Textbook:

Prerequisite:
Topics:

Database System Implementation

Hector Garcia-Molina — Jeffrey D. Ullman — Jennifer Widom: Database Systems — The
Complete Book, Second Edition, Pearson Prentice Hall, 2009, Chapters 17 and 18

Database Systems course.
System failures and logging techniques against them; concurrency control.

Introduction

Database Management System Components

User/application Database administrator
qUErIEs, transaction commands DDL commands
updates

Query Transaction DDL compiler
compiler manager
)
\
query plan AN
\
\ S \
Execution \\ | Logging and ,/' Concurrency
engine * recovery /) control
o — 7 & E— i
index, file, and N /! !
record requests K 0 !
\ R / n
- 4
Index/file/rec-) || Lock table

ord manager

-
——— o ————]
~

7y \\ \\ /
page AN \\ //
commands ANt 2
[] N \1 ¥ /
Buffer | ________ .|| Buffers
manager
A
read/write
pages

Storage e -
manager Storage

The figure illustrates the architecture of a general database management system (DBMS). Single-lined
boxes denote the components of the system, whereas double-lined boxes represent in-memory data
structures. Solid arrows denote control flow accompanied by data flow, and dashed arrows denote only data
flow. The great majority of interactions with the DBMS follow the path on the left side of the figure. A user

1

or an application program initiates some action, using the data manipulation language (DML). This
command does not affect the schema of the database but may affect the content of the database (if the action
is a modification command) or will extract data from the database (if the action is a query). DML statements
are handled by two separate subsystems:

1. Answering the query. The query is parsed and optimized by a query compiler. The resulting query
execution plan (query plan for short), or sequence of actions the DBMS will perform to answer the
query, is passed to the execution engine. The execution engine issues a sequence of requests for small
pieces of data, typically records or tuples of a relation, to a resource manager that knows about data
files (holding relations), the format and size of records in those files, and index files, which help find
elements of data files quickly. The requests for data are passed to the buffer manager. The buffer
manager’s task is t0 bring appropriate portions of the data from secondary storage (disk) where it is
kept permanently, to the main-memory buffers. Normally, the page or “disk block™ is the unit of transfer
between buffers and disk. The buffer manager communicates with a storage manager to get data from
disk. The storage manager might involve operating-system commands, but more typically, the DBMS
issues commands directly to the disk controller.

2. Transaction Processing. Queries and other DML actions are grouped into transactions, which are units
that must be executed atomically and in isolation from one another. Any query or modification action
can be a transaction by itself. In addition, the execution of transactions must be durable, meaning that
the effect of any completed transaction must be preserved even if the system fails in some way right
after completion of the transaction. We divide the transaction processor into two major parts:

a) Concurrency control manager or scheduler: responsible for assuring atomicity and isolation of
transactions.
b) Logging and recovery manager: responsible for the atomicity and durability of transactions.

Transaction

The transaction is the unit of execution of database operations, consisting of DML statements, and having
the following properties:

e Atomicity: the all-or-nothing execution of transactions (the database operations in a transaction are
either fully executed or not at all). Either all relevant data has to be changed in the database or none
at all. This means that if one part of a transaction fails, the entire transaction fails, and the database
state is left unchanged.

e Consistency preservation: transactions are expected to preserve the consistency of the database, i.e.,
after the execution of a transaction, all consistency (or integrity) constraints (expectations about
data elements and the relationships among them) defined in the database should be satisfied.

e Isolation: the fact that each transaction must appear to be executed as if no other transaction were
executing at the same time.

¢ Durability: the condition that the effect on the database of a transaction must never be lost, once the
transaction has completed.

These are the ACID properties of transactions. From the DBMS’s point of view, consistency preservation
is always considered satisfied (see later: correctness principle), the other three properties, however, must
be forced by the DBMS, although, sometimes we set aside some of them. For example, if we are issuing
ad-hoc commands to a SQL system, then each query or database modification statement (plus any resulting
trigger actions) is a transaction. When using an embedded SQL interface, the programmer controls the
extent of a transaction, which may include several queries or modifications, as well as operations performed

in the host language. In the typical embedded SQL system, transactions begin as soon as operations on the
database are executed and end with an explicit COMMIT or ROLLBACK (“abort”) statement.

Transaction Processing

The transaction processor provides concurrent access to data and supports resilience (i.e., data integrity
after a system failure) by executing transactions correctly. The transaction manager therefore accepts
transaction commands from an application, which tell the transaction manager when transactions begin and
end, as well as information about the expectations of the application (some may not wish to require
atomicity, for example). The transaction processor performs the following tasks:

1. Logging: In order to assure durability, every change in the database is logged separately on disk. The
log manager follows one of several policies designed to assure that no matter when a system failure or
“crash” occurs, a recovery manager will be able to examine the log of changes and restore the database
to some consistent state. The log manager initially writes the log in buffers and negotiates with the
buffer manager to make sure that buffers are written to disk (where data can survive a crash) at
appropriate times.

2. Concurrency control: Transactions must appear to execute in isolation. But in most systems, there will
in truth be many transactions executing at once. Thus, the scheduler (concurrency control manager)
must assure that the individual actions of multiple transactions are executed in such an order that the
net effect is the same as if the transactions had in fact executed in their entirety, one-at-a-time. A typical
scheduler does its work by maintaining locks on certain pieces of the database. These locks prevent two
transactions from accessing the same piece of data in ways that interact badly. Locks are generally
stored in a main-memory lock table, as suggested by the above figure. The scheduler affects the
execution of queries and other database operations by forbidding the execution engine from accessing
locked parts of the database.

3. Deadlock resolution: As transactions compete for resources through the locks that the scheduler grants,
they can get into a situation where none can proceed because each needs something another transaction
has. The transaction manager has the responsibility to intervene and cancel (“rollback” or “abort”) one
or more transactions to let the others proceed.

Coping with System Failures

This chapter deals with techniques for supporting the goal of resilience, that is, integrity of the data when
the system fails in some way. (Data must not be corrupted simply because several error-free queries or
database modifications are being done at once, either. This matter is addressed by concurrency control.)

The principal technique for supporting resilience is a log, which records securely the history of database
changes. We shall discuss three different styles of logging, called “undo,” “redo,” and “undo/redo.” We
also discuss recovery, the process whereby the log is used to reconstruct what has happened to the database
when there has been a failure. An important aspect of logging and recovery is avoidance of the situation
where the log must be examined into the distant past. Thus, we shall learn about “checkpointing,” which
limits the length of log that must be examined during recovery.

We also discuss “archiving,” which allows the database to survive not only temporary system failures but
situations where the entire database is lost. Then, we must rely on a recent copy of the database (the archive)
plus whatever log information survives to reconstruct the database as it existed at some point in the recent
past. Finally, we shall learn about Oracle’s logging and recovery management.

Failure Modes

There are many things that can go wrong as a database is queried and modified. Problems range from the
keyboard entry of incorrect data to an explosion in the room where the database is stored on disk. The
following items are a catalog of the most important failure modes and what the DBMS can do about them.

Erroneous data entry: Some data errors are impossible to detect. For example, if a clerk mistypes one
digit of your phone number, the data will still look like a phone number that could be yours. On the
other hand, if the clerk omits a digit from your phone number, then the data is evidently in error, since
it does not have the form of a phone number. The principal technique for addressing data entry errors
is to write constraints and triggers that detect data believed to be erroneous. Triggers are program codes
that execute automatically, typically in case of modifications of a certain type (such as inserting a row
into a relation) in order to check if the new data satisfy the constraints defined by the designer of the
database.

Media failures: A local failure of a disk, one that changes only a bit or a few bits, can normally be
detected by parity checks associated with the sectors of the disk. Head crashes, where the entire disk
becomes unreadable, are generally handled by one or more of the following approaches:

1. Use one of the RAID (Redundant Array of Independent Disks) schemes, so the lost disk can be
restored.

2. Maintain an archive, a copy of the database on a medium such as tape or optical disk. The archive
Is periodically created, either fully or incrementally, and stored at a safe distance from the database
itself.

3. Instead of an archive, one could keep redundant copies of the database on-line, distributed among
several sites. In this case, consistency of the copies must be enforced.

Catastrophic failures: In this category are a number of situations in which the media holding the
database is completely destroyed. Examples include explosions, fires, or vandalism at the site of the
database, as well as viruses. RAID will not help, since all the data disks and their parity check disks
become useless simultaneously. However, the other approaches that can be used to protect against
media failure — archiving and redundant, distributed copies — will also protect against a catastrophic
failure.

System failures: Each transaction has a state, which represents what has happened so far in the
transaction. The state includes the current place in the transaction’s code being executed and the values
of any local variables of the transaction that will be needed later on. System failures are problems that
cause the state of a transaction to be lost. Typical system failures are power loss and software errors.
Since main memory is “volatile,” a power failure will cause the contents of main memory to disappear,
along with the result of any transaction step that was kept only in main memory, rather than on
(nonvolatile) disk. Similarly, a software error may overwrite part of main memory, possibly including
values that were part of the state of the program. When main memory is lost, the transaction state is
lost; that is, we can no longer tell what parts of the transaction, including its database modifications,
were made. Running the transaction again may not fix the problem. For example, if the transaction must
add 1 to a value in the database, we do not know whether to repeat the addition of 1 or not. The principal
remedy for the problems that arise due to a system error is logging of all database changes in a separate,
nonvolatile log, coupled with recovery when necessary. However, the mechanisms whereby such
logging can be done in a fail-safe manner are surprisingly intricate.

The Log Manager and the Transaction Manager

Assuring that transactions are executed correctly is the job of a transaction manager, a subsystem that
performs several functions, including:

e issuing signals to the log manager (described below) so that necessary information in the form of “log
records” can be stored on the log;

e assuring that concurrently executing transactions do not interfere with each other in ways that introduce
errors (scheduling).

The transaction manager and its interactions are suggested by the following figure:

Query - Transaction
; » Log manager
processor manager
\
Buffer - - Recovery
manager manager

A

Y

The transaction manager will send messages about actions of transactions to the log manager, to the buffer
manager about when it is possible or necessary to copy the buffer back to disk, and to the query processor
to execute the queries and other database operations that comprise the transaction.

The log manager maintains the log. It must deal with the buffer manager, since space for the log initially
appears in main-memory buffers, and at certain times, these buffers must be copied to disk. The log, as well
as the data, occupies space on the disk, as we suggest in the figure.

When there is a crash, the recovery manager is activated. It examines the log and uses it to repair the data
if necessary. As always, access to the disk is through the buffer manager.

Correct Execution of Transactions

Before we can deal with correcting system errors, we need to understand what it means for a transaction to
be executed “correctly.” To begin, we assume that the database is composed of “elements.” A database
element is a functional unit of data stored in the physical database, whose value can be read or updated by
transactions. A relation (or its object-oriented counterpart, a class extent), a tuple (or its OO counterpart, an
object), or a disk block (or page) can all be considered as a database element. However, there are several
good reasons in practice to use disk blocks or pages as the database element. In this way, buffer contents
become single elements, allowing us to avoid some serious problems with logging and transactions.
Avoiding database elements that are bigger than disk blocks also prevents a situation where part but not all
of an element has been placed in nonvolatile storage (disk) when a crash occurs.

A database has a state, which is a value for each of its elements. Intuitively, we regard certain states as
consistent, and others as inconsistent. Consistent states satisfy all constraints of the database schema, such
as key constraints and constraints on values. Explicit constraints are enforced by the database, so any
transaction that violates them will be rejected by the system and not change the database at all. However,
consistent states must also satisfy implicit constraints that are in the mind of the database designer. The
implicit constraints may be maintained by triggers that are part of the database schema, but they might also
be maintained only by policy statements concerning the database, or warnings associated with the user
interface through which updates are made. Implicit constraints cannot be characterized exactly under any
circumstances. Our position is that if someone is given authority to modify the database, then they also
have the authority to judge what the implicit constraints are.

A fundamental assumption about transactions is the correctness principle: If a transaction executes in the
absence of any other transactions or system errors, and it starts with the database in a consistent state, then
the database is also in a consistent state when the transaction ends (isolation + atomicity —> consistency
preservation). There is a converse to the correctness principle that forms the motivation for both the logging
techniques and the concurrency control mechanisms. This converse involves two points:

e Atransaction is atomic; that is, it must be executed as a whole or not at all. If only part of a transaction
executes, then the resulting database state may not be consistent.

e Transactions that execute simultaneously are likely to lead to an inconsistent state unless we take steps
to control their interactions.

The Primitive Operations of Transactions

Let us now consider in detail how transactions interact with the database. There are three address spaces
that interact in important ways:

1. the space of disk blocks holding the database elements;
2. the virtual or main memory address space that is managed by the buffer manager;
3. the local address space of the transaction.

For a transaction to read a database element, that element must first be brought to a main-memory buffer
or buffers, if it is not already there. Then, the contents of the buffer(s) can be read by the transaction into
its own address space. Writing a new value for a database element by a transaction follows the reverse
route. The new value is first created by the transaction in its own space. Then, this value is copied to the
appropriate buffer(s). It is very important to see that transactions may not write a new value for a database
element directly on the disk.

The buffer may or may not be copied to disk immediately; that decision is the responsibility of the buffer
manager in general. As we shall soon see, one of the principal tools for assuring resilience is forcing the
buffer manager to write the block in a buffer back to disk at appropriate times. However, in order to reduce
the number of disk I/O’s, database systems can and will allow a change to exist only in volatile main-
memory storage, at least for certain periods of time and under the proper set of conditions.

In order to study the details of logging algorithms and other transaction management algorithms, we need
a notation that describes all the operations that move data between address spaces. The primitives we shall
use are:

1. INPUT (X): Copy the disk block containing database element X to a memory buffer.

2. READ (X, t): Copy the database element X to the transaction’s local variable t. More precisely, if the
block containing database element X is not in a memory buffer, then first execute INPUT (X) . Next,
assign the value of X to local variable t.

3. WRITE (X, t): Copy the value of local variable t to database element X in a memory buffer. More
precisely, if the block containing database element X is not in a memory buffer, then execute
INPUT (X) . Next, copy the value of t to X in the buffer.

4. OUTPUT (X): Copy the block containing X from its buffer to disk.

The above operations make sense as long as database elements reside within a single disk block and
therefore within a single buffer. If a database element occupies several blocks, we shall imagine that each
block-sized portion of the element is an element by itself. The logging mechanism to be used will assure
that the transaction cannot complete without the write of X being atomic; i.e., either all blocks of X are
written to disk, or none are. Thus, we shall assume for the entire discussion of logging that a database
element is no larger than a single block.

Different DBMS components issue the various commands we just introduced. READ and WRITE are issued
by transactions. INPUT and OUTPUT are normally issued by the buffer manager. OUTPUT can also be
initiated by the log manager under certain conditions, as we shall see.

Example. To see how the above primitive operations relate to what a transaction might do, let us consider
a database that has two elements, A and B, with the constraint that they must be equal in all consistent states.
Transaction T consists logically of the following two steps:

A := A*2;

B := B*2;

If T starts in a consistent state (i.e., 2 = B) and completes its activities without interference from another
transaction or system error, then the final state must also be consistent. That is, T doubles two equal
elements to get new, equal elements.

Execution of T involves reading A and B from disk, performing arithmetic in the local address space of T,
and writing the new values of A and B to their buffers. The relevant steps of T are thus:

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE (B, t):

In addition, the buffer manager will eventually execute the OUTPUT steps to write these buffers back to
disk. The following table shows the primitive steps of T, followed by the two OUTPUT commands from the
buffer manager. We assume that initially A = B = 8. The values of the memory and disk copies of A and B
and the local variable t in the address space of transaction T are indicated for each step:

Action t M-A | M-B | D-A D-B
READ (A, t) 8 8 8 8
t o= t*2 16 8 8 8
WRITE (A, t) 16 16 8 8
READ (B, t) 8 16 8 8 8
t 1= t*2 16 16 8 8 8
WRITE (B, t) 16 16 16 8 8
OUTPUT (A) 16 16 16 16 8
OUTPUT (B) 16 16 16 16 16

At the first step, T reads A, which generates an INPUT (A) command for the buffer manager if A’s block
is not already in a buffer. The value of 2 is also copied by the READ command into local variable t of T’s
address space. The second step doubles t; it has no effect on 2, either in a buffer or on disk. The third step
writes t into A in the buffer; it does not affect A on disk. The next three steps do the same for B, and the
last two steps copy A and B to disk.

Observe that as long as all these steps execute, consistency of the database is preserved. If a system error
occurs before OUTPUT (2) is executed, then there is no effect to the database stored on disk; itisas if T

never ran, and consistency is preserved. However, if there is a system error after OUTPUT (2) but before
OUTPUT (B), then the database is left in an inconsistent state. We cannot prevent this situation from ever
occurring, but we can arrange that when it does occur, the problem can be repaired — either both A and B
will be reset to 8, or both will be advanced to 16.

Example. Suppose that the consistency constraint on the database is 0 < A < B. Tell whether each of the
following transactions preserves consistency.

a) A :=A + B; B := A + B;
b) B :=2A + B; A :=A + B;
C) A :=B + 1; B :=A + 1;

Undo Logging

A log is a file of log records, each telling something about what some transaction has done. If log records
appear in nonvolatile storage, we can use them to restore the database to a consistent state after a system
crash. Our first style of logging — undo logging — makes repairs to the database state by undoing the
effects of transactions that may not have completed before the crash.

Additionally, in this chapter we introduce the basic idea of log records, including the commit (successful
completion of a transaction) action and its effect on the database state and log. We shall also consider how
the log itself is created in main memory and copied to disk by a “flush-log” operation. Finally, we examine
the undo log specifically, and learn how to use it in recovery from a crash. In order to avoid having to
examine the entire log during recovery, we introduce the idea of “checkpointing,” which allows old portions
of the log to be thrown away.

Log Records

Imagine the log as a file opened for appending only. As transactions execute, the log manager has the job
of recording in the log each important event. One block of the log at a time is filled with log records, each
representing one of these events. Log blocks are initially created in main memory and are allocated by the
buffer manager like any other blocks that the DBMS needs. The log blocks are written to nonvolatile storage
on disk as soon as it is feasible.

There are several forms of log record that are used with each of the types of logging we discuss. These are:
1. <START T>: Thisrecord indicates that transaction T has begun.

2. <COMMIT T>: Transaction T has completed successfully and will make no more changes to database
elements. Any changes to the database made by T should appear on disk. However, because we cannot
control when the buffer manager chooses to copy blocks from memory to disk, we cannot in general be
sure that the changes are already on disk when we see the <COMMIT T> log record. If we insist that
the changes already be on disk, this requirement must be enforced by the log manager (as is the case
for undo logging).

3. <ABORT T>: Transaction T could not complete successfully. If transaction T aborts, no changes it
made can have been copied to disk, and it is the job of the transaction manager to make sure that such
changes never appear on disk, or that their effect on disk is canceled if they do. We shall discuss the
matter of repairing the effect of aborted transactions later. There can be several reasons for a transaction
to abort. The simplest is when there is some error condition in the code of the transaction itself, e.g., an
attempted division by zero. The DBMS may also abort a transaction for one of several reasons. For
instance, a transaction may be involved in a deadlock, where it and one or more other transactions each

hold some resource that the other needs. Then, one or more transactions must be forced by the system
to abort (see later).

4. <T,X,v>: Thisisthe update record. The meaning of this record is: transaction T has changed database
element X, and its former value was v. The change reflected by an update record normally occurs in
memory, not disk; i.e., the log record is a response to a WRITE action into memory, not an OUTPUT
action to disk. Notice also that an undo log does not record the new value of a database element, only
the old value. As we shall see, should recovery be necessary in a system using undo logging, the only
thing the recovery manager will do is cancel the possible effect of a transaction on disk by restoring the
old value.

The Undo Logging Rules

An undo log is sufficient to allow recovery from a system failure, provided transactions and the buffer
manager obey two rules:

Ui: If transaction T modifies database element X, then the log record of the form <T, X, v> must be written
to disk before the new value of X is written to disk (write-ahead logging or WAL).

Uo: If a transaction commits, then its COMMIT log record must be written to disk only after all database
elements changed by the transaction have been written to disk, but as soon thereafter as possible.

To summarize rules U; and U2, material associated with one transaction must be written to disk in the
following order:

1. the log records indicating changed database elements;
2. the changed database elements themselves;
3. the COMMIT log record.

However, the order of the first two steps applies to each database element individually, not to the group of
update records for a transaction as a whole.

In order to force log records to disk, the log manager needs a flush-log command that tells the buffer
manager to copy to disk any log blocks that have not previously been copied to disk or that have been
changed since they were last copied. In sequences of actions, we shall show FLUSH LOG explicitly. The
transaction manager also needs to have a way to tell the buffer manager to perform an OUTPUT action on
a database element. We shall continue to show the OUTPUT action in sequences of transaction steps.

Example. Let us reconsider the previously investigated transaction in the light of undo logging. We shall
expand our table to show the log entries and flush-log actions that have to take place along with the actions
of transaction T:

Step Action t M-A | M-B | D-A | D-B Log
1) <START T>
2) | READ (A, t) 8 8 8 8
3) | £ 1= £*2 16 8 8 8
4) | WRITE (A, t) 16 16 8 8| <T,A, 8>
5) | READ (B, t) 8 16 8 8 8
6) | £t = t*2 16 16 8 8 8
7) | WRITE (B, t) 16 16 16 8 8 | <T,B, 8>
8) | FLUSH LOG
9) | OUTPUT (A) 16 16 16 16 8
10) | OUTPUT (B) 16 16 16 16 16
11) <COMMIT T>
12) | FLUSH LOG

In line (1) of the table, transaction T begins. The first thing that happens is that the <START T> record is
written to the log. Line (2) represents the read of A by T. Line (3) is the local change to t, which affects
neither the database stored on disk nor any portion of the database in a memory buffer. Neither lines (2)
nor (3) require any log entry, since they have no effect on the database.

Line (4) is the write of the new value of A to the buffer. This modification to A is reflected by the log entry
<T, A, 8>, which says that A was changed by T and its former value was 8. Note that the new value, 16, is
not mentioned in an undo log.

Lines (5) through (7) perform the same three steps with B instead of A. At this point, T has completed and
must commit. The changed A and B must migrate to disk, but in order to follow the two rules for undo
logging, there is a fixed sequence of events that must happen.

First, A and B cannot be copied to disk until the log records for the changes are on disk. Thus, at step (8)
the log is flushed, assuring that these records appear on disk. Then, steps (9) and (10) copy A and B to disk.
The transaction manager requests these steps from the buffer manager in order to commit T.

Now, it is possible to commit T, and the <COMMIT T> record is written to the log, which is step (11).
Finally, we must flush the log again at step (12) to make sure that the <CoMMIT T> record of the log
appears on disk. Notice that without writing this record to disk, we could have a situation where a
transaction has committed, but for a long time a review of the log does not tell us that it has committed.
That situation could cause strange behavior if there were a crash, because a transaction that appeared to the
user to have completed long ago would then be undone and effectively aborted.

As we look at a sequence of actions and log entries like in the table above, it is tempting to imagine that
these actions occur in isolation. However, the DBMS may be processing many transactions simultaneously.
Thus, the four log records for transaction T may be interleaved on the log with records for other transactions.
Moreover, if one of these transactions flushes the log, then the log records from T may appear on disk
earlier than is implied by the flush-log actions. There is no harm if log records reflecting a database
modification appear earlier than necessary. The essential policy for undo logging is that we don’t write the
<COMMIT T> record until the OUTPUT actions for T are completed.

A trickier situation occurs if two database elements A and B share a block. Then, writing one of them to
disk writes the other as well. In the worst case, we can violate rule U1 by writing one of these elements
prematurely. It may be necessary to adopt additional constraints on transactions in order to make undo
logging work. For instance, we might use a locking scheme where database elements are disk blocks, as
described later, to prevent two transactions from accessing the same block at the same time. This and other
problems that appear when database elements are fractions of a block motivate our suggestion that blocks
be the database elements.

Recovery Using Undo Logging

Suppose now that a system failure occurs. It is possible that certain database changes made by a given
transaction were written to disk, while other changes made by the same transaction never reached the disk.
If so, the transaction was not executed atomically, and there may be an inconsistent database state. The
recovery manager must use the log to restore the database to some consistent state.

First, we consider only the simplest form of recovery manager, one that looks at the entire log, no matter
how long, and makes database changes as a result of its examination. Later, we consider a more sensible
approach, where the log is periodically “checkpointed,” to limit the distance back in history that the
recovery manager must go.

The first task of the recovery manager is to divide the transactions into committed and uncommitted
transactions. If there is a log record <COMMIT T>, then by undo rule U; all changes made by transaction

10

T were previously written to disk. Thus, T by itself could not have left the database in an inconsistent state
when the system failure occurred.

However, suppose that we find a <START T> record on the log but no <COMMIT T> or <ABORT T>
record. Then there could have been some changes to the database made by T that were written to disk before
the crash, while other changes by T either were not made, or were made in the main-memory buffers but
not copied to disk. In this case, T is an incomplete transaction and must be undone. That is, whatever
changes T made must be reset to their previous value. Fortunately, rule U; assures us that if T changed x
on disk before the crash, then there will be a <T, X, v> record on the log, and that record will have been
copied to disk before the crash. Thus, during the recovery, we must write the value v for database element
X. Note that this rule raises the question whether X had value v in the database anyway; we don’t even
bother to check.

Since there may be several uncommitted transactions in the log, and there may even be several uncommitted
transactions that modified x, we have to be systematic about the order in which we restore values. Thus,
the recovery manager must scan the log from the end (i.e., from the most recently written record to the
earliest written). As it travels, it remembers all those transactions T for which it has seen a <COMMIT T>
record or an <ABORT T> record. Also as it travels backward, if it sees a record <T, X, v>, then:

e if T is atransaction whose COMMIT record has been seen, then do nothing, as T is committed and must
not be undone (T is completed);

e if an ABORT record has been seen for transaction T, then again do nothing, as T has already been
recovered (T is completed);

e otherwise, T is an incomplete transaction, so the recovery manager must change the value of X in the
database to v, in case X had been altered just before the crash.

After making these changes, the recovery manager must write a log record <ABORT T> for each
incomplete transaction T, and then flush the log. Now, normal operation of the database may resume, and
new transactions may begin executing.

Example. Let us consider the sequence of actions from the above example. There are several different times
that the system crash could have occurred; let us consider each significantly different one.

1. The crash occurs after step (12). Then the <COMMIT T> record reached disk before the crash. When
we recover, we do not undo the results of T, and all log records concerning T are ignored by the recovery
manager.

2. The crash occurs between steps (11) and (12). It is possible that the log record containing the COMMTIT
got flushed to disk; for instance, the buffer manager may have needed the buffer containing the end of
the log for another transaction, or some other transaction may have asked for a log flush. If so, then the
recovery is the same as in case (1) as far as T is concerned. However, if the COMMIT record never
reached disk, then the recovery manager considers T incomplete. When it scans the log backward, it
comes first to the record <T, B, 8>. It therefore stores 8 as the value of B on disk. It then comes to the
record <T, A, 8> and makes A have value 8 on disk. Finally, the record <ABORT T> is written to the
log, and the log is flushed.

3. The crash occurs between steps (10) and (11). Now, the COMMIT record surely was not written, so T is
incomplete and is undone as in case (2).

4. The crash occurs between steps (8) and (10). Again, T is undone. In this case, the change to A and/or B
may not have reached disk. Nevertheless, the proper value, 8, is restored for each of these database
elements.

11

5. The crash occurs prior to step (8). Now, it is not certain whether any of the log records concerning T
have reached disk. However, we know by rule Uy that if the change to A and/or B reached disk, then the
corresponding log record reached disk. Therefore, if there were changes to A and/or B made on disk by
T, then the corresponding log record will cause the recovery manager to undo those changes.

Suppose the system again crashes while we are recovering from a previous crash. Because of the way undo
log records are designed, giving the old value rather than, say, the change in the value of a database element,
the recovery steps are idempotent, that is, repeating them many times has exactly the same effect as
performing them once. We already observed that if we find a record <T, X, v>, it does not matter whether
the value of X is already v — we may write v for X regardless. Similarly, if we repeat the recovery process,
it does not matter whether the first recovery attempt restored some old values; we simply restore them
again. The same reasoning holds for the other logging methods we discuss. Since the recovery operations
are idempotent, we can recover a second time without worrying about changes made the first time.

Checkpointing

As we observed, recovery requires that the entire log be examined, in principle. When logging follows the
undo style, once a transaction has its COMMI T log record written to disk, the log records of that transaction
are no longer needed during recovery. We might imagine that we could delete the log prior to a COMMIT,
but sometimes we cannot. The reason is that often many transactions execute at once. If we truncated the
log after one transaction committed, log records pertaining to some other active transaction T might be lost
and could not be used to undo T if recovery were necessary.

The simplest way to untangle potential problems is to checkpoint the log periodically. There are two kinds
of checkpoints: simple and nonquiescent. In a simple checkpoint, we:

1. stop accepting new transactions;

2. wait until all currently active transactions commit or abort and have written a COMMIT or ABORT record
on the log;

3. flush the log to disk;

4. write a log record <CKPT>, and flush the log again;

5. resume accepting transactions.

Any transaction that executed prior to the checkpoint will have finished, and by rule U, its changes will
have reached the disk. Thus, there will be no need to undo any of these transactions during recovery. During
a recovery, we scan the log backwards from the end, identifying incomplete transactions. However, when
we find a <CKPT> record, we know that we have seen all the incomplete transactions. Since no transactions
may begin until the checkpoint ends, we must have seen every log record pertaining to the incomplete
transactions already. Thus, there is no need to scan prior to the <CKPT>, and in fact, the log before that
point can be deleted or overwritten safely (unless it is needed for some other reason).

Example. Consider the following log:

<START Ti>
<Ti1,A, 5>
<START To>
<T2,B,10>
<T2,C, 15>
<T1,D, 20>
<COMMIT T1>
<COMMIT T2>
<CKPT>
<START T3>

12

<T3,E, 25>
<Ts3,F,30>

Suppose we decide to do a checkpoint after the fourth entry. Since T: and T are the active (incomplete)
transactions, we shall have to wait until they complete before writing the <CKpPT> record on the log.
Suppose a crash occurs at the end of the listing. Scanning the log from the end, we identify T3 as the only
incomplete transaction and restore E and F to their former values 25 and 30, respectively. When we reach
the <CKPT> record, we know there is no need to examine prior log records and the restoration of the
database state is complete.

The question may arise how to find the last log record? It is common to recycle blocks of the log file on
disk, since checkpoints allow us to drop old portions of the log. However, if we overwrite old log records,
then we need to keep a serial number, which may only increase, as suggested by the following figure:

1| 2|34 |56 |7]8
9 |10 | 11
Then, we can find the record whose serial number is greater than that of the next record; this record will be
the current end of the log, and the entire log is found by ordering the current records by their present serial
numbers. In practice, a large log may be composed of many files, with a “top” file whose records indicate
the files that comprise the log. Then, to recover, we find the last record of the top file, go to the file indicated,
and find the last record there.

Nonquiescent Checkpointing

A problem with the checkpointing technique described above is that effectively we must shut down the
system while the checkpoint is being made. Since the active transactions may take a long time to commit
or abort, the system may appear to users to be stalled. Thus, a more complex technique known as
nonquiescent checkpointing, which allows new transactions to enter the system during the checkpoint, is
usually preferred. The steps in a nonquiescent checkpoint are:

1. Write a log record <START CKPT (T4,...,Tx) > and flush the log. Here, T1,...,T« are the names or
identifiers for all the active transactions (i.e., transactions that have not yet committed and written their
changes to disk).

2. Wait until all of T4,...,Tx commit or abort, but do not prohibit other transactions from starting.

3. When all of T1,...,T« have completed, write a log record <END CKPT> and flush the log.

With a log of this type, we can recover from a system crash as follows. As usual, we scan the log from the
end, finding all incomplete transactions as we go, and restoring old values for database elements changed
by these transactions. There are two cases, depending on whether, scanning backwards, we first meet an
<END CKPT> record or a <START CKPT (T1,...,Tx) > record:

e If we first meet an <END CKPT> record, then we know that all incomplete transactions began after the
previous <START CKPT (T1,...,Tx) > record. We may thus scan backwards as far as the next START
CKPT and then stop; previous log is useless and may as well have been discarded.

e If we first meet a record <START CKPT (T1,...,Tx) >, then the crash occurred during the checkpoint.
However, the only incomplete transactions are those we met scanning backwards before we reached the
START CKPT and those of T1,...,Tx that did not complete before the crash. Thus, we need scan no
further back than the start of the earliest of these incomplete transactions. The previous START CKPT
record with a corresponding END CKPT is certainly prior to any of these transaction starts, but often
we shall find the starts of the incomplete transactions long before we reach the previous checkpoint. If
the previous START CKPT has no corresponding END CKPT record, then it means that another crash
also occurred during a checkpoint. Such incomplete checkpoints must be ignored. Moreover, if we use

13

pointers to chain together the log records that belong to the same transaction, then we need not search
the whole log for records belonging to active transactions; we just follow their chains back through the
log.

As a general rule, once an <END CKPT> record has been written to disk, we can delete the log prior to the
previous START CKPT record.

Example. Consider the following log:

<START Ti1>
<Ti1,A, 5>
<START Ty>
<T2,B,10>
<START CKPT (T1,T2)>
<T,,C, 15>
<START T3>
<T1,D, 20>
<COMMIT T1>
<T3,E, 25>
<COMMIT T»2>
<END CKPT>
<Ts3,F,30>

Now, we decide to do a nonquiescent checkpoint after the fourth entry. Since T: and T, are the active
(incomplete) transactions at this time, we write the fifth log record. Suppose that while waiting for T and
T, to complete, another transaction, Ts, initiates.

Suppose that at the end of the listing, there is a system crash. Examining the log from the end, we find that
Ts is an incomplete transaction and must be undone. The final log record tells us to restore database element
F to the value 30. When we find the <END CKPT> record, we know that all incomplete transactions began
after the previous START CKPT. Scanning further back, we find the record <Ts, E, 25>, which tells us to
restore E to value 25. Between that record and the START CKPT, there are no other transactions that started
but did not commit, so no further changes to the database are made.

Now suppose the crash occurs during the checkpoint, and the end of the log after the crash is the
<Ts, E, 25> record. Scanning backwards, we identify Ts and then T as incomplete transactions and undo
changes they have made. When we find the <START CKPT (T1, T2) > record, we know that the only other
possible incomplete transaction is T.1. However, we have already scanned the <COMMIT T:> record, SO
we know that T: is not incomplete. Also, we have already seen the <START T3> record. Thus, we need
only to continue backwards until we meet the START record for T», restoring database element B to value
10 as we go.

Redo Logging

Undo logging has a potential problem that we cannot commit a transaction without first writing all its
changed data to disk. Sometimes, we can save disk I/O’s if we let changes to the database reside only in
main memory for a while. As long as there is a log to fix things up in the event of a crash, it is safe to do
s0.

The requirement for immediate backup of database elements to disk can be avoided if we use a logging
mechanism called redo logging. The principal differences between redo and undo logging are:

14

e While undo logging cancels the effect of incomplete transactions and ignores committed ones during

recovery, redo logging ignores incomplete transactions and repeats the changes made by committed
transactions.

e While undo logging requires us to write changed database elements to disk before the cCoMMIT log
record reaches disk, redo logging requires that the COMMI T record appear on disk before any changed
values reach disk.

e While the old values of changed database elements are exactly what we need to recover when the undo
rules U1 and U are followed, to recover using redo logging, we need the new values instead.

The Redo Logging Rule

In redo logging, an update log record is formally the same as in undo logging: <T, X, v>, but here it means
“transaction T wrote new value v for database element X.” There is no indication of the old value of X in
this record. Every time a transaction T modifies a database element X, a record of the form <T, X, v> must
be written to the log.

For redo logging, the order in which data and log entries reach disk can be described by a single “redo
rule:”

R1: Before modifying any database element X on disk, it is necessary that all log records pertaining to this
modification of X, including both the update record <T, X, v> and the <COMMIT T> record, must
appear on disk.

The coMMIT record for a transaction can only be written to the log when the transaction completes, so the
commit record must follow all the update log records. Thus, when redo logging is in use, the order in which
material associated with one transaction gets written to disk is:

1. the log records indicating changed database elements;
2. the coMMIT log record;
3. the changed database elements themselves.

Example. Let us consider transaction T defined earlier using redo logging:

Step Action t M-A | M-B | D-A | D-B Log
1) <START T>
2) | READ (A, t) 8 8 8 8
3) | £ 1= £*2 16 8 8 8
4) | WRITE (A, t) 16 16 8 8| <T,A, 16>
5) | READ (B, t) 8 16 8 8 8
6) |t 1= t*2 16 16 8 8 8
7) | WRITE (B, t) 16 16 16 8 8| <T,B,16>
8) <COMMIT T>
9) | FLUSH LOG

10) | OUTPUT (A) 16 16 16 16 8

11) | OUTPUT (B) 16 16 16 16 16

The major differences between using undo and redo logging are as follows. First, we note in lines (4) and
(7) that the log records reflecting the changes have the new values of 2 and B, rather than the old values.
Second, we see that the <COMMIT T> record comes earlier, at step (8). Then, the log is flushed, so all log
records involving the changes of transaction T appear on disk. Only then can the new values of A and B be

written to disk. We show these values written immediately, at steps (10) and (11), although in practice, they
might occur later.

15

Recovery with Redo Logging

An important consequence of the redo rule Ry is that unless the log has a <COMMIT T> record, we know
that no changes to the database made by transaction T have been written to disk. Thus, incomplete
transactions may be treated during recovery as if they had never occurred. However, the committed
transactions present a problem, since we do not know which of their database changes have been written to
disk. Fortunately, the redo log has exactly the information we need: the new values, which we may write
to disk regardless of whether they were already there. To recover, using a redo log, after a system crash,
we do the following:

1. ldentify the committed transactions.
2. Scan the log forward from the beginning. For each log record <T, X, v> encountered:
a) If T is not a committed transaction, do nothing.
b) If T is committed, write value v for database element X.
3. For each incomplete transaction T, write an <ABORT T> record to the log and flush the log.

Example. Let us consider the log written in the above example and see how recovery would be performed
if the crash occurred after different steps in that sequence of actions:

1. If the crash occurs any time after step (9), then the <COMMIT T> record has been flushed to disk. The
recovery system identifies T as a committed transaction. When scanning the log forward, the log records
<T,A,16>and<T, B, 16> cause the recovery manager to write values 16 for A and B. Notice that if
the crash occurred between steps (10) and (11), then the write of A is redundant, but the write of B had
not occurred and changing B to 16 is essential to restore the database state to consistency. If the crash
occurred after step (11), then both writes are redundant but harmless.

2. If the crash occurs between steps (8) and (9), then although the record <COMMIT T> was written to
the log, it may not have gotten to disk (depending on whether the log was flushed for some other reason).
If it did get to disk, then the recovery proceeds as in case (1), and if it did not get to disk, then recovery
Is as in case (3), below.

3. If the crash occurs prior to step (8), then <cOMMIT T> surely has not reached disk. Thus, T is treated
as an incomplete transaction. No changes to 2 or B on disk are made on behalf of T, and eventually an
<ABORT T> record is written to the log.

Since several committed transactions may have written new values for the same database element X, we
have required that during a redo recovery, we scan the log from earliest to latest. Thus, the final value of X
in the database will be the one written last, as it should be. Similarly, when describing undo recovery, we
required that the log be scanned from latest to earliest. Thus, the final value of X will be the value that it
had before any of the incomplete transactions changed it.

Checkpointing a Redo Log

Redo logs present a checkpointing problem that we do not see with undo logs. Since the database changes
made by a committed transaction can be copied to disk much later than the time at which the transaction
commits, we cannot limit our concern to transactions that are active at the time we decide to create a
checkpoint. Regardless of whether the checkpoint is quiescent or nonquiescent, between the start and end
of the checkpoint, we must write to disk all database elements that have been modified by committed
transactions. To do so requires that the buffer manager keep track of which buffers are dirty, that is, they
have been changed but not written to disk. It is also required to know which transactions modified which
buffers.

16

On the other hand, we can complete the checkpoint without waiting for the active transactions to commit
or abort, since they are not allowed to write their pages to disk at that time anyway. The steps to perform a
nonquiescent checkpoint of a redo log are as follows:

1. Write a log record <START CKPT (T4,...,Tx) >, where Ta,...,Tx are all the active (uncommitted)
transactions, and flush the log.

2. Write to disk all database elements that were written to buffers but not yet to disk by transactions that
had already committed when the START CKPT record was written to the log.

3. Write an <END CKPT> record to the log and flush the log.

Example. Consider the following log:

<START Ti1>
<Ti1,A, 5>
<START T2>
<COMMIT Ti1>
<T,B,10>
<START CKPT (T2) >
<T2,C, 15>
<START T3>
<T3,D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

When we start the checkpoint, only T- is active, but the value of A written by T: may have reached disk. If
not, then we must copy A to disk before the checkpoint can end. We suggest the end of the checkpoint
occurring after several other events have occurred: T, wrote a value for database element C, and a new
transaction T started and wrote a value of D. After the end of the checkpoint, the only things that happen
are that T, and Ts commit.

Recovery with a Checkpointed Redo Log

As for an undo log, the insertion of records to mark the start and end of a checkpoint helps us limit our
examination of the log when a recovery is necessary. Also as with undo logging, there are two cases,
depending on whether the last checkpoint record is START or END:

e Suppose first that the last checkpoint record on the log before a crash is <END CKPT>. Now, we know
that every value written by a transaction that committed before the corresponding
<START CKPT (T4,...,Tx) > has had its changes written to disk, so we need not concern ourselves
with recovering the effects of these transactions. However, any transaction that is either among the Ti’s
or that started after the beginning of the checkpoint can still have changes it made not yet migrated to
disk, even though the transaction has committed. Thus, we must perform recovery as described earlier
but may limit our attention to the transactions that are either one of the T:’s mentioned in the last
<START CKPT (Ti,...,Tx) > or that started after that log record appeared in the log. In searching the
log, we do not have to look further back than the earliest of the <START T > records. Notice, however,
that these START records could appear prior to any number of checkpoints. Linking backwards all the
log records for a given transaction helps us to find the necessary records, as it did for undo logging.

e Now, suppose the last checkpoint record on the log is <START CKPT (T4,...,Tx) >. We cannot be sure
that committed transactions prior to the start of this checkpoint had their changes written to disk. Thus,
we must search back to the previous <END CKPT> record, find its matching

17

<START CKPT (S1,...,Sq) > record, and redo all those committed transactions that either started after
that START CKPT or are among the Si’s.

Example. Consider again the log from the previous example. If a crash occurs at the end, we search
backwards, finding the <END CKPT> record. We thus know that it is sufficient to consider as candidates
to redo all those transactions that either started after the <START CKPT (T2) > record was written or that
are on its list (i.e., T2). Thus, our candidate set is (T2, T3). We find the records <COMMIT T.> and
<COMMIT T3>, sowe know that each must be redone. We search the log as far back as the <START T.>
record, and find the update records <T»,B, 10>, <T,,C, 15>, and <Ts, D, 20> for the committed
transactions. Since we don’t know whether these changes reached disk, we rewrite the values 10, 15, and
20 for B, C, and D, respectively.

Now, suppose the crash occurred between the records <COMMIT T.> and <COMMIT Ts>. The recovery
is similar to the above, except that Ts is no longer a committed transaction. Thus, its change <T3, D, 20>
must not be redone, and no change is made to D during recovery, even though that log record is in the range
of records that is examined. Also, we write an <ABORT T3> record to the log after recovery.

Finally, suppose that the crash occurs just prior to the <END CKPT> record. In principal, we must search
back to the next-to-last START CKPT record (with a corresponding <END CKPT>) and get its list of active
transactions. However, in this case there is no previous checkpoint, and we must go all the way to the
beginning of the log. Thus, we identify T: as the only committed transaction, redo its action <T, A, 5>,
and write records <ABORT T.> and <ABORT T3> to the log after recovery.

Since transactions may be active during several checkpoints, it is convenient to include in the
<START CKPT (T4,...,Tx) > records not only the names of the active transactions but pointers to the place
on the log where they started. By doing so, we know when it is safe to delete early portions of the log.
When we write an <END CKPT>, we know that we shall never need to look back further than the earliest
of the <START T;> records for the active transactions T;. Thus, anything prior to that START record may
be deleted.

Undo/Redo logging

We have seen two different approaches to logging, differentiated by whether the log holds old values or
new values when a database element is updated. Each has certain drawbacks:

e Undo logging requires that data be written to disk immediately after a transaction finishes, perhaps
increasing the number of disk I/O’s that need to be performed.

e On the other hand, redo logging requires us to keep all modified blocks in buffers until the transaction
commits and the log records have been flushed, perhaps increasing the average number of buffers
required by transactions.

e Both undo and redo logs may put contradictory requirements on how buffers are handled during a
checkpoint, unless the database elements are complete blocks or sets of blocks. For instance, if a buffer
contains one database element A that was changed by a committed transaction and another database
element B that was changed in the same buffer by a transaction that has not yet had its COMMI T record
written to disk, then we are required to copy the buffer to disk because of 2 but also forbidden to do so,
because rule R1 applies to B.

We shall now see a kind of logging called undo/redo logging, which provides increased flexibility to order
actions, at the expense of maintaining more information on the log.

18

The Undo/Redo Rules

An undo/redo log has the same sorts of log records as the other kinds of log, with one exception. The update
log record that we write when a database element changes value has four components. Record <T, X, v, w>
means that transaction T changed the value of database element X; its former value was v, and its new value
is w. The constraints that an undo/redo logging system must follow are summarized by the following rule:

UR:: Before modifying any database element X on disk because of changes made by some transaction T, it
IS necessary that the update record <T, X, v, w> appear on disk.

Rule UR; for undo/redo logging thus enforces only the constraints enforced by both undo logging and redo
logging. In particular, the <COMMIT T> log record can precede or follow any of the changes to the
database elements on disk.

Example. Let us consider again transaction T defined earlier using undo/redo logging:

Step Action t M-A | MB | D-A | D-B Log
1) <START T>
2) | READ (A, t) 8 8 8 8
3) |t o= t*2 16 8 8 8
4) | WRITE (A, t) 16 16 8 8| <T,A,8,16>
5) | READ (B, t) 8 16 8 8 8
6) |t = t*2 16 16 8 8 8
7) | WRITE (B, t) 16 16 16 8 8|<T,B,8,16>
8) | FLUSH LOG
9) | OUTPUT (A) 16 16 16 16 8
10) <COMMIT T>
11) | OUTPUT (B) 16 16 16 16 16

Notice that the log records for updates now have both the old and the new values of A and B. In this
sequence, we have written the <COMMIT T> log record in the middle of the output of database elements
A and B to disk. Step (10) could also have appeared before step (8) or step (9), or after step (11).

Recovery with Undo/Redo Logging

When we need to recover using an undo/redo log, we have the information in the update records either to
undo a transaction T by restoring the old values of the database elements that T changed, or to redo T by
repeating the changes it has made. The undo/redo recovery policy is:

1. Redo all the committed transactions in the order earliest-first, and
2. undo all the incomplete transactions in the order latest-first.

Notice that it is necessary for us to do both. Because of the flexibility allowed by undo/redo logging
regarding the relative order in which COMMIT log records and the database changes themselves are copied
to disk, we could have either a committed transaction with some or all of its changes not on disk, or an
uncommitted transaction with some or all of its changes on disk.

Example. Here are the different ways that recovery would take place on the assumption that there is a crash
at various points in the sequence:

1. Suppose the crash occurs after the <COMMIT T> record is flushed to disk. Then T is identified as a
committed transaction. We write the value 16 for both 2 and B to the disk. Because of the actual order
of events, A already has the value 16, but B may not, depending on whether the crash occurred before
or after step (11).

19

2. If the crash occurs prior to the <COMMIT T> record reaching disk, then T is treated as an incomplete
transaction. The previous values of A and B, 8 in each case, are written to disk. If the crash occurs
between steps (9) and (10), then the value of A was 16 on disk, and the restoration to value 8 is necessary.
In this example, the value of B does not need to be undone, and if the crash occurs before step (9), then
neither does the value of 2. However, in general we cannot be sure whether restoration is necessary, so
we always perform the undo operation.

Like undo logging, a system using undo/redo logging can exhibit a behavior where a transaction appears to
the user to have been completed (e.g., they booked an airline seat over the Web and disconnected), and yet
because the <coMMIT T> record was not flushed to disk, a subsequent crash causes the transaction to be
undone rather than redone. If this possibility is a problem, we suggest the use of an additional rule for
undo/redo logging:

UR2: A <COMMIT T> record must be flushed to disk as soon as it appears in the log.
For instance, we would add FLUSH LOG after step (10) in the example above.

You may have noticed that we did not specify whether undo’s or redo’s are done first during recovery using
an undo/redo log. In fact, whether we perform the redo’s or undo’s first, we are open to the following
situation: a transaction T has committed and is redone; however, T wrote a value X written also by some
transaction U that has not committed and is undone. The problem is not whether we redo first, and leave X
with its value prior to U, or we undo first and leave X with its value written by T. The situation makes no
sense either way, because the final database state does not correspond to the effect of any sequence of
atomic transactions.

In reality, the DBMS must do more than log changes. It must assure that such situations do not occur at all.
We will later see a discussion about the means to isolate transactions like T and U, so the interaction between
them through database element X cannot occur. We will explicitly address means for preventing this
situation where T reads a “dirty” value of X — one that has not been committed.

Checkpointing an Undo/Redo Log

A nonquiescent checkpoint is somewhat simpler for undo/redo logging than for the other logging methods.
We have only to do the following:

1. Write a <START CKPT (Ti,...,Tx) > record to the log, where T1,...,Tx are all the active transactions,
and flush the log.

2. Write to disk all the buffers that are dirty; i.e., they contain one or more changed database elements.
Unlike redo logging, we flush all dirty buffers, not just those written by committed transactions.

3. Write an <END CKPT> record to the log, and flush the log.

Notice in connection with point (2) that, because of the flexibility undo/redo logging offers regarding when
data reaches disk, we can tolerate the writing to disk of data written by incomplete transactions. Therefore,
we can tolerate database elements that are smaller than complete blocks and thus may share buffers.

Example. Consider the following log:

<START Ti>
<Ti1,A,4,5>
<START To>
<COMMIT Ti1>
<T»,B,9,10>
<START CKPT (T2) >
<T2,C,14,15>

20

<START T3>
<T3,D,19,20>
<END CKPT>
<COMMIT T»o>
<COMMIT T3>

The example is analogous to the example for redo logging. We have changed only the update records,
giving them an old value as well as a new value. For simplicity, we have assumed that in each case, the old
value is one less than the new value.

When the checkpoint begins, T is identified as the only active transaction. Since this log is an undo/redo
log, it is possible that T»’s new B-value 10 has been written to disk, which was not possible under redo
logging. However, it is irrelevant whether or not that disk write has occurred. During the checkpoint, we
shall surely flush B to disk if it is not already there, since we flush all dirty buffers. Likewise, we shall flush
A, written by the committed transaction T, if it is not already on disk.

e If the crash occurs at the end of this sequence of events, then T, and Ts are identified as committed
transactions. Transaction T is prior to the checkpoint. Since we find the <END CKPT> record on the
log, T: is correctly assumed to have both completed and had its changes written to disk. We therefore
redo both T, and T3, and ignore T.. However, when we redo a transaction such as T, we do not need
to look prior to the <START CKPT (T2) > record, even though T was active at that time, because we
know that T>’s changes prior to the start of the checkpoint were flushed to disk during the checkpoint.

e For another instance, suppose the crash occurs just before the <COMMIT T3> record is written to disk.
Then we identify T, as committed but T as incomplete. We redo T by setting C to 15 on disk; it is not
necessary to set B to 10 since we know that change reached disk before the <END CKPT>. However,
unlike the situation with a redo log, we also undo Ts; that is, we set D to 19 on disk. If T3 had been
active at the start of the checkpoint, we would have had to look as far back as the earliest <START T;>
record for all T; listed in the START CKPT record to find if there were more actions by T; (now T
and Ts) that may have reached disk and need to be undone. For redo recovery, however, we again do
not need to look prior to the START CKPT record.

o If the crash occurs prior to the <END CKPT> record, then the last START CKPT record is ignored,
and then we do the same as described above.

Protecting Against Media Failures

The log can protect us against system failures, where nothing is lost from disk, but temporary data in main
memory is lost. However, more serious failures involve the loss of one or more disks. Theoretically, the
database can be recovered after a media failure with the help of the log if

o the disk storing the log is different from the disk(s) containing the database;
e the log is never truncated after creating a checkpoint;
o the log is of type redo or undo/redo, containing the new values of database elements.

However, the log may increase in a faster rate than the database, so it is not a good practice to save the log
forever. An archiving system, which we cover next, is needed to enable a database to survive losses
involving disk-resident data.

21

The Archive

To protect against media failures, we are thus led to a solution involving archiving — maintaining a copy
of the database separate from the database itself. If it were possible to shut down the database for a while,
we could make a backup copy on some storage medium such as tape or optical disk and store the copy
remote from the database, in some secure location. The backup would preserve the database state as it
existed at the time of the backup, and if there were a media failure, the database could be restored to this
state.

To advance to a more recent state, we could use the log, provided the log had been preserved since the
archive copy was made, and the log itself survived the failure. In order to protect against losing the log, we
could transmit a copy of the log, almost as soon as it is created, to the same remote site as the archive. Then,
if the log as well as the data is lost, we can use the archive plus remotely stored log to recover, at least up
to the point that the log was last transmitted to the remote site.

Since writing an archive is a lengthy process, we try to avoid copying the entire database at each archiving
step. Thus, we distinguish between two levels of archiving:

e afull dump, in which the entire database is copied,
e an incremental dump, in which only those database elements changed since the previous full or
incremental dump are copied.

It is also possible to have several levels of dump, with a full dump thought of as a “level 0” dump, and a
“level 1” dump copying everything changed since the last dump at a level less than or equal to i. After
creating a new level i dump, dumps at higher levels can be deleted or ignored during a recovery.

We can restore the database from a full dump and its subsequent incremental dumps in a process much like
the way a redo or undo/redo log can be used to repair damage due to a system failure. We copy the full
dump back to the database, and then in an earliest-first order, make the changes recorded by the later
incremental dumps. In case of multilevel dumps, dumps at levels higher than 0 are processed in an
increasing order of levels, and dumps at the same level are processed in chronological order.

We might question the need for an archive, since we have to back up the log in a secure place anyway if
we are not to be stuck at the state the database was in when the previous archive was made. While it may
not be obvious, the answer lies in the typical rate of change of a large database. While only a small fraction
of the database may change in a day, the changes, each of which must be logged, will over the course of a
year become much larger than the database itself. If we never archived, then the log could never be
truncated, and the cost of storing the log would soon exceed the cost of storing a copy of the database.

Nonquiescent Archiving

The problem with the simple view of archiving described above is that most databases cannot be shut down
for the period of time (possibly hours) needed to make a backup copy. We thus need to consider
nonquiescent archiving, which is analogous to nonquiescent checkpointing. Recall that a nonquiescent
checkpoint attempts to make a copy on the disk of the (approximate) database state that existed when the
checkpoint started. We can rely on a small portion of the log around the time of the checkpoint to fix up
any deviations from that database state, due to the fact that during the checkpoint, new transactions may
have started and written to disk.

Similarly, a nonquiescent dump tries to make a copy of the database that existed when the dump began, but
database activity may change many database elements on disk during the minutes or hours that the dump
takes. If it is necessary to restore the database from the archive, the log entries made during the dump can
be used to sort things out and get the database to a consistent state. In other words, a checkpoint gets data

22

from memory to disk, and the log allows recovery from system failure, whereas a dump gets data from disk
to archive, and the archive with the log allows recovery from media failure.

A nonquiescent dump copies the database elements in some fixed order, possibly while those elements are
being changed by executing transactions. As a result, the value of a database element that is copied to the
archive may or may not be the value that existed when the dump began. As long as the log for the duration
of the dump is preserved, the discrepancies can be corrected from the log.

Example. For a very simple example, suppose that our database consists of four elements, A, B, C, and D,
which have the values 1 through 4, respectively, when the dump begins. During the dump, 2 is changed to
5, C is changed to 6, and B is changed to 7. However, the database elements are copied in order, and the
sequence of events are the following:

Disk Archive
Copy A

A =5
Copy B

C := 6
Copy C

B :=7
Copy D

Then, although the database at the beginning of the dump has values (1,2,3,4), and the database at the end
of the dump has values (5,7,6,4), the copy of the database in the archive has values (1,2,6,4), a database
state that existed at no time during the dump.

In more detail, the process of making an archive can be broken into the following steps. We assume that
the logging method is either redo or undo/redo; an undo log is not suitable for use with archiving (see the
discussion after the example for more details).

1. Write alog record <START DUMP>.

2. Perform a checkpoint appropriate for whichever logging method is being used.

3. Perform a full or incremental dump of the data disk(s), as desired, making sure that the copy of the data
has reached the secure, remote site.

4. Make sure that enough of the log has been copied to the secure, remote site so that at least the prefix of
the log up to and including the checkpoint in item (2) will survive a media failure of the database.

5. Write a log record <END DUMP>.

At the completion of the dump, it is safe to throw away log that is not required according to the recovery
rules concerning the checkpoint performed in item (2) above.

Example. Suppose that the changes to the simple database introduced above were caused by two
transactions T (which writes 2 and B) and T (which writes C) that were active when the dump began. The
following listing shows a possible undo/redo log of the events during the dump.

<START DUMP>
<START CKPT (T1, T2) >
<Ti,A,1,5>

<T,C,3, 6>

<COMMIT T»>
<T1,B,2,7>

<END CKPT>

dump completes

<END DUMP>

23

Notice that we did not show T: committing. It would be unusual that a transaction remained active during
the entire time a full dump was in progress, but that possibility doesn’t affect the correctness of the recovery
method that we discuss next.

Now, we can see why undo log cannot be used with nonquiescent archiving. Suppose a T transaction starts
after the <START CKPT (T:,T2)> record, which writes A, then B, and then completes, so a
<COMMIT T3> record is written to the log, but only after the <END CKPT> record, i.e., during backup.
Since, in case of undo logging, OUTPUT actions can execute at any time after the update record is written
to the log, it may happen that A is copied after its value is changed, and B is copied before its value is
changed. During recovery, Ts will be ignored, as its COMMIT record is found in the log. Thus, we get a
result as if Ts had not been executed atomically. Using redo logging, such situations may not happen,
because OUTPUT actions may only execute after the COMMI T record is written to the log. This way, either
no changes are made on disk (if there is no COMMIT record) or the transaction is redone (if there is a
coMMIT record). In case of undo/redo logging, each transaction is undone (if there is no COMMI T record)
or redone (if there is a COMMIT record), so there can be no nonatomic behavior.

Recovery Using an Archive and Log

Suppose that a media failure occurs, and we must reconstruct the database from the most recent archive and
whatever prefix of the log has reached the remote site and has not been lost in the crash. We perform the
following steps:

1. Restore the database from the archive:

a) Find the most recent full dump and reconstruct the database from it (i.e., copy the archive into the
database).

b) If there are later incremental dumps, modify the database according to each, earliest first. In case of
multilevel dumps, apply each dump of each level, beginning with level 1 (in order of levels, and in
chronological order within one level).

2. Modify the database using the surviving log. Use the method of recovery appropriate to the log method
being used.

Example. Suppose there is a media failure after the dump of the above example completes, and the log
survives. Assume, to make the process interesting, that the surviving portion of the log does not include a
<COMMIT T1> record, although it does include the <COMMIT T.> record. The database is first restored
to the values in the archive, which is, for database elements 2, B, C, and D, respectively, (1,2,6,4).

Now, we must look at the log. Since T» has completed, we redo the step that sets C to 6. In this example, C
already had the value 6, but it might be that

e the archive for C was made before T, changed c, or

e thearchive actually captured a later value of C, which may or may not have been written by a transaction
whose commit record survived. Later in the recovery, C will be restored to the value found in the archive
if the transaction was committed.

Since T. does not have a COMMIT record, we must undo T:. We use the log records for T: to determine
that 2 must be restored to value 1 and B to 2. It happens that they had these values in the archive, but the
actual archive value could have been different if the modified A and/or B had been included in the archive.
(It depends on the order of the update and the backup of these elements.)

24

The Logging and Backup System of Oracle Database

The following information comes from Oracle Database Administrator’s Guide and Oracle Database
Backup and Recovery User’s Guide.

The Redo Log

After instance failure (system failure of a single instance), Oracle uses the online redo log files to perform
automatic recovery of the database. Instance recovery occurs as soon as the instance starts up again after it
has failed or shut down abnormally. The most crucial structure for recovery operations is the redo log,
which stores all changes made to the database as they occur. Every instance of an Oracle Database has an
associated redo log to protect the database in case of an instance failure. It consists of two parts: online and
archived redo log.

An online redo log consists of two or more online redo log files, which are filled with redo records. A redo
record, also called a redo entry, is made up of a group of change vectors, each of which is a description of
a change made to a single block in the database. For example, if you change a salary value in a table
containing employee-related data, you generate a redo record containing change vectors that describe
changes to the data segment block for the table, the undo segment data block, and the transaction table of
the undo segment (see later). Redo records are buffered in a circular fashion in the redo log buffer of the
SGA (System Global Area) and are written to one of the redo log files by the Log Writer (LGWR) database
background process. (The SGA holds also the buffers for database elements; those buffers are written to
disk by the Database Writer background process.) Whenever a transaction is committed, LGWR writes the
transaction redo records from the redo log buffer of the SGA to a redo log file, and assigns a system change
number (SCN) to identify the redo records for each committed transaction. Only when all redo records
associated with a given transaction are safely on disk in the online logs is the user process notified that the
transaction has been committed. Redo records can also be written to a redo log file before the corresponding
transaction is committed. If the redo log buffer fills, or another transaction commits, LGWR flushes all of
the redo log entries in the redo log buffer to a redo log file, even though some redo records may not be
committed. If necessary, the database can roll back these changes.

The online redo log for a database consists of two or more redo log files. Oracle Database uses only one
redo log file at a time to store redo records written from the redo log buffer. The redo log file that LGWR
is actively writing to is called the current redo log file. Redo log files that are required for instance recovery
(i.e., not all changes recorded in them have been written to the data files yet) are called active redo log files.
Redo log files that are no longer required for instance recovery (i.e., the changes recorded in them have
been written to the data files) are called inactive redo log files. The database requires a minimum of two
files to guarantee that one is always available for writing while the other is being archived (if the database
is in ARCHIVELOG mode). LGWR writes to redo log files in a circular fashion. When the current redo
log file fills, LGWR begins writing to the next available redo log file. When the last available redo log file
is filled, LGWR returns to the first redo log file and writes to it, starting the cycle again. Filled redo log
files are available to LGWR for reuse depending on whether archiving is enabled. If archiving is disabled
(the database is in NOARCHIVELOG mode), a filled redo log file is available after it becomes inactive. If
archiving is enabled (the database is in ARCHIVELOG mode), a filled redo log file is available to LGWR
after it becomes inactive and the file has been archived by one of the archiver background processes (ARC).

A log switch is the point at which the database stops writing to one redo log file and begins writing to
another. Normally, a log switch occurs when the current redo log file is completely filled and writing must
continue to the next redo log file. However, you can configure log switches to occur at regular intervals,
regardless of whether the current redo log file is completely filled. You can also force log switches
manually. Oracle Database assigns each redo log file a new log sequence number every time a log switch
occurs and LGWR begins writing to it. When the database archives redo log files, the archived log retains

25

http://docs.oracle.com/database/121/ADMIN/toc.htm
http://docs.oracle.com/database/121/BRADV/toc.htm
http://docs.oracle.com/database/121/BRADV/toc.htm

its log sequence number. A redo log file that is cycled back for use is given the next available log sequence
number. Each online or archived redo log file is uniquely identified by its log sequence number. During
crash, instance, or media recovery, the database properly applies redo log files in ascending order by using
the log sequence number of the necessary archived and online redo log files.

To protect against a failure involving the redo log itself, Oracle Database allows a multiplexed redo log,
meaning that two or more identical copies of the redo log can be automatically maintained in separate
locations. When redo log files are multiplexed, LGWR concurrently writes the same redo log information
to multiple identical redo log files, thereby eliminating a single point of redo log failure. For the most
benefit, these copies should be on separate disks. However, even if all copies of the redo log are on the
same disk, the redundancy can help protect against 1/0O errors, file corruption, and so on.

As we mentioned, Oracle Database lets you save filled groups of redo log files to one or more offline
destinations, known collectively as the archived redo log. The process of turning redo log files into archived
redo log files is called archiving. This process is only possible if the database is running in ARCHIVELOG
mode. You can choose automatic or manual archiving.

When you run your database in NOARCHIVELOG mode, you disable the archiving of the redo log. The
database control file indicates that filled redo log files are not required to be archived. Therefore, when a
filled redo log file becomes inactive after a log switch, the file is available for reuse by LGWR.
NOARCHIVELOG mode protects a database from instance failure but not from media failure. Only the
most recent changes made to the database, which are stored in the online redo log files, are available for
instance recovery. If a media failure occurs while the database is in NOARCHIVELOG mode, you can only
restore the database to the point of the most recent full database backup. You cannot recover transactions
subsequent to that backup. In NOARCHIVELOG mode, you cannot perform online tablespace backups,
nor can you use online tablespace backups taken earlier while the database was in ARCHIVELOG mode.
To restore a database operating in NOARCHIVELOG mode, you can use only whole database backups
taken while the database is closed. Therefore, if you decide to operate a database in NOARCHIVELOG
mode, take whole database backups at regular, frequent intervals.

When you run a database in ARCHIVELOG mode, you enable the archiving of the redo log. The database
control file indicates that a group of filled redo log files cannot be reused by LGWR until the group is
archived. A filled group becomes available for archiving immediately after a redo log switch occurs. The
archiving of filled groups has these advantages:

e A database backup, together with online and archived redo log files, guarantees that you can recover
all committed transactions in the event of an operating system or disk failure.

e If you keep archived logs available, you can use a backup taken while the database is open and in
normal system use.

e You can keep a standby database current with its original database by continuously applying the
original archived redo log files to the standby.

Oracle Database uses the online redo log only for recovery. However, administrators can query online redo
log files through an SQL interface in the Oracle LogMiner utility. Redo log files are a useful source of
historical information about database activity.

Every Oracle Database has a control file, which is a small binary file that records the physical structure of
the database. The control file includes:

the database name,

names and locations of associated data files and redo log files,
the timestamp of the database creation,

the current log sequence number,

checkpoint information.

26

The control file must be available for writing by the Oracle Database server whenever the database is open.
Without the control file, the database cannot be mounted and recovery is difficult. The control file of an
Oracle Database is created at the same time as the database. By default, at least one copy of the control file
is created during database creation. On some operating systems the default is to create multiple copies.
Every Oracle Database should have at least two control files, each stored on a different physical disk
(multiplexed control file). If a control file is damaged due to a disk failure, the associated instance must be
shut down. Once the disk drive is repaired, the damaged control file can be restored using the intact copy
of the control file from the other disk, and the instance can be restarted. In this case, no media recovery is
required.

Undo Management

Oracle uses a special combination of undo and redo logging. As we have seen, information for redo recovery
(the new values of database blocks) is stored in the redo log. Information for undo recovery, however, are
stored in one or more undo tablespaces by default (or in rollback segments placed in other tablespaces; see
later). This means that Oracle Database stores undo data inside the database rather than in external logs.
Undo data is stored in blocks that are updated just like data blocks, with changes to these blocks generating
redo records. In this way, Oracle Database can efficiently access undo data without needing to read external
logs. Undo tablespaces record the old values of data that was changed by each transaction (whether or not
committed). Oracle uses undo data to roll back an active transaction, recover a terminated transaction,
provide read consistency, and perform some logical flashback operations.

An undo tablespace consists of undo segments, which consist of undo records or undo entries. The contents
of an undo entry include the address of changed data column(s), the transaction operation performing the
change, an SQL statement that undoes the effect of the change, and the old value(s) of each changed column.
Undo entries are always written to disk before the corresponding modified data reach disk. Undo entries
for each transaction are linked so that they can be located easily for undo activities.

Each undo segment of an undo tablespace has a corresponding transaction table, which holds the
transaction identifiers of the transactions using the undo segment. The transaction table is made up of a
fixed number of slots or entries. This figure depends on the size of a data block, which is defined by the
operating system. Each of these slots is assigned to a transaction and contains information about that action.
The slots are initially used in order but are reused in a round-robin fashion with one exception: a slot
referencing an uncommitted transaction will not be reused. It is possible to fill up all slots with active
transactions. If this occurs, the transaction waits until a slot becomes available.

After a transaction is committed, undo data is no longer needed for rollback or transaction recovery
purposes. However, for consistent read purposes, long-running queries may require this old undo
information for producing older images of data blocks (see chapter titled Concurrency Control in Oracle
Database). Furthermore, the success of several Oracle Flashback features can also depend upon the
availability of older undo information. For these reasons, it is desirable to retain the old undo information
for as long as possible.

An auto-extending undo tablespace named UNDOTBS1 is automatically created when you create the
database with Database Configuration Assistant (DBCA). You can also create an undo tablespace
explicitly, using the CREATE DATABASE or CREATE UNDO TABLESPACE statement. When the
database instance starts, the database automatically selects the first available undo tablespace. If no undo
tablespace is available, then the instance starts without an undo tablespace and stores undo records in the
SYSTEM tablespace. This is not recommended, and an alert message is written to the alert log file to warn
that the system is running without an undo tablespace. If the database contains multiple undo tablespaces,
then you can optionally specify at startup that you want to use a specific undo tablespace. This is done by
setting the UNDO_TABLESPACE initialization parameter.

27

Instance Recovery Phases

As changes are made to the undo segments, these changes are also written to the online redo log. It is
because undo tablespace is part of the database just like other tablespaces. As a result, the online redo log
always contains the undo data for permanent objects. This means that every change to the database implies
the creation of an undo entry with the old value of the changed column(s), a log record with the new value
of the data block containing the modified data, and another log record with the new value of the data block
containing the undo entry.

The first phase of instance recovery is called cache recovery or rolling forward, and involves reapplying
all of the changes recorded in the online redo log to the data files. It is enough to reconstruct changes made
after the most recent checkpoint. The checkpoint position guarantees that every committed change with an
SCN lower than the checkpoint SCN is saved to the data files. Checkpoints occur in a variety of situations.
For example, when the Database Writer process writes dirty buffers, it advances the checkpoint position.
The resulting database state after a cache recovery is very likely to be inconsistent. After the roll forward,
any changes that were not committed must be undone. Because rollback data is recorded in the online redo
log, rolling forward also regenerates the corresponding undo segments. Oracle Database applies undo
blocks to roll back uncommitted changes in data blocks that were written before the failure or introduced
during cache recovery. This phase is called rolling back or transaction recovery.

Undo Management Modes

The database can run in automatic or manual undo management mode. With automatic undo management,
the database automatically manages undo segments in undo tablespaces, and no user intervention is
required. Automatic undo management is the default mode for a newly installed database. In manual mode,
undo space is managed through rollback segments (user-managed undo segments), and no undo tablespace
is used. Space management for rollback segments is complex and requires hard work from the DBA.

Backup and Recovery

The focus in Oracle Database backup and recovery is on the physical backup of database files, which
permits you to reconstruct your database. RMAN, a command-line tool, is the method preferred by Oracle
for efficiently backing up and recovering your Oracle database. The files protected by the backup and
recovery facilities built into RMAN include data files, control files, server parameter files, and archived
redo log files. With these files you can reconstruct your database. RMAN is designed to work intimately
with the server, providing block-level corruption detection during backup and restore. RMAN optimizes
performance and space consumption during backup with file multiplexing and backup set compression, and
integrates with leading tape and storage media products. The backup mechanisms work at the physical level
to protect against file damage, such as the accidental deletion of a data file or the failure of a disk drive.
RMAN can also be used to perform point-in-time recovery to recover from logical failures when other
techniques such as flashback cannot be used.

In NOARCHIVELOG mode, the filled redo log groups that become inactive can be reused. This mode
protects the database against instance failure, but not against media failure. In ARCHIVELOG mode, filled
groups of redo logs are archived. This mode protects the database from both instance and media failure, but
may require additional hardware resources.

A full backup of a data file includes all used blocks of the data file. An incremental backup copies only
those blocks in a data file that change between backups. A level 0 incremental backup, which copies all
blocks in the data file, is used as a starting point for an incremental backup strategy. A level 1 incremental
backup copies only images of blocks that have changed since the previous level 0 or level 1 incremental

28

backup. Level 1 backups can be cumulative, in which case all blocks changed since the most recent level 0
backup are included, or differential, in which case only blocks changed since the most recent level 0 or
level 1 incremental backup are included. A typical incremental strategy makes level 1 backups at regular
intervals such as once each day. During recovery, RMAN will automatically apply both incremental
backups and redo logs as required, to recover the database to the exact point in time desired.

A backup is either consistent or inconsistent. A consistent backup occurs when the database is in a
consistent state. A database is in a consistent state after being shut down with the SHUTDOWN NORMAL,
SHUTDOWN IMMEDIATE, or SHUTDOWN TRANSACTIONAL commands. A consistent shutdown
guarantees that all redo has been applied to the data files. If you mount the database and make a backup at
this point, then you can restore the database backup later and open it without performing media recovery.
But you will, of course, lose all transactions that occurred after the backup was created.

Any database backup that is not consistent is an inconsistent backup. A backup made when the database is
open is inconsistent, as is a backup made after an instance failure or SHUTDOWN ABORT command.
When a database is restored from an inconsistent backup, Oracle Database must perform media recovery
before the database can be opened, applying changes from the redo logs that took place after the backup
was created. Note that RMAN does not permit you to make inconsistent backups when the database is in
NOARCHIVELOG mode. If the database runs in ARCHIVELOG mode, and you back up the archived
redo logs and data files, inconsistent backups can be the foundation for a sound backup and recovery
strategy. Inconsistent backups offer superior availability because you do not have to shut down the database
to make backups that fully protect the database.

Media recovery requires a control file, data files (typically restored from backup), and online and archived
redo log files containing changes since the time the data files were backed up. Media recovery is most often
used to recover from media failure, such as the loss of a file or disk, or a user error, such as the deletion of
the contents of a table.

Media recovery can be a complete recovery or a point-in-time recovery. Complete recovery can apply to
individual data files, tablespaces, or the entire database. Point-in-time recovery applies to the whole
database (and also sometimes to individual tablespaces, with automation help from RMAN). In a complete
recovery, you restore backup data files and apply all changes from the archived and online redo log files to
the data files. The database is returned to its state at the time of failure and can be opened with no loss of
data. In a point-in-time recovery, you return a database to its contents at a user-selected time in the past.
You restore a backup of data files created before the target time and a complete set of archived redo log
files from backup creation through the target time. Recovery applies changes between the backup time and
the target time to the data files. All changes after the target time are discarded.

29

Concurrency Control

Interactions among concurrently executing transactions can cause the database state to become inconsistent,
even when the transactions individually preserve correctness of the state, and there is no system failure.
Thus, the timing of individual steps of different transactions needs to be regulated in some manner. This
regulation is the job of the scheduler component of the DBMS, and the general process of assuring that
transactions preserve consistency when executing simultaneously is called concurrency control.

As transactions request reads and writes of database elements, these requests are passed to the scheduler.
In most situations, the scheduler will execute the reads and writes directly, first calling on the buffer
manager if the desired database element is not in a buffer. However, in some situations, it is not safe for the
request to be executed immediately. The scheduler must delay the request; in some concurrency-control
techniques, the scheduler may even abort the transaction that issued the request.

Serial and Serializable Schedules

Recall the “correctness principle”: every transaction, if executed in isolation (without any other transactions
running concurrently), will transform any consistent state to another consistent state. In practice,
transactions often run concurrently with other transactions, so the correctness principle doesn’t apply
directly. This section introduces the notion of “schedules,” the sequence of actions performed by
transactions, and “serializable schedules,” which produce the same result as if the transactions executed
one-at-a-time.

Schedules

A schedule is a sequence of the important actions taken by one or more transactions, in which the order of
actions of a particular transaction is the order given in the transaction. When studying concurrency control,
the important read and write actions take place in the main-memory buffers, not the disk. That is, a database
element A that is brought to a buffer by some transaction T may be read or written in that buffer not only
by T but by other transactions that access 2. In other words, from the point of view of concurrency control,
only the order of READ and WRITE operations is considered, INPUT and OUTPUT operations are ignored.

Example. Let us consider two transactions and the effect on the database when their actions are executed in
certain orders:

T1 TZ
READ (A, t) READ (A, s)
t := t+100 s 1= s*2
WRITE (A, t) WRITE (A, s)
READ (B, t) READ (B, s)
t := t+100 s = g8*2
WRITE (B, t) WRITE (B, s)

The variables t and s are local variables of T:1 and T, respectively; they are not database elements. We
shall assume that the only consistency constraint on the database state is that A = B. Since T, adds 100 to
both A and B, and T, multiplies both A and B by 2, we know that each transaction, run in isolation, will
preserve consistency.

30

Serial Schedules

A schedule is serial if, for any two transactions T and T’ in the schedule, if there exists an action in T that
precedes an action of T’ , then all the actions of T precede all the actions of T’ . In other words, the actions
of the schedule consist of all the actions of one transaction, then all the actions of another transaction, and
so on. No mixing of the actions is allowed.

Example. For the transactions above, there are two serial schedules, one in which T precedes T and the
other in which T, precedes T.. Let the initial state be A = B = 25. Then, the two schedules are the following:

T Ty A B Ty T, A B

READ (A, t) 25 READ (A4, s) 25

t := t+100 s 1= s*2

WRITE (A, t) 125 WRITE (A, s) 50

READ (B, t) 25 READ (B, s) 25

t := t+100 S := s8*2

WRITE (B, t) 125 WRITE (B, s) 50
READ (A, s) 125 READ (A, t) 50
S 1= s*2 t := t+100
WRITE (A, s) 250 WRITE (A, t) 150
READ (B, s) 125 READ (B, t) 50
S 1= s*2 t := t+100
WRITE (B, s) 250 WRITE (B, t) 150

We shall take the convention that when displayed vertically, time proceeds down the page. Also, the values
of A and B shown refer to their values in main-memory buffers, not necessarily to their values on disk.

Notice that the final values of A and B are different for the two schedules; they both have value 250 when
T1 goes first and 150 when T, goes first. In general, we would not expect the final state of a database to be
independent of the order of transactions.

We can represent a serial schedule as in the figure above, listing each of the actions in the order they occur.
However, since the order of actions in a serial schedule depends only on the order of the transactions
themselves, we shall sometimes represent a serial schedule by the list of transactions as in (T1, T2) or

(T2, T1).

Serializable Schedules

The correctness principle for transactions tells us that every serial schedule will preserve consistency of the
database state. But are there any other schedules that also are guaranteed to preserve consistency? There
are, as the following example shows. In general, we say a schedule S of some transactions is serializable if
there is a serial schedule s’ of the same transactions such that for every initial database state, the effects
of Sand S’ are the same.

Example. Consider the following two schedules of the two transactions defined above:

31

T Ty A B Ty T A B
READ (A, t) 25 READ (A, t) 25
t := t+100 t := t+100
WRITE (A, t) 125 WRITE (A, t) 125
READ (A, s) 125 READ (A, s) 125
S 1= s*2 s 1= s*2
WRITE (A, s) 250 WRITE (A, s) | 250
READ (B, t) 25 READ (B, s) 25
t := t+100 S := s8*2
WRITE (B, t) 125 WRITE (B, s) 50
READ (B, s) 125 READ (B, t) 50
S 1= s8*2 t := t+100
WRITE (B, s) 250 WRITE (B, t) 150

The first example shows a schedule that is serializable but not serial. In this schedule, T acts on A after T,
does, but before T acts on B. However, we see that the effect of the two transactions scheduled in this
manner is the same as for the serial schedule (T1, T2). To convince ourselves of the truth of this statement,
we must consider not only the effect from the database state 2 = B = 25 but from any consistent database
state. Since all consistent database states have A = B = ¢ for some constant c, it is not hard to deduce that
in the schedule, both 2 and B will be left with the value 2(c + 100), and thus consistency is preserved from
any consistent state.

On the other hand, consider the schedule in the second example, which is not serializable. The reason we
can be sure it is not serializable is that it takes the consistent state A = B = 25 and leaves the database in an
inconsistent state, where A = 250 and B = 150. Notice that in this order of actions, where T1 operates on A
first, but T, operates on B first, we have in effect applied different computations to A and B, that is
A :=2(A +100) versus B := 2B + 100. This is the sort of behavior that concurrency control mechanisms
must avoid.

The Effect of Transaction Semantics

In our study of serializability so far, we have considered in detail the operations performed by the
transactions, to determine whether or not a schedule is serializable. The details of the transactions do matter,
as we can see from the following example.

Example. Consider the following schedule, which differs from our last example only in the computation
that T, performs. That is, instead of multiplying A and B by 2, T> multiplies each by 1:

Tq Ty A B
READ (A, t) 25
t := t+100
WRITE (A, t) 125
READ (A, s) 125
s := s*1
WRITE (A,s) | 125
READ (B, s) 25
s := s*1
WRITE (B, s) 25
READ (B, t) 25
t := t+100
WRITE (B, t) 125

One can easily check that regardless of the consistent initial state, the final state is the one that results from
the serial schedule (T1, T>). Coincidentally, it also results from the other serial schedule, (T2, T1).

32

You may notice that T» is not meaningful. Actually, it could be replaced with any transaction that leaves A
and B intact. T, could, for example, only print the values of A and B, or it could compute a factor F based
on user input and multiply A and B by F, and for some user input, ¥ could result in 1.

Unfortunately, it is not realistic for the scheduler to concern itself with the details of computation
undertaken by transactions. Since transactions often involve code written in a general-purpose
programming language as well as SQL or other high-level-language statements, it is impossible to say for
certain what a transaction is doing. However, the scheduler does get to see the read and write requests from
the transactions, so it can know what database elements each transaction reads, and what elements it might
change. To simplify the job of the scheduler, it is conventional to assume that:

e Any database element A that a transaction T writes is given a value that depends on the database state
in such a way that no arithmetic coincidences occur.

An example of a “coincidence” is that in our previous example, where (A +100)*1=8B* 1+ 100
whenever A = B, even though the two operations are carried out in different orders on the two variables.
Put another way, if there is something that T could do to a database element to make the database state
inconsistent, then T will do that.

A Notation for Transactions and Schedules

If we assume “no coincidences,” then only the reads and writes performed by the transaction matter, not
the actual values involved. Thus, we shall represent transactions and schedules by a shorthand notation, in
which the actions are rr (X) and wr (X) , meaning that transaction T reads, or respectively writes, database
element X. Moreover, since we shall usually name our transactions T1, T>, ..., we adopt the convention that
ri (X) and w; (X) are synonyms for rr; (X) and wrs (X), respectively.

Example. The two transactions in the previous examples can be written the following way:

Ti:r1(A);,w1(A);r1(B);,w1(B),
T2ir2(A),w2(A), r2(B); w2 (B),

We did not mention the local variables t and s, and did not denote what happened to A and B after reading
them. This notation is interpreted that we assume the “worst case” regarding the change of values of
database elements.

As another example, consider the serializable schedule of transactions T1 and T presented earlier:
ri(A);wi(A);r2(A) ;w2 (A);ri(B);wi(B);r2(B);w2(B);
To make the notation precise:

1. An action is an expression of the form r; (X) or w; (X), meaning that transaction T reads or writes,
respectively, the database element X.

2. A transaction T is a sequence of actions with subscript 1.

3. A schedule s of a set of transactions T is a sequence of actions, in which for each transaction T; in T,
the actions of T; appear in S in the same order that they appear in the definition of T; itself. We say
that s is an interleaving of the actions of the transactions of which it is composed.

33

Conflict-Serializability

Schedulers in commercial systems generally enforce a condition, called “conflict-serializability,” that is
stronger than the general notion of serializability. It is based on the idea of a conflict: a pair of consecutive
actions in a schedule such that, if their order is interchanged, then the behavior of at least one of the
transactions involved can change.

Conflicts

To begin, let us observe that most pairs of actions do not conflict. In what follows, we assume that T; and
T are different transactions; i.e., 1 # j.

1. ri(X); rs;(Y) isnever a conflict, even if X =Y. The reason is that neither of these steps change the
value of any database element.

2. ri(X);ws(Y) isnota conflict provided X = Y. The reason is that should T write Y before T; reads X,
the value of X is not changed. Also, the read of X by T: has no effect on T3, so it does not affect the
value T writes for Y.

3. wi(X); rs(Y) isnotaconflictif X = Y, for the same reason as (2).

4. Similarly, wi (X); w5 (Y) isnota conflictas longas x # Y.

On the other hand, there are three situations where we may not swap the order of actions:

a) Two actions of the same transaction, e.g., ri (X) ; wi (Y), always conflict. The reason is that the order
of actions of a single transaction are fixed and may not be reordered.

b) Two writes of the same database element by different transactions conflict. That is, w: (X) ; ws (X) isa
conflict. The reason is that as written, the value of X remains afterward as whatever T4 computed it to
be. If we swap the order, as w; (X); w; (X), then we leave X with the value computed by T:. Our
assumption of “no coincidences” tells us that the values written by T; and T5 will be different, at least
for some initial states of the database.

c) Aread and a write of the same database element by different transactions also conflict. That is, r; (X);
w5 (X) is a conflict, and so is w; (X); ry (X) . If we move w5 (X) ahead of r; (X), then the value of X
read by T: will be that written by T+, which we assume is not necessarily the same as the previous value
of X. Thus, swapping the order of r; (X) and w5 (X) affects the value T; reads for X and could therefore
affect what T; does.

The conclusion we draw is that any two actions of different transactions may be swapped unless

1. they involve the same database element, and
2. at least one is a write.

Extending this idea, we may take any schedule and make as many nonconflicting swaps as we wish, with
the goal of turning the schedule into a serial schedule. If we can do so, then the original schedule is
serializable, because its effect on the database state remains the same as we perform each of the
nonconflicting swaps.

We say that two schedules are conflict-equivalent if they can be turned one into the other by a sequence of
nonconflicting swaps of adjacent actions. We shall call a schedule conflict-serializable if it is conflict-
equivalent to a serial schedule. Note that conflict-serializability is a sufficient condition for serializability;
I.e., a conflict-serializable schedule is a serializable schedule. Conflict-serializability is not required for a
schedule to be serializable, but it is the condition that the schedulers in commercial systems generally use
when they need to guarantee serializability.

34

Example. Consider the schedule
ri(A);wi(A);r2(A) ;w2 (A);ri(B);wi(B);r2(B);w2(B);

We claim this schedule is conflict-serializable. Here is the sequence of swaps in which this schedule is
converted to the serial schedule (T1, T2), where all of T:’s actions precede all those of T,. We have
underlined the pair of adjacent actions about to be swapped at each step.

r1i(A);wi(A);r2(A) ;w2 (A);r1(B);wi(B), r2(B);w2(B),;
r1(A),wi(A),r2(A);r1(B),w2(A);w1(B), r2(B);,w2(B),
r1(A),wi(A),r1(B);r2(A), w2 (A),w1(B), r2(B);,w2(B),
ri(A);wi(A),;r1(B);r2(A),wi(B);w2(A), r2(B);w2(B),;
r1i(A);wi(A),r1(B);wi(B);, r2(A);w2(A), r2(B);w2(B),;

You may ask why conflict-serializability is not necessary for serializability. We have already seen an
example when serializability of a schedule could only be determined by considering the semantics of the
transactions. We could see that the schedule was serializable because of the specific computations
undertaken by T». That particular schedule, however, is not conflict-serializable, as 2 is written by T+ first,
while B is written by T first. Since neither the write of A nor the write of B can be rearranged, there is no
way for all of T1’s actions to precede those of T2, nor vice versa.

There are serializable, but not conflict-serializable schedules that do not depend on the computations
undertaken by the transactions. Consider three transactions T, Tz, and T3 that each write a value for X. T1
and T also write values for Y before they write values for xX. One possible schedule, which happens to be
serial, is

S1iwi (Y) 5w (X) ;w2 (Y); w2 (X);ws(X);
S1 leaves X with the value written by Ts and Y with the value written by T,. However, so does the schedule
S2i w1 (Y); w2 (Y); wa (X); wi(X); w3 (X);

Intuitively, the values of X written by T: and T» have no effect, since Tz overwrites their values. Thus, X
has the same value after either S; or S, and likewise Y has the same value after either S, or S». Since S:
is serial, and S has the same effect as S1 on any database state, we know that S is serializable. However,
since we cannot swap w1 (Y) with w2 (Y), and we cannot swap w: (X) with w» (X) , therefore we cannot
convert S, to any serial schedule by swaps. That is, S is serializable, but not conflict-serializable.

Precedence Graphs and a Test for Conflict-Serializability

It is relatively simple to examine a schedule s and decide whether or not it is conflict-serializable. When a
pair of conflicting actions appears anywhere in S, the transactions performing those actions must appear in
the same order in any conflict-equivalent serial schedule as the actions appear in S. Thus, conflicting pairs
of actions put constraints on the order of transactions in the hypothetical, conflict-equivalent serial schedule.
If these constraints are not contradictory, we can find a conflict-equivalent serial schedule. If they are
contradictory, we know that no such serial schedule exists.

Given a schedule s, involving transactions T: and T» (T1 # T2), perhaps among other transactions, we say
that T, takes precedence over T, written T1 <s T», if there are actions A, of T, and A, of T, such that

1. Ajisaheadof 2, in S,
2. both A; and 2, involve the same database element, and
3. atleast one of A1 and A is a write action.

35

In other words, 2, and A, would conflict if they were consecutive actions. Notice that these are exactly the
conditions under which we cannot swap the order of A; and 2A.. Thus, A: will appear before A in any
schedule that is conflict-equivalent to S. As a result, a conflict-equivalent serial schedule must have T
before T..

We can summarize these precedences in a precedence graph. The nodes of the precedence graph are the
transactions of a schedule S. When the transactions are T; for various i, we shall label the node for T; by
only the integer i. There is an arc from node i to node 5 if T; <s T5.

Example. The following schedule s involves three transactions, T+, T2, and Ts:
Sir2(A);ri(B);w2(A); r3(A);wi(B);ws(A); rz2(B);wz(B);

The precedence graph for schedule s is the following:

O—@—0

If we look at the actions involving A, we find several reasons why T» <s Ts. For example, r> (A) comes
ahead of w3 (A) in S, and w» (A) comes ahead of both rs(A) and ws(2). Any one of these three
observations is sufficient to justify the arc in the precedence graph from 2 to 3. Similarly, if we look at the
actions involving B, we find that there are several reasons why T: <s T». For instance, the action r: (B)
comes before w (B) . Thus, the precedence graph for S also has an arc from 1 to 2. However, these are the
only arcs we can justify from the order of actions in schedule s.

There is a simple rule to determine whether a schedule s is conflict-serializable:

e To tell whether a schedule s is conflict-serializable, construct the precedence graph for s and ask if
there are any cycles. If so, then s is not conflict-serializable. But if the graph is acyclic, then s is
conflict-serializable, and moreover, any topological order of the nodes is a conflict-equivalent serial
order.

A topological order of an acyclic graph is any order of the nodes such that for every arc a — b, node a
precedes node b in the topological order. We can find a topological order for any acyclic graph by
repeatedly removing nodes that have no predecessors among the remaining nodes.

Example. The precedence graph above is acyclic, so schedule s is conflict-serializable. There is only one
order of the nodes or transactions consistent with the arcs of that graph: (T1, T2, T3). Notice that it is indeed
possible to convert S into the schedule in which all actions of each of the three transactions occur in this
order; this serial schedule is:

S'ir1(B),wi(B), r2(A), w2 (A); r2(B);w2(B),; r3(A); ws(A),

To see that we can get from S to S’ by swaps of adjacent elements, first notice we can move r: (B) ahead
of r, (A) without conflict. Then, by three swaps we can move w1 (B) just after r1 (B), because each of
the intervening actions involves A and not B. We can then move r, (B) and w> (B) to a position just after
w2 (A), moving through only actions involving A; the result is S’ .

Example. Consider the following schedule:
Siir2(A);ri(B) w2 (A);r2(B);r3(A);wi(B);ws(A);w2(B);

S: differs from S only in that action r» (B) has been moved forward three positions. Examination of the
actions involving 2 still give us only the precedence T, <s: Ts. However, when we examine B, we get not
only T: <s1 T2 (because r: (B) and w. (B) appear before w, (B)) but also T, <s1 T1 (because r» (B)
appears before w1 (B)). Thus, we have the following precedence graph for schedule S;:

36

——0

This graph evidently has a cycle. We conclude that S: is not conflict-serializable. Intuitively, any conflict-
equivalent serial schedule would have to have T: both ahead of and behind T, so therefore no such schedule
exists.

Why the Precedence-Graph Test Works

If there is a cycle involving n transactions T: — T> — ... =& T — T3, then in the hypothetical serial order,
the actions of T: must precede those of T, which precede those of Ts, and so on, up to T.. But the actions
of T, which therefore come after those of T1, are also required to precede those of T because of the arc
T» — T1. Thus, if there is a cycle in the precedence graph, then the schedule is not conflict-serializable.

The converse is a bit harder. We must show that if the precedence graph has no cycles, then we can reorder
the schedule’s actions using legal swaps of adjacent actions, until the schedule becomes a serial schedule.
If we can do so, then we have our proof that every schedule with an acyclic precedence graph is conflict-
serializable. The proof is an induction on the number of transactions involved in the schedule:

Basis: If n =1, i.e., there is only one transaction in the schedule, then the schedule is already serial, and
therefore surely conflict-serializable.

Induction: Let the schedule s consist of the actions of n transactions T1, T2, ..., Tn. We suppose that S
has an acyclic precedence graph. If a finite graph is acyclic, then there is at least one node that has no arcs
in; let the node i corresponding to transaction T be such a node. Since there are no arcs into node i, there
can be no action A in S that

1. involves any transaction T other than T,
2. precedes some action of T, and
3. conflicts with that action.

For if there were, we should have put an arc from node j to node i in the precedence graph.

It is thus possible to swap all the actions of T, keeping them in order, but moving them to the front of s.
The schedule has now taken the form

(actions of T;) (actions of the other n — 1 transactions)

Let us now consider the tail of S — the actions of all transactions other than T;. Since these actions maintain
the same relative order that they did in S, the precedence graph for the tail is the same as the precedence
graph for s, except that the node for T; and any arcs out of that node are missing.

Since the original precedence graph was acyclic, and deleting nodes and arcs cannot make it cyclic, we
conclude that the tail’s precedence graph is acyclic. Moreover, since the tail involves n — 1 transactions,
the inductive hypothesis applies to it. Thus, we know we can reorder the actions of the tail using legal swaps
of adjacent actions to turn it into a serial schedule. Now, s itself has been turned into a serial schedule, with
the actions of T first and the actions of the other transactions following in some serial order. The induction
is complete, and we conclude that every schedule with an acyclic precedence graph is conflict-serializable.

37

Enforcing Serializability by Locks

In this section, we consider the most common architecture for a scheduler, one in which locks are
maintained on database elements to prevent unserializable behavior. Intuitively, a transaction obtains locks
on the database elements it accesses to prevent other transactions from accessing these elements at roughly
the same time and thereby incurring the risk of unserializability.

First, we introduce the concept of locking with an (overly) simple locking scheme. In this scheme, there is
only one kind of lock, which transactions must obtain on a database element if they want to perform any
operation whatsoever on that element. Later, we shall learn more realistic locking schemes, with several
kinds of lock, including the common shared/exclusive locks that correspond to the privileges of reading
and writing, respectively.

Locks

Recall from the chapter introduction that the responsibility of the scheduler is to take requests from
transactions and either allow them to operate on the database or block the transaction until such time as it
is safe to allow it to continue. A lock table will be used to guide this decision in a manner that we shall
discuss at length.

Ideally, a scheduler would forward a request if and only if its execution cannot possibly lead to an
inconsistent database state after all active transactions commit or abort. A locking scheduler, like most
types of scheduler, instead enforces conflict-serializability, which as we learned is a more stringent
condition than correctness, or even than serializability.

When a scheduler uses locks, transactions must request and release locks, in addition to reading and writing
database elements. The use of locks must be proper in two senses, one applying to the structure of
transactions, and the other to the structure of schedules:

e Consistency of Transactions: Actions and locks must relate in the expected ways:

1. A transaction can only read or write an element if it previously was granted a lock on that element
and hasn’t yet released the lock.
2. If atransaction locks an element, it must later unlock that element.

e Legality of Schedules: Locks must have their intended meaning: no two transactions may have locked
the same element without one having first released the lock.

We shall extend our notation for actions to include locking and unlocking actions:

1; (X): Transaction T; requests a lock on database element X.
u; (X): Transaction T; releases (“unlocks”) its lock on database element X.

Thus, the consistency condition for transactions can be stated as:

e Whenever a transaction T; has an action r; (X) or w;i (X), then there is a previous action 1; (X) with
no intervening action u; (X), and there is a subsequent u; (X).

The legality of schedules is stated:

e If there are actions 1; (x) followed by 15 (X) in a schedule, then somewhere between these actions
there must be an action u; (X).

Example. Let us consider the two transactions T1 and T that we introduced earlier. Recall that T adds 100
to database elements A and B, while T, doubles them. Here are specifications for these transactions, in
which we have included lock actions as well as arithmetic actions to help us remember what the transactions
are doing (remember that the actual computations of the transaction usually are not represented in our

38

current notation, since they are not considered by the scheduler when deciding whether to grant or deny
transaction requests):

Ti:11(A);r1(A);A = A+100;wi1(A),u1(A);11(B); r1(B);B := B+100;w1(B);u1(B);
Toi12(A);r2(A);A 1= A*2;w2(A),u2(A);12(B),; r2(B),B := B*2,w2(B),uz(B);

Each of these transactions is consistent. They each release the locks on 2 and B that they take. Moreover,
they each operate on 2 and B only at steps where they have previously requested a lock on that element and
have not yet released the lock.

T T A B
Li(A); ri(A); 25
A := A+100;
w1 (A); ui(A); 125
1,(A); r2(A); | 125
A := A*2;
w2 (A); uz(A); | 250
1,(B); r2(B); 25
B := B*2;
w2 (B); u2(B); 50
1:(B); r1(B); 50
B := B+100;
w1 (B); ui(B); 150

The figure above shows one legal schedule of these two transactions. The schedule is legal because the two
transactions never hold a lock on A at the same time, and likewise for B. Specifically, T, does not execute
1, (A) until after T, executes u: (A), and T1 does not execute 11 (B) until after T, executes uz (B) . As
we see from the trace of the values computed, the schedule, although legal, is not serializable. We shall
soon see the additional condition, “two-phase locking,” that we need to assure that legal schedules are
conflict-serializable.

The Locking Scheduler

It is the job of a scheduler based on locking to grant requests if and only if the request will result in a legal
schedule. If a request is not granted, the requesting transaction is delayed; it waits until the scheduler grants
its request at a later time. To aid its decisions, the scheduler has a lock table that tells, for every database
element, the transaction (if any) that currently holds a lock on that element. We shall later discuss the
structure of a lock table in more detail. However, when there is only one kind of lock, as we have assumed
so far, the table may be thought of as a relation Locks (element, transaction), consisting of pairs
(X, T) such that transaction T currently has a lock on database element X. The scheduler has only to query
and modify this relation using simple INSERT and DELETE statements.

Example. The schedule in the previous example is legal, as we mentioned, so the locking scheduler would
grant every request in the order of arrival shown. However, sometimes it is not possible to grant requests.
Here are T1 and T with simple but important changes, in which T, and T» each lock B before releasing the
lock on A:

Ti:11(A);r1(A);A A+100;w1(A);11(B);ui(A), r1(B);B := B+100; w1 (B);u1(B);
T2i12(A); r2(A);A = A*2;w2(A); 12(B);uz2(A), r2(B);B := B*2, w2 (B);uz(B);

39

T1 T A B
1. (A); ri(A); 25
A := A+100;
w1 (A); 11(B); ui(A); 125
12(A); r2(A); 125
A := A*2;
w2 (A) ; 250
1, (B) ; denied
r1(B); B := B+100; 25
w1 (B); ui(B); 125
1,(B); u2(A); r2(B); 125
B := B*2;
wo (B); u2(B); 250

As you can see in the figure, when T» requests a lock on B, the scheduler must deny the lock, because T
still holds a lock on B. Thus, T» is delayed, and the next actions are from T.. Eventually, T:1 executes
u1 (B), which unlocks B. Now, T can get its lock on B, which is executed at the next step. Notice that
because T was forced to wait, it wound up multiplying B by 2 after T added 100, resulting in a consistent
database state.

Two-Phase Locking

There is a surprising condition, called two-phase locking (or 2PL) under which we can guarantee that a
legal schedule of consistent transactions is conflict-serializable:

e Inevery transaction, all lock actions precede all unlock actions.

The “two phases” referred to by 2PL are thus the first phase, where locks are obtained, and the second
phase, where locks are relinquished. Two-phase locking is a condition, like consistency, on the order of
actions in a transaction. A transaction that obeys the 2PL condition is said to be a two-phase-locked
transaction, or 2PL transaction.

Example. In our first example, the transactions do not obey the two-phase locking rule. For instance, T:
unlocks A before it locks B. However, the versions of the transactions found in the second example do obey
the 2PL condition. Notice that T1 locks both A and B within the first five actions and unlocks them within
the next five actions; T» behaves similarly. If we compare the two figures, we see how the 2PL transactions
interact properly with the scheduler to assure consistency, while the non-2PL transactions allow non-
conflict-serializable behavior.

Why Two-Phase Locking Works

Intuitively, each two-phase-locked transaction may be thought to execute in its entirety at the instant it
issues its first unlock request. Thus, there is always at least one conflict-equivalent serial schedule for a
schedule s of 2PL transactions: the one in which the transactions appear in the same order as their first
unlocks.

We shall show how to convert any legal schedule s of consistent, two-phase-locked transactions to a
conflict-equivalent serial schedule. The conversion is best described as an induction on n, the number of
transactions in S. In what follows, it is important to remember that the issue of conflict-equivalence refers
to the read and write actions only. As we swap the order of reads and writes, we ignore the lock and unlock
actions. Once we have the read and write actions ordered serially, we can place the lock and unlock actions
around them as the various transactions require. Since each transaction releases all locks before its end, we
know that the serial schedule is legal.

40

Basis: If n =1, i.e., the schedule consists of only one transaction, there is nothing to do; s is already a serial
schedule.

Induction: Suppose S involves n transactions T, T2, ..., Tn, and let T; be the transaction with the first
unlock action in the entire schedule s, say u: (X). We claim it is possible to move all the read and write
actions of T; forward to the beginning of the schedule without passing any conflicting reads or writes.

Consider some action of T, say w; (Y) . Could it be preceded in S by some conflicting action, say w5 (Y) ?
If so, then in schedule s, actions us (Y) and 1; (Y) must intervene, in a sequence of actions

e Wi (Y) s s ug (YY) ees Li(Y) s s wi (YY) .
Since T is the first to unlock, u; (X) precedes u; (Y) in S; thatis, S might look like this:
Lo Wi (YY) s s ui (X)) e us (YY) s oo Li(Y) s ces wi (YY) L

u; (X) could even appear before ws (Y) . In any case, u; (X) appears before 1; (Y), which means that T
is not two-phase-locked, as we assumed. While we have only argued the nonexistence of conflicting pairs
of writes, the same argument applies to any pair of potentially conflicting actions, one from T; and the
other from another T+.

We conclude that it is indeed possible to move all the actions of T; forward to the beginning of S, using
swaps of nonconflicting read and write actions, followed by restoration of the lock and unlock actions of
T;. That is, S can be written in the form

(actions of T;) (actions of the other n — 1 transactions)

The tail of n —1 transactions is still a legal schedule of consistent, 2PL transactions, so the inductive
hypothesis applies to it. We convert the tail to a conflict-equivalent serial schedule, and now all of S has
been shown conflict-serializable.

A Risk of Deadlock

One problem that is not solved by two-phase locking is the potential for deadlocks, where several
transactions are forced by the scheduler to wait “forever” for a lock held by another transaction. For
instance, consider our familiar 2PL transactions, but with T» changed to work on B first:

Tii11(A);r1(A);A = A+100;w1(A), 11 (B);ui(A), r1(B);B := B+100; w1 (B);u1(B);
T2:12(B);r2(B);B 1= B*2;w2(B); 12(A);u2(B),; r2(A),;A 1= A*2;w2(A),uz(A);

A possible interleaving of the actions of these transactions is:

T1 T» A B
11(A); ri(A); 25
1(B); r2(B); 25
A := A+100;
B := B*2;
w1 (A) ; 125
wy (B) ; 50
1: (B) ; denied 1, (A7) ; denied

Now, neither transaction can proceed, and they wait forever. You can observe that it is not possible to allow
both transactions to proceed, since if we do so, the final database state cannot possibly have A = B.

When a deadlock exists, it is generally impossible to repair the situation so that all transactions involved
can proceed. Thus, at least one of the transactions will have to be aborted and restarted.

41

There are two broad approaches to dealing with deadlocks. We can detect deadlocks and fix them (deadlock
detection), or we can manage transactions in such a way that deadlocks are never able to form (deadlock
prevention).

The simplest way to detect and resolve deadlocks is with a timeout. Put a limit on how long a transaction
may be active, and if a transaction exceeds this time, roll it back. For example, in a simple transaction
system, where typical transactions execute in milliseconds, a timeout of one minute would affect only
transactions that are caught in a deadlock.

Notice that when one deadlocked transaction times out and rolls back, it releases its locks or other resources.
Thus, there is a chance that the other transactions involved in the deadlock will complete before reaching
their timeout limits. However, since transactions involved in a deadlock are likely to have started at
approximately the same time (or else, one would have completed before another started), it is also possible
that spurious timeouts of transactions that are no longer involved in a deadlock will occur.

A more sophisticated way for deadlock detection is by a waits-for graph, indicating which transactions are
waiting for locks held by another transaction. This graph can be used either to detect deadlocks after they
have formed or to prevent deadlocks from ever forming. We shall assume the latter, which requires us to
maintain the waits-for graph at all times, refusing to allow an action that creates a cycle in the graph.

We will see that a lock table maintains for each database element X a list of the transactions that are waiting
for locks on X, as well as transactions that currently hold locks on X. The waits-for graph has a node for
each transaction that currently holds any lock or is waiting for one. There is an arc from node (transaction)
T to node U if there is some database element A such that

1. U holds alock on 2,
2. T is waiting for a lock on 2, and
3. T cannot get a lock on A unless U first releases its lock on A.

If there are no cycles in the waits-for graph, then each transaction can complete eventually. There will be
at least one transaction waiting for no other transaction, and this transaction surely can complete. At that
time, there will be at least one other transaction that is not waiting, which can complete, and so on.

However, if there is a cycle, then no transaction in the cycle can ever make progress, so there is a deadlock.
Thus, a strategy for deadlock avoidance is to roll back any transaction that makes a request that would cause
a cycle in the waits-for graph.

Example. Suppose we have the following four transactions, each of which reads one element and writes
another:

Ti:11(A);r1(A); 11(B),wi(B),ui1(A);u1(B);
T2:12(C);r2(C); 12(A), w2 (A);,u2(C);uz(A);
T3:13(B); r3(B); 13(C);, w3 (C),us(B);us(C);
T4:14(D); ra(D); 1a(A);, wa(A),us(D);ua(A);
Step T1 T, T3 Ty

15(B); r3(B);
14(D); ra(D);

15 (C) ; denied
1, (A) ; denied

0 ~J o U b w N

1, (B) ; denied

In the figure above, you can see the beginning of a schedule of these four transactions. In the first four
steps, each transaction obtains a lock on the element it wants to read. At step (5), T- tries to lock 2, but the

42

request is denied because T: already has a lock on A. Thus, T, waits for T+, and we draw an arc from the
node for T to the node for T.

Similarly, at step (6) Ts is denied a lock on C because of T, and at step (7), T4 is denied a lock on A because
of T:1. The waits-for graph at this point is as follows:

@

There is no cycle in this graph. At step (8), T1 must wait for the lock on B held by Ts. If we allow T to
wait, there is a cycle in the waits-for graph involving T1, T2, and T3, as seen in the following figure:

Since each of these transactions is waiting for another to finish, none can make progress, and therefore,
there is a deadlock involving these three transactions. Incidentally, T4 cannot finish either, although it is
not in the cycle, because T4’s progress depends on T1 making progress.

Since we roll back any transaction that causes a cycle, T: must be rolled back, yielding the following waits-

for graph:
O—0O
®

T: relinquishes its lock on 2, which may be given to either T, or T4. Suppose it is given to T,. Then T» can
complete, whereupon it relinquishes its locks on 2 and C. Now T, which needs a lock on C, and T4, which

needs a lock on 2, can both complete. At some time, T is restarted, but it cannot get locks on 2 and B until
T2, T3, and T4 have completed.

Locking Systems With Several Lock Modes

The locking scheme described previously illustrates the important ideas behind locking, but it is too simple
to be a practical scheme. The main problem is that a transaction T must take a lock on a database element
X even if it only wants to read x and not write it. We cannot avoid taking the lock, because if we didn’t,
then another transaction might write a new value for X while T was active and cause unserializable behavior.
On the other hand, there is no reason why several transactions could not read X at the same time, as long as
none is allowed to write X.

43

Shared and Exclusive Locks

The lock we need for writing is “stronger” than the lock we need to read, since it must prevent both reads
and writes. Let us therefore consider a locking scheduler that uses two different kinds of locks: shared locks
(read locks) and exclusive locks (write locks). For any database element X, there can be either one exclusive
lock on X, or no exclusive locks but any number of shared locks. If we want to write X, we need to have an
exclusive lock on X, but if we wish only to read X, we may have either a shared or an exclusive lock on X.
If we want to read X but not write it, it is better to take only a shared lock.

We shall use s1; (X) to mean “transaction T; requests a shared lock on database element X” and x1: (X)
for “T; requests an exclusive lock on X.” We continue to use u; (X) to mean that T; unlocks X; i.e., it
relinquishes whatever lock(s) it has on x.

The three kinds of requirements — consistency and 2PL for transactions, and legality for schedules — each
have their counterpart for a shared/exclusive lock system. We summarize these requirements here:

1. Consistency of transactions: A transaction may not write without holding an exclusive lock and may
not read without holding some lock. More precisely, in any transaction T;,

a) aread action r; (X) must be preceded by s1; (X) or x1; (X), with no intervening u; (X) ;
b) awrite action w; (X) must be preceded by x1; (X), with no intervening ui (X).

All locks must be followed by an unlock of the same element.

2. Two-phase locking of transactions: Locking must precede unlocking. To be more precise, in any two-
phase locked transaction T, no action s1; (X) or x1; (X) can be preceded by an action us (Y), for
any v.

3. Legality of schedules: An element may either be locked exclusively by one transaction or by several in
shared mode, but not both. More precisely:

a) Ifx1:(X) appears in aschedule, then there cannot be a following x15 (X) or s15 (X), for some j
other than i, without an intervening u; (X).

b) If s1:(X) appears in a schedule, then there cannot be a following x15 (X), for j # i, without an
intervening u; (X) .

Note that we do allow one transaction to request and hold both shared and exclusive locks on the same
element, provided its doing so does not conflict with the lock(s) of other transactions. If transactions know
in advance their needs for locks, then only the exclusive lock would have to be requested, but if lock needs
are unpredictable, then it is possible that one transaction would request both shared and exclusive locks at
different times.

Example. Let us examine a possible schedule of the following two transactions, using shared and exclusive
locks:

Ti:sli1(A);r1(A); x11(B);r1(B);wi1(B);ui(A);u1(B);
To:slz2(A):r2(A); sl (B);r2(B);uz(A);uz2(B);

Both T, and T, read A and B, but only T1 writes B. Neither writes A.

Tl T2
sli(A); ri(A);

sla(A); r2(A);

sl>(B); r2(B);
%11 (B) ; denied

uz (A); uz2(B);
x11(B); r1(B); wi(B);
ui (A); ui(B);

44

In the figure above is an interleaving of the actions of T: and T in which T: begins by getting a shared
lock on A. Then, T follows by getting shared locks on both A and B. Now, T1 needs an exclusive lock on
B, since it will both read and write B. However, it cannot get the exclusive lock because T already has a
shared lock on B. Thus, the scheduler forces T to wait. Eventually, T. releases the lock on B. At that time,
T1 may complete.

Notice that the resulting schedule is conflict-serializable. The conflict-equivalent serial order is (T2, T1),
even though T started first. The argument we gave earlier to show that legal schedules of consistent, 2PL
transactions are conflict-serializable applies to systems with shared and exclusive locks as well. In the
figure, T unlocks before T1, so we would expect T to precede T: in the serial order.

Compatibility Matrices

If we use several lock modes, then the scheduler needs a policy about when it can grant a lock request,
given the other locks that may already be held on the same database element. A compatibility matrix is a
convenient way to describe lock-management policies. It has a row and column for each lock mode. The
rows correspond to a lock that is already held on an element X by another transaction, and the columns
correspond to the mode of a lock on X that is requested. The rule for using a compatibility matrix for lock-
granting decisions is:

e We can grant the lock on X in mode C if and only if for every row R such that there is already a lock on
X in mode R by some other transaction, there is a “yes” in column C.

Example. The following figure shows the compatibility matrix for shared (S) and exclusive (X) locks:

| s X
S| yes no
X no no

The column for S says that we can grant a shared lock on an element if the only locks held on that element
currently are shared locks. The column for X says that we can grant an exclusive lock only if there are no
other locks held currently. As you can see, these rules summarize the definition of the legality of schedules
for this locking scheme.

Upgrading Locks

A transaction T that takes a shared lock on X is being “friendly” toward other transactions, since they are
allowed to read X at the same time T is. Thus, we might wonder whether it would be friendlier still if a
transaction T that wants to read and write a new value of X were first to take a shared lock on X, and only
later, when T was ready to write the new value, upgrade the lock to exclusive (i.e., request an exclusive
lock on X in addition to its already held shared lock on x). There is nothing that prevents a transaction from
issuing requests for locks on the same database element in different modes. We adopt the convention that
u; (X) releases all locks on X held by transaction T, although we could introduce mode-specific unlock
actions if there were a use for them.

To be more precise: We say that transaction T upgrades its lock in mode 1., to mode L., on database element
X if
e T holds a lock in mode 1; on X,

e T requests alock in mode L, on X, and
e 1, dominates L.

45

A lock mode L. dominates lock mode 1; if in the compatibility matrix, L.’s row and column each have
“no” in whatever positions L1’s row or column, respectively, has “no.” For instance, X dominates S in case
of SX locking scheme. (Actually, X dominates all lock modes in all locking schemes, because both its row
and its column contain “no” in each position.)

Example. In the following example, transaction T is able to perform its computation concurrently with T,
which would not be possible had T: taken an exclusive lock on B initially. The two transactions are:

Tiis11(A); r1(A);sl1(B); r1(B);x11(B);w1(B);,ur(A);, ui(B),
T2isl2(A); r2(A); slz2(B); r2(B);uz(A);uz2(B),

Here, T1 reads A and B and performs some (possibly lengthy) calculation with them, eventually using the
result to write a new value of B. Notice that T, takes a shared lock on B first, and later, after its calculation
involving A and B is finished, requests an exclusive lock on B. Transaction T» only reads A and B and does
not write.

Tl T2
sli(A); ri(A);

slz(A); rz2(A)
sl2(B); rz2(B)

~e N

sli(B); r1(B);
x11 (B) ; denied
uz (A); uz2(B);
x11(B); wi(B);
ui (A); ui(B);

The figure shows a possible schedule of actions. T» gets a shared lock on B before T1 does, but on the fourth
line, T: is also able to lock B in shared mode. Thus, T: has both A and B and can perform its computation
using their values. It is not until T tries to upgrade its lock on B to exclusive that the scheduler must deny
the request and force T, to wait until T, releases its lock on B. At that time, T: gets its exclusive lock on B,
writes B, and finishes.

Notice that had T: asked for an exclusive lock on B initially, before reading B, then the request would have
been denied, because T already had a shared lock on B. T1 could not perform its computation without
reading B, and so T: would have more to do after T, releases its locks. As a result, T, would finish later if
it used only an exclusive lock on B than it does using the upgrading strategy.

Example. Unfortunately, indiscriminate use of upgrading introduces a new and potentially serious source
of deadlocks. Suppose that T, and T each read database element A and write a new value for A. If both
transactions use an upgrading approach, first getting a shared lock on A and then upgrading it to exclusive,
the sequence of events suggested in the following figure will happen whenever T1 and T initiate at
approximately the same time:

Tl TZ

sli(A);
slz(A);
x11 (A) ; denied
%1, (A) ; denied

T. and T are both able to get shared locks on A. Then, they each try to upgrade to exclusive, but the
scheduler forces each to wait because the other has a shared lock on A. Thus, neither can make progress,
and they will each wait forever, or until the system discovers that there is a deadlock, aborts one of the two
transactions, and gives the other the exclusive lock on 2.

46

Update Locks

We can avoid the deadlock problem described above with a third lock mode, called update locks. An update
lock ul; (X) gives transaction T; only the privilege to read X, not to write X. However, only the update
lock can be upgraded to a write lock later; a read lock cannot be upgraded. We can grant an update lock on
X when there are already shared locks on X, but once there is an update lock on X, we prevent additional
locks of any kind — shared, update, or exclusive — from being taken on X. The reason is that if we don’t
deny such locks, then the updater might never get a chance to upgrade to exclusive, since there would
always be other locks on x (thus, update locks solve not only the above deadlock problem but also the
starvation problem).

This rule leads to an asymmetric compatibility matrix, because the update (U) lock looks like a shared lock
when we are requesting it and looks like an exclusive lock when we already have it. Thus, the columns for
U and S locks are the same, and the rows for U and X locks are the same:

| s X U
S| yes no yes
X no no no
U no no no

Remember, however, that there is an additional condition regarding legality of schedules that is not reflected
by this matrix: a transaction holding a shared lock but not an update lock on an element X cannot be given
an exclusive lock on X, even though we do not in general prohibit a transaction from holding multiple locks
on an element.

Example. The use of update locks would have no effect on the first example of the previous page. As its
third action, T1 would take an update lock on B, rather than a shared lock. But the update lock would be
granted, since only shared locks are held on B, and the same sequence of actions would occur.

However, update locks fix the deadlock problem shown in the second example of the previous page. Now,
both T, and T first request update locks on A and only later take exclusive locks. Possible descriptions of
T. and T are:

H 3
ST
c o
=
N
Sl
KR
N
>
XX
e
N
Sl
s =
N
>
C oo
ST
>

The sequence of events corresponding to the one described there is the following:

Tl TZ
uli(A); ri(Ad);

ul, (A) ; denied

x11(A); wi(A); ui(d);
ulz(A); r2(A);
x12(A); w2(A); uz2(A);

Now, T», the second to request an update lock on 2, is denied. T. is allowed to finish, and then T, may
proceed. The lock system has effectively prevented concurrent execution of T; and T, but in this example,
any significant amount of concurrent execution will result in either a deadlock or an inconsistent database
state.

47

Increment Locks

Another interesting kind of lock that is useful in some situations is an increment lock. Many transactions
operate on the database only by incrementing or decrementing stored values. For example, consider a
transaction that transfers money from one bank account to another.

The useful property of increment actions is that they commute with each other, since if two transactions
add constants to the same database element, it does not matter which goes first. On the other hand,
incrementation commutes with neither reading nor writing; if you read A before or after it is incremented,
you leave different values, and if you increment A before or after some other transaction writes a new value
for 2, you get different values of A in the database.

Let us introduce as a possible action in transactions the increment action, written INC (2, c) . Informally,
this action adds constant c to database element 2, which we assume is a single number. Note that ¢ could
be negative, in which case we are really decrementing 2. In practice, we might apply INC to a component
of a tuple, while the tuple itself, rather than one of its components, is the lockable element. More formally,
we use INC (A, c) to stand for the atomic execution of the following steps: READ (A, t); t := t+c;
WRITE (A, t) ;.

Corresponding to the increment action, we need an increment lock. We shall denote the action of T:
requesting an increment lock on X by 11; (X). We also use shorthand inci (X) for the action in which
transaction T increments database element X by some constant; the exact constant doesn’t matter.

The existence of increment actions and locks requires us to make several modifications to our definitions
of consistent transactions, conflicts, and legal schedules. These changes are:

a) A consistent transaction can only have an increment action on X if it holds an increment (or exclusive)
lock on x at the time. An increment lock does not enable either read or write actions, however.

b) The action inc; (X) conflicts with both ry (X) and w; (X), for 5 = i, but does not conflict with
incy (X).

c) Inalegal schedule, any number of transactions can hold an increment lock on X at any time. However,
if an increment lock on X is held by some transaction, then no other transaction can hold either a shared
or exclusive lock on X at the same time. These requirements are expressed by the compatibility matrix,
where | represents a lock in increment mode:

| s X [
S| yes no no
X no no no
| no no yes

Example. Consider two transactions, each of which reads database element A and then increments B:

Ti:sli1(A);r1(A); 111 (B); inci(B);ui(A); u1(B);
T2:sl2(A);r2(A); 112(B); inc2(B);uz(A); uz(B);

Notice that the transactions are consistent, since they only perform an incrementation while they have an
increment lock, and they only read while they have a shared lock. A possible interleaving of T: and T is
the following:

48

Tl T2
sli(A); ri1(A);

slz(A); r2(A);

i1,(B); incz(B);
i1:(B); inci(B);

uz(A); u2(B);
ui(A); ui(B);

T reads A first, but then T both reads 2 and increments B. However, T is then allowed to get its increment
lock on B and proceed. Notice that the scheduler did not have to delay any requests. Suppose, for instance,
that T1 increments B by A, and T» increments B by 2A. They can execute in either order, since the value of
A does not change, and the incrementations may also be performed in either order. Put another way, we
may look at the sequence of nonlock actions in the schedule; they are:

Sir1(A); r2(A); incz2(B); inci1 (B);

We may move the last action, inc: (B), to the second position, since it does not conflict with another
increment of the same element, and surely does not conflict with a read of a different element. This sequence
of swaps shows that S is conflict-equivalent to the following serial schedule:

r1(A);inci(B); r2(A); incz2(B);

Similarly, we can move the first action, r: (2), to the third position by swaps, giving a serial schedule in
which T precedes T;.

An Architecture for a Locking Scheduler

Having seen a number of different locking schemes, we next consider how a scheduler that uses one of
these schemes operates. We shall consider here only a simple scheduler architecture based on several
principles:

1. The transactions themselves do not request locks, or cannot be relied upon to do so. It is the job of the
scheduler to insert lock actions into the stream of reads, writes, and other actions that access data.

2. Transactions do not release locks. Rather, the scheduler releases the locks when the transaction manager
tells it that the transaction will commit or abort.

49

A Scheduler That Inserts Lock Actions

Transactions

READ (A) ; WRITE (B);
COMMIT;

\

Scheduler, Part |

- LOCK (A) ; READ (A) ;
Lock table ¥

Scheduler, Part 11

READ (A) ; WRITE(B);

The figure shows a two-part scheduler that accepts requests such as read, write, commit, and abort, from
transactions. The scheduler maintains a lock table, which, although it is shown as secondary-storage data,
may be partially or completely in main memory. Normally, the main memory used by the lock table is not
part of the buffer pool that is used for query execution and logging. Rather, the lock table is just another
component of the DBMS and will be allocated space by the operating system like other code and internal
data of the DBMS.

Actions requested by a transaction are generally transmitted through the scheduler and executed on the
database. However, under some circumstances a transaction is delayed, waiting for a lock, and its requests
are not (yet) transmitted to the database. The two parts of the scheduler perform the following actions:

1. Part | takes the stream of requests generated by the transactions and inserts appropriate lock actions
ahead of all database-access operations, such as read, write, increment, or update. Part | of the scheduler
must select an appropriate lock mode from whatever set of lock modes the scheduler is using. The
database-access and lock actions are then transmitted to Part 1.

2. Part Il takes the sequence of lock and database-access actions passed to it by Part I. It determines
whether the issuing transaction T is already delayed, because a lock has not been granted. If so, then
the action is itself delayed and added to a list of actions that must eventually be performed for
transaction T. If T is not delayed (i.e., all locks it previously requested have been granted already), then
Part Il checks the type of action to be executed.

a) If the action is a database access, it is transmitted to the database and executed.

b) If alock action is received by Part II, it examines the lock table to see if the lock can be granted. If
so, the lock table is modified to include the lock just granted. If not, then an entry must be made in
the lock table to indicate that the lock has been requested. Part Il of the scheduler then delays
transaction T until such time as the lock is granted.

3. When a transaction T commits or aborts, Part | is notified by the transaction manager and releases all
locks held by T. If any transactions are waiting for any of these locks, Part | notifies Part 11.

4. When Part 11 is notified that a lock on some database element X is available, it determines the next
transaction or transactions that can now be given a lock on X. The transaction(s) that receive a lock are

50

allowed to execute as many of their delayed actions as can execute, until they either complete or reach
another lock request that cannot be granted.

Example. If there is only one kind of lock, then the task of Part | of the scheduler is simple. If it sees any
action on database element X, and it has not already inserted a lock request on X for that transaction, then
it inserts the request. When a transaction commits or aborts, Part | can forget about that transaction after
releasing its locks, so the memory required for Part | does not grow indefinitely.

When there are several kinds of locks, the scheduler may require advance notice of what future actions on
the same database element will occur. Let us reconsider the case of shared-exclusive-update locks, using
the transactions of the example seen at lock upgrading, which we now write without any locks at all:

Ti:r1(A); r1(B);,w1(B),;
T2ir2 (A); r2(B),

The messages sent to Part | of the scheduler must include not only the read or write request, but an indication
of future actions on the same element. In particular, when r; (B) is sent, the scheduler needs to know that
there will be a later w; (B) action (or might be such an action). There are several ways the information
might be made available. For example, if the transaction is a query, we know it will not write anything. If
the transaction is a SQL database modification command, then the query processor can determine in
advance the database elements that might be both read and written. If the transaction is a program with
embedded SQL, then the compiler has access to all the SQL statements (which are the only ones that can
access the database) and can determine the potential database elements written.

In our example, suppose that events occur in the order suggested by the example at lock upgrading. Then
T, first issues r: (2) . Since there will be no future upgrading of this lock, the scheduler inserts s1; (2)
ahead of r1 (A) . Next, the requests from T> — r» (A) and r» (B) — arrive at the scheduler. Again, there
is no future upgrade, so the sequence of actions s1, (A); r2 (A); slz (B); r2 (B); areissued by Part I.

Then, the action r1 (B) arrives at the scheduler, along with a warning that this lock may be upgraded. The
scheduler Part | thus emits ul: (B); r1 (B); to Part Il. The latter consults the lock table and finds that it
can grant the update lock on B to T, because there are only shared locks on B.

When the action w1 (B) arrives at the scheduler, Part | emits x1:1 (B) ; w1 (B) ;. However, Part Il cannot
grantthe x11 (B) request, because there is a shared lock on B for T. This and any subsequent actions from
T, are delayed, stored by Part Il for future execution. Eventually, T> commits, and Part | releases the locks
on A and B that T» held. At that time, it is found that T: is waiting for a lock on B. Part Il of the scheduler
is notified, and it finds the lock x11 (B) is now available. It enters this lock into the lock table and proceeds
to execute stored actions from T, to the extent possible. In this case, T: completes.

o1

The Lock Table

DB element Lock information

Group mode: U
Waiting: yes
List: /

Tran Mode Wait? Tnext Next

.,

2 V) no

<
(T3 X yes

L~

[\\

C
Abstractly, the lock table is a relation that associates database elements with locking information about that
element, as suggested by the figure. The table might, for instance, be implemented with a hash table, using

(addresses of) database elements as the hash key. Any element that is not locked does not appear in the
table, so the size is proportional to the number of locked elements only, not to the size of the entire database.

In the figure is an example of the sort of information we would find in a lock-table entry. This example
structure assumes that the shared-exclusive-update lock scheme is used by the scheduler. The entry shown
for a typical database element A is a tuple with the following components:

1. The group mode is a summary of the most stringent conditions that a transaction requesting a new lock
on A faces, i.e., the group mode is the most dominant lock mode currently held on 2. Rather than
comparing the lock request with every lock held by another transaction on the same element, we can
simplify the grant/deny decision by comparing the request with only the group mode. (The lock manager
must, however, deal with the possibility that the requesting transaction already has a lock in another
mode on the same element. For instance, in the SXU lock system discussed, the lock manager may be
able to grant an X-lock request if the requesting transaction is the one that holds a U lock on the same
element. For systems that do not support multiple locks held by one transaction on one element, the
group mode always tells what the lock manager needs to know.) For the shared-exclusive-update (SXU)
lock scheme, the rule is simple:

The group mode

a) S means that only shared locks are held,;
b) U means that there is one update lock and perhaps one or more shared locks;
c) X means there is one exclusive lock and no other locks.

For other lock schemes, there is usually an appropriate system of summaries by a group mode.
2. The waiting bit tells whether there is at least one transaction waiting for a lock on 2.

3. Alist describing all those transactions that either currently hold locks on 2 or are waiting for a lock on
A. Useful information that each list entry might include:

52

a) the name of the transaction holding or waiting for a lock;
b) the mode of this lock;
c) whether the transaction is holding or waiting for the lock.

We also show in the figure two links for each entry. One links the entries for a particular database
element, and the other (Tnext in the figure) links all entries for a particular transaction. The latter link
would be used when a transaction commits or aborts, so that we can easily find all the locks that must
be released.

Handling Lock Requests

Suppose transaction T requests a lock on A. If there is no lock-table entry for 2, then surely there are no
locks on 2, so the entry is created and the request is granted. If the lock-table entry for A exists, we use it
to guide the decision about the lock request. We find the group mode, which in the figure is U (update).
Once there is an update lock on an element, no other lock can be granted (except in the case that T itself
holds the U lock, and other locks are compatible with T’s request). Thus, this request by T is denied, and
an entry will be placed on the list saying T requests a lock (in whatever mode was requested), and the
waiting bit is set to true.

If the group mode had been X (exclusive), then the same thing would happen, but if the group mode were
S (shared), then another shared or update lock could be granted. In that case, the entry for T on the list
would have the waiting bit false, and the group mode would be changed to U if the new lock were an update
lock; otherwise, the group mode would remain S. Whether or not the lock is granted, the new list entry is
linked properly, through its Tnext and Next fields. Notice that whether or not the lock is granted, the entry
in the lock table tells the scheduler what it needs to know without having to examine the list of locks.

Handling Unlocks

Now suppose transaction T unlocks A. T’s entry on the list for A is deleted. If the lock held by T is not the
same as the group mode (e.g., T held an S lock, while the group mode was U), then there is no reason to
change the group mode. On the other hand, if T°s lock is in the group mode, we may have to examine the
entire list to find the new group mode. In the example of the figure, we know there can be only one U lock
on an element, so if that lock is released, the new group mode could be only S (if there are shared locks
remaining) or nothing (if no other locks are currently held). (We would never actually see a group mode of
“nothing,” since if there are no locks and no lock requests on an element, then there is no lock-table entry
for that element. Moreover, there may not be a lock request without a granted lock on an element.) If the
group mode is X, we know there are no other locks, and if the group mode is S, we need to determine
whether there are other shared locks.

If the waiting bit is true, then we need to grant one or more locks from the list of requested locks. There are
several different approaches, each with its advantages:

1. First-come-first-served: Grant the lock request that has been waiting the longest. This strategy
guarantees no starvation, the situation where a transaction can wait forever for a lock.

2. Priority to shared locks: First grant all the shared locks waiting. Then, grant one update lock, if there
are any waiting. Only grant an exclusive lock if no others are waiting. This strategy can allow starvation,
if a transaction is waiting for a U or X lock.

3. Priority to upgrading: If there is a transaction with a U lock waiting to upgrade it to an X lock, grant
that first. Otherwise, follow one of the other strategies mentioned.

53

Hierarchies of Database Elements

Let us now return to the exploration of different locking schemes. In particular, we shall focus on two
problems that come up when there is a tree structure to our data:

1. The first kind of tree structure we encounter is a hierarchy of lockable elements (lock units). We shall
discuss in this section how to allow locks on both large elements, e.g., relations, and smaller elements
contained within these, such as blocks holding several tuples of the relation, or individual tuples.

2. The second kind of hierarchy that is important in concurrency-control systems is data that is itself
organized in a tree. A major example is B-tree indexes. We may view nodes of the B-tree as database
elements, but if we do, then as we shall see in the next section, the locking schemes studied so far
perform poorly, and we need to use a new approach.

Locks With Multiple Granularity

Recall that the term “database element” was purposely left undefined, because different systems use
different sizes of database elements to lock, such as tuples, pages or blocks, and relations. Some applications
benefit from small database elements, such as tuples, while others are best off with large elements.

Example. Consider a database for a bank. If we treated relations as database elements, and therefore had
only one lock for an entire relation such as the one giving account balances, then the system would allow
very little concurrency. Since most transactions will change an account balance either positively or
negatively, most transactions would need an exclusive lock on the accounts relation. Thus, only one deposit
or withdrawal could take place at any time, no matter how many processors we had available to execute
these transactions. A better approach is to lock individual pages or data blocks. Thus, two accounts whose
tuples are on different blocks can be updated at the same time, offering almost all the concurrency that is
possible in the system. The extreme would be to provide a lock for every tuple, so any set of accounts
whatsoever could be updated at once, but this fine a grain of locks is probably not worth the extra effort.

In contrast, consider a database of documents. These documents may be edited from time to time, but most
transactions will retrieve whole documents. The sensible choice of database element is a complete
document. Since most transactions are read-only (i.e., they do not perform any write actions), locking is
only necessary to avoid the reading of a document that is in the middle of being edited. Were we to use
smaller-granularity locks, such as paragraphs, sentences, or words, there would be essentially no benefit
but added expense. The only activity a smaller-granularity lock would support is the ability for two people
to edit different parts of a document simultaneously.

Some applications could use both large- and small-grained locks. For instance, the bank database discussed
in the example clearly needs block- or tuple-level locking, but might also at some time need a lock on the
entire accounts relation in order to audit accounts (e.g., check that the sum of the accounts is correct).
However, permitting a shared lock on the accounts relation, in order to compute some aggregation on the
relation, while at the same time there are exclusive locks on individual account tuples, can lead easily to
unserializable behavior. The reason is that the relation is actually changing while a supposedly frozen copy
of it is being read by the aggregation query.

Warning Locks
The solution to the problem of managing locks at different granularities involves a new kind of lock called

a “warning.” These locks are useful when the lock units form a nested or hierarchical structure, as suggested
in the following figure:

54

Relations

Blocks

Here, we see three levels of lock units:

1. relations are the largest lockable elements;
2. each relation is composed of one or more blocks or pages, on which its tuples are stored,;
3. each block contains one or more tuples.

The rules for managing locks on a hierarchy of lock units constitute the warning protocol, which involves
both “ordinary” locks and “warning” locks. We shall describe the lock scheme where the ordinary locks
are S and X (shared and exclusive). The warning locks will be denoted by prefixing I (for “intention to”) to
the ordinary locks; for example, IS represents the intention to obtain a shared lock on a subelement. The
rules of the warning protocol are:

1. To place an ordinary S or X lock on any element, we must begin at the root of the hierarchy.

2. If we are at the element that we want to lock, we need look no further. We request an S or X lock on
that element.

3. If the element we wish to lock is further down the hierarchy, then we place a warning at this node; that
is, if we want to get a shared lock on a subelement, we request an IS lock at this node, and if we want
an exclusive lock on a subelement, we request an 1X lock on this node. When the lock on the current
node is granted, we proceed to the appropriate child (the one whose subtree contains the node we wish
to lock). We then repeat step (2) or step (3), as appropriate, until we reach the desired node.

In order to decide whether or not one of these locks can be granted, we use the following compatibility
matrix:

| 1S IX S X
IS | vyes yes yes no
IX | yes yes no no
S yes no yes no
X no no no no

To see why this matrix makes sense, consider first the IS column. When we request an IS lock on a node
N, we intend to read a descendant of N. The only time this intent could create a problem is if some other
transaction has already claimed the right to write a new copy of the entire lock unit represented by N; thus
we see “no” in the row for X. Notice that if some other transaction plans to write only a subelement,
indicated by an IX lock at N, then we can afford to grant the IS lock at N, and allow the conflict to be
resolved at a lower level, if indeed the intent to write and the intent to read happen to involve a common
element.

Now consider the column for IX. If we intend to write a subelement of node N, then we must prevent either
reading or writing of the entire element represented by N. Thus, we see “no” in the entries for lock modes
S and X. However, per our discussion of the IS column, another transaction that reads or writes a subelement
can have potential conflicts dealt with at that level, so 1X does not conflict with another IX at N or with an
IS at N.

55

Next, consider the column for S. Reading the element corresponding to node N cannot conflict with either
another read lock on N or a read lock on some subelement of N, represented by IS at N. Thus, we see “yes”
in the rows for both S and IS. However, either an X or an IX means that some other transaction will write
at least a part of the element represented by N. Thus, we cannot grant the right to read all of N, which
explains the “no” entries in the column for S.

Finally, the column for X has only “no” entries. We cannot allow writing of all of node N if any other
transaction already has the right to read or write N, or to acquire that right on a subelement.

Example. Consider the following relation:

Movie (title, year, length, studioName)

Let us postulate a lock on the entire relation and locks on individual tuples. Let transaction T consist of
the following query:

SELECT * FROM Movie WHERE title = ’'King Kong’;

T Starts by getting an IS lock on the entire relation. It then moves to the individual tuples (there are two
movies with the title “King Kong”), and gets S locks on each of them.

Now, suppose that while we are executing the first query, transaction T, which changes the year component
of a tuple, begins:

UPDATE Movie SET year = 1939 WHERE title = ’'Gone With the Wind’;

T, needs an IX lock on the relation, since it plans to write a new value for one of the tuples. T:’s IS lock
on the relation is compatible, so the lock is granted. When T goes to the tuple for “Gone With the Wind”,
it finds no lock there, and so gets its X lock and rewrites the tuple. Had T tried to write a new value in the
tuple for one of the “King Kong” movies, it would have had to wait until T, released its S lock, since S and
X are not compatible. The collection of locks is suggested by the following figure:

T,1—IS Movie
Tz—V \
King Kong King Kong Gone With the Wind
T:-S T1-S To—X

Group Modes for Intention Locks

The compatibility matrix depicted above exhibits a situation we have not seen before regarding the power
of lock modes. In prior lock schemes, whenever it was possible for a database element to be locked in two
distinct modes at the same time, one of these modes dominated the other. For example, in SXU lock scheme,
we see that U dominates S, and X dominates both S and U. An advantage of knowing that there is always
one dominant lock on an element is that we can summarize the effect of many locks with a “group mode.”

As we see from the compatibility matrix containing intention locks, neither of modes S and 1X dominate
the other. Moreover, it is possible for an element to be locked in both modes S and IX at the same time,
provided the locks are requested by the same transaction (recall that the “no” entries in a compatibility
matrix only apply to locks held by some other transaction). A transaction might request both locks if it
wanted to read an entire element and then write a few of its subelements. If a transaction has both S and 1X
locks on an element, then it restricts other transactions to the extent that either lock does. That is, we can
imagine another lock mode SIX, whose row and column have “no” everywhere except in the entry for IS.

56

The lock mode SIX serves as the group mode if there is a transaction with locks in S and IX modes, but not
X mode.

Incidentally, we might imagine that the same situation occurs in the matrix for increment locks. That is,
one transaction could hold locks in both S and | modes. However, this situation is equivalent to holding a
lock in X mode, so we could use X as the group mode in that situation.

Nonrepeatable Read and Phantoms

Consider a transaction T: executing a query that selects some rows from a relation. Then, another
transaction T, modifies or deletes some of the rows satisfying T:’s search condition and commits. If T,
then attempts to reread the rows with the same search condition, it will receive modified values or discover
that some rows have been deleted. This phenomenon is called nonrepeatable read or fuzzy read. The
problem with nonrepeatable reads is that the second execution of the same query may give different result
from its first execution. However, a transaction may expect that executing the same query more than one
time gives the same result each time.

A similar situation is when transaction T, inserts some rows satisfying T:’s search condition into the
relation (instead of modifying or deleting existing rows). Again, running the query the second time will
give different result from the first time. The reason for this is that during the second execution, new rows
appear that did not even exist during the first execution. Such rows are called phantoms.

These two phenomena (nonrepeatable read and phantom read) occur so rarely in real life that some DBMSs
do not even prevent them by default, although both result in unserializable behavior. However, the user
may request that nonrepeatable reads and/or phantom reads should not occur when executing a particular
transaction. This is done by changing the transaction’s isolation level (see later).

Preventing nonrepeatable reads is simple: a shared lock must be requested by T: on each row selected by
the query. This way, T cannot lock them in exclusive mode until T: commits or aborts. There is also a
simple way for preventing phantom reads if we use locks with multiple granularity: T must lock the entire
relation in X mode before inserting new rows. Since T: previously locked the relation in IS mode, this
request will be denied first by the scheduler and granted only after T: commits, thus preventing
unserializable behavior.

The Tree Protocol

Like the previous section, this section deals with data in the form of a tree. However, here, the nodes of the
tree do not form a hierarchy based on containment. Rather, database elements are disjoint pieces of data,
but the only way to get to a node is through its parent; B-trees are an important example of this sort of data.
Knowing that we must traverse a particular path to an element gives us some important freedom to manage
locks differently from the two-phase locking approaches we have seen so far.

Motivation for Tree-Based Locking

Let us consider a B-tree index in a system that treats individual nodes (i.e., blocks) as lockable database
elements. The node is the right level of lock granularity, because treating smaller pieces as elements offers
no benefit, and treating the entire B-tree as one database element prevents the sort of concurrent use of the
index that can be achieved via the mechanisms that form the subject of this section.

If we use a standard set of lock modes, like shared, exclusive, and update locks, and we use two-phase
locking, then concurrent use of the B-tree is almost impossible. The reason is that every transaction using

57

the index must begin by locking the root node of the B-tree. If the transaction is 2PL, then it cannot unlock
the root until it has acquired all the locks it needs, both on B-tree nodes and other database elements.
Moreover, since in principle any transaction that inserts or deletes could wind up rewriting the root of the
B-tree, the transaction needs at least an update lock on the root node, or an exclusive lock if update mode
Is not available. Thus, only one transaction that is not read-only can access the B-tree at any time.

However, in most situations, we can deduce almost immediately that a B-tree node will not be rewritten,
even if the transaction inserts or deletes a tuple. For example, if the transaction inserts a tuple, but the child
of the root that we visit is not completely full, then we know the insertion cannot propagate up to the root.
Similarly, if the transaction deletes a single tuple, and the child of the root we visit has more than the
minimum number of keys and pointers, then we can be sure the root will not change.

Thus, as soon as a transaction moves to a child of the root and observes the (quite usual) situation that rules
out a rewrite of the root, we would like to release the lock on the root. The same observation applies to the
lock on any interior node of the B-tree. Unfortunately, releasing the lock on the root early will violate 2PL,
S0 we cannot be sure that the schedule of several transactions accessing the B-tree will be serializable. The
solution is a specialized protocol for transactions that access tree-structured data such as B-trees. The
protocol violates 2PL, but uses the fact that accesses to elements must proceed down the tree to assure
serializability.

Rules for Access to Tree-Structured Data

The following restrictions on locks form the tree protocol. We assume that there is only one kind of lock,
represented by lock requests of the form 1; (X), but the idea generalizes to any set of lock modes. We
assume that transactions are consistent, and schedules must be legal (i.e., the scheduler will enforce the
expected restrictions by granting locks on a node only when they do not conflict with locks already on that
node), but there is no two-phase locking requirement on transactions.

1. A transaction’s first lock may be at any node of the tree. (In the B-tree example, the first lock would
always be at the root because a search in a B-tree always starts at the root.)

2. Subsequent locks may only be acquired if the transaction currently has a lock on the parent node.

3. Nodes may be unlocked at any time.

4. A transaction may not relock a node on which it has released a lock, even if it still holds a lock on the
node’s parent.

Example. The following figure shows a hierarchy of nodes, and the table indicates the actions of three
transactions on this data:

58

Tq T, T3

11(A); ri(A);
11(B); r1(B);
1:(C); r1(C);
w1 (A); ui(Ad);
11(D); r:1(D);
w1 (B); ui(B);
1,(B); r2(B);
13(E); r3(E);
w1 (D) ; ui(D);
w1 (C); ui(C);
1, (E) ; denied
13(F); r3(F);
w3 (F); us(F);
13(G); r3(G);
w3 (E); us(E);

T, starts at the root A and proceeds downward to B, C, and D. T starts at B and tries to move to E, but its
move is initially denied because of the lock by Ts on E. Transaction Ts starts at E and moves to F and G.
Notice that T:1 is not a 2PL transaction, because the lock on 2 is relinquished before the lock on D is
acquired. Similarly, Ts is not a 2PL transaction, although T happens to be 2PL.

Why the Tree Protocol Works

The tree protocol implies a conflict-serializable order on consistent transactions involved in a legal
schedule. We can define an order of precedence as follows. Say that T takes precedence over T5 (T: <s T5)
if in schedule s, the transactions T; and T5 lock a node in common, and T locks the node first.

Example. In the schedule s of the example above, we find T: and T lock B in common, and T: locks it
first. Thus, T1 <s T2. We also find that T, and T lock E in common, and Ts locks it first; thus Ts <s T».
However, there is no precedence between T: and T3, because they lock no node in common. Thus, the
precedence graph derived from these precedence relations is as shown in the following figure:

If the precedence graph drawn from the precedence relations that we defined above has no cycles, then we
claim that any topological order of the transactions is an equivalent serial schedule. In our example, either
(T1, T3, T2) or (T3, T1, T2) is an equivalent serial schedule. The reason is that in such a serial schedule, all
nodes are touched in the same order as they are in the original schedule.

To understand why the precedence graph described above must always be acyclic if the tree protocol is
obeyed, observe the following:

e If two transactions lock several elements in common, then they are all locked in the same order.

To see why, consider some transactions T and U, which lock two or more items in common. First, notice
that each transaction locks a set of elements that form a tree, and the intersection of two trees is itself a tree.
Since now T and U lock some elements in common, this intersection cannot be an empty tree. Thus, there
is some one highest element X that both T and U lock. Suppose that T locks X first, but that there is some

59

other element Y that U locks before T. Then there is a path in the tree of elements from X to v, and both T
and U must lock each element along the path, because neither can lock a node without having a lock on its
parent.

T locks
first

U locks
first

U locks
first

Consider the first element along this path, say Z, that U locks first, as suggested by the figure above. Then
T locks the parent P of Z before U does. But then T is still holding the lock on P when it locks Z, so U has
not yet locked P when it locks z. It cannot be that Z is the first element U locks in common with T, since
they both lock ancestor X (which could also be P, but not z). Thus, U cannot lock z until after it has acquired
a lock on P, which is after T locks z. We conclude that T precedes U at every node they lock in common.

Now, consider an arbitrary set of transactions T+, T», ..., Tn that obey the tree protocol and lock some of
the nodes of a tree according to schedule S. First, among those that lock the root, they do so in some order,
and by the rule just observed:

e If T locks the root before T4, then T; locks every node in common with T4 before T5 does. That is,
Ti <s T5, but not Ty <s Ti.

We can show by induction on the number of nodes of the tree that there is some serial order equivalent to
S for the complete set of transactions.

Basis: If there is only one node, the root, then as we just observed, the order in which the transactions lock
the root serves.

Induction: If there is more than one node in the tree, consider for each subtree of the root the set of
transactions that lock one or more nodes in that subtree. Note that transactions locking the root may belong
to more than one subtree, but a transaction that does not lock the root will belong to only one subtree. For
instance, among the transactions of the table above, only T: locks the root, and it belongs to both subtrees
— the tree rooted at B and the tree rooted at C. However, T» and T3 belong only to the tree rooted at B.

By the inductive hypothesis, there is a serial order for all the transactions that lock nodes in any one subtree.
We have only to blend the serial orders for the various subtrees. Since the only transactions these lists of
transactions have in common are the transactions that lock the root, and we established that these
transactions lock every node in common in the same order that they lock the root, it is not possible that two
transactions locking the root appear in different orders in two of the sublists. Specifically, if T: and T
appear on the list for some child C of the root, then they lock C in the same order as they lock the root and
therefore appear on the list in that order. Thus, we can build a serial order for the full set of transactions by
starting with the transactions that lock the root, in their appropriate order, and interspersing those
transactions that do not lock the root in any order consistent with the serial order of their subtrees.

60

Example. Suppose there are 10 transactions T1, T2, ..., T10, and of these, T1, T2, and T3 lock the root in
that order. Suppose also that there are two children of the root, the first locked by T: through T, and the
second locked by T2, T3, Ts, Tg, and T1o. Hypothetically, let the serial order for the first subtree be
(T4, T1, Ts, T2, Te, T3, T7); Note that this order must include T+, T», and Ts in that order. Also, let the serial
order for the second subtree be (Ts, T2, Ts, T10, T3). AS must be the case, the transactions T and T3, which
locked the root, appear in this sequence in the order in which they locked the root.

The constraints imposed on the serial order of these transactions are as shown in the following figure:
/;,@%@\ﬂ@/
7 _\ _ 7
@@y

Solid lines represent constraints due to the order at the first child of the root, while dashed lines represent
the order at the second child. (T4, Te, T1, Ts, T2, To, Ts, T10, T3, T7) iS 0ne of the many topological sorts
of this graph.

Concurrency Control by Timestamps

Next, we shall consider two methods other than locking that are used in some systems to assure
serializability of transactions:

1. Timestamping (timestamp ordering — TO): Assign a “timestamp” to each transaction. Record the
timestamps of the transactions that last read and write each database element, and compare these values
with the transactions’ timestamps, to assure that the serial schedule according to the transactions’
timestamps is equivalent to the actual schedule of the transactions.

2. Validation: Examine timestamps of the transaction and the database elements when a transaction is
about to commit; this process is called “validation” of the transaction. The serial schedule that orders
transactions according to their validation time must be equivalent to the actual schedule.

Both these approaches are optimistic, in the sense that they assume that no unserializable behavior will
occur and only fix things up when a violation is apparent. In contrast, all locking methods assume that
things will go wrong unless transactions are prevented in advance from engaging in nonserializable
behavior. The optimistic approaches differ from locking in that the only remedy when something does go
wrong is to abort and restart a transaction that tries to engage in unserializable behavior. In contrast, locking
schedulers delay transactions, but do not abort them. (That is not to say that systems using a locking
scheduler will never abort a transaction; sometimes they do, for instance, to fix deadlocks. However, a
locking scheduler never uses a transaction abort simply as a response to a lock request that it cannot grant.)
Generally, optimistic schedulers are better than locking when many of the transactions are read-only, since
those transactions can never, by themselves, cause unserializable behavior.

Timestamps

To use timestamping as a concurrency-control method, the scheduler needs to assign to each transaction T
a unique number, its timestamp TS (T) . Timestamps must be issued in ascending order, at the time that a
transaction first notifies the scheduler that it is beginning. Two approaches to generating timestamps are:

a) We can use the system clock as the timestamp, provided the scheduler does not operate so fast that it
could assign timestamps to two transactions on one tick of the clock.

61

b) The scheduler can maintain a counter. Each time a transaction starts, the counter is incremented by 1,
and the new value becomes the timestamp of the transaction. In this approach, timestamps have nothing
to do with “time,” but they have the important property that we need for any timestamp-generating
system: a transaction that starts later has a higher timestamp than a transaction that starts earlier.

Whatever method of generating timestamps is used, the scheduler must maintain a table of currently active
transactions and their timestamps.

To use timestamps as a concurrency-control method, we need to associate with each database element X
two timestamps and perhaps an additional bit:

1. RT (X):the read time of X, which is the highest timestamp of a transaction that has read X.

2. WT (X) : the write time of X, which is the highest timestamp of a transaction that has written X.

3. C(X):the commit bit for X, which is true if and only if the most recent transaction to write X has already
committed. This bit is not essential, its purpose is to avoid a situation where one transaction T reads
data written by another transaction U, and U then aborts. This problem, where T makes a “dirty read”
of uncommitted data, certainly can cause the database state to become inconsistent, and any scheduler
needs a mechanism to prevent dirty reads. (Although commercial systems generally give the user an
option to allow dirty reads, as suggested by the SQL isolation level “read uncommitted” — see later.)

Physically Unrealizable Behaviors

In order to understand the architecture and rules of a timestamp scheduler, we need to remember that the
scheduler assumes the timestamp order of transactions is also the serial order in which they must appear to
execute. Thus, the job of the scheduler, in addition to assigning timestamps and updating RT, WT, and C for
the database elements, is to check that whenever a read or write occurs, what happens in real time could
have happened if each transaction had executed instantaneously at the moment of its timestamp. If not, we
say the behavior is physically unrealizable. There are two kinds of problems that can occur:

1. Read too late: Transaction T tries to read database element X, but the write time of X indicates that the
current value of X was written after T, theoretically executed; that is, TS (T1) <WT (X) . The following
figure illustrates the problem:

w2 (X)

The horizontal axis represents the real time at which events occur. Dashed lines link the actual events
to the times at which they theoretically occur — the timestamp of the transaction that performs the
event. Thus, we see a transaction T that started after transaction T, but wrote a value for X before T:
reads X. T should not be able to read the value written by T», because theoretically, T» executed after
T, did. However, T1 has no choice, because T»’s value of X is the one that T: now sees. The solution is
to abort T: when the problem is encountered.

2. Write too late: Transaction T tries to write database element X. However, the read time of X indicates
that some other transaction should have read the value written by T+, but read some other value instead.
Thatis, TS (T1) <RT (X) . The problem is shown in the following figure:

62

Here, we see a transaction T that started after T+, but read X before T got a chance to write X. When
T, tries to write X, we find RT (X) > TS (T1), meaning that X has already been read by a transaction
T, that theoretically executed later than T;.

Problems With Dirty Data

There is a class of problems that the commit bit is designed to solve. One of these problems, a “dirty read,”
Is suggested in the following figure:

w1 (X)
r2 (X)

! f !

T1) TS (T2) ABORT (T1)

TS

Here, transaction T reads X, and X was last written by T.. The timestamp of T is less than that of T», and
the read by T» occurs after the write by T: in real time, so the event seems to be physically realizable.
However, it is possible that after T» reads the value of X written by T, transaction T.1 will abort; perhaps
T encounters an error condition in its own data, such as a division by 0, or the scheduler forces T, to abort
because it tries to do something physically unrealizable. Thus, although there is nothing physically
unrealizable about T reading X, it is better to delay T.’s read until T. commits or aborts, or else our
schedule may become non-conflict-serializable. We can tell that T, is not committed because the commit
bit C (x) will be false.

We can solve the dirty read problem also without the commit bit: Whenever a transaction T is aborted, we
check whether there are any other transactions that read one or more database elements written by T. If so,
they too must be aborted. These aborts may imply yet other aborts, and so on. Such situations are called
cascading rollbacks. This solution, however, leads to a lower degree of concurrency than the commit bit
and delays. Moreover, it may result in a nonrecoverable schedule, which occurs if one of the transactions
to be aborted has already been committed.

A very simple, though drastic, solution to the dirty read problem is to abort each transaction that is about
to read dirty data. Finally, multiversion timestamping also gives a remedy for this problem (see later).

A second potential problem is suggested by the following figure:

63

1

i i i

(T2) COMMIT (T1) ABORT (T2)

Here, T», a transaction with a later timestamp than T:, has written X first. When T tries to write, the
appropriate action is to do nothing. Evidently, no other transaction Ts that should have read T:’s value of
X got T2’s value instead, because if T tried to read X, it would have aborted because of a too-late read.

Future reads of X will want T>’s value or a later value of X, not T:’s value. This idea, that writes can be
skipped when a write with a later write time is already in place, is called the Thomas’ write rule.

There is a potential problem with the Thomas’ write rule, however. If T, later aborts, as is suggested in the
figure, then its value of X should be removed and the previous value and write time restored. Since T. is
committed, it would seem that the value of X should be the one written by T, for future reading. However,
we already skipped the write by T+, and it is too late to repair the damage.

This is how this problem can be managed: When transaction T writes X, and the scheduler sees that the
write time of X is greater than T:’s timestamp (i.e., TS (T1) <WT (X)) and that the transaction having
written X (T in the figure) is not yet committed (i.e., C (X) is false), then T is delayed until C (X) becomes
true, either because T, commits or because T aborts. If T, commits, then T1’s write will be skipped, but if
T, aborts, then T:’s write will proceed.

Another solution is to simply abort T., instead of delaying it, if the conditions described above are true.
This solution apparently leads to a lower degree of concurrency than the commit bit and delays, and if dirty
reads are also handled by rollbacks, then this abort increases the risk of cascading rollbacks and
nonrecoverable schedules. And finally, multiversion timestamping can be a solution also in this case.

As you can see, when using basic timestamp ordering (with no commit bit and delays), deadlocks cannot
occur, but cascading rollbacks and nonrecoverable schedules can.

The Rules for Timestamp-Based Scheduling

We can now summarize the rules that a scheduler using timestamps must follow to make sure that only
conflict-serializable schedules may occur. Here, we consider a scheduler using the commit bit. The
scheduler, in response to a read or write request from a transaction T, has the choice of:

a) granting the request,

b) aborting T (if T would “violate physical reality”) and restarting T with a new timestamp (abort followed
by restart is often called rollback), or

c) delaying T and later deciding what to do (if the request is a read, and the read might be dirty, or if the
request is a write, and Thomas’ write rule might be applied).

The rules are as follows:
1. Suppose the scheduler receives a request rr (X) :
a) If TS (T) >WT (X), the read is physically realizable.

i) If C(X) is true or TS(T) =WT(X), grant the request. If TS(T) >RT(X), Set
RT (X) := TS (T), otherwise do not change RT (X) .

64

i) If c(x) is false and TS (T) >WT (X), delay T until C (X) becomes true (i.e., the latest
transaction having written X commits or aborts).

b) If TS(T) <WT (X), the read is physically unrealizable. Rollback T, that is, abort T and restart it
with a new, larger timestamp.

2. Suppose the scheduler receives a request wr (X) :
a) IfTS(T) 2RT (X) and TS (T) >WT (X), the write is physically realizable and must be performed:

1) write the new value for X,
i) SetWT (X) :=TS(T), and
iii) set C (x) :=false.

b) If TS(T) >RT (X), but TS (T) <WT (X), then the write is physically realizable, but there is
already a later value in X.

i) If C(X) is true, then the previous writer of X is committed, and we simply ignore the write by
T; we allow T to proceed and make no change to the database.
i) However, if C (X) is false, then we must delay T as in point 1. a) ii).

c) IfTS(T) <RT (X), then the write is physically unrealizable, and T must be rolled back.

3. Suppose the scheduler receives a request to commit T. It must find (using a list maintained by the
scheduler) all the database elements X last written by T (WT (X) =TS (T)), and set C (X) := true. If,
according to points 1. a) ii) and 2. b) ii), any transactions are waiting for X to be committed (found from
another scheduler-maintained list), these transactions are allowed to proceed with another attempt to
execute their delayed read or write actions.

4. Suppose the scheduler receives a request to abort T or decides to rollback T as in 1. b) or 2. ¢). It must
undo all writes of T that involve a database element X such that WT (X) = TS (T) . This means that the
old values of x and WT (X) are restored that belong to the biggest write time, and C (X) is set to true if
the transaction with a timestamp equal to this write time has committed. Additionally, the reads of T
also have to be “undone”, i.e., for all X such that RT (X) =TS (T), the biggest old value of RT (X)
must also be restored. Then, any transaction that was waiting for an element X that T wrote (1. a) ii) and
2. b) ii)) must repeat its attempt to read or write, and see whether the action is now legal after T’s writes
are cancelled.

Example. The following figure shows a schedule of three transactions, T1, T2, and T5 that access three
database elements, 2, B, and C:

T T> T3 A B C
200 150 175 RT =0 RT=0 RT=0
WT=0 WT =0 WT=0
C=true C=true C=true
r1(B); RT =200
2 (A); RT =150
r3(C); RT=175
w1 (B); WT =200
C=false
w1 (A); WT =200
C=false
w2 (C) ;
abort RT=0
commit C=true C=true
w3 (A) ;

65

The real time at which events occur increases down the page, as usual. We have also indicated the
timestamps of the transactions and the read and write times of the elements. At the beginning, each of the
database elements has both a read and write time of 0. The timestamps of the transactions are acquired
when they notify the scheduler that they are beginning. Notice that even though T: executes the first data
access, it does not have the least timestamp. Presumably T» was the first to notify the scheduler of its start,
and Ts did so next, with T, last to start.

In the first action, T reads B. Since the write time of B is less than the timestamp of T, this read is
physically realizable and allowed to happen. The read time of B is set to 200, the timestamp of T:. The
second and third read actions similarly are legal and result in the read time of each database element being
set to the timestamp of the transaction that read it.

At the fourth step, T, writes B. Since the read time of B is not bigger than the timestamp of T1, the write is
physically realizable. Since the write time of B is no larger than the timestamp of T:, we must actually
perform the write. When we do, the write time of B is raised to 200, the timestamp of the writing transaction
T1. Then, we do the same with A.

Next, T tries to write C. However, C was already read by transaction Ts, which theoretically executed at
time 175, while T, would have written its value at time 150. Thus, T» is trying to do something that’s
physically unrealizable, so T must be rolled back.

The last step is the write of A by Ts. Since the read time of 2, 150, is less than the timestamp of Ts, 175,
the write is legal. However, there is already a later value of A stored in that database element, namely the
value written by T, theoretically at time 200. Thus, T is not rolled back, but neither does it write its value.
(We suppose that T: has committed by this time.)

Multiversion Timestamping

An important variation of timestamping (called multiversion timestamping, multiversion timestamp
ordering — MVTO, or multiversion concurrency control — MVCC) maintains old versions of database
elements in addition to the current version that is stored in the database itself. The purpose is to allow reads
rr (X) that otherwise would cause transaction T to abort (because the current version of X was written in
T’s future) to proceed by reading the version of X that is appropriate for a transaction with T’s timestamp.
The method is especially useful if database elements are disk blocks or pages, since then all that must be
done is for the buffer manager to keep in memory certain blocks that might be useful for some currently
active transaction.

Example. Consider the set of transactions accessing database element 2 shown in the following figure:

T T2 Ts Ty A
150 200 175 225 RT =0
WT=0
r1(A); RT =150
w1 (A); WT =150
r2(A); RT =200
w2 (A) ; WT =200
r3(A);
abort
re(A); RT =225

These transactions are operating under an ordinary timestamp-based scheduler, and when T5 tries to read
A, itfinds WT (A) to be greater than its own timestamp and must abort. However, there is an old value of A
written by T, and overwritten by T. that would have been suitable for T to read; this version of A had a

66

write time of 150, which is less than Ts’s timestamp of 175. If this old value of A were available, T could
be allowed to read it, even though it is not the “current” value of A.

A multiversion-timestamp scheduler differs from the scheduler described above in the following ways:

1.

When a new write wr (X) occurs, if it is legal, then a new version of database element X is created. Its
write time is TS (T) , and we shall refer to it as X, where t = TS (T) .

When a read rr (X) occurs, the scheduler finds the version X of X such that t < TS (T), but there is
no other version X with t <t’ <TS(T). That is, the version of X written immediately before T
theoretically executed is the version that T reads.

Write times are associated with versions of an element, and they never change.

Read times are also associated with versions. They are used to make it possible to accept certain writes,
namely one whose time is greater or equal to the read time of the previous version. If we maintained
only the read time of the latest version, then we would have to reject such writes. The following figure
suggests the problem:

RTso = 60 RT100 = 110

v v
) i)
Xs0 i X100

|
write by transaction
with timestamp 70

X has versions Xso and X100. X50 Was read at time 60, and a new write by a transaction T with timestamp
70 occurs. This write is legal because RTso < TS (T) . If we knew only the read time of the latest version
(110), we couldn’t determine whether this write is legal, so T would have to be aborted.

When a version X has a write time t such that no active transaction has a timestamp less than t, then
we may delete any version of X previous to X..

Example. Let us reconsider the actions of the previous example if multiversion timestamping is used:

Tq To T3 Ty Ay Aisg A0
150 200 175 225 RT=0
ri(A); read,
RT =150
w1 (A); create,
RT =150
r2(A); read,
RT =200
w2 (A) ; create,
RT =200
r3;(A); read
rq(A); read,
RT =225

First, there are three versions of A: Ay, which exists before these transactions start, A1 s, written by T+, and
Azo0, Written by T». The figure shows the sequence of events, when the versions are created, and when they
are read. Notice in particular that Ts does not have to abort, because it can read an earlier version of A.

As we can see, multiversion timestamping eliminates too-late reads. What about dirty reads and the problem
of Thomas’ write rule? Dirty reads might occur in this case too, but now we can take measures against them

67

other than delaying or aborting the transaction. When a transaction T: wants to read a database element X,
we look up the latest version of X that was created by T, itself or by a transaction T that was committed
when T, started. This way, dirty reads will never occur, and no transactions have to be delayed. Moreover,
too-late writes may not occur either, because a transaction “writing too late” could not have been committed
when the reading transaction started; therefore, the reading transaction does not need the value “written too
late” anyway. This technique (also used by Oracle Database) is called snapshot isolation, the main
drawback of which is that it does not guarantee serializability.

Thomas’ write rule may not be applied in case of multiversion timestamping (at least in its original form);
the “new” version of a database element is always created, even if it is older than the latest version.

Timestamps Versus Locking

Generally, timestamping is superior in situations where either most transactions are read-only, or it is rare
that concurrent transactions will try to read and write the same element. In high-conflict situations, locking
performs better. The argument for this rule-of-thumb is:

e Locking will frequently delay transactions as they wait for locks, and deadlocks can occur when some
transactions have been waiting for a long time, in which case one of them needs to be rolled back.

e But if concurrent transactions frequently read and write elements in common, then rollbacks will be
frequent in a timestamp scheduler, introducing even more delay than a locking system.

There is an interesting compromise used in several commercial systems. The scheduler divides the
transactions into read-only transactions and read/write transactions. Read/write transactions are executed
using two-phase locking, to keep all transactions from accessing the elements they lock. Read-only
transactions are executed using multiversion timestamping. As the read/write transactions create new
versions of a database element, those versions are managed as discussed above. A read-only transaction is
allowed to read whatever version of a database element is appropriate for its timestamp. A read-only
transaction thus never has to abort, and will only rarely be delayed.

Concurrency Control by Validation

Validation (Kung—Robinson model) is another type of optimistic concurrency control, where we allow
transactions to access data without locks, and at the appropriate time, we check that the transaction has
behaved in a serializable manner. Validation differs from timestamping principally in that the scheduler
maintains a record of what active transactions are doing, rather than keeping read and write times for all
database elements. Just before a transaction starts to write values of database elements, it goes through a
“validation phase,” where the sets of elements it has read and will write are compared with the write sets
of other active transactions. Should there be a risk of physically unrealizable behavior, the transaction is
rolled back.

Architecture of a Validation-Based Scheduler

When validation is used as the concurrency-control mechanism, the scheduler must be told for each
transaction T the sets of database elements T reads and writes: the read set, RS (T), and the write set,
WS (T), respectively. Transactions are executed in three phases:

1. Read. In the first phase, the transaction reads from the database all required elements in its read set. The
transaction also computes in its local address space all the results it is going to write, thus creating its
write set.

68

2.

Validate. In the second phase, the scheduler validates the transaction by comparing its read and write
sets with those of other transactions. We shall describe the validation process later. If validation fails,
then the transaction is rolled back; otherwise it proceeds to the third phase.

Write. In the third phase, the transaction writes to the database its values for the elements in its write
set.

Intuitively, we may think of each transaction that successfully validates as executing at the moment that it
validates. Thus, the validation-based scheduler has an assumed serial order of the transactions to work with,
and it bases its decision to validate or not on whether the transactions’ behaviors are consistent with this
serial order. To support the decision whether to validate a transaction, the scheduler maintains three sets:

1.

START: the set of transactions that have started but not yet completed validation. For each transaction
T in this set, the scheduler maintains START (T), the time at which T started.

VAL: the set of transactions that have been validated but not yet finished the writing of phase 3. For
each transaction T in this set, the scheduler maintains both START (T) and VAL (T), the time at which
T validated. Note that VAL (T) is also the time at which T is imagined to execute in the hypothetical
serial order of execution.

FIN: the set of transactions that have completed phase 3. For these transactions T, the scheduler records
START (T), VAL (T), and FIN (T), the time at which T finished. In principle, this set grows, but as
we shall see, we do not have to remember transaction T if FIN(T) < START (U) for any active
transaction U (i.e., for any U € START U VAL). The scheduler may thus periodically purge the FTN set
to keep its size from growing beyond bounds.

The Validation Rules

The information described above is enough for the scheduler to detect any potential violation of the assumed
serial order of the transactions — the order in which the transactions validate. To understand the rules, let
us first consider what can be wrong when we try to validate a transaction T.

1.

Suppose there is a transaction U such that:

a) U e VAL U FIN,thatis, U has validated.

b) FIN(U) > START (T), thatis, U did not finish before T started. (Note that if U € VAL, then U has
not yet finished when T validates. In that case, FIN (U) is technically undefined. However, we
know it must be larger than START (T) in this case.)

C) RS(T) NWS (U) =, in particular, let it contain database element X.

Then it is possible that U wrote X after T read X (“read too early”). In fact, U may not even have written
X yet. A situation where U wrote X, but not in time is shown in the following figure:

rr (X)

T

START (U) START (T) VA

To interpret the figure, note that the dashed lines connect the events in real time with the time at which
they would have occurred had transactions been executed at the moment they validated. Since we don’t

69

know whether or not T got to read U’s value, we must rollback T to avoid a risk that the actions of T
and U will not be consistent with the assumed serial order.

2. Suppose there is a transaction U such that:

a) U e VAL, i.e., U has successfully validated.

b) FIN(U) >VAL(T), thatis, U did not finish before T entered its validation phase. (This condition
is always true actually, because U surely has not finished yet.)

C) WS(T) NWS (U) =, in particular, let X be in both write sets.

Then the potential problem is as shown in the following figure:

—>€ - -

f |

VAL (U) VAL (T) FIN (U)

T and U must both write values of X, and if we let T validate, it is possible that it will write X before U
does (“write too early”). Since we cannot be sure, we rollback T to make sure it does not violate the
assumed serial order in which it follows U.

The two problems described above are the only situations in which a read or write by T could be physically
unrealizable. In the first case, if U finished before T started, then surely T would read the value of X that
either U or some later transaction wrote. In the second case, if U finished before T validated, then surely U
wrote X before T did. We may thus summarize these observations with the following rule for validating a
transaction T:

e Check that RS (T) N WS (U) = < for any previously validated U that did not finish before T started,
i.e.,ifU e VAL U FINand FIN (U) > START (T).

e Checkthatws (T) nWs (U) =& for any previously validated U that did not finish before T validated,
i.e., ifU e VALand FIN (U) > VAL (T).

Example.
RS = {B} RS ={A, D}
Ws = {D} ws ={a, C}
U W
T \Y%

RS ={A, B} RS ={B}
ws={a,c} ws={D,E}
The figure shows a time line during which four transactions T, U, v, and W attempt to execute and validate.

For each transaction, | denotes its start time, X its validation time, and O its finishing time. The read and
write sets for each transaction are indicated on the diagram. T starts first, although U is the first to validate.

1. Validation of U: When U validates, there are no other validated transactions, so there is nothing to check.
U validates successfully and writes a value for database element D.

70

2. Validation of T: When T validates, U is validated but not finished Thus we must check that neither the
read nor the write set of T has anything in common with ws (U) ={D}. Since RS (T) = {2, B}, and
WS (T) ={A, C}, both checks are successful, and T validates.

3. Validation of v: When v validates, U is validated and finished, and T is validated but not finished. Also,
Vv started before U finished. Thus, we must compare both RS (V) and WS (V) against Ws (T), but only
RS (V) needs to be compared against ws (U) . We find:

e RS(V) NWS(T) ={B}n{a,C}=
e WS (V) nWS(T) =4{D, E} N {2, c}
e RS (V) "NWS(U) ={B}n{D}=

Thus, v also validates successfully.

4. Validation of w: When w validates, we find that U finished before w started, so no comparison between
w and U is performed. T is finished before w validates but did not finish before w started, so we compare
only RS (W) with WS (T). Vv is validated but not finished, so we need to compare both RS (W) and
WS (W) with Ws (V) . These tests are:

e RS(W) NWS(T) ={A, D} {a, c}={a}
e RS(W) NnWS (V) ={a, D} {D, E}={D};
o WS(W) NWsS (V) ={a,C}n{D,E}=

Since the intersections are not all empty, W is not validated. Rather, W is rolled back and does not write
values for A or C.

You may have been concerned with a tacit notion that validation takes place in a moment, or indivisible
instant of time. For example, we imagine that we can decide whether a transaction U has already validated
before we start to validate transaction T. Could U perhaps finish validating while we are validating T?

If we are running on a uniprocessor system, and there is only one scheduler process, we can indeed think
of validation and other actions of the scheduler as taking place in an instant of time. The reason is that if
the scheduler is validating T, then it cannot also be validating U, so all during the validation of T, the
validation status of U cannot change.

If we are running on a multiprocessor, and there are several scheduler processes, then it might be that one
is validating T while the other is validating U. If so, then we need to rely on whatever synchronization
mechanism the multiprocessor system provides to make validation an atomic action.

Comparison of the Three Concurrency-Control Mechanisms

The three approaches to serializability that we have considered — locking, timestamping, and validation
— each have their advantages. First, they can be compared for their storage utilization:

e Locking: Space in the lock table is proportional to the number of database elements locked.

e Timestamping: In a naive implementation, space is needed for read and write times with every database
element, whether or not it is currently accessed. However, a more careful implementation will treat all
timestamps that are prior to the earliest active transaction as “minus infinity” and not record them. In
that case, we can store read and write times in a table analogous to a lock table, in which only those
database elements that have been accessed recently are mentioned at all.

e Validation: Space is used for timestamps and read/write sets for each currently active transaction, plus
a few more transactions that finished after some currently active transaction began.

71

Thus, the amounts of space used by each approach is approximately proportional to the sum over all active
transactions of the number of database elements the transaction accesses. Timestamping and validation may
use slightly more space because they keep track of certain accesses by recently committed transactions that
a lock table would not record. A potential problem with validation is that the write set for a transaction must
be known before the writes occur (but after the transaction’s local computation has been completed).

We can also compare the methods for their effect on the ability of transactions to complete without delay.
The performance of the three methods depends on whether interaction among transactions (the likelihood
that a transaction will access an element that is also being accessed by a concurrent transaction) is high or
low:

e Locking delays transactions but avoids rollbacks, even when interaction is high. Timestamping and
validation do not delay transactions but can cause them to rollback, which is a more serious form of
delay and also wastes resources.

e If interference is low, then neither timestamping nor validation will cause many rollbacks, and may be
preferable to locking because they generally have lower overhead than a locking scheduler.

e When a rollback is necessary, timestamping catches some problems earlier than validation, which
always lets a transaction do all its internal work before considering whether the transaction must
rollback.

72

Concurrency Control in Oracle Database

The following information comes from Oracle Database Concepts — Data Concurrency and Consistency.

Oracle Database uses a combination of two-phase locking and snapshot isolation for concurrency control.
At user level, there are two lock units: the table and the row. Locks are automatically acquired and released
by the scheduler, but users (applications) may also request locks.

Levels of Read Consistency

Oracle Database always enforces statement-level read consistency, which guarantees that data returned by
a single query is committed and consistent for a single point in time (by default, the time at which the
statement was opened). Thus, a query never reads dirty (uncommitted) data or data that commits while the
query is in progress. Oracle Database can also provide read consistency to all queries in a transaction,
known as transaction-level read consistency. We can achieve this by running the transaction in serializable
or read-only mode (see later). In this case, each statement in a transaction sees data from the same point in
time, which is the time at which the transaction began (except for data changed by the transaction itself).

To manage the multiversion read consistency model, the database must create a read-consistent set of data
when a table is simultaneously queried and updated. Oracle Database achieves this goal through undo data.
Whenever a user modifies data, Oracle Database creates undo entries, which it writes to undo (or rollback)
segments. The undo segments contain the old values of data that have been changed by uncommitted or
recently committed transactions. Thus, multiple versions of the same data, all at different points in time,
can exist in the database. The database can use snapshots of data at different points in time to provide read-
consistent views of the data and enable nonblocking queries (see later). As a query or transaction enters the
execution phase, the database determines the system change number (SCN) recorded at the time the query
or transaction began executing. An SCN can be considered as a timestamp associated with blocks as
database elements. As the query reads through the data blocks, the database compares each block’s SCN
(“time” of last write) with that of the query and reads only those committed blocks whose SCN is not greater
than the SCN of the query. In case of blocks with a greater SCN, it copies current data blocks to a new
buffer and applies undo data to reconstruct previous versions of the blocks — versions that were created
by a committed transaction and whose SCN is the greatest but less than the SCN of the query. These
reconstructed data blocks are called consistent read clones. The following figure illustrates this process:

73

http://docs.oracle.com/database/121/CNCPT/consist.htm

SELECT
(SCN: 10023)

10021

10021

10024 > 10008

Undo

10008 <
/ segment
> 10021

10011 4

10021

v

In some cases, the required old version of a block can no longer be reconstructed based on the undo data.
When automatic undo management is enabled, there is always a current undo retention period, which is the
minimum amount of time that Oracle Database attempts to retain old undo information before overwriting
it. Old (committed) undo information that is older than the current undo retention period is said to be expired
and its space is available to be overwritten by new transactions. Old undo information with an age that is
less than the current undo retention period is said to be unexpired and is possibly retained for consistent
read and Oracle Flashback operations (to restore a table to its state as of a previous point in time).

If the undo tablespace is configured with the AUTOEXTEND option, the database dynamically tunes the
undo retention period to be somewhat longer than the longest-running active query on the system. When
space is low, instead of overwriting unexpired undo information, the tablespace auto-extends. If the
MAXSIZE clause is specified for an auto-extending undo tablespace, when the maximum size is reached,
the database may begin to overwrite unexpired undo information. (The UNDOTBSL1 tablespace that is
automatically created by DBCA is auto-extending.)

If the undo tablespace is fixed size, the database dynamically tunes the undo retention period for the best
possible retention for that tablespace size and the current system load. This best possible retention time is
typically significantly greater than the duration of the longest-running active query. If you choose an undo
tablespace size that is too small, then long-running queries could fail with a “snapshot too old” error, which
means that there was insufficient undo data for read consistency.

To guarantee the success of long-running queries or Oracle Flashback operations, you can enable retention
guarantee. If retention guarantee is enabled, the specified minimum undo retention is guaranteed; the
database never overwrites unexpired undo data, even if it means that transactions fail due to lack of space
in the undo tablespace. If retention guarantee is not enabled, the database can overwrite unexpired undo
when space is low, thus lowering the undo retention for the system.

74

Transaction Isolation Levels

The SQL92 ANSI/ISO standard defines four levels of isolation in terms of the phenomena that a transaction
running at a particular isolation level is permitted to experience. The preventable phenomena are:

dirty reads: a transaction reads data that has been written by another transaction that has not been
committed yet;

nonrepeatable (fuzzy) reads: a transaction rereads data it has previously read and finds that another
committed transaction has modified or deleted the data;

phantom reads: a transaction reruns a query returning a set of rows that satisfies a search condition and
finds that another committed transaction has inserted additional rows that satisfy the condition.

The four transaction isolation levels are the following:

Isolation Level Dirty Read Nonrepeatable Read Phantom Read
read uncommitted possible possible possible

read committed not possible possible possible
repeatable read not possible not possible possible
serializable not possible not possible not possible

Oracle Database provides the read committed and serializable transaction isolation levels, as well as a read-
only mode, which is not part of the standard.

Read committed: This is the default transaction isolation level. Every query executed by a transaction
sees only data committed before the query — not the transaction — began. Dirty reads never occur.
However, because the database does not prevent other transactions from modifying data read by a query,
other transactions may change data between query executions. Thus, a transaction that runs the same
query twice may experience fuzzy reads and phantoms. This level of isolation is appropriate for
database environments in which few transactions are likely to conflict.

Serializable: A transaction sees only changes committed at the time the transaction — not the query —
began and changes made by the transaction itself using INSERT, UPDATE, and DELETE statements.
Serializable transactions do not experience dirty reads, fuzzy reads, or phantom reads. Serializable
isolation is suitable for environments with large databases and short transactions that update only a few
rows, where the chance that two concurrent transactions will modify the same rows is relatively low,
and where relatively long-running transactions are primarily read-only. Oracle Database permits a
serializable transaction to modify a row only if changes to the row made by other transactions were
already committed when the serializable transaction began. The database generates an error (“Cannot
serialize access for this transaction”) when a serializable transaction tries to update or delete data
changed by a different transaction that committed after the serializable transaction began. Remember
that, despite its name, serializable isolation level actually uses snapshot isolation and does not
guarantee serializability!

Read-only: The read-only isolation level is similar to the serializable isolation level, but read-only
transactions do not permit data to be modified in the transaction unless the user is SYS. Thus, read-only
transactions are not susceptible to the error described above. Read-only transactions are useful for
generating reports in which the contents must be consistent with respect to the time when the transaction
began.

75

You can set the isolation level of a transaction by using one of these statements at the beginning of the
transaction:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET TRANSACTION READ ONLY;

The Locking System

Both read committed and serializable transactions use row-level locking, and both will wait if they try to
change a row updated by an uncommitted concurrent transaction. The second transaction that tries to update
a given row waits for the other transaction to commit or abort and release its lock. If that other transaction
rolls back, the waiting transaction, regardless of its isolation mode, can proceed to change the previously
locked row as if the other transaction had not existed. However, if the other blocking transaction commits
and releases its locks, only a read committed transaction proceeds with its intended update. A serializable
transaction fails with the “Cannot serialize access” error, because the other transaction has committed a
change that was made since the serializable transaction began.

Oracle Database automatically obtains necessary locks when executing SQL statements. Users never need
to lock any resource explicitly, although Oracle Database also enables users to lock data manually. Oracle
Database automatically uses the lowest applicable level of restrictiveness to provide the highest degree of
data concurrency, yet also provide fail-safe data integrity.

Usually, the database holds locks acquired by statements within a transaction for the duration of the
transaction (two-phase locking). Oracle Database releases all locks acquired by the statements within a
transaction when it commits or rolls back. Oracle Database also releases locks acquired after a savepoint
when rolling back to the savepoint. However, only transactions not waiting for the previously locked
resources can acquire locks on the now available resources. Waiting transactions continue to wait until after
the original transaction commits or rolls back completely.

Types of Locks

Oracle Database locks are divided into the following categories:

e DML locks (data locks): protect data;
e DDL locks (data dictionary locks): protect the structure of schema objects (e.g., tables);
e system locks: protect internal database structures such as data files; managed entirely automatically.

DML locks exist in two levels: there are row-level locks (TX) and table-level locks (TM). Both of them are
automatically acquired by DML statements. At row level, there is only one lock mode: exclusive. The
combination of multiversion concurrency control and row-level locking means that users contend for data
only when accessing the same rows. The following rules summarize the locking behavior of Oracle
Database for readers and writers:

e Arow is locked only when modified by a writer.

e A writer of a row blocks a concurrent writer of the same row.

e A reader never blocks a writer unless SELECT ... FOR UPDATE is used, which is a special type of
SELECT statement that does lock the row that it is reading.

e A writer never blocks a reader. When a row is being changed by a writer, the database uses undo data
to provide readers with a consistent view of the row.

A query without a FOR UPDATE clause acquires no data locks. Therefore, other transactions can query
and update a table being queried, including the specific rows being queried. Because queries lacking FOR

76

UPDATE clauses do not acquire any data locks to block other operations, such queries are often referred to
in Oracle as nonblocking queries. On the other hand, a query does not have to wait for any data locks to be
released; it can always proceed.

A transaction acquires a row lock (or TX lock) for each row modified by an INSERT, UPDATE, DELETE,
MERGE, or SELECT ... FOR UPDATE statement. If a transaction obtains a lock for a row, then the
transaction also acquires a lock for the table containing the row. The table lock prevents conflicting DDL
operations that would override data changes in the current transaction.

A table lock (or TM lock) is acquired by a transaction when a table is modified by an INSERT, UPDATE,
DELETE, MERGE, SELECT ... FOR UPDATE, or LOCK TABLE statement. A table lock can be held in
any of the following modes: row share (RS) or subshare (SS), row exclusive (RX) or subexclusive (SX),
share (S), share row exclusive (SRX) or share-subexclusive (SSX) and exclusive (X). The following table
shows the table lock modes that statements acquire and lock modes with which they are compatible:

SQL statement Lock mode RS RX S SRX X
SELECT ... FROM table - Y Y Y Y Y
INSERT INTO table RX Y Y N N N
UPDATE table RX Y* Y* N N N
MERGE INTO table RX Y Y N N N
DELETE FROM table RX Y* Y* N N N
SELECT ... FROM table ... FOR UPDATE RX Y* Y* N N N
LOCK TABLE table IN ROW SHARE MODE RS Y Y Y Y N
LOCK TABLE table IN ROW EXCLUSIVE MODE RX Y Y N N N
LOCK TABLE table IN SHARE MODE S Y N Y N N
LOCK TABLE table IN SRX Y N N N N
SHARE ROW EXCLUSIVE MODE
LOCK TABLE table IN EXCLUSIVE MODE X N N N N N

* Yes, if no conflicting row locks are held by another transaction. Otherwise, waits occur.

The description of each lock mode is the following:

e A row share table lock indicates that the transaction holding the lock on the table has locked rows in
the table and intends to update them. An RS lock is the least restrictive mode of table lock, offering the
highest degree of concurrency for a table.

e A row exclusive table lock generally indicates that the transaction holding the lock has updated table
rows or issued SELECT ... FOR UPDATE.

e A share table lock held by a transaction allows other transactions to query the table (without using
SELECT ... FOR UPDATE), but updates are allowed only if a single transaction holds the share table
lock. Because multiple transactions may hold a share table lock concurrently, holding this lock is not
sufficient to ensure that a transaction can modify the table.

e A share row exclusive table lock is more restrictive than a share table lock. Only one transaction at a
time can acquire an SRX lock on a given table. An SRX lock held by a transaction allows other
transactions to query the table (except for SELECT ... FOR UPDATE) but not to update the table.

e An exclusive table lock is the most restrictive mode of table lock, allowing the transaction that holds
the lock exclusive write access to the table. Only one transaction can obtain an X lock for a table.

A transaction containing a DML statement (INSERT, UPDATE, DELETE, MERGE, or SELECT ... FOR
UPDATE) acquires exclusive row locks on the rows modified by the statement. Therefore, other transactions
cannot update or delete the locked rows until the locking transaction either commits or rolls back. In
addition to these row locks, a transaction containing a DML statement that modifies data also requires at
least a row exclusive table lock (RX) on the table that contains the affected rows. If the transaction already
holds an S, SRX, or X table lock for the table, which are more restrictive than an RX lock, then the RX
lock is not needed and is not acquired. If the containing transaction already holds only an RS lock, however,
then Oracle Database automatically converts the RS lock to an RX lock.

77

A transaction that contains a DML statement does not require row locks on any rows selected by a subquery
or an implicit query. A subquery or implicit query inside a DML statement is guaranteed to be consistent
as of the start of the query and does not see the effects of the DML statement of which it forms a part.

A query in a transaction can see the changes made by previous DML statements in the same transaction,
but not the uncommitted changes of other transactions.

Lock Conversion and Escalation

Oracle Database performs lock conversion (upgrading) as necessary. In lock conversion, the database
automatically converts a table lock of lower restrictiveness to one of higher restrictiveness. For example, if
a transaction holds an RS lock for a table, and a DML statement in the transaction intends to modify some
rows in the table, the RS lock is automatically converted to an RX lock. Because row locks are acquired at
the highest degree of restrictiveness (in exclusive mode), no lock conversion is required or performed.

Lock escalation occurs when numerous locks are held at one level of granularity (for example, rows) and a
database raises the locks to a higher level of granularity (for example, table). If a user locks many rows in
a table, then some database management systems automatically escalate the row locks to a single table. The
number of locks decreases, but the restrictiveness of what is locked increases. Oracle Database never
escalates locks. Lock escalation greatly increases the likelihood of deadlocks. Assume that a system is
trying to escalate locks on behalf of transaction 1 but cannot because of the locks held by transaction 2. A
deadlock is created if transaction 2 also requires lock escalation of the same data before it can proceed.

78

