kiírva. Ennek megvalósításához 

a pufferkezelőnek nyilván kell tartania a piszkos puffereket (dirty buffers), melyekben már végrehajtott, de 

lemezre még ki nem írt módosításokat tárol. Azt is tudnunk kell, hogy mely tranzakciók mely puffereket 

módosították. 
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Másrészről viszont be tudjuk fejezni az ellenőrzőpont-képzést az aktív tranzakciók (normális vagy 

abnormális) befejezésének kivárása nélkül, mert ők ekkor még amúgy sem engedélyezik lapjaik lemezre 

írását. A helyrehozó naplózásban a működés közbeni ellenőrzőpont-képzés a következőkből áll: 

1. <START CKPT(T1,…,Tk)> naplóbejegyzés elkészítése és lemezre írása, ahol T1,…,Tk az összes 

éppen aktív tranzakció. 

2. Az összes olyan adatbáziselem kiírása lemezre, melyeket olyan tranzakciók írtak pufferekbe, melyek a 

START CKPT naplóba írásakor már befejeződtek, de puffereik lemezre még nem kerültek. 

3. <END CKPT> bejegyzés naplóba írása, és a napló lemezre írása. 

Példa. Tekintsük az alábbi naplórészletet: 

<START T1> 

<T1,A,5> 

<START T2> 

<COMMIT T1> 

<T2,B,10> 

<START CKPT(T2)> 

<T2,C,15> 

<START T3> 

<T3,D,20> 

<END CKPT> 

<COMMIT T2> 

<COMMIT T3> 

Amikor az ellenőrzőpont-képzés elkezdődött, csak T2 volt aktív, de a T1 által A-ba írt érték még nem biztos, 

hogy lemezre került. Ha még nem, akkor A-t lemezre kell másolnunk, mielőtt az ellenőrzőpont-képzést 

befejezhetnénk. A napló érzékelteti, hogy az ellenőrzőpont-képzés befejezéséig más események is 

bekövetkezhetnek: T2 a C adatbáziselem tartalmát módosítja, elindul egy új tranzakció (T3), és módosítja 

D értékét. Az ellenőrzőpont-képzés befejezése után már csak a T2 és T3 tranzakciók befejeződése történt 

meg. 

Visszaállítás az ellenőrzőpont-képzéssel kiegészített helyrehozó típusú naplózással 

Mint a semmisségi naplózásnál, most is az ellenőrzőpontok naplóba illesztése segít a napló átvizsgálásának 

korlátozásában. Most is két eset fordulhat elő: 

 Tegyük fel, hogy a katasztrófa előtt a naplóba feljegyzett utolsó ellenőrzőpont-bejegyzés 

<END CKPT>. Ekkor tudjuk, hogy az olyan értékek, melyeket olyan tranzakciók írtak, melyek a 

<START CKPT(T1,…,Tk)> naplóbejegyzés megtétele előtt befejeződtek, már biztosan lemezre 

kerültek, így nem kell velük foglalkoznunk. Foglalkoznunk kell viszont a Ti-kkel és az ellenőrzőpont 

kialakításának megkezdése után induló tranzakciókkal: ezeknek lehetnek olyan adatbázis-módosításaik, 

melyek még nem kerültek lemezre, pedig a tranzakció már befejeződött. Ekkor olyan visszaállítást kell 

tennünk, amilyenről már szó volt, azzal a különbséggel, hogy figyelmünket azon tranzakciókra 

korlátozhatjuk, melyek az utolsó <START CKPT(T1,…,Tk)> naplóbejegyzésben a Ti-k között 

szerepelnek, vagy ezen naplóbejegyzést követően indultak el. A naplóban való keresés során a 

legkorábbi <START Ti> naplóbejegyzésig kell visszamennünk, annál korábbra nem. Ezek a START 

naplóbejegyzések akárhány korábbi ellenőrzőpontnál előbb is felbukkanhatnak. Ahogy a semmisségi 

naplózásnál, az adott tranzakciókra vonatkozó naplóbejegyzések visszafelé keresése segít megtalálni a 

számunkra éppen fontos bejegyzéseket. 

 Tegyük fel, hogy a naplóba feljegyzett utolsó ellenőrzőpont-bejegyzés a <START CKPT(T1,…,Tk)>. 

Nem lehetünk abban biztosak, hogy az ezt megelőzően befejezett tranzakciók által módosított 
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adatbáziselemek már lemezre íródtak. Ezért az előző <END CKPT> bejegyzéshez tartozó 

<START CKPT(S1,…,Sm)> bejegyzésig vissza kell keresnünk, és helyre kell állítanunk az olyan 

befejeződött tranzakciók tevékenységének eredményeit, melyek ez utóbbi 

<START CKPT(S1,…,Sm)> bejegyzés után indultak, vagy az Si-k közül valók. 

Példa. Tekintsük ismét az előbbi naplórészletet. Ha a katasztrófa a végén lép fel, akkor visszafelé keresve 

megtaláljuk az <END CKPT> bejegyzést. Ekkor tudjuk, hogy a helyreállítás szempontjából elegendő csak 

azon tranzakciókat figyelembe venni, melyek vagy a <START CKPT(T2)> bejegyzés felírását követően 

indultak, vagy szerepelnek e bejegyzés listájában (most csak T2). Így a vizsgálandó tranzakcióhalmazunk 

a (T2, T3). <COMMIT T2> és <COMMIT T3> bejegyzéseket találunk, ebből tudjuk, hogy mindkét 

tranzakció hatását helyre kell állítanunk. A naplóban visszafelé meg kell keresnünk a <START T2> 

bejegyzést, és innen már időrendben haladva a naplóban a következő módosítási bejegyzéseket találjuk a 

T2 és T3 befejezett tranzakciókra vonatkozóan: <T2,B,10>, <T2,C,15> és <T3,D,20>. Mivel azt nem 

tudjuk, hogy ezen változtatások a lemezen már megtörténtek-e, ezért most a lemezre újraírjuk a B, a C és a 

D tartalmát, megfelelően 10, 15 és 20 értékeket adva nekik. 

Tegyük fel, hogy a katasztrófa a <COMMIT T2> és a <COMMIT T3> bejegyzések között történt. A 

helyreállítás az előbbi esethez hasonló, azzal a különbséggel, hogy T3 nem befejezett tranzakció, ennek 

megfelelően a <T3,D,20> helyreállítást nem kell végrehajtani. D értékét tehát a helyreállítás során nem 

változtatjuk meg, hacsak a vizsgált naplórészben található, másik tranzakcióra vonatkozó bejegyzés miatt 

meg nem kell változtatnunk. A helyreállítást követően egy <ABORT T3> bejegyzést írunk a naplóba. 

Ha a hiba az <END CKPT> bejegyzést megelőzően lépett fel, akkor az utolsó előtti START CKPT 

bejegyzést kell megkeresnünk (melynek már van <END CKPT> párja), és annak listájából tudjuk meg, 

melyek az aktív tranzakciók. Ha nem találunk korábbi ellenőrzőpont-bejegyzést, akkor mindenképpen a 

napló elejére kell mennünk. Így esetünkben az egyedüli befejezett tranzakciónak T1-et fogjuk találni, ezért 

a <T1,A,5> tevékenységet helyreállítjuk. A helyreállítást követően <ABORT T2> és <ABORT T3> 

bejegyzést írunk a naplóba. 

Minthogy a tranzakciók több ellenőrzőpont készítésekor is aktívak lehetnek, célszerű lehet, hogy a 

<START CKPT(T1,…,Tk)> naplóbejegyzésbe nemcsak az aktív tranzakciók neveit, hanem olyan 

mutatókat is elhelyezzünk, melyek az aktív tranzakciók indulását leíró bejegyzések naplóbeli helyét adják 

meg. Így eljárva biztonsággal meg tudjuk állapítani, hogy a napló mely korábbi részeit törölhetjük. Amikor 

<END CKPT> bejegyzést írunk a naplóba, akkor tudjuk, hogy a naplóban már sosem kell korábbra 

visszatekintenünk, mint ahol a Ti aktív tranzakcióra vonatkozó legkorábbi <START Ti> bejegyzést 

találjuk. Következésképpen az ezen START bejegyzést megelőző bejegyzések törölhetők. 

Semmisségi/helyrehozó (undo/redo) naplózás 

Láthattuk, hogy a naplózás két különböző megközelítése abban mutat eltérést, hogy a napló az 

adatbáziselemek értékének módosítása esetén a régi vagy az új értéket tartalmazza. Mindkét módszernek 

vannak bizonyos hátrányai is: 

 A semmisségi naplózás alkalmazása megköveteli, hogy az adatokat a tranzakció befejezésekor 

nyomban lemezre írjuk, ezzel (esetleg jelentősen) növeljük a végrehajtandó lemezműveletek számát. 

 A helyrehozó naplózás minden módosított adatbázisblokk pufferben tartását igényli egészen a 

tranzakció rendes és teljes befejezéséig, így a napló kezelésével együtt (esetleg jelentősen) növeljük a 

tranzakciók átlagos pufferigényét. 

 Mindkét naplózási módszer az ellenőrzőpont képzése közben ellentétes igényeket támaszt a pufferek 

lemezre írása szempontjából, kivéve, ha az adatbáziselemek teljes blokkok vagy blokkok sokasága. 
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Például ha a puffer tartalmaz egy A adatbáziselemet, melyet egy rendesen és teljesen befejezett 

tranzakció módosított, és tartalmaz egy B adatbáziselemet is, melyet olyan tranzakció módosított, 

melyre vonatkozóan a COMMIT bejegyzés még nem került lemezre, akkor – az R1 szabálynak 

megfelelően – a puffer lemezre másolását igényeljük A miatt, viszont tiltjuk ennek megtételét B miatt. 

A semmisségi/helyrehozó (undo/redo) naplózás a tevékenységek elvégzési sorrendjének rugalmasságát 

növeli azáltal, hogy bővíti a naplózott információk körét. 

A semmisségi/helyrehozó naplózás szabályai 

A semmisségi/helyrehozó naplózás – egyetlen különbséggel – ugyanolyan típusú naplóbejegyzéseket 

használ, mint a naplózás másik két módszere. E módszerben az adatbáziselem értékének módosítását leíró 

naplóbejegyzés négykomponensű: a <T,X,v,w> naplóbejegyzés azt jelenti, hogy a T tranzakció az 

adatbázis X elemének korábbi v értékét w-re módosította. A semmisségi/helyrehozó naplózást alkalmazó 

rendszernek a következő előírást kell betartania: 

UR1: Mielőtt az adatbázis bármely X elemének értékét – valamely T tranzakció által végzett módosítás 

miatt – a lemezen módosítanánk, ezt megelőzően a <T,X,v,w> módosítást leíró naplóbejegyzésnek 

lemezre kell kerülnie. 

A semmisségi/helyrehozó naplózás UR1 szabálya csak azokat a feltételeket kényszeríti, amelyek a 

semmisségi és a helyrehozó naplózási szabályok mindegyikében szerepelnek. Ezáltal a <COMMIT T> 

bejegyzés megelőzheti, de követheti is az adatbáziselemek lemezen történő bármilyen megváltoztatását. 

Példa. Nézzük meg a szokásos példánkat semmisségi/helyrehozó naplózás használatával: 

Lépés Tevékenység t M–A M–B D–A D–B Napló 

1)       <START T> 

2) READ(A,t) 8 8  8 8  

3) t := t*2 16 8  8 8  

4) WRITE(A,t) 16 16  8 8 <T,A,8,16> 

5) READ(B,t) 8 16 8 8 8  

6) t := t*2 16 16 8 8 8  

7) WRITE(B,t) 16 16 16 8 8 <T,B,8,16> 

8) FLUSH LOG       

9) OUTPUT(A)  16 16 16 8  

10)       <COMMIT T> 

11) OUTPUT(B)  16 16 16 16  

A módosítást leíró naplóbejegyzések az A és B adatbáziselemeknek mind a régi, mind az új értékét 

tartalmazzák. Ebben a sorozatban a <COMMIT T> naplóbejegyzés kiírását az A és B adatbáziselemek 

lemezre való írása közé tettük. A 10) lépés kerülhetett volna a 8) vagy 9) lépés elé, vagy a 11) lépés mögé 

is. 

Helyreállítás a semmisségi/helyrehozó naplózás használatával 

Amikor a semmisségi/helyrehozó naplózást használjuk, és helyreállításra kényszerülünk, akkor a 

módosítást leíró naplóbejegyzésben megtaláljuk mind a T tranzakció hatásainak semmissé tételéhez 

szükséges régi, mind a T tranzakció hatásainak helyreállításához szükséges új adatbáziselem-értékeket. A 

semmisségi/helyrehozó módszer alapelvei a következők: 

1. A legkorábbitól kezdve állítsuk helyre minden befejezett tranzakció hatását. 

2. A legutolsótól kezdve tegyük semmissé minden be nem fejezett tranzakció tevékenységeit. 
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Nem elég a kettő közül az egyik, mindkét eljárásra szükségünk van. A rugalmasság lehetővé teszi, hogy a 

COMMIT bejegyzés és a lemezen végrehajtott adatbázis-módosítások egymáshoz viszonyított sorrendje 

kötetlen legyen, így előfordulhat az is, hogy egy befejezett tranzakció néhány vagy összes változtatása még 

nem került lemezre, és az is, hogy egy be nem fejezett tranzakció néhány vagy összes változtatása már 

lemezen is megtörtént. 

Példa. A hiba fellépésének időpontja függvényében különböző helyreállítási lehetőségeink vannak: 

1. Ha a katasztrófa a <COMMIT T> naplóbejegyzés lemezre írását követően fordul elő, akkor T-t 

befejezett tranzakciónak tekintjük. 16-ot írunk mind A-ba, mind B-be. Az események jelenlegi 

sorrendjében A-nak már 16 a tartalma, de B-nek lehet, hogy nem, aszerint, hogy a hiba a 11) lépés előtt 

vagy után következett be. 

2. Ha a katasztrófa a <COMMIT T> naplóbejegyzés lemezre írását megelőzően következett be, akkor T 

befejezetlen tranzakciónak számít. Ez esetben A és B korábbi értéke, 8 íródik lemezre. Ha a hiba a 9) és 

10) lépések között következett be, akkor A értéke már 16 volt a lemezen, és emiatt a 8-ra való 

visszaállítás feltétlenül szükséges. Ebben a konkrét példában a B értéke nem igényelne visszaállítást 

(mert még meg sem változott), ha pedig a hiba a 9) lépés előtt következik be, akkor A sem igényelné a 

visszaállítást. Mivel általában nem lehetünk biztosak abban, hogy a visszaállítás szükséges-e vagy sem, 

így azt (a biztonság kedvéért) mindig végre kell hajtanunk. 

A semmisségi naplózáshoz hasonlóan a semmisségi/helyrehozó naplózás is olyan viselkedést mutat, hogy 

a tranzakció a felhasználó számára korrekten befejezettnek tűnik, de még a <COMMIT T> naplóbejegyzés 

lemezre kerülése előtt fellépett hiba utáni helyreállítás során a rendszer a tranzakció hatásait semmissé teszi 

ahelyett, hogy helyreállította volna. Amennyiben ez a lehetőség problémát jelent, akkor a 

semmisségi/helyrehozó naplózás során egy további szabályt célszerű bevezetni: 

UR2: A <COMMIT T> naplóbejegyzést nyomban lemezre kell írni, amint megjelenik a naplóban. 

Ennek teljesítéséért a fenti példában a 10) lépés után egy FLUSH LOG lépést kell beiktatnunk. 

Nem adtuk meg azt, hogy a semmisségi vagy a helyrehozó lépést tesszük meg előbb. Előfordulhat, hogy a 

T tranzakció rendben és teljesen befejeződött, és emiatt helyreállítása során egy X adatbáziselem T által 

kialakított értékét rekonstruáljuk, melyet viszont egy be nem fejezett, és ezért visszaállítandó U tranzakció 

korábban módosított. A probléma nem az, hogy először helyreállítjuk X értékét, és aztán állítjuk vissza U 

előttire, vagy fordítva. E szituációban egyik út sem helyes, mert a végső adatbázis-állapot nagy 

valószínűséggel így is, úgy is inkonzisztens lesz. 

A gyakorlatban az adatbázis-kezelő rendszereknek a módosítások naplózásánál többet kell tenniük. 

Biztosítaniuk kell, hogy ilyen szituációk ne fordulhassanak elő. Ezzel a konkurenciakezelés foglalkozik. 

Később megnézzük, hogyan biztosítható T és U elkülönítése, amivel az ugyanazon X adatbáziselemen való 

kölcsönhatásuk elkerülhető. 

Semmisségi/helyrehozó naplózás ellenőrzőpont-képzéssel 

A működés közbeni ellenőrzőpont-képzés valamivel egyszerűbb a semmisségi/helyrehozó naplózás 

alkalmazásakor, mint a másik két naplózási módszernél. Csak a következőket kell tennünk: 

1. Írjunk a naplóba <START CKPT(T1,…,Tk)> naplóbejegyzést, ahol T1,…,Tk az éppen aktív 

tranzakciók, majd írjuk a naplót lemezre. 

2. Írjuk lemezre az összes piszkos puffert, tehát azokat, melyek egy vagy több módosított adatbáziselemet 

tartalmaznak. A helyrehozó naplózástól eltérően itt az összes piszkos puffert lemezre írjuk, nem csak a 

már befejezett tranzakciók által módosítottakat. 

3. Írjunk <END CKPT> naplóbejegyzést a naplóba, majd írjuk a naplót lemezre. 
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A semmisségi/helyrehozó naplózás által a lemezre írások sorrendjére vonatkozóan biztosított rugalmasság 

miatt megengedhetjük a be nem fejezett tranzakciók változtatásainak lemezre való kiírását. Így 

megengedhetjük a teljes blokknál kisebb adatbáziselemek használatát is, melyek közös pufferbe kerülnek. 

Példa. Tekintsük az alábbi naplórészletet: 

<START T1> 

<T1,A,4,5> 

<START T2> 

<COMMIT T1> 

<T2,B,9,10> 

<START CKPT(T2)> 

<T2,C,14,15> 

<START T3> 

<T3,D,19,20> 

<END CKPT> 

<COMMIT T2> 

<COMMIT T3> 

A példa megegyezik a helyrehozó naplózásnál felírt példával, csak a módosítási bejegyzések változtak, 

hogy megfeleljenek a semmisségi/helyrehozó naplózás szabályainak. Az egyszerűség kedvéért minden régi 

érték eggyel kisebb az új értéknél. 

Az ellenőrzőpont képzésének kezdetekor T2 az egyetlen aktív tranzakció. Minthogy ez a napló 

semmisségi/helyrehozó napló, így lehetséges, hogy a T2 által B-nek adott új érték (10) lemezre íródik, ami 

nem volt megengedett a helyrehozó naplózásban. Most lényegtelen, hogy ez a lemezre írás mikor történik 

meg. Az ellenőrzőpont képzése alatt biztosan lemezre írjuk B-t (ha még nem került oda), mivel minden 

piszkos (változásban érintett) puffert kiírunk lemezre. Hasonlóan A-t – melyet a befejezett T1 tranzakció 

alakított ki – is lemezre fogjuk írni, ha még nem került oda. 

 Ha a katasztrófa ezen eseménysorozat végén jelentkezik, akkor T2-t és T3-at teljesen és rendesen 

befejezett tranzakciónak tekintjük. A T1 tranzakció az ellenőrzőpontnál korábbi. Minthogy 

<END CKPT> bejegyzést találunk a naplóban, így T1-ről biztosan tudjuk, hogy teljesen és rendesen 

befejeződött, valamint az általa elvégzett módosítások lemezre íródtak. Ezért a T2 és T3 által 

végrehajtott módosítások helyreállítandók, T1 pedig figyelmen kívül hagyható. Amikor olyan 

tranzakció hatásait állítjuk helyre, mint amilyen a T2 is, akkor a naplóban nem kell a 

<START CKPT(T2)> bejegyzésnél korábbra visszatekinteni, mert tudjuk, hogy a T2 által az 

ellenőrzőpont-képzést megelőzően elvégzett módosítások az ellenőrzőpont képzése alatt lemezre 

íródtak. 

 Másik példaként tegyük fel, hogy a katasztrófa éppen a <COMMIT T3> bejegyzés lemezre írása előtt 

fordult elő. Ekkor T2-t befejezett, T3-at pedig befejezetlen tranzakciónak kell tekintenünk. T2 

tevékenységét helyreállítandó C értékét a lemezen 15-re írjuk; B-t már nem kell 10-re írnunk a lemezen, 

mert tudjuk, hogy ez már lemezre került az <END CKPT> előtt. A helyreállító naplózástól eltérően T3 

hatásait semmissé tesszük, azaz a lemezen D tartalmát 19-re írjuk. Ha T3 az ellenőrzőpont-képzés előtt 

már aktív tranzakció lett volna, akkor a naplóban a START CKPT bejegyzésben szereplő befejezetlen 

tranzakciók közül a legkorábban elindult Ti tranzakció <START Ti> bejegyzéséig kellene 

visszakeresnünk, hogy megtaláljuk a Ti (most T2 vagy T3) semmissé teendő tevékenységeit leíró 

naplóbejegyzéseket. A helyrehozó lépést viszont most is elég a START CKPT bejegyzéstől 

végrehajtani. 

 Ha a katasztrófa az <END CKPT> bejegyzés előtt lép fel, akkor figyelmen kívül hagyjuk az utolsó 

START CKPT bejegyzést, és a fentieknek megfelelően járunk el. 
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Az eszközök meghibásodásának kezelése 

A naplózással a rendszerhibák ellen védekezhetünk, amelyek következtében legfeljebb a memóriában tárolt 

ideiglenes adatok vesznek el, de a lemezről semmi nem veszhet el. Ugyanakkor komoly hibát okoz egy 

vagy több lemez elvesztése. Az adatbázist a naplóból elméletileg akkor tudjuk rekonstruálni, ha: 

 a naplót tároló lemez különbözik az adatbázist tartalmazó lemez(ek)től; 

 a naplót sosem dobjuk el az ellenőrzőpont-képzést követően; 

 a napló helyrehozó vagy semmisségi/helyrehozó típusú, így az új értékeket (is) tárolja. 

Ugyanakkor a napló esetleg az adatbázisnál is gyorsabban növekedhet, így nem praktikus a naplót örökre 

megőrizni. 

Az archívmentés 

Az eszközök meghibásodásának kezelésére az egyik módszer az archiválás (archiving), az adatbázis 

másolatának elkészítése egy vagy több, az adatbázisétól különböző adathordozón. Ha lehetséges, lezárjuk 

az adatbázist addig, amíg elkészítjük a biztonsági másolatot (backup) valamely tárolóeszközön (például 

optikai lemezen vagy mágnesszalagon), majd a biztonsági másolatot az adatbázistól távol, biztonságos 

helyen tároljuk. A biztonsági másolat megőrzi az adatbázis mentéskori állapotát, és ha eszközhiba lép fel, 

akkor a mentésből az adatbázis ezen állapotát vissza tudjuk állítani. 

A napló használatával sokkal frissebb állapotot tudunk rekonstruálni. Ha a biztonsági másolat készítése 

után történt adatbázis-változásokról keletkező naplót megőrizzük, és az túlélte az eszköz meghibásodását, 

akkor a hiba után (esetleg másik lemezen) visszaállítva a biztonsági másolatot, a napló felhasználásával a 

mentés óta történt adatbázis-változásokat is át tudjuk vezetni az adatbázison. A naplóról, amilyen gyorsan 

csak lehet, távoli másolatot készítünk. Ezzel a napló elvesztése ellen védekezhetünk. Így ha a napló az 

adatokkal együtt elveszik is, akkor még mindig használhatjuk az adatbázis mentését és a napló távoli 

másolatát az adatbázis visszaállítására, egészen addig a pillanatig, amikor a napló utolsó átvitele történt a 

távoli másolatára. 

Ha az adatbázis nagy, akkor a biztonsági mentés elkészítése (kiírása) hosszas folyamat. Általánosan bevált, 

hogy nem mentik a teljes adatbázist minden archiváló alkalommal. Ezért a mentésnek két szintjét 

különböztetjük meg: 

 teljes mentés (full dump), amikor az egész adatbázisról másolat készül; 

 növekményes mentés (incremental dump), amikor az adatbázisnak csak azon elemeiről készítünk 

másolatot, melyek az utolsó teljes vagy növekményes mentés óta megváltoztak. 

Lehetséges a mentésnek több szintjét is használni: a teljes mentést 0-dik szintűnek tekintjük, az i-edik szintű 

mentésen pedig azt a mentést értjük, amely az utolsó i-edik, illetve annál alacsonyabb szintű mentés óta 

megváltozott elemek másolatát tartalmazza. Egy új i-edik szintű mentés készítésekor az i-nél magasabb 

szintű mentéseket töröljük, vagy visszaállításkor figyelmen kívül hagyjuk. 

Az adatbázist a teljes mentésből és a megfelelő növekményes mentésekből tudjuk rekonstruálni, a 

helyrehozó vagy a semmisségi/helyrehozó naplózás rendszerhiba utáni visszaállítási folyamatához hasonló 

módszerrel. Visszamásoljuk a teljes mentést, majd az ezt követő legkorábbi növekményes mentéstől kezdve 

végrehajtjuk a növekményes mentésekben tárolt változtatásokat. Többszintű mentés esetén a 0-nál 

magasabb szintű mentéseket szintszám szerint növekvőleg, az azonos szintszámú mentéseket pedig 

időrendi sorrendben vesszük figyelembe. A növekményes mentések az adatoknak csak azt a kis részét 

érintik, amely az utolsó mentés óta változott meg, így ezek kevesebb helyet igényelnek, és gyorsabban 

menthetők, mint a teljes mentés. 



24 

Felmerülhet a kérdés, hogy miért nem csak a naplót mentjük, hiszen a napló használatával egy régi 

mentésből is helyreállíthatnánk az adatbázist. Nem nyilvánvaló, hogy milyen gyakran célszerű biztonsági 

mentést készíteni, ez az adatbázis méretén és tipikus módosítási fokán múlik. Amíg az adatbázisnak naponta 

esetleg csak kis része változik, addig a naplózandó módosítások tömege egy egész év folyamán sokkal 

nagyobb lehet, mint maga az adatbázis. Ha soha nem archiválunk, akkor a napló soha nem csonkolható, és 

a napló tárolási/kezelési költsége hamar túllépheti az adatbázis másolatának tárolási költségét. 

Archiválás működés közben 

Az előbbiekben bemutatott, egyszerűnek látszó archiválással az a probléma, hogy sok adatbázist nem lehet 

lezárni arra az időre, amíg a biztonsági mentést elkészítjük. Így – a működés közbeni ellenőrzőpont-

képzéshez hasonlóan – meg kell oldanunk a működés közbeni archiválást (nonquiescent archiving) is. A 

működés közbeni ellenőrzőpont-képzés megkísérli az indulásakori adatbázis-állapotot lemezre írni. Az 

ellenőrzőpont létrehozásának környékén keletkezett kis naplórészletre támaszkodva az adatbázis 

állapotában történt minden olyan eltérést rendbe tudunk hozni, melyet az okozott, hogy az ellenőrzőpont 

képzése alatt új tranzakciók indulhattak és lemezírások történhettek. 

Ehhez hasonlóan a működés közbeni archiválás megbízhatóan tud az adatbázisról olyan másolatot 

készíteni, ami az archiválás kezdetének többé-kevésbé megfelelő adatbázis-állapotot rögzíti. Ugyanakkor 

a mentés alatti percekben vagy órákban az adatbázis működése sok adatbáziselemet cserélhet. Ha az 

adatbázis mentésből való visszaállítása szükéges, akkor a mentés alatt keletkezett naplóbejegyzések 

felhasználásával az adatbázis konzisztens állapota állítható elő. Az ellenőrzőpont képzésekor tehát az 

adatokat a memóriából a lemezre visszük, és a napló lehetővé teszi a rendszerhibák utáni helyreállítást, míg 

archiváláskor az adatokat a lemezről másodlagos háttértárolóra visszük, és az archívmentés a naplóval 

lehetővé teszi az eszközhibák utáni helyreállítást. 

A működés közbeni archiválás az adatbázis elemeit valamely fix sorrendben másolja, mialatt megeshet, 

hogy ezen elemeket az éppen végrehajtott tranzakciók módosítják. Ennek eredményeként megtörténhet, 

hogy a biztonsági mentésbe másolt adatbáziselem értéke nem ugyanaz, mint a mentés megkezdésekor volt. 

Amíg a mentés alatt keletkezett naplót megőrizzük, addig az eltérések a napló felhasználásával 

korrigálhatók. 

Példa. Tegyük fel, hogy adatbázisunk 4 elemből áll: A, B, C és D. Ezek értéke az archiválás kezdetekor 

rendre 1, 2, 3, 4. A mentés közben A értéke 5-re, C értéke 6-ra, B értéke 7-re módosul. Az adatbáziselemeket 

a mentéskor sorban másoljuk az archívumba, az események sorrendje pedig legyen a következő: 

Lemez Mentés 

 A 

A := 5  

 B 

C := 6  

 C 

B := 7  

 D 

Ekkor noha az adatbázis tartalma a mentés kezdetekor 1, 2, 3, 4 volt, a mentés végére pedig 5, 7, 6, 4 lett, 

a mentett archívumba 1, 2, 6, 4 került, jóllehet ilyen adatbázis-állapot a mentés ideje alatt nem is fordult 

elő. 

Részletesebben a biztonsági mentés (archívum) elkészítése a következő lépésekből áll. Feltételezzük, hogy 

az alkalmazott naplózási módszer a helyrehozó vagy a semmisségi/helyrehozó módszerek valamelyike; a 

semmisségi naplózás nem alkalmas a működés közbeni archiválással való használatra (bővebben lásd a 

példa után). 
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1. A <START DUMP> bejegyzés naplóba írása. 

2. Az alkalmazott naplózási módnak megfelelő ellenőrzőpont kialakítása. 

3. A menteni kívánt adatlemez(ek) teljes vagy növekményes mentésének végrehajtása, ügyelve arra, hogy 

az adatok másolata (a mentés) biztonságos, távoli helyre kerüljön. 

4. Gondoskodjunk arról is, hogy a napló szükséges részéről is másolat készüljön, és az is biztonságos, 

távoli helyre kerüljön. A mentett naplórész tartalmazza legalább a 2. pontbeli ellenőrzőpont-képzés 

közben keletkezett naplóbejegyzéseket, melyeknek túl kell élniük az adatbázist hordozó eszköz 

meghibásodását. 

5. <END DUMP> bejegyzés naplóba írása. 

A mentés befejezésekor biztonsággal eldobhatjuk a naplónak azt a részét, amelyre nincs szükség a 2. 

pontban végrehajtott ellenőrzőpont-képzéshez tartozó helyreállítási folyamat szabályai szerint. 

Példa. Tegyük fel, hogy a fenti adatbázis mentés közbeni módosításait két tranzakció, T1 (mely A-t és B-t 

módosította) és T2 (mely C-t módosította) végezte, melyek a mentés kezdetekor aktívak voltak. 

Semmisségi/helyrehozó naplózási módszert alkalmazva a mentés alatti események lehetséges 

naplóbejegyzései a következők: 

<START DUMP> 

<START CKPT(T1,T2)> 

<T1,A,1,5> 

<T2,C,3,6> 

<COMMIT T2> 

<T1,B,2,7> 

<END CKPT> 

a mentés befejezése 
<END DUMP> 

Látható, hogy T1 nem fejeződött be a mentés befejezéséig. Az eléggé valószínűtlen, hogy egy tranzakció a 

teljes mentés egész ideje alatt aktív maradjon, de ez a lehetőség nem befolyásolja a bemutatandó 

helyreállítási módszer helyességét. 

Most már az is látható, hogy miért nem használható a semmisségi naplózás a működés közbeni 

archiválással. Tegyük fel, hogy a <START CKPT(T1,T2)> bejegyzés után elindul egy T3 tranzakció, 

amely módosítja A értékét, majd B értékét, aztán rendesen befejeződik, tehát egy <COMMIT T3> is a 

naplóba kerül, de csak az <END CKPT> bejegyzés naplóba kerülése után (azaz a mentés közben). Mivel 

semmisségi naplózás esetén az OUTPUT műveletek a módosítási bejegyzés naplóba írását követően 

bármikor lefuthatnak, ezért előfordulhat, hogy A értékét annak módosítása után, de B értékét annak 

módosítása előtt archiváljuk. A helyreállítás folyamán a T3 tranzakcióval nem foglalkozunk, mert 

megtaláltuk a naplóban a <COMMIT T3> bejegyzést, így olyan eredményt kapunk, mintha T3 nem 

atomosan hajtódott volna végre. Helyrehozó naplózást használva ilyen eset nem fordulhat elő, mert akkor 

OUTPUT művelet csak a COMMIT után futhat le, és így vagy nem történik változtatás a lemezen (ha nincs 

COMMIT), vagy „újra lejátsszuk” a tranzakciót (ha van COMMIT). Semmisségi/helyrehozó naplózás esetén 

pedig minden tranzakciót vagy semmissé teszünk (ha nincs COMMIT), vagy helyreállítunk (ha van 

COMMIT), tehát szintén nem fordulhat elő nem atomos viselkedés. 

Helyreállítás az archívmentés és a napló használatával 

Tegyük fel, hogy készülékhiba lépett fel, és az adatbázist rekonstruálnunk kell. A helyreállítást a legutolsó 

biztonsági mentés és a napló távoli mentése felhasználásával végezzük. A következő lépéseket hajtjuk 

végre: 
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1. Az adatbázis visszaállítása a biztonsági mentésből: 

a) Meg kell keresni a legutolsó teljes mentést, belőle rekonstruálni az adatbázist. 

b) Ha vannak későbbi növekményes mentések, akkor ezeket időrendi sorrendben használva 

módosítjuk az adatbázist. Többszintű mentés esetén az 1. szinttől kezdve sorban az összes szint 

összes mentését alkalmazni kell (szintenként, azon belül időrendben). 

2. Módosítjuk az adatbázist a napló katasztrófát túlélt részével, a naplózási módszernek megfelelő 

helyreállítási eljárást használva. 

Példa. Tegyük fel, hogy a fenti példában szereplő biztonsági mentés elkészítését követően történik 

eszközmeghibásodás, és a napló ezt túlélte. Azért, hogy az eljárást érdekesebbé tegyük, tekintsük úgy, hogy 

a napló katasztrófát túlélt részében nincs <COMMIT T1> bejegyzés, van viszont <COMMIT T2>. Az 

adatbázist először a biztonsági mentésből visszatöltjük, így A, B, C, D értékei rendre 1, 2, 6, 4 lesznek. 

Ezután a naplót vesszük elő. Minthogy T2 befejezett tranzakció, helyreállítjuk azon lépés hatását, amely C 

értékét 6-ra módosította. Példánkban C értéke már 6, de előfordulhatna, hogy 

 C mentése azt megelőzően történt, hogy C értékét a T2 tranzakció módosította volna; 

 a mentésben C-nek később kapott értéke van, mely értéket olyan tranzakció állított be, melyre 

vonatkozó COMMIT bejegyzést a naplóban vagy találunk, vagy nem. C értékét a mentésben talált értékre 

akkor állítjuk, ha az ezt beállító tranzakció COMMIT bejegyzését megtaláljuk. 

Minthogy T1 gyaníthatóan nem befejezett tranzakció (mert COMMIT bejegyzését nem találjuk), így T1 

hatásait semmissé kell tennünk. A T1-re vonatkozó naplóbejegyzések használatával meg tudjuk állapítani, 

hogy A értékét 1-re, B értékét 2-re kell visszaállítanunk. Előfordulhat persze, hogy a mentésen ez az értékük, 

de ettől eltérő értékeik is lehetnek, ha A és/vagy B módosított értéke archiválódott. (Ez a módosításnak és 

a mentésnek az időbeli sorrendjétől függ.) 

Az Oracle naplózási és archiválási rendszere 

Az alábbi információk forrása az Oracle Database Administrator’s Guide és az Oracle Database Backup 

and Recovery User’s Guide. 

A napló 

Egy szerverpéldány rendszerhibája esetén az Oracle az online naplófájlokat használja az adatbázis 

automatikus helyreállításához. A példány-helyreállítás (instance recovery) azonnal megtörténik, amint a 

példány újraindul a rendszerhiba után. A helyreállítási műveletek alapja a napló (redo log), amely az 

adatbázis változásait tárolja, amint azok bekövetkeznek. Minden Oracle szerverpéldány rendelkezik egy 

naplóval, amellyel védekezhetünk a rendszerhibák ellen. Két részből áll: az online és az archivált naplóból. 

Az online napló két vagy több online naplófájlból áll, amelyek naplóbejegyzésekkel (redo record vagy redo 

entry) vannak feltöltve, ezeket pedig változásvektorok (change vector) alkotják. A változásvektorok az 

adatbázis egy blokkjának a változásáról tartalmaznak információkat. Ha például megváltoztatunk egy 

fizetési értéket egy alkalmazottakra vonatkozó adatokat tároló táblában, egy új naplóbejegyzés jön létre 

egy-egy változásvektorral a táblát tartalmazó adatfájl blokkjának, az undo szegmens blokkjának és az undo 

szegmens tranzakciós táblájának a változásáról (lásd később). A naplóbejegyzések ideiglenesen az SGA 

(System Global Area) memóriapuffereiben tárolódnak, amelyeket a Log Writer (LGWR) háttérfolyamat 

folyamatosan ír ki valamelyik naplófájlba. (Az SGA tartalmazza az adatbáziselemeket tároló puffereket is, 

amelyeket pedig a Database Writer háttérfolyamat ír lemezre.) Ha egy felhasználói folyamat befejezte egy 

tranzakció végrehajtását, akkor a LGWR a tranzakcióhoz tartozó naplóbejegyzéseket az SGA 

http://docs.oracle.com/database/121/ADMIN/toc.htm
http://docs.oracle.com/database/121/BRADV/toc.htm
http://docs.oracle.com/database/121/BRADV/toc.htm


27 

memóriapuffereiből az egyik naplófájlba írja, és hozzájuk rendel egy időbélyeget (system change number, 

SCN), amellyel a befejezett tranzakció naplóbejegyzéseit azonosíthatjuk. A rendszer csak azután értesíti a 

felhasználói folyamatot, hogy a tranzakció véglegesítődött, miután az adott tranzakcióra vonatkozó összes 

naplóbejegyzés lemezre került. A naplóbejegyzések azelőtt is lemezre íródhatnak, mielőtt a megfelelő 

tranzakció véglegesítődne. Ha a napló memóriapufferei megtelnek, vagy egy másik tranzakció 

véglegesítődik, a LGWR az összes naplóbejegyzést lemezre írja, még akkor is, ha ezek egy része nincs 

véglegesítve. Ha szükséges, ezek a változások semmissé tehetők. 

Ahogy említettük, az online napló két vagy több naplófájlból áll. Az Oracle egyszerre csak egy naplófájlt 

használ a naplóbejegyzések kiírására. Azt a naplófájlt, amelyikbe a LGWR éppen ír, aktuális naplófájlnak 

nevezzük. Azokat a naplófájlokat, amelyek szükségesek egy példány-helyreállításhoz (azaz a benne tárolt 

változások még nem mind íródtak lemezre), aktív naplófájloknak, amelyekre pedig nincs szükség (azaz a 

benne tárolt változások már mind lemezre íródtak), inaktív naplófájloknak nevezzük. Azért van szükség 

legalább két állományra, hogy az egyik akkor is elérhető legyen a naplóbejegyzések írására, mialatt a másik 

épp archiválás alatt áll (ha az adatbázis ARCHIVELOG módban van). Az online naplófájlok ciklikusan 

töltődnek föl. Amikor az aktuális naplófájl megtelt, a LGWR a következő elérhető naplófájlt kezdi el 

feltölteni. Amikor az utolsó elérhető naplófájl is megtelt, akkor újra az elsőt kezdi el írni, újrakezdve a kört. 

A megtelt naplófájlok attól függően lesznek újra elérhetők a LGWR számára, hogy a napló archiválása be 

van-e kapcsolva. Ha nem (az adatbázis NOARCHIVELOG módban van), akkor egy megtelt naplófájl akkor 

lesz elérhető, ha már inaktívvá vált. Ha az archiválás be van kapcsolva (az adatbázis ARCHIVELOG 

módban van), akkor egy megtelt naplófájl akkor lesz elérhető, ha már inaktívvá vált, és a naplófájlt már 

archiválta az egyik archiváló háttérfolyamat (ARCn). 

Naplóváltásnak (log switch) nevezzük azt a pillanatot, amikor a rendszer befejezi az egyik naplófájl írását, 

és elkezdi egy másikét. Naplóváltás általában akkor történik, amikor az aktuális naplófájl teljesen megtelt, 

és az írást a következő naplófájlban kell folytatni. Beállíthatjuk azonban, hogy szabályos időközönként is 

történjen naplóváltás, függetlenül attól, hogy az aktuális naplófájl megtelt-e már. Ezenkívül manuálisan is 

kérhetünk naplóváltást. Valahányszor naplóváltás történik, az Oracle egy új sorszámot (log sequence 

number) rendel ahhoz a naplófájlhoz, amibe a LGWR megkezdi az írást. Amikor a rendszer archiválja a 

naplófájlokat, az archivált napló megőrzi a sorszámát. Az a naplófájl, amit újra elkezdünk használni, a 

soron következő sorszámot kapja meg. Így tehát minden online vagy archivált naplófájl egyedileg 

azonosítható a sorszámával. Helyreállítás során az Oracle a szükséges archivált vagy online naplófájlokat 

a sorszámaik szerinti növekvő sorrendben alkalmazza. 

Magának a naplónak a meghibásodása ellen védekezhetünk a multiplexelt online napló (multiplexed redo 

log) segítségével, ami azt jelenti, hogy a napló kettő vagy több egyenértékű másolata kezelhető 

automatikusan. Ha multiplexeljük a naplófájlokat, a LGWR párhuzamosan ugyanazokat az információkat 

írja a különböző egyenértékű naplófájlokba, ezáltal kiküszöbölve az egyikük megsérüléséből eredő 

adatvesztést. Legjobb, ha a másolatok különböző lemezeken vannak, mert ha az egyik lemez megsérül, 

akkor a napló többi másolata még mindig rendelkezésre áll a helyreállításhoz. Azonban még ha a másolatok 

ugyanazon a lemezen vannak is, a redundáns tárolás segíthet kivédeni a szektorhibákat, állományszerkezeti 

hibákat stb. 

Lehetőség van tehát arra, hogy a megtelt online naplófájlokat archiváljuk, mielőtt újra felhasználnánk őket. 

Az archivált (offline) napló (archived redo log) az ilyen archivált naplófájlokból tevődik össze. A 

naplófájlok archiválása csak akkor lehetséges, ha az adatbázis ARCHIVELOG módban fut. Az archiválás 

lehet automatikus vagy manuális. 

NOARCHIVELOG módban az online naplófájlok archiválása nem lehetséges. Az adatbázis vezérlőfájlja 

jelzi, hogy a megtelt naplófájlokat nem szükséges archiválni. Így amikor egy megtelt naplófájl inaktívvá 

válik egy naplóváltást követően, azt a fájlt a LGWR újra felhasználhatja. NOARCHIVELOG módban az 

adatbázis csak rendszerhiba után állítható helyre, eszközhiba esetén nem. A helyreállításhoz csak az online 

naplófájlokban tárolt legfrissebb adatbázis-módosításokat használhatjuk fel. Ha NOARCHIVELOG 

módban eszközhiba következik be, akkor csak a legfrissebb teljes mentés időpontjáig állíthatjuk vissza az 
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adatbázist, az azt követő tranzakciók hatása elvész. NOARCHIVELOG módban nem végezhetünk online 

táblaterület-mentést, és nem is használhatjuk fel a korábban, ARCHIVELOG módban készült online 

táblaterület-mentéseket. Egy NOARCHIVELOG módban működő adatbázist csak teljes mentésből 

állíthatunk vissza, amely az adatbázis zárt állapotában készült. Emiatt NOARCHIVELOG módban célszerű 

az adatbázisról rendszeresen teljes mentést készíteni. 

ARCHIVELOG módban a napló archiválása be van kapcsolva. Az adatbázis vezérlőfájlja jelzi, hogy a 

megtelt naplófájlokat nem használhatja fel újra a LGWR, amíg azok nincsenek archiválva. A megtelt 

naplófájlok egy naplóváltást követően archiválhatók. A naplófájlok archiválásának az alábbi előnyei 

vannak: 

 Az adatbázis mentése az online és archivált naplófájlokkal együtt garantálja, hogy minden véglegesített 

tranzakció helyreállítható az operációs rendszer vagy a lemez meghibásodása esetén. 

 Ha elérhetőek az archivált naplófájlok, akkor egy működés közben készített mentést is felhasználhatunk 

a helyreállításhoz. 

 Fenntarthatunk az adatbázisunkról egy másolatot, amelyet az eredeti adatbázis archivált naplójának a 

másolatra történő folyamatos alkalmazásával tarthatunk naprakészen. 

Az Oracle az online naplót kizárólag helyreállításra használja. Az adminisztrátorok azonban egy SQL 

interfészen keresztül lekérdezéseket hajthatnak végre rajta a LogMiner naplóelemző eszköz segítségével. 

A naplófájlok ugyanis hasznos információkat szolgáltathatnak a korábbi adatbázis-tevékenységekről. 

Minden Oracle adatbázis rendelkezik egy vezérlőfájllal (control file), amely egy kisméretű bináris 

állomány, és az adatbázis fizikai szerkezetéről tárol információkat. A vezérlőfájl tartalmazza 

 az adatbázis nevét, 

 az adatbázishoz tartozó adat- és naplófájlok nevét és helyét, 

 az adatbázis létrehozásának idejét, 

 az aktuális naplósorszámot, 

 ellenőrzőpont-információkat. 

Az adatbázis normális működéséhez az Oracle szervernek írási módban el kell tudnia érni a vezérlőfájlt. 

Nélküle nem lehet csatlakozni az adatbázishoz, és nehézkes a helyreállítás. A vezérlőfájl az adatbázissal 

egy időben jön létre. Alapértelmezésben az adatbázis létrehozásakor a vezérlőfájlnak legalább egy példánya 

(néhány operációs rendszer esetén eleve több példánya) is létrejön. A legjobb, ha minden Oracle adatbázis 

legalább két vezérlőfájllal rendelkezik, mindegyik különböző fizikai adathordozón: ez a multiplexelt 

vezérlőfájl (multiplexed control file). Ha egy vezérlőfájl lemezhiba miatt megsérül, a hozzá tartozó 

szerverpéldányt le kell állítani. A lemezhiba elhárítása után a sérült vezérlőfájl helyreállítható a másik 

lemezen tárolt ép példányának felhasználásával, és a szerverpéldány újraindítható. Ebben az esetben nincs 

szükség eszközhiba utáni helyreállításra. 

Az undo információk 

Az Oracle a semmisségi és a helyrehozó naplózás egy speciális kombinációját valósítja meg. Ahogy láttuk, 

a tranzakciók helyrehozásához szükséges információkat (az adatbázisblokkok módosított értékeit) az online 

napló tartalmazza. A tranzakciók hatásainak semmissé tételéhez szükséges információk pedig alapesetben 

egy vagy több undo táblaterületen (undo tablespace) tárolódnak (vagy más táblaterületen elhelyezkedő 

rollback szegmensekben – lásd később). Ez azt jelenti, hogy az Oracle az undo adatokat az adatbázisban 

tárolja, nem külső naplófájlokban. Az undo adatok tehát ugyanolyan blokkokban helyezkednek el, mint az 

adatbázis más adatai, és ezen blokkok változásai ugyanúgy naplózásra kerülnek. Az Oracle így hatékonyan, 

külső naplófájlok olvasása nélkül tud hozzáférni az undo adatokhoz. Az undo táblaterület a tranzakciók 

által módosított adatok régi értékeit tárolja attól függetlenül, hogy ezek a tranzakciók véglegesítettek-e vagy 
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sem. Az undo információkat használjuk egy aktív tranzakció visszagörgetésére, egy megszakadt tranzakció 

helyreállítására, az olvasási konzisztencia biztosítására és flashback műveletek végrehajtására is. 

Az undo táblaterület undo szegmensekből (undo segment), azok pedig undo bejegyzésekből (undo record 

vagy undo entry) állnak. Egy undo bejegyzés többek között a megváltozott attribútum(ok) azonosítóját 

(címét), a módosítást végző tranzakciós műveletet, az annak hatását semmissé tevő utasítást és az 

attribútum(ok) régi értékét tárolja. Az undo bejegyzés mindig előbb kerül lemezre, mint ahogy az 

adatbázisban megtörténik a megfelelő attribútumok módosítása. Az ugyanazon tranzakcióhoz tartozó 

bejegyzések össze vannak láncolva, így könnyen visszakereshetők, ha az adott tranzakciót vissza kell 

görgetni. 

Az undo táblaterületen minden undo szegmenshez tartozik egy tranzakciós tábla (transaction table), amely 

az adott undo szegmenst használó tranzakciók azonosítóit tartalmazza. Minden tranzakciós tábla fix számú 

bejegyzésből (slotból) áll. Ez a szám az adatblokk méretétől függ, amit viszont az operációs rendszer 

határoz meg. Minden bejegyzéshez egy tranzakció tartozik. Az Oracle sorban rendeli hozzá a tranzakciókat 

a tranzakciós tábla szabad elemeihez. Ha a tábla betelik, elölről kezdi felhasználni a szabad elemeket. Egy 

elem akkor válik szabaddá, ha az általa képviselt tranzakció véglegesítődött. Ha minden elem aktív 

tranzakcióhoz tartozik, akkor egy újabb tranzakciónak várakoznia kell, amíg valamelyik elem fel nem 

szabadul. 

Ha egy tranzakció befejeződött, akkor a rá vonatkozó undo bejegyzésekre visszagörgetési vagy tranzakció-

helyreállítási célból ugyan nincs többé szükség, azonban mégsem törölhetők, mert elképzelhető, hogy még 

a tranzakció befejeződése előtt elindult egy olyan lekérdezés, amelyhez szükség van a módosított adatok 

régi értékeire (ezt nevezzük olvasási konzisztenciának – lásd Az Oracle konkurenciavezérlési technikája 

című részt). Ezenkívül a flashback műveletek sikeressége is a régebbi undo adatok elérhetőségén múlhat. 

Ezen okok miatt a régi undo információkat a lehető legtovább célszerű megőrizni. 

Ha egy adatbázist a Database Configuration Assistant (DBCA) segédprogrammal hozunk létre, 

automatikusan létrejön egy UNDOTBS1 nevű undo táblaterület is. Saját undo táblaterület is készíthető a 

CREATE DATABASE vagy a CREATE UNDO TABLESPACE utasítás segítségével. Amikor a 

szerverpéldány elindul, automatikusan kiválasztja az első elérhető undo táblaterületet. Ha nincs ilyen, akkor 

a rendszer undo táblaterület nélkül indul el, és a SYSTEM táblaterületet használja az undo bejegyzések 

tárolására, ez azonban nem ajánlott. Ha az adatbázis több undo táblaterülettel rendelkezik, a használni 

kívánt undo táblaterületet magunk is megadhatjuk az UNDO_TABLESPACE paraméter segítségével. 

A példány-helyreállítás lépései 

Amikor egy undo bejegyzés az undo szegmensbe kerül, a naplóban erről is készül egy naplóbejegyzés, 

hiszen az undo táblaterületek – más táblaterületekhez hasonlóan – az adatbázis részét képezik. Ez azt 

eredményezi, hogy az online napló a permanens objektumokra vonatkozó undo információkat is tárolja. Az 

adatbázisban bekövetkező minden egyes változtatás hatására tehát létrejön egy undo bejegyzés a módosított 

attribútum(ok) régi értékével, egy naplóbejegyzés a módosított adatokat tartalmazó adatblokkok új 

értékével, valamint egy másik naplóbejegyzés az undo bejegyzést tartalmazó adatblokk új értékével. 

A példány-helyreállítás első lépése a rolling forward (vagy cache recovery), amelynek során az online 

naplóban feljegyzett változásokat átvezetjük az adatbázisra. A naplót elegendő az utolsó ellenőrzőponttól 

kezdődően átvizsgálni. Az ellenőrzőpont garantálja, hogy minden olyan véglegesített módosítás, amelynek 

az SCN értéke kisebb az ellenőrzőponténál, lemezre került. Az ellenőrzőpont pozíciója (SCN értéke) 

számos esetben módosulhat, például amikor a Database Writer háttérfolyamat lemezre írja a piszkos 

puffereket. 

A rolling forward lépés után kapott adatbázis nagy valószínűséggel inkonzisztens lesz. Ezután minden 

olyan módosítást, amely nem volt véglegesítve, semmissé kell tenni. Mivel az online naplóban az undo 

adatok is feljegyzésre kerültek, a rolling forward lépés a megfelelő undo szegmenseket is helyreállítja. Az 
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Oracle ezek alapján semmissé tesz az adatbázisban minden olyan nem véglegesített módosítást, amely a 

rendszerhiba bekövetkezése előtt vagy a rolling forward lépés alatt keletkezett. Ez a lépés a rolling back 

(vagy transaction recovery). 

Az undo információk kezelésének módjai 

Az undo információk menedzselése két módon történhet: automatikus (automatic undo management) és 

manuális (manual undo management) módban. Automatikus módban az Oracle automatikusan kezeli az 

undo szegmenseket az undo táblaterületeken, nincs szükség felhasználói beavatkozásra. Ez az 

alapértelmezett mód egy újonnan telepített adatbázis esetén. Manuális módban nem használunk undo 

táblaterületet, az undo információk rollback szegmensekben (rollback segment), azaz felhasználó által 

kezelt undo szegmensekben tárolódnak. A rollback szegmensek által elfoglalt tárterület kezelése összetett 

feladat, és nagy terhet ró a DBA-ra. 

Mentés és visszaállítás 

A mentés és visszaállítás középpontjában az adatbázist alkotó adatállományok fizikai mentése áll, amely 

lehetővé teszi az adatbázis későbbi rekonstrukcióját. Az Oracle az RMAN nevű parancssori eszközt ajánlja 

az adatbázis hatékony mentésére és visszaállítására. Az RMAN védelme az adatfájlokra, a vezérlőfájlokra, 

a szerverparamétereket tartalmazó fájlokra és az archivált naplófájlokra terjed ki. Ezek az állományok 

szükségesek az adatbázis rekonstruálásához. Az RMAN-t úgy tervezték, hogy szorosan együttműködjön az 

adatbázisszerverrel, blokk szintű hibafelismerést biztosítva a mentés és a visszaállítás során. A mentés 

során optimalizálja a tárhelyfoglalást az állományok multiplexelésével és tömörítéssel, valamint támogatja 

a vezető szalagos és egyéb tárolóeszközöket. A mentési eljárás fizikai szinten zajlik, így véd az állományok 

sérülései (pl. egy adatfájl véletlen letörlése vagy egy lemezmeghajtó meghibásodása) ellen. Az RMAN 

pillanat-visszaállításra is alkalmas, kiküszöbölve bizonyos logikai hibákat, amikor más technikák (pl. a 

flashback műveletek) már nem használhatók. 

NOARCHIVELOG módban a megtelt inaktív naplófájlok felülírhatók. Ilyenkor az adatbázis védve van a 

rendszerhibák ellen, de nincs védve a készülékhibák ellen. ARCHIVELOG módban a megtelt naplófájlok 

archiválásra kerülnek. Ekkor az adatbázis mind a rendszerhibák, mind a készülékhibák ellen védve van, 

viszont további hardveres erőforrásokra lehet szükség. 

Egy adatfájl teljes mentése (full backup) magában foglalja az állomány összes blokkját. A növekményes 

mentés (incremental backup) csak azokat a blokkokat másolja, amelyek módosulnak a mentések között. A 

nulladik szintű növekményes mentés – amely az adatfájl összes blokkját másolja – használható egy 

növekményes mentési stratégia kiindulópontjaként. Az első szintű növekményes mentés csak azokat a 

blokkokat másolja, amelyek az utolsó nulladik vagy első szintű mentés óta megváltoztak. Egy első szintű 

mentés lehet kumulatív (cumulative), ha tartalmazza az összes megváltozott blokkot az utolsó nulladik 

szintű mentés óta, vagy differenciális (differential), ha csak az utolsó nulladik vagy első szintű mentés óta 

történt változásokat tartalmazza. A tipikus növekményes mentési stratégiák szabályos időközönként (pl. 

naponta) készítenek első szintű mentéseket. Visszaállítás során az RMAN automatikusan alkalmazza mind 

a növekményes mentéseket, mind a naplót, hogy rekonstruálja az adatbázis egy kívánt időpontbeli állapotát. 

A mentés lehet konzisztens vagy inkonzisztens. A konzisztens mentés az adatbázis konzisztens állapotában 

készül. Az adatbázis konzisztens lesz, miután leállítottuk a SHUTDOWN NORMAL, a SHUTDOWN 

IMMEDIATE vagy a SHUTDOWN TRANSACTIONAL paranccsal. A konzisztens leállítás garantálja, 

hogy minden naplózott módosítás lemezre íródik. Ha ezután mountoljuk az adatbázist, és készítünk egy 

mentést, akkor később eszköz-helyreállítás nélkül visszaállíthatjuk és megnyithatjuk az adatbázist. 

Természetesen azonban elveszítjük a mentés készítése után futott tranzakciók hatását. 
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Minden olyan mentést, amely nem konzisztens, inkonzisztensnek nevezünk. Egy nyitott adatbázisról 

készült mentés mindig inkonzisztens, mint ahogy egy rendszerhiba utáni vagy egy SHUTDOWN ABORT 

paranccsal leállított adatbázisról készült mentés is. Ha az adatbázist inkonzisztens mentésből állítjuk vissza, 

először eszköz-helyreállítást (media recovery) kell végeznünk, mielőtt megnyithatnánk az adatbázist. 

Ennek során a naplóban jelen lévő, a mentés elkészítését követően bekövetkezett változásokat alkalmazzuk 

az adatfájlokra. Az RMAN nem engedi meg inkonzisztens mentések készítését, ha az adatbázis 

NOARCHIVELOG módban van. Ha azonban az adatbázis ARCHIVELOG módban van, és mentjük az 

archivált naplót és az adatfájlokat, az inkonzisztens mentések egy jól működő mentési és helyreállítási 

stratégia alapját képezhetik. Az inkonzisztens mentések nagyobb rendelkezésre állást kínálnak, mert nem 

kell leállítanunk az adatbázist ahhoz, hogy teljes védelmet biztosító mentéseket készíthessünk. 

Az eszköz-helyreállításhoz szükség van egy vezérlőfájlra, az adatfájlokra (amelyeket tipikusan mentésből 

állítunk vissza), valamint az online és archivált naplófájlokra, amelyek az adatfájlok mentése óta történt 

változásokat tartalmazzák. Az eszköz-helyreállítást leggyakrabban készülékhibák (pl. egy állomány vagy 

egy lemez elvesztése) vagy felhasználói hibák (pl. egy tábla tartalmának a letörlése) utáni helyreállításra 

használjuk. 

Az eszköz-helyreállítás lehet teljes visszaállítás (complete recovery) vagy pillanat-visszaállítás (point-in-

time recovery). A teljes visszaállítás vonatkozhat külön az egyes adatfájlokra, táblaterületekre vagy az 

egész adatbázisra. A pillanat-visszaállítás rendszerint a teljes adatbázisra vonatkozik (vagy az RMAN 

segítségével néha csak egyes táblaterületekre). Teljes visszaállítás esetén visszamásoljuk a mentett 

adatfájlokat, majd alkalmazzuk rájuk az archivált és online naplófájlokban leírt módosításokat. Az 

adatbázis a hiba időpontjában fennálló állapotába kerül vissza, és adatvesztés nélkül megnyitható. Pillanat-

visszaállítás esetén az adatbázist egy felhasználó által választott múltbeli időpillanatban fennálló állapotába 

állítjuk vissza. Először visszamásoljuk az adott időpillanat előtt készített mentésből az adatfájlokat, 

valamint az archivált naplófájlok teljes halmazát a mentés készítésének idejétől a kiválasztott időpontig. 

Ezután átvezetjük a mentéstől az adott időpontig végrehajtott módosításokat az adatfájlokra. A kiválasztott 

időpont utáni módosításokat figyelmen kívül hagyjuk. 
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Konkurenciavezérlés 

A tranzakciók közötti egymásra hatás az adatbázis-állapot inkonzisztenssé válását okozhatja, még akkor is, 

amikor a tranzakciók külön-külön megőrzik a konzisztenciát, és rendszerhiba sem történt. Ezért 

valamiképpen szabályoznunk kell, hogy a különböző tranzakciók egyes lépései milyen sorrendben 

következzenek egymás után. A lépések szabályozásának feladatát az adatbázis-kezelő rendszer ütemező 

(scheduler) része végzi. Azt az általános folyamatot, amely biztosítja, hogy a tranzakciók egyidejű 

végrehajtása során megőrizzék a konzisztenciát, konkurenciavezérlésnek (concurrency control) nevezzük. 

Amint a tranzakciók az adatbáziselemek olvasását és írását kérik, ezek a kérések az ütemezőhöz kerülnek, 

amely legtöbbször közvetlenül végrehajtja azokat. Amennyiben a szükséges adatbáziselem nincs a 

pufferben, először a pufferkezelőt hívja meg. Bizonyos esetekben azonban nem biztonságos azonnal 

végrehajtani a kéréseket. Az ütemezőnek ekkor késleltetnie kell a kérést, sőt bizonyos esetben abortálnia 

kell a kérést kiadó tranzakciót. 

Soros és sorba rendezhető ütemezések 

A konkurenciavezérlés tanulmányozását azzal kezdjük, hogy megvizsgáljuk, a konkurensen végrehajtott 

tranzakciók milyen feltételekkel tudják megőrizni az adatbázis-állapot konzisztenciáját. Az alapfeltevésünk 

az volt, hogy ha minden egyes tranzakciót elkülönítve hajtunk végre (anélkül, hogy más tranzakció 

konkurensen futna), akkor az adatbázist konzisztens állapotból konzisztens állapotba alakítjuk (korrektség 

alapelve). A gyakorlatban azonban a tranzakciók általában más tranzakciókkal egyidejűleg futnak, emiatt 

ez az elv közvetlenül nem használható. Olyan ütemezéseket kell alkalmaznunk, amelyek biztosítják, hogy 

ugyanazt az eredményt állítják elő, mintha a tranzakciókat egyesével hajtottuk volna végre. 

Ütemezések 

Az ütemezés (schedule) egy vagy több tranzakció által végrehajtott lényeges műveletek időrendben vett 

sorozata, amelyben az egy tranzakcióhoz tartozó műveletek sorrendje megegyezik a tranzakcióban 

megadott sorrenddel. A konkurenciakezelés szempontjából a lényeges olvasási és írási műveletek a 

központi memória puffereiben történnek, nem pedig a lemezen. Tehát csak a READ és WRITE műveletek 

sorrendje számít, amikor a konkurenciával foglalkozunk, az INPUT és OUTPUT műveleteket figyelmen 

kívül hagyjuk. 

Példa. Tekintsünk két tranzakciót és az adatbázison kifejtett hatásukat, amikor egy meghatározott 

sorrendben hajtjuk végre a műveleteiket: 

T1 T2 

READ(A,t) READ(A,s) 

t := t+100 s := s*2 

WRITE(A,t) WRITE(A,s) 

READ(B,t) READ(B,s) 

t := t+100 s := s*2 

WRITE(B,t) WRITE(B,s) 

t és s T1-nek és T2-nek lokális változói, nem adatbáziselemek. Tételezzük fel, hogy az egyetlen 

konzisztenciamegszorítás az A = B. Mivel T1 A-hoz és B-hez is hozzáad 100-at, és T2 A-t és B-t is 

megszorozza 2-vel, tudjuk, hogy az egyes tranzakciók egymástól elkülönítve futva megőrzik a 

konzisztenciát. 
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Soros ütemezések 

Azt mondjuk, hogy egy ütemezés soros (serial schedule), ha benne bármely két T és T’ tranzakcióra 

teljesül, hogy ha T-nek van olyan művelete, amely megelőzi T’ valamelyik műveletét, akkor T összes 

művelete megelőzi T’ valamennyi műveletét. Másképpen fogalmazva az ütemezés úgy épül fel a 

tranzakciós műveletekből, hogy először az egyik tranzakció összes műveletét tartalmazza, azután egy másik 

tranzakció összes műveletét stb., miközben nem cseréli fel a műveleteket. 

Példa. A fenti tranzakcióknak két soros ütemezése van, az egyikben T1 megelőzi T2-t, a másikban T2 előzi 

meg T1-et. Legyen a kezdeti állapot A = B = 25. Ekkor a két ütemezés a következőképpen alakul: 

T1 T2 A B  T1 T2 A B 

READ(A,t)  25    READ(A,s) 25  

t := t+100      s := s*2   

WRITE(A,t)  125    WRITE(A,s) 50  

READ(B,t)   25   READ(B,s)  25 

t := t+100      s := s*2   

WRITE(B,t)   125   WRITE(B,s)  50 

 READ(A,s) 125   READ(A,t)  50  

 s := s*2    t := t+100    

 WRITE(A,s) 250   WRITE(A,t)  150  

 READ(B,s)  125  READ(B,t)   50 

 s := s*2    t := t+100    

 WRITE(B,s)  250  WRITE(B,t)   150 

Láthatjuk, hogy A és B végső értéke különböző a két ütemezésben, de nem is a végeredmény a központi 

kérdés addig, amíg a konzisztenciát megőrizzük. Általában nem várjuk el, hogy az adatbázis végső állapota 

független legyen a tranzakciók végrehajtásának sorrendjétől. 

A soros ütemezést úgy ábrázolhatjuk, hogy a műveleteket a végrehajtásuk sorrendjében felsoroljuk. Mivel 

a soros ütemezésben a műveletek sorrendje csak magától a tranzakciók sorrendjétől függ, ezért a soros 

ütemezést elegendő a tranzakciók felsorolásával megadni, például: (T1, T2), illetve (T2, T1). 

Sorba rendezhető ütemezések 

A tranzakciókra vonatkozó korrektségi elv szerint minden soros ütemezés megőrzi az adatbázis 

konzisztenciáját. Kérdés, hogy van-e más ütemezés is, amely szintén biztosítja a konzisztencia 

megmaradását. A válasz igen, ahogy azt a következő példa mutatja. Általában azt mondjuk, hogy egy 

ütemezés sorba rendezhető (serializable schedule), ha ugyanolyan hatással van az adatbázis állapotára, mint 

ugyanazon tranzakciók valamelyik soros ütemezése, függetlenül az adatbázis kezdeti állapotától. 

Példa. Tekintsük a fenti két tranzakció következő két ütemezését: 

T1 T2 A B  T1 T2 A B 

READ(A,t)  25   READ(A,t)  25  

t := t+100     t := t+100    

WRITE(A,t)  125   WRITE(A,t)  125  

 READ(A,s) 125    READ(A,s) 125  

 s := s*2     s := s*2   

 WRITE(A,s) 250    WRITE(A,s) 250  

READ(B,t)   25   READ(B,s)  25 

t := t+100      s := s*2   

WRITE(B,t)   125   WRITE(B,s)  50 

 READ(B,s)  125  READ(B,t)   50 

 s := s*2    t := t+100    

 WRITE(B,s)  250  WRITE(B,t)   150 
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Az első példa egy sorba rendezhető, de nem soros ütemezést ad meg. Ebben az ütemezésben T2 azután van 

hatással A-ra, miután T1 volt, de mielőtt T1 hatással lenne B-re. Mégis azt látjuk, hogy a két tranzakció 

hatása megegyezik a (T1, T2) soros ütemezés hatásával. Ezt könnyű belátni tetszőleges konzisztens 

kiindulási állapotra: A = B = c-ből kiindulva A-nak is és B-nek is 2(c + 100) lesz az értéke, tehát a 

konzisztenciát mindig megőrizzük. 

A második példában szereplő ütemezés viszont nem sorba rendezhető. Itt T1 dolgozik előbb A-val, viszont 

T2 dolgozik előbb B-vel, ennek hatásaként másképpen kell kiszámolnunk A-t és B-t: A := 2(A + 100), 

B := 2B + 100. Az ilyen viselkedést a különböző konkurenciavezérlési technikákkal el kell kerülnünk. 

A tranzakció szemantikájának hatása 

A sorbarendezhetőség eldöntéséhez eddig a tranzakciók műveleteinek a sorrendjét néztük meg. Azonban a 

tranzakciók részletei is számítanak, ahogyan ezt a következő példából láthatjuk: 

Példa. Tekintsük az alábbi ütemezést, amely csak a T2 által végrehajtott számításokban különbözik a 

legutolsó példánktól, mégpedig abban, hogy nem 2-vel szorozza meg A-t és B-t, hanem 1-gyel: 

T1 T2 A B 

READ(A,t)  25  

t := t+100    

WRITE(A,t)  125  

 READ(A,s) 125  

 s := s*1   

 WRITE(A,s) 125  

 READ(B,s)  25 

 s := s*1   

 WRITE(B,s)  25 

READ(B,t)   25 

t := t+100    

WRITE(B,t)   125 

A és B értéke az ütemezés végén megegyezik, és könnyen ellenőrizhetjük, hogy a konzisztens kezdeti 

állapottól függetlenül a végállapot is konzisztens lesz. Valójában az egyetlen végállapot az, amelyet vagy 

a (T1, T2) vagy a (T2, T1) soros ütemezés eredményez. 

Felmerülhet a kérdés, hogy mi értelme van a T2 tranzakciónak. Valójában több elfogadható tranzakciót 

helyettesíthetnénk a helyére, amely A-t és B-t változatlanul hagyná. T2 például lehetne olyan tranzakció, 

amely csak kiíratja A-t és B-t. Vagy a felhasználótól kérhet be adatokat, hogy kiszámoljon egy F tényezőt, 

amivel beszorozza A-t és B-t, és előfordulhat olyan felhasználói input, amelyre F = 1. 

Sajnos az ütemező számára nem reális a tranzakciós számítások részleteinek figyelembevétele. Mivel a 

tranzakciók gyakran tartalmaznak általános célú programozási nyelven írt kódokat éppúgy, mint SQL 

nyelvű utasításokat, néha nagyon nehéz megválaszolni azokat a kérdéseket, mint például „ez a tranzakció 

A-t egy 1-től különböző értékkel szorozta-e meg”. Az ütemezőnek azonban látnia kell a tranzakciók olvasási 

és írási kéréseit, így tudhatja, hogy az egyes tranzakciók mely adatbáziselemeket olvasták be, és mely 

elemek változhattak meg. Az ütemező feladatának egyszerűsítésére megszokott a következő feltétel: 

 Bármely A adatbáziselemnek egy T tranzakció olyan értéket ír be, amely az adatbázis-állapottól függ 

oly módon, hogy ne forduljon elő aritmetikai egybeesés. 

Más szóval: ha T tudna A-ra olyan hatással lenni, hogy az adatbázis-állapot inkonzisztenssé váljon, akkor 

T ezt meg is teszi. Ezt a feltevést később pontosítjuk, amikor a sorbarendezhetőség biztosítására adunk meg 

feltételeket. 
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A tranzakciók és az ütemezések jelölése 

Ha elfogadjuk, hogy egy tranzakció által végrehajtott pontos számítások tetszőlegesek lehetnek, akkor nem 

szükséges a helyi számítási lépések részleteit néznünk. Csak a tranzakciók által végrehajtott olvasások és 

írások számítanak, így a tranzakciókat és az ütemezéseket rövidebben jelölhetjük. Ekkor rT(X) és wT(X) 

tranzakcióműveletek, és azt jelentik, hogy a T tranzakció olvassa, illetve írja az X adatbáziselemet. 

Továbbá, mivel a tranzakcióinkat általában T1, T2, …-vel fogjuk jelölni, ezért megállapodunk abban, hogy 

ri(X) és wi(X) ugyanazt jelöli, mint rTi(X), illetve wTi(X). 

Példa. A fenti példákban szereplő tranzakciók az alábbi módon írhatók fel: 

T1: r1(A); w1(A); r1(B); w1(B); 

T2: r2(A); w2(A); r2(B); w2(B); 

Nem említettük sehol a t és s lokális változókat, és nem jelöltük azt sem, hogy mi történt a beolvasás után 

A-val és B-vel. Mindezt úgy értelmezzük, hogy az adatbáziselemek megváltozásában a „legrosszabbat 

fogjuk feltételezni”. 

Másik példaként nézzük meg a T1 és T2 tranzakciók korábban felírt sorba rendezhető ütemezését: 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B); 

Pontosítva a jelölést: 

1. Egy tranzakció műveletét ri(X) vagy wi(X) formában fejezzük ki, amely azt jelenti, hogy a Ti 

tranzakció olvassa, illetve írja az X adatbáziselemet. 

2. Egy Ti tranzakció az i indexű műveletekből álló sorozat. 

3. A T tranzakcióhalmaz egy S ütemezése olyan műveletek sorozata, amelyben minden T halmazbeli Ti 

tranzakcióra teljesül, hogy Ti műveletei ugyanabban a sorrendben fordulnak elő S-ben, mint ahogy 

magában a Ti definíciójában szerepeltek. Azt mondjuk, hogy S az őt alkotó tranzakciók műveleteinek 

átlapolása (interleaving). 

Konfliktus-sorbarendezhetőség 

Most egy olyan elégséges feltételt adunk meg, amely biztosítja egy ütemezés sorbarendezhetőségét. A 

forgalomban lévő rendszerek ütemezői a tranzakciók sorbarendezhetőségére általában ezt az erősebb 

feltételt biztosítják, amelyet konfliktus-sorbarendezhetőségnek nevezünk. Ez a konfliktus fogalmon alapul: 

A konfliktus (conflict) vagy konfliktuspár két olyan egymást követő művelet az ütemezésben, amelyeknek 

ha a sorrendjét felcseréljük, akkor legalább az egyik tranzakció viselkedése megváltozhat. Egy tranzakció 

két szomszédos műveletét mindig konfliktusnak tekintjük. 

Konfliktusok 

Vegyük észre, hogy a legtöbb műveletpár nincs konfliktusban a fenti értelemben. Legyen Ti és Tj két 

különböző tranzakció (i  j). 

1. ri(X); rj(Y); sohasem konfliktus, még akkor sem, ha X = Y, mivel egyik lépés sem változtatja meg 

az értékeket. 

2. ri(X); wj(Y); nincs konfliktusban, feltéve, hogy X  Y, mivel Tj írhatja Y-t, mielőtt Ti beolvasta X-

et, X értéke ettől ugyanis nem változik. Annak sincs hatása Tj-re, hogy Ti olvassa X-et, ugyanis ez nincs 

hatással arra, hogy milyen értéket ír Tj Y-ba. 

3. wi(X); rj(Y); nincs konfliktusban, ha X  Y, ugyanazért, amiért a 2. pontban. 



36 

4. wi(X); wj(Y); sincs konfliktusban, ha X  Y. 

Másrészt három esetben nem cserélhetjük fel a műveletek sorrendjét: 

a) Ugyanannak a tranzakciónak két művelete, például ri(X); wi(Y); konfliktus, mivel egyetlen 

tranzakción belül a műveletek sorrendje rögzített, és az adatbázis-kezelő rendszer ezt a sorrendet nem 

rendezheti át. 

b) Különböző tranzakciók ugyanarra az adatbáziselemre vonatkozó írása, például wi(X); wj(X); 

konfliktus, mivel X értéke az marad, amit Tj számolt ki. Ha felcseréljük a sorrendjüket, akkor pedig X-

nek a Ti által kiszámolt értéke marad meg. Az a feltevésünk, hogy „nincs egybeesés”, azt adja, hogy a 

Ti és a Tj által kiírt értékek lehetnek különbözőek, és ezért az adatbázis valamelyik kezdeti állapotára 

különbözni fognak. 

c) Különböző tranzakciók által ugyanazon adatbáziselem olvasása és írása is konfliktus, azaz ri(X); 

wj(X); és wi(X); rj(X); is konfliktus. Ha átvisszük wj(X)-et ri(X) elé, akkor a Ti által olvasott X-

beli érték az lesz, amit a Tj kiírt, amiről pedig feltételeztük, hogy nem szükségképpen egyezik meg X 

korábbi értékével. Tehát ri(X) és wj(X) sorrendjének cseréje befolyásolja, hogy Ti milyen értéket 

olvas X-ből, ez pedig befolyásolja Ti működését. 

Levonhatjuk a következtetést, hogy különböző tranzakciók bármely két műveletének sorrendje 

felcserélhető, hacsak nem: 

1. ugyanarra az adatbáziselemre vonatkoznak, és 

2. legalább az egyik művelet írás. 

Ezt az elvet kiterjesztve tetszőleges ütemezést véve annyi nem konfliktusos cserét készíthetünk, amennyit 

csak kívánunk, abból a célból, hogy az ütemezést soros ütemezéssé alakítsuk át. Ha ezt meg tudjuk tenni, 

akkor az eredeti ütemezés sorba rendezhető volt, ugyanis az adatbázis állapotára való hatása változatlan 

marad minden nemkonfliktusos cserével. 

Azt mondjuk, hogy két ütemezés konfliktusekvivalens (conflict-equivalent), ha szomszédos műveletek 

nemkonfliktusos cseréinek sorozatával az egyiket átalakíthatjuk a másikká. Azt mondjuk, hogy egy 

ütemezés konfliktus-sorbarendezhető (conflict-serializable schedule), ha konfliktusekvivalens ugyanazon 

tranzakciók valamely soros ütemezésével. A konfliktus-sorbarendezhetőség elégséges feltétele a 

sorbarendezhetőségnek, vagyis egy konfliktus-sorbarendezhető ütemezés sorba rendezhető ütemezés is 

egyben. Azonban a konfliktus-sorbarendezhetőség nem szükséges ahhoz, hogy egy ütemezés sorba 

rendezhető legyen, mégis általában ezt a feltételt ellenőrzik a forgalomban lévő rendszerek ütemezői, 

amikor a sorbarendezhetőséget kell biztosítaniuk. 

Példa. Legyen az ütemezés a következő: 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B); 

Azt állítjuk, hogy ez az ütemezés konfliktus-sorbarendezhető. A következő cserékkel ez az ütemezés 

átalakítható a (T1, T2) soros ütemezéssé, ahol az összes T1-beli művelet megelőzi az összes T2-beli 

műveletet: 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B); 

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B); 

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B); 

r1(A); w1(A); r1(B); r2(A); w1(B); w2(A); r2(B); w2(B); 

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B); 

Felmerül a kérdés, hogy miért nem szükséges a konfliktus-sorbarendezhetőség a sorbarendezhetőséghez. 

Korábban már láttunk erre egy példát, amikor a tranzakció szemantikáját figyelembe véve állapíthattuk 

csak meg a sorbarendezhetőséget. Akkor megnéztük, hogy a T2 által végrehajtott speciális számítások miatt 

miért volt az ütemezés sorba rendezhető. Pedig az az ütemezés nem konfliktus-sorbarendezhető, ugyanis 
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A-t T1 írja előbb, B-t pedig T2. Mivel sem A írását, sem B írását nem lehet átrendezni, semmilyen módon 

nem kerülhet T1 összes művelete T2 összes művelete elé, sem fordítva. 

Vannak olyan sorba rendezhető, de nem konfliktus-sorbarendezhető ütemezések is, amelyek nem függnek 

a tranzakciók által végrehajtott számításoktól. Tekintsük például a T1, T2 és T3 tranzakciókat, amelyek 

mindegyike X értékét írja. T1 és T2 Y-nak is ír értéket, mielőtt X-nek írnának értéket. Az egyik lehetséges 

ütemezés, amely éppen soros is, a következő: 

S1: w1(Y); w1(X); w2(Y); w2(X); w3(X); 

Az S1 ütemezés X értékének a T3 által írt értéket, Y értékének pedig a T2 által írt értéket adja. Ugyanezt 

végzi a következő ütemezés is: 

S2: w1(Y); w2(Y); w2(X); w1(X); w3(X); 

Intuíció alapján átgondolva annak, hogy T1 és T2 milyen értéket ír X-be, nincs hatása, ugyanis T3 felülírja 

X értékét. Emiatt S1 és S2 X-nek is és Y-nak is ugyanazt az értéket adja. Mivel S1 soros ütemezés, és S2-

nek bármely adatbázis-állapotra ugyanaz a hatása, mint S1-nek, ezért S2 sorba rendezhető. Ugyanakkor 

mivel nem tudjuk felcserélni w1(X)-et w2(X)-szel, így cseréken keresztül nem lehet S2-t valamelyik soros 

ütemezéssé átalakítani. Tehát S2 sorba rendezhető, de nem konfliktus-sorbarendezhető. 

Megelőzési gráfok és teszt a konfliktus-sorbarendezhetőségre 

Viszonylag könnyű megvizsgálnunk egy S ütemezést, és eldöntenünk, hogy konfliktus-sorbarendezhető-e 

vagy nem. Az az alapötlet, hogy ha valahol konfliktusban álló műveletek szerepelnek S-ben, akkor az 

ezeket a műveleteket végrehajtó tranzakcióknak ugyanabban a sorrendben kell előfordulniuk a 

konfliktusekvivalens soros ütemezésekben, mint ahogyan az S-ben voltak. Tehát a konfliktusban álló 

műveletpárok megszorítást adnak a feltételezett konfliktusekvivalens soros ütemezésben a tranzakciók 

sorrendjére. Ha ezek a megszorítások nem mondanak ellent egymásnak, akkor találhatunk 

konfliktusekvivalens soros ütemezést. Ha pedig ellentmondanak egymásnak, akkor tudjuk, hogy nincs ilyen 

soros ütemezés. 

Adott a T1 és T2 (T1  T2), esetleg további tranzakcióknak egy S ütemezése. Azt mondjuk, hogy T1 

megelőzi T2-t, ha van a T1-ben olyan A1 művelet és a T2-ben olyan A2 művelet, hogy 

1. A1 megelőzi A2-t S-ben, 

2. A1 és A2 ugyanarra az adatbáziselemre vonatkoznak, és 

3. A1 és A2 közül legalább az egyik írás művelet. 

Másképpen fogalmazva: A1 és A2 konfliktuspárt alkotna, ha szomszédos műveletek lennének. Jelölése: 

T1 <S T2. Látható, hogy ezek pontosan azok a feltételek, amikor nem lehet felcserélni A1 és A2 sorrendjét. 

Tehát A1 az A2 előtt szerepel bármely S-sel konfliktusekvivalens ütemezésben. Ebből az következik, hogy 

ha ezek közül az ütemezések közül az egyik soros ütemezés, akkor abban T1-nek meg kell előznie T2-t. 

Ezeket a megelőzéseket a megelőzési gráfban (precedence graph) összegezhetjük. A megelőzési gráf 

csomópontjai az S ütemezés tranzakciói. Ha a tranzakciókat Ti-vel jelöljük, akkor a Ti-nek megfelelő 

csomópontot az i egésszel. Az i csomópontból a j csomópontba vezet irányított él, ha Ti <S Tj. 

Példa. A következő S ütemezés a T1, T2 és T3 tranzakciókat tartalmazza: 

S: r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B); 

Az S ütemezéshez tartozó megelőzési gráf a következő: 

 1 2 3 
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Ha az A-val kapcsolatos műveleteket nézzük meg, akkor több okot találunk, hogy miért igaz a T2 <S T3. 

Például r2(A) az S-ben w3(A) előtt áll, és w2(A) az r3(A) és a w3(A) előtt is áll. A három észrevételünk 

közül bármelyik elegendő, hogy igazoljuk, valóban vezet él 2-ből 3-ba a megelőzési gráfban. Hasonló 

módon ha megnézzük a B-vel kapcsolatos műveleteket, akkor szintén több okot találunk, hogy miért igaz 

a T1 <S T2. Például az r1(B) művelet a w2(B) művelet előtt áll. Tehát az S megelőzési gráfban 1-ből 2-

be szintén vezet él. Ez a két él és csak ez a két él az, amelyeket az S ütemezésben szereplő műveletek 

sorrendjéből tudunk ellenőrizni. 

Van egy egyszerű szabály, amivel megmondhatjuk, hogy egy S ütemezés konfliktus-sorbarendezhető-e: 

 Rajzoljuk fel S megelőzési gráfját, és nézzük meg, tartalmaz-e kört! Ha igen, akkor S nem konfliktus-

sorbarendezhető, ha nem, akkor az, és ekkor a csomópontok bármelyik topologikus sorrendje megadja 

a konfliktusekvivalens soros sorrendet. 

Egy körmentes gráf csomópontjainak topologikus sorrendje a csomópontok bármely olyan rendezése, 

amelyben minden a  b élre az a csomópont megelőzi a b csomópontot a topologikus rendezésben. 

Példa. A fenti megelőzési gráf körmentes, így az S ütemezés konfliktus-sorbarendezhető. A 

csomópontoknak, azaz a tranzakcióknak csak egyetlen sorrendje van, amely konzisztens a gráf éleivel, ez 

pedig a (T1, T2, T3). S-et tehát át lehet alakítani olyan ütemezéssé, amelyben a három tranzakció 

mindegyikének az összes művelete ugyanebben a sorrendben van, és ez a soros ütemezés: 

S’: r1(B); w1(B); r2(A); w2(A); r2(B); w2(B); r3(A); w3(A); 

Ahhoz, hogy belássuk, megkaphatjuk S-ből S’-t szomszédos elemek cseréjével, az első észrevételünk, 

hogy az r1(B)-t konfliktus nélkül az r2(A) elé hozhatjuk. Ezután három cserével a w1(B)-t közvetlenül 

az r1(B) utánra tudjuk vinni, ugyanis mindegyik közbeeső művelet az A-ra vonatkozik. Ezután az r2(B)-t 

és a w2(B)-t csak az A-ra vonatkozó műveleteken keresztül át tudjuk vinni pontosan a w2(A) utáni 

helyzetbe, amivel megkapjuk S’-t. 

Példa. Tekintsük az alábbi ütemezést: 

S1: r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B); 

S1 csak abban különbözik S-től, hogy az r2(B) művelet három hellyel előbb szerepel. Az A-ra vonatkozó 

műveleteket megvizsgálva most is csak a T2 <S1 T3 megelőzési kapcsolathoz jutunk. De ha B-t vizsgáljuk, 

akkor nemcsak T1 <S1 T2 teljesül (ugyanis r1(B) és w1(B) a w2(B) előtt szerepel), hanem T2 <S1 T1 is 

(ugyanis r2(B) a w1(B) előtt fordul elő). Emiatt az S1 ütemezéshez tartozó megelőzési gráf a következő: 

 

1 2 3 
 

Ez a gráf nyilvánvalóan tartalmaz kört (ciklikus), ezért arra következtethetünk, hogy S1 nem konfliktus-

sorbarendezhető, ugyanis intuíció alapján láthatjuk, hogy bármely konfliktusekvivalens soros ütemezésben 

T1-nek T2 előtt is és után is kellene állnia, tehát nem létezik ilyen ütemezés. 

Miért működik a megelőzési gráfon alapuló tesztelés? 

Láttuk, hogy a megelőzési gráfban a kör túl sok megszorítást jelent a feltételezett konfliktusekvivalens 

soros ütemezésre nézve. Azaz ha létezik a T1  T2  …  Tn  T1 n darab tranzakcióból álló kör, akkor 

a feltételezett soros sorrendben T1 műveleteinek meg kell előzniük a T2-ben szereplő műveleteket, 

amelyeknek meg kell előzniük a T3-belieket és így tovább egészen Tn-ig. De Tn műveletei emiatt a T1-
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beliek mögött vannak, ugyanakkor meg is kellene előzniük a T1-belieket a Tn  T1 él miatt. Ebből 

következik, hogy ha a megelőzési gráf tartalmaz kört, akkor az ütemezés nem konfliktus-sorbarendezhető. 

A másik irányt egy kicsit nehezebb belátnunk. Azt kell megmutatnunk, hogy amikor a megelőzési gráf 

körmentes, akkor az ütemezés műveletei átrendezhetők szomszédos műveletek szabályos cseréivel úgy, 

hogy az ütemezés egy soros ütemezéssé váljon. Ha ezt meg tudjuk tenni, akkor bebizonyítottuk, hogy 

minden körmentes megelőzési gráffal rendelkező ütemezés konfliktus-sorbarendezhető. A bizonyítás az 

ütemezésben részt vevő tranzakciók száma szerinti indukcióval történik: 

Alapeset: Ha n = 1, vagyis csak egyetlen tranzakcióból áll az ütemezés, akkor az már önmagában soros, 

tehát biztosan konfliktus-sorbarendezhető. 

Indukció: Legyen S a T1, T2, …, Tn n darab tranzakció műveleteiből álló ütemezés. Tételezzük fel, hogy 

S-nek körmentes megelőzési gráfja van. Ha egy véges gráf körmentes, akkor van legalább egy olyan 

csomópontja, amelybe nem vezet él. Legyen a Ti tranzakciónak megfelelő i csomópont egy ilyen 

csomópont. Mivel az i csomópontba nem vezet él, nincs S-ben olyan A művelet, amely 

1. valamelyik Tj (i  j) tranzakcióra vonatkozik, 

2. Ti valamely műveletét megelőzi, és 

3. ezzel a művelettel konfliktusban van. 

Ha lenne ilyen, akkor a megelőzési gráfban lennie kellene egy élnek a j csomópontból az i csomópontba 

(hiszen ekkor Tj megelőzi Ti-t), márpedig az i csomópontba nem vezet él. 

Így lehetséges, hogy Ti minden műveletét S legelejére mozgatjuk át, miközben megtartjuk a sorrendjüket. 

Az ütemezés most a következő alakú: 

(Ti műveletei) (a többi n-1 tranzakció műveletei) 

Most tekintsük S második részét, vagyis a Ti-től különböző összes tranzakciónak a műveleteit. Mivel ezek 

a műveletek egymáshoz viszonyítva ugyanabban a sorrendben vannak, mint ahogyan S-ben voltak, ennek 

a második résznek a megelőzési gráfját megkapjuk S megelőzési gráfjából, ha elhagyjuk belőle az i 

csomópontot és az ebből a csomópontból kimenő éleket. 

Mivel az eredeti megelőzési gráf körmentes volt, és csomópontok, illetve élek törlésével nem válhatott 

ciklikussá, ezért a második rész megelőzési gráfja is körmentes. Továbbá, mivel a második része n-1 

tranzakciót tartalmaz, alkalmazzuk rá az indukciós feltevést. Így tudjuk, hogy a második rész műveletei 

szomszédos műveletek szabályos cseréivel átrendezhetők soros ütemezéssé. Ily módon magát S-et 

alakítottuk át olyan soros ütemezéssé, amelyben Ti műveletei állnak legelöl, és a többi tranzakció műveletei 

ezután következnek valamilyen soros sorrendben. Az indukciót beláttuk, és így következik, hogy minden 

olyan ütemezés, amelynek körmentes a megelőzési gráfja, konfliktus-sorbarendezhető. 

A sorbarendezhetőség biztosítása zárakkal 

Képzeljünk el egy olyan tranzakcióhalmazt, amely megszorítások nélkül hajtja végre a műveleteit. Ezek a 

műveletek is egy ütemezést alkotnak, de nem valószínű, hogy ez az ütemezés sorba rendezhető lenne. Az 

ütemező feladata az, hogy megakadályozza az olyan műveleti sorrendeket, amelyek nem sorba rendezhető 

ütemezésekhez vezetnek. Először az ütemező legáltalánosabb szerkezetét tekintjük, olyat, amelyben az 

adatbáziselemekre kiadott zárak (lock) akadályozzák meg a nem sorba rendezhető viselkedést. Röviden 

arról van szó, hogy a tranzakciók zárolják azokat az adatbáziselemeket, amelyekhez hozzáférnek, hogy 

megakadályozzák azt, hogy ugyanakkor más tranzakciók is hozzáférjenek ezekhez az elemekhez, mivel 

ekkor felmerülne a nem sorbarendezhetőség kockázata. 
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Először egy leegyszerűsített zárolási sémával vezetjük be a zárolás fogalmát. Ebben a sémában csak egyféle 

zár van, amelyet a tranzakcióknak meg kell kapniuk az adatbáziselemre, ha bármilyen műveletet végre 

akarnak hajtani rajta. Később sokkal valósabb zárolási sémákat tanulmányozunk, különböző zármódokkal. 

Zárak 

Az ütemező felelős azért, hogy fogadja a tranzakcióktól érkező kéréseket, és vagy megengedi a műveletek 

végrehajtását, vagy addig késlelteti, amikor már biztonságosan végre tudja hajtani őket. Nézzük meg, 

hogyan irányítja ezt a döntést a zártábla (lock table) felhasználásával. 

Az lenne az ideális, ha az ütemező akkor és csak akkor továbbítana egy kérést, ha annak végrehajtása nem 

vezethetne inkonzisztens adatbázis-állapothoz, miután az összes aktív tranzakciót vagy véglegesen 

végrehajtottuk, vagy abortáltuk (vagyis sikertelenül befejeztük). Ezt a kérdést viszont túl nehéz lenne valós 

időben eldönteni. Így minden ütemező csak egy egyszerű tesztet hajt végre a sorbarendezhetőség 

eldöntésére, azonban letilthat olyan műveleteket is, amelyek önmagukban nem vezetnének 

inkonzisztenciához. A zárolási ütemező, mint a legtöbb ütemező, a konfliktus-sorbarendezhetőséget 

követeli meg, pedig – mint azt már láttuk – ez erősebb követelmény, mint a sorbarendezhetőség. 

Ha az ütemező zárakat használ, akkor a tranzakcióknak – az adatbáziselemek olvasásán és írásán felül – 

zárakat kell kérniük és feloldaniuk. A zárak használatának két értelemben is helyesnek kell lennie: mind a 

tranzakciók szerkezetére, mind pedig az ütemezések szerkezetére alkalmazva: 

 Tranzakciók konzisztenciája (consistency of transactions): A műveletek és a zárak az alábbi elvárások 

szerint kapcsolódnak egymáshoz: 

1. A tranzakció csak akkor olvashat vagy írhat egy elemet, ha már korábban zárolta azt, és még nem 

oldotta fel a zárat. 

2. Ha egy tranzakció zárol egy elemet, akkor később azt fel kell szabadítania. 

 Az ütemezések jogszerűsége (legality of schedules): A zárak értelme feleljen meg a szándék szerinti 

elvárásnak: nem zárolhatja két tranzakció ugyanazt az elemet, csak úgy, ha az egyik előbb már feloldotta 

a zárat. 

Kibővítjük a jelöléseinket a zárolás és a feloldás műveletekkel: 

li(X): a Ti tranzakció az X adatbáziselemre zárolást kér (lock). 

ui(X): a Ti tranzakció az X adatbáziselem zárolását feloldja (unlock). 

Így a tranzakciók konzisztenciafeltétele és az ütemezések jogszerűségének a feltétele a következőképpen 

is kimondható: 

 Ha egy Ti tranzakcióban van egy ri(X) vagy egy wi(X) művelet, akkor van korábban egy li(X) 

művelet, és van később egy ui(X) művelet, de a zárolás és az írás/olvasás között nincs ui(X). 

 Ha egy ütemezésben van olyan li(X) művelet, amelyet lj(X) követ, akkor e két művelet között 

lennie kell egy ui(X) műveletnek. 

Példa. Tekintsük a legelső példánkat, amelyben T1 hozzáad az A és B adatbáziselemekhez 100-at, T2 pedig 

megduplázza az értéküket. Most úgy adjuk meg a tranzakciókat, hogy a zárolási és az aritmetikai 

műveleteket is leírjuk, bár rendszerint a számításokat nem ábrázoljuk ebben a jelölésben, ugyanis az 

ütemező sem tudja azt figyelembe venni, amikor arról dönt, hogy engedélyezze vagy elutasítsa a kéréseket: 

T1: l1(A); r1(A); A := A+100; w1(A); u1(A); l1(B); r1(B); B := B+100; w1(B); u1(B); 

T2: l2(A); r2(A); A := A*2; w2(A); u2(A); l2(B); r2(B); B := B*2; w2(B); u2(B); 
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Mindkét tranzakció konzisztens. Mindkettő felszabadítja az A-ra és B-re kiadott zárakat. Továbbá 

mindkettő csak olyan lépésekben dolgozik A-n és B-n, melyeket megelőzően már zárolták az elemet, és 

még nem oldották fel a zár alól. 

T1 T2 A B 

l1(A); r1(A);  25  

A := A+100;    

w1(A); u1(A);  125  

 l2(A); r2(A); 125  

 A := A*2;   

 w2(A); u2(A); 250  

 l2(B); r2(B);  25 

 B := B*2;   

 w2(B); u2(B);  50 

l1(B); r1(B);   50 

B := B+100;    

w1(B); u1(B);   150 

Az ábrán a két tranzakciónak egy jogszerű ütemezése látható, ugyanis a két tranzakció sohasem zárolja 

egyidejűleg A-t vagy B-t. Pontosabban: T2 nem végzi el az l2(A) műveletet, csak miután T1 végrehajtotta 

u1(A)-t, és T1 nem végzi el az l1(B) műveletet, csak miután T2 végrehajtotta u2(B)-t. Láthatjuk a 

kiszámított értékek nyomon követésével, hogy bár ez az ütemezés jogszerű, mégsem sorba rendezhető. 

Nemsokára látni fogunk egy további feltételt (a kétfázisú zárolást), amivel biztosíthatjuk, hogy a jogszerű 

ütemezések konfliktus-sorbarendezhetők legyenek. 

A zárolási ütemező 

A zároláson alapuló ütemező feladata, hogy akkor és csak akkor engedélyezze a kérések végrehajtását, ha 

azok jogszerű ütemezéseket eredményeznek. Ezt a döntést segíti a zártábla, amely minden 

adatbáziselemhez megadja azt a tranzakciót, ha van ilyen, amelyik pillanatnyilag zárolja az adott elemet. A 

zártábla szerkezetéről később lesz szó. Ha viszont csak egyféle zárolás van, mint ahogyan eddig 

feltételeztük, akkor úgy tekinthetjük a táblát, mint (X,T) párokból álló Zárolások(elem, 

tranzakció) relációt, ahol a T tranzakció zárolja az X adatbáziselemet. Az ütemezőnek csak le kell 

kérdeznie ezt a relációt, illetve egyszerű INSERT és DELETE utasításokkal kell módosítania. 

Példa. A fenti példában látható ütemezés jogszerű, így a zárolási ütemező engedélyezhetné az összes kérést 

abban a sorrendben, ahogyan beérkeznek. Néha azonban előfordulhat, hogy nem lehet engedélyezni a 

kéréseket. Hajtsunk végre a T1 és T2 tranzakciókon egy apró, de lényeges változtatást, mégpedig azt, hogy 

T1 és T2 is előbb zárolja B-t, és csak azután oldja fel A zárolását: 

T1: l1(A); r1(A); A := A+100; w1(A); l1(B); u1(A); r1(B); B := B+100; w1(B); u1(B); 

T2: l2(A); r2(A); A := A*2; w2(A); l2(B); u2(A); r2(B); B := B*2; w2(B); u2(B); 

T1 T2 A B 

l1(A); r1(A);  25  

A := A+100;    

w1(A); l1(B); u1(A);  125  

 l2(A); r2(A); 125  

 A := A*2;   

 w2(A); 250  

 l2(B); elutasítva   

r1(B); B := B+100;   25 

w1(B); u1(B);   125 

 l2(B); u2(A); r2(B);  125 

 B := B*2;   

 w2(B); u2(B);  250 
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Az ábrán látható, hogy amikor a módosított ütemezésben T2 kéri B zárolását, az ütemezőnek el kell 

utasítania ezt a kérést, hiszen T1 még zárolja B-t. Így T2 áll, és a következő műveleteket a T1 tranzakció 

végzi. Végül T1 végrehajtja u1(B)-t, amely felszabadítja B-t. T2 most már zárolhatja B-t, amelyet a 

következő lépésben végre is hajt. Látható, hogy mivel T2-nek várakoznia kellett, ezért B-t akkor szorozza 

meg 2-vel, miután T1 már hozzáadott 100-at, és ez konzisztens adatbázis-állapotot eredményez. 

A kétfázisú zárolás 

Van egy meglepő feltétel, amellyel biztosítani tudjuk, hogy konzisztens tranzakciók jogszerű ütemezése 

konfliktus-sorbarendezhető legyen. Ezt a feltételt, amelyet a gyakorlatban elterjedt zárolási rendszerek 

leginkább követnek, kétfázisú zárolásnak (two-phase locking, 2PL) nevezzük: 

 Minden tranzakcióban minden zárolási művelet megelőzi az összes zárfeloldási műveletet. 

A „két fázis” abból adódik, hogy az első fázisban csak zárolásokat adunk ki, a második fázisban pedig csak 

megszüntetünk zárolásokat. A kétfázisú zárolás – a konzisztenciához hasonlóan – a tranzakcióban a 

műveletek sorrendjére egy feltétel. Azt a tranzakciót, amely eleget tesz a 2PL feltételnek, kétfázisú zárolású 

tranzakciónak (two-phase-locked transaction) vagy 2PL tranzakciónak nevezzük. 

Példa. Az első példánkban a tranzakciók nem tesznek eleget a kétfázisú zárolási szabálynak. Például T1 

előbb oldja fel A zárolását, mint zárolja B-t. A második példában található tranzakciók azonban már eleget 

tesznek a 2PL feltételnek. Látható, hogy mind T1, mind T2 A-t és B-t is az első öt műveleten belül zárolja, 

és a következő öt műveleten belül feloldja a zárakat. Ha összehasonlítjuk a két ábrát, azt is látjuk, hogy a 

kétfázisú zárolású tranzakciók hogyan működnek együtt az ütemezővel a konzisztencia biztosítására, míg 

a nem 2PL tranzakciók esetén előfordulhat inkonzisztencia. 

Miért működik a kétfázisú zárolás? 

Igaz, bár közel sem nyilvánvaló, hogy a 2PL példánkban észlelt előnyei általában is érvényesek. Intuíció 

alapján mindegyik kétfázisú zárolású tranzakcióról azt gondolhatjuk, hogy rögtön végrehajtásra kerülnek, 

amint az első zárfeloldási kérés kiadásra kerül. A 2PL tranzakciók egy S ütemezésével konfliktusekvivalens 

soros ütemezésben a tranzakciók ugyanabban a sorrendben vannak, mint amilyenben az első zárfeloldásaik. 

Megnézzük, hogyan lehet konzisztens, kétfázisú zárolású tranzakciók bármely S jogszerű ütemezését 

átalakítani konfliktusekvivalens soros ütemezéssé. A konverziót legjobban az S-ben részt vevő tranzakciók 

száma (n) szerinti indukcióval tudjuk leírni. Lényeges, hogy a konfliktusekvivalencia csak az olvasási és 

írási műveletekre vonatkozik. Amikor felcseréljük az olvasások és írások sorrendjét, akkor figyelmen kívül 

hagyjuk a zárolási és zárfeloldási műveleteket. Amikor megkaptuk az olvasási és írási műveletek sorrendjét, 

akkor úgy helyezzük el köréjük a zárolási és zárfeloldási műveleteket, ahogyan azt a különböző tranzakciók 

megkövetelik. Mivel minden tranzakció felszabadítja az összes zárolást a tranzakció befejezése előtt, 

tudjuk, hogy a soros ütemezés jogszerű lesz. 

Alapeset: Ha n = 1, vagyis csak egyetlen tranzakcióból áll az ütemezés, akkor az már önmagában soros, 

tehát biztosan konfliktus-sorbarendezhető. 

Indukció: Legyen S a T1, T2, …, Tn n darab konzisztens, kétfázisú zárolású tranzakció műveleteiből álló 

ütemezés, és legyen Ti az a tranzakció, amelyik a teljes S ütemezésben a legelső zárfeloldási műveletet 

végzi, mondjuk ui(X)-t. Azt állítjuk, hogy Ti összes olvasási és írási műveletét az ütemezés legelejére 

tudjuk vinni anélkül, hogy konfliktusműveleteken kellene áthaladnunk. 
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Tekintsük Ti valamelyik műveletét, mondjuk wi(Y)-t. Megelőzheti-e ezt S-ben valamely 

konfliktusművelet, például wj(Y)? Ha így lenne, akkor az S ütemezésben az uj(Y) és az li(Y) 

műveletek az alábbi módon helyezkednének el a műveletsorozatban: 

…; wj(Y); …; uj(Y); …; li(Y); …; wi(Y); … 

Mivel Ti az első, amelyik zárat old fel, így S-ben ui(X) megelőzi uj(Y)-t, vagyis S a következőképpen 

néz ki: 

…; wj(Y); …; ui(X); …; uj(Y); …; li(Y); …; wi(Y); … 

Az ui(X) művelet állhat wj(Y) előtt is. Mindkét esetben ui(X) li(Y) előtt van, ami azt jelenti, hogy 

Ti nem kétfázisú zárolású, amint azt feltételeztük. Ahogyan beláttuk, hogy nem létezhetnek 

konfliktuspárok az írásra, ugyanúgy be lehet látni bármely két lehetséges műveletre – az egyiket Ti-ből, a 

másikat pedig egy Ti-től különböző Tj-ből választva –, hogy nem lehetnek konfliktuspárok. 

Bebizonyítottuk, hogy valóban S legelejére lehet vinni Ti összes műveletét konfliktusmentes olvasási és 

írási műveletekből álló műveletpárok cseréjével. Ezután elhelyezhetjük Ti zárolási és zárfeloldási 

műveleteit. Így S a következő alakba írható át: 

(Ti műveletei) (a többi n-1 tranzakció műveletei) 

Az n-1 tranzakcióból álló második rész szintén konzisztens 2PL tranzakciókból álló jogszerű ütemezés, 

így alkalmazhatjuk rá az indukciós feltevést. Átalakítjuk a második részt konfliktusekvivalens soros 

ütemezéssé, így a teljes S konfliktus-sorbarendezhetővé vált. 

A holtpont kockázata 

Az egyik probléma, amelyet nem lehet a kétfázisú zárolással megoldani, a holtpontok (deadlock) 

bekövetkezésének a lehetősége, vagyis amikor az ütemező arra kényszeríti a tranzakciókat, hogy „örökké” 

várakozzanak egy olyan adatbáziselemre vonatkozó zárra, amelyet egy másik tranzakció tart zárolva. 

Példaként tekintsük a megszokott 2PL tranzakcióinkat, de most T2 A előtt dolgozza fel B-t: 

T1: l1(A); r1(A); A := A+100; w1(A); l1(B); u1(A); r1(B); B := B+100; w1(B); u1(B); 

T2: l2(B); r2(B); B := B*2; w2(B); l2(A); u2(B); r2(A); A := A*2; w2(A); u2(A); 

A tranzakciós műveletek egy lehetséges végrehajtása a következő: 

T1 T2 A B 

l1(A); r1(A);  25  

 l2(B); r2(B);  25 

A := A+100;    

 B := B*2;   

w1(A);  125  

 w2(B);  50 

l1(B); elutasítva l2(A); elutasítva   

Most egyik tranzakció sem folytatódhat, hanem örökké várakozniuk kell. Látható, hogy nem tudjuk mind 

a két tranzakciót folytatni, ugyanis ha így lenne, akkor az adatbázis végső állapotában nem teljesülhetne 

A = B. 

Ha a holtpont már bekövetkezett, akkor általában nem lehet a helyzeten úgy javítani, hogy minden 

tranzakció továbbléphessen, azaz legalább egy tranzakciót vissza kell görgetni: abortálni kell, majd 

újraindítani. 
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A holtpontkezelés problémája két fő irányból közelíthető meg: vagy valahogy rájövünk, hogy néhány 

tranzakció holtpontra jutott, és ebből a helyzetből keresünk kiutat (holtpontérzékelés), vagy már eleve úgy 

kezeljük a tranzakciókat, hogy soha ne juthassanak holtpontra (holtpontmegelőzés). 

A holtpontok érzékelésére és feloldására a legegyszerűbb megoldást az időtúllépés (timeout) módszere 

adja. Időkorlátot vezetünk be, amely arra vonatkozik, hogy az egyes tranzakciók mennyi ideig lehetnek 

aktívak, és ha ezt a határt túllépik, akkor visszagörgetjük őket. Például egy egyszerű rendszerben, ahol a 

tipikus tranzakciók ezredmásodpercek alatt lefutnak, az egyperces időkorlátnak tényleg csak a holtpontra 

jutott tranzakciókra lenne hatása. De ha van néhány összetettebb tranzakció is, akkor az időtúllépés 

bekövetkezéséhez hosszabb időt választhatunk. 

Vegyük észre, hogy ha a holtpontra jutott tranzakció túllépi az időkorlátját, akkor a többi erőforrással együtt 

az eddig birtokolt zárjairól is lemond. Így tehát van esély arra, hogy a holtponton álló többi tranzakció még 

azelőtt be tudja fejezni a tevékenységét, mielőtt kifutna az időből. De mivel a holtpontra jutott tranzakciók 

valószínűleg körülbelül ugyanabban az időpontban indultak (különben az egyik befejeződött volna, még 

mielőtt a másik elkezdődik), az is lehetséges, hogy a rendszer hamis időtúllépéseket érzékel, azaz úgy 

görgeti vissza a tranzakciókat, hogy azok már túljutottak a közös holtponton. 

A holtpontérzékelésnek egy kifinomultabb módszere a várakozási gráf (waits-for graph) használata, 

amelyben azt tartjuk nyilván, hogy melyik tranzakció melyik másik tranzakció által birtokolt zárakra vár. 

Ezt a módszert nemcsak a már kialakult holtpontok érzékelésére, hanem azok kialakulásának megelőzésére 

is használhatjuk. Mi most az utóbbit tekintjük, ami azzal jár, hogy a várakozási gráfot egész idő alatt nyilván 

kell tartanunk, és az olyan műveleteket, amelyek következtében a gráfban kör alakulna ki, nem szabad 

megengednünk. 

Látni fogjuk, hogy a zártáblában minden X adatbáziselemhez létezik egy lista, amelyben azon tranzakciók 

mellett, amelyek arra várnak, hogy zárolhassák X-et, azok is fel vannak sorolva, amelyek rendelkeznek X 

zárjával. A várakozási gráf csúcsai a listában található tranzakcióknak felelnek meg. A gráfban irányított 

él fut T-ből U-ba, ha létezik olyan A adatbáziselem, melyre 

1. U zárolja A-t, 

2. T arra vár, hogy zárolhassa A-t, és 

3. T csak akkor kapja meg A zárját, ha először U lemond róla. 

Ha nincsen (irányított) kör a gráfban, akkor végül minden tranzakció be tudja fejezni a működését. Lesz 

legalább egy olyan tranzakció, amelyik nem vár semelyik másikra, így ez biztosan befejeződhet. Ekkor 

viszont megint lesz legalább egy tranzakció, amelyik nem várakozik, ezért továbbléphet, és így tovább. 

Ha azonban a gráf nem körmentes, akkor a körben részt vevő tranzakciók nem léphetnek tovább, azaz 

holtpontra jutottak. A holtpontmegelőzési stratégia tehát abból áll, hogy minden olyan tranzakciót 

visszagörgetünk, amelynek valami olyan igénye van, ami kört idézne elő a várakozási gráfban. 

Példa. Tegyük fel, hogy az alábbi négy tranzakcióval rendelkezünk, amelyek mindegyike először olvas egy 

adatbáziselemet, majd ír egy másikat: 

T1: l1(A); r1(A); l1(B); w1(B); u1(A); u1(B); 

T2: l2(C); r2(C); l2(A); w2(A); u2(C); u2(A); 

T3: l3(B); r3(B); l3(C); w3(C); u3(B); u3(C); 

T4: l4(D); r4(D); l4(A); w4(A); u4(D); u4(A); 
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Lépés T1 T2 T3 T4 

1) l1(A); r1(A);    

2)  l2(C); r2(C);   

3)   l3(B); r3(B);  

4)    l4(D); r4(D); 

5)  l2(A); elutasítva   

6)   l3(C); elutasítva  

7)    l4(A); elutasítva 

8) l1(B); elutasítva    

A fenti ábrán egy lehetséges ütemezés kezdeti szakasza látható. Az első négy lépésben mindegyik 

tranzakció zárolja azt az elemet, amelyet olvasni szeretne. Az 5) lépésben T2 megpróbálja zárolni A-t, de 

nem tudja, mert a zár már T1 birtokában van. T2 tehát várakozik T1-re, ezért a várakozási gráfba berajzolunk 

egy élt a T2-nek megfelelő csúcsból a T1-nek megfelelő csúcs felé. 

Hasonlóan, a 6) lépésben T3 nem tudja zárolni C-t T2 miatt, a 7) lépésben pedig T4 vall kudarcot A 

zárolásával T1 miatt. Az ebben az állapotban egyelőre körmentes várakozási gráf a következő: 

 

4 

3 2 1 

 

A 8) lépésben T1-nek várnia kell B zárolásával T3 miatt. Ha megengednénk T1-nek, hogy várjon erre a 

zárra, akkor T1, T2 és T3 mentén kör jönne létre a várakozási gráfban, ahogy ezt az alábbi ábra is mutatja: 

 

4 

3 2 1 

 

Mivel a körben mindegyik tranzakció arra vár, hogy a másik befejeződjön, egyik sem tud továbblépni, 

vagyis ennek a három tranzakciónak a részvételével holtpont alakul ki. Véletlen egybeesés, hogy T4 sem 

fejeződhet be annak ellenére, hogy nincs benne a körben. Az ő előrejutása ugyanis T1 továbblépésén múlik. 

Mivel a kört okozó tranzakciókat visszagörgetjük, így teszünk T1-gyel is. A várakozási gráf a 

következőképpen alakul: 

 

4 

3 2 

 

T1 feloldja A zárolását, amelyet vagy T2, vagy T4 vesz át. Tegyük fel, hogy a zár T2 birtokába kerül. T2 

befejeződik, ezáltal feloldódik a zár A-n és C-n. Most T3, amely C-t akarja zárolni, és T4 is, amely A-t, 

lezárulhat. Valamivel később T1-et újraindítjuk, de nem kaphatja meg sem A, sem B zárját, amíg T2, T3 és 

T4 be nem fejeződött. 
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Különböző zármódú zárolási rendszerek 

A fentebb vázolt zárolási séma bemutatja a zárolás mögött álló legfőbb elveket, de túl egyszerű ahhoz, hogy 

a gyakorlatban is használható séma legyen. Az a legfőbb probléma, hogy a T tranzakciónak akkor is 

zárolnia kell az X adatbáziselemet, ha csak olvasni akarja X-et, írni nem. Nem kerülhetjük el a zárolást 

ekkor sem, mert ha nem zárolnánk, akkor esetleg egy másik tranzakció azalatt írna X-be új értéket, mialatt 

T aktív, ami nem sorba rendezhető viselkedést okoz. Másrészről pedig miért is ne olvashatná több 

tranzakció egyidejűleg X értékét mindaddig, amíg egyiknek sincs engedélyezve, hogy írja. 

Osztott és kizárólagos zárak 

Mivel ugyanannak az adatbáziselemnek két olvasási művelete nem eredményez konfliktust, így ahhoz, 

hogy az olvasási műveleteket egy bizonyos sorrendbe soroljuk, nincs szükség zárolásra vagy más 

konkurenciavezérlési működésre. Mint már említettük, továbbra is szükséges azt az elemet is zárolni, 

amelyet olvasunk, ugyanis ennek az elemnek az írását nem szabad közben megengednünk. Az íráshoz 

szükséges zár viszont „erősebb”, mint az olvasáshoz szükséges zár, mivel ennek mind az olvasásokat, mind 

az írásokat meg kell akadályoznia. 

Ez indokolja, hogy bevezessük a legelterjedtebb zárolási sémát, amely két különböző zárat alkalmaz: az 

osztott zárakat (shared locks) vagy olvasási zárakat, és a kizárólagos zárakat (exclusive locks) vagy írási 

zárakat. Intuíció alapján tetszőleges X adatbáziselemet vagy egyszer lehet zárolni kizárólagosan, vagy 

akárhányszor lehet zárolni osztottan, ha még nincs kizárólagosan zárolva. Amikor írni akarjuk X-et, akkor 

X-en kizárólagos zárral kell rendelkeznünk, de ha csak olvasni akarjuk, akkor X-en akár osztott, akár 

kizárólagos zár megfelel. Feltételezzük, hogy ha olvasni akarjuk X-et, de írni nem, akkor előnyben 

részesítjük az osztott zárolást. 

Az sli(X) jelölést használjuk arra, hogy a Ti tranzakció osztott zárat kér az X adatbáziselemre, az xli(X) 

jelölést pedig arra, hogy a Ti kizárólagos zárat kér X-re. Továbbra is ui(X)-szel jelöljük, hogy Ti feloldja 

X zárását, vagyis felszabadítja X-et minden zár alól. 

Az előzőekben tárgyalt három követelmény (a tranzakciók konzisztenciája, a tranzakciók 2PL feltétele és 

az ütemezések jogszerűsége) mindegyikének van megfelelője az osztott/kizárólagos zárolási rendszerben: 

1. Tranzakciók konzisztenciája: Nem írhatunk kizárólagos zár fenntartása nélkül, és nem olvashatunk 

valamilyen zár fenntartása nélkül. Pontosabban fogalmazva: bármely Ti tranzakcióban 

a) az ri(X) olvasási műveletet meg kell, hogy előzze egy sli(X) vagy egy xli(X) úgy, hogy 

közben nincs ui(X); 

b) a wi(X) írási műveletet meg kell, hogy előzze egy xli(X) úgy, hogy közben nincs ui(X). 

Minden zárolást követnie kell egy ugyanannak az elemnek a zárolását feloldó műveletnek. 

2. Tranzakciók kétfázisú zárolása: A zárolásoknak meg kell előzniük a zárak feloldását. Pontosabban 

fogalmazva: bármely Ti kétfázisú zárolású tranzakcióban egyetlen sli(X) vagy xli(X) műveletet 

sem előzhet meg egyetlen ui(Y) művelet sem semmilyen Y-ra. 

3. Az ütemezések jogszerűsége: Egy elemet vagy egyetlen tranzakció zárol kizárólagosan, vagy több is 

zárolhatja osztottan, de a kettő egyszerre nem lehet. Pontosabban fogalmazva: 

a) Ha xli(X) szerepel egy ütemezésben, akkor ezután nem következhet xlj(X) vagy slj(X) 

valamely i-től különböző j-re anélkül, hogy közben ne szerepelne ui(X). 

b) Ha sli(X) szerepel egy ütemezésben, akkor ezután nem következhet xlj(X) valamely i-től 

különböző j-re anélkül, hogy közben ne szerepelne ui(X). 
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Az engedélyezett, hogy egy tranzakció ugyanazon elemre kérjen és tartson mind osztott, mind kizárólagos 

zárat, feltéve, hogy ezzel nem kerül konfliktusba más tranzakciók zárolásaival. Ha a tranzakciók előre 

tudnák, milyen zárakra lesz szükségük, akkor biztosan csak a kizárólagos zárolást kérnék, de ha nem 

láthatók előre a zárolási igények, lehetséges, hogy egy tranzakció osztott és kizárólagos zárakat is kér 

különböző időpontokban. 

Példa. Tekintsük az alábbi, osztott és kizárólagos zárakat használó két tranzakciónak egy lehetséges 

ütemezését: 

T1: sl1(A); r1(A); xl1(B); r1(B); w1(B); u1(A); u1(B); 

T2: sl2(A); r2(A); sl2(B); r2(B); u2(A); u2(B); 

T1 is és T2 is olvassa A-t és B-t, de csak T1 írja B-t, és egyik sem írja A-t. 

T1 T2 

sl1(A); r1(A);  

 sl2(A); r2(A); 

 sl2(B); r2(B); 

xl1(B); elutasítva  

 u2(A); u2(B); 

xl1(B); r1(B); w1(B);  

u1(A); u1(B);  

Az ábrán T1 és T2 műveleteinek olyan ütemezése látható, amelyet T1 kezd A osztott zárolásával. Ezután T2 

következik, A és B mindegyikét osztottan zárolja. Most T1-nek lenne szüksége B kizárólagos zárolására, 

ugyanis olvassa is és írja is B-t. Viszont nem kaphatja meg a kizárólagos zárat, hiszen T2-nek már osztott 

zárja van B-n. Így az ütemező várakozni kényszeríti T1-et. Végül T2 feloldja B zárját, és ekkor T1 

befejeződhet. 

A vázolt ütemezés konfliktus-sorbarendezhető. A konfliktusekvivalens soros sorrend a (T2, T1), hiába 

kezdődött T1 előbb. Nem bizonyítjuk, de konzisztens 2PL tranzakciók jogszerű ütemezése konfliktus-

sorbarendezhető; ugyanazok a meggondolások alkalmazhatók az osztott és kizárólagos zárakra is, mint 

korábban. Az ábrán T2 előbb old fel zárat, mint T1, így azt várjuk, hogy T2 megelőzi T1-et a soros 

sorrendben. Megvizsgálva az olvasási és írási műveleteket, észrevehető, hogy r1(A)-t T2 összes műveletén 

át ugyan hátra tudjuk cserélgetni, de w1(B)-t nem tudjuk r2(B) elé vinni, ami pedig szükséges lenne 

ahhoz, hogy T1 megelőzze T2-t egy konfliktusekvivalens soros ütemezésben. 

Kompatibilitási mátrixok 

Ha több zármódot használunk, akkor az ütemezőnek valamilyen elvre van szüksége ahhoz, hogy mikor 

engedélyezzen egy zárolási kérést, ha már adva vannak más zárak is azon az adatbáziselemen. Bár az 

osztott/kizárólagos rendszerek egyszerűek, a gyakorlatban léteznek a zárolási módoknak összetettebb 

rendszerei is. A zárolást engedélyező elvek következő fogalmait előbb az egyszerű osztott/kizárólagos 

rendszerek környezetében vezetjük be. 

A kompatibilitási mátrix minden egyes zármódhoz rendelkezik egy-egy sorral és egy-egy oszloppal. A 

sorok egy másik tranzakció által az X elemre elhelyezett záraknak, az oszlopok pedig az X-re kért 

zármódoknak felelnek meg. A kompatibilitási mátrix használatának szabálya a zárolást engedélyező 

döntésekre az alábbi: 

 Egy X adatbáziselemre C módú zárat akkor és csak akkor engedélyezhetünk, ha a táblázat minden olyan 

R sorára, amelyre más tranzakció már zárolta X-et R módban, a C oszlopban „igen” szerepel. 

Példa. Az ábrán osztott (S) és kizárólagos (X) zárak kompatibilitási mátrixa látható: 
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 S X 

S igen nem 

X nem nem 

Az S oszlop azt mondja meg, hogy akkor engedélyezhetünk osztott zárat egy elemre, ha arra az elemre 

jelenleg is legfeljebb csak osztott zárak vannak. Az X oszlop azt mondja meg, hogy csak akkor 

engedélyezhetünk kizárólagos zárat, ha jelenleg nincs más zár az elemen. Látható, hogy ezek a szabályok 

az ütemezések jogszerűségének a definícióját tükrözik erre a zárolási rendszerre. 

Zárak felminősítése 

Az a T tranzakció, amelyik osztott zárat helyez X-re, „barátságos” a többi tranzakcióhoz, ugyanis a többinek 

is lehetősége van X-et T-vel egy időben olvasni. A kérdés az, hogy még barátságosabb-e az a T tranzakció, 

amelyik beolvasni és új értékkel írni akarja X-et úgy, hogy előbb csak osztott zárat tesz X-re, majd később, 

amikor T már készen áll az új érték beírására, akkor felminősíti a zárat kizárólagossá, vagyis később kéri X 

kizárólagos zárolását azon túl, hogy már osztott zárat tart fenn X-en. Nincs akadálya, hogy a tranzakció 

ugyanarra az adatbáziselemre újabb, különböző zármódú kéréseket adjon ki. Továbbra is fenntartjuk azt a 

megszokott jelölést, hogy ui(X) a Ti tranzakció által elhelyezett összes zárat feloldja X-en, bár be lehetne 

vezetni zárolási módoktól függő feloldási műveleteket, ha lenne hasznuk. 

Pontosan fogalmazva: Azt mondjuk, hogy a T tranzakció felminősíti (upgrade) az L1 zárját az L1-nél 

dominánsabb L2 zárra az X adatbáziselemen, ha L2 zárat kér X-re, amelyen már birtokol egy L1 zárat. L2 

dominánsabb L1-nél, ha a kompatibilitási mátrixban L2 sorában/oszlopában minden olyan pozícióban 

„nem” áll, amelyben L1 sorában/oszlopában „nem” áll. Például az SX zárolási séma esetén X dominánsabb 

S-nél. (X egyébként minden zármódnál dominánsabb bármelyik zárolási séma esetén, hiszen X sorában és 

oszlopában is minden pozícióban „nem” szerepel.) 

Példa. A következő példában a T1 tranzakció T2-vel konkurensen tudja végrehajtani a számításait, amely 

nem lenne lehetséges, ha T1 kezdetben kizárólagosan zárolta volna B-t. A két tranzakció a következő: 

T1: sl1(A); r1(A); sl1(B); r1(B); xl1(B); w1(B); u1(A); u1(B); 

T2: sl2(A); r2(A); sl2(B); r2(B); u2(A); u2(B); 

Itt T1 beolvassa A-t és B-t, és végrehajtja a (valószínűleg hosszadalmas) számításokat velük, és a legvégén 

az eredményt beírja B új értékének. T1 előbb osztottan zárolja B-t, majd később, miután az A-val és B-vel 

kapcsolatos számításait befejezte, kér egy kizárólagos zárat B-re. A T2 tranzakció csak olvassa A-t és B-t, 

nem ír rájuk. 

T1 T2 

sl1(A); r1(A);  

 sl2(A); r2(A); 

 sl2(B); r2(B); 

sl1(B); r1(B);  

xl1(B); elutasítva  

 u2(A); u2(B); 

xl1(B); w1(B);  

u1(A); u1(B);  

Az ábra a műveletek egy lehetséges ütemezését mutatja. T2 egy osztott zárat kap B-re T1 előtt, de a negyedik 

sorban T1 is képes osztottan zárolni B-t. Így T1 rendelkezésére áll A is és B is, és az értékeik felhasználásával 

végre tudja hajtani a számításokat. Amikor T1 megpróbálja B-n a zárat felminősíteni kizárólagossá, az 

ütemező a kérést elutasítja, és arra kényszeríti T1-et, hogy várjon addig, amíg T2 felszabadítja a B-n lévő 

zárat. Ezután T1 megkapja a kizárólagos zárat, kiírja B-t, és befejeződik a tranzakció. 
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Ha T1 a kezdéskor kért volna kizárólagos zárat B-re, mielőtt beolvasta volna, akkor ezt a kérést az ütemező 

elutasította volna, ugyanis T2-nek már volt egy osztott zárja B-n. T1 nem tudta volna elvégezni a számításait 

B beolvasása nélkül, így T1-nek sokkal több dolga lett volna, miután T2 felszabadította a zárakat. T1 tehát 

később fejeződött volna be, ha csak kizárólagos zárat használt volna B-n, mint amikor a felminősítő 

stratégiát alkalmazta. 

Példa. Sajnos a felminősítés válogatás nélküli alkalmazása a holtpontok új forrását jelenti. Tételezzük fel, 

hogy T1 és T2 is beolvassa az A adatbáziselemet, és egy új értéket ír vissza A-ba. Ha mindkét tranzakció a 

felminősítéssel dolgozik, akkor előbb osztott zárat kapnak A-ra, és azután minősítik ezt át kizárólagossá, 

így az alábbi eseménysorozat következhet be, amikor T1 és T2 közel egyidejűleg kezdődik: 

T1 T2 

sl1(A);  

 sl2(A); 

xl1(A); elutasítva  

 xl2(A); elutasítva 

T1 és T2 is kaphat osztott zárat A-ra. Ezután mindkettő megpróbálja ezt felminősíteni kizárólagossá, de az 

ütemező mindkettőt várakozásra kényszeríti, hiszen a másik már osztottan zárolja A-t. Emiatt egyikük 

végrehajtása sem folytatódhat; vagy mindkettőnek örökösen kell várakoznia, vagy addig kell várakozniuk, 

amíg a rendszer fel nem fedezi, hogy holtpont alakult ki, abortálja valamelyik tranzakciót, és a másiknak 

engedélyezi A-ra a kizárólagos zárat. 

Módosítási zárak 

A fenti holtpontproblémát el tudjuk kerülni egy harmadik zárolási mód, az úgynevezett módosítási zárak 

(update lock) használatával. Az uli(X) módosítási zár a Ti tranzakciónak csak X olvasására ad jogot, X 

írására nem. Később azonban csak a módosítási zárat lehet felminősíteni írásira, az olvasási zárat nem (azt 

csak módosításira). Módosítási zárat akkor is engedélyezhetünk X-en, ha X osztott módon már zárolva van, 

ha azonban X-en már van egy módosítási zár, akkor ez megakadályozza, hogy X bármilyen más újabb zárat 

(akár osztott, akár módosítási, akár kizárólagos zárat) kapjon. Ennek az az oka, hogy ha nem utasítanánk el 

ezeket az újabb zárolásokat, akkor előfordulhat, hogy a módosításinak soha sem lenne lehetősége 

kizárólagossá való felminősítésre, ugyanis mindig valamilyen más zár lenne X-en (a módosítási zár tehát 

nemcsak a holtpontproblémát oldja meg, hanem a kiéheztetés problémáját is). 

Ez a szabály nem szimmetrikus kompatibilitási mátrixot eredményez, ugyanis az U módosítási zár úgy néz 

ki, mintha osztott zár lenne, amikor kérjük, és úgy néz ki, mintha kizárólagos zár lenne, amikor már megvan. 

Emiatt az U és az S zárak oszlopai megegyeznek, valamint U és X sorai is megegyeznek: 

 S X U 

S igen nem igen 

X nem nem nem 

U nem nem nem 

Ne feledjük azonban, hogy van egy további feltétel az ütemezések jogszerűségére vonatkozóan, amely nem 

jelenik meg a mátrixban: egy olyan tranzakció, amelynek van osztott zárja egy X adatbáziselemen, de nincs 

módosítási zárja, nem kaphat kizárólagos zárat X-re, noha általában nem tiltjuk, hogy egy tranzakció több 

zárat is fenntartson ugyanazon az elemen. 

Példa. A módosítási zárak használata nem befolyásolja a korábbi példát. A harmadik művelet az lenne, 

hogy T1 módosítási zárat tenne B-re, nem pedig osztott zárat. A módosítási zárat megkapná, ugyanis csak 

osztott zárak vannak B-n, és ugyanaz a műveletsorozat fordulna elő. 
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Módosítási zárakkal megszüntethető viszont a holtpontprobléma. Most mind T1, mind T2 előbb módosítási 

zárat kér A-n, majd később kizárólagos zárat. T1 és T2 egy lehetséges leírása az alábbi: 

T1: ul1(A); r1(A); xl1(A); w1(A); u1(A); 

T2: ul2(A); r2(A); xl2(A); w2(A); u2(A); 

A korábbinak megfelelő eseménysorozat pedig a következő: 

T1 T2 

ul1(A); r1(A);  

 ul2(A); elutasítva 

xl1(A); w1(A); u1(A);  

 ul2(A); r2(A); 

 xl2(A); w2(A); u2(A); 

Itt T2-t elutasítjuk, amelyik másodikként kérte A módosítási zárolását. Miután T1 befejeződött, T2 

folytatódhat. A zárolási rendszer hatékonyan megakadályozta T1 és T2 konkurens végrehajtását, ebben a 

példában viszont lényeges mennyiségű konkurens végrehajtás vagy holtpontot, vagy inkonzisztens 

adatbázis-állapotot eredményez. 

Növelési zárak 

Egy másik érdekes zárolási mód, amely bizonyos helyzetekben hasznos lehet, a növelési zár. Számos 

tranzakciónak csak az a hatása az adatbázison, hogy növeli vagy csökkenti a tárolt értéket. Ilyen például, 

amikor pénzt utalunk át az egyik bankszámláról a másikra, vagy amikor egy repülőjegyeket árusító 

tranzakció csökkenti az adott gépen a szabad ülőhelyek számát. 

A növelési műveletek érdekes tulajdonsága, hogy tetszőleges sorrendben kiszámíthatók, ugyanis ha két 

tranzakció egy-egy konstanst ad hozzá ugyanahhoz az adatbáziselemhez, akkor nem számít, hogy melyiket 

hajtjuk végre előbb. Másrészt a növelés nem cserélhető fel sem az olvasással, sem az írással. Ha azelőtt 

vagy azután olvassuk be A-t, hogy valaki növelte, különböző értékeket kapunk, és ha azelőtt vagy azután 

növeljük A-t, hogy más tranzakció új értéket írt be A-ba, akkor is különböző értékei lesznek A-nak az 

adatbázisban. 

Vezessünk be egy új műveletet, a növelési műveletet (increment action), és jelöljük INC(A,c)-vel. Ez a 

művelet megnöveli az A adatbáziselem (ami ilyenkor mindig attribútum) értékét c-vel, amelyről 

feltételezzük, hogy egyszerű szám konstans. Ha c negatív, akkor valójában csökkentést hajtunk végre. A 

gyakorlatban az INC műveletet a relációsor egy attribútumára alkalmazzuk, annak ellenére, hogy maga a 

sor, és nem az attribútum a zárolható elem. 

Formálisan az INC(A,c) művelet a következő lépések atomi végrehajtására szolgál: READ(A,t); 

t := t+c; WRITE(A,t);. Az atomiságnak ez az alakja alsóbb szintű, mint a tranzakcióknak a 

zárolások által támogatott atomisága. 

Szükségünk van a növelési műveletnek megfelelő növelési zárra (increment lock), amelyet ili(X)-szel 

jelölünk. Jelentése: a Ti tranzakció növelési zárat kér az X adatbáziselemre. Az inci(X) rövidítést arra a 

műveletre használjuk, amelyben a Ti tranzakció megnöveli az X adatbáziselemet valamely konstanssal. 

Annak, hogy pontosan mennyi ez a konstans, nincs jelentősége. 

A növelési műveletek és zárak létezése szükségessé teszi, hogy több helyen módosítsuk a konzisztens 

tranzakciók, a konfliktusok és a jogszerű ütemezések definícióit. A változtatások az alábbiak: 

a) Egy konzisztens tranzakció csak akkor végezheti el X-en a növelési műveletet, ha egyidejűleg növelési 

(vagy kizárólagos) zárat tart fenn rajta. A növelési zár viszont nem teszi lehetővé sem az olvasási, sem 

az írási műveleteket. 
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b) Az inci(X) művelet konfliktusban áll rj(X)-szel és wj(X)-szel is j  i-re, de nem áll konfliktusban 

incj(X)-szel. 

c) Egy jogszerű ütemezésben bármennyi tranzakció bármikor fenntarthat X-en növelési zárat. Ha viszont 

egy tranzakció növelési zárat tart fenn X-en, akkor egyidejűleg semelyik más tranzakció sem tarthat 

fenn sem osztott, sem kizárólagos zárat X-en. Ezeket a követelményeket a kompatibilitási mátrix 

segítségével fejezzük ki: 

 S X I 

S igen nem nem 

X nem nem nem 

I nem nem igen 

Példa. Tekintsünk két tranzakciót, mindkettő beolvassa az A adatbáziselemet, és azután növeli B-t. Lehet, 

hogy A-t adják hozzá B-hez, vagy egy olyan konstanssal növelik B-t, amelynek kiszámítása valamilyen más 

módon függ A-tól. 

T1: sl1(A); r1(A); il1(B); inc1(B); u1(A); u1(B); 

T2: sl2(A); r2(A); il2(B); inc2(B); u2(A); u2(B); 

Látható, hogy a tranzakciók konzisztensek, hiszen csak akkor végeznek növelést, amikor növelési zárral 

rendelkeznek, és csak akkor olvasnak, amikor osztott zárat tartanak fenn. T1 és T2 egy lehetséges ütemezése 

a következő: 

T1 T2 

sl1(A); r1(A);  

 sl2(A); r2(A); 

 il2(B); inc2(B); 

il1(B); inc1(B);  

 u2(A); u2(B); 

u1(A); u1(B);  

T1 olvassa először A-t, azután T2 beolvassa A-t, és növeli B-t. Ezután viszont T1-nek is megengedjük, hogy 

növelési zárat kapjon B-re, és folytatódjon. Az ütemezőnek egyik kérést sem kell késleltetnie. Például 

tételezzük fel, hogy T1 növeli B-t A-val, T2 pedig növeli B-t 2A-val. Bármelyik sorrendben végrehajthatjuk 

a tranzakciókat, ugyanis A értéke nem változik, és a növelést is bármely sorrendben elvégezhetjük. 

Másképpen kifejezve: nézzük meg a nem zárolási műveletek sorozatát az ütemezésben: 

S: r1(A); r2(A); inc2(B); inc1(B); 

Az utolsó műveletet, inc1(B)-t, előrébb tudjuk hozni a második helyre, ugyanis ez nincs konfliktusban 

ugyanannak az elemnek egy másik növelésével, és biztosan nincs konfliktusban egy másik elem 

olvasásával. A cseréknek ez a sorozata mutatja, hogy S konfliktusekvivalens a következő soros 

ütemezéssel: 

r1(A); inc1(B); r2(A); inc2(B); 

Hasonlóan tudjuk az első műveletet, r1(A)-t, cserékkel a harmadik helyre hátrébb vinni, amely azt a soros 

ütemezést adja, amelyben T2 megelőzi T1-et. 

A zárolási ütemező felépítése 

Eddig már számos zárolási sémát láttunk, most megnézzük, hogyan működik egy olyan ütemező, amely 

ezek közül a sémák közül használja valamelyiket. Itt csak a következő elveken alapuló egyszerű ütemező 

felépítését tekintjük: 
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1. Maguk a tranzakciók nem kérnek zárakat, vagy figyelmen kívül hagyjuk, hogy ezt teszik. Az ütemező 

feladata, hogy zárolási műveleteket szúrjon be az adatokhoz hozzáférő olvasási, írási, illetve egyéb 

műveletek sorába. 

2. Nem a tranzakciók, hanem az ütemező oldja fel a zárakat, mégpedig akkor, amikor a tranzakciókezelő 

a tranzakció véglegesítésére vagy abortálására készül. 

Zárolási műveleteket beszúró ütemező 

 

Z á r t á b l a  

T r a n z a k c i ó k  

Ü t e m e z ő  I .  r é s z e  

R E A D ( A ) ;  W R I T E ( B ) ;  

C O M M I T ;  . . .  

L O C K ( A ) ;  R E A D ( A ) ;  . . .  

Ü t e m e z ő  I I .  r é s z e  

R E A D ( A ) ;  W R I T E ( B ) ;  . . .  

 

Az ábra egy olyan két részből álló ütemezőt mutat be, amely READ, WRITE, COMMIT és ABORT kéréseket 

fogad a tranzakcióktól. Az ütemező karbantartja a zártáblát, amelyet – bár másodlagosan tárolt adatként 

ábrázoltunk – lehet, hogy részben vagy egészben a központi memóriában tárolunk. A zártábla által használt 

központi memória általában nem a lekérdezés-végrehajtás és a naplózás által használt pufferterület része. 

A zártábla az adatbázis-kezelő rendszernek csak egy komponense, és az operációs rendszer foglal számára 

helyet, ugyanúgy, mint az adatbázis-kezelő rendszer többi kódjának és belső adatainak. 

A tranzakciók által kért műveletek az ütemezőn jutnak keresztül, és az adatbázison kerülnek végrehajtásra 

általában azonnal. Bizonyos körülmények esetén viszont késleltetett a tranzakció, zárolásra vár, és a kérései 

még nem jutottak el az adatbázishoz. Az ütemező két része a következő műveleteket hajtja végre: 

1. Az I. rész fogadja a tranzakciók által generált kérések sorát, és minden adatbázis-hozzáférési művelet 

elé beszúrja a megfelelő zárolási műveletet. Az ütemező I. részének kell tehát kiválasztania a megfelelő 

zárolási módot az ütemező által használt zármódok halmazából. Az adatbázis-hozzáférési és zárolási 

műveleteket ezután átküldi a II. részhez (a COMMIT és ABORT műveleteket nem). 

2. A II. rész fogadja az I. részen keresztül érkező zárolási és adatbázis-hozzáférési műveletek sorozatát. 

Eldönti, hogy a T tranzakció késleltetett-e (mivel zárolásra vár). Ha igen, akkor magát a műveletet 

késlelteti, azaz hozzáadja azoknak a műveleteknek a listájához, amelyeket a T tranzakciónak még végre 

kell hajtania. Ha T nem késleltetett, vagyis az összes előzőleg kért zár már engedélyezve van, akkor 

megnézi, hogy milyen műveletet kell végrehajtania. 

a) Ha a művelet adatbázis-hozzáférés, akkor továbbítja az adatbázishoz, és végrehajtja. 

b) Ha zárolási művelet érkezik, akkor megvizsgálja a zártáblát, hogy a zár engedélyezhető-e. Ha igen, 

akkor úgy módosítja a zártáblát, hogy az az éppen engedélyezett zárat is tartalmazza. Ha nem, akkor 
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egy olyan bejegyzést készít a zártáblában, amely jelzi a zárolási kérést. Az ütemező II. része ezután 

késlelteti a T tranzakció további műveleteit mindaddig, amíg nem tudja engedélyezni a zárat. 

3. Amikor a T tranzakciót véglegesítjük vagy abortáljuk, akkor a tranzakciókezelő COMMIT, illetve 

ABORT műveletek küldésével értesíti az I. részt, hogy oldja fel az összes T által fenntartott zárat. Ha 

bármelyik tranzakció várakozik ezen zárfeloldások valamelyikére, akkor az I. rész értesíti a II. részt. 

4. Amikor a II. rész értesül, hogy egy X adatbáziselemen felszabadult egy zár, akkor eldönti, hogy melyik 

az a tranzakció, vagy melyek azok a tranzakciók, amelyek megkapják a zárat X-re. A tranzakciók, 

amelyek megkapták a zárat, a késleltetett műveleteik közül annyit végrehajtanak, amennyit csak végre 

tudnak hajtani mindaddig, amíg vagy befejeződnek, vagy egy másik olyan zárolási kéréshez érkeznek 

el, amely nem engedélyezhető. 

Példa. Ha csak egymódú zárak vannak, akkor az ütemező I. részének a feladata egyszerű. Ha bármilyen 

műveletet lát az X adatbáziselemen, és még nem szúrt be zárolási kérést X-re az adott tranzakcióhoz, akkor 

beszúrja a kérést. Amikor véglegesítjük vagy abortáljuk a tranzakciót, az I. rész törölheti ezt a tranzakciót, 

miután feloldotta a zárakat, így az I. részhez igényelt memória nem nő korlátlanul. 

Amikor többmódú zárak vannak, az ütemezőnek szüksége lehet arra, hogy azonnal értesüljön, milyen 

későbbi műveletek fognak előfordulni ugyanazon az adatbáziselemen. Nézzük meg újból az 

osztott/kizárólagos/módosítási zárak esetét, a felminősítésnél látott példában szereplő tranzakciókat 

használva. Zárolások nélkül a tranzakciók a következők: 

T1: r1(A); r1(B); w1(B); 

T2: r2(A); r2(B); 

Az ütemező I. részéhez küldött üzenetnek nemcsak az olvasási és írási kéréseket kell tartalmaznia, hanem 

az ugyanazon az elemen bekövetkező későbbi műveletekre vonatkozó jelzést is. Amikor például az r1(B) 

érkezik be, az ütemezőnek tudnia kell, hogy lesz-e később w1(B) művelet (vagy lehet-e ilyen művelet, ha 

a T1 tranzakció kódjában elágazás szerepel). Több módon válhat elérhetővé az információ. Például ha a 

tranzakció egy lekérdezés, akkor tudjuk, hogy semmit sem fog írni. Ha a tranzakció egy SQL-adatbázist 

módosító utasítás, akkor a lekérdező processzor azonnal megadhatja azokat az adatbáziselemeket, 

amelyeket olvashatunk és írhatunk is egyben. Ha a tranzakció egy beágyazott SQL-program, akkor a fordító 

hozzá tud férni az összes SQL-utasításhoz (és csakis ezekkel lehet írni az adatbázisba), és meghatározhatja, 

mely adatbáziselemek esélyesek az írásra. 

A példánkban tételezzük fel, hogy a felminősítés példájában bemutatott sorrendben következnek be az 

események. Ekkor T1 először r1(A)-t adja ki. Mivel nincs később kizárólagos zárrá való felminősítés erre 

a zárra, az ütemező beszúrja sl1(A)-t az r1(A) elé. Ezután T2 kérései (r2(A) és r2(B)) érkeznek az 

ütemezőhöz. Megint nincs később felminősítés, így az ütemező I. része a következő műveletsorozatot adja 

ki: sl2(A); r2(A); sl2(B); r2(B);. 

Ezután az r1(B) művelet érkezik be az ütemezőhöz azzal a figyelmeztetéssel, hogy ezt a zárat fel lehet 

minősíteni. Az ütemező I. része ekkor kibocsátja ul1(B); r1(B);-t a II. résznek, amely megnézi a 

zártáblát, és azt találja, hogy T1 engedélyezheti a módosítási zárat B-re, ugyanis csak osztott zárak vannak 

B-n. 

Amikor a w1(B) művelet beérkezik az ütemezőhöz, az I. rész kibocsátja xl1(B); w1(B);-t. A II. rész 

viszont nem teljesítheti az xl1(B) kérést, ugyanis T2-nek már van osztott zárja B-n. T1-nek ezt a műveletét 

és az ezutáni műveleteit késlelteti, egyben tárolja a későbbi végrehajtáshoz. Végül T2 végrehajtja a 

véglegesítést, és az I. rész feloldja a zárakat A-n és B-n. Ugyanekkor felfedezi, hogy T1 várakozik B 

zárolására. Értesíti a II. részt, amely az xl1(B) zárolást most már végrehajthatónak találja. Beviszi ezt a 

zárat a zártáblába, és folytatja T1 tárolt műveleteinek a végrehajtását mindaddig, ameddig tudja. Esetünkben 

T1 befejeződik. 
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A zártábla 

 

A  

A d a t b á z i s e l e m  Z á r o l á s i  i n f o r m á c i ó k  

C s o p o r t o s  m ó d :  U  

V á r a k o z i k - e :  i g e n  

L i s t a :  

T 1  S  n e m  

T r a n z .  M ó d  V á r ?  T k ö v .  

T 2  U  n e m  

T 3  X  i g e n  

K ö v .  

 

Absztrakt szinten a zártábla egy olyan reláció, amely összekapcsolja az adatbáziselemeket a rájuk 

vonatkozó zárolási információkkal, ahogyan ezt az ábra mutatja. Azok az elemek, amelyek nincsenek 

zárolva, nem fordulnak elő a táblában, így a méret csak a zárolt elemek számával arányos, nem pedig a 

teljes adatbázis méretével. 

Az ábrán egy példát láthatunk arra, hogy milyen információk találhatók egy zártáblabejegyzésnél. Ez a 

példa feltételezi, hogy az ütemező az osztott/kizárólagos/módosítási (SXU) zársémát alkalmazza. Egy 

tipikus A adatbáziselemhez a bejegyzés a következő komponensekből áll: 

1. A csoportos mód (group mode) a legszigorúbb feltételek összefoglalása, amivel egy tranzakció 

szembesül, amikor egy új zárolást kér A-n, azaz a csoportos mód az A-n jelenleg fenntartott zármódok 

közül a legdominánsabb. Ahelyett, hogy összehasonlítanánk a zárolási kérést a többi tranzakciónak 

ugyanazon az elemen fenntartott minden zárolásával, egyszerűsíthetjük az engedélyezési/elutasítási 

döntést azzal, hogy a kérést csak a csoportos móddal hasonlítjuk össze. (A zároláskezelőnek viszont 

foglalkoznia kell azzal a lehetőséggel, hogy a kérést kiadó tranzakciónak már van egy másik módban 

zárja ugyanazon az elemen. Például az SXU zárolási rendszerre vonatkoztatva, a zároláskezelő 

elfogadhat egy X zárra vonatkozó kérést, ha az igénylő tranzakció pont az, amely U zárat tart fenn 

ugyanazon az elemen. Azoknál a rendszereknél, amelyek nem támogatják, hogy egy tranzakció egy 

elemen több zárat is tartson, a csoportos mód mindig megadja mindazt, amit a zároláskezelőnek tudnia 

kell.) Az SXU zárolási sémákhoz egyszerű a szabály: 

Egy csoportos módban: 

a) S azt jelenti, hogy csak osztott zárak vannak; 

b) U azt jelenti, hogy egy módosítási zár van, és lehet még egy vagy több osztott zár is; 

c) X azt jelenti, hogy csak egy kizárólagos zár van, és semmilyen más zár nincs. 

A többi zárolási sémához is mindig találunk a csoportos mód összegzésének megfelelő rendszert. 

2. A várakozási bit (waiting bit) azt adja meg, hogy van-e legalább egy tranzakció, amely A zárolására 

várakozik. 
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3. Az összes olyan tranzakciót leíró lista, amelyek vagy jelenleg zárolják A-t, vagy A zárolására 

várakoznak. Hasznos információk, amelyeket minden listabejegyzés tartalmazhat: 

a) a zárolást fenntartó vagy a zárolásra váró tranzakció neve; 

b) ennek a zárnak a módja; 

c) a tranzakció fenntartja-e a zárat, vagy várakozik-e a zárra. 

Az ábrán két láncolás szerepel minden bejegyzésnél. Az egyik magukhoz az adatbáziselemre vonatkozó 

bejegyzésekhez tartozik, a másik (Tköv.) pedig egy bizonyos tranzakció összes bejegyzését láncolja 

össze. Az utóbbi akkor használható, amikor a tranzakciót véglegesítjük vagy abortáljuk, így könnyen 

megtalálhatjuk az összes zárat, amelyet fel kell oldanunk. 

A zárolási kérések kezelése 

Tételezzük fel, hogy a T tranzakció zárat kér A-ra. Ha nincs A-ra bejegyzés a zártáblában, akkor biztos, 

hogy zárak sincsenek A-n, így létrehozhatjuk a bejegyzést, és engedélyezhetjük a kérést. Ha a zártáblában 

létezik bejegyzés A-ra, akkor ezt felhasználjuk a zárolási kéréssel kapcsolatos döntésünkben. Megkeressük 

a csoportos módot, amely az ábrán U, vagyis módosítási. Amikor már van módosítási zár egy elemen, akkor 

semmilyen más zárat nem engedélyezhetünk (kivéve azt az esetet, amikor maga T tartja fenn az U zárat, és 

a többi zár kompatibilis T kérésével). Tehát T-nek ezt a kérését elutasítjuk, és egy bejegyzést helyezünk el 

a listában, amely szerint T zárat kért, és a várakozási bitet igazra állítjuk. 

Ha a csoportos mód X, vagyis kizárólagos lenne, akkor ugyanez történne. Ha azonban a csoportos mód S, 

vagyis osztott lenne, akkor lehetne adni egy másik osztott vagy módosítási zárat. Ebben az esetben a 

listában a T-hez tartozó várakozási bitet hamisra, a csoportos módot pedig U-ra kellene állítani, ha az új zár 

módosítási zár, egyébként pedig a csoportos mód S maradna. Akár adtunk engedélyt a zárolásra, akár nem, 

az új listabejegyzést megfelelően beláncoljuk a két mutatón keresztül. Látható, hogy akár engedélyezzük a 

zárat, akár nem, a zártáblában a bejegyzés megadja az ütemezőnek azt, amit tudnia kell, anélkül hogy 

megvizsgálná a zárolások listáját. 

A zárfeloldások kezelése 

Most tételezzük fel, hogy a T tranzakció feloldja az A-n lévő zárakat. Ekkor T bejegyzését A-ra a listában 

töröljük. Ha a T által fenntartott zár nem egyezik meg a csoportos móddal (például T egy S zárat tart fenn, 

míg a csoportos mód U), akkor nincs okunk, hogy megváltoztassuk a csoportos módot. Ha viszont a T által 

fenntartott zár van a csoportos módban, akkor meg kell vizsgálnunk a teljes listát, hogy megtaláljuk az új 

csoportos módot. Az ábrán látható példában csak egyetlen U zár lehet egy elemen, így ha azt a zárat 

feloldjuk, az új csoportos mód csak S lehetne (ha maradt még osztott zár), vagy semmi (ha nincs más zár 

jelenleg fenntartva). (Valójában sohasem lesz „semmi” a csoportos mód, ugyanis ha nincs sem zár, sem 

zárolási kérés egy elemen, akkor nincs bejegyzés sem a zártáblában erre az elemre. Csak zárolási kérés 

meglévő zár nélkül pedig szintén nem fordulhat elő.) Ha a csoportos mód X, akkor tudjuk, hogy nincsenek 

más zárolások, ha pedig a csoportos mód S, akkor el kell döntenünk, hogy van-e további osztott zár. 

Ha a várakozási bit igaz, akkor engedélyeznünk kell egy vagy több zárat a kért zárak listájáról. Több 

különböző megközelítés lehetséges, mindegyiknek megvan a saját előnye: 

1. Első beérkezett első kiszolgálása (first-come-first-served): Azt a zárolási kérést engedélyezzük, amelyik 

a legrégebb óta várakozik. Ez a stratégia azt biztosítja, hogy ne legyen kiéheztetés, vagyis a tranzakció 

ne várjon örökké egy zárra. 

2. Elsőbbségadás az osztott záraknak (priority to shared locks): Először az összes várakozó osztott zárat 

engedélyezzük. Ezután egy módosítási zárolást engedélyezünk, ha várakozik ilyen. A kizárólagos 
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zárolást csak akkor engedélyezzük, ha semmilyen más igény nem várakozik. Ez a stratégia csak akkor 

engedi a kiéheztetést, ha a tranzakció U vagy X zárolásra vár. 

3. Elsőbbségadás a felminősítésnek (priority to upgrading): Ha van olyan U zárral rendelkező tranzakció, 

amely X zárrá való felminősítésre vár, akkor ezt engedélyezzük előbb. Máskülönben a fent említett 

stratégiák valamelyikét követjük. 

Adatbáziselemekből álló hierarchiák kezelése 

Térjünk vissza a különféle zárolási sémák feltárásához. Különösen két olyan problémára összpontosítunk, 

amelyek akkor merülnek fel, amikor fastruktúra tartozik az adatainkhoz: 

1. Az első fajta fastruktúra, amelyet figyelembe veszünk, a zárolható elemek (zárolási egységek) 

hierarchiája. Megvizsgáljuk, hogyan engedélyezünk zárolást mind a nagy elemekre, mint például a 

relációkra, mind a kisebb elemekre, mint például a reláció néhány sorát tartalmazó blokkokra vagy 

egyedi sorokra. 

2. A másik lényeges hierarchiafajtát képezik a konkurenciavezérlési rendszerekben azok az adatok, 

amelyek önmagukban faszervezésűek. Ilyenek például a B-fa-indexek. A B-fák csomópontjait 

adatbáziselemeknek tekinthetjük, így viszont az eddig tanult zárolási sémákat szegényesen 

használhatjuk, emiatt egy új megközelítésre van szükségünk. 

Többszörös szemcsézettségű zárak 

A különböző rendszerek különböző méretű adatbáziselemeket zárolnak, mint például relációkat, sorokat, 

lapokat vagy blokkokat. Bizonyos alkalmazásoknál a kis adatbáziselemek előnyösek, míg másoknál a nagy 

elemek nyújtják a legtöbbet. 

Példa. Tekintsünk egy banki adatbázist. Ha a relációkat kezeljük adatbáziselemekként, akkor így csak egy 

zárat tudunk kiadni arra a teljes relációra, amely a számlák egyenlegét adja meg, ezért a rendszer nagyon 

kis konkurenciát engedélyezne. Mivel a legtöbb tranzakció a számlák egyenlegét változtatja, a legtöbb 

tranzakciónak kizárólagosan kellene zárolnia a számlaegyenlegeket tartalmazó relációt. Így csak egyetlen 

befizetést vagy kivételt tudnánk egyidejűleg elvégezni, nem számítana, hogy hány olyan processzor van, 

amely alkalmas lenne ezeknek a tranzakcióknak az elvégzésére. Jobb megközelítés, hogy egyedi lapokat 

vagy adatblokkokat zárolunk. Így két olyan számla, amelyekhez tartozó sorok külön blokkokban vannak, 

egyidejűleg módosítható. Ez biztosítja szinte a teljes konkurenciát, amely elérhető a rendszerben. A másik 

véglet az lenne, ha minden egyes sorra biztosítanánk zárolást, így bármilyen számlahalmazt egyszerre 

tudnánk módosítani, de a záraknak ennyire finom szemcséssége valószínűleg nem érné meg a sok 

fáradságot. 

Másik példaként tekintsünk egy dokumentumokból álló adatbázist. Ezeket a dokumentumokat időnként 

szerkeszteni szokták, és a legtöbb tranzakció teljes dokumentumokhoz fér hozzá. Az adatbáziselem ésszerű 

megválasztása ekkor a teljes dokumentum. Mivel a legtöbb tranzakció csak olvasási tranzakció (vagyis nem 

végez írási műveletet), a zárolás csak azért szükséges, hogy elkerüljük a dokumentumok szerkesztés 

közbeni olvasását. Ha kisebb szemcsézettségű elemeket zárolnánk, mint például bekezdéseket, mondatokat 

vagy szavakat, akkor ennek semmilyen előnyét sem látnánk, viszont sokkal költségesebb lenne. Az egyetlen 

tevékenység, amelyet a kisebb szemcsézettségű zárak támogatnának, hogy a dokumentum egy részét 

tudnánk olvasni a dokumentum szerkesztése közben is. 

Bizonyos alkalmazások mind a nagy, mind a kis szemcsézettségű zárakat tudják alkalmazni. Például a fent 

vázolt banki adatbázisnál világos, hogy blokk vagy sor szintű zárolás is szükséges, de néhány esetben a 

teljes számlareláció zárolása is szükséges lehet, például azért, hogy ellenőrizzük a számlákat. De ha osztott 

zárat teszünk a számlarelációra annak érdekében, hogy kiszámoljunk a reláción valamilyen 
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csoportfüggvényt, és egyidejűleg az egyéni számlák soraihoz kizárólagos zárat adunk, ez könnyen nem 

sorba rendezhető viselkedéshez vezethet, ugyanis a reláció valójában megváltozik, amíg egy feltehetően 

befagyasztott másolatát olvassuk a csoportfüggvényes lekérdezéshez. 

Figyelmeztető zárak 

A probléma megoldásához, hogy hogyan kezeljük az újfajta zárolással kapcsolatos, különféle 

szemcsézettségű zárakat, bevezetjük a figyelmeztető zárakat. Ezek a zárak akkor hasznosak, amikor zárolási 

egységek beágyazott vagy hierarchikus struktúrákat mutatnak, amint azt az alábbi ábrán láthatjuk: 

 

R 1  

B 3  B 1  B 2  

t 1  t 2  t 3  

R e l á c i ó k  

B l o k k o k  

S o r o k  

 

Itt az adatbáziselemek három szintjét különböztetjük meg: 

1. a relációk a legnagyobb zárolható elemek; 

2. minden reláció egy vagy több blokkból vagy lapból épül fel, amelyekben a soraik vannak; 

3. minden blokk egy vagy több sort tartalmaz. 

A zárolási egységek hierarchiáján a zárak kezelésére szolgáló szabályok alkotják a figyelmeztető protokollt 

(warning protocol), amely tartalmazza mind a „közönséges”, mind a „figyelmeztető” zárakat. A zárolási 

sémát úgy adjuk meg, hogy a közönséges zárak S és X (osztott és kizárólagos) lehetnek. A figyelmeztető 

zárakat a közönséges zárak elé helyezett I (intention) előtaggal jelöljük. Például IS azt jelenti, hogy 

szándékunkban áll osztott zárat kapni egy részelemen. A figyelmeztető protokoll szabályai: 

1. Ahhoz, hogy elhelyezzünk egy közönséges S vagy X zárat valamely elemen, a hierarchia gyökerénél 

kell kezdenünk. 

2. Ha már annál az elemnél tartunk, amelyet zárolni akarunk, akkor nem kell tovább folytatnunk, hanem 

kérjük az S vagy X zárolást arra az elemre. 

3. Ha az elem, amelyet zárolni szeretnénk, lejjebb van a hierarchiában, akkor elhelyezünk egy 

figyelmeztetést ezen a csomóponton. Vagyis ha osztott zárat szeretnénk kérni egy részelemen, akkor 

ebben a csomópontban egy IS zárat kérünk, ha pedig kizárólagos zárat szeretnénk kérni egy részelemen, 

akkor ebben a csomópontban egy IX zárat kérünk. Amikor a jelenlegi csomópontban kért zárat 

megkaptuk, akkor ennek a csomópontnak azzal az utód csomópontjával folytatjuk, amelyikhez tartozó 

részfa tartalmazza azt a csomópontot, amelyet zárolni kívánunk. Ezután megfelelően a 2. vagy 3. 

lépéssel folytatjuk mindaddig, amíg el nem érjük a keresett csomópontot. 

Ahhoz, hogy eldöntsük, engedélyezhetjük-e ezek közül a zárak közül valamelyiket, vagy sem, a következő 

kompatibilitási mátrixot használjuk: 

 IS IX S X 

IS igen igen igen nem 

IX igen igen nem nem 

S igen nem igen nem 

X nem nem nem nem 
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Ennek a mátrixnak az értelmezéséhez először nézzük meg az IS oszlopot. Ha IS zárat kérünk egy N 

csomópontban, az N egy leszármazottját szándékozzuk olvasni. Ez a szándék csak abban az esetben okozhat 

problémát, ha egy másik tranzakció korábban már jogosulttá vált arra, hogy az N által reprezentált teljes 

zárolási egységet felülírja, ezért van „nem” az X-hez tartozó sorban. Ha más tranzakció azt tervezi, hogy 

N-nek csak egy részelemét írja (ezért az N csomóponton egy IX zárat helyezett el), akkor lehetőségünk van 

arra, hogy engedélyezzük az IS zárat N-en, és a konfliktust alsóbb szinten oldhatjuk meg, ha az írási és 

olvasási szándék valóban egy közös elemre vonatkozik. 

Most tekintsük az IX-hez tartozó oszlopot. Ha az N csomópont egy részelemét szándékozzuk írni, akkor 

meg kell akadályoznunk az N által képviselt teljes elem olvasását vagy írását. Ezért van „nem” az S és az 

X zármódok sorában. Azonban az IS oszloppal kapcsolatban leírtaknak megfelelően más tranzakció, amely 

egy részelemet olvas vagy ír, a potenciális konfliktusokat az adott szinten kezeli le, így az IX nincs 

konfliktusban egy másik IX-szel vagy IS-sel N-en. 

Nézzük most az S-hez tartozó oszlopot. Az N csomópontnak megfeleltetett elem olvasása nincs 

konfliktusban sem egy másik olvasási zárral N-en, sem egy olvasási zárral N egy részelemén, amelyet N-en 

egy IS reprezentál. Emiatt „igen”-t találunk az S és az IS sorában is. Azonban egy X vagy egy IX azt jelenti, 

hogy más tranzakció írni fogja legalább egy részét az N által reprezentált elemnek. Ezért nem tudjuk 

engedélyezni N teljes olvasását. Ezt fejezik ki a megfelelő „nem” bejegyzések. 

Végül az X oszlopban csak „nem” bejegyzések vannak. Nem tudjuk megengedni az N csomópont egyik 

részének írását sem, ha más tranzakciónak már joga van arra, hogy olvassa vagy írja N-et, vagy arra, hogy 

megszerezze ezt a jogot N egy részelemére. 

Példa. Tekintsük a következő relációt: 

Film(filmCím, év, hossz, stúdióNév) 

Tételezzük fel, hogy a teljes relációra és az egyedi sorokra követelünk zárolást. Legyen T1 egy olyan 

tranzakció, amely az alábbi kérdést tartalmazza: 

SELECT * FROM Film WHERE filmCím = ’King Kong’; 

T1 azzal kezdődik, hogy IS módon zárolja a teljes relációt. Ezután veszi az egyedi sorokat, és S módú 

zárolást ad ki azokra, amelyekben a filmCím a megadottal egyezik (legyen két ilyen sor). 

Tételezzük fel, hogy mialatt az első lekérdezést végezzük, elkezdődik a T2 tranzakció, amely a sorok év 

komponensét változtatja meg: 

UPDATE Film SET év = 1939 WHERE filmCím = ’Elfújta a szél’; 

Ekkor T2-nek szüksége van a reláció IX módú zárolására, ugyanis azt tervezi, hogy új értéket ír be az egyik 

sorba. Ez kompatibilis T1-nek a relációra vonatkozó IS zárolásával, így a zárat engedélyezzük. Amikor T2 

elérkezik az „Elfújta a szél” című filmhez tartozó sorhoz, ezen a soron nem talál zárat, így megkapja az X 

módú zárat, és módosítja a sort. Ha T2 a „King Kong” című filmek valamelyikéhez próbált volna új értéket 

beírni, akkor várnia kellett volna, amíg T1 felszabadítja az S zárakat, ugyanis az S és az X nem 

kompatibilisek. Az ábrán láthatjuk a zárak kollekcióját: 

 

Film T1–IS 

T2–IX 

King Kong King Kong Elfújta a szél 

T1–S T1–S T2–X 
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Csoportos mód a szándékzárolásokhoz 

A fenti kompatibilitási mátrix olyan helyzetet mutat be, amelyet eddig még nem láttunk a zármódok erejét 

illetően. A korábbi zárolási sémák többségében valahányszor lehetőségünk volt arra, hogy egy 

adatbáziselemet egyszerre kétféle módban is zároljunk, ezek közül az egyik dominánsabb volt a másiknál. 

Például az SXU zárolási séma esetén U dominánsabb S-nél, X pedig mindkettőnél. Egy előnye annak, hogy 

tudjuk, mindig van egy domináns zár egy elemen, az, hogy több zárolás hatását össze tudjuk foglalni egy 

csoportos móddal. 

A figyelmeztető zárakat is alkalmazó zárolási séma esetén az S és az IX módok közül egyik sem 

dominánsabb a másiknál. Továbbá egy elemet az S és IX módok mindegyikében zárolhatunk egyidejűleg, 

feltéve hogy ugyanaz a tranzakció kérte a zárolást. (Vigyázzunk, hogy a „nem” bejegyzések a 

kompatibilitási mátrixban csak azokra a zárakra alkalmazhatók, amelyeket más tranzakciók tartanak fenn.) 

Egy tranzakció mindkét zárolást kérheti, ha egy teljes elemet akar beolvasni, és azután a részelemeknek 

egy valódi részhalmazát akarja írni. Ha egy tranzakciónak S és IX zárolásai is vannak egy elemen, akkor 

ez korlátozza a többi tranzakciót olyan mértékben, ahogy bármelyik zár teszi. Vagyis elképzelhetünk egy 

új SIX zárolási módot, amelynek sorai és oszlopai a „nem” bejegyzést tartalmazzák az IS bejegyzés 

kivételével mindenhol. Az SIX zárolási mód csoportmódként szolgál, ha van olyan tranzakció, amelynek 

van S, illetve IX módú, de nincs X módú zárolása. 

Elképzelhetjük ugyanezt a helyzetet a növelési zárolásokra, vagyis egy tranzakció S és I módban is 

fenntarthatna zárakat. Ez a helyzet viszont ekvivalens az X módú zárolással, így ekkor X-et használhatnánk 

csoportos módként. 

Nem ismételhető olvasás és a fantomok 

Tegyük fel, hogy van egy T1 tranzakció, amelyben egy lekérdezés sorokat válogat ki egy relációból. Ezután 

egy T2 tranzakció módosít vagy töröl a táblából olyan sorokat, amelyek eleget tesznek a lekérdezés 

feltételének. Ha ezután T1 újra megpróbálja beolvasni ezeket a sorokat, azt fogja tapasztalni, hogy bizonyos 

sorok megváltoztak vagy eltűntek. Ezt a szituációt nem ismételhető olvasásnak (nonrepeatable read vagy 

fuzzy read) nevezzük. A nem ismételhető olvasással az a probléma, hogy mást eredményez a lekérdezés 

másodszori végrehajtása, mint az első. A tranzakció viszont elvárhatja, hogy ha többször végrehajtja 

ugyanazt a lekérdezést, akkor mindig ugyanazt az eredményt kapja. 

Ugyanez a helyzet akkor is, ha a T2 tranzakció nem töröl vagy módosít, hanem beszúr olyan sorokat, 

amelyek eleget tesznek a lekérdezés feltételének. A lekérdezés másodszori futtatásakor most is más 

eredményt kapunk, mint az első alkalommal. Ennek az az oka, hogy olyan sorok jelentek meg a relációban, 

amelyek az első futtatáskor még nem is léteztek. Az ilyen sorokat nevezzük fantomoknak (phantom). 

A fenti jelenségek olyan ritkán fordulnak elő a gyakorlatban, hogy a legtöbb adatbázis-kezelő rendszer 

alapértelmezésben nem is figyel rájuk; annak ellenére, hogy mindkét jelenség nem sorbarendezhető 

viselkedést eredményezhet. A felhasználó azonban kérheti, hogy a nem ismételhető olvasások és/vagy a 

fantomolvasások ne fordulhassanak elő egy tranzakció végrehajtása során. Ehhez a tranzakció elkülönítési 

szintjét kell módosítani (lásd később). 

A nem ismételhető olvasásokat könnyű megakadályozni: T1-nek osztott zárat kell kérnie a lekérdezés által 

kiválasztott sorokra. T2 így nem tudja azokat kizárólagosan zárolni, amíg T1 be nem fejeződik vagy nem 

abortál. Könnyen megelőzhetjük a fantomolvasásokat is, ha többszörös szemcsézettségű zárakat 

használunk: a T2 tranzakciónak X módban kell zárolnia a teljes relációt, mielőtt új sorokat szúrna be. Mivel 

T1 korábban IS módban zárolta a relációt, ezt a kérést az ütemező először elutasítja, és csak akkor 

engedélyezi, amikor a T1 tranzakció már befejeződött, elkerülve ezáltal a nem sorbarendezhető viselkedést. 
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Faprotokoll 

Eddig a beágyazott szerkezetű adatbáziselemekből létrehozott fákkal foglalkoztunk, amelyekben a 

gyerekek a szülők részei voltak. Most maguknak az elemeknek a kapcsolati sémájából álló fa struktúrákkal 

foglalkozunk. Az adatbáziselemek diszjunkt adatdarabok, azonban csak egyféleképpen, a szülőkön 

keresztül lehet elérni egy csomópontot. A B-fák az ilyen típusú adatoknak fontos példái. Tudjuk, hogy csak 

egy bizonyos útvonalon jutunk el egy elemhez, és ez lényeges szabadságot ad nekünk abban, hogy a 

kétfázisú zárolási megközelítéstől eltérő módon kezeljük a zárakat. 

A fa alapú zárolások indítékai 

Tekintsünk egy B-fa-indexet egy olyan rendszerben, amely az egyedi csomópontokat (blokkokat) zárolható 

adatbáziselemekként kezeli. A csomópont a zárolás szemcsézettségének a megfelelő szintje, ugyanis nem 

előnyös, ha kisebb darabokat kezelünk elemekként. Ha pedig a teljes B-fát kezeljük adatbáziselemként, 

akkor ez megakadályozza az index olyan konkurens használatát, mint amilyen elérhető a következőkben 

tárgyalt működési mechanizmus segítségével. 

Ha a zármódoknak egy szabványos halmazát használjuk (mint az osztott, kizárólagos és módosítási zárak), 

valamint használjuk a kétfázisú zárolást, akkor a B-fa konkurens használata szinte lehetetlen. Ennek az az 

oka, hogy az indexet használó minden tranzakciónak a B-fa gyökér csomópontját kell először zárolnia. Ha 

a tranzakció 2PL, akkor nem oldhatja fel a gyökéren a zárolást, amíg meg nem szerezte az összes zárat, 

amelyre szüksége van, mind a B-fa csomópontjain, mind pedig más adatbáziselemeken. Továbbá mivel 

elvben bármely tranzakció, amely beszúrásokat vagy törléseket végez, a B-fa gyökerének az átírásával 

fejeződhet be, a tranzakciónak legalább egy módosítási zárolásra szüksége van a gyökér csomóponton 

(vagy kizárólagosra, ha nincs módosítási mód). Így csak egyetlen nem csak olvasási tranzakció férhet hozzá 

bármikor a B-fához. 

Mégis az esetek többségében majdnem közvetlenül levezethetjük, hogy egy B-fa gyökér csomópontját nem 

kell átírni, még akkor sem, ha a tranzakció beszúr vagy töröl egy sort. Például ha a tranzakció beszúr egy 

sort, de a gyökérnek az a gyereke, amelyhez hozzáférünk, nincs teljesen tele, akkor tudjuk, hogy a beszúrás 

nem gyűrűzik fel a gyökérig. Hasonlóan, ha a tranzakció egyetlen sort töröl, és a gyökérnek abban a 

gyerekében, amelyhez hozzáfértünk, a minimálisnál több kulcs és mutató van, akkor biztosak lehetünk 

abban, hogy a gyökér nem változik meg. 

Így amikor a tranzakció a gyökérnek egyik gyereke felé irányul, és észleli azt a (teljesen szokványos) 

helyzetet, ami kizárja a gyökér átírását (azaz látja, hogy a gyökér biztosan nem változik meg), azonnal 

szeretnénk feloldani a gyökéren a zárat. Ugyanezt a megfigyelést alkalmazhatjuk a B-fa bármely belső 

csomópontjának a zárolására is, bár a konkurens B-fánál a legtöbb lehetőség abból származik, hogy a 

gyökéren a zárat korán oldjuk fel. Sajnos a gyökéren lévő zárolás korai feloldása ellentmond a 2PL-nek, 

így nem lehetünk biztosak abban, hogy a B-fához hozzáférő tranzakcióknak az ütemezése sorba rendezhető 

lesz. A megoldás egy speciális protokoll a B-fákhoz hasonló fa struktúrájú adatokhoz hozzáférő tranzakciók 

részére. A protokoll ellentmond a 2PL-nek, de azt a tényt használja, hogy az elemekhez való hozzáférés 

lefelé halad a fán a sorbarendezhetőség biztosítása érdekében. 

Fa szerkezetű adatok hozzáférési szabályai 

Az alábbi megszorítások a zárakon a faprotokollt (tree protocol) adják. Tételezzük fel, hogy csak egyféle 

zár van, amelyet az li(X) alakú zárolási kérésekkel ábrázolunk, de ezt az ötletet bármely zárolási 

módokból álló halmazra általánosíthatjuk. Tételezzük fel, hogy a tranzakciók konzisztensek, az ütemezések 

jogszerűek (vagyis az ütemező csak akkor engedélyezi a kért zárolásokat, ha azok nincsenek konfliktusban 
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azokkal a zárakkal, amelyek már a csomóponton vannak), és ugyanakkor nincs kétfázisú zárolási 

követelmény a tranzakciókon. 

1. Egy tranzakciónak az első zárja a fa bármely csomópontján lehet. (A fenti példában az első zárnak 

mindig a gyökéren kell lennie, mivel a B-fa keresőfa, amelyben a keresés mindig a gyökértől indul.) 

2. Rákövetkező zárakat csak akkor lehet szerezni, ha a tranzakciónak jelenleg van zárja a szülő 

csomóponton. 

3. A csomópontok zárját bármikor feloldhatjuk. 

4. Egy tranzakció nem zárolhatja újból azt a csomópontot, amelyen feloldotta a zárat, még akkor sem, ha 

még tartja a csomópont szülőjén a zárat. 

Példa. Az alábbi ábra a csomópontok hierarchiáját, a táblázat pedig ezeken az adatokon három tranzakció 

műveleteit mutatja: 

 

B 

A 

C 

D E 

F G 
 

T1 T2 T3 

l1(A); r1(A);   

l1(B); r1(B);   

l1(C); r1(C);   

w1(A); u1(A);   

l1(D); r1(D);   

w1(B); u1(B);   

 l2(B); r2(B);  

  l3(E); r3(E); 

w1(D); u1(D);   

w1(C); u1(C);   

 l2(E); elutasítva  

  l3(F); r3(F); 

  w3(F); u3(F); 

  l3(G); r3(G); 

  w3(E); u3(E); 

 l2(E); r2(E);  

  w3(G); u3(G); 

 w2(B); u2(B);  

 w2(E); u2(E);  

T1 az A gyökéren kezdődik, és lefelé folytatódik B, C és D felé. T2 B-n kezdődik, és az E felé próbál haladni, 

de először elutasítjuk, ugyanis T3-nak már van zárja E-n. A T3 tranzakció E-n kezdődik, és folytatja F-fel 

és G-vel. T1 nem 2PL tranzakció, ugyanis A-n előbb töröljük a zárat, mint hogy megszerezzük a zárat D-n. 

Hasonlóan T3 sem 2PL tranzakció, de T2 véletlenül éppen 2PL. 

Miért működik a faprotokoll? 

A faprotokoll jogszerű ütemezésben részt vevő konzisztens tranzakciókon konfliktus-sorbarendezhető 

ütemezést eredményez. A következőképpen definiálhatjuk a megelőzési sorrendet: Azt mondjuk, hogy Ti 

megelőzi Tj-t az S ütemezésben (Ti <S Tj), ha a Ti és Tj tranzakciók egyrészt közösen zárolnak egy 

csomópontot, másrészt Ti zárolja a csomópontot először. 
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Példa. A fenti példa S ütemezésében T1 és T2 közösen zárolják B-t, és T1 zárolja először. Így T1 <S T2. Azt 

találjuk még, hogy T2 és T3 közösen zárolják E-t, és T3 zárolja először, tehát T3 <S T2. T1 és T3 között 

viszont nincs megelőzés, hiszen nincs olyan csomópont, amelyet közösen zárolnak. Az ezekből a 

megelőzési relációkból levezetett megelőzési gráf a következő ábrán látható: 

 
1 

2 

3  

Ha a fent definiált megelőzési relációk alapján rajzolt megelőzési gráf nem tartalmaz kört, akkor azt állítjuk, 

hogy a tranzakciók bármely topologikus sorrendje egy ekvivalens soros ütemezés. Ebben a példában vagy 

a (T1, T3, T2) vagy a (T3, T1, T2) az ekvivalens soros ütemezés. Ennek az az oka, hogy az ilyen soros 

ütemezésben minden egyes csomóponthoz ugyanabban a sorrendben nyúlnak a tranzakciók, mint az eredeti 

ütemezésben. 

Ahhoz, hogy megértsük, hogy a fent leírt megelőzési gráf miért lesz körmentes, ha betartjuk a faprotokoll 

szabályait, először vegyük észre a következőt: 

 Ha két tranzakció közösen zárol néhány elemet, akkor ugyanabban a sorrendben zárolják mindegyiket. 

Bizonyítás: Tekintsünk valamilyen T és U tranzakciókat, amelyek két vagy több elemet közösen zárolnak. 

Minden tranzakció fa formájú halmazát zárolja az elemeknek, és a két fa metszete maga is fa. Mivel most 

T és U közösen zárolnak elemeket, a metszet nem lehet üres fa. Emiatt van egy „legmagasabb” X elem, 

amelyet T és U is zárol. Tételezzük fel, hogy T zárolja X-et először, de van egy másik Y elem, amelyet U 

előbb zárol, mint T. Ekkor az elemekből álló fában van út X-ből Y-ba, és T-nek is és U-nak is zárolnia kell 

minden elemet az út mentén, ugyanis egyik sem zárolhat úgy egy csomópontot, hogy ne lenne már a 

szülőjén zárja. 

Tekintsük az első olyan elemet az út mentén, amelyet U zárol először, legyen ez Z. Ekkor T előbb zárolja 

Z-nek a P szülőjét, mint U. Ekkor viszont T még mindig tartja a zárolást P-n, amikor zárolja Z-t, így U még 

nem zárolhatta P-t, amikor Z-t zárolja. Az nem lehet, hogy Z lenne az első elem, amelyet T és U közösen 

zárolnak, mivel mindkettő zárolta az ősét, X-et (amely lehet P is, csak Z nem). Így U addig nem zárolhatja 

Z-t, amíg meg nem szerezte P-n a zárat, amely viszont azután van, hogy T zárolta Z-t. Arra következtetünk, 

hogy T megelőzi U-t minden csomópontban, amelyet közösen zárolnak. 

 

T  z á r o l j a  

e l ő b b  

X  

P  

Z  

Y  

U  z á r o l j a  

e l ő b b  

U  z á r o l j a  

e l ő b b  
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Most tekintsük a T1, T2, …, Tn tranzakciók tetszőleges halmazát, amely eleget tesz a faprotokollnak, és az 

S ütemezésnek megfelelően zárolja a fa valamely csomópontjait. Azok a tranzakciók, amelyek zárolják a 

gyökeret, ezt valamilyen sorrendben végzik, és olyan szabály alapján, amelyet éppen megfigyeltünk: 

 Ha Ti előbb zárolja a gyökeret, mint Tj, akkor Ti minden Tj-vel közösen zárolt csomópontot előbb 

zárol, mint Tj. Vagyis Ti <S Tj, de nem igaz Tj <S Ti. 

A fa csomópontjainak száma szerinti teljes indukcióval megmutathatjuk, hogy a teljes tranzakcióhalmazhoz 

létezik az S-sel ekvivalens soros sorrend: 

Alapeset: Ha csak egyetlen csomópont van, a gyökér, akkor ahogyan már megfigyeltük, a megfelelő 

sorrend az, amelyben a tranzakciók a gyökeret zárolják. 

Indukció: Ha egynél több csomópont van a fában, tekintsük a gyökér mindegyik részfájához az olyan 

tranzakciókból álló halmazt, amelyek egy vagy több csomópontot zárolnak abban a részfában. A gyökeret 

zároló tranzakciók több részfához is tartozhatnak, de egy olyan tranzakció, amely nem zárolja a gyökeret, 

csak egyetlen részfához tartozik. Például a fenti táblázatban található tranzakciók közül csak T1 zárolja a 

gyökeret, és az mindkét részfához tartozik: a B gyökerű és a C gyökerű fához is. T2 és T3 viszont csak a B 

gyökerű fához tartozik. 

Az indukciós feltevés szerint létezik soros sorrend az összes olyan tranzakcióhoz, amelyek ugyanabban a 

tetszőleges részfában zárolnak csomópontokat. Csupán egybe kell olvasztanunk a különböző részfákhoz 

tartozó soros sorrendeket. Mivel a tranzakcióknak ezekben a listáiban csak azok a tranzakciók közösek, 

amelyek zárolják a gyökeret, és megállapítottuk, hogy ezek a tranzakciók minden közös csomópontot 

ugyanabban a sorrendben zárolnak, ahogy a gyökeret zárolják, nem fordulhat elő két gyökeret zároló 

tranzakció különböző sorrendben két részlistán. Pontosabban: ha Ti és Tj előfordul a gyökér valamely C 

gyermekéhez tartozó listán, akkor ezek C-t ugyanabban a sorrendben zárolják, mint a gyökeret, és emiatt a 

listán is ebben a sorrendben fordulnak elő. Így felépíthetjük a soros sorrendet a teljes tranzakcióhalmazhoz 

azokból a tranzakciókból kiindulva, amelyek a gyökeret zárolják, a megfelelő sorrendjükben, és 

beleolvasztjuk azokat a tranzakciókat, amelyek nem zárolják a gyökeret, a részfák soros sorrendjével 

konzisztens tetszőleges sorrendben. 

Példa. Legyen T1, T2, …, T10 10 darab tranzakció, és ezekből T1, T2 és T3 ugyanebben a sorrendben zárolja 

a gyökeret. Tegyük fel, hogy a gyökérnek van két gyereke, az elsőt T1-től T7-ig zárolják a tranzakciók, a 

másikat pedig T2, T3, T8, T9 és T10 zárolja. Legyen az első részfához a soros sorrend 

(T4, T1, T5, T2, T6, T3, T7). Ennek a sorrendnek T1-et, T2-t és T3-at ebben a sorrendben kell tartalmaznia. 

A másik részfához tartozó soros sorrend legyen (T8, T2, T9, T10, T3). Mint az előző esetben, a T2 és T3 

tranzakciók, amelyek a gyökeret zárolják, abban a sorrendben fordulnak elő, ahogyan a gyökeret zárolták. 

Ezeknek a tranzakcióknak a soros sorrendjére felállított megszorításokat a következő ábra mutatja: 

 
5 

2 

8 

1 4 6 

9 10 

3 

7 

 

A folyamatos nyilak a gyökér első gyerekének a rendezése szerinti megszorításokat jelölik, a szaggatott 

nyilak pedig a másik gyereknél lévő rendezést jelölik. Ennek a gráfnak több topologikus sorrendje létezik, 

az egyik: (T4, T8, T1, T5, T2, T9, T6, T10, T3, T7). 
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Konkurenciavezérlés időbélyegzőkkel 

A következőkben a zárolástól különböző két másik módszert nézünk meg, amelyeket néhány rendszerben 

használnak a tranzakciók sorbarendezhetőségének biztosítására: 

1. Időbélyegzés (timestamping, timestamp ordering – TO): Minden tranzakcióhoz hozzárendelünk egy 

„időbélyegzőt”. Minden adatbáziselem utolsó olvasását és írását végző tranzakció időbélyegzőjét 

rögzítjük, és összehasonlítjuk ezeket az értékeket, hogy biztosítsuk, hogy a tranzakciók 

időbélyegzőinek megfelelő soros ütemezés ekvivalens legyen a tranzakciók tényleges ütemezésével. 

2. Érvényesítés (validation): Megvizsgáljuk a tranzakciók időbélyegzőit és az adatbáziselemeket, amikor 

a tranzakció véglegesítésre kerül. Ezt az eljárást a tranzakciók érvényesítésének nevezzük. Az a soros 

ütemezés, amely az érvényesítési idejük alapján rendezi a tranzakciókat, ekvivalens kell, hogy legyen 

a tényleges ütemezéssel. 

Mindkét megközelítés optimista abban az értelemben, hogy feltételezik, nem fordul elő nem sorba 

rendezhető viselkedés, és csak akkor tisztázza a helyzetet, amikor ez nyilvánvalóan nem teljesül. Ezzel 

ellentétben minden zárolási módszer azt feltételezi, hogy „a dolgok rosszra fordulnak”, hacsak a 

tranzakciókat azonnal meg nem akadályozzák abban, hogy nem sorba rendezhető viselkedésük alakuljon 

ki. Az optimista megközelítések abban különböznek a zárolásoktól, hogy az egyetlen ellenszerük, amikor 

valami rosszra fordul, hogy azt a tranzakciót, amely nem sorba rendezhető viselkedést okozna, abortálják, 

majd újraindítják. A zárolási ütemezők ezzel ellentétben késleltetik a tranzakciókat, de nem abortálják őket, 

hacsak nem alakul ki holtpont. (Késleltetés az optimista megközelítések esetén is előfordulhat, annak 

érdekében, hogy kevesebb abortálásra legyen szükség.) Általában az optimista ütemezők akkor jobbak a 

zárolásinál, amikor sok tranzakció csak olvasási műveleteket hajt végre, ugyanis az ilyen tranzakciók 

önmagukban soha nem okozhatnak nem sorba rendezhető viselkedést. 

Időbélyegzők 

Annak érdekében, hogy az időbélyegzést konkurenciavezérlési módszerként használjuk, az ütemezőnek 

minden egyes T tranzakcióhoz hozzá kell rendelnie egy egyedi számot, a TS(T) időbélyegzőt (timestamp). 

Az időbélyegzőket növekvő sorrendben kell kiadni abban az időpontban, amikor a tranzakció az 

elindításáról először értesíti az ütemezőt. Két lehetséges megközelítés az időbélyegzők generálásához: 

a) Az egyik lehetőség, hogy az időbélyegzőket a rendszeróra felhasználásával hozzuk létre, feltéve, hogy 

az ütemező nem működik annyira gyorsan, hogy két tranzakcióhoz ugyanazt az értéket rendelné 

időbélyegzőként. 

b) A másik megközelítés szerint az ütemező karbantart egy számlálót. Minden alkalommal, amikor egy 

tranzakció elindul, a számláló növekszik eggyel, és ez az új érték lesz a tranzakció időbélyegzője. Ebben 

a megközelítésben az időbélyegzőknek semmi közük sincs az időhöz, azonban azzal a – bármely 

időbélyegző-generáló rendszer esetén szükséges – fontos tulajdonsággal rendelkeznek, miszerint egy 

később elindított tranzakció nagyobb időbélyegzőt kap, mint egy korábban elindított tranzakció. 

Bármelyik módszert is használjuk az időbélyegzők generálására, az ütemezőnek karban kell tartania a 

jelenleg aktív tranzakciók és időbélyegzőik tábláját. 

Ahhoz, hogy időbélyegzőket használjunk konkurenciavezérlési módszerként, minden egyes X 

adatbáziselemhez hozzá kell rendelnünk két időbélyegzőt és esetlegesen egy további bitet: 

1. RT(X): X olvasási ideje (read time), amely a legmagasabb időbélyegző, ami egy olyan tranzakcióhoz 

tartozik, amely már olvasta X-et. 

2. WT(X): X írási ideje (write time), amely a legmagasabb időbélyegző, ami egy olyan tranzakcióhoz 

tartozik, amely már írta X-et. 
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3. C(X): X véglegesítési bitje (commit bit), amely akkor és csak akkor igaz, ha a legújabb tranzakció, 

amely X-et írta, már véglegesítve van. Ez a bit nem feltétlenül szükséges, és az a célja, hogy elkerüljük 

azt a helyzetet, amelyben egy T tranzakció egy másik U tranzakció által írt adatokat olvas be, és utána 

U-t abortáljuk. Ez a probléma, amikor T nem véglegesített adatok „piszkos olvasását” hajtja végre, az 

adatbázis-állapot inkonzisztenssé válását is okozhatja. Így bármely ütemezőhöz szükség van olyan 

mechanizmusra, amely megakadályozza a piszkos olvasást (bár a gyakorlatban az adatbázis-kezelő 

rendszerek általában a felhasználóra bízzák, hogy megengedhetők-e a piszkos olvasások; lásd később a 

„nem olvasásbiztos” tranzakcióelkülönítési szintet). 

Fizikailag nem megvalósítható viselkedések 

Hogy megértsük az időbélyegzőn alapuló ütemező felépítését és szabályait, tudnunk kell, hogy az ütemező 

feltételezi, hogy a tranzakciók időbélyegző szerinti sorrendje egyúttal olyan soros sorrend, amely a 

végrehajtás sorrendjét is jelenti. Így az ütemező feladata azon túl, hogy hozzárendeli az időbélyegzőket a 

tranzakciókhoz, és módosítja RT-t, WT-t és C-t az egyes adatbáziselemekhez kötődően, még az is, hogy 

ellenőrzi, amikor egy olvasás vagy írás fordul elő, hogy az úgy történt volna-e valós időben is, ha minden 

tranzakciót azonnal, az időbélyegző által jelzett időpillanatban hajtottunk volna végre. Ha nem, akkor azt 

mondjuk, hogy a viselkedés fizikailag nem megvalósítható (physically unrealizable behavior). Kétféle 

probléma merülhet fel: 

1. Túl késői olvasás (read too late): A T1 tranzakció megpróbálja olvasni az X adatbáziselemet, de X írási 

ideje azt jelzi, hogy X jelenlegi értékét azután írtuk, miután T1-et már elméletileg végrehajtottuk, vagyis 

TS(T1) < WT(X). A következő ábra mutatja ezt a problémát: 

 

r1(X) 

 

w2(X) 

TS(T2) TS(T1) 
 

A vízszintes tengely jelenti a valós időt. A szaggatott vonalak kapcsolják össze a tényleges eseményt 

azzal az időponttal, amikor a tranzakciók időbélyegzője szerint elméletileg végre kellett volna hajtani 

az eseményt. Látjuk, hogy a T2 tranzakciót a T1 tranzakció után indítottuk el, mégis X értékét előbb írta, 

mint hogy T1 beolvasta volna. T1-nek nem a T2 által írt értéket kellene olvasnia, ugyanis elméletileg 

T2-t T1 után hajtjuk végre. T1-nek viszont nincs más választása, ugyanis X-nek a T2 által írt értéke az 

egyetlen, amelyet T1 most be tud olvasni. A megoldás, hogy T1-et abortáljuk, amikor ez a probléma 

felmerül. 

2. Túl késői írás (write too late): A T1 tranzakció megpróbálja írni az X adatbáziselemet, de X olvasási 

ideje azt jelzi, hogy van egy másik tranzakció is, amelynek a T1 által beírt értéket kellene olvasnia, ám 

ehelyett más értéket olvas, vagyis TS(T1) < RT(X). A következő ábra mutatja ezt a problémát: 
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w1(X) 

 

r2(X) 

 

TS(T2) TS(T1) 

 
 

Az ábra egy T2 tranzakciót mutat, amelyet T1 után indítottunk el, mégis előbb olvassa X-et, mint T1-

nek lehetősége lett volna írni. Amikor T1 megpróbálja írni X-et, úgy találjuk, hogy RT(X) > TS(T1), 

ami azt jelenti, hogy a T2 tranzakció már beolvasta X-et, amelyet elméletileg T1 végrehajtása után kellett 

volna elvégeznie. 

A piszkos adatok problémái 

Van egy problémákból álló osztály, amelynek kezelésére bevezették a véglegesítési bitet. A problémák 

egyike a „piszkos olvasás”, amelyet a következő ábra szemléltet: 

 

r2(X) 

 

w1(X) 

TS(T2) 

 

TS(T1) 

 

ABORT(T1) 
 

Itt a T2 tranzakció olvassa X-et, amelyet utoljára T1 írt. T1 időbélyegzője kisebb, mint T2-é, és a valóságban 

a T2 általi olvasás a T1 általi írás után történik, tehát úgy tűnik, hogy az esemény fizikailag megvalósítható. 

Mégis lehetséges, hogy miután T2 beolvasta a T1 által X-be írt értéket, a T1 tranzakciót abortáljuk; például 

azért, mert T1 talált valami hibát a saját működésében (például nullával való osztás), vagy az ütemező 

kényszeríti ki T1 abortálását, mivel az valamilyen fizikailag nem megvalósítható viselkedést eredményező 

műveletet próbált végezni. Így, bár nincs fizikailag nem megvalósítható abban, hogy T2 olvassa X-et, mégis 

jobb a T2 általi olvasást azutánra elhalasztani, hogy T1 véglegesítését vagy abortálását már elvégeztük, 

különben az ütemezésünk nem lesz konfliktus-sorbarendezhető. Azt, hogy T1 még nincs véglegesítve, 

onnan tudjuk, hogy a C(X) véglegesítési bit hamis. 

A piszkos olvasás problémája véglegesítési bit nélkül is megoldható: Amikor abortálunk egy T tranzakciót, 

meg kell néznünk, hogy vannak-e olyan tranzakciók, amelyek olvastak egy vagy több T által írt 

adatbáziselemet. Ha igen, akkor azokat is abortálnunk kell. Ebből aztán további abortálások 

következhetnek, azokból megint újabbak, és így tovább. Ezt a szituációt kaszkádolt visszagörgetésnek 

(cascading rollback) nevezzük. Ez a megoldás azonban alacsonyabb fokú konkurenciát engedélyez, mint a 

véglegesítési bit bevezetése és a késleltetés, ráadásul előfordulhat, hogy nem helyreállítható ütemezést 

(nonrecoverable schedule) kapunk. Ez abban az esetben következik be, ha az egyik abortálandó tranzakciót 

már véglegesítettük. 

Drasztikus, de nagyon egyszerű megoldás a piszkos olvasás problémájára, hogy minden olyan tranzakciót 

abortálunk, amely piszkos adatot szeretne olvasni. Végül megoldást jelenthet a többváltozatú időbélyegzés 

alkalmazása is (lásd később). 

Egy másik lehetséges problémát a következő ábra szemléltet: 
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w1(X) 

 

w2(X) 

TS(T2) 

 

TS(T1) COMMIT(T1) ABORT(T2) 

 
 

Itt T2, a T1-nél későbbi időbélyegzővel rendelkező tranzakció írja először X-et. Amikor T1 írni próbál, a 

megfelelő művelet semmit sem végez, tehát elhagyható. Nyilvánvalóan nincs más T3 tranzakció, amelynek 

X-ből a T1 által beírt értéket kellene beolvasnia, és ehelyett a T2 által írt értéket olvasná, ugyanis ha T3 

megpróbálná olvasni X-et, abortálnia kellene a túl késői olvasás miatt. X későbbi olvasásainál a T2 által írt 

értéket kell olvasni, vagy X még későbbi, de nem T1 által írt értékét. Ezt az ötletet, miszerint azokat az 

írásokat kihagyhatjuk, amelyeknél későbbi írási idejű írást már elvégeztünk, Thomas-féle írási szabálynak 

(Thomas’ write rule) nevezzük. 

A Thomas-féle írási szabállyal azonban van egy lényegi probléma. Ha T2-t később abortáljuk, amint az az 

ábrán látható, akkor X-nek a T2 által írt értékét ki kell törölnünk, továbbá az előző értéket és írási időt vissza 

kell állítanunk. Minthogy T1-et véglegesítettük, úgy látszik, hogy X T1 által írt értékét kell a későbbi 

olvasásokhoz használnunk. Mi viszont kihagytuk a T1 általi írást, és már túl késő, hogy helyrehozhassuk 

ezt a hibát. 

A problémát a következőképpen kezelhetjük: Amikor a T1 tranzakció írja az X adatbáziselemet, és azt 

látjuk, hogy X írási ideje nagyobb T1 időbélyegzőjénél (azaz TS(T1) < WT(X)), valamint hogy az X-et író 

tranzakció (T2) még nincs véglegesítve (azaz C(X) hamis), akkor T1-et késleltetjük mindaddig, amíg C(X) 

igazzá nem válik; vagy azért, mert T2 véglegesítődik, vagy azért, mert abortál. Ha T2 véglegesítődik, akkor 

T1 írását elhagyjuk, ha viszont abortál, akkor végrehajtjuk. 

Természetesen most is létezik másik megoldás: a fenti feltételek teljesülése esetén T1-et a késleltetés helyett 

egyszerűen visszagörgetjük. Nyilván ez a megoldás alacsonyabb fokú konkurenciát engedélyez, mint a 

véglegesítési bit bevezetése és a késleltetés, ráadásul ha a piszkos olvasásokat is visszagörgetéssel kezeljük, 

akkor ez az abortálás tovább növeli a kaszkádolt visszagörgetés és a nem helyreállítható ütemezés 

kockázatát. Végül a harmadik megoldás ebben az esetben is a többváltozatú időbélyegzés alkalmazása. 

Látható, hogy az időbélyegzési technika alapváltozatában (amikor nem használunk véglegesítési bitet és 

nincs késleltetés) nem léphet fel holtponti helyzet, előfordulhat viszont kaszkádolt visszagörgetés és nem 

helyreállítható ütemezés. 

Az időbélyegzőn alapuló ütemezések szabályai 

Összegezhetjük azokat a szabályokat, amelyeket az időbélyegzőket használó ütemezőnek követnie kell 

ahhoz, hogy biztosan konfliktus-sorbarendezhető ütemezést kapjunk. Mi most az időbélyegzésnek a 

véglegesítési bittel bővített változatát tekintjük. Az ütemezőnek egy T tranzakciótól érkező olvasási vagy 

írási kérésre adott válaszában az alábbi választásai lehetnek: 

a) Engedélyezi a kérést. 

b) Abortálja T-t (ha T „megsérti a fizikai valóságot”), és egy új időbélyegzővel újraindítja. Azt az 

abortálást, amelyet újraindítás követ, gyakran visszagörgetésnek (rollback) nevezzük. 

c) Késlelteti T-t, és később dönti el, mi történjen (ha a kérés olvasás, és az olvasás piszkos is lehet, illetve 

ha a kérés írás, és alkalmazható lehet a Thomas-féle írási szabály). 
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A szabályok a következők: 

1. Tegyük fel, hogy az ütemezőhöz érkező kérés rT(X): 

a) Ha TS(T)  WT(X), az olvasás fizikailag megvalósítható: 

i) Ha C(X) igaz vagy TS(T) = WT(X), engedélyezzük a kérést. Ha TS(T) > RT(X), akkor 

RT(X) := TS(T), egyébként nem változtatjuk meg RT(X)-et. 

ii) Ha C(X) hamis és TS(T) > WT(X), késleltessük T-t addig, amíg C(X) igazzá nem válik (azaz 

az X-et utoljára író tranzakció nem véglegesítődik vagy abortál). 

b) Ha TS(T) < WT(X), az olvasás fizikailag nem megvalósítható: Visszagörgetjük T-t, vagyis 

abortáljuk, és újraindítjuk egy új, nagyobb időbélyegzővel. 

2. Tegyük fel, hogy az ütemezőhöz érkező kérés wT(X): 

a) Ha TS(T)  RT(X) és TS(T)  WT(X), az írás fizikailag megvalósítható, és az alábbiakat kell 

végrehajtani: 

i) X új értékének beírása; 

ii) WT(X) := TS(T); 

iii) C(X) := hamis. 

b) Ha TS(T)  RT(X), de TS(T) < WT(X), akkor az írás fizikailag megvalósítható, de X-nek már 

egy későbbi értéke van. 

i) Ha C(X) igaz, az X előző írását végző tranzakció véglegesítve van, így egyszerűen figyelmen 

kívül hagyjuk X T általi írását; megengedjük, hogy T folytatódjon, és ne változtassa meg az 

adatbázist. 

ii) Ha viszont C(X) hamis, akkor késleltetnünk kell T-t, mégpedig az 1. a) ii) pontban leírtak 

szerint. 

c) Ha TS(T) < RT(X), az írás fizikailag nem megvalósítható, és T-t vissza kell görgetnünk. 

3. Tegyük fel, hogy az ütemezőhöz érkező kérés T véglegesítése (COMMIT T). Meg kell találnunk (egy, 

az ütemező által karbantartott lista alapján) az összes olyan X adatbáziselemet, amelybe T írt utoljára 

(WT(X) = TS(T)), és állítsuk be a hozzájuk tartozó C(X) biteket igazra. Ha vannak X 

„véglegesítésére” várakozó tranzakciók az 1. a) ii) és a 2. b) ii) pontoknak megfelelően (ezeket a 

tranzakciókat az ütemező egy másik listáján találjuk meg), akkor meg kell ismételnünk ezen tranzakciók 

olvasási vagy írási kísérleteit. 

4. Tegyük fel, hogy az ütemezőhöz érkező kérés T abortálása (ABORT T) vagy visszagörgetése, mint az 

1. b) vagy a 2. c) esetben. Ekkor visszavonjuk az abortált tranzakció azon írásait, amelyek olyan X 

adatbáziselemekre vonatkoznak, amelyekre WT(X) = TS(T). Ez azt jelenti, hogy visszaállítjuk ezen 

adatbáziselemeknek és azok írási idejének régi értékét (azt, amelyik a legnagyobb írási időhöz tartozik), 

valamint igazra állítjuk a véglegesítési bitet, ha az írási időhöz tartozó tranzakció már véglegesítődött. 

Ezenkívül „visszavonjuk” T olvasásait is, azaz visszaállítjuk az olyan T által olvasott adatbáziselemek 

olvasási idejének régi (legnagyobb) értékét, amelyekre RT(X) = TS(T). Ezután bármely olyan 

tranzakcióra, amely egy X elem T általi írása miatt várakozik (1. a) ii) és 2. b) ii)), meg kell ismételnünk 

az olvasási vagy írási kísérletet, és meglátjuk, hogy a művelet most jogszerű-e. 

Példa. A következő ábrán három tranzakció (T1, T2 és T3) ütemezése látható, amelyek három 

adatbáziselemhez (A, B és C) férnek hozzá: 
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T1 T2 T3 A B C 

200 150 175 RT = 0 RT = 0 RT = 0 
   WT = 0 WT = 0 WT = 0 
   C = igaz C = igaz C = igaz 

r1(B);    RT = 200  

 r2(A);  RT = 150   

  r3(C);   RT = 175 
w1(B);    WT = 200 

C = hamis 

 

w1(A);   WT = 200 

C = hamis 

  

 w2(C);     

 abortál  RT = 0   

véglegesítődik   C = igaz C = igaz  

  w3(A);    

Az események előfordulásának ideje szokás szerint lefelé nő. Legyen kezdetben minden adatbáziselemhez 

az olvasási és az írási idő is 0. A tranzakciók abban a pillanatban kapnak időbélyegzőt, amikor értesítik az 

ütemezőt az elindításukról. Most például bár T1 hajtja végre az első adathozzáférést, mégsem neki van a 

legkisebb időbélyegzője. Tegyük fel, hogy T2 az első, amelyik az indításáról értesíti az ütemezőt, T3 volt a 

következő, és T1-et indítottuk el utoljára. 

Az első műveletben T1 beolvassa B-t. Mivel B írási ideje kisebb, mint T1 időbélyegzője, ez az olvasás 

fizikailag megvalósítható, és engedélyezzük a végrehajtást. B olvasási idejét 200-ra, T1 időbélyegzőjére 

állítjuk. A második és a harmadik olvasási művelet hasonlóan jogszerű, és mindegyik adatbáziselem 

olvasási idejének értékét az őt olvasó tranzakció időbélyegzőjére állítjuk. 

A negyedik lépésben T1 írja B-t. Mivel B olvasási ideje nem nagyobb, mint T1 időbélyegzője, az írás 

fizikailag megvalósítható. Mivel B írási ideje nem nagyobb, mint T1 időbélyegzője, ténylegesen végre kell 

hajtanunk az írást. Amikor ezt elvégeztük, B írási idejét 200-ra növeljük, amely az őt felülíró T1 tranzakció 

időbélyegzője. Ezután hasonlóan járunk el A-val. 

Ezután T2 megpróbálja írni C-t. C-t viszont már beolvasta a T3 tranzakció, amelyet elméletileg a 175-ös 

időpontban hajtottunk végre, míg T2-nek az értéket a 150-es időpontban kellett volna beírnia. Így T2 olyan 

dologgal próbálkozik, amely fizikailag nem megvalósítható viselkedést eredményezne, tehát T2-t vissza 

kell görgetnünk. 

Az utolsó lépés, hogy T3 írja A-t. Mivel A olvasási ideje (150) kevesebb, mint T3 időbélyegzője (175), az 

írás jogszerű. Viszont A-nak már egy későbbi értéke van tárolva ebben az adatbáziselemben, mégpedig a 

T1 által – elméletileg a 200-as időpontban – beírt érték. T3-at tehát nem görgetjük vissza, de be sem írjuk 

az értéket. (Feltesszük, hogy T1 időközben véglegesítődött.) 

Többváltozatú időbélyegzés 

Az időbélyegzés egyik fontos változata, a többváltozatú időbélyegzés (multiversion timestamping, 

multiversion timestamp ordering – MVTO, multiversion concurrency control – MVCC) karbantartja az 

adatbáziselemek régi változatait is a magában az adatbázisban tárolt jelenlegi változaton kívül. A cél az, 

hogy megengedjünk olyan rT(X) olvasásokat, amelyek egyébként a T tranzakció abortálását okoznák 

(ugyanis X jelenlegi változatát egy T-nél későbbi tranzakció írta felül). Ilyenkor T-t X megfelelő régebbi 

változatának beolvasásával folytatjuk. A módszer különösen hasznos, ha az adatbáziselemek lemezblokkok 

vagy lapok, ugyanis ekkor csak annyit kell a pufferkezelőnek biztosítania, hogy bizonyos blokkok a 

memóriában legyenek, amelyek néhány jelenleg aktív tranzakció számára hasznosak lehetnek. 

Példa. Tekintsük a következő ábrán szereplő, az A adatbáziselemhez hozzáférő tranzakciókat: 
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T1 T2 T3 T4 A 

150 200 175 225 RT = 0 
    WT = 0 

r1(A);    RT = 150 
w1(A);    WT = 150 

 r2(A);   RT = 200 
 w2(A);   WT = 200 
  r3(A);   

  abortál   

   r4(A); RT = 225 

Ezek a tranzakciók egy hagyományos, időbélyegzőn alapuló ütemező alatt működnek. Amikor T3 

megpróbálja olvasni A-t, azt találja, hogy WT(A) nagyobb, mint a saját időbélyegzője, így abortálni kell. 

Viszont megvan A-nak a T1 által írt, és a T2 által felülírt régi értéke, amely alkalmas lenne T3-nak, hogy 

olvassa. Ebben a változatában A-nak 150 volt az írási ideje, ami kevesebb, mint T3 175-ös időbélyegzője. 

Ha A-nak ez a régi értéke hozzáférhető lenne, T3 engedélyt kaphatna az olvasásra, még ha ez A-nak nem is 

a „jelenlegi” értéke. 

A többváltozatú időbélyegzést használó ütemező az alábbiakban különbözik a fent leírt ütemezőtől: 

1. Amikor egy új wT(X) írás fordul elő, ha ez jogszerű, akkor az X adatbáziselemnek egy új változatát 

hozzuk létre, amelynek az írási ideje TS(T), és Xt-vel fogunk rá hivatkozni, ahol t = TS(T). 

2. Amikor egy rT(X) olvasás fordul elő, az ütemező megkeresi X-nek azt az Xt változatát, amelyre 

t  TS(T), de nincs más Xt’ változata, amelyre t < t’  TS(T) lenne. Vagyis X-nek azt a változatát 

olvassa be T, amelyet T elméleti végrehajtása előtt közvetlenül írtak. 

3. Az írási időket egy elem változataihoz rendeljük, és soha nem változtatjuk meg. 

4. Az olvasási időket szintén rendelhetjük a változatokhoz. Arra használjuk őket, hogy ne kelljen 

visszautasítanunk bizonyos írásokat, mégpedig azokat, amelyek ideje nagyobb vagy egyenlő, mint az 

őt időben közvetlenül megelőző változat olvasási ideje. Ha csak az utolsó változat olvasási idejét 

tartanánk nyilván, akkor az ilyen írásokat el kellene utasítanunk. A problémát a következő ábra 

szemlélteti: 

 
R T 1 0 0  =  1 1 0  

X 5 0  X 1 0 0  

7 0 - e s  i d ő b é l y e g z ő j ű  

t r a n z a k c i ó  í r á s a  

R T 5 0  =  6 0  

 

X változatai X50 és X100. X50 a 60-as időpontban olvasásra került, és megjelent a 70-es időbélyegzőjű T 

tranzakció általi új írás. Ez az írás jogszerű, mert RT50  TS(T). Ha csak az utolsó változat 110-es 

olvasási idejét tárolnánk, akkor erről az írásról nem tudnánk eldönteni, hogy jogszerű-e, ezért 

abortálnunk kellene T-t. 

5. Amikor egy Xt változat t írási ideje olyan, hogy nincs t-nél kisebb időbélyegzőjű aktív tranzakció, 

akkor törölhetjük X-nek az Xt-t megelőző változatait. 

Példa. Tekintsük újból az előző példában szereplő műveleteket, de most használjunk többváltozatú 

időbélyegzést: 
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T1 T2 T3 T4 A0 A150 A200 

150 200 175 225 RT = 0   

r1(A);    olvasás, 

RT = 150 

  

w1(A);     létrehozás, 

RT = 150 

 

 r2(A);    olvasás, 

RT = 200 

 

 w2(A);     létrehozás, 

RT = 200 
  r3(A);   olvasás  

   r4(A);   olvasás, 

RT = 225 

A-nak három változata létezik: A0, amelyik a tranzakciók elindítása előtt létezik, A150, amelyet T1 írt, és 

A200, amelyet T2 írt. Az ábra mutatja azt az eseménysorozatot, amikor az egyes változatokat létrehozzuk, 

illetve beolvassuk. T3-at most nem kell abortálni, ugyanis be tudja olvasni A-nak egy korábbi változatát. 

A többváltozatú időbélyegzés tehát kiküszöböli a túl késői olvasásokat. Mi a helyzet a piszkos olvasással 

és a Thomas-féle írási szabály problémájával? Piszkos olvasás most is előfordulhat, de most nemcsak a 

tranzakció késleltetésével vagy abortálásával tehetünk ellene, hanem azzal is, hogy olvasáskor megkeressük 

az adatbáziselem utolsó olyan változatát, amelyet vagy maga az olvasó tranzakció, vagy egy, az olvasó 

tranzakció indulásakor már véglegesített tranzakció hozott létre. Így sosem olvasunk piszkos adatot, nem 

kell késleltetnünk egy tranzakciót sem, ráadásul nem fordulhat elő túl késői írás sem, hiszen a „túl későn 

író” tranzakció még nem lehetett véglegesítve az olvasó tranzakció indulásakor, amelynek emiatt nincs 

szüksége a „túl későn írt” értékre. Ezt a technikát (amelyet az Oracle is alkalmaz) pillanatkép-

elkülönítésnek (snapshot isolation) nevezzük. Hátránya, hogy nem garantálja a sorbarendezhetőséget. 

A Thomas-féle írási szabály pedig nem alkalmazható többváltozatú időbélyegzés esetén (legalábbis eredeti 

formájában), még akkor is létrehozzuk az adatbáziselem „új” változatát, ha az régebbi, mint a legújabb 

változat. 

Időbélyegzők és zárolások 

Általában az időbélyegzés azokban a helyzetekben kiváló, amikor a tranzakciók többsége csak olvasási, 

vagy ritka az az eset, hogy konkurens tranzakciók ugyanazt az elemet próbálják meg olvasni és írni. Az 

erősen konfliktusos helyzetekben jobb a zárolásokat használni. Ehhez az ökölszabályhoz az érvek az 

alábbiak: 

 A zárolások gyakran késleltetik a tranzakciókat azzal, hogy a zárakra várnak, és még holtpontok is 

kialakulhatnak, amikor néhány tranzakció hosszú ideje várakozik, és ekkor az egyiket vissza kell 

görgetni. 

 Időbélyegzés használatakor viszont ha a konkurens tranzakciók gyakran olvasnak és írnak közös 

elemeket, akkor a visszagörgetés lesz gyakori, ami még több késedelmet okoz, mint egy zárolási 

rendszer. 

Bizonyos rendszerek érdekes kompromisszumot alkalmaznak: Az ütemező felosztja a tranzakciókat csak 

olvasási tranzakciókra és olvasási/írási tranzakciókra. Az olvasási/írási tranzakciókat kétfázisú zárolást 

használva hajtjuk végre úgy, hogy a zárolt elemek hozzáférését megakadályozzuk a többi tranzakciónak. A 

csak olvasási tranzakciókat a többváltozatú időbélyegzéssel hajtjuk végre. Amikor az olvasási/írási 

tranzakciók létrehozzák egy adatbáziselem új változatait, ezeket a változatokat úgy kezeljük, ahogyan 

fentebb leírtuk. Egy csak olvasási tranzakciónak megengedjük, hogy egy adatbáziselem bármelyik olyan 

változatát olvassa, amely korábban jött létre, mint a tranzakció időbélyegzője. Csak olvasási tranzakciókat 

emiatt soha nem kell abortálnunk, és csak nagyon ritkán kell késleltetnünk. 
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Konkurenciavezérlés érvényesítéssel 

Az érvényesítés (validation, Kung–Robinson-modell) az optimista konkurenciavezérlés másik típusa, 

amelyben a tranzakcióknak megengedjük, hogy zárolások nélkül hozzáférjenek az adatokhoz, és a 

megfelelő időben ellenőrizzük a tranzakció sorba rendezhető viselkedését. Az érvényesítés alapvetően 

abban különbözik az időbélyegzéstől, hogy itt az ütemező nyilvántartást vezet arról, mit tesznek az aktív 

tranzakciók, ahelyett hogy az összes adatbáziselemhez feljegyezné az olvasási és írási időt. Mielőtt a 

tranzakció írni kezdene értékeket az adatbáziselemekbe, egy „érvényesítési fázison” megy keresztül, 

amikor a beolvasott és kiírandó elemek halmazait összehasonlítjuk más aktív tranzakciók írásainak 

halmazaival. Ha fellép a fizikailag nem megvalósítható viselkedés kockázata, a tranzakciót visszagörgetjük. 

Az érvényesítésen alapuló ütemező felépítése 

Ha az érvényesítést használjuk konkurenciavezérlési módszerként, az ütemezőnek meg kell adnunk minden 

T tranzakcióhoz a T által olvasott és a T által írt adatbáziselemek halmazát: RS(T) az olvasási halmaz, 

WS(T) az írási halmaz. A tranzakciókat három fázisban hajtjuk végre: 

1. Olvasás. Az első fázisban a tranzakció beolvassa az adatbázisból az összes szükséges elemet az olvasási 

halmazába, majd kiszámítja a lokális változóiban az összes eredményt, amelyet ki fog írni, ezzel 

meghatározva az írási halmazt is. 

2. Érvényesítés. A második fázisban az ütemező érvényesíti a tranzakciót oly módon, hogy összehasonlítja 

az olvasási és írási halmazait a többi tranzakcióéval. Az érvényesítési eljárást később részletezzük. Ha 

az érvényesítés hibát jelez, akkor a tranzakciót visszagörgetjük, egyébként pedig folytatódik a harmadik 

fázissal. 

3. Írás. A harmadik fázisban a tranzakció az írási halmazában lévő elemek értékeit kiírja az adatbázisba. 

Intuitív alapon minden sikeresen érvényesített tranzakcióról azt gondolhatjuk, hogy az érvényesítés 

pillanatában került végrehajtásra. Így az érvényesítésen alapuló ütemező a tranzakciók feltételezett soros 

sorrendjével dolgozik. Annak a döntésnek az alapja, hogy érvényesítsen-e egy tranzakciót vagy sem, az, 

hogy a tranzakciók viselkedése konzisztens legyen ezzel a soros sorrenddel. A döntés segítéséhez az 

ütemező fenntart három halmazt: 

1. KEZD: a már elindított, de még nem teljesen érvényesített tranzakciók halmaza. Ebben a halmazban az 

ütemező minden T tranzakcióhoz karbantartja KEZD(T)-t, amely T indításának időpontja. 

2. ÉRV: a már érvényesített, de a harmadik fázisban az írásokat még be nem fejezett tranzakciók halmaza. 

Ebben a halmazban az ütemező minden T tranzakcióhoz karbantartja KEZD(T)-t, és T 

érvényesítésekor ÉRV(T)-t. ÉRV(T) az az idő, amikor T végrehajtását gondoljuk a végrehajtás 

feltételezett soros sorrendjében. 

3. BEF: a harmadik fázist befejezett tranzakciók halmaza. Ezekhez a T tranzakciókhoz az ütemező rögzíti 

KEZD(T)-t, ÉRV(T)-t, és T befejezésekor BEF(T)-t. Elméletben ez a halmaz nő, de – mint látni 

fogjuk – nem kell megjegyeznünk a T tranzakciót, ha BEF(T) < KEZD(U) bármely U aktív 

tranzakcióra (vagyis U  KEZD  ÉRV esetén). Az ütemező így időnként tisztogathatja a BEF 

halmazt, hogy megakadályozza méretének korlátlan növekedését. 

Az érvényesítési szabályok 

Ha az ütemező elvégzi a fenti halmazok karbantartását, akkor segítségükkel észlelheti a tranzakciók 

feltételezett soros sorrendjének (azaz a tranzakciók érvényesítési sorrendjének) bármely lehetséges 
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megsértését. A szabályok megértése végett először vizsgáljuk meg, hogy mi lehet hibás, amikor a T 

tranzakciót megpróbáljuk érvényesíteni: 

1. Tegyük fel, hogy van olyan U tranzakció, melyre teljesülnek a következő feltételek: 

a) U  ÉRV  BEF, vagyis U-t már érvényesítettük. 

b) BEF(U) > KEZD(T), vagyis U nem fejeződött be T indítása előtt. (Ha U  ÉRV, vagyis U még 

nem fejeződött be T érvényesítésekor, akkor BEF(U) technikailag nem definiált, de az biztos, hogy 

KEZD(T)-nél nagyobbnak kell lennie.) 

c) RS(T)  WS(U)  , legyen X egy eleme ennek a halmaznak. 

Ekkor lehetséges, hogy U azután írja X-et, miután T olvassa azt („túl korai olvasás”). Elképzelhető az 

is, hogy U még nem írta X-et. Az előbbi eset a következő ábrán látható: 

 

wU(X) 

rT(X) 

KEZD(T) KEZD(U) ÉRV(U) ÉRV(T) 
 

A szaggatott vonalak kapcsolják össze a valós idejű eseményeket azzal az idővel, amikor be kellett 

volna következniük, ha a tranzakciókat az érvényesítés pillanatában hajtottuk volna végre. Mivel nem 

tudjuk, hogy T beolvasta-e az U-tól származó értéket, vissza kell görgetnünk T-t, hogy elkerüljük annak 

kockázatát, hogy T és U műveletei nem lesznek konzisztensek a feltételezett soros sorrenddel. 

2. Tegyük fel, hogy van olyan U tranzakció, melyre teljesülnek a következő feltételek: 

a) U  ÉRV, vagyis U-t már érvényesítettük. 

b) BEF(U) > ÉRV(T), vagyis U-t nem fejeztük be, mielőtt T az érvényesítési fázisába lépett. (Ez a 

feltétel valójában mindig teljesül, mivel U még biztosan nem fejeződött be.) 

c) WS(T)  WS(U)  , legyen X egy eleme ennek a halmaznak. 

Ekkor a lehetséges problémát a következő ábra szemlélteti: 

 

wU(X) 

wT(X) 

ÉRV(U) ÉRV(T) BEF(U) 
 

Mind T-nek, mind U-nak írnia kell X értékét, és ha megengedjük T érvényesítését, lehetséges, hogy U 

előtt fogja írni X-et („túl korai írás”). Mivel nem lehetünk biztosak a dolgunkban, visszagörgetjük T-t, 

hogy biztosan ne szegjük meg azt a feltételezett soros sorrendet, amelyben T követi U-t. 

A fent leírt két problémával kerülhetünk csak olyan helyzetbe, amikor a T által végzett művelet fizikailag 

nem megvalósítható. Az 1. esetben ha U T elindítása előtt fejeződött volna be, akkor T biztosan olyan X 

értéket olvasna, amelyet vagy U, vagy valamely későbbi tranzakció írt. A 2. esetben ha U T érvényesítése 

előtt fejeződik be, akkor biztos, hogy U T előtt írta X-et. Ezek alapján a T tranzakció érvényesítésére 

vonatkozó észrevételeinket az alábbi szabállyal foglalhatjuk össze: 
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 Összehasonlítjuk RS(T)-t WS(U)-val, és ellenőrizzük, hogy RS(T)  WS(U) =  minden olyan 

érvényesített U-ra, amely még nem fejeződött be T elindítása előtt, vagyis U  ÉRV  BEF és 

BEF(U) > KEZD(T). 

 Összehasonlítjuk WS(T)-t WS(U)-val, és ellenőrizzük, hogy WS(T)  WS(U) =  minden olyan 

érvényesített U-ra, amely még nem fejeződött be T érvényesítése előtt, vagyis U  ÉRV és 

BEF(U) > ÉRV(T). 

Példa. 

 RS = {B} 

WS = {D} 
     U 

RS = {A, D} 

WS = {A, C} 
         W 

           T 

RS = {A, B} 

WS = {A, C} 

      V 

RS = {B} 

WS = {D, E} 
 

Az ábra egy idővonalat ábrázol, amely mentén négy tranzakció (T, U, V és W) végrehajtási és érvényesítési 

kísérletei láthatók. I-vel jelöltük az indítást, X-szel az érvényesítést, O-val pedig a befejezést. Az ábrán 

láthatók az egyes tranzakciók olvasási és írási halmazai. T-t indítjuk el elsőnek, de U-t érvényesítjük 

először. 

1. Amikor U-t érvényesítjük, nincs más érvényesített tranzakció, így nem kell semmit sem ellenőriznünk. 

U-t érvényesítjük, és beírjuk az új értéket a D adatbáziselembe. 

2. Amikor T-t érvényesítjük, U már érvényesítve van, de még nincs befejezve. Így ellenőriznünk kell, hogy 

T-nek sem az olvasási, sem az írási halmazában nincs semmi közös WS(U) = {D}-vel. Mivel 

RS(T) = {A, B} és WS(T) = {A, C}, mindkét halmazzal a metszet üres, tehát T-t érvényesítjük. 

3. Amikor V-t érvényesítjük, U már érvényesítve van és befejeződött, T pedig szintén érvényesítve van, 

de még nem fejeződött be. Továbbá V-t U befejeződése előtt indítottuk el. Így össze kell hasonlítanunk 

mind RS(V)-t, mind WS(V)-t WS(T)-vel, azonban csak RS(V)-t kell összehasonlítanunk WS(U)-

val. Az eredmények: 

 RS(V)  WS(T) = {B}  {A, C} = ; 

 WS(V)  WS(T) = {D, E}  {A, C} = ; 

 RS(V)  WS(U) = {B}  {D} = . 

Ezek alapján V-t érvényesítjük. 

4. Amikor W-t érvényesítjük, azt tapasztaljuk, hogy U már W elindítása előtt befejeződött, így nem kell 

elvégeznünk W és U összehasonlítását. T W érvényesítése előtt fejeződött be, de nem fejeződött be W 

elindítása előtt, ezért csak RS(W)-t kell összehasonlítanunk WS(T)-vel. V már érvényesítve van, de 

még nem fejeződött be, így össze kell hasonlítanunk mind RS(W)-t, mind WS(W)-t WS(V)-vel. Az 

eredmények: 

 RS(W)  WS(T) = {A, D}  {A, C} = {A}; 

 RS(W)  WS(V) = {A, D}  {D, E} = {D}; 

 WS(W)  WS(V) = {A, C}  {D, E} = . 
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Mivel a metszetek nem mind üresek, W-t nem érvényesítjük, hanem visszagörgetjük, így nem ír értéket 

sem A-ba, sem C-be. 

Többprocesszoros rendszerek esetén ha több ütemező végzi a feldolgozást, akkor lehet, hogy egyszerre 

érvényesítenek több tranzakciót. Ebben az esetben a többprocesszoros rendszer olyan szinkronizációs 

működésére kell támaszkodnunk, amely biztosítja, hogy az érvényesítés atomi tevékenységként kerüljön 

végrehajtásra. Egyprocesszoros rendszereken ha csak egy ütemező fut, akkor azt gondolhatjuk az 

érvényesítésről és az ütemező többi tevékenységéről, hogy egy pillanat alatt hajtódnak végre. Ebben az 

esetben tehát nem fordulhat elő, hogy egy tranzakció érvényesítése egy másik tranzakció érvényesítése alatt 

fejeződik be. 

A három konkurenciavezérlési technika működésének összehasonlítása 

A sorbarendezhetőség biztosításához három megközelítést néztünk meg: a zárolást, az időbélyegzést és az 

érvényesítést. Hasonlítsuk őket össze először a tárigény szempontjából: 

 Zárolás: A zártábla által lefoglalt tár a zárolt adatbáziselemek számával arányos. 

 Időbélyegzés: Egy naiv megvalósításban minden adatbáziselem olvasási és írási idejéhez szükségünk 

van tárra, akár hozzáférünk az adott elemhez, akár nem. Egy körültekintőbb megvalósítás azonban az 

összes olyan időbélyegzőt mínusz végtelen értékűnek tekinti, amely a legkorábbi aktív tranzakciónál 

korábbi tranzakcióhoz tartozik, és nem rögzíti ezeket. Ez esetben a zártáblával analóg méretű táblában 

tudjuk tárolni az olvasási és írási időket, amelyben csak a legújabban elért adatbáziselemek szerepelnek. 

 Érvényesítés: Tárat használunk az időbélyegzőkhöz és minden jelenleg aktív tranzakció olvasási/írási 

halmazaihoz, hozzávéve még egy pár olyan tranzakciót, amelyek azután fejeződnek be, miután 

valamelyik jelenleg aktív tranzakció elkezdődött. 

Így mindegyik megközelítésben az összes aktív tranzakcióra felhasznált tár a tranzakciók által elért 

adatbáziselemek számának az összegével megközelítőleg arányos. Az időbélyegzés és az érvényesítés 

kicsit több helyet használhat fel, ugyanis nyomon kell követnünk a korábban véglegesített tranzakciók 

bizonyos hozzáféréseit, amelyeket a zártábla nem rögzítene. Az érvényesítéssel kapcsolatban egy lényeges 

probléma, hogy a tranzakcióhoz tartozó írási halmazt az írások elvégzése előtt kell már ismernünk (de a 

tranzakció számításainak befejeződése után). 

Összehasonlíthatjuk a módszereket abból a szempontból is, hogy késleltetés nélkül befejeződnek-e a 

tranzakciók. A három módszer hatékonysága attól függ, hogy vajon a tranzakciók közötti egymásra hatás 

erős vagy gyenge, azaz milyen valószínűséggel akar egy tranzakció hozzáférni egy olyan elemhez, 

amelyhez egy konkurens tranzakció már hozzáfért: 

 A zárolás késlelteti a tranzakciókat, azonban elkerüli a visszagörgetéseket, még ha erős is az egymásra 

hatás. Az időbélyegzés és az érvényesítés nem késlelteti a tranzakciókat, azonban visszagörgetést 

okozhatnak, amely a késleltetésnek egy problémásabb formája, azonfelül erőforrásokat is pazarol. 

 Ha gyenge az egymásra hatás, akkor sem az időbélyegzés, sem az érvényesítés nem okoz sok 

visszagörgetést, és előnyösebbek lehetnek a zárolásnál, ugyanis ezeknek általában alacsonyabbak a 

költségei, mint a zárolási ütemezőnek. 

 Amikor szükséges a visszagörgetés, az időbélyegzés hamarabb feltárja a problémákat, mint az 

érvényesítés, amely mindig hagyja, hogy a tranzakció elvégezze az összes belső munkáját, mielőtt 

megnézné, hogy vissza kell-e görgetni a tranzakciót. 
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Az Oracle konkurenciavezérlési technikája 

Az alábbi információk forrása az Oracle Database Concepts — Data Concurrency and Consistency. 

Az Oracle a kétfázisú zárolás és a pillanatkép-elkülönítés kombinációját használja a 

konkurenciavezérléshez. Felhasználói szinten a zárolási egység lehet a tábla vagy annak egy sora. A zárakat 

az ütemező automatikusan helyezi el és oldja fel, de lehetőség van arra is, hogy a felhasználó (alkalmazás) 

kérjen zárat. 

Az olvasási konzisztencia szintjei 

Az Oracle minden lekérdezés számára biztosítja az utasítás szintű olvasási konzisztenciát, azaz a lekérdezés 

által olvasott adatok véglegesítettek, és egy időpillanatból (alapértelmezésben a lekérdezés kezdetének 

pillanatából) származnak. Emiatt a lekérdezés sohasem olvas piszkos (nem véglegesített) adatot, és nem 

látja azokat a változtatásokat sem, amelyeket a lekérdezés végrehajtása alatt véglegesített tranzakciók 

eszközöltek. Kérhetjük egy tranzakció összes lekérdezése számára is az olvasási konzisztencia biztosítását, 

ez a tranzakció szintű olvasási konzisztencia. Ezt úgy érhetjük el, hogy a tranzakciót sorba rendezhető vagy 

csak olvasás módban futtatjuk (lásd lejjebb). Ekkor a tranzakció által tartalmazott összes lekérdezés a 

tranzakció indításakor fennálló adatbázis-állapotot látja, kivéve a tranzakció által korábban végrehajtott 

módosításokat. 

A kétféle olvasási konzisztencia biztosításához az adatbázisszervernek egy olvasáskonzisztens adathalmazt 

kell előállítania, amikor egy tábla egyszerre lekérdezés és módosítás alatt is áll. E cél eléréséhez az Oracle 

az undo információkat használja fel. Amikor egy felhasználó adatmódosítást hajt végre, az Oracle undo 

bejegyzéseket készít, amelyeket undo (vagy rollback) szegmensekbe ír. Az undo szegmensek tárolják azon 

adatok régi értékeit, amelyeket még nem véglegesített vagy nemrég véglegesített tranzakciók változtattak 

meg. Így ugyanazon adatnak több, különböző időpontokból származó változata létezhet az adatbázisban. 

Az adatbázisszerver az adatok különböző időpontokban létező pillanatképeit használja fel arra, hogy 

biztosítsa az adatok olvasáskonzisztens nézeteit és lehetővé tegye a nemblokkoló lekérdezéseket (lásd 

később). Amint egy lekérdezés vagy tranzakció megkezdi működését, meghatározódik a system change 

number (SCN) aktuális értéke. Az SCN a blokkokhoz mint adatbáziselemekhez tartozó időbélyegzőnek 

tekinthető. Ahogy a lekérdezés olvassa az adatblokkokat, az Oracle összehasonlítja azok SCN-jét (utolsó 

módosításának „idejét”) az aktuális lekérdezés SCN értékével, és csak az annál nem nagyobb SCN-nel 

rendelkező véglegesített blokkokat olvassa be a tábla területéről. A nagyobb SCN-nel rendelkező blokkok 

esetén az undo adatokból rekonstruálja az adott blokk azon verzióját, amelyhez a legnagyobb olyan SCN 

érték tartozik, amely kisebb, mint a lekérdezésé, és már véglegesített tranzakció hozta létre. Ezeket a 

rekonstruált adatblokkokat konzisztens olvasási klónoknak (consistent read clones) nevezzük. A következő 

ábra illusztrálja a folyamatot: 

http://docs.oracle.com/database/121/CNCPT/consist.htm
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SELECT ... 

(SCN: 10023) 

10021 

10021 

10024 

10008 

10024 

10011 

10021 

10008 

10021 

Undo 

szegmens 

 

Előfordulhat, hogy az undo szegmensből már nem állítható elő a keresett blokk szükséges korábbi változata. 

Ha az undo információk menedzselése automatikus, akkor létezik egy aktuális undo megtartási idő (undo 

retention period), amely az a minimális időtartam, ameddig az Oracle megpróbálja megtartani a régi undo 

információkat, mielőtt felülírná őket. Azokat a régi (véglegesített tranzakcióhoz tartozó) undo 

bejegyzéseket, amelyek régebbiek az aktuális undo megtartási időnél, lejártnak (expired) nevezzük; ezek 

felülírhatók újabb tranzakciók bejegyzéseivel. Az undo megtartási időnél kisebb idejű régi bejegyzések 

nem lejártak, ezeket az Oracle igyekszik megtartani a konzisztens olvasások és a flashback műveletek (egy 

tábla valamely múltbéli állapotán végrehajtott műveletek) biztosításához. 

Ha az undo táblaterület az AUTOEXTEND opcióval lett létrehozva (a DBCA által automatikusan 

létrehozott UNDOTBS1 például ilyen), akkor az Oracle úgy állítja be dinamikusan az undo megtartási időt, 

hogy az valamivel nagyobb legyen, mint a rendszer leghosszabb ideig futó aktív lekérdezésének a 

végrehajtási ideje. Ha a lejárt undo információk által elfoglalt tárterület fogyóban van, akkor – a nem lejárt 

undo információk felülírása helyett – megnöveli a táblaterület méretét. Ha a táblaterülethez megadtuk a 

MAXSIZE opciót, és a táblaterület mérete eléri az abban megadott méretet, akkor nem lejárt undo 

bejegyzések is felülíródhatnak. 

Ha az undo táblaterület fix méretű, akkor az Oracle úgy állítja be dinamikusan az undo megtartási időt, 

hogy az a lehető legnagyobb legyen a táblaterület nagyságát és a rendszer terheltségét figyelembe véve. Ez 

a lehető legnagyobb megtartási idő általában lényegesen nagyobb, mint a leghosszabb ideig futó aktív 

lekérdezés végrehajtási ideje. Ha túl kicsire méretezzük az undo táblaterületet, akkor a hosszan futó 

tranzakciók abortálhatnak egy „snapshot too old” hibaüzenet kíséretében, ami azt jelenti, hogy nincs 

elegendő undo információ az olvasási konzisztencia biztosításához. 

Ha garantálni szeretnénk a hosszan futó lekérdezések vagy a flashback műveletek sikeres végrehajtását, 

kérhetjük a megtartási garanciát (retention guarantee). Ekkor az Oracle soha nem írja felül a nem lejárt 

undo bejegyzéseket, még akkor sem, ha emiatt az új tranzakciók nem tudnak lefutni (mivel nincs hely az 
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undo bejegyzéseik tárolására). A megtartási garancia nélkül az adatbázisszerver felülírhatja a nem lejárt 

undo bejegyzéseket, ha kevés a tárhely, ezáltal csökkentve a megtartási időt. 

A tranzakcióelkülönítési szintek 

Az SQL92 ANSI/ISO szabvány a tranzakcióelkülönítés négy szintjét definiálja, amelyek abban 

különböznek egymástól, hogy az alábbi három jelenség közül melyeket engedélyezik: 

 piszkos olvasás: a tranzakció olyan adatot olvas, amelyet egy másik, még nem véglegesített tranzakció 

írt; 

 nem ismételhető (fuzzy) olvasás: a tranzakció újraolvas olyan adatokat, amelyeket már korábban 

beolvasott, és azt találja, hogy egy másik, már véglegesített tranzakció módosította vagy törölte őket; 

 fantomok olvasása: a tranzakció újra végrehajt egy lekérdezést, amely egy adott keresési feltételnek 

eleget tevő sorokkal tér vissza, és azt találja, hogy egy másik, már véglegesített tranzakció további 

sorokat szúrt be, amelyek szintén eleget tesznek a feltételnek. 

A négy tranzakcióelkülönítési szint a következő: 

Elkülönítési szint Piszkos olvasás Nem ismételhető olvasás Fantomok olvasása 

nem olvasásbiztos 

(read uncommitted) 

lehetséges lehetséges lehetséges 

olvasásbiztos (read committed) nem lehetséges lehetséges lehetséges 

megismételhető olvasás 

(repeatable read) 

nem lehetséges nem lehetséges lehetséges 

sorba rendezhető (serializable) nem lehetséges nem lehetséges nem lehetséges 

Az Oracle ezek közül az olvasásbiztos és a sorba rendezhető elkülönítési szinteket ismeri, valamint egy 

csak olvasás (read-only) módot, amely nem része a szabványnak. 

 Olvasásbiztos: Ez az alapértelmezett tranzakcióelkülönítési szint. Egy tranzakció minden lekérdezése 

csak a lekérdezés (és nem a tranzakció) elindítása előtt véglegesített adatokat látja. Piszkos olvasás 

sohasem történik. A lekérdezés két végrehajtása között azonban a lekérdezés által olvasott adatokat más 

tranzakciók megváltoztathatják, ezért előfordulhat nem ismételhető olvasás és fantomok olvasása is. 

Olyan környezetekben célszerű ezt a szintet választani, amelyekben várhatóan kevés tranzakció kerül 

egymással konfliktusba. 

 Sorba rendezhető: A sorba rendezhető tranzakciók csak a tranzakció elindítása előtt véglegesített 

változásokat látják, valamint azokat, amelyeket maga a tranzakció hajtott végre INSERT, UPDATE és 

DELETE utasítások segítségével. A sorba rendezhető tranzakciók nem hajtanak végre nem ismételhető 

olvasásokat, és nem olvasnak fantomokat. Ezt a szintet olyan környezetekben célszerű használni, 

amelyekben nagy adatbázisok vannak, és rövidek a tranzakciók, amelyek csak kevés sort módosítanak, 

valamint ha kicsi az esélye annak, hogy két konkurens tranzakció ugyanazokat a sorokat módosítja, 

illetve ahol a hosszú (sokáig futó) tranzakciók elsősorban csak olvasási tranzakciók. Az Oracle csak 

akkor engedi egy sor módosítását egy sorba rendezhető tranzakciónak, ha az adott sor korábbi 

változtatásait olyan tranzakciók hajtották végre, amelyek még a sorba rendezhető tranzakció elindítása 

előtt véglegesítődtek. Amennyiben egy sorba rendezhető tranzakció megpróbál módosítani vagy törölni 

egy sort, amelyet egy olyan tranzakció változtatott meg, amely a sorba rendezhető tranzakció 

indításakor még nem véglegesítődött, az Oracle hibaüzenetet ad: „Cannot serialize access for this 

transaction”. Ne feledjük, hogy a neve ellenére a sorba rendezhető elkülönítési szint valójában 

pillanatkép-elkülönítést használ, és nem garantálja a sorbarendezhetőséget! 



79 

 Csak olvasás: A csak olvasás elkülönítési szint hasonló a sorba rendezhető elkülönítési szinthez, kivéve 

hogy a csak olvasó tranzakciók nem engedik meg az adatmódosítást a tranzakcióban, hacsak nem a 

SYS felhasználó futtatja azt. A csak olvasó tranzakciók így nem futhatnak bele a fent leírt hibába. Ez 

az elkülönítési szint akkor hasznos, ha olyan jelentéseket készítünk, amelyek tartalmának 

konzisztensnek kell lennie a tranzakció kezdetekor fennálló adatbázis-állapottal. 

Az elkülönítési szintet a következő utasítások valamelyikének a tranzakció elején történő kiadásával 

adhatjuk meg: 

SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE; 

SET TRANSACTION READ ONLY; 

A zárolási rendszer 

Mind az olvasásbiztos, mind a sorba rendezhető tranzakciók használják a sor szintű zárolást, ezáltal egy T 

tranzakciónak várnia kell, ha olyan sort próbál írni, amelyet egy még nem véglegesített konkurens U 

tranzakció módosított. T megvárja, míg U véglegesítődik vagy abortál, és felszabadítja a zárat. Ha U abortál, 

akkor T végrehajthatja a korábban zárolt sor módosítását, függetlenül az elkülönítési szintjétől, mintha U 

nem is létezett volna. Ha azonban U véglegesítődik, akkor T csak akkor hajthatja végre a módosítást, ha az 

elkülönítési szintje az olvasásbiztos. Egy sorba rendezhető tranzakció ilyenkor „Cannot serialize access” 

hibaüzenetet ad, mert U módosításának véglegesítése T kezdete után történt. 

A zárakat az Oracle automatikusan kezeli, amikor SQL-utasításokat hajt végre. Mindig a legkevésbé 

szigorú zármódot alkalmazza, így biztosítja a legmagasabb fokú konkurenciát. Lehetőség van arra is, hogy 

a felhasználó kérjen zárat. 

Egy tranzakcióban szereplő SQL-utasításoknak adott zárak általában a tranzakció befejeződéséig 

fennmaradnak (kétfázisú zárolás). Az Oracle akkor szabadítja fel a zárakat, amikor a tranzakció 

véglegesítődik vagy abortál. Ezenkívül egy mentési pont után kapott zárak akkor is felszabadulnak, ha 

visszagörgetjük a tranzakciót a mentési pontig. Ilyenkor azonban csak olyan tranzakciók kaphatják meg a 

most felszabaduló erőforrások zárjait, amelyek nem várakoztak az eddig zárolt erőforrásokra. A várakozó 

tranzakciók tovább várakoznak, amíg az eredeti tranzakciót nem véglegesítjük, vagy teljesen vissza nem 

görgetjük. 

Zártípusok 

Az Oracle a zárakat a következő általános kategóriákba sorolja: 

 DML-zárak (adatzárak): az adatok védelmére szolgálnak; 

 DDL-zárak (szótárzárak): a sémaobjektumok (pl. táblák) szerkezetének a védelmére valók; 

 belső zárak: a belső adatszerkezetek, adatfájlok védelmére szolgálnak, kezelésük teljesen automatikus. 

DML-zárak két szinten léteznek: vannak sor szintű zárak (TX) és tábla szintű zárak (TM). A DML-

utasítások hatására a tranzakciók mindkét szinten automatikusan kapják a zárakat. Sorok szintjén csak 

egyféle zármód létezik, a kizárólagos. A többváltozatú időbélyegzés és a sor szintű zárolás kombinációja 

azt eredményezi, hogy a tranzakciók csak akkor versengenek az adatokért, ha ugyanazokat a sorokat 

próbálják meg elérni. Az Oracle olvasókra és írókra vonatkozó zárolási szabályai a következők: 

 Egy sor csak akkor kerül zárolásra, ha módosítja egy író. 

 Egy sor írója blokkolja (késlelteti) ugyanazon sor egy konkurens íróját. 

 Egy olvasó sosem blokkol egy írót, hacsak az olvasó nem a SELECT … FOR UPDATE utasítást 

használja, amely zárolja is a beolvasott sorokat. 
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 Egy író sosem blokkol egy olvasót. Ha egy író módosít egy sort, az Oracle az undo adatokat használja, 

hogy a sor konzisztens nézetét biztosítsa az olvasóknak. 

A FOR UPDATE nélküli lekérdezések tehát sohasem járnak zárolásokkal, így más tranzakciók is 

lekérdezhetik vagy akár módosíthatják a lekérdezett táblát, akár a kérdéses sorokat is. Mivel a FOR 

UPDATE nélküli lekérdezések – zárolások híján – nem blokkolhatnak más műveleteket, az Oracle gyakran 

hívja az ilyen lekérdezéseket nemblokkoló lekérdezéseknek. Másrészt a lekérdezések sohasem várnak 

zárfeloldásra, mindig végrehajtódhatnak. 

Egy tranzakció TX zárat kap minden egyes sorra, amelyet az alábbi utasítások módosítanak: INSERT, 

UPDATE, DELETE, MERGE vagy SELECT … FOR UPDATE. Ha egy tranzakció zárat kap egy sorra, akkor 

a sort tartalmazó táblára is zárat kap, hogy elkerüljük az olyan DDL-utasításokat, amelyek felülírnák a 

tranzakció változtatásait. 

Egy tranzakció TM zárat kap, ha a táblát az alábbi utasítások módosítják: INSERT, UPDATE, DELETE, 

MERGE, SELECT … FOR UPDATE vagy LOCK TABLE. Táblák szintjén ötféle zármódot különböztetünk 

meg: row share (RS) vagy subshare (SS), row exclusive (RX) vagy subexclusive (SX), share (S), share 

row exclusive (SRX) vagy share-subexclusive (SSX) és exclusive (X). A következő táblázat összefoglalja, 

hogy az egyes utasítások milyen zármódot vonnak maguk után, és hogy milyen zármódokkal 

kompatibilisek: 

SQL-utasítás Zármód RS RX S SRX X 

SELECT … FROM tábla - I I I I I 

INSERT INTO tábla RX I I N N N 

UPDATE tábla RX I* I* N N N 

MERGE INTO tábla RX I I N N N 

DELETE FROM tábla RX I* I* N N N 

SELECT … FROM tábla … FOR UPDATE RX I* I* N N N 

LOCK TABLE tábla IN ROW SHARE MODE RS I I I I N 

LOCK TABLE tábla IN ROW EXCLUSIVE MODE RX I I N N N 

LOCK TABLE tábla IN SHARE MODE S I N I N N 

LOCK TABLE tábla IN 

SHARE ROW EXCLUSIVE MODE 

SRX I N N N N 

LOCK TABLE tábla IN EXCLUSIVE MODE X N N N N N 
* Igen, ha egy másik tranzakció nem tart fenn konfliktusos sor szintű zárat, különben várakozik. 

Az egyes zármódok részletesen a következők: 

 Az RS zár azt jelzi, hogy a zárat fenntartó tranzakció sorokat zárolt a táblában, és később módosítani 

kívánja őket. Az RS a legkevésbé szigorú zármód, amely a legmagasabb fokú konkurenciát biztosítja. 

 Az RX zár általában azt jelzi, hogy a zárat fenntartó tranzakció módosította a tábla egyes sorait, vagy 

kiadott egy SELECT … FOR UPDATE utasítást. 

 Ha egy tranzakció S zárat birtokol egy táblán, akkor más tranzakció csak lekérdezheti a táblát 

(SELECT … FOR UPDATE használata nélkül). Módosítások csak akkor megengedettek, ha csak 

egyetlen tranzakciónak van S zárja a táblán. Mivel több tranzakció is fenntarthat egyidejűleg S zárat 

ugyanazon a táblán, ez a zár nem elegendő a tábla módosíthatóságának biztosításához. 

 Az SRX zár szigorúbb az S zárnál. Egy adott táblán egy időpillanatban csak egy tranzakció tarthat fenn 

SRX zárat. Más tranzakciók csak lekérdezhetik a táblát (a SELECT … FOR UPDATE kivételével), de 

nem módosíthatják. 

 Az X a legszigorúbb zármód, amely kizárólagos írási hozzáférést biztosít az ilyen zárat birtokló 

tranzakciónak. Egy adott táblán egy időpillanatban csak egy tranzakció tarthat fenn X zárat. 

A módosító DML-utasítások és a SELECT … FOR UPDATE utasítás az érintett sorokra kizárólagos sor 

szintű zárakat helyeznek, így más tranzakciók nem módosíthatják vagy törölhetik a zárolt sorokat, amíg a 

zárakat elhelyező tranzakció nem véglegesítődik vagy abortál. A módosító utasítást tartalmazó 

tranzakciónak a sor szintű zárakon kívül az érintett sorokat tartalmazó táblára is szüksége van legalább egy 
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RX módú zárra. Ha a tartalmazó tranzakció már fenntart egy S, SRX vagy X zárat a kérdéses táblán 

(amelyek szigorúbbak az RX zárnál), akkor az RX zárra nincs szükség, ha pedig RS zárat tartott fenn, akkor 

azt az Oracle automatikusan felminősíti RX zárrá. 

Ha az utasítás alkérdést vagy implicit kérdést tartalmaz, akkor a lekérdezett sorok nem kapnak sor szintű 

zárat. A DML-utasításokba ágyazott alkérdések és implicit kérdések garantáltan konzisztensek a lekérdezés 

kezdetekor fennálló adatbázis-állapottal, és nem látják a tartalmazó módosító utasítás által véghezvitt 

változtatásokat. 

Egy tranzakcióban lévő lekérdezés látja a tranzakció korábbi módosító utasításai által végrehajtott 

változtatásokat, de nem látja más tranzakciók nem véglegesített módosításait.  

Zárak felminősítése és kiterjesztése 

Táblák szintjén az Oracle automatikusan felminősít egy zárat erősebb módúvá, amikor szükséges. Ha 

például egy tranzakció RS módú zárat tart fenn egy táblán, és a tranzakció egy DML-utasítása módosítani 

szeretné a tábla néhány sorát, az RS mód automatikusan felminősül RX módra. Mivel sorok szintjén csak 

egyfajta zármód létezik (kizárólagos), nincs szükség felminősítésre. 

Zárak kiterjesztésének (lock escalation) nevezzük azt a folyamatot, amikor a szemcsézettség egy szintjén 

(pl. sorok szintjén) lévő zárakat az adatbázis-kezelő rendszer a szemcsézettség egy magasabb szintjére (pl. 

a tábla szintjére) emeli. Például ha a felhasználó sok sort zárol egy táblában, egyes rendszerek ezeket 

automatikusan kiterjesztik a teljes táblára. Ezáltal csökken a zárak száma, viszont nő a zárolt elemek 

zármódjának erőssége. Az Oracle nem alkalmazza a zárkiterjesztést, mivel az megnöveli a holtpontok 

kialakulásának kockázatát. Tegyük fel, hogy egy rendszer szeretné kiterjeszteni a T1 tranzakció sor szintű 

zárait a teljes táblára, de nem teheti meg a T2 tranzakció által fenntartott zárak miatt. Ha a T2 tranzakciónak 

szintén szüksége van a sor szintű zárainak kiterjesztésére ugyanarra a táblára, holtpont alakul ki. 


