
1

Database System Implementation

Textbook: Hector Garcia-Molina – Jeffrey D. Ullman – Jennifer Widom: Database Systems – The

Complete Book, Second Edition, Pearson Prentice Hall, 2009, Chapters 17 and 18

Prerequisite: Database Systems course.

Topics: System failures and logging techniques against them; concurrency control.

Introduction

Database Management System Components

User/application

Query

compiler

queries,

updates

Execution

engine

query plan

Index/file/rec-

ord manager

index, file, and

record requests

Buffer

manager

page

commands

Storage

manager

read/write

pages

Storage

Database administrator

DDL compiler

DDL commands

Transaction

manager

transaction commands

Logging and

recovery

Concurrency

control

Buffers

Lock table

The figure illustrates the architecture of a general database management system (DBMS). Single-lined

boxes denote the components of the system, whereas double-lined boxes represent in-memory data

structures. Solid arrows denote control flow accompanied by data flow, and dashed arrows denote only data

flow. The great majority of interactions with the DBMS follow the path on the left side of the figure. A user

2

or an application program initiates some action, using the data manipulation language (DML). This

command does not affect the schema of the database but may affect the content of the database (if the action

is a modification command) or will extract data from the database (if the action is a query). DML statements

are handled by two separate subsystems:

1. Answering the query. The query is parsed and optimized by a query compiler. The resulting query

execution plan (query plan for short), or sequence of actions the DBMS will perform to answer the

query, is passed to the execution engine. The execution engine issues a sequence of requests for small

pieces of data, typically records or tuples of a relation, to a resource manager that knows about data

files (holding relations), the format and size of records in those files, and index files, which help find

elements of data files quickly. The requests for data are passed to the buffer manager. The buffer

manager’s task is to bring appropriate portions of the data from secondary storage (disk) where it is

kept permanently, to the main-memory buffers. Normally, the page or “disk block” is the unit of transfer

between buffers and disk. The buffer manager communicates with a storage manager to get data from

disk. The storage manager might involve operating-system commands, but more typically, the DBMS

issues commands directly to the disk controller.

2. Transaction Processing. Queries and other DML actions are grouped into transactions, which are units

that must be executed atomically and in isolation from one another. Any query or modification action

can be a transaction by itself. In addition, the execution of transactions must be durable, meaning that

the effect of any completed transaction must be preserved even if the system fails in some way right

after completion of the transaction. We divide the transaction processor into two major parts:

a) Concurrency control manager or scheduler: responsible for assuring atomicity and isolation of

transactions.

b) Logging and recovery manager: responsible for the atomicity and durability of transactions.

Transaction

The transaction is the unit of execution of database operations, consisting of DML statements, and having

the following properties:

 Atomicity: the all-or-nothing execution of transactions (the database operations in a transaction are

either fully executed or not at all). Either all relevant data has to be changed in the database or none

at all. This means that if one part of a transaction fails, the entire transaction fails, and the database

state is left unchanged.

 Consistency preservation: transactions are expected to preserve the consistency of the database, i.e.,

after the execution of a transaction, all consistency (or integrity) constraints (expectations about

data elements and the relationships among them) defined in the database should be satisfied.

 Isolation: the fact that each transaction must appear to be executed as if no other transaction were

executing at the same time.

 Durability: the condition that the effect on the database of a transaction must never be lost, once the

transaction has completed.

These are the ACID properties of transactions. From the DBMS’s point of view, consistency preservation

is always considered satisfied (see later: correctness principle), the other three properties, however, must

be forced by the DBMS, although, sometimes we set aside some of them. For example, if we are issuing

ad-hoc commands to a SQL system, then each query or database modification statement (plus any resulting

trigger actions) is a transaction. When using an embedded SQL interface, the programmer controls the

extent of a transaction, which may include several queries or modifications, as well as operations performed

3

in the host language. In the typical embedded SQL system, transactions begin as soon as operations on the

database are executed and end with an explicit COMMIT or ROLLBACK (“abort”) statement.

Transaction Processing

The transaction processor provides concurrent access to data and supports resilience (i.e., data integrity

after a system failure) by executing transactions correctly. The transaction manager therefore accepts

transaction commands from an application, which tell the transaction manager when transactions begin and

end, as well as information about the expectations of the application (some may not wish to require

atomicity, for example). The transaction processor performs the following tasks:

1. Logging: In order to assure durability, every change in the database is logged separately on disk. The

log manager follows one of several policies designed to assure that no matter when a system failure or

“crash” occurs, a recovery manager will be able to examine the log of changes and restore the database

to some consistent state. The log manager initially writes the log in buffers and negotiates with the

buffer manager to make sure that buffers are written to disk (where data can survive a crash) at

appropriate times.

2. Concurrency control: Transactions must appear to execute in isolation. But in most systems, there will

in truth be many transactions executing at once. Thus, the scheduler (concurrency control manager)

must assure that the individual actions of multiple transactions are executed in such an order that the

net effect is the same as if the transactions had in fact executed in their entirety, one-at-a-time. A typical

scheduler does its work by maintaining locks on certain pieces of the database. These locks prevent two

transactions from accessing the same piece of data in ways that interact badly. Locks are generally

stored in a main-memory lock table, as suggested by the above figure. The scheduler affects the

execution of queries and other database operations by forbidding the execution engine from accessing

locked parts of the database.

3. Deadlock resolution: As transactions compete for resources through the locks that the scheduler grants,

they can get into a situation where none can proceed because each needs something another transaction

has. The transaction manager has the responsibility to intervene and cancel (“rollback” or “abort”) one

or more transactions to let the others proceed.

Coping with System Failures

This chapter deals with techniques for supporting the goal of resilience, that is, integrity of the data when

the system fails in some way. (Data must not be corrupted simply because several error-free queries or

database modifications are being done at once, either. This matter is addressed by concurrency control.)

The principal technique for supporting resilience is a log, which records securely the history of database

changes. We shall discuss three different styles of logging, called “undo,” “redo,” and “undo/redo.” We

also discuss recovery, the process whereby the log is used to reconstruct what has happened to the database

when there has been a failure. An important aspect of logging and recovery is avoidance of the situation

where the log must be examined into the distant past. Thus, we shall learn about “checkpointing,” which

limits the length of log that must be examined during recovery.

We also discuss “archiving,” which allows the database to survive not only temporary system failures but

situations where the entire database is lost. Then, we must rely on a recent copy of the database (the archive)

plus whatever log information survives to reconstruct the database as it existed at some point in the recent

past. Finally, we shall learn about Oracle’s logging and recovery management.

4

Failure Modes

There are many things that can go wrong as a database is queried and modified. Problems range from the

keyboard entry of incorrect data to an explosion in the room where the database is stored on disk. The

following items are a catalog of the most important failure modes and what the DBMS can do about them.

 Erroneous data entry: Some data errors are impossible to detect. For example, if a clerk mistypes one

digit of your phone number, the data will still look like a phone number that could be yours. On the

other hand, if the clerk omits a digit from your phone number, then the data is evidently in error, since

it does not have the form of a phone number. The principal technique for addressing data entry errors

is to write constraints and triggers that detect data believed to be erroneous. Triggers are program codes

that execute automatically, typically in case of modifications of a certain type (such as inserting a row

into a relation) in order to check if the new data satisfy the constraints defined by the designer of the

database.

 Media failures: A local failure of a disk, one that changes only a bit or a few bits, can normally be

detected by parity checks associated with the sectors of the disk. Head crashes, where the entire disk

becomes unreadable, are generally handled by one or more of the following approaches:

1. Use one of the RAID (Redundant Array of Independent Disks) schemes, so the lost disk can be

restored.

2. Maintain an archive, a copy of the database on a medium such as tape or optical disk. The archive

is periodically created, either fully or incrementally, and stored at a safe distance from the database

itself.

3. Instead of an archive, one could keep redundant copies of the database on-line, distributed among

several sites. In this case, consistency of the copies must be enforced.

 Catastrophic failures: In this category are a number of situations in which the media holding the

database is completely destroyed. Examples include explosions, fires, or vandalism at the site of the

database, as well as viruses. RAID will not help, since all the data disks and their parity check disks

become useless simultaneously. However, the other approaches that can be used to protect against

media failure — archiving and redundant, distributed copies — will also protect against a catastrophic

failure.

 System failures: Each transaction has a state, which represents what has happened so far in the

transaction. The state includes the current place in the transaction’s code being executed and the values

of any local variables of the transaction that will be needed later on. System failures are problems that

cause the state of a transaction to be lost. Typical system failures are power loss and software errors.

Since main memory is “volatile,” a power failure will cause the contents of main memory to disappear,

along with the result of any transaction step that was kept only in main memory, rather than on

(nonvolatile) disk. Similarly, a software error may overwrite part of main memory, possibly including

values that were part of the state of the program. When main memory is lost, the transaction state is

lost; that is, we can no longer tell what parts of the transaction, including its database modifications,

were made. Running the transaction again may not fix the problem. For example, if the transaction must

add 1 to a value in the database, we do not know whether to repeat the addition of 1 or not. The principal

remedy for the problems that arise due to a system error is logging of all database changes in a separate,

nonvolatile log, coupled with recovery when necessary. However, the mechanisms whereby such

logging can be done in a fail-safe manner are surprisingly intricate.

5

The Log Manager and the Transaction Manager

Assuring that transactions are executed correctly is the job of a transaction manager, a subsystem that

performs several functions, including:

 issuing signals to the log manager (described below) so that necessary information in the form of “log

records” can be stored on the log;

 assuring that concurrently executing transactions do not interfere with each other in ways that introduce

errors (scheduling).

The transaction manager and its interactions are suggested by the following figure:

Query

processor

Data

Log manager
Transaction

manager

Buffer

manager

Recovery

manager

Log

The transaction manager will send messages about actions of transactions to the log manager, to the buffer

manager about when it is possible or necessary to copy the buffer back to disk, and to the query processor

to execute the queries and other database operations that comprise the transaction.

The log manager maintains the log. It must deal with the buffer manager, since space for the log initially

appears in main-memory buffers, and at certain times, these buffers must be copied to disk. The log, as well

as the data, occupies space on the disk, as we suggest in the figure.

When there is a crash, the recovery manager is activated. It examines the log and uses it to repair the data

if necessary. As always, access to the disk is through the buffer manager.

Correct Execution of Transactions

Before we can deal with correcting system errors, we need to understand what it means for a transaction to

be executed “correctly.” To begin, we assume that the database is composed of “elements.” A database

element is a functional unit of data stored in the physical database, whose value can be read or updated by

transactions. A relation (or its object-oriented counterpart, a class extent), a tuple (or its OO counterpart, an

object), or a disk block (or page) can all be considered as a database element. However, there are several

good reasons in practice to use disk blocks or pages as the database element. In this way, buffer contents

become single elements, allowing us to avoid some serious problems with logging and transactions.

Avoiding database elements that are bigger than disk blocks also prevents a situation where part but not all

of an element has been placed in nonvolatile storage (disk) when a crash occurs.

6

A database has a state, which is a value for each of its elements. Intuitively, we regard certain states as

consistent, and others as inconsistent. Consistent states satisfy all constraints of the database schema, such

as key constraints and constraints on values. Explicit constraints are enforced by the database, so any

transaction that violates them will be rejected by the system and not change the database at all. However,

consistent states must also satisfy implicit constraints that are in the mind of the database designer. The

implicit constraints may be maintained by triggers that are part of the database schema, but they might also

be maintained only by policy statements concerning the database, or warnings associated with the user

interface through which updates are made. Implicit constraints cannot be characterized exactly under any

circumstances. Our position is that if someone is given authority to modify the database, then they also

have the authority to judge what the implicit constraints are.

A fundamental assumption about transactions is the correctness principle: If a transaction executes in the

absence of any other transactions or system errors, and it starts with the database in a consistent state, then

the database is also in a consistent state when the transaction ends (isolation + atomicity –> consistency

preservation). There is a converse to the correctness principle that forms the motivation for both the logging

techniques and the concurrency control mechanisms. This converse involves two points:

 A transaction is atomic; that is, it must be executed as a whole or not at all. If only part of a transaction

executes, then the resulting database state may not be consistent.

 Transactions that execute simultaneously are likely to lead to an inconsistent state unless we take steps

to control their interactions.

The Primitive Operations of Transactions

Let us now consider in detail how transactions interact with the database. There are three address spaces

that interact in important ways:

1. the space of disk blocks holding the database elements;

2. the virtual or main memory address space that is managed by the buffer manager;

3. the local address space of the transaction.

For a transaction to read a database element, that element must first be brought to a main-memory buffer

or buffers, if it is not already there. Then, the contents of the buffer(s) can be read by the transaction into

its own address space. Writing a new value for a database element by a transaction follows the reverse

route. The new value is first created by the transaction in its own space. Then, this value is copied to the

appropriate buffer(s). It is very important to see that transactions may not write a new value for a database

element directly on the disk.

The buffer may or may not be copied to disk immediately; that decision is the responsibility of the buffer

manager in general. As we shall soon see, one of the principal tools for assuring resilience is forcing the

buffer manager to write the block in a buffer back to disk at appropriate times. However, in order to reduce

the number of disk I/O’s, database systems can and will allow a change to exist only in volatile main-

memory storage, at least for certain periods of time and under the proper set of conditions.

In order to study the details of logging algorithms and other transaction management algorithms, we need

a notation that describes all the operations that move data between address spaces. The primitives we shall

use are:

1. INPUT(X): Copy the disk block containing database element X to a memory buffer.

2. READ(X,t): Copy the database element X to the transaction’s local variable t. More precisely, if the

block containing database element X is not in a memory buffer, then first execute INPUT(X). Next,

assign the value of X to local variable t.

7

3. WRITE(X,t): Copy the value of local variable t to database element X in a memory buffer. More

precisely, if the block containing database element X is not in a memory buffer, then execute

INPUT(X). Next, copy the value of t to X in the buffer.

4. OUTPUT(X): Copy the block containing X from its buffer to disk.

The above operations make sense as long as database elements reside within a single disk block and

therefore within a single buffer. If a database element occupies several blocks, we shall imagine that each

block-sized portion of the element is an element by itself. The logging mechanism to be used will assure

that the transaction cannot complete without the write of X being atomic; i.e., either all blocks of X are

written to disk, or none are. Thus, we shall assume for the entire discussion of logging that a database

element is no larger than a single block.

Different DBMS components issue the various commands we just introduced. READ and WRITE are issued

by transactions. INPUT and OUTPUT are normally issued by the buffer manager. OUTPUT can also be

initiated by the log manager under certain conditions, as we shall see.

Example. To see how the above primitive operations relate to what a transaction might do, let us consider

a database that has two elements, A and B, with the constraint that they must be equal in all consistent states.

Transaction T consists logically of the following two steps:

A := A*2;

B := B*2;

If T starts in a consistent state (i.e., A = B) and completes its activities without interference from another

transaction or system error, then the final state must also be consistent. That is, T doubles two equal

elements to get new, equal elements.

Execution of T involves reading A and B from disk, performing arithmetic in the local address space of T,

and writing the new values of A and B to their buffers. The relevant steps of T are thus:

READ(A,t); t := t*2; WRITE(A,t);

READ(B,t); t := t*2; WRITE(B,t);

In addition, the buffer manager will eventually execute the OUTPUT steps to write these buffers back to

disk. The following table shows the primitive steps of T, followed by the two OUTPUT commands from the

buffer manager. We assume that initially A = B = 8. The values of the memory and disk copies of A and B

and the local variable t in the address space of transaction T are indicated for each step:

Action t M–A M–B D–A D–B

READ(A,t) 8 8 8 8
t := t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t := t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

At the first step, T reads A, which generates an INPUT(A) command for the buffer manager if A’s block

is not already in a buffer. The value of A is also copied by the READ command into local variable t of T’s

address space. The second step doubles t; it has no effect on A, either in a buffer or on disk. The third step

writes t into A in the buffer; it does not affect A on disk. The next three steps do the same for B, and the

last two steps copy A and B to disk.

Observe that as long as all these steps execute, consistency of the database is preserved. If a system error

occurs before OUTPUT(A) is executed, then there is no effect to the database stored on disk; it is as if T

8

never ran, and consistency is preserved. However, if there is a system error after OUTPUT(A) but before

OUTPUT(B), then the database is left in an inconsistent state. We cannot prevent this situation from ever

occurring, but we can arrange that when it does occur, the problem can be repaired — either both A and B

will be reset to 8, or both will be advanced to 16.

Example. Suppose that the consistency constraint on the database is 0  A  B. Tell whether each of the

following transactions preserves consistency.

a) A := A + B; B := A + B;

b) B := A + B; A := A + B;

c) A := B + 1; B := A + 1;

Undo Logging

A log is a file of log records, each telling something about what some transaction has done. If log records

appear in nonvolatile storage, we can use them to restore the database to a consistent state after a system

crash. Our first style of logging — undo logging — makes repairs to the database state by undoing the

effects of transactions that may not have completed before the crash.

Additionally, in this chapter we introduce the basic idea of log records, including the commit (successful

completion of a transaction) action and its effect on the database state and log. We shall also consider how

the log itself is created in main memory and copied to disk by a “flush-log” operation. Finally, we examine

the undo log specifically, and learn how to use it in recovery from a crash. In order to avoid having to

examine the entire log during recovery, we introduce the idea of “checkpointing,” which allows old portions

of the log to be thrown away.

Log Records

Imagine the log as a file opened for appending only. As transactions execute, the log manager has the job

of recording in the log each important event. One block of the log at a time is filled with log records, each

representing one of these events. Log blocks are initially created in main memory and are allocated by the

buffer manager like any other blocks that the DBMS needs. The log blocks are written to nonvolatile storage

on disk as soon as it is feasible.

There are several forms of log record that are used with each of the types of logging we discuss. These are:

1. <START T>: This record indicates that transaction T has begun.

2. <COMMIT T>: Transaction T has completed successfully and will make no more changes to database

elements. Any changes to the database made by T should appear on disk. However, because we cannot

control when the buffer manager chooses to copy blocks from memory to disk, we cannot in general be

sure that the changes are already on disk when we see the <COMMIT T> log record. If we insist that

the changes already be on disk, this requirement must be enforced by the log manager (as is the case

for undo logging).

3. <ABORT T>: Transaction T could not complete successfully. If transaction T aborts, no changes it

made can have been copied to disk, and it is the job of the transaction manager to make sure that such

changes never appear on disk, or that their effect on disk is canceled if they do. We shall discuss the

matter of repairing the effect of aborted transactions later. There can be several reasons for a transaction

to abort. The simplest is when there is some error condition in the code of the transaction itself, e.g., an

attempted division by zero. The DBMS may also abort a transaction for one of several reasons. For

instance, a transaction may be involved in a deadlock, where it and one or more other transactions each

9

hold some resource that the other needs. Then, one or more transactions must be forced by the system

to abort (see later).

4. <T,X,v>: This is the update record. The meaning of this record is: transaction T has changed database

element X, and its former value was v. The change reflected by an update record normally occurs in

memory, not disk; i.e., the log record is a response to a WRITE action into memory, not an OUTPUT

action to disk. Notice also that an undo log does not record the new value of a database element, only

the old value. As we shall see, should recovery be necessary in a system using undo logging, the only

thing the recovery manager will do is cancel the possible effect of a transaction on disk by restoring the

old value.

The Undo Logging Rules

An undo log is sufficient to allow recovery from a system failure, provided transactions and the buffer

manager obey two rules:

U1: If transaction T modifies database element X, then the log record of the form <T,X,v> must be written

to disk before the new value of X is written to disk (write-ahead logging or WAL).

U2: If a transaction commits, then its COMMIT log record must be written to disk only after all database

elements changed by the transaction have been written to disk, but as soon thereafter as possible.

To summarize rules U1 and U2, material associated with one transaction must be written to disk in the

following order:

1. the log records indicating changed database elements;

2. the changed database elements themselves;

3. the COMMIT log record.

However, the order of the first two steps applies to each database element individually, not to the group of

update records for a transaction as a whole.

In order to force log records to disk, the log manager needs a flush-log command that tells the buffer

manager to copy to disk any log blocks that have not previously been copied to disk or that have been

changed since they were last copied. In sequences of actions, we shall show FLUSH LOG explicitly. The

transaction manager also needs to have a way to tell the buffer manager to perform an OUTPUT action on

a database element. We shall continue to show the OUTPUT action in sequences of transaction steps.

Example. Let us reconsider the previously investigated transaction in the light of undo logging. We shall

expand our table to show the log entries and flush-log actions that have to take place along with the actions

of transaction T:

Step Action t M–A M–B D–A D–B Log

1) <START T>

2) READ(A,t) 8 8 8 8

3) t := t*2 16 8 8 8

4) WRITE(A,t) 16 16 8 8 <T,A,8>

5) READ(B,t) 8 16 8 8 8

6) t := t*2 16 16 8 8 8

7) WRITE(B,t) 16 16 16 8 8 <T,B,8>

8) FLUSH LOG

9) OUTPUT(A) 16 16 16 16 8

10) OUTPUT(B) 16 16 16 16 16

11) <COMMIT T>

12) FLUSH LOG

10

In line (1) of the table, transaction T begins. The first thing that happens is that the <START T> record is

written to the log. Line (2) represents the read of A by T. Line (3) is the local change to t, which affects

neither the database stored on disk nor any portion of the database in a memory buffer. Neither lines (2)

nor (3) require any log entry, since they have no effect on the database.

Line (4) is the write of the new value of A to the buffer. This modification to A is reflected by the log entry

<T,A,8>, which says that A was changed by T and its former value was 8. Note that the new value, 16, is

not mentioned in an undo log.

Lines (5) through (7) perform the same three steps with B instead of A. At this point, T has completed and

must commit. The changed A and B must migrate to disk, but in order to follow the two rules for undo

logging, there is a fixed sequence of events that must happen.

First, A and B cannot be copied to disk until the log records for the changes are on disk. Thus, at step (8)

the log is flushed, assuring that these records appear on disk. Then, steps (9) and (10) copy A and B to disk.

The transaction manager requests these steps from the buffer manager in order to commit T.

Now, it is possible to commit T, and the <COMMIT T> record is written to the log, which is step (11).

Finally, we must flush the log again at step (12) to make sure that the <COMMIT T> record of the log

appears on disk. Notice that without writing this record to disk, we could have a situation where a

transaction has committed, but for a long time a review of the log does not tell us that it has committed.

That situation could cause strange behavior if there were a crash, because a transaction that appeared to the

user to have completed long ago would then be undone and effectively aborted.

As we look at a sequence of actions and log entries like in the table above, it is tempting to imagine that

these actions occur in isolation. However, the DBMS may be processing many transactions simultaneously.

Thus, the four log records for transaction T may be interleaved on the log with records for other transactions.

Moreover, if one of these transactions flushes the log, then the log records from T may appear on disk

earlier than is implied by the flush-log actions. There is no harm if log records reflecting a database

modification appear earlier than necessary. The essential policy for undo logging is that we don’t write the

<COMMIT T> record until the OUTPUT actions for T are completed.

A trickier situation occurs if two database elements A and B share a block. Then, writing one of them to

disk writes the other as well. In the worst case, we can violate rule U1 by writing one of these elements

prematurely. It may be necessary to adopt additional constraints on transactions in order to make undo

logging work. For instance, we might use a locking scheme where database elements are disk blocks, as

described later, to prevent two transactions from accessing the same block at the same time. This and other

problems that appear when database elements are fractions of a block motivate our suggestion that blocks

be the database elements.

Recovery Using Undo Logging

Suppose now that a system failure occurs. It is possible that certain database changes made by a given

transaction were written to disk, while other changes made by the same transaction never reached the disk.

If so, the transaction was not executed atomically, and there may be an inconsistent database state. The

recovery manager must use the log to restore the database to some consistent state.

First, we consider only the simplest form of recovery manager, one that looks at the entire log, no matter

how long, and makes database changes as a result of its examination. Later, we consider a more sensible

approach, where the log is periodically “checkpointed,” to limit the distance back in history that the

recovery manager must go.

The first task of the recovery manager is to divide the transactions into committed and uncommitted

transactions. If there is a log record <COMMIT T>, then by undo rule U2 all changes made by transaction

11

T were previously written to disk. Thus, T by itself could not have left the database in an inconsistent state

when the system failure occurred.

However, suppose that we find a <START T> record on the log but no <COMMIT T> or <ABORT T>

record. Then there could have been some changes to the database made by T that were written to disk before

the crash, while other changes by T either were not made, or were made in the main-memory buffers but

not copied to disk. In this case, T is an incomplete transaction and must be undone. That is, whatever

changes T made must be reset to their previous value. Fortunately, rule U1 assures us that if T changed X

on disk before the crash, then there will be a <T,X,v> record on the log, and that record will have been

copied to disk before the crash. Thus, during the recovery, we must write the value v for database element

X. Note that this rule raises the question whether X had value v in the database anyway; we don’t even

bother to check.

Since there may be several uncommitted transactions in the log, and there may even be several uncommitted

transactions that modified X, we have to be systematic about the order in which we restore values. Thus,

the recovery manager must scan the log from the end (i.e., from the most recently written record to the

earliest written). As it travels, it remembers all those transactions T for which it has seen a <COMMIT T>

record or an <ABORT T> record. Also as it travels backward, if it sees a record <T,X,v>, then:

 if T is a transaction whose COMMIT record has been seen, then do nothing, as T is committed and must

not be undone (T is completed);

 if an ABORT record has been seen for transaction T, then again do nothing, as T has already been

recovered (T is completed);

 otherwise, T is an incomplete transaction, so the recovery manager must change the value of X in the

database to v, in case X had been altered just before the crash.

After making these changes, the recovery manager must write a log record <ABORT T> for each

incomplete transaction T, and then flush the log. Now, normal operation of the database may resume, and

new transactions may begin executing.

Example. Let us consider the sequence of actions from the above example. There are several different times

that the system crash could have occurred; let us consider each significantly different one.

1. The crash occurs after step (12). Then the <COMMIT T> record reached disk before the crash. When

we recover, we do not undo the results of T, and all log records concerning T are ignored by the recovery

manager.

2. The crash occurs between steps (11) and (12). It is possible that the log record containing the COMMIT

got flushed to disk; for instance, the buffer manager may have needed the buffer containing the end of

the log for another transaction, or some other transaction may have asked for a log flush. If so, then the

recovery is the same as in case (1) as far as T is concerned. However, if the COMMIT record never

reached disk, then the recovery manager considers T incomplete. When it scans the log backward, it

comes first to the record <T,B,8>. It therefore stores 8 as the value of B on disk. It then comes to the

record <T,A,8> and makes A have value 8 on disk. Finally, the record <ABORT T> is written to the

log, and the log is flushed.

3. The crash occurs between steps (10) and (11). Now, the COMMIT record surely was not written, so T is

incomplete and is undone as in case (2).

4. The crash occurs between steps (8) and (10). Again, T is undone. In this case, the change to A and/or B

may not have reached disk. Nevertheless, the proper value, 8, is restored for each of these database

elements.

12

5. The crash occurs prior to step (8). Now, it is not certain whether any of the log records concerning T

have reached disk. However, we know by rule U1 that if the change to A and/or B reached disk, then the

corresponding log record reached disk. Therefore, if there were changes to A and/or B made on disk by

T, then the corresponding log record will cause the recovery manager to undo those changes.

Suppose the system again crashes while we are recovering from a previous crash. Because of the way undo

log records are designed, giving the old value rather than, say, the change in the value of a database element,

the recovery steps are idempotent, that is, repeating them many times has exactly the same effect as

performing them once. We already observed that if we find a record <T,X,v>, it does not matter whether

the value of X is already v — we may write v for X regardless. Similarly, if we repeat the recovery process,

it does not matter whether the first recovery attempt restored some old values; we simply restore them

again. The same reasoning holds for the other logging methods we discuss. Since the recovery operations

are idempotent, we can recover a second time without worrying about changes made the first time.

Checkpointing

As we observed, recovery requires that the entire log be examined, in principle. When logging follows the

undo style, once a transaction has its COMMIT log record written to disk, the log records of that transaction

are no longer needed during recovery. We might imagine that we could delete the log prior to a COMMIT,

but sometimes we cannot. The reason is that often many transactions execute at once. If we truncated the

log after one transaction committed, log records pertaining to some other active transaction T might be lost

and could not be used to undo T if recovery were necessary.

The simplest way to untangle potential problems is to checkpoint the log periodically. There are two kinds

of checkpoints: simple and nonquiescent. In a simple checkpoint, we:

1. stop accepting new transactions;

2. wait until all currently active transactions commit or abort and have written a COMMIT or ABORT record

on the log;

3. flush the log to disk;

4. write a log record <CKPT>, and flush the log again;

5. resume accepting transactions.

Any transaction that executed prior to the checkpoint will have finished, and by rule U2, its changes will

have reached the disk. Thus, there will be no need to undo any of these transactions during recovery. During

a recovery, we scan the log backwards from the end, identifying incomplete transactions. However, when

we find a <CKPT> record, we know that we have seen all the incomplete transactions. Since no transactions

may begin until the checkpoint ends, we must have seen every log record pertaining to the incomplete

transactions already. Thus, there is no need to scan prior to the <CKPT>, and in fact, the log before that

point can be deleted or overwritten safely (unless it is needed for some other reason).

Example. Consider the following log:

<START T1>

<T1,A,5>

<START T2>

<T2,B,10>

<T2,C,15>

<T1,D,20>

<COMMIT T1>

<COMMIT T2>

<CKPT>

<START T3>

13

<T3,E,25>

<T3,F,30>

Suppose we decide to do a checkpoint after the fourth entry. Since T1 and T2 are the active (incomplete)

transactions, we shall have to wait until they complete before writing the <CKPT> record on the log.

Suppose a crash occurs at the end of the listing. Scanning the log from the end, we identify T3 as the only

incomplete transaction and restore E and F to their former values 25 and 30, respectively. When we reach

the <CKPT> record, we know there is no need to examine prior log records and the restoration of the

database state is complete.

The question may arise how to find the last log record? It is common to recycle blocks of the log file on

disk, since checkpoints allow us to drop old portions of the log. However, if we overwrite old log records,

then we need to keep a serial number, which may only increase, as suggested by the following figure:

1

9

2

10

3

11

4 5 6 7 8

Then, we can find the record whose serial number is greater than that of the next record; this record will be

the current end of the log, and the entire log is found by ordering the current records by their present serial

numbers. In practice, a large log may be composed of many files, with a “top” file whose records indicate

the files that comprise the log. Then, to recover, we find the last record of the top file, go to the file indicated,

and find the last record there.

Nonquiescent Checkpointing

A problem with the checkpointing technique described above is that effectively we must shut down the

system while the checkpoint is being made. Since the active transactions may take a long time to commit

or abort, the system may appear to users to be stalled. Thus, a more complex technique known as

nonquiescent checkpointing, which allows new transactions to enter the system during the checkpoint, is

usually preferred. The steps in a nonquiescent checkpoint are:

1. Write a log record <START CKPT(T1,…,Tk)> and flush the log. Here, T1,…,Tk are the names or

identifiers for all the active transactions (i.e., transactions that have not yet committed and written their

changes to disk).

2. Wait until all of T1,…,Tk commit or abort, but do not prohibit other transactions from starting.

3. When all of T1,…,Tk have completed, write a log record <END CKPT> and flush the log.

With a log of this type, we can recover from a system crash as follows. As usual, we scan the log from the

end, finding all incomplete transactions as we go, and restoring old values for database elements changed

by these transactions. There are two cases, depending on whether, scanning backwards, we first meet an

<END CKPT> record or a <START CKPT(T1,…,Tk)> record:

 If we first meet an <END CKPT> record, then we know that all incomplete transactions began after the

previous <START CKPT(T1,…,Tk)> record. We may thus scan backwards as far as the next START

CKPT and then stop; previous log is useless and may as well have been discarded.

 If we first meet a record <START CKPT(T1,…,Tk)>, then the crash occurred during the checkpoint.

However, the only incomplete transactions are those we met scanning backwards before we reached the

START CKPT and those of T1,…,Tk that did not complete before the crash. Thus, we need scan no

further back than the start of the earliest of these incomplete transactions. The previous START CKPT

record with a corresponding END CKPT is certainly prior to any of these transaction starts, but often

we shall find the starts of the incomplete transactions long before we reach the previous checkpoint. If

the previous START CKPT has no corresponding END CKPT record, then it means that another crash

also occurred during a checkpoint. Such incomplete checkpoints must be ignored. Moreover, if we use

14

pointers to chain together the log records that belong to the same transaction, then we need not search

the whole log for records belonging to active transactions; we just follow their chains back through the

log.

As a general rule, once an <END CKPT> record has been written to disk, we can delete the log prior to the

previous START CKPT record.

Example. Consider the following log:

<START T1>

<T1,A,5>

<START T2>

<T2,B,10>

<START CKPT(T1,T2)>

<T2,C,15>

<START T3>

<T1,D,20>

<COMMIT T1>

<T3,E,25>

<COMMIT T2>

<END CKPT>

<T3,F,30>

Now, we decide to do a nonquiescent checkpoint after the fourth entry. Since T1 and T2 are the active

(incomplete) transactions at this time, we write the fifth log record. Suppose that while waiting for T1 and

T2 to complete, another transaction, T3, initiates.

Suppose that at the end of the listing, there is a system crash. Examining the log from the end, we find that

T3 is an incomplete transaction and must be undone. The final log record tells us to restore database element

F to the value 30. When we find the <END CKPT> record, we know that all incomplete transactions began

after the previous START CKPT. Scanning further back, we find the record <T3,E,25>, which tells us to

restore E to value 25. Between that record and the START CKPT, there are no other transactions that started

but did not commit, so no further changes to the database are made.

Now suppose the crash occurs during the checkpoint, and the end of the log after the crash is the

<T3,E,25> record. Scanning backwards, we identify T3 and then T2 as incomplete transactions and undo

changes they have made. When we find the <START CKPT(T1,T2)> record, we know that the only other

possible incomplete transaction is T1. However, we have already scanned the <COMMIT T1> record, so

we know that T1 is not incomplete. Also, we have already seen the <START T3> record. Thus, we need

only to continue backwards until we meet the START record for T2, restoring database element B to value

10 as we go.

Redo Logging

Undo logging has a potential problem that we cannot commit a transaction without first writing all its

changed data to disk. Sometimes, we can save disk I/O’s if we let changes to the database reside only in

main memory for a while. As long as there is a log to fix things up in the event of a crash, it is safe to do

so.

The requirement for immediate backup of database elements to disk can be avoided if we use a logging

mechanism called redo logging. The principal differences between redo and undo logging are:

15

 While undo logging cancels the effect of incomplete transactions and ignores committed ones during

recovery, redo logging ignores incomplete transactions and repeats the changes made by committed

transactions.

 While undo logging requires us to write changed database elements to disk before the COMMIT log

record reaches disk, redo logging requires that the COMMIT record appear on disk before any changed

values reach disk.

 While the old values of changed database elements are exactly what we need to recover when the undo

rules U1 and U2 are followed, to recover using redo logging, we need the new values instead.

The Redo Logging Rule

In redo logging, an update log record is formally the same as in undo logging: <T,X,v>, but here it means

“transaction T wrote new value v for database element X.” There is no indication of the old value of X in

this record. Every time a transaction T modifies a database element X, a record of the form <T,X,v> must

be written to the log.

For redo logging, the order in which data and log entries reach disk can be described by a single “redo

rule:”

R1: Before modifying any database element X on disk, it is necessary that all log records pertaining to this

modification of X, including both the update record <T,X,v> and the <COMMIT T> record, must

appear on disk.

The COMMIT record for a transaction can only be written to the log when the transaction completes, so the

commit record must follow all the update log records. Thus, when redo logging is in use, the order in which

material associated with one transaction gets written to disk is:

1. the log records indicating changed database elements;

2. the COMMIT log record;

3. the changed database elements themselves.

Example. Let us consider transaction T defined earlier using redo logging:

Step Action t M–A M–B D–A D–B Log

1) <START T>

2) READ(A,t) 8 8 8 8

3) t := t*2 16 8 8 8

4) WRITE(A,t) 16 16 8 8 <T,A,16>

5) READ(B,t) 8 16 8 8 8

6) t := t*2 16 16 8 8 8

7) WRITE(B,t) 16 16 16 8 8 <T,B,16>

8) <COMMIT T>

9) FLUSH LOG

10) OUTPUT(A) 16 16 16 16 8

11) OUTPUT(B) 16 16 16 16 16

The major differences between using undo and redo logging are as follows. First, we note in lines (4) and

(7) that the log records reflecting the changes have the new values of A and B, rather than the old values.

Second, we see that the <COMMIT T> record comes earlier, at step (8). Then, the log is flushed, so all log

records involving the changes of transaction T appear on disk. Only then can the new values of A and B be

written to disk. We show these values written immediately, at steps (10) and (11), although in practice, they

might occur later.

16

Recovery with Redo Logging

An important consequence of the redo rule R1 is that unless the log has a <COMMIT T> record, we know

that no changes to the database made by transaction T have been written to disk. Thus, incomplete

transactions may be treated during recovery as if they had never occurred. However, the committed

transactions present a problem, since we do not know which of their database changes have been written to

disk. Fortunately, the redo log has exactly the information we need: the new values, which we may write

to disk regardless of whether they were already there. To recover, using a redo log, after a system crash,

we do the following:

1. Identify the committed transactions.

2. Scan the log forward from the beginning. For each log record <T,X,v> encountered:

a) If T is not a committed transaction, do nothing.

b) If T is committed, write value v for database element X.

3. For each incomplete transaction T, write an <ABORT T> record to the log and flush the log.

Example. Let us consider the log written in the above example and see how recovery would be performed

if the crash occurred after different steps in that sequence of actions:

1. If the crash occurs any time after step (9), then the <COMMIT T> record has been flushed to disk. The

recovery system identifies T as a committed transaction. When scanning the log forward, the log records

<T,A,16> and <T,B,16> cause the recovery manager to write values 16 for A and B. Notice that if

the crash occurred between steps (10) and (11), then the write of A is redundant, but the write of B had

not occurred and changing B to 16 is essential to restore the database state to consistency. If the crash

occurred after step (11), then both writes are redundant but harmless.

2. If the crash occurs between steps (8) and (9), then although the record <COMMIT T> was written to

the log, it may not have gotten to disk (depending on whether the log was flushed for some other reason).

If it did get to disk, then the recovery proceeds as in case (1), and if it did not get to disk, then recovery

is as in case (3), below.

3. If the crash occurs prior to step (8), then <COMMIT T> surely has not reached disk. Thus, T is treated

as an incomplete transaction. No changes to A or B on disk are made on behalf of T, and eventually an

<ABORT T> record is written to the log.

Since several committed transactions may have written new values for the same database element X, we

have required that during a redo recovery, we scan the log from earliest to latest. Thus, the final value of X

in the database will be the one written last, as it should be. Similarly, when describing undo recovery, we

required that the log be scanned from latest to earliest. Thus, the final value of X will be the value that it

had before any of the incomplete transactions changed it.

Checkpointing a Redo Log

Redo logs present a checkpointing problem that we do not see with undo logs. Since the database changes

made by a committed transaction can be copied to disk much later than the time at which the transaction

commits, we cannot limit our concern to transactions that are active at the time we decide to create a

checkpoint. Regardless of whether the checkpoint is quiescent or nonquiescent, between the start and end

of the checkpoint, we must write to disk all database elements that have been modified by committed

transactions. To do so requires that the buffer manager keep track of which buffers are dirty, that is, they

have been changed but not written to disk. It is also required to know which transactions modified which

buffers.

17

On the other hand, we can complete the checkpoint without waiting for the active transactions to commit

or abort, since they are not allowed to write their pages to disk at that time anyway. The steps to perform a

nonquiescent checkpoint of a redo log are as follows:

1. Write a log record <START CKPT(T1,…,Tk)>, where T1,…,Tk are all the active (uncommitted)

transactions, and flush the log.

2. Write to disk all database elements that were written to buffers but not yet to disk by transactions that

had already committed when the START CKPT record was written to the log.

3. Write an <END CKPT> record to the log and flush the log.

Example. Consider the following log:

<START T1>

<T1,A,5>

<START T2>

<COMMIT T1>

<T2,B,10>

<START CKPT(T2)>

<T2,C,15>

<START T3>

<T3,D,20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

When we start the checkpoint, only T2 is active, but the value of A written by T1 may have reached disk. If

not, then we must copy A to disk before the checkpoint can end. We suggest the end of the checkpoint

occurring after several other events have occurred: T2 wrote a value for database element C, and a new

transaction T3 started and wrote a value of D. After the end of the checkpoint, the only things that happen

are that T2 and T3 commit.

Recovery with a Checkpointed Redo Log

As for an undo log, the insertion of records to mark the start and end of a checkpoint helps us limit our

examination of the log when a recovery is necessary. Also as with undo logging, there are two cases,

depending on whether the last checkpoint record is START or END:

 Suppose first that the last checkpoint record on the log before a crash is <END CKPT>. Now, we know

that every value written by a transaction that committed before the corresponding

<START CKPT(T1,…,Tk)> has had its changes written to disk, so we need not concern ourselves

with recovering the effects of these transactions. However, any transaction that is either among the Ti’s

or that started after the beginning of the checkpoint can still have changes it made not yet migrated to

disk, even though the transaction has committed. Thus, we must perform recovery as described earlier

but may limit our attention to the transactions that are either one of the Ti’s mentioned in the last

<START CKPT(T1,…,Tk)> or that started after that log record appeared in the log. In searching the

log, we do not have to look further back than the earliest of the <START Ti> records. Notice, however,

that these START records could appear prior to any number of checkpoints. Linking backwards all the

log records for a given transaction helps us to find the necessary records, as it did for undo logging.

 Now, suppose the last checkpoint record on the log is <START CKPT(T1,…,Tk)>. We cannot be sure

that committed transactions prior to the start of this checkpoint had their changes written to disk. Thus,

we must search back to the previous <END CKPT> record, find its matching

18

<START CKPT(S1,…,Sm)> record, and redo all those committed transactions that either started after

that START CKPT or are among the Si’s.

Example. Consider again the log from the previous example. If a crash occurs at the end, we search

backwards, finding the <END CKPT> record. We thus know that it is sufficient to consider as candidates

to redo all those transactions that either started after the <START CKPT(T2)> record was written or that

are on its list (i.e., T2). Thus, our candidate set is (T2, T3). We find the records <COMMIT T2> and

<COMMIT T3>, so we know that each must be redone. We search the log as far back as the <START T2>

record, and find the update records <T2,B,10>, <T2,C,15>, and <T3,D,20> for the committed

transactions. Since we don’t know whether these changes reached disk, we rewrite the values 10, 15, and

20 for B, C, and D, respectively.

Now, suppose the crash occurred between the records <COMMIT T2> and <COMMIT T3>. The recovery

is similar to the above, except that T3 is no longer a committed transaction. Thus, its change <T3,D,20>

must not be redone, and no change is made to D during recovery, even though that log record is in the range

of records that is examined. Also, we write an <ABORT T3> record to the log after recovery.

Finally, suppose that the crash occurs just prior to the <END CKPT> record. In principal, we must search

back to the next-to-last START CKPT record (with a corresponding <END CKPT>) and get its list of active

transactions. However, in this case there is no previous checkpoint, and we must go all the way to the

beginning of the log. Thus, we identify T1 as the only committed transaction, redo its action <T1,A,5>,

and write records <ABORT T2> and <ABORT T3> to the log after recovery.

Since transactions may be active during several checkpoints, it is convenient to include in the

<START CKPT(T1,…,Tk)> records not only the names of the active transactions but pointers to the place

on the log where they started. By doing so, we know when it is safe to delete early portions of the log.

When we write an <END CKPT>, we know that we shall never need to look back further than the earliest

of the <START Ti> records for the active transactions Ti. Thus, anything prior to that START record may

be deleted.

Undo/Redo logging

We have seen two different approaches to logging, differentiated by whether the log holds old values or

new values when a database element is updated. Each has certain drawbacks:

 Undo logging requires that data be written to disk immediately after a transaction finishes, perhaps

increasing the number of disk I/O’s that need to be performed.

 On the other hand, redo logging requires us to keep all modified blocks in buffers until the transaction

commits and the log records have been flushed, perhaps increasing the average number of buffers

required by transactions.

 Both undo and redo logs may put contradictory requirements on how buffers are handled during a

checkpoint, unless the database elements are complete blocks or sets of blocks. For instance, if a buffer

contains one database element A that was changed by a committed transaction and another database

element B that was changed in the same buffer by a transaction that has not yet had its COMMIT record

written to disk, then we are required to copy the buffer to disk because of A but also forbidden to do so,

because rule R1 applies to B.

We shall now see a kind of logging called undo/redo logging, which provides increased flexibility to order

actions, at the expense of maintaining more information on the log.

19

The Undo/Redo Rules

An undo/redo log has the same sorts of log records as the other kinds of log, with one exception. The update

log record that we write when a database element changes value has four components. Record <T,X,v,w>

means that transaction T changed the value of database element X; its former value was v, and its new value

is w. The constraints that an undo/redo logging system must follow are summarized by the following rule:

UR1: Before modifying any database element X on disk because of changes made by some transaction T, it

is necessary that the update record <T,X,v,w> appear on disk.

Rule UR1 for undo/redo logging thus enforces only the constraints enforced by both undo logging and redo

logging. In particular, the <COMMIT T> log record can precede or follow any of the changes to the

database elements on disk.

Example. Let us consider again transaction T defined earlier using undo/redo logging:

Step Action t M–A M–B D–A D–B Log

1) <START T>

2) READ(A,t) 8 8 8 8

3) t := t*2 16 8 8 8

4) WRITE(A,t) 16 16 8 8 <T,A,8,16>

5) READ(B,t) 8 16 8 8 8

6) t := t*2 16 16 8 8 8

7) WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

8) FLUSH LOG

9) OUTPUT(A) 16 16 16 16 8

10) <COMMIT T>

11) OUTPUT(B) 16 16 16 16 16

Notice that the log records for updates now have both the old and the new values of A and B. In this

sequence, we have written the <COMMIT T> log record in the middle of the output of database elements

A and B to disk. Step (10) could also have appeared before step (8) or step (9), or after step (11).

Recovery with Undo/Redo Logging

When we need to recover using an undo/redo log, we have the information in the update records either to

undo a transaction T by restoring the old values of the database elements that T changed, or to redo T by

repeating the changes it has made. The undo/redo recovery policy is:

1. Redo all the committed transactions in the order earliest-first, and

2. undo all the incomplete transactions in the order latest-first.

Notice that it is necessary for us to do both. Because of the flexibility allowed by undo/redo logging

regarding the relative order in which COMMIT log records and the database changes themselves are copied

to disk, we could have either a committed transaction with some or all of its changes not on disk, or an

uncommitted transaction with some or all of its changes on disk.

Example. Here are the different ways that recovery would take place on the assumption that there is a crash

at various points in the sequence:

1. Suppose the crash occurs after the <COMMIT T> record is flushed to disk. Then T is identified as a

committed transaction. We write the value 16 for both A and B to the disk. Because of the actual order

of events, A already has the value 16, but B may not, depending on whether the crash occurred before

or after step (11).

20

2. If the crash occurs prior to the <COMMIT T> record reaching disk, then T is treated as an incomplete

transaction. The previous values of A and B, 8 in each case, are written to disk. If the crash occurs

between steps (9) and (10), then the value of A was 16 on disk, and the restoration to value 8 is necessary.

In this example, the value of B does not need to be undone, and if the crash occurs before step (9), then

neither does the value of A. However, in general we cannot be sure whether restoration is necessary, so

we always perform the undo operation.

Like undo logging, a system using undo/redo logging can exhibit a behavior where a transaction appears to

the user to have been completed (e.g., they booked an airline seat over the Web and disconnected), and yet

because the <COMMIT T> record was not flushed to disk, a subsequent crash causes the transaction to be

undone rather than redone. If this possibility is a problem, we suggest the use of an additional rule for

undo/redo logging:

UR2: A <COMMIT T> record must be flushed to disk as soon as it appears in the log.

For instance, we would add FLUSH LOG after step (10) in the example above.

You may have noticed that we did not specify whether undo’s or redo’s are done first during recovery using

an undo/redo log. In fact, whether we perform the redo’s or undo’s first, we are open to the following

situation: a transaction T has committed and is redone; however, T wrote a value X written also by some

transaction U that has not committed and is undone. The problem is not whether we redo first, and leave X

with its value prior to U, or we undo first and leave X with its value written by T. The situation makes no

sense either way, because the final database state does not correspond to the effect of any sequence of

atomic transactions.

In reality, the DBMS must do more than log changes. It must assure that such situations do not occur at all.

We will later see a discussion about the means to isolate transactions like T and U, so the interaction between

them through database element X cannot occur. We will explicitly address means for preventing this

situation where T reads a “dirty” value of X — one that has not been committed.

Checkpointing an Undo/Redo Log

A nonquiescent checkpoint is somewhat simpler for undo/redo logging than for the other logging methods.

We have only to do the following:

1. Write a <START CKPT(T1,…,Tk)> record to the log, where T1,…,Tk are all the active transactions,

and flush the log.

2. Write to disk all the buffers that are dirty; i.e., they contain one or more changed database elements.

Unlike redo logging, we flush all dirty buffers, not just those written by committed transactions.

3. Write an <END CKPT> record to the log, and flush the log.

Notice in connection with point (2) that, because of the flexibility undo/redo logging offers regarding when

data reaches disk, we can tolerate the writing to disk of data written by incomplete transactions. Therefore,

we can tolerate database elements that are smaller than complete blocks and thus may share buffers.

Example. Consider the following log:

<START T1>

<T1,A,4,5>

<START T2>

<COMMIT T1>

<T2,B,9,10>

<START CKPT(T2)>

<T2,C,14,15>

21

<START T3>

<T3,D,19,20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

The example is analogous to the example for redo logging. We have changed only the update records,

giving them an old value as well as a new value. For simplicity, we have assumed that in each case, the old

value is one less than the new value.

When the checkpoint begins, T2 is identified as the only active transaction. Since this log is an undo/redo

log, it is possible that T2’s new B-value 10 has been written to disk, which was not possible under redo

logging. However, it is irrelevant whether or not that disk write has occurred. During the checkpoint, we

shall surely flush B to disk if it is not already there, since we flush all dirty buffers. Likewise, we shall flush

A, written by the committed transaction T1, if it is not already on disk.

 If the crash occurs at the end of this sequence of events, then T2 and T3 are identified as committed

transactions. Transaction T1 is prior to the checkpoint. Since we find the <END CKPT> record on the

log, T1 is correctly assumed to have both completed and had its changes written to disk. We therefore

redo both T2 and T3, and ignore T1. However, when we redo a transaction such as T2, we do not need

to look prior to the <START CKPT(T2)> record, even though T2 was active at that time, because we

know that T2’s changes prior to the start of the checkpoint were flushed to disk during the checkpoint.

 For another instance, suppose the crash occurs just before the <COMMIT T3> record is written to disk.

Then we identify T2 as committed but T3 as incomplete. We redo T2 by setting C to 15 on disk; it is not

necessary to set B to 10 since we know that change reached disk before the <END CKPT>. However,

unlike the situation with a redo log, we also undo T3; that is, we set D to 19 on disk. If T3 had been

active at the start of the checkpoint, we would have had to look as far back as the earliest <START Ti>

record for all Ti listed in the START CKPT record to find if there were more actions by Ti (now T2

and T3) that may have reached disk and need to be undone. For redo recovery, however, we again do

not need to look prior to the START CKPT record.

 If the crash occurs prior to the <END CKPT> record, then the last START CKPT record is ignored,

and then we do the same as described above.

Protecting Against Media Failures

The log can protect us against system failures, where nothing is lost from disk, but temporary data in main

memory is lost. However, more serious failures involve the loss of one or more disks. Theoretically, the

database can be recovered after a media failure with the help of the log if

 the disk storing the log is different from the disk(s) containing the database;

 the log is never truncated after creating a checkpoint;

 the log is of type redo or undo/redo, containing the new values of database elements.

However, the log may increase in a faster rate than the database, so it is not a good practice to save the log

forever. An archiving system, which we cover next, is needed to enable a database to survive losses

involving disk-resident data.

22

The Archive

To protect against media failures, we are thus led to a solution involving archiving — maintaining a copy

of the database separate from the database itself. If it were possible to shut down the database for a while,

we could make a backup copy on some storage medium such as tape or optical disk and store the copy

remote from the database, in some secure location. The backup would preserve the database state as it

existed at the time of the backup, and if there were a media failure, the database could be restored to this

state.

To advance to a more recent state, we could use the log, provided the log had been preserved since the

archive copy was made, and the log itself survived the failure. In order to protect against losing the log, we

could transmit a copy of the log, almost as soon as it is created, to the same remote site as the archive. Then,

if the log as well as the data is lost, we can use the archive plus remotely stored log to recover, at least up

to the point that the log was last transmitted to the remote site.

Since writing an archive is a lengthy process, we try to avoid copying the entire database at each archiving

step. Thus, we distinguish between two levels of archiving:

 a full dump, in which the entire database is copied;

 an incremental dump, in which only those database elements changed since the previous full or

incremental dump are copied.

It is also possible to have several levels of dump, with a full dump thought of as a “level 0” dump, and a

“level i” dump copying everything changed since the last dump at a level less than or equal to i. After

creating a new level i dump, dumps at higher levels can be deleted or ignored during a recovery.

We can restore the database from a full dump and its subsequent incremental dumps in a process much like

the way a redo or undo/redo log can be used to repair damage due to a system failure. We copy the full

dump back to the database, and then in an earliest-first order, make the changes recorded by the later

incremental dumps. In case of multilevel dumps, dumps at levels higher than 0 are processed in an

increasing order of levels, and dumps at the same level are processed in chronological order.

We might question the need for an archive, since we have to back up the log in a secure place anyway if

we are not to be stuck at the state the database was in when the previous archive was made. While it may

not be obvious, the answer lies in the typical rate of change of a large database. While only a small fraction

of the database may change in a day, the changes, each of which must be logged, will over the course of a

year become much larger than the database itself. If we never archived, then the log could never be

truncated, and the cost of storing the log would soon exceed the cost of storing a copy of the database.

Nonquiescent Archiving

The problem with the simple view of archiving described above is that most databases cannot be shut down

for the period of time (possibly hours) needed to make a backup copy. We thus need to consider

nonquiescent archiving, which is analogous to nonquiescent checkpointing. Recall that a nonquiescent

checkpoint attempts to make a copy on the disk of the (approximate) database state that existed when the

checkpoint started. We can rely on a small portion of the log around the time of the checkpoint to fix up

any deviations from that database state, due to the fact that during the checkpoint, new transactions may

have started and written to disk.

Similarly, a nonquiescent dump tries to make a copy of the database that existed when the dump began, but

database activity may change many database elements on disk during the minutes or hours that the dump

takes. If it is necessary to restore the database from the archive, the log entries made during the dump can

be used to sort things out and get the database to a consistent state. In other words, a checkpoint gets data

23

from memory to disk, and the log allows recovery from system failure, whereas a dump gets data from disk

to archive, and the archive with the log allows recovery from media failure.

A nonquiescent dump copies the database elements in some fixed order, possibly while those elements are

being changed by executing transactions. As a result, the value of a database element that is copied to the

archive may or may not be the value that existed when the dump began. As long as the log for the duration

of the dump is preserved, the discrepancies can be corrected from the log.

Example. For a very simple example, suppose that our database consists of four elements, A, B, C, and D,

which have the values 1 through 4, respectively, when the dump begins. During the dump, A is changed to

5, C is changed to 6, and B is changed to 7. However, the database elements are copied in order, and the

sequence of events are the following:

Disk Archive

 Copy A
A := 5

 Copy B
C := 6

 Copy C
B := 7

 Copy D

Then, although the database at the beginning of the dump has values (1,2,3,4), and the database at the end

of the dump has values (5,7,6,4), the copy of the database in the archive has values (1,2,6,4), a database

state that existed at no time during the dump.

In more detail, the process of making an archive can be broken into the following steps. We assume that

the logging method is either redo or undo/redo; an undo log is not suitable for use with archiving (see the

discussion after the example for more details).

1. Write a log record <START DUMP>.

2. Perform a checkpoint appropriate for whichever logging method is being used.

3. Perform a full or incremental dump of the data disk(s), as desired, making sure that the copy of the data

has reached the secure, remote site.

4. Make sure that enough of the log has been copied to the secure, remote site so that at least the prefix of

the log up to and including the checkpoint in item (2) will survive a media failure of the database.

5. Write a log record <END DUMP>.

At the completion of the dump, it is safe to throw away log that is not required according to the recovery

rules concerning the checkpoint performed in item (2) above.

Example. Suppose that the changes to the simple database introduced above were caused by two

transactions T1 (which writes A and B) and T2 (which writes C) that were active when the dump began. The

following listing shows a possible undo/redo log of the events during the dump.

<START DUMP>

<START CKPT(T1,T2)>

<T1,A,1,5>

<T2,C,3,6>

<COMMIT T2>

<T1,B,2,7>

<END CKPT>

dump completes
<END DUMP>

24

Notice that we did not show T1 committing. It would be unusual that a transaction remained active during

the entire time a full dump was in progress, but that possibility doesn’t affect the correctness of the recovery

method that we discuss next.

Now, we can see why undo log cannot be used with nonquiescent archiving. Suppose a T3 transaction starts

after the <START CKPT(T1,T2)> record, which writes A, then B, and then completes, so a

<COMMIT T3> record is written to the log, but only after the <END CKPT> record, i.e., during backup.

Since, in case of undo logging, OUTPUT actions can execute at any time after the update record is written

to the log, it may happen that A is copied after its value is changed, and B is copied before its value is

changed. During recovery, T3 will be ignored, as its COMMIT record is found in the log. Thus, we get a

result as if T3 had not been executed atomically. Using redo logging, such situations may not happen,

because OUTPUT actions may only execute after the COMMIT record is written to the log. This way, either

no changes are made on disk (if there is no COMMIT record) or the transaction is redone (if there is a

COMMIT record). In case of undo/redo logging, each transaction is undone (if there is no COMMIT record)

or redone (if there is a COMMIT record), so there can be no nonatomic behavior.

Recovery Using an Archive and Log

Suppose that a media failure occurs, and we must reconstruct the database from the most recent archive and

whatever prefix of the log has reached the remote site and has not been lost in the crash. We perform the

following steps:

1. Restore the database from the archive:

a) Find the most recent full dump and reconstruct the database from it (i.e., copy the archive into the

database).

b) If there are later incremental dumps, modify the database according to each, earliest first. In case of

multilevel dumps, apply each dump of each level, beginning with level 1 (in order of levels, and in

chronological order within one level).

2. Modify the database using the surviving log. Use the method of recovery appropriate to the log method

being used.

Example. Suppose there is a media failure after the dump of the above example completes, and the log

survives. Assume, to make the process interesting, that the surviving portion of the log does not include a

<COMMIT T1> record, although it does include the <COMMIT T2> record. The database is first restored

to the values in the archive, which is, for database elements A, B, C, and D, respectively, (1,2,6,4).

Now, we must look at the log. Since T2 has completed, we redo the step that sets C to 6. In this example, C

already had the value 6, but it might be that

 the archive for C was made before T2 changed C, or

 the archive actually captured a later value of C, which may or may not have been written by a transaction

whose commit record survived. Later in the recovery, C will be restored to the value found in the archive

if the transaction was committed.

Since T1 does not have a COMMIT record, we must undo T1. We use the log records for T1 to determine

that A must be restored to value 1 and B to 2. It happens that they had these values in the archive, but the

actual archive value could have been different if the modified A and/or B had been included in the archive.

(It depends on the order of the update and the backup of these elements.)

25

The Logging and Backup System of Oracle Database

The following information comes from Oracle Database Administrator’s Guide and Oracle Database

Backup and Recovery User’s Guide.

The Redo Log

After instance failure (system failure of a single instance), Oracle uses the online redo log files to perform

automatic recovery of the database. Instance recovery occurs as soon as the instance starts up again after it

has failed or shut down abnormally. The most crucial structure for recovery operations is the redo log,

which stores all changes made to the database as they occur. Every instance of an Oracle Database has an

associated redo log to protect the database in case of an instance failure. It consists of two parts: online and

archived redo log.

An online redo log consists of two or more online redo log files, which are filled with redo records. A redo

record, also called a redo entry, is made up of a group of change vectors, each of which is a description of

a change made to a single block in the database. For example, if you change a salary value in a table

containing employee-related data, you generate a redo record containing change vectors that describe

changes to the data segment block for the table, the undo segment data block, and the transaction table of

the undo segment (see later). Redo records are buffered in a circular fashion in the redo log buffer of the

SGA (System Global Area) and are written to one of the redo log files by the Log Writer (LGWR) database

background process. (The SGA holds also the buffers for database elements; those buffers are written to

disk by the Database Writer background process.) Whenever a transaction is committed, LGWR writes the

transaction redo records from the redo log buffer of the SGA to a redo log file, and assigns a system change

number (SCN) to identify the redo records for each committed transaction. Only when all redo records

associated with a given transaction are safely on disk in the online logs is the user process notified that the

transaction has been committed. Redo records can also be written to a redo log file before the corresponding

transaction is committed. If the redo log buffer fills, or another transaction commits, LGWR flushes all of

the redo log entries in the redo log buffer to a redo log file, even though some redo records may not be

committed. If necessary, the database can roll back these changes.

The online redo log for a database consists of two or more redo log files. Oracle Database uses only one

redo log file at a time to store redo records written from the redo log buffer. The redo log file that LGWR

is actively writing to is called the current redo log file. Redo log files that are required for instance recovery

(i.e., not all changes recorded in them have been written to the data files yet) are called active redo log files.

Redo log files that are no longer required for instance recovery (i.e., the changes recorded in them have

been written to the data files) are called inactive redo log files. The database requires a minimum of two

files to guarantee that one is always available for writing while the other is being archived (if the database

is in ARCHIVELOG mode). LGWR writes to redo log files in a circular fashion. When the current redo

log file fills, LGWR begins writing to the next available redo log file. When the last available redo log file

is filled, LGWR returns to the first redo log file and writes to it, starting the cycle again. Filled redo log

files are available to LGWR for reuse depending on whether archiving is enabled. If archiving is disabled

(the database is in NOARCHIVELOG mode), a filled redo log file is available after it becomes inactive. If

archiving is enabled (the database is in ARCHIVELOG mode), a filled redo log file is available to LGWR

after it becomes inactive and the file has been archived by one of the archiver background processes (ARC).

A log switch is the point at which the database stops writing to one redo log file and begins writing to

another. Normally, a log switch occurs when the current redo log file is completely filled and writing must

continue to the next redo log file. However, you can configure log switches to occur at regular intervals,

regardless of whether the current redo log file is completely filled. You can also force log switches

manually. Oracle Database assigns each redo log file a new log sequence number every time a log switch

occurs and LGWR begins writing to it. When the database archives redo log files, the archived log retains

http://docs.oracle.com/database/121/ADMIN/toc.htm
http://docs.oracle.com/database/121/BRADV/toc.htm
http://docs.oracle.com/database/121/BRADV/toc.htm

26

its log sequence number. A redo log file that is cycled back for use is given the next available log sequence

number. Each online or archived redo log file is uniquely identified by its log sequence number. During

crash, instance, or media recovery, the database properly applies redo log files in ascending order by using

the log sequence number of the necessary archived and online redo log files.

To protect against a failure involving the redo log itself, Oracle Database allows a multiplexed redo log,

meaning that two or more identical copies of the redo log can be automatically maintained in separate

locations. When redo log files are multiplexed, LGWR concurrently writes the same redo log information

to multiple identical redo log files, thereby eliminating a single point of redo log failure. For the most

benefit, these copies should be on separate disks. However, even if all copies of the redo log are on the

same disk, the redundancy can help protect against I/O errors, file corruption, and so on.

As we mentioned, Oracle Database lets you save filled groups of redo log files to one or more offline

destinations, known collectively as the archived redo log. The process of turning redo log files into archived

redo log files is called archiving. This process is only possible if the database is running in ARCHIVELOG

mode. You can choose automatic or manual archiving.

When you run your database in NOARCHIVELOG mode, you disable the archiving of the redo log. The

database control file indicates that filled redo log files are not required to be archived. Therefore, when a

filled redo log file becomes inactive after a log switch, the file is available for reuse by LGWR.

NOARCHIVELOG mode protects a database from instance failure but not from media failure. Only the

most recent changes made to the database, which are stored in the online redo log files, are available for

instance recovery. If a media failure occurs while the database is in NOARCHIVELOG mode, you can only

restore the database to the point of the most recent full database backup. You cannot recover transactions

subsequent to that backup. In NOARCHIVELOG mode, you cannot perform online tablespace backups,

nor can you use online tablespace backups taken earlier while the database was in ARCHIVELOG mode.

To restore a database operating in NOARCHIVELOG mode, you can use only whole database backups

taken while the database is closed. Therefore, if you decide to operate a database in NOARCHIVELOG

mode, take whole database backups at regular, frequent intervals.

When you run a database in ARCHIVELOG mode, you enable the archiving of the redo log. The database

control file indicates that a group of filled redo log files cannot be reused by LGWR until the group is

archived. A filled group becomes available for archiving immediately after a redo log switch occurs. The

archiving of filled groups has these advantages:

 A database backup, together with online and archived redo log files, guarantees that you can recover

all committed transactions in the event of an operating system or disk failure.

 If you keep archived logs available, you can use a backup taken while the database is open and in

normal system use.

 You can keep a standby database current with its original database by continuously applying the

original archived redo log files to the standby.

Oracle Database uses the online redo log only for recovery. However, administrators can query online redo

log files through an SQL interface in the Oracle LogMiner utility. Redo log files are a useful source of

historical information about database activity.

Every Oracle Database has a control file, which is a small binary file that records the physical structure of

the database. The control file includes:

 the database name,

 names and locations of associated data files and redo log files,

 the timestamp of the database creation,

 the current log sequence number,

 checkpoint information.

27

The control file must be available for writing by the Oracle Database server whenever the database is open.

Without the control file, the database cannot be mounted and recovery is difficult. The control file of an

Oracle Database is created at the same time as the database. By default, at least one copy of the control file

is created during database creation. On some operating systems the default is to create multiple copies.

Every Oracle Database should have at least two control files, each stored on a different physical disk

(multiplexed control file). If a control file is damaged due to a disk failure, the associated instance must be

shut down. Once the disk drive is repaired, the damaged control file can be restored using the intact copy

of the control file from the other disk, and the instance can be restarted. In this case, no media recovery is

required.

Undo Management

Oracle uses a special combination of undo and redo logging. As we have seen, information for redo recovery

(the new values of database blocks) is stored in the redo log. Information for undo recovery, however, are

stored in one or more undo tablespaces by default (or in rollback segments placed in other tablespaces; see

later). This means that Oracle Database stores undo data inside the database rather than in external logs.

Undo data is stored in blocks that are updated just like data blocks, with changes to these blocks generating

redo records. In this way, Oracle Database can efficiently access undo data without needing to read external

logs. Undo tablespaces record the old values of data that was changed by each transaction (whether or not

committed). Oracle uses undo data to roll back an active transaction, recover a terminated transaction,

provide read consistency, and perform some logical flashback operations.

An undo tablespace consists of undo segments, which consist of undo records or undo entries. The contents

of an undo entry include the address of changed data column(s), the transaction operation performing the

change, an SQL statement that undoes the effect of the change, and the old value(s) of each changed column.

Undo entries are always written to disk before the corresponding modified data reach disk. Undo entries

for each transaction are linked so that they can be located easily for undo activities.

Each undo segment of an undo tablespace has a corresponding transaction table, which holds the

transaction identifiers of the transactions using the undo segment. The transaction table is made up of a

fixed number of slots or entries. This figure depends on the size of a data block, which is defined by the

operating system. Each of these slots is assigned to a transaction and contains information about that action.

The slots are initially used in order but are reused in a round-robin fashion with one exception: a slot

referencing an uncommitted transaction will not be reused. It is possible to fill up all slots with active

transactions. If this occurs, the transaction waits until a slot becomes available.

After a transaction is committed, undo data is no longer needed for rollback or transaction recovery

purposes. However, for consistent read purposes, long-running queries may require this old undo

information for producing older images of data blocks (see chapter titled Concurrency Control in Oracle

Database). Furthermore, the success of several Oracle Flashback features can also depend upon the

availability of older undo information. For these reasons, it is desirable to retain the old undo information

for as long as possible.

An auto-extending undo tablespace named UNDOTBS1 is automatically created when you create the

database with Database Configuration Assistant (DBCA). You can also create an undo tablespace

explicitly, using the CREATE DATABASE or CREATE UNDO TABLESPACE statement. When the

database instance starts, the database automatically selects the first available undo tablespace. If no undo

tablespace is available, then the instance starts without an undo tablespace and stores undo records in the

SYSTEM tablespace. This is not recommended, and an alert message is written to the alert log file to warn

that the system is running without an undo tablespace. If the database contains multiple undo tablespaces,

then you can optionally specify at startup that you want to use a specific undo tablespace. This is done by

setting the UNDO_TABLESPACE initialization parameter.

28

Instance Recovery Phases

As changes are made to the undo segments, these changes are also written to the online redo log. It is

because undo tablespace is part of the database just like other tablespaces. As a result, the online redo log

always contains the undo data for permanent objects. This means that every change to the database implies

the creation of an undo entry with the old value of the changed column(s), a log record with the new value

of the data block containing the modified data, and another log record with the new value of the data block

containing the undo entry.

The first phase of instance recovery is called cache recovery or rolling forward, and involves reapplying

all of the changes recorded in the online redo log to the data files. It is enough to reconstruct changes made

after the most recent checkpoint. The checkpoint position guarantees that every committed change with an

SCN lower than the checkpoint SCN is saved to the data files. Checkpoints occur in a variety of situations.

For example, when the Database Writer process writes dirty buffers, it advances the checkpoint position.

The resulting database state after a cache recovery is very likely to be inconsistent. After the roll forward,

any changes that were not committed must be undone. Because rollback data is recorded in the online redo

log, rolling forward also regenerates the corresponding undo segments. Oracle Database applies undo

blocks to roll back uncommitted changes in data blocks that were written before the failure or introduced

during cache recovery. This phase is called rolling back or transaction recovery.

Undo Management Modes

The database can run in automatic or manual undo management mode. With automatic undo management,

the database automatically manages undo segments in undo tablespaces, and no user intervention is

required. Automatic undo management is the default mode for a newly installed database. In manual mode,

undo space is managed through rollback segments (user-managed undo segments), and no undo tablespace

is used. Space management for rollback segments is complex and requires hard work from the DBA.

Backup and Recovery

The focus in Oracle Database backup and recovery is on the physical backup of database files, which

permits you to reconstruct your database. RMAN, a command-line tool, is the method preferred by Oracle

for efficiently backing up and recovering your Oracle database. The files protected by the backup and

recovery facilities built into RMAN include data files, control files, server parameter files, and archived

redo log files. With these files you can reconstruct your database. RMAN is designed to work intimately

with the server, providing block-level corruption detection during backup and restore. RMAN optimizes

performance and space consumption during backup with file multiplexing and backup set compression, and

integrates with leading tape and storage media products. The backup mechanisms work at the physical level

to protect against file damage, such as the accidental deletion of a data file or the failure of a disk drive.

RMAN can also be used to perform point-in-time recovery to recover from logical failures when other

techniques such as flashback cannot be used.

In NOARCHIVELOG mode, the filled redo log groups that become inactive can be reused. This mode

protects the database against instance failure, but not against media failure. In ARCHIVELOG mode, filled

groups of redo logs are archived. This mode protects the database from both instance and media failure, but

may require additional hardware resources.

A full backup of a data file includes all used blocks of the data file. An incremental backup copies only

those blocks in a data file that change between backups. A level 0 incremental backup, which copies all

blocks in the data file, is used as a starting point for an incremental backup strategy. A level 1 incremental

backup copies only images of blocks that have changed since the previous level 0 or level 1 incremental

29

backup. Level 1 backups can be cumulative, in which case all blocks changed since the most recent level 0

backup are included, or differential, in which case only blocks changed since the most recent level 0 or

level 1 incremental backup are included. A typical incremental strategy makes level 1 backups at regular

intervals such as once each day. During recovery, RMAN will automatically apply both incremental

backups and redo logs as required, to recover the database to the exact point in time desired.

A backup is either consistent or inconsistent. A consistent backup occurs when the database is in a

consistent state. A database is in a consistent state after being shut down with the SHUTDOWN NORMAL,

SHUTDOWN IMMEDIATE, or SHUTDOWN TRANSACTIONAL commands. A consistent shutdown

guarantees that all redo has been applied to the data files. If you mount the database and make a backup at

this point, then you can restore the database backup later and open it without performing media recovery.

But you will, of course, lose all transactions that occurred after the backup was created.

Any database backup that is not consistent is an inconsistent backup. A backup made when the database is

open is inconsistent, as is a backup made after an instance failure or SHUTDOWN ABORT command.

When a database is restored from an inconsistent backup, Oracle Database must perform media recovery

before the database can be opened, applying changes from the redo logs that took place after the backup

was created. Note that RMAN does not permit you to make inconsistent backups when the database is in

NOARCHIVELOG mode. If the database runs in ARCHIVELOG mode, and you back up the archived

redo logs and data files, inconsistent backups can be the foundation for a sound backup and recovery

strategy. Inconsistent backups offer superior availability because you do not have to shut down the database

to make backups that fully protect the database.

Media recovery requires a control file, data files (typically restored from backup), and online and archived

redo log files containing changes since the time the data files were backed up. Media recovery is most often

used to recover from media failure, such as the loss of a file or disk, or a user error, such as the deletion of

the contents of a table.

Media recovery can be a complete recovery or a point-in-time recovery. Complete recovery can apply to

individual data files, tablespaces, or the entire database. Point-in-time recovery applies to the whole

database (and also sometimes to individual tablespaces, with automation help from RMAN). In a complete

recovery, you restore backup data files and apply all changes from the archived and online redo log files to

the data files. The database is returned to its state at the time of failure and can be opened with no loss of

data. In a point-in-time recovery, you return a database to its contents at a user-selected time in the past.

You restore a backup of data files created before the target time and a complete set of archived redo log

files from backup creation through the target time. Recovery applies changes between the backup time and

the target time to the data files. All changes after the target time are discarded.

30

Concurrency Control

Interactions among concurrently executing transactions can cause the database state to become inconsistent,

even when the transactions individually preserve correctness of the state, and there is no system failure.

Thus, the timing of individual steps of different transactions needs to be regulated in some manner. This

regulation is the job of the scheduler component of the DBMS, and the general process of assuring that

transactions preserve consistency when executing simultaneously is called concurrency control.

As transactions request reads and writes of database elements, these requests are passed to the scheduler.

In most situations, the scheduler will execute the reads and writes directly, first calling on the buffer

manager if the desired database element is not in a buffer. However, in some situations, it is not safe for the

request to be executed immediately. The scheduler must delay the request; in some concurrency-control

techniques, the scheduler may even abort the transaction that issued the request.

Serial and Serializable Schedules

Recall the “correctness principle”: every transaction, if executed in isolation (without any other transactions

running concurrently), will transform any consistent state to another consistent state. In practice,

transactions often run concurrently with other transactions, so the correctness principle doesn’t apply

directly. This section introduces the notion of “schedules,” the sequence of actions performed by

transactions, and “serializable schedules,” which produce the same result as if the transactions executed

one-at-a-time.

Schedules

A schedule is a sequence of the important actions taken by one or more transactions, in which the order of

actions of a particular transaction is the order given in the transaction. When studying concurrency control,

the important read and write actions take place in the main-memory buffers, not the disk. That is, a database

element A that is brought to a buffer by some transaction T may be read or written in that buffer not only

by T but by other transactions that access A. In other words, from the point of view of concurrency control,

only the order of READ and WRITE operations is considered, INPUT and OUTPUT operations are ignored.

Example. Let us consider two transactions and the effect on the database when their actions are executed in

certain orders:

T1 T2

READ(A,t) READ(A,s)

t := t+100 s := s*2

WRITE(A,t) WRITE(A,s)

READ(B,t) READ(B,s)

t := t+100 s := s*2

WRITE(B,t) WRITE(B,s)

The variables t and s are local variables of T1 and T2, respectively; they are not database elements. We

shall assume that the only consistency constraint on the database state is that A = B. Since T1 adds 100 to

both A and B, and T2 multiplies both A and B by 2, we know that each transaction, run in isolation, will

preserve consistency.

31

Serial Schedules

A schedule is serial if, for any two transactions T and T’ in the schedule, if there exists an action in T that

precedes an action of T’, then all the actions of T precede all the actions of T’. In other words, the actions

of the schedule consist of all the actions of one transaction, then all the actions of another transaction, and

so on. No mixing of the actions is allowed.

Example. For the transactions above, there are two serial schedules, one in which T1 precedes T2 and the

other in which T2 precedes T1. Let the initial state be A = B = 25. Then, the two schedules are the following:

T1 T2 A B T1 T2 A B

READ(A,t) 25 READ(A,s) 25

t := t+100 s := s*2

WRITE(A,t) 125 WRITE(A,s) 50

READ(B,t) 25 READ(B,s) 25

t := t+100 s := s*2

WRITE(B,t) 125 WRITE(B,s) 50

 READ(A,s) 125 READ(A,t) 50

 s := s*2 t := t+100

 WRITE(A,s) 250 WRITE(A,t) 150

 READ(B,s) 125 READ(B,t) 50

 s := s*2 t := t+100

 WRITE(B,s) 250 WRITE(B,t) 150

We shall take the convention that when displayed vertically, time proceeds down the page. Also, the values

of A and B shown refer to their values in main-memory buffers, not necessarily to their values on disk.

Notice that the final values of A and B are different for the two schedules; they both have value 250 when

T1 goes first and 150 when T2 goes first. In general, we would not expect the final state of a database to be

independent of the order of transactions.

We can represent a serial schedule as in the figure above, listing each of the actions in the order they occur.

However, since the order of actions in a serial schedule depends only on the order of the transactions

themselves, we shall sometimes represent a serial schedule by the list of transactions as in (T1, T2) or

(T2, T1).

Serializable Schedules

The correctness principle for transactions tells us that every serial schedule will preserve consistency of the

database state. But are there any other schedules that also are guaranteed to preserve consistency? There

are, as the following example shows. In general, we say a schedule S of some transactions is serializable if

there is a serial schedule S’ of the same transactions such that for every initial database state, the effects

of S and S’ are the same.

Example. Consider the following two schedules of the two transactions defined above:

32

T1 T2 A B T1 T2 A B

READ(A,t) 25 READ(A,t) 25

t := t+100 t := t+100

WRITE(A,t) 125 WRITE(A,t) 125

 READ(A,s) 125 READ(A,s) 125

 s := s*2 s := s*2

 WRITE(A,s) 250 WRITE(A,s) 250

READ(B,t) 25 READ(B,s) 25

t := t+100 s := s*2

WRITE(B,t) 125 WRITE(B,s) 50

 READ(B,s) 125 READ(B,t) 50

 s := s*2 t := t+100

 WRITE(B,s) 250 WRITE(B,t) 150

The first example shows a schedule that is serializable but not serial. In this schedule, T2 acts on A after T1

does, but before T1 acts on B. However, we see that the effect of the two transactions scheduled in this

manner is the same as for the serial schedule (T1, T2). To convince ourselves of the truth of this statement,

we must consider not only the effect from the database state A = B = 25 but from any consistent database

state. Since all consistent database states have A = B = c for some constant c, it is not hard to deduce that

in the schedule, both A and B will be left with the value 2(c + 100), and thus consistency is preserved from

any consistent state.

On the other hand, consider the schedule in the second example, which is not serializable. The reason we

can be sure it is not serializable is that it takes the consistent state A = B = 25 and leaves the database in an

inconsistent state, where A = 250 and B = 150. Notice that in this order of actions, where T1 operates on A

first, but T2 operates on B first, we have in effect applied different computations to A and B, that is

A := 2(A + 100) versus B := 2B + 100. This is the sort of behavior that concurrency control mechanisms

must avoid.

The Effect of Transaction Semantics

In our study of serializability so far, we have considered in detail the operations performed by the

transactions, to determine whether or not a schedule is serializable. The details of the transactions do matter,

as we can see from the following example.

Example. Consider the following schedule, which differs from our last example only in the computation

that T2 performs. That is, instead of multiplying A and B by 2, T2 multiplies each by 1:

T1 T2 A B

READ(A,t) 25

t := t+100

WRITE(A,t) 125

 READ(A,s) 125

 s := s*1

 WRITE(A,s) 125

 READ(B,s) 25

 s := s*1

 WRITE(B,s) 25

READ(B,t) 25

t := t+100

WRITE(B,t) 125

One can easily check that regardless of the consistent initial state, the final state is the one that results from

the serial schedule (T1, T2). Coincidentally, it also results from the other serial schedule, (T2, T1).

33

You may notice that T2 is not meaningful. Actually, it could be replaced with any transaction that leaves A

and B intact. T2 could, for example, only print the values of A and B, or it could compute a factor F based

on user input and multiply A and B by F, and for some user input, F could result in 1.

Unfortunately, it is not realistic for the scheduler to concern itself with the details of computation

undertaken by transactions. Since transactions often involve code written in a general-purpose

programming language as well as SQL or other high-level-language statements, it is impossible to say for

certain what a transaction is doing. However, the scheduler does get to see the read and write requests from

the transactions, so it can know what database elements each transaction reads, and what elements it might

change. To simplify the job of the scheduler, it is conventional to assume that:

 Any database element A that a transaction T writes is given a value that depends on the database state

in such a way that no arithmetic coincidences occur.

An example of a “coincidence” is that in our previous example, where (A + 100) * 1 = B * 1 + 100

whenever A = B, even though the two operations are carried out in different orders on the two variables.

Put another way, if there is something that T could do to a database element to make the database state

inconsistent, then T will do that.

A Notation for Transactions and Schedules

If we assume “no coincidences,” then only the reads and writes performed by the transaction matter, not

the actual values involved. Thus, we shall represent transactions and schedules by a shorthand notation, in

which the actions are rT(X) and wT(X), meaning that transaction T reads, or respectively writes, database

element X. Moreover, since we shall usually name our transactions T1, T2, …, we adopt the convention that

ri(X) and wi(X) are synonyms for rTi(X) and wTi(X), respectively.

Example. The two transactions in the previous examples can be written the following way:

T1: r1(A); w1(A); r1(B); w1(B);

T2: r2(A); w2(A); r2(B); w2(B);

We did not mention the local variables t and s, and did not denote what happened to A and B after reading

them. This notation is interpreted that we assume the “worst case” regarding the change of values of

database elements.

As another example, consider the serializable schedule of transactions T1 and T2 presented earlier:

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

To make the notation precise:

1. An action is an expression of the form ri(X) or wi(X), meaning that transaction Ti reads or writes,

respectively, the database element X.

2. A transaction Ti is a sequence of actions with subscript i.

3. A schedule S of a set of transactions T is a sequence of actions, in which for each transaction Ti in T,

the actions of Ti appear in S in the same order that they appear in the definition of Ti itself. We say

that S is an interleaving of the actions of the transactions of which it is composed.

34

Conflict-Serializability

Schedulers in commercial systems generally enforce a condition, called “conflict-serializability,” that is

stronger than the general notion of serializability. It is based on the idea of a conflict: a pair of consecutive

actions in a schedule such that, if their order is interchanged, then the behavior of at least one of the

transactions involved can change.

Conflicts

To begin, let us observe that most pairs of actions do not conflict. In what follows, we assume that Ti and

Tj are different transactions; i.e., i  j.

1. ri(X); rj(Y) is never a conflict, even if X = Y. The reason is that neither of these steps change the

value of any database element.

2. ri(X); wj(Y) is not a conflict provided X  Y. The reason is that should Tj write Y before Ti reads X,

the value of X is not changed. Also, the read of X by Ti has no effect on Tj, so it does not affect the

value Tj writes for Y.

3. wi(X); rj(Y) is not a conflict if X  Y, for the same reason as (2).

4. Similarly, wi(X); wj(Y) is not a conflict as long as X  Y.

On the other hand, there are three situations where we may not swap the order of actions:

a) Two actions of the same transaction, e.g., ri(X); wi(Y), always conflict. The reason is that the order

of actions of a single transaction are fixed and may not be reordered.

b) Two writes of the same database element by different transactions conflict. That is, wi(X); wj(X) is a

conflict. The reason is that as written, the value of X remains afterward as whatever Tj computed it to

be. If we swap the order, as wj(X); wi(X), then we leave X with the value computed by Ti. Our

assumption of “no coincidences” tells us that the values written by Ti and Tj will be different, at least

for some initial states of the database.

c) A read and a write of the same database element by different transactions also conflict. That is, ri(X);

wj(X) is a conflict, and so is wi(X); rj(X). If we move wj(X) ahead of ri(X), then the value of X

read by Ti will be that written by Tj, which we assume is not necessarily the same as the previous value

of X. Thus, swapping the order of ri(X) and wj(X) affects the value Ti reads for X and could therefore

affect what Ti does.

The conclusion we draw is that any two actions of different transactions may be swapped unless

1. they involve the same database element, and

2. at least one is a write.

Extending this idea, we may take any schedule and make as many nonconflicting swaps as we wish, with

the goal of turning the schedule into a serial schedule. If we can do so, then the original schedule is

serializable, because its effect on the database state remains the same as we perform each of the

nonconflicting swaps.

We say that two schedules are conflict-equivalent if they can be turned one into the other by a sequence of

nonconflicting swaps of adjacent actions. We shall call a schedule conflict-serializable if it is conflict-

equivalent to a serial schedule. Note that conflict-serializability is a sufficient condition for serializability;

i.e., a conflict-serializable schedule is a serializable schedule. Conflict-serializability is not required for a

schedule to be serializable, but it is the condition that the schedulers in commercial systems generally use

when they need to guarantee serializability.

35

Example. Consider the schedule

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

We claim this schedule is conflict-serializable. Here is the sequence of swaps in which this schedule is

converted to the serial schedule (T1, T2), where all of T1’s actions precede all those of T2. We have

underlined the pair of adjacent actions about to be swapped at each step.

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B);

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B);

r1(A); w1(A); r1(B); r2(A); w1(B); w2(A); r2(B); w2(B);

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B);

You may ask why conflict-serializability is not necessary for serializability. We have already seen an

example when serializability of a schedule could only be determined by considering the semantics of the

transactions. We could see that the schedule was serializable because of the specific computations

undertaken by T2. That particular schedule, however, is not conflict-serializable, as A is written by T1 first,

while B is written by T2 first. Since neither the write of A nor the write of B can be rearranged, there is no

way for all of T1’s actions to precede those of T2, nor vice versa.

There are serializable, but not conflict-serializable schedules that do not depend on the computations

undertaken by the transactions. Consider three transactions T1, T2, and T3 that each write a value for X. T1

and T2 also write values for Y before they write values for X. One possible schedule, which happens to be

serial, is

S1: w1(Y); w1(X); w2(Y); w2(X); w3(X);

S1 leaves X with the value written by T3 and Y with the value written by T2. However, so does the schedule

S2: w1(Y); w2(Y); w2(X); w1(X); w3(X);

Intuitively, the values of X written by T1 and T2 have no effect, since T3 overwrites their values. Thus, X

has the same value after either S1 or S2, and likewise Y has the same value after either S1 or S2. Since S1

is serial, and S2 has the same effect as S1 on any database state, we know that S2 is serializable. However,

since we cannot swap w1(Y) with w2(Y), and we cannot swap w1(X) with w2(X), therefore we cannot

convert S2 to any serial schedule by swaps. That is, S2 is serializable, but not conflict-serializable.

Precedence Graphs and a Test for Conflict-Serializability

It is relatively simple to examine a schedule S and decide whether or not it is conflict-serializable. When a

pair of conflicting actions appears anywhere in S, the transactions performing those actions must appear in

the same order in any conflict-equivalent serial schedule as the actions appear in S. Thus, conflicting pairs

of actions put constraints on the order of transactions in the hypothetical, conflict-equivalent serial schedule.

If these constraints are not contradictory, we can find a conflict-equivalent serial schedule. If they are

contradictory, we know that no such serial schedule exists.

Given a schedule S, involving transactions T1 and T2 (T1  T2), perhaps among other transactions, we say

that T1 takes precedence over T2, written T1 <S T2, if there are actions A1 of T1 and A2 of T2, such that

1. A1 is ahead of A2 in S,

2. both A1 and A2 involve the same database element, and

3. at least one of A1 and A2 is a write action.

36

In other words, A1 and A2 would conflict if they were consecutive actions. Notice that these are exactly the

conditions under which we cannot swap the order of A1 and A2. Thus, A1 will appear before A2 in any

schedule that is conflict-equivalent to S. As a result, a conflict-equivalent serial schedule must have T1

before T2.

We can summarize these precedences in a precedence graph. The nodes of the precedence graph are the

transactions of a schedule S. When the transactions are Ti for various i, we shall label the node for Ti by

only the integer i. There is an arc from node i to node j if Ti <S Tj.

Example. The following schedule S involves three transactions, T1, T2, and T3:

S: r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

The precedence graph for schedule S is the following:

 1 2 3

If we look at the actions involving A, we find several reasons why T2 <S T3. For example, r2(A) comes

ahead of w3(A) in S, and w2(A) comes ahead of both r3(A) and w3(A). Any one of these three

observations is sufficient to justify the arc in the precedence graph from 2 to 3. Similarly, if we look at the

actions involving B, we find that there are several reasons why T1 <S T2. For instance, the action r1(B)

comes before w2(B). Thus, the precedence graph for S also has an arc from 1 to 2. However, these are the

only arcs we can justify from the order of actions in schedule S.

There is a simple rule to determine whether a schedule S is conflict-serializable:

 To tell whether a schedule S is conflict-serializable, construct the precedence graph for S and ask if

there are any cycles. If so, then S is not conflict-serializable. But if the graph is acyclic, then S is

conflict-serializable, and moreover, any topological order of the nodes is a conflict-equivalent serial

order.

A topological order of an acyclic graph is any order of the nodes such that for every arc a  b, node a

precedes node b in the topological order. We can find a topological order for any acyclic graph by

repeatedly removing nodes that have no predecessors among the remaining nodes.

Example. The precedence graph above is acyclic, so schedule S is conflict-serializable. There is only one

order of the nodes or transactions consistent with the arcs of that graph: (T1, T2, T3). Notice that it is indeed

possible to convert S into the schedule in which all actions of each of the three transactions occur in this

order; this serial schedule is:

S’: r1(B); w1(B); r2(A); w2(A); r2(B); w2(B); r3(A); w3(A);

To see that we can get from S to S’ by swaps of adjacent elements, first notice we can move r1(B) ahead

of r2(A) without conflict. Then, by three swaps we can move w1(B) just after r1(B), because each of

the intervening actions involves A and not B. We can then move r2(B) and w2(B) to a position just after

w2(A), moving through only actions involving A; the result is S’.

Example. Consider the following schedule:

S1: r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

S1 differs from S only in that action r2(B) has been moved forward three positions. Examination of the

actions involving A still give us only the precedence T2 <S1 T3. However, when we examine B, we get not

only T1 <S1 T2 (because r1(B) and w1(B) appear before w2(B)) but also T2 <S1 T1 (because r2(B)

appears before w1(B)). Thus, we have the following precedence graph for schedule S1:

37

1 2 3

This graph evidently has a cycle. We conclude that S1 is not conflict-serializable. Intuitively, any conflict-

equivalent serial schedule would have to have T1 both ahead of and behind T2, so therefore no such schedule

exists.

Why the Precedence-Graph Test Works

If there is a cycle involving n transactions T1  T2  …  Tn  T1, then in the hypothetical serial order,

the actions of T1 must precede those of T2, which precede those of T3, and so on, up to Tn. But the actions

of Tn, which therefore come after those of T1, are also required to precede those of T1 because of the arc

Tn  T1. Thus, if there is a cycle in the precedence graph, then the schedule is not conflict-serializable.

The converse is a bit harder. We must show that if the precedence graph has no cycles, then we can reorder

the schedule’s actions using legal swaps of adjacent actions, until the schedule becomes a serial schedule.

If we can do so, then we have our proof that every schedule with an acyclic precedence graph is conflict-

serializable. The proof is an induction on the number of transactions involved in the schedule:

Basis: If n = 1, i.e., there is only one transaction in the schedule, then the schedule is already serial, and

therefore surely conflict-serializable.

Induction: Let the schedule S consist of the actions of n transactions T1, T2, …, Tn. We suppose that S

has an acyclic precedence graph. If a finite graph is acyclic, then there is at least one node that has no arcs

in; let the node i corresponding to transaction Ti be such a node. Since there are no arcs into node i, there

can be no action A in S that

1. involves any transaction Tj other than Ti,

2. precedes some action of Ti, and

3. conflicts with that action.

For if there were, we should have put an arc from node j to node i in the precedence graph.

It is thus possible to swap all the actions of Ti, keeping them in order, but moving them to the front of S.

The schedule has now taken the form

(actions of Ti) (actions of the other n – 1 transactions)

Let us now consider the tail of S — the actions of all transactions other than Ti. Since these actions maintain

the same relative order that they did in S, the precedence graph for the tail is the same as the precedence

graph for S, except that the node for Ti and any arcs out of that node are missing.

Since the original precedence graph was acyclic, and deleting nodes and arcs cannot make it cyclic, we

conclude that the tail’s precedence graph is acyclic. Moreover, since the tail involves n – 1 transactions,

the inductive hypothesis applies to it. Thus, we know we can reorder the actions of the tail using legal swaps

of adjacent actions to turn it into a serial schedule. Now, S itself has been turned into a serial schedule, with

the actions of Ti first and the actions of the other transactions following in some serial order. The induction

is complete, and we conclude that every schedule with an acyclic precedence graph is conflict-serializable.

38

Enforcing Serializability by Locks

In this section, we consider the most common architecture for a scheduler, one in which locks are

maintained on database elements to prevent unserializable behavior. Intuitively, a transaction obtains locks

on the database elements it accesses to prevent other transactions from accessing these elements at roughly

the same time and thereby incurring the risk of unserializability.

First, we introduce the concept of locking with an (overly) simple locking scheme. In this scheme, there is

only one kind of lock, which transactions must obtain on a database element if they want to perform any

operation whatsoever on that element. Later, we shall learn more realistic locking schemes, with several

kinds of lock, including the common shared/exclusive locks that correspond to the privileges of reading

and writing, respectively.

Locks

Recall from the chapter introduction that the responsibility of the scheduler is to take requests from

transactions and either allow them to operate on the database or block the transaction until such time as it

is safe to allow it to continue. A lock table will be used to guide this decision in a manner that we shall

discuss at length.

Ideally, a scheduler would forward a request if and only if its execution cannot possibly lead to an

inconsistent database state after all active transactions commit or abort. A locking scheduler, like most

types of scheduler, instead enforces conflict-serializability, which as we learned is a more stringent

condition than correctness, or even than serializability.

When a scheduler uses locks, transactions must request and release locks, in addition to reading and writing

database elements. The use of locks must be proper in two senses, one applying to the structure of

transactions, and the other to the structure of schedules:

 Consistency of Transactions: Actions and locks must relate in the expected ways:

1. A transaction can only read or write an element if it previously was granted a lock on that element

and hasn’t yet released the lock.

2. If a transaction locks an element, it must later unlock that element.

 Legality of Schedules: Locks must have their intended meaning: no two transactions may have locked

the same element without one having first released the lock.

We shall extend our notation for actions to include locking and unlocking actions:

li(X): Transaction Ti requests a lock on database element X.

ui(X): Transaction Ti releases (“unlocks”) its lock on database element X.

Thus, the consistency condition for transactions can be stated as:

 Whenever a transaction Ti has an action ri(X) or wi(X), then there is a previous action li(X) with

no intervening action ui(X), and there is a subsequent ui(X).

The legality of schedules is stated:

 If there are actions li(X) followed by lj(X) in a schedule, then somewhere between these actions

there must be an action ui(X).

Example. Let us consider the two transactions T1 and T2 that we introduced earlier. Recall that T1 adds 100

to database elements A and B, while T2 doubles them. Here are specifications for these transactions, in

which we have included lock actions as well as arithmetic actions to help us remember what the transactions

are doing (remember that the actual computations of the transaction usually are not represented in our

39

current notation, since they are not considered by the scheduler when deciding whether to grant or deny

transaction requests):

T1: l1(A); r1(A); A := A+100; w1(A); u1(A); l1(B); r1(B); B := B+100; w1(B); u1(B);

T2: l2(A); r2(A); A := A*2; w2(A); u2(A); l2(B); r2(B); B := B*2; w2(B); u2(B);

Each of these transactions is consistent. They each release the locks on A and B that they take. Moreover,

they each operate on A and B only at steps where they have previously requested a lock on that element and

have not yet released the lock.

T1 T2 A B

l1(A); r1(A); 25

A := A+100;

w1(A); u1(A); 125

 l2(A); r2(A); 125

 A := A*2;

 w2(A); u2(A); 250

 l2(B); r2(B); 25

 B := B*2;

 w2(B); u2(B); 50

l1(B); r1(B); 50

B := B+100;

w1(B); u1(B); 150

The figure above shows one legal schedule of these two transactions. The schedule is legal because the two

transactions never hold a lock on A at the same time, and likewise for B. Specifically, T2 does not execute

l2(A) until after T1 executes u1(A), and T1 does not execute l1(B) until after T2 executes u2(B). As

we see from the trace of the values computed, the schedule, although legal, is not serializable. We shall

soon see the additional condition, “two-phase locking,” that we need to assure that legal schedules are

conflict-serializable.

The Locking Scheduler

It is the job of a scheduler based on locking to grant requests if and only if the request will result in a legal

schedule. If a request is not granted, the requesting transaction is delayed; it waits until the scheduler grants

its request at a later time. To aid its decisions, the scheduler has a lock table that tells, for every database

element, the transaction (if any) that currently holds a lock on that element. We shall later discuss the

structure of a lock table in more detail. However, when there is only one kind of lock, as we have assumed

so far, the table may be thought of as a relation Locks(element, transaction), consisting of pairs

(X,T) such that transaction T currently has a lock on database element X. The scheduler has only to query

and modify this relation using simple INSERT and DELETE statements.

Example. The schedule in the previous example is legal, as we mentioned, so the locking scheduler would

grant every request in the order of arrival shown. However, sometimes it is not possible to grant requests.

Here are T1 and T2 with simple but important changes, in which T1 and T2 each lock B before releasing the

lock on A:

T1: l1(A); r1(A); A := A+100; w1(A); l1(B); u1(A); r1(B); B := B+100; w1(B); u1(B);

T2: l2(A); r2(A); A := A*2; w2(A); l2(B); u2(A); r2(B); B := B*2; w2(B); u2(B);

40

T1 T2 A B

l1(A); r1(A); 25

A := A+100;

w1(A); l1(B); u1(A); 125

 l2(A); r2(A); 125

 A := A*2;

 w2(A); 250

 l2(B); denied

r1(B); B := B+100; 25

w1(B); u1(B); 125

 l2(B); u2(A); r2(B); 125

 B := B*2;

 w2(B); u2(B); 250

As you can see in the figure, when T2 requests a lock on B, the scheduler must deny the lock, because T1

still holds a lock on B. Thus, T2 is delayed, and the next actions are from T1. Eventually, T1 executes

u1(B), which unlocks B. Now, T2 can get its lock on B, which is executed at the next step. Notice that

because T2 was forced to wait, it wound up multiplying B by 2 after T1 added 100, resulting in a consistent

database state.

Two-Phase Locking

There is a surprising condition, called two-phase locking (or 2PL) under which we can guarantee that a

legal schedule of consistent transactions is conflict-serializable:

 In every transaction, all lock actions precede all unlock actions.

The “two phases” referred to by 2PL are thus the first phase, where locks are obtained, and the second

phase, where locks are relinquished. Two-phase locking is a condition, like consistency, on the order of

actions in a transaction. A transaction that obeys the 2PL condition is said to be a two-phase-locked

transaction, or 2PL transaction.

Example. In our first example, the transactions do not obey the two-phase locking rule. For instance, T1

unlocks A before it locks B. However, the versions of the transactions found in the second example do obey

the 2PL condition. Notice that T1 locks both A and B within the first five actions and unlocks them within

the next five actions; T2 behaves similarly. If we compare the two figures, we see how the 2PL transactions

interact properly with the scheduler to assure consistency, while the non-2PL transactions allow non-

conflict-serializable behavior.

Why Two-Phase Locking Works

Intuitively, each two-phase-locked transaction may be thought to execute in its entirety at the instant it

issues its first unlock request. Thus, there is always at least one conflict-equivalent serial schedule for a

schedule S of 2PL transactions: the one in which the transactions appear in the same order as their first

unlocks.

We shall show how to convert any legal schedule S of consistent, two-phase-locked transactions to a

conflict-equivalent serial schedule. The conversion is best described as an induction on n, the number of

transactions in S. In what follows, it is important to remember that the issue of conflict-equivalence refers

to the read and write actions only. As we swap the order of reads and writes, we ignore the lock and unlock

actions. Once we have the read and write actions ordered serially, we can place the lock and unlock actions

around them as the various transactions require. Since each transaction releases all locks before its end, we

know that the serial schedule is legal.

41

Basis: If n = 1, i.e., the schedule consists of only one transaction, there is nothing to do; S is already a serial

schedule.

Induction: Suppose S involves n transactions T1, T2, …, Tn, and let Ti be the transaction with the first

unlock action in the entire schedule S, say ui(X). We claim it is possible to move all the read and write

actions of Ti forward to the beginning of the schedule without passing any conflicting reads or writes.

Consider some action of Ti, say wi(Y). Could it be preceded in S by some conflicting action, say wj(Y)?

If so, then in schedule S, actions uj(Y) and li(Y) must intervene, in a sequence of actions

…; wj(Y); …; uj(Y); …; li(Y); …; wi(Y); …

Since Ti is the first to unlock, ui(X) precedes uj(Y) in S; that is, S might look like this:

…; wj(Y); …; ui(X); …; uj(Y); …; li(Y); …; wi(Y); …

ui(X) could even appear before wj(Y). In any case, ui(X) appears before li(Y), which means that Ti

is not two-phase-locked, as we assumed. While we have only argued the nonexistence of conflicting pairs

of writes, the same argument applies to any pair of potentially conflicting actions, one from Ti and the

other from another Tj.

We conclude that it is indeed possible to move all the actions of Ti forward to the beginning of S, using

swaps of nonconflicting read and write actions, followed by restoration of the lock and unlock actions of

Ti. That is, S can be written in the form

(actions of Ti) (actions of the other n – 1 transactions)

The tail of n – 1 transactions is still a legal schedule of consistent, 2PL transactions, so the inductive

hypothesis applies to it. We convert the tail to a conflict-equivalent serial schedule, and now all of S has

been shown conflict-serializable.

A Risk of Deadlock

One problem that is not solved by two-phase locking is the potential for deadlocks, where several

transactions are forced by the scheduler to wait “forever” for a lock held by another transaction. For

instance, consider our familiar 2PL transactions, but with T2 changed to work on B first:

T1: l1(A); r1(A); A := A+100; w1(A); l1(B); u1(A); r1(B); B := B+100; w1(B); u1(B);

T2: l2(B); r2(B); B := B*2; w2(B); l2(A); u2(B); r2(A); A := A*2; w2(A); u2(A);

A possible interleaving of the actions of these transactions is:

T1 T2 A B

l1(A); r1(A); 25

 l2(B); r2(B); 25

A := A+100;

 B := B*2;

w1(A); 125

 w2(B); 50

l1(B); denied l2(A); denied

Now, neither transaction can proceed, and they wait forever. You can observe that it is not possible to allow

both transactions to proceed, since if we do so, the final database state cannot possibly have A = B.

When a deadlock exists, it is generally impossible to repair the situation so that all transactions involved

can proceed. Thus, at least one of the transactions will have to be aborted and restarted.

42

There are two broad approaches to dealing with deadlocks. We can detect deadlocks and fix them (deadlock

detection), or we can manage transactions in such a way that deadlocks are never able to form (deadlock

prevention).

The simplest way to detect and resolve deadlocks is with a timeout. Put a limit on how long a transaction

may be active, and if a transaction exceeds this time, roll it back. For example, in a simple transaction

system, where typical transactions execute in milliseconds, a timeout of one minute would affect only

transactions that are caught in a deadlock.

Notice that when one deadlocked transaction times out and rolls back, it releases its locks or other resources.

Thus, there is a chance that the other transactions involved in the deadlock will complete before reaching

their timeout limits. However, since transactions involved in a deadlock are likely to have started at

approximately the same time (or else, one would have completed before another started), it is also possible

that spurious timeouts of transactions that are no longer involved in a deadlock will occur.

A more sophisticated way for deadlock detection is by a waits-for graph, indicating which transactions are

waiting for locks held by another transaction. This graph can be used either to detect deadlocks after they

have formed or to prevent deadlocks from ever forming. We shall assume the latter, which requires us to

maintain the waits-for graph at all times, refusing to allow an action that creates a cycle in the graph.

We will see that a lock table maintains for each database element X a list of the transactions that are waiting

for locks on X, as well as transactions that currently hold locks on X. The waits-for graph has a node for

each transaction that currently holds any lock or is waiting for one. There is an arc from node (transaction)

T to node U if there is some database element A such that

1. U holds a lock on A,

2. T is waiting for a lock on A, and

3. T cannot get a lock on A unless U first releases its lock on A.

If there are no cycles in the waits-for graph, then each transaction can complete eventually. There will be

at least one transaction waiting for no other transaction, and this transaction surely can complete. At that

time, there will be at least one other transaction that is not waiting, which can complete, and so on.

However, if there is a cycle, then no transaction in the cycle can ever make progress, so there is a deadlock.

Thus, a strategy for deadlock avoidance is to roll back any transaction that makes a request that would cause

a cycle in the waits-for graph.

Example. Suppose we have the following four transactions, each of which reads one element and writes

another:

T1: l1(A); r1(A); l1(B); w1(B); u1(A); u1(B);

T2: l2(C); r2(C); l2(A); w2(A); u2(C); u2(A);

T3: l3(B); r3(B); l3(C); w3(C); u3(B); u3(C);

T4: l4(D); r4(D); l4(A); w4(A); u4(D); u4(A);

Step T1 T2 T3 T4

1) l1(A); r1(A);

2) l2(C); r2(C);

3) l3(B); r3(B);

4) l4(D); r4(D);

5) l2(A); denied

6) l3(C); denied

7) l4(A); denied

8) l1(B); denied

In the figure above, you can see the beginning of a schedule of these four transactions. In the first four

steps, each transaction obtains a lock on the element it wants to read. At step (5), T2 tries to lock A, but the

43

request is denied because T1 already has a lock on A. Thus, T2 waits for T1, and we draw an arc from the

node for T2 to the node for T1.

Similarly, at step (6) T3 is denied a lock on C because of T2, and at step (7), T4 is denied a lock on A because

of T1. The waits-for graph at this point is as follows:

4

3 2 1

There is no cycle in this graph. At step (8), T1 must wait for the lock on B held by T3. If we allow T1 to

wait, there is a cycle in the waits-for graph involving T1, T2, and T3, as seen in the following figure:

4

3 2 1

Since each of these transactions is waiting for another to finish, none can make progress, and therefore,

there is a deadlock involving these three transactions. Incidentally, T4 cannot finish either, although it is

not in the cycle, because T4’s progress depends on T1 making progress.

Since we roll back any transaction that causes a cycle, T1 must be rolled back, yielding the following waits-

for graph:

4

3 2

T1 relinquishes its lock on A, which may be given to either T2 or T4. Suppose it is given to T2. Then T2 can

complete, whereupon it relinquishes its locks on A and C. Now T3, which needs a lock on C, and T4, which

needs a lock on A, can both complete. At some time, T1 is restarted, but it cannot get locks on A and B until

T2, T3, and T4 have completed.

Locking Systems With Several Lock Modes

The locking scheme described previously illustrates the important ideas behind locking, but it is too simple

to be a practical scheme. The main problem is that a transaction T must take a lock on a database element

X even if it only wants to read X and not write it. We cannot avoid taking the lock, because if we didn’t,

then another transaction might write a new value for X while T was active and cause unserializable behavior.

On the other hand, there is no reason why several transactions could not read X at the same time, as long as

none is allowed to write X.

44

Shared and Exclusive Locks

The lock we need for writing is “stronger” than the lock we need to read, since it must prevent both reads

and writes. Let us therefore consider a locking scheduler that uses two different kinds of locks: shared locks

(read locks) and exclusive locks (write locks). For any database element X, there can be either one exclusive

lock on X, or no exclusive locks but any number of shared locks. If we want to write X, we need to have an

exclusive lock on X, but if we wish only to read X, we may have either a shared or an exclusive lock on X.

If we want to read X but not write it, it is better to take only a shared lock.

We shall use sli(X) to mean “transaction Ti requests a shared lock on database element X” and xli(X)

for “Ti requests an exclusive lock on X.” We continue to use ui(X) to mean that Ti unlocks X; i.e., it

relinquishes whatever lock(s) it has on X.

The three kinds of requirements — consistency and 2PL for transactions, and legality for schedules — each

have their counterpart for a shared/exclusive lock system. We summarize these requirements here:

1. Consistency of transactions: A transaction may not write without holding an exclusive lock and may

not read without holding some lock. More precisely, in any transaction Ti,

a) a read action ri(X) must be preceded by sli(X) or xli(X), with no intervening ui(X);

b) a write action wi(X) must be preceded by xli(X), with no intervening ui(X).

All locks must be followed by an unlock of the same element.

2. Two-phase locking of transactions: Locking must precede unlocking. To be more precise, in any two-

phase locked transaction Ti, no action sli(X) or xli(X) can be preceded by an action ui(Y), for

any Y.

3. Legality of schedules: An element may either be locked exclusively by one transaction or by several in

shared mode, but not both. More precisely:

a) If xli(X) appears in a schedule, then there cannot be a following xlj(X) or slj(X), for some j

other than i, without an intervening ui(X).

b) If sli(X) appears in a schedule, then there cannot be a following xlj(X), for j ≠ i, without an

intervening ui(X).

Note that we do allow one transaction to request and hold both shared and exclusive locks on the same

element, provided its doing so does not conflict with the lock(s) of other transactions. If transactions know

in advance their needs for locks, then only the exclusive lock would have to be requested, but if lock needs

are unpredictable, then it is possible that one transaction would request both shared and exclusive locks at

different times.

Example. Let us examine a possible schedule of the following two transactions, using shared and exclusive

locks:

T1: sl1(A); r1(A); xl1(B); r1(B); w1(B); u1(A); u1(B);

T2: sl2(A); r2(A); sl2(B); r2(B); u2(A); u2(B);

Both T1 and T2 read A and B, but only T1 writes B. Neither writes A.

T1 T2

sl1(A); r1(A);

 sl2(A); r2(A);

 sl2(B); r2(B);

xl1(B); denied

 u2(A); u2(B);

xl1(B); r1(B); w1(B);

u1(A); u1(B);

45

In the figure above is an interleaving of the actions of T1 and T2 in which T1 begins by getting a shared

lock on A. Then, T2 follows by getting shared locks on both A and B. Now, T1 needs an exclusive lock on

B, since it will both read and write B. However, it cannot get the exclusive lock because T2 already has a

shared lock on B. Thus, the scheduler forces T1 to wait. Eventually, T2 releases the lock on B. At that time,

T1 may complete.

Notice that the resulting schedule is conflict-serializable. The conflict-equivalent serial order is (T2, T1),

even though T1 started first. The argument we gave earlier to show that legal schedules of consistent, 2PL

transactions are conflict-serializable applies to systems with shared and exclusive locks as well. In the

figure, T2 unlocks before T1, so we would expect T2 to precede T1 in the serial order.

Compatibility Matrices

If we use several lock modes, then the scheduler needs a policy about when it can grant a lock request,

given the other locks that may already be held on the same database element. A compatibility matrix is a

convenient way to describe lock-management policies. It has a row and column for each lock mode. The

rows correspond to a lock that is already held on an element X by another transaction, and the columns

correspond to the mode of a lock on X that is requested. The rule for using a compatibility matrix for lock-

granting decisions is:

 We can grant the lock on X in mode C if and only if for every row R such that there is already a lock on

X in mode R by some other transaction, there is a “yes” in column C.

Example. The following figure shows the compatibility matrix for shared (S) and exclusive (X) locks:

 S X

S yes no

X no no

The column for S says that we can grant a shared lock on an element if the only locks held on that element

currently are shared locks. The column for X says that we can grant an exclusive lock only if there are no

other locks held currently. As you can see, these rules summarize the definition of the legality of schedules

for this locking scheme.

Upgrading Locks

A transaction T that takes a shared lock on X is being “friendly” toward other transactions, since they are

allowed to read X at the same time T is. Thus, we might wonder whether it would be friendlier still if a

transaction T that wants to read and write a new value of X were first to take a shared lock on X, and only

later, when T was ready to write the new value, upgrade the lock to exclusive (i.e., request an exclusive

lock on X in addition to its already held shared lock on X). There is nothing that prevents a transaction from

issuing requests for locks on the same database element in different modes. We adopt the convention that

ui(X) releases all locks on X held by transaction Ti, although we could introduce mode-specific unlock

actions if there were a use for them.

To be more precise: We say that transaction T upgrades its lock in mode L1 to mode L2 on database element

X if

 T holds a lock in mode L1 on X,

 T requests a lock in mode L2 on X, and

 L2 dominates L1.

46

A lock mode L2 dominates lock mode L1 if in the compatibility matrix, L2’s row and column each have

“no” in whatever positions L1’s row or column, respectively, has “no.” For instance, X dominates S in case

of SX locking scheme. (Actually, X dominates all lock modes in all locking schemes, because both its row

and its column contain “no” in each position.)

Example. In the following example, transaction T1 is able to perform its computation concurrently with T2,

which would not be possible had T1 taken an exclusive lock on B initially. The two transactions are:

T1: sl1(A); r1(A); sl1(B); r1(B); xl1(B); w1(B); u1(A); u1(B);

T2: sl2(A); r2(A); sl2(B); r2(B); u2(A); u2(B);

Here, T1 reads A and B and performs some (possibly lengthy) calculation with them, eventually using the

result to write a new value of B. Notice that T1 takes a shared lock on B first, and later, after its calculation

involving A and B is finished, requests an exclusive lock on B. Transaction T2 only reads A and B and does

not write.

T1 T2

sl1(A); r1(A);

 sl2(A); r2(A);

 sl2(B); r2(B);

sl1(B); r1(B);

xl1(B); denied

 u2(A); u2(B);

xl1(B); w1(B);

u1(A); u1(B);

The figure shows a possible schedule of actions. T2 gets a shared lock on B before T1 does, but on the fourth

line, T1 is also able to lock B in shared mode. Thus, T1 has both A and B and can perform its computation

using their values. It is not until T1 tries to upgrade its lock on B to exclusive that the scheduler must deny

the request and force T1 to wait until T2 releases its lock on B. At that time, T1 gets its exclusive lock on B,

writes B, and finishes.

Notice that had T1 asked for an exclusive lock on B initially, before reading B, then the request would have

been denied, because T2 already had a shared lock on B. T1 could not perform its computation without

reading B, and so T1 would have more to do after T2 releases its locks. As a result, T1 would finish later if

it used only an exclusive lock on B than it does using the upgrading strategy.

Example. Unfortunately, indiscriminate use of upgrading introduces a new and potentially serious source

of deadlocks. Suppose that T1 and T2 each read database element A and write a new value for A. If both

transactions use an upgrading approach, first getting a shared lock on A and then upgrading it to exclusive,

the sequence of events suggested in the following figure will happen whenever T1 and T2 initiate at

approximately the same time:

T1 T2

sl1(A);

 sl2(A);

xl1(A); denied

 xl2(A); denied

T1 and T2 are both able to get shared locks on A. Then, they each try to upgrade to exclusive, but the

scheduler forces each to wait because the other has a shared lock on A. Thus, neither can make progress,

and they will each wait forever, or until the system discovers that there is a deadlock, aborts one of the two

transactions, and gives the other the exclusive lock on A.

47

Update Locks

We can avoid the deadlock problem described above with a third lock mode, called update locks. An update

lock uli(X) gives transaction Ti only the privilege to read X, not to write X. However, only the update

lock can be upgraded to a write lock later; a read lock cannot be upgraded. We can grant an update lock on

X when there are already shared locks on X, but once there is an update lock on X, we prevent additional

locks of any kind — shared, update, or exclusive — from being taken on X. The reason is that if we don’t

deny such locks, then the updater might never get a chance to upgrade to exclusive, since there would

always be other locks on X (thus, update locks solve not only the above deadlock problem but also the

starvation problem).

This rule leads to an asymmetric compatibility matrix, because the update (U) lock looks like a shared lock

when we are requesting it and looks like an exclusive lock when we already have it. Thus, the columns for

U and S locks are the same, and the rows for U and X locks are the same:

 S X U

S yes no yes

X no no no

U no no no

Remember, however, that there is an additional condition regarding legality of schedules that is not reflected

by this matrix: a transaction holding a shared lock but not an update lock on an element X cannot be given

an exclusive lock on X, even though we do not in general prohibit a transaction from holding multiple locks

on an element.

Example. The use of update locks would have no effect on the first example of the previous page. As its

third action, T1 would take an update lock on B, rather than a shared lock. But the update lock would be

granted, since only shared locks are held on B, and the same sequence of actions would occur.

However, update locks fix the deadlock problem shown in the second example of the previous page. Now,

both T1 and T2 first request update locks on A and only later take exclusive locks. Possible descriptions of

T1 and T2 are:

T1: ul1(A); r1(A); xl1(A); w1(A); u1(A);

T2: ul2(A); r2(A); xl2(A); w2(A); u2(A);

The sequence of events corresponding to the one described there is the following:

T1 T2

ul1(A); r1(A);

 ul2(A); denied

xl1(A); w1(A); u1(A);

 ul2(A); r2(A);

 xl2(A); w2(A); u2(A);

Now, T2, the second to request an update lock on A, is denied. T1 is allowed to finish, and then T2 may

proceed. The lock system has effectively prevented concurrent execution of T1 and T2, but in this example,

any significant amount of concurrent execution will result in either a deadlock or an inconsistent database

state.

48

Increment Locks

Another interesting kind of lock that is useful in some situations is an increment lock. Many transactions

operate on the database only by incrementing or decrementing stored values. For example, consider a

transaction that transfers money from one bank account to another.

The useful property of increment actions is that they commute with each other, since if two transactions

add constants to the same database element, it does not matter which goes first. On the other hand,

incrementation commutes with neither reading nor writing; if you read A before or after it is incremented,

you leave different values, and if you increment A before or after some other transaction writes a new value

for A, you get different values of A in the database.

Let us introduce as a possible action in transactions the increment action, written INC(A,c). Informally,

this action adds constant c to database element A, which we assume is a single number. Note that c could

be negative, in which case we are really decrementing A. In practice, we might apply INC to a component

of a tuple, while the tuple itself, rather than one of its components, is the lockable element. More formally,

we use INC(A,c) to stand for the atomic execution of the following steps: READ(A,t); t := t+c;

WRITE(A,t);.

Corresponding to the increment action, we need an increment lock. We shall denote the action of Ti

requesting an increment lock on X by ili(X). We also use shorthand inci(X) for the action in which

transaction Ti increments database element X by some constant; the exact constant doesn’t matter.

The existence of increment actions and locks requires us to make several modifications to our definitions

of consistent transactions, conflicts, and legal schedules. These changes are:

a) A consistent transaction can only have an increment action on X if it holds an increment (or exclusive)

lock on X at the time. An increment lock does not enable either read or write actions, however.

b) The action inci(X) conflicts with both rj(X) and wj(X), for j  i, but does not conflict with

incj(X).

c) In a legal schedule, any number of transactions can hold an increment lock on X at any time. However,

if an increment lock on X is held by some transaction, then no other transaction can hold either a shared

or exclusive lock on X at the same time. These requirements are expressed by the compatibility matrix,

where I represents a lock in increment mode:

 S X I

S yes no no

X no no no

I no no yes

Example. Consider two transactions, each of which reads database element A and then increments B:

T1: sl1(A); r1(A); il1(B); inc1(B); u1(A); u1(B);

T2: sl2(A); r2(A); il2(B); inc2(B); u2(A); u2(B);

Notice that the transactions are consistent, since they only perform an incrementation while they have an

increment lock, and they only read while they have a shared lock. A possible interleaving of T1 and T2 is

the following:

49

T1 T2

sl1(A); r1(A);

 sl2(A); r2(A);

 il2(B); inc2(B);

il1(B); inc1(B);

 u2(A); u2(B);

u1(A); u1(B);

T1 reads A first, but then T2 both reads A and increments B. However, T1 is then allowed to get its increment

lock on B and proceed. Notice that the scheduler did not have to delay any requests. Suppose, for instance,

that T1 increments B by A, and T2 increments B by 2A. They can execute in either order, since the value of

A does not change, and the incrementations may also be performed in either order. Put another way, we

may look at the sequence of nonlock actions in the schedule; they are:

S: r1(A); r2(A); inc2(B); inc1(B);

We may move the last action, inc1(B), to the second position, since it does not conflict with another

increment of the same element, and surely does not conflict with a read of a different element. This sequence

of swaps shows that S is conflict-equivalent to the following serial schedule:

r1(A); inc1(B); r2(A); inc2(B);

Similarly, we can move the first action, r1(A), to the third position by swaps, giving a serial schedule in

which T2 precedes T1.

An Architecture for a Locking Scheduler

Having seen a number of different locking schemes, we next consider how a scheduler that uses one of

these schemes operates. We shall consider here only a simple scheduler architecture based on several

principles:

1. The transactions themselves do not request locks, or cannot be relied upon to do so. It is the job of the

scheduler to insert lock actions into the stream of reads, writes, and other actions that access data.

2. Transactions do not release locks. Rather, the scheduler releases the locks when the transaction manager

tells it that the transaction will commit or abort.

50

A Scheduler That Inserts Lock Actions

Lock table

Transactions

Scheduler, Part I

READ(A); WRITE(B);

COMMIT; ...

LOCK(A); READ(A); ...

Scheduler, Part II

READ(A); WRITE(B); ...

The figure shows a two-part scheduler that accepts requests such as read, write, commit, and abort, from

transactions. The scheduler maintains a lock table, which, although it is shown as secondary-storage data,

may be partially or completely in main memory. Normally, the main memory used by the lock table is not

part of the buffer pool that is used for query execution and logging. Rather, the lock table is just another

component of the DBMS and will be allocated space by the operating system like other code and internal

data of the DBMS.

Actions requested by a transaction are generally transmitted through the scheduler and executed on the

database. However, under some circumstances a transaction is delayed, waiting for a lock, and its requests

are not (yet) transmitted to the database. The two parts of the scheduler perform the following actions:

1. Part I takes the stream of requests generated by the transactions and inserts appropriate lock actions

ahead of all database-access operations, such as read, write, increment, or update. Part I of the scheduler

must select an appropriate lock mode from whatever set of lock modes the scheduler is using. The

database-access and lock actions are then transmitted to Part II.

2. Part II takes the sequence of lock and database-access actions passed to it by Part I. It determines

whether the issuing transaction T is already delayed, because a lock has not been granted. If so, then

the action is itself delayed and added to a list of actions that must eventually be performed for

transaction T. If T is not delayed (i.e., all locks it previously requested have been granted already), then

Part II checks the type of action to be executed.

a) If the action is a database access, it is transmitted to the database and executed.

b) If a lock action is received by Part II, it examines the lock table to see if the lock can be granted. If

so, the lock table is modified to include the lock just granted. If not, then an entry must be made in

the lock table to indicate that the lock has been requested. Part II of the scheduler then delays

transaction T until such time as the lock is granted.

3. When a transaction T commits or aborts, Part I is notified by the transaction manager and releases all

locks held by T. If any transactions are waiting for any of these locks, Part I notifies Part II.

4. When Part II is notified that a lock on some database element X is available, it determines the next

transaction or transactions that can now be given a lock on X. The transaction(s) that receive a lock are

51

allowed to execute as many of their delayed actions as can execute, until they either complete or reach

another lock request that cannot be granted.

Example. If there is only one kind of lock, then the task of Part I of the scheduler is simple. If it sees any

action on database element X, and it has not already inserted a lock request on X for that transaction, then

it inserts the request. When a transaction commits or aborts, Part I can forget about that transaction after

releasing its locks, so the memory required for Part I does not grow indefinitely.

When there are several kinds of locks, the scheduler may require advance notice of what future actions on

the same database element will occur. Let us reconsider the case of shared-exclusive-update locks, using

the transactions of the example seen at lock upgrading, which we now write without any locks at all:

T1: r1(A); r1(B); w1(B);

T2: r2(A); r2(B);

The messages sent to Part I of the scheduler must include not only the read or write request, but an indication

of future actions on the same element. In particular, when r1(B) is sent, the scheduler needs to know that

there will be a later w1(B) action (or might be such an action). There are several ways the information

might be made available. For example, if the transaction is a query, we know it will not write anything. If

the transaction is a SQL database modification command, then the query processor can determine in

advance the database elements that might be both read and written. If the transaction is a program with

embedded SQL, then the compiler has access to all the SQL statements (which are the only ones that can

access the database) and can determine the potential database elements written.

In our example, suppose that events occur in the order suggested by the example at lock upgrading. Then

T1 first issues r1(A). Since there will be no future upgrading of this lock, the scheduler inserts sl1(A)

ahead of r1(A). Next, the requests from T2 — r2(A) and r2(B) — arrive at the scheduler. Again, there

is no future upgrade, so the sequence of actions sl2(A); r2(A); sl2(B); r2(B); are issued by Part I.

Then, the action r1(B) arrives at the scheduler, along with a warning that this lock may be upgraded. The

scheduler Part I thus emits ul1(B); r1(B); to Part II. The latter consults the lock table and finds that it

can grant the update lock on B to T1, because there are only shared locks on B.

When the action w1(B) arrives at the scheduler, Part I emits xl1(B); w1(B);. However, Part II cannot

grant the xl1(B) request, because there is a shared lock on B for T2. This and any subsequent actions from

T1 are delayed, stored by Part II for future execution. Eventually, T2 commits, and Part I releases the locks

on A and B that T2 held. At that time, it is found that T1 is waiting for a lock on B. Part II of the scheduler

is notified, and it finds the lock xl1(B) is now available. It enters this lock into the lock table and proceeds

to execute stored actions from T1 to the extent possible. In this case, T1 completes.

52

The Lock Table

A

DB element Lock information

Group mode: U

Waiting: yes

List:

T1 S no

Tran Mode Wait? Tnext

T2 U no

T3 X yes

Next

Abstractly, the lock table is a relation that associates database elements with locking information about that

element, as suggested by the figure. The table might, for instance, be implemented with a hash table, using

(addresses of) database elements as the hash key. Any element that is not locked does not appear in the

table, so the size is proportional to the number of locked elements only, not to the size of the entire database.

In the figure is an example of the sort of information we would find in a lock-table entry. This example

structure assumes that the shared-exclusive-update lock scheme is used by the scheduler. The entry shown

for a typical database element A is a tuple with the following components:

1. The group mode is a summary of the most stringent conditions that a transaction requesting a new lock

on A faces, i.e., the group mode is the most dominant lock mode currently held on A. Rather than

comparing the lock request with every lock held by another transaction on the same element, we can

simplify the grant/deny decision by comparing the request with only the group mode. (The lock manager

must, however, deal with the possibility that the requesting transaction already has a lock in another

mode on the same element. For instance, in the SXU lock system discussed, the lock manager may be

able to grant an X-lock request if the requesting transaction is the one that holds a U lock on the same

element. For systems that do not support multiple locks held by one transaction on one element, the

group mode always tells what the lock manager needs to know.) For the shared-exclusive-update (SXU)

lock scheme, the rule is simple:

The group mode

a) S means that only shared locks are held;

b) U means that there is one update lock and perhaps one or more shared locks;

c) X means there is one exclusive lock and no other locks.

For other lock schemes, there is usually an appropriate system of summaries by a group mode.

2. The waiting bit tells whether there is at least one transaction waiting for a lock on A.

3. A list describing all those transactions that either currently hold locks on A or are waiting for a lock on

A. Useful information that each list entry might include:

53

a) the name of the transaction holding or waiting for a lock;

b) the mode of this lock;

c) whether the transaction is holding or waiting for the lock.

We also show in the figure two links for each entry. One links the entries for a particular database

element, and the other (Tnext in the figure) links all entries for a particular transaction. The latter link

would be used when a transaction commits or aborts, so that we can easily find all the locks that must

be released.

Handling Lock Requests

Suppose transaction T requests a lock on A. If there is no lock-table entry for A, then surely there are no

locks on A, so the entry is created and the request is granted. If the lock-table entry for A exists, we use it

to guide the decision about the lock request. We find the group mode, which in the figure is U (update).

Once there is an update lock on an element, no other lock can be granted (except in the case that T itself

holds the U lock, and other locks are compatible with T’s request). Thus, this request by T is denied, and

an entry will be placed on the list saying T requests a lock (in whatever mode was requested), and the

waiting bit is set to true.

If the group mode had been X (exclusive), then the same thing would happen, but if the group mode were

S (shared), then another shared or update lock could be granted. In that case, the entry for T on the list

would have the waiting bit false, and the group mode would be changed to U if the new lock were an update

lock; otherwise, the group mode would remain S. Whether or not the lock is granted, the new list entry is

linked properly, through its Tnext and Next fields. Notice that whether or not the lock is granted, the entry

in the lock table tells the scheduler what it needs to know without having to examine the list of locks.

Handling Unlocks

Now suppose transaction T unlocks A. T’s entry on the list for A is deleted. If the lock held by T is not the

same as the group mode (e.g., T held an S lock, while the group mode was U), then there is no reason to

change the group mode. On the other hand, if T’s lock is in the group mode, we may have to examine the

entire list to find the new group mode. In the example of the figure, we know there can be only one U lock

on an element, so if that lock is released, the new group mode could be only S (if there are shared locks

remaining) or nothing (if no other locks are currently held). (We would never actually see a group mode of

“nothing,” since if there are no locks and no lock requests on an element, then there is no lock-table entry

for that element. Moreover, there may not be a lock request without a granted lock on an element.) If the

group mode is X, we know there are no other locks, and if the group mode is S, we need to determine

whether there are other shared locks.

If the waiting bit is true, then we need to grant one or more locks from the list of requested locks. There are

several different approaches, each with its advantages:

1. First-come-first-served: Grant the lock request that has been waiting the longest. This strategy

guarantees no starvation, the situation where a transaction can wait forever for a lock.

2. Priority to shared locks: First grant all the shared locks waiting. Then, grant one update lock, if there

are any waiting. Only grant an exclusive lock if no others are waiting. This strategy can allow starvation,

if a transaction is waiting for a U or X lock.

3. Priority to upgrading: If there is a transaction with a U lock waiting to upgrade it to an X lock, grant

that first. Otherwise, follow one of the other strategies mentioned.

54

Hierarchies of Database Elements

Let us now return to the exploration of different locking schemes. In particular, we shall focus on two

problems that come up when there is a tree structure to our data:

1. The first kind of tree structure we encounter is a hierarchy of lockable elements (lock units). We shall

discuss in this section how to allow locks on both large elements, e.g., relations, and smaller elements

contained within these, such as blocks holding several tuples of the relation, or individual tuples.

2. The second kind of hierarchy that is important in concurrency-control systems is data that is itself

organized in a tree. A major example is B-tree indexes. We may view nodes of the B-tree as database

elements, but if we do, then as we shall see in the next section, the locking schemes studied so far

perform poorly, and we need to use a new approach.

Locks With Multiple Granularity

Recall that the term “database element” was purposely left undefined, because different systems use

different sizes of database elements to lock, such as tuples, pages or blocks, and relations. Some applications

benefit from small database elements, such as tuples, while others are best off with large elements.

Example. Consider a database for a bank. If we treated relations as database elements, and therefore had

only one lock for an entire relation such as the one giving account balances, then the system would allow

very little concurrency. Since most transactions will change an account balance either positively or

negatively, most transactions would need an exclusive lock on the accounts relation. Thus, only one deposit

or withdrawal could take place at any time, no matter how many processors we had available to execute

these transactions. A better approach is to lock individual pages or data blocks. Thus, two accounts whose

tuples are on different blocks can be updated at the same time, offering almost all the concurrency that is

possible in the system. The extreme would be to provide a lock for every tuple, so any set of accounts

whatsoever could be updated at once, but this fine a grain of locks is probably not worth the extra effort.

In contrast, consider a database of documents. These documents may be edited from time to time, but most

transactions will retrieve whole documents. The sensible choice of database element is a complete

document. Since most transactions are read-only (i.e., they do not perform any write actions), locking is

only necessary to avoid the reading of a document that is in the middle of being edited. Were we to use

smaller-granularity locks, such as paragraphs, sentences, or words, there would be essentially no benefit

but added expense. The only activity a smaller-granularity lock would support is the ability for two people

to edit different parts of a document simultaneously.

Some applications could use both large- and small-grained locks. For instance, the bank database discussed

in the example clearly needs block- or tuple-level locking, but might also at some time need a lock on the

entire accounts relation in order to audit accounts (e.g., check that the sum of the accounts is correct).

However, permitting a shared lock on the accounts relation, in order to compute some aggregation on the

relation, while at the same time there are exclusive locks on individual account tuples, can lead easily to

unserializable behavior. The reason is that the relation is actually changing while a supposedly frozen copy

of it is being read by the aggregation query.

Warning Locks

The solution to the problem of managing locks at different granularities involves a new kind of lock called

a “warning.” These locks are useful when the lock units form a nested or hierarchical structure, as suggested

in the following figure:

55

R1

B3 B1 B2

t1 t2 t3

Relations

Blocks

Tuples

Here, we see three levels of lock units:

1. relations are the largest lockable elements;

2. each relation is composed of one or more blocks or pages, on which its tuples are stored;

3. each block contains one or more tuples.

The rules for managing locks on a hierarchy of lock units constitute the warning protocol, which involves

both “ordinary” locks and “warning” locks. We shall describe the lock scheme where the ordinary locks

are S and X (shared and exclusive). The warning locks will be denoted by prefixing I (for “intention to”) to

the ordinary locks; for example, IS represents the intention to obtain a shared lock on a subelement. The

rules of the warning protocol are:

1. To place an ordinary S or X lock on any element, we must begin at the root of the hierarchy.

2. If we are at the element that we want to lock, we need look no further. We request an S or X lock on

that element.

3. If the element we wish to lock is further down the hierarchy, then we place a warning at this node; that

is, if we want to get a shared lock on a subelement, we request an IS lock at this node, and if we want

an exclusive lock on a subelement, we request an IX lock on this node. When the lock on the current

node is granted, we proceed to the appropriate child (the one whose subtree contains the node we wish

to lock). We then repeat step (2) or step (3), as appropriate, until we reach the desired node.

In order to decide whether or not one of these locks can be granted, we use the following compatibility

matrix:

 IS IX S X

IS yes yes yes no

IX yes yes no no

S yes no yes no

X no no no no

To see why this matrix makes sense, consider first the IS column. When we request an IS lock on a node

N, we intend to read a descendant of N. The only time this intent could create a problem is if some other

transaction has already claimed the right to write a new copy of the entire lock unit represented by N; thus

we see “no” in the row for X. Notice that if some other transaction plans to write only a subelement,

indicated by an IX lock at N, then we can afford to grant the IS lock at N, and allow the conflict to be

resolved at a lower level, if indeed the intent to write and the intent to read happen to involve a common

element.

Now consider the column for IX. If we intend to write a subelement of node N, then we must prevent either

reading or writing of the entire element represented by N. Thus, we see “no” in the entries for lock modes

S and X. However, per our discussion of the IS column, another transaction that reads or writes a subelement

can have potential conflicts dealt with at that level, so IX does not conflict with another IX at N or with an

IS at N.

56

Next, consider the column for S. Reading the element corresponding to node N cannot conflict with either

another read lock on N or a read lock on some subelement of N, represented by IS at N. Thus, we see “yes”

in the rows for both S and IS. However, either an X or an IX means that some other transaction will write

at least a part of the element represented by N. Thus, we cannot grant the right to read all of N, which

explains the “no” entries in the column for S.

Finally, the column for X has only “no” entries. We cannot allow writing of all of node N if any other

transaction already has the right to read or write N, or to acquire that right on a subelement.

Example. Consider the following relation:

Movie(title, year, length, studioName)

Let us postulate a lock on the entire relation and locks on individual tuples. Let transaction T1 consist of

the following query:

SELECT * FROM Movie WHERE title = ’King Kong’;

T1 starts by getting an IS lock on the entire relation. It then moves to the individual tuples (there are two

movies with the title “King Kong”), and gets S locks on each of them.

Now, suppose that while we are executing the first query, transaction T2, which changes the year component

of a tuple, begins:

UPDATE Movie SET year = 1939 WHERE title = ’Gone With the Wind’;

T2 needs an IX lock on the relation, since it plans to write a new value for one of the tuples. T1’s IS lock

on the relation is compatible, so the lock is granted. When T2 goes to the tuple for “Gone With the Wind”,

it finds no lock there, and so gets its X lock and rewrites the tuple. Had T2 tried to write a new value in the

tuple for one of the “King Kong” movies, it would have had to wait until T1 released its S lock, since S and

X are not compatible. The collection of locks is suggested by the following figure:

Movie T1–IS

T2–IX

King Kong King Kong Gone With the Wind

T1–S T1–S T2–X

Group Modes for Intention Locks

The compatibility matrix depicted above exhibits a situation we have not seen before regarding the power

of lock modes. In prior lock schemes, whenever it was possible for a database element to be locked in two

distinct modes at the same time, one of these modes dominated the other. For example, in SXU lock scheme,

we see that U dominates S, and X dominates both S and U. An advantage of knowing that there is always

one dominant lock on an element is that we can summarize the effect of many locks with a “group mode.”

As we see from the compatibility matrix containing intention locks, neither of modes S and IX dominate

the other. Moreover, it is possible for an element to be locked in both modes S and IX at the same time,

provided the locks are requested by the same transaction (recall that the “no” entries in a compatibility

matrix only apply to locks held by some other transaction). A transaction might request both locks if it

wanted to read an entire element and then write a few of its subelements. If a transaction has both S and IX

locks on an element, then it restricts other transactions to the extent that either lock does. That is, we can

imagine another lock mode SIX, whose row and column have “no” everywhere except in the entry for IS.

57

The lock mode SIX serves as the group mode if there is a transaction with locks in S and IX modes, but not

X mode.

Incidentally, we might imagine that the same situation occurs in the matrix for increment locks. That is,

one transaction could hold locks in both S and I modes. However, this situation is equivalent to holding a

lock in X mode, so we could use X as the group mode in that situation.

Nonrepeatable Read and Phantoms

Consider a transaction T1 executing a query that selects some rows from a relation. Then, another

transaction T2 modifies or deletes some of the rows satisfying T1’s search condition and commits. If T1

then attempts to reread the rows with the same search condition, it will receive modified values or discover

that some rows have been deleted. This phenomenon is called nonrepeatable read or fuzzy read. The

problem with nonrepeatable reads is that the second execution of the same query may give different result

from its first execution. However, a transaction may expect that executing the same query more than one

time gives the same result each time.

A similar situation is when transaction T2 inserts some rows satisfying T1’s search condition into the

relation (instead of modifying or deleting existing rows). Again, running the query the second time will

give different result from the first time. The reason for this is that during the second execution, new rows

appear that did not even exist during the first execution. Such rows are called phantoms.

These two phenomena (nonrepeatable read and phantom read) occur so rarely in real life that some DBMSs

do not even prevent them by default, although both result in unserializable behavior. However, the user

may request that nonrepeatable reads and/or phantom reads should not occur when executing a particular

transaction. This is done by changing the transaction’s isolation level (see later).

Preventing nonrepeatable reads is simple: a shared lock must be requested by T1 on each row selected by

the query. This way, T2 cannot lock them in exclusive mode until T1 commits or aborts. There is also a

simple way for preventing phantom reads if we use locks with multiple granularity: T2 must lock the entire

relation in X mode before inserting new rows. Since T1 previously locked the relation in IS mode, this

request will be denied first by the scheduler and granted only after T1 commits, thus preventing

unserializable behavior.

The Tree Protocol

Like the previous section, this section deals with data in the form of a tree. However, here, the nodes of the

tree do not form a hierarchy based on containment. Rather, database elements are disjoint pieces of data,

but the only way to get to a node is through its parent; B-trees are an important example of this sort of data.

Knowing that we must traverse a particular path to an element gives us some important freedom to manage

locks differently from the two-phase locking approaches we have seen so far.

Motivation for Tree-Based Locking

Let us consider a B-tree index in a system that treats individual nodes (i.e., blocks) as lockable database

elements. The node is the right level of lock granularity, because treating smaller pieces as elements offers

no benefit, and treating the entire B-tree as one database element prevents the sort of concurrent use of the

index that can be achieved via the mechanisms that form the subject of this section.

If we use a standard set of lock modes, like shared, exclusive, and update locks, and we use two-phase

locking, then concurrent use of the B-tree is almost impossible. The reason is that every transaction using

58

the index must begin by locking the root node of the B-tree. If the transaction is 2PL, then it cannot unlock

the root until it has acquired all the locks it needs, both on B-tree nodes and other database elements.

Moreover, since in principle any transaction that inserts or deletes could wind up rewriting the root of the

B-tree, the transaction needs at least an update lock on the root node, or an exclusive lock if update mode

is not available. Thus, only one transaction that is not read-only can access the B-tree at any time.

However, in most situations, we can deduce almost immediately that a B-tree node will not be rewritten,

even if the transaction inserts or deletes a tuple. For example, if the transaction inserts a tuple, but the child

of the root that we visit is not completely full, then we know the insertion cannot propagate up to the root.

Similarly, if the transaction deletes a single tuple, and the child of the root we visit has more than the

minimum number of keys and pointers, then we can be sure the root will not change.

Thus, as soon as a transaction moves to a child of the root and observes the (quite usual) situation that rules

out a rewrite of the root, we would like to release the lock on the root. The same observation applies to the

lock on any interior node of the B-tree. Unfortunately, releasing the lock on the root early will violate 2PL,

so we cannot be sure that the schedule of several transactions accessing the B-tree will be serializable. The

solution is a specialized protocol for transactions that access tree-structured data such as B-trees. The

protocol violates 2PL, but uses the fact that accesses to elements must proceed down the tree to assure

serializability.

Rules for Access to Tree-Structured Data

The following restrictions on locks form the tree protocol. We assume that there is only one kind of lock,

represented by lock requests of the form li(X), but the idea generalizes to any set of lock modes. We

assume that transactions are consistent, and schedules must be legal (i.e., the scheduler will enforce the

expected restrictions by granting locks on a node only when they do not conflict with locks already on that

node), but there is no two-phase locking requirement on transactions.

1. A transaction’s first lock may be at any node of the tree. (In the B-tree example, the first lock would

always be at the root because a search in a B-tree always starts at the root.)

2. Subsequent locks may only be acquired if the transaction currently has a lock on the parent node.

3. Nodes may be unlocked at any time.

4. A transaction may not relock a node on which it has released a lock, even if it still holds a lock on the

node’s parent.

Example. The following figure shows a hierarchy of nodes, and the table indicates the actions of three

transactions on this data:

B

A

C

D E

F G

59

T1 T2 T3

l1(A); r1(A);

l1(B); r1(B);

l1(C); r1(C);

w1(A); u1(A);

l1(D); r1(D);

w1(B); u1(B);

 l2(B); r2(B);

 l3(E); r3(E);

w1(D); u1(D);

w1(C); u1(C);

 l2(E); denied

 l3(F); r3(F);

 w3(F); u3(F);

 l3(G); r3(G);

 w3(E); u3(E);

 l2(E); r2(E);

 w3(G); u3(G);

 w2(B); u2(B);

 w2(E); u2(E);

T1 starts at the root A and proceeds downward to B, C, and D. T2 starts at B and tries to move to E, but its

move is initially denied because of the lock by T3 on E. Transaction T3 starts at E and moves to F and G.

Notice that T1 is not a 2PL transaction, because the lock on A is relinquished before the lock on D is

acquired. Similarly, T3 is not a 2PL transaction, although T2 happens to be 2PL.

Why the Tree Protocol Works

The tree protocol implies a conflict-serializable order on consistent transactions involved in a legal

schedule. We can define an order of precedence as follows. Say that Ti takes precedence over Tj (Ti <S Tj)

if in schedule S, the transactions Ti and Tj lock a node in common, and Ti locks the node first.

Example. In the schedule S of the example above, we find T1 and T2 lock B in common, and T1 locks it

first. Thus, T1 <S T2. We also find that T2 and T3 lock E in common, and T3 locks it first; thus T3 <S T2.

However, there is no precedence between T1 and T3, because they lock no node in common. Thus, the

precedence graph derived from these precedence relations is as shown in the following figure:

1

2

3

If the precedence graph drawn from the precedence relations that we defined above has no cycles, then we

claim that any topological order of the transactions is an equivalent serial schedule. In our example, either

(T1, T3, T2) or (T3, T1, T2) is an equivalent serial schedule. The reason is that in such a serial schedule, all

nodes are touched in the same order as they are in the original schedule.

To understand why the precedence graph described above must always be acyclic if the tree protocol is

obeyed, observe the following:

 If two transactions lock several elements in common, then they are all locked in the same order.

To see why, consider some transactions T and U, which lock two or more items in common. First, notice

that each transaction locks a set of elements that form a tree, and the intersection of two trees is itself a tree.

Since now T and U lock some elements in common, this intersection cannot be an empty tree. Thus, there

is some one highest element X that both T and U lock. Suppose that T locks X first, but that there is some

60

other element Y that U locks before T. Then there is a path in the tree of elements from X to Y, and both T

and U must lock each element along the path, because neither can lock a node without having a lock on its

parent.

T locks

first

X

P

Z

Y

U locks

first

U locks

first

Consider the first element along this path, say Z, that U locks first, as suggested by the figure above. Then

T locks the parent P of Z before U does. But then T is still holding the lock on P when it locks Z, so U has

not yet locked P when it locks Z. It cannot be that Z is the first element U locks in common with T, since

they both lock ancestor X (which could also be P, but not Z). Thus, U cannot lock Z until after it has acquired

a lock on P, which is after T locks Z. We conclude that T precedes U at every node they lock in common.

Now, consider an arbitrary set of transactions T1, T2, …, Tn that obey the tree protocol and lock some of

the nodes of a tree according to schedule S. First, among those that lock the root, they do so in some order,

and by the rule just observed:

 If Ti locks the root before Tj, then Ti locks every node in common with Tj before Tj does. That is,

Ti <S Tj, but not Tj <S Ti.

We can show by induction on the number of nodes of the tree that there is some serial order equivalent to

S for the complete set of transactions.

Basis: If there is only one node, the root, then as we just observed, the order in which the transactions lock

the root serves.

Induction: If there is more than one node in the tree, consider for each subtree of the root the set of

transactions that lock one or more nodes in that subtree. Note that transactions locking the root may belong

to more than one subtree, but a transaction that does not lock the root will belong to only one subtree. For

instance, among the transactions of the table above, only T1 locks the root, and it belongs to both subtrees

— the tree rooted at B and the tree rooted at C. However, T2 and T3 belong only to the tree rooted at B.

By the inductive hypothesis, there is a serial order for all the transactions that lock nodes in any one subtree.

We have only to blend the serial orders for the various subtrees. Since the only transactions these lists of

transactions have in common are the transactions that lock the root, and we established that these

transactions lock every node in common in the same order that they lock the root, it is not possible that two

transactions locking the root appear in different orders in two of the sublists. Specifically, if Ti and Tj

appear on the list for some child C of the root, then they lock C in the same order as they lock the root and

therefore appear on the list in that order. Thus, we can build a serial order for the full set of transactions by

starting with the transactions that lock the root, in their appropriate order, and interspersing those

transactions that do not lock the root in any order consistent with the serial order of their subtrees.

61

Example. Suppose there are 10 transactions T1, T2, …, T10, and of these, T1, T2, and T3 lock the root in

that order. Suppose also that there are two children of the root, the first locked by T1 through T7 and the

second locked by T2, T3, T8, T9, and T10. Hypothetically, let the serial order for the first subtree be

(T4, T1, T5, T2, T6, T3, T7); note that this order must include T1, T2, and T3 in that order. Also, let the serial

order for the second subtree be (T8, T2, T9, T10, T3). As must be the case, the transactions T2 and T3, which

locked the root, appear in this sequence in the order in which they locked the root.

The constraints imposed on the serial order of these transactions are as shown in the following figure:

5

2

8

1 4 6

9 10

3

7

Solid lines represent constraints due to the order at the first child of the root, while dashed lines represent

the order at the second child. (T4, T8, T1, T5, T2, T9, T6, T10, T3, T7) is one of the many topological sorts

of this graph.

Concurrency Control by Timestamps

Next, we shall consider two methods other than locking that are used in some systems to assure

serializability of transactions:

1. Timestamping (timestamp ordering — TO): Assign a “timestamp” to each transaction. Record the

timestamps of the transactions that last read and write each database element, and compare these values

with the transactions’ timestamps, to assure that the serial schedule according to the transactions’

timestamps is equivalent to the actual schedule of the transactions.

2. Validation: Examine timestamps of the transaction and the database elements when a transaction is

about to commit; this process is called “validation” of the transaction. The serial schedule that orders

transactions according to their validation time must be equivalent to the actual schedule.

Both these approaches are optimistic, in the sense that they assume that no unserializable behavior will

occur and only fix things up when a violation is apparent. In contrast, all locking methods assume that

things will go wrong unless transactions are prevented in advance from engaging in nonserializable

behavior. The optimistic approaches differ from locking in that the only remedy when something does go

wrong is to abort and restart a transaction that tries to engage in unserializable behavior. In contrast, locking

schedulers delay transactions, but do not abort them. (That is not to say that systems using a locking

scheduler will never abort a transaction; sometimes they do, for instance, to fix deadlocks. However, a

locking scheduler never uses a transaction abort simply as a response to a lock request that it cannot grant.)

Generally, optimistic schedulers are better than locking when many of the transactions are read-only, since

those transactions can never, by themselves, cause unserializable behavior.

Timestamps

To use timestamping as a concurrency-control method, the scheduler needs to assign to each transaction T

a unique number, its timestamp TS(T). Timestamps must be issued in ascending order, at the time that a

transaction first notifies the scheduler that it is beginning. Two approaches to generating timestamps are:

a) We can use the system clock as the timestamp, provided the scheduler does not operate so fast that it

could assign timestamps to two transactions on one tick of the clock.

62

b) The scheduler can maintain a counter. Each time a transaction starts, the counter is incremented by 1,

and the new value becomes the timestamp of the transaction. In this approach, timestamps have nothing

to do with “time,” but they have the important property that we need for any timestamp-generating

system: a transaction that starts later has a higher timestamp than a transaction that starts earlier.

Whatever method of generating timestamps is used, the scheduler must maintain a table of currently active

transactions and their timestamps.

To use timestamps as a concurrency-control method, we need to associate with each database element X

two timestamps and perhaps an additional bit:

1. RT(X): the read time of X, which is the highest timestamp of a transaction that has read X.

2. WT(X): the write time of X, which is the highest timestamp of a transaction that has written X.

3. C(X): the commit bit for X, which is true if and only if the most recent transaction to write X has already

committed. This bit is not essential, its purpose is to avoid a situation where one transaction T reads

data written by another transaction U, and U then aborts. This problem, where T makes a “dirty read”

of uncommitted data, certainly can cause the database state to become inconsistent, and any scheduler

needs a mechanism to prevent dirty reads. (Although commercial systems generally give the user an

option to allow dirty reads, as suggested by the SQL isolation level “read uncommitted” — see later.)

Physically Unrealizable Behaviors

In order to understand the architecture and rules of a timestamp scheduler, we need to remember that the

scheduler assumes the timestamp order of transactions is also the serial order in which they must appear to

execute. Thus, the job of the scheduler, in addition to assigning timestamps and updating RT, WT, and C for

the database elements, is to check that whenever a read or write occurs, what happens in real time could

have happened if each transaction had executed instantaneously at the moment of its timestamp. If not, we

say the behavior is physically unrealizable. There are two kinds of problems that can occur:

1. Read too late: Transaction T1 tries to read database element X, but the write time of X indicates that the

current value of X was written after T1 theoretically executed; that is, TS(T1) < WT(X). The following

figure illustrates the problem:

r1(X)

w2(X)

TS(T2) TS(T1)

The horizontal axis represents the real time at which events occur. Dashed lines link the actual events

to the times at which they theoretically occur — the timestamp of the transaction that performs the

event. Thus, we see a transaction T2 that started after transaction T1, but wrote a value for X before T1

reads X. T1 should not be able to read the value written by T2, because theoretically, T2 executed after

T1 did. However, T1 has no choice, because T2’s value of X is the one that T1 now sees. The solution is

to abort T1 when the problem is encountered.

2. Write too late: Transaction T1 tries to write database element X. However, the read time of X indicates

that some other transaction should have read the value written by T1, but read some other value instead.

That is, TS(T1) < RT(X) . The problem is shown in the following figure:

63

w1(X)

r2(X)

TS(T2) TS(T1)

Here, we see a transaction T2 that started after T1, but read X before T1 got a chance to write X. When

T1 tries to write X, we find RT(X) > TS(T1), meaning that X has already been read by a transaction

T2 that theoretically executed later than T1.

Problems With Dirty Data

There is a class of problems that the commit bit is designed to solve. One of these problems, a “dirty read,”

is suggested in the following figure:

r2(X)

w1(X)

TS(T2)

TS(T1)

ABORT(T1)

Here, transaction T2 reads X, and X was last written by T1. The timestamp of T1 is less than that of T2, and

the read by T2 occurs after the write by T1 in real time, so the event seems to be physically realizable.

However, it is possible that after T2 reads the value of X written by T1, transaction T1 will abort; perhaps

T1 encounters an error condition in its own data, such as a division by 0, or the scheduler forces T1 to abort

because it tries to do something physically unrealizable. Thus, although there is nothing physically

unrealizable about T2 reading X, it is better to delay T2’s read until T1 commits or aborts, or else our

schedule may become non-conflict-serializable. We can tell that T1 is not committed because the commit

bit C(X) will be false.

We can solve the dirty read problem also without the commit bit: Whenever a transaction T is aborted, we

check whether there are any other transactions that read one or more database elements written by T. If so,

they too must be aborted. These aborts may imply yet other aborts, and so on. Such situations are called

cascading rollbacks. This solution, however, leads to a lower degree of concurrency than the commit bit

and delays. Moreover, it may result in a nonrecoverable schedule, which occurs if one of the transactions

to be aborted has already been committed.

A very simple, though drastic, solution to the dirty read problem is to abort each transaction that is about

to read dirty data. Finally, multiversion timestamping also gives a remedy for this problem (see later).

A second potential problem is suggested by the following figure:

64

w1(X)

w2(X)

TS(T2)

TS(T1) COMMIT(T1) ABORT(T2)

Here, T2, a transaction with a later timestamp than T1, has written X first. When T1 tries to write, the

appropriate action is to do nothing. Evidently, no other transaction T3 that should have read T1’s value of

X got T2’s value instead, because if T3 tried to read X, it would have aborted because of a too-late read.

Future reads of X will want T2’s value or a later value of X, not T1’s value. This idea, that writes can be

skipped when a write with a later write time is already in place, is called the Thomas’ write rule.

There is a potential problem with the Thomas’ write rule, however. If T2 later aborts, as is suggested in the

figure, then its value of X should be removed and the previous value and write time restored. Since T1 is

committed, it would seem that the value of X should be the one written by T1 for future reading. However,

we already skipped the write by T1, and it is too late to repair the damage.

This is how this problem can be managed: When transaction T1 writes X, and the scheduler sees that the

write time of X is greater than T1’s timestamp (i.e., TS(T1) < WT(X)) and that the transaction having

written X (T2 in the figure) is not yet committed (i.e., C(X) is false), then T1 is delayed until C(X) becomes

true, either because T2 commits or because T2 aborts. If T2 commits, then T1’s write will be skipped, but if

T2 aborts, then T1’s write will proceed.

Another solution is to simply abort T1, instead of delaying it, if the conditions described above are true.

This solution apparently leads to a lower degree of concurrency than the commit bit and delays, and if dirty

reads are also handled by rollbacks, then this abort increases the risk of cascading rollbacks and

nonrecoverable schedules. And finally, multiversion timestamping can be a solution also in this case.

As you can see, when using basic timestamp ordering (with no commit bit and delays), deadlocks cannot

occur, but cascading rollbacks and nonrecoverable schedules can.

The Rules for Timestamp-Based Scheduling

We can now summarize the rules that a scheduler using timestamps must follow to make sure that only

conflict-serializable schedules may occur. Here, we consider a scheduler using the commit bit. The

scheduler, in response to a read or write request from a transaction T, has the choice of:

a) granting the request,

b) aborting T (if T would “violate physical reality”) and restarting T with a new timestamp (abort followed

by restart is often called rollback), or

c) delaying T and later deciding what to do (if the request is a read, and the read might be dirty, or if the

request is a write, and Thomas’ write rule might be applied).

The rules are as follows:

1. Suppose the scheduler receives a request rT(X):

a) If TS(T)  WT(X), the read is physically realizable.

i) If C(X) is true or TS(T) = WT(X), grant the request. If TS(T) > RT(X), set

RT(X) := TS(T), otherwise do not change RT(X).

65

ii) If C(X) is false and TS(T) > WT(X), delay T until C(X) becomes true (i.e., the latest

transaction having written X commits or aborts).

b) If TS(T) < WT(X), the read is physically unrealizable. Rollback T, that is, abort T and restart it

with a new, larger timestamp.

2. Suppose the scheduler receives a request wT(X):

a) If TS(T)  RT(X) and TS(T)  WT(X), the write is physically realizable and must be performed:

i) write the new value for X,

ii) set WT(X) := TS(T), and

iii) set C(X) := false.

b) If TS(T)  RT(X), but TS(T) < WT(X), then the write is physically realizable, but there is

already a later value in X.

i) If C(X) is true, then the previous writer of X is committed, and we simply ignore the write by

T; we allow T to proceed and make no change to the database.

ii) However, if C(X) is false, then we must delay T as in point 1. a) ii).

c) If TS(T) < RT(X), then the write is physically unrealizable, and T must be rolled back.

3. Suppose the scheduler receives a request to commit T. It must find (using a list maintained by the

scheduler) all the database elements X last written by T (WT(X) = TS(T)), and set C(X) := true. If,

according to points 1. a) ii) and 2. b) ii), any transactions are waiting for X to be committed (found from

another scheduler-maintained list), these transactions are allowed to proceed with another attempt to

execute their delayed read or write actions.

4. Suppose the scheduler receives a request to abort T or decides to rollback T as in 1. b) or 2. c). It must

undo all writes of T that involve a database element X such that WT(X) = TS(T). This means that the

old values of X and WT(X) are restored that belong to the biggest write time, and C(X) is set to true if

the transaction with a timestamp equal to this write time has committed. Additionally, the reads of T

also have to be “undone”, i.e., for all X such that RT(X) = TS(T), the biggest old value of RT(X)

must also be restored. Then, any transaction that was waiting for an element X that T wrote (1. a) ii) and

2. b) ii)) must repeat its attempt to read or write, and see whether the action is now legal after T’s writes

are cancelled.

Example. The following figure shows a schedule of three transactions, T1, T2, and T3 that access three

database elements, A, B, and C:

T1 T2 T3 A B C

200 150 175 RT = 0 RT = 0 RT = 0
 WT = 0 WT = 0 WT = 0
 C = true C = true C = true

r1(B); RT = 200

 r2(A); RT = 150

 r3(C); RT = 175
w1(B); WT = 200

C = false

w1(A); WT = 200

C = false

 w2(C);

 abort RT = 0

commit C = true C = true

 w3(A);

66

The real time at which events occur increases down the page, as usual. We have also indicated the

timestamps of the transactions and the read and write times of the elements. At the beginning, each of the

database elements has both a read and write time of 0. The timestamps of the transactions are acquired

when they notify the scheduler that they are beginning. Notice that even though T1 executes the first data

access, it does not have the least timestamp. Presumably T2 was the first to notify the scheduler of its start,

and T3 did so next, with T1 last to start.

In the first action, T1 reads B. Since the write time of B is less than the timestamp of T1, this read is

physically realizable and allowed to happen. The read time of B is set to 200, the timestamp of T1. The

second and third read actions similarly are legal and result in the read time of each database element being

set to the timestamp of the transaction that read it.

At the fourth step, T1 writes B. Since the read time of B is not bigger than the timestamp of T1, the write is

physically realizable. Since the write time of B is no larger than the timestamp of T1, we must actually

perform the write. When we do, the write time of B is raised to 200, the timestamp of the writing transaction

T1. Then, we do the same with A.

Next, T2 tries to write C. However, C was already read by transaction T3, which theoretically executed at

time 175, while T2 would have written its value at time 150. Thus, T2 is trying to do something that’s

physically unrealizable, so T2 must be rolled back.

The last step is the write of A by T3. Since the read time of A, 150, is less than the timestamp of T3, 175,

the write is legal. However, there is already a later value of A stored in that database element, namely the

value written by T1, theoretically at time 200. Thus, T3 is not rolled back, but neither does it write its value.

(We suppose that T1 has committed by this time.)

Multiversion Timestamping

An important variation of timestamping (called multiversion timestamping, multiversion timestamp

ordering — MVTO, or multiversion concurrency control — MVCC) maintains old versions of database

elements in addition to the current version that is stored in the database itself. The purpose is to allow reads

rT(X) that otherwise would cause transaction T to abort (because the current version of X was written in

T’s future) to proceed by reading the version of X that is appropriate for a transaction with T’s timestamp.

The method is especially useful if database elements are disk blocks or pages, since then all that must be

done is for the buffer manager to keep in memory certain blocks that might be useful for some currently

active transaction.

Example. Consider the set of transactions accessing database element A shown in the following figure:

T1 T2 T3 T4 A

150 200 175 225 RT = 0
 WT = 0

r1(A); RT = 150
w1(A); WT = 150

 r2(A); RT = 200
 w2(A); WT = 200
 r3(A);

 abort

 r4(A); RT = 225

These transactions are operating under an ordinary timestamp-based scheduler, and when T3 tries to read

A, it finds WT(A) to be greater than its own timestamp and must abort. However, there is an old value of A

written by T1 and overwritten by T2 that would have been suitable for T3 to read; this version of A had a

67

write time of 150, which is less than T3’s timestamp of 175. If this old value of A were available, T3 could

be allowed to read it, even though it is not the “current” value of A.

A multiversion-timestamp scheduler differs from the scheduler described above in the following ways:

1. When a new write wT(X) occurs, if it is legal, then a new version of database element X is created. Its

write time is TS(T), and we shall refer to it as Xt, where t = TS(T).

2. When a read rT(X) occurs, the scheduler finds the version Xt of X such that t  TS(T), but there is

no other version Xt’ with t < t’  TS(T). That is, the version of X written immediately before T

theoretically executed is the version that T reads.

3. Write times are associated with versions of an element, and they never change.

4. Read times are also associated with versions. They are used to make it possible to accept certain writes,

namely one whose time is greater or equal to the read time of the previous version. If we maintained

only the read time of the latest version, then we would have to reject such writes. The following figure

suggests the problem:

RT100 = 110

X50 X100

write by transaction

with timestamp 70

RT50 = 60

X has versions X50 and X100. X50 was read at time 60, and a new write by a transaction T with timestamp

70 occurs. This write is legal because RT50  TS(T). If we knew only the read time of the latest version

(110), we couldn’t determine whether this write is legal, so T would have to be aborted.

5. When a version Xt has a write time t such that no active transaction has a timestamp less than t, then

we may delete any version of X previous to Xt.

Example. Let us reconsider the actions of the previous example if multiversion timestamping is used:

T1 T2 T3 T4 A0 A150 A200

150 200 175 225 RT = 0

r1(A); read,

RT = 150

w1(A); create,

RT = 150

 r2(A); read,

RT = 200

 w2(A); create,

RT = 200
 r3(A); read

 r4(A); read,

RT = 225

First, there are three versions of A: A0, which exists before these transactions start, A150, written by T1, and

A200, written by T2. The figure shows the sequence of events, when the versions are created, and when they

are read. Notice in particular that T3 does not have to abort, because it can read an earlier version of A.

As we can see, multiversion timestamping eliminates too-late reads. What about dirty reads and the problem

of Thomas’ write rule? Dirty reads might occur in this case too, but now we can take measures against them

68

other than delaying or aborting the transaction. When a transaction T1 wants to read a database element X,

we look up the latest version of X that was created by T1 itself or by a transaction T2 that was committed

when T1 started. This way, dirty reads will never occur, and no transactions have to be delayed. Moreover,

too-late writes may not occur either, because a transaction “writing too late” could not have been committed

when the reading transaction started; therefore, the reading transaction does not need the value “written too

late” anyway. This technique (also used by Oracle Database) is called snapshot isolation, the main

drawback of which is that it does not guarantee serializability.

Thomas’ write rule may not be applied in case of multiversion timestamping (at least in its original form);

the “new” version of a database element is always created, even if it is older than the latest version.

Timestamps Versus Locking

Generally, timestamping is superior in situations where either most transactions are read-only, or it is rare

that concurrent transactions will try to read and write the same element. In high-conflict situations, locking

performs better. The argument for this rule-of-thumb is:

 Locking will frequently delay transactions as they wait for locks, and deadlocks can occur when some

transactions have been waiting for a long time, in which case one of them needs to be rolled back.

 But if concurrent transactions frequently read and write elements in common, then rollbacks will be

frequent in a timestamp scheduler, introducing even more delay than a locking system.

There is an interesting compromise used in several commercial systems. The scheduler divides the

transactions into read-only transactions and read/write transactions. Read/write transactions are executed

using two-phase locking, to keep all transactions from accessing the elements they lock. Read-only

transactions are executed using multiversion timestamping. As the read/write transactions create new

versions of a database element, those versions are managed as discussed above. A read-only transaction is

allowed to read whatever version of a database element is appropriate for its timestamp. A read-only

transaction thus never has to abort, and will only rarely be delayed.

Concurrency Control by Validation

Validation (Kung–Robinson model) is another type of optimistic concurrency control, where we allow

transactions to access data without locks, and at the appropriate time, we check that the transaction has

behaved in a serializable manner. Validation differs from timestamping principally in that the scheduler

maintains a record of what active transactions are doing, rather than keeping read and write times for all

database elements. Just before a transaction starts to write values of database elements, it goes through a

“validation phase,” where the sets of elements it has read and will write are compared with the write sets

of other active transactions. Should there be a risk of physically unrealizable behavior, the transaction is

rolled back.

Architecture of a Validation-Based Scheduler

When validation is used as the concurrency-control mechanism, the scheduler must be told for each

transaction T the sets of database elements T reads and writes: the read set, RS(T), and the write set,

WS(T), respectively. Transactions are executed in three phases:

1. Read. In the first phase, the transaction reads from the database all required elements in its read set. The

transaction also computes in its local address space all the results it is going to write, thus creating its

write set.

69

2. Validate. In the second phase, the scheduler validates the transaction by comparing its read and write

sets with those of other transactions. We shall describe the validation process later. If validation fails,

then the transaction is rolled back; otherwise it proceeds to the third phase.

3. Write. In the third phase, the transaction writes to the database its values for the elements in its write

set.

Intuitively, we may think of each transaction that successfully validates as executing at the moment that it

validates. Thus, the validation-based scheduler has an assumed serial order of the transactions to work with,

and it bases its decision to validate or not on whether the transactions’ behaviors are consistent with this

serial order. To support the decision whether to validate a transaction, the scheduler maintains three sets:

1. START: the set of transactions that have started but not yet completed validation. For each transaction

T in this set, the scheduler maintains START(T), the time at which T started.

2. VAL: the set of transactions that have been validated but not yet finished the writing of phase 3. For

each transaction T in this set, the scheduler maintains both START(T) and VAL(T), the time at which

T validated. Note that VAL(T) is also the time at which T is imagined to execute in the hypothetical

serial order of execution.

3. FIN: the set of transactions that have completed phase 3. For these transactions T, the scheduler records

START(T), VAL(T), and FIN(T), the time at which T finished. In principle, this set grows, but as

we shall see, we do not have to remember transaction T if FIN(T) < START(U) for any active

transaction U (i.e., for any U  START  VAL). The scheduler may thus periodically purge the FIN set

to keep its size from growing beyond bounds.

The Validation Rules

The information described above is enough for the scheduler to detect any potential violation of the assumed

serial order of the transactions — the order in which the transactions validate. To understand the rules, let

us first consider what can be wrong when we try to validate a transaction T.

1. Suppose there is a transaction U such that:

a) U  VAL  FIN, that is, U has validated.

b) FIN(U) > START(T), that is, U did not finish before T started. (Note that if U  VAL, then U has

not yet finished when T validates. In that case, FIN(U) is technically undefined. However, we

know it must be larger than START(T) in this case.)

c) RS(T)  WS(U)  , in particular, let it contain database element X.

Then it is possible that U wrote X after T read X (“read too early”). In fact, U may not even have written

X yet. A situation where U wrote X, but not in time is shown in the following figure:

wU(X)

rT(X)

START(T) START(U) VAL(U) VAL(T)

To interpret the figure, note that the dashed lines connect the events in real time with the time at which

they would have occurred had transactions been executed at the moment they validated. Since we don’t

70

know whether or not T got to read U’s value, we must rollback T to avoid a risk that the actions of T

and U will not be consistent with the assumed serial order.

2. Suppose there is a transaction U such that:

a) U  VAL, i.e., U has successfully validated.

b) FIN(U) > VAL(T), that is, U did not finish before T entered its validation phase. (This condition

is always true actually, because U surely has not finished yet.)

c) WS(T)  WS(U)  , in particular, let X be in both write sets.

Then the potential problem is as shown in the following figure:

wU(X)

wT(X)

VAL(U) VAL(T) FIN(U)

T and U must both write values of X, and if we let T validate, it is possible that it will write X before U

does (“write too early”). Since we cannot be sure, we rollback T to make sure it does not violate the

assumed serial order in which it follows U.

The two problems described above are the only situations in which a read or write by T could be physically

unrealizable. In the first case, if U finished before T started, then surely T would read the value of X that

either U or some later transaction wrote. In the second case, if U finished before T validated, then surely U

wrote X before T did. We may thus summarize these observations with the following rule for validating a

transaction T:

 Check that RS(T)  WS(U) =  for any previously validated U that did not finish before T started,

i.e., if U  VAL  FIN and FIN(U) > START(T).

 Check that WS(T)  WS(U) =  for any previously validated U that did not finish before T validated,

i.e., if U  VAL and FIN(U) > VAL(T).

Example.

 RS = {B}

WS = {D}
 U

RS = {A, D}

WS = {A, C}
 W

 T

RS = {A, B}

WS = {A, C}

 V

RS = {B}

WS = {D, E}

The figure shows a time line during which four transactions T, U, V, and W attempt to execute and validate.

For each transaction, I denotes its start time, X its validation time, and O its finishing time. The read and

write sets for each transaction are indicated on the diagram. T starts first, although U is the first to validate.

1. Validation of U: When U validates, there are no other validated transactions, so there is nothing to check.

U validates successfully and writes a value for database element D.

71

2. Validation of T: When T validates, U is validated but not finished. Thus, we must check that neither the

read nor the write set of T has anything in common with WS(U) = {D}. Since RS(T) = {A, B}, and

WS(T) = {A, C}, both checks are successful, and T validates.

3. Validation of V: When V validates, U is validated and finished, and T is validated but not finished. Also,

V started before U finished. Thus, we must compare both RS(V) and WS(V) against WS(T), but only

RS(V) needs to be compared against WS(U). We find:

 RS(V)  WS(T) = {B}  {A, C} = ;

 WS(V)  WS(T) = {D, E}  {A, C} = ;

 RS(V)  WS(U) = {B}  {D} = .

Thus, V also validates successfully.

4. Validation of W: When W validates, we find that U finished before W started, so no comparison between

W and U is performed. T is finished before W validates but did not finish before W started, so we compare

only RS(W) with WS(T). V is validated but not finished, so we need to compare both RS(W) and

WS(W) with WS(V). These tests are:

 RS(W)  WS(T) = {A, D}  {A, C} = {A};

 RS(W)  WS(V) = {A, D}  {D, E} = {D};

 WS(W)  WS(V) = {A, C}  {D, E} = .

Since the intersections are not all empty, W is not validated. Rather, W is rolled back and does not write

values for A or C.

You may have been concerned with a tacit notion that validation takes place in a moment, or indivisible

instant of time. For example, we imagine that we can decide whether a transaction U has already validated

before we start to validate transaction T. Could U perhaps finish validating while we are validating T?

If we are running on a uniprocessor system, and there is only one scheduler process, we can indeed think

of validation and other actions of the scheduler as taking place in an instant of time. The reason is that if

the scheduler is validating T, then it cannot also be validating U, so all during the validation of T, the

validation status of U cannot change.

If we are running on a multiprocessor, and there are several scheduler processes, then it might be that one

is validating T while the other is validating U. If so, then we need to rely on whatever synchronization

mechanism the multiprocessor system provides to make validation an atomic action.

Comparison of the Three Concurrency-Control Mechanisms

The three approaches to serializability that we have considered — locking, timestamping, and validation

— each have their advantages. First, they can be compared for their storage utilization:

 Locking: Space in the lock table is proportional to the number of database elements locked.

 Timestamping: In a naive implementation, space is needed for read and write times with every database

element, whether or not it is currently accessed. However, a more careful implementation will treat all

timestamps that are prior to the earliest active transaction as “minus infinity” and not record them. In

that case, we can store read and write times in a table analogous to a lock table, in which only those

database elements that have been accessed recently are mentioned at all.

 Validation: Space is used for timestamps and read/write sets for each currently active transaction, plus

a few more transactions that finished after some currently active transaction began.

72

Thus, the amounts of space used by each approach is approximately proportional to the sum over all active

transactions of the number of database elements the transaction accesses. Timestamping and validation may

use slightly more space because they keep track of certain accesses by recently committed transactions that

a lock table would not record. A potential problem with validation is that the write set for a transaction must

be known before the writes occur (but after the transaction’s local computation has been completed).

We can also compare the methods for their effect on the ability of transactions to complete without delay.

The performance of the three methods depends on whether interaction among transactions (the likelihood

that a transaction will access an element that is also being accessed by a concurrent transaction) is high or

low:

 Locking delays transactions but avoids rollbacks, even when interaction is high. Timestamping and

validation do not delay transactions but can cause them to rollback, which is a more serious form of

delay and also wastes resources.

 If interference is low, then neither timestamping nor validation will cause many rollbacks, and may be

preferable to locking because they generally have lower overhead than a locking scheduler.

 When a rollback is necessary, timestamping catches some problems earlier than validation, which

always lets a transaction do all its internal work before considering whether the transaction must

rollback.

73

Concurrency Control in Oracle Database

The following information comes from Oracle Database Concepts — Data Concurrency and Consistency.

Oracle Database uses a combination of two-phase locking and snapshot isolation for concurrency control.

At user level, there are two lock units: the table and the row. Locks are automatically acquired and released

by the scheduler, but users (applications) may also request locks.

Levels of Read Consistency

Oracle Database always enforces statement-level read consistency, which guarantees that data returned by

a single query is committed and consistent for a single point in time (by default, the time at which the

statement was opened). Thus, a query never reads dirty (uncommitted) data or data that commits while the

query is in progress. Oracle Database can also provide read consistency to all queries in a transaction,

known as transaction-level read consistency. We can achieve this by running the transaction in serializable

or read-only mode (see later). In this case, each statement in a transaction sees data from the same point in

time, which is the time at which the transaction began (except for data changed by the transaction itself).

To manage the multiversion read consistency model, the database must create a read-consistent set of data

when a table is simultaneously queried and updated. Oracle Database achieves this goal through undo data.

Whenever a user modifies data, Oracle Database creates undo entries, which it writes to undo (or rollback)

segments. The undo segments contain the old values of data that have been changed by uncommitted or

recently committed transactions. Thus, multiple versions of the same data, all at different points in time,

can exist in the database. The database can use snapshots of data at different points in time to provide read-

consistent views of the data and enable nonblocking queries (see later). As a query or transaction enters the

execution phase, the database determines the system change number (SCN) recorded at the time the query

or transaction began executing. An SCN can be considered as a timestamp associated with blocks as

database elements. As the query reads through the data blocks, the database compares each block’s SCN

(“time” of last write) with that of the query and reads only those committed blocks whose SCN is not greater

than the SCN of the query. In case of blocks with a greater SCN, it copies current data blocks to a new

buffer and applies undo data to reconstruct previous versions of the blocks — versions that were created

by a committed transaction and whose SCN is the greatest but less than the SCN of the query. These

reconstructed data blocks are called consistent read clones. The following figure illustrates this process:

http://docs.oracle.com/database/121/CNCPT/consist.htm

74

SELECT ...

(SCN: 10023)

10021

10021

10024

10008

10024

10011

10021

10008

10021

Undo

segment

In some cases, the required old version of a block can no longer be reconstructed based on the undo data.

When automatic undo management is enabled, there is always a current undo retention period, which is the

minimum amount of time that Oracle Database attempts to retain old undo information before overwriting

it. Old (committed) undo information that is older than the current undo retention period is said to be expired

and its space is available to be overwritten by new transactions. Old undo information with an age that is

less than the current undo retention period is said to be unexpired and is possibly retained for consistent

read and Oracle Flashback operations (to restore a table to its state as of a previous point in time).

If the undo tablespace is configured with the AUTOEXTEND option, the database dynamically tunes the

undo retention period to be somewhat longer than the longest-running active query on the system. When

space is low, instead of overwriting unexpired undo information, the tablespace auto-extends. If the

MAXSIZE clause is specified for an auto-extending undo tablespace, when the maximum size is reached,

the database may begin to overwrite unexpired undo information. (The UNDOTBS1 tablespace that is

automatically created by DBCA is auto-extending.)

If the undo tablespace is fixed size, the database dynamically tunes the undo retention period for the best

possible retention for that tablespace size and the current system load. This best possible retention time is

typically significantly greater than the duration of the longest-running active query. If you choose an undo

tablespace size that is too small, then long-running queries could fail with a “snapshot too old” error, which

means that there was insufficient undo data for read consistency.

To guarantee the success of long-running queries or Oracle Flashback operations, you can enable retention

guarantee. If retention guarantee is enabled, the specified minimum undo retention is guaranteed; the

database never overwrites unexpired undo data, even if it means that transactions fail due to lack of space

in the undo tablespace. If retention guarantee is not enabled, the database can overwrite unexpired undo

when space is low, thus lowering the undo retention for the system.

75

Transaction Isolation Levels

The SQL92 ANSI/ISO standard defines four levels of isolation in terms of the phenomena that a transaction

running at a particular isolation level is permitted to experience. The preventable phenomena are:

 dirty reads: a transaction reads data that has been written by another transaction that has not been

committed yet;

 nonrepeatable (fuzzy) reads: a transaction rereads data it has previously read and finds that another

committed transaction has modified or deleted the data;

 phantom reads: a transaction reruns a query returning a set of rows that satisfies a search condition and

finds that another committed transaction has inserted additional rows that satisfy the condition.

The four transaction isolation levels are the following:

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

read uncommitted possible possible possible

read committed not possible possible possible

repeatable read not possible not possible possible

serializable not possible not possible not possible

Oracle Database provides the read committed and serializable transaction isolation levels, as well as a read-

only mode, which is not part of the standard.

 Read committed: This is the default transaction isolation level. Every query executed by a transaction

sees only data committed before the query — not the transaction — began. Dirty reads never occur.

However, because the database does not prevent other transactions from modifying data read by a query,

other transactions may change data between query executions. Thus, a transaction that runs the same

query twice may experience fuzzy reads and phantoms. This level of isolation is appropriate for

database environments in which few transactions are likely to conflict.

 Serializable: A transaction sees only changes committed at the time the transaction — not the query —

began and changes made by the transaction itself using INSERT, UPDATE, and DELETE statements.

Serializable transactions do not experience dirty reads, fuzzy reads, or phantom reads. Serializable

isolation is suitable for environments with large databases and short transactions that update only a few

rows, where the chance that two concurrent transactions will modify the same rows is relatively low,

and where relatively long-running transactions are primarily read-only. Oracle Database permits a

serializable transaction to modify a row only if changes to the row made by other transactions were

already committed when the serializable transaction began. The database generates an error (“Cannot

serialize access for this transaction”) when a serializable transaction tries to update or delete data

changed by a different transaction that committed after the serializable transaction began. Remember

that, despite its name, serializable isolation level actually uses snapshot isolation and does not

guarantee serializability!

 Read-only: The read-only isolation level is similar to the serializable isolation level, but read-only

transactions do not permit data to be modified in the transaction unless the user is SYS. Thus, read-only

transactions are not susceptible to the error described above. Read-only transactions are useful for

generating reports in which the contents must be consistent with respect to the time when the transaction

began.

76

You can set the isolation level of a transaction by using one of these statements at the beginning of the

transaction:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION READ ONLY;

The Locking System

Both read committed and serializable transactions use row-level locking, and both will wait if they try to

change a row updated by an uncommitted concurrent transaction. The second transaction that tries to update

a given row waits for the other transaction to commit or abort and release its lock. If that other transaction

rolls back, the waiting transaction, regardless of its isolation mode, can proceed to change the previously

locked row as if the other transaction had not existed. However, if the other blocking transaction commits

and releases its locks, only a read committed transaction proceeds with its intended update. A serializable

transaction fails with the “Cannot serialize access” error, because the other transaction has committed a

change that was made since the serializable transaction began.

Oracle Database automatically obtains necessary locks when executing SQL statements. Users never need

to lock any resource explicitly, although Oracle Database also enables users to lock data manually. Oracle

Database automatically uses the lowest applicable level of restrictiveness to provide the highest degree of

data concurrency, yet also provide fail-safe data integrity.

Usually, the database holds locks acquired by statements within a transaction for the duration of the

transaction (two-phase locking). Oracle Database releases all locks acquired by the statements within a

transaction when it commits or rolls back. Oracle Database also releases locks acquired after a savepoint

when rolling back to the savepoint. However, only transactions not waiting for the previously locked

resources can acquire locks on the now available resources. Waiting transactions continue to wait until after

the original transaction commits or rolls back completely.

Types of Locks

Oracle Database locks are divided into the following categories:

 DML locks (data locks): protect data;

 DDL locks (data dictionary locks): protect the structure of schema objects (e.g., tables);

 system locks: protect internal database structures such as data files; managed entirely automatically.

DML locks exist in two levels: there are row-level locks (TX) and table-level locks (TM). Both of them are

automatically acquired by DML statements. At row level, there is only one lock mode: exclusive. The

combination of multiversion concurrency control and row-level locking means that users contend for data

only when accessing the same rows. The following rules summarize the locking behavior of Oracle

Database for readers and writers:

 A row is locked only when modified by a writer.

 A writer of a row blocks a concurrent writer of the same row.

 A reader never blocks a writer unless SELECT … FOR UPDATE is used, which is a special type of

SELECT statement that does lock the row that it is reading.

 A writer never blocks a reader. When a row is being changed by a writer, the database uses undo data

to provide readers with a consistent view of the row.

A query without a FOR UPDATE clause acquires no data locks. Therefore, other transactions can query

and update a table being queried, including the specific rows being queried. Because queries lacking FOR

77

UPDATE clauses do not acquire any data locks to block other operations, such queries are often referred to

in Oracle as nonblocking queries. On the other hand, a query does not have to wait for any data locks to be

released; it can always proceed.

A transaction acquires a row lock (or TX lock) for each row modified by an INSERT, UPDATE, DELETE,

MERGE, or SELECT … FOR UPDATE statement. If a transaction obtains a lock for a row, then the

transaction also acquires a lock for the table containing the row. The table lock prevents conflicting DDL

operations that would override data changes in the current transaction.

A table lock (or TM lock) is acquired by a transaction when a table is modified by an INSERT, UPDATE,

DELETE, MERGE, SELECT … FOR UPDATE, or LOCK TABLE statement. A table lock can be held in

any of the following modes: row share (RS) or subshare (SS), row exclusive (RX) or subexclusive (SX),

share (S), share row exclusive (SRX) or share-subexclusive (SSX) and exclusive (X). The following table

shows the table lock modes that statements acquire and lock modes with which they are compatible:

SQL statement Lock mode RS RX S SRX X

SELECT … FROM table - Y Y Y Y Y

INSERT INTO table RX Y Y N N N

UPDATE table RX Y* Y* N N N

MERGE INTO table RX Y Y N N N

DELETE FROM table RX Y* Y* N N N

SELECT … FROM table … FOR UPDATE RX Y* Y* N N N

LOCK TABLE table IN ROW SHARE MODE RS Y Y Y Y N

LOCK TABLE table IN ROW EXCLUSIVE MODE RX Y Y N N N

LOCK TABLE table IN SHARE MODE S Y N Y N N

LOCK TABLE table IN

SHARE ROW EXCLUSIVE MODE

SRX Y N N N N

LOCK TABLE table IN EXCLUSIVE MODE X N N N N N
* Yes, if no conflicting row locks are held by another transaction. Otherwise, waits occur.

The description of each lock mode is the following:

 A row share table lock indicates that the transaction holding the lock on the table has locked rows in

the table and intends to update them. An RS lock is the least restrictive mode of table lock, offering the

highest degree of concurrency for a table.

 A row exclusive table lock generally indicates that the transaction holding the lock has updated table

rows or issued SELECT … FOR UPDATE.

 A share table lock held by a transaction allows other transactions to query the table (without using

SELECT … FOR UPDATE), but updates are allowed only if a single transaction holds the share table

lock. Because multiple transactions may hold a share table lock concurrently, holding this lock is not

sufficient to ensure that a transaction can modify the table.

 A share row exclusive table lock is more restrictive than a share table lock. Only one transaction at a

time can acquire an SRX lock on a given table. An SRX lock held by a transaction allows other

transactions to query the table (except for SELECT … FOR UPDATE) but not to update the table.

 An exclusive table lock is the most restrictive mode of table lock, allowing the transaction that holds

the lock exclusive write access to the table. Only one transaction can obtain an X lock for a table.

A transaction containing a DML statement (INSERT, UPDATE, DELETE, MERGE, or SELECT … FOR

UPDATE) acquires exclusive row locks on the rows modified by the statement. Therefore, other transactions

cannot update or delete the locked rows until the locking transaction either commits or rolls back. In

addition to these row locks, a transaction containing a DML statement that modifies data also requires at

least a row exclusive table lock (RX) on the table that contains the affected rows. If the transaction already

holds an S, SRX, or X table lock for the table, which are more restrictive than an RX lock, then the RX

lock is not needed and is not acquired. If the containing transaction already holds only an RS lock, however,

then Oracle Database automatically converts the RS lock to an RX lock.

78

A transaction that contains a DML statement does not require row locks on any rows selected by a subquery

or an implicit query. A subquery or implicit query inside a DML statement is guaranteed to be consistent

as of the start of the query and does not see the effects of the DML statement of which it forms a part.

A query in a transaction can see the changes made by previous DML statements in the same transaction,

but not the uncommitted changes of other transactions.

Lock Conversion and Escalation

Oracle Database performs lock conversion (upgrading) as necessary. In lock conversion, the database

automatically converts a table lock of lower restrictiveness to one of higher restrictiveness. For example, if

a transaction holds an RS lock for a table, and a DML statement in the transaction intends to modify some

rows in the table, the RS lock is automatically converted to an RX lock. Because row locks are acquired at

the highest degree of restrictiveness (in exclusive mode), no lock conversion is required or performed.

Lock escalation occurs when numerous locks are held at one level of granularity (for example, rows) and a

database raises the locks to a higher level of granularity (for example, table). If a user locks many rows in

a table, then some database management systems automatically escalate the row locks to a single table. The

number of locks decreases, but the restrictiveness of what is locked increases. Oracle Database never

escalates locks. Lock escalation greatly increases the likelihood of deadlocks. Assume that a system is

trying to escalate locks on behalf of transaction 1 but cannot because of the locks held by transaction 2. A

deadlock is created if transaction 2 also requires lock escalation of the same data before it can proceed.

