

Juhász István

PROGRAMOZÁS 2

mobiDIÁK könyvtár

Juhász István

Programozás 2

mobiDIÁK könyvtár

SOROZATSZERKESZTŐ
Fazekas István

Juhász István

Programozás 2

Egyetemi jegyzet
Első kiadás

mobiDIÁK könyvtár

Debreceni Egyetem
Informatikai Intézet

Lektor

Espák Miklós
Debreceni Egyetem

Copyright © Juhász István 2004

Copyright © elektronikus közlés mobiDIÁK könyvtár, 2004

mobiDIÁK könyvtár
Debreceni Egyetem
Informatikai Intézet
4010 Debrecen, Pf. 12
http://mobidiak.inf.unideb.hu

A mű egyéni tanulmányozás céljára szabadon letölthető. Minden egyéb felhasználás
csak a szerző előzetes írásbeli engedélyével történhet.
A mű A mobiDIÁK önszervező mobil portál (IKTA, OMFB-00373/2003) és a GNU
Iterátor, a legújabb generációs portál szoftver (ITEM, 50/2003) projektek
keretében készült.

22.. OOBBJJEEKKTTUUMMOORRIIEENNTTÁÁLLTTSSÁÁGG

Meg fogunk állni a programozási nyelvek szintjén.

Az objektum-orientált programozási módszertan filozófiáját – amelynek alapgondolata, hogy az adat és a

funkcionális modell egymástól elválaszthatatlan, lényegében egyetlen modell − követik az objektum-orientált

programozási nyelvek. Az OO programozási nyelvek imperatív jellegűek: algoritmikus szemléletet tükröznek.

Az OO paradigma bevonul minden más nyelvi osztályba is.

− A ’60-as évek második felében jelenik meg a SIMULA67-ben az OO programozási eszközrendszer.

A SIMULA67: Algol verzió, szimulációs, absztrakciós nyelv, minden objektum-orientált eszköz megvan

benne. Észak-Európában születik meg.

− Alan Kay amerikai egyetemista 1969-ben szakdolgozatában egy új világot vázol föl: az

OO világot. A Xerox-nál próbálja megvalósítani. Egy projektet szervez, melynek

célkitűzése egy személyi számítógép megtervezése (hardver, architektúra, szoftver). Ő

használja az objektum-orientált elnevezést, fogalmakat. (A grafikus interfész, ablak és

egér fogalma is ekkor jelent meg először.) Felvázol egy projektet:
− csinálni kell személyi számítógépet

− Windows típusú operációs rendszert, grafikus felhasználói felületet (ekkor még csak az elektromos

írógép az input periféria)

− mindezt objektum-orientált programozási környezetben

− 1970-es évek elején megszületik a Xerox-nál a Smalltalk programozási nyelv, melyet

objektum-orientáltnak terveznek, tiszta objektum-orientált nyelv, (SIMULA elemekkel).

A világot csak objektum-orientáltnak hagyja láttatni, másnak nem. Ekkor még a

strukturált elv a döntő.A Smalltatkkal együtt megjelenik egy olyan paradigma, amelyet a

szakma még nem tud befogadni, másrészt olyan hardver kell alá, ami még nem létezik. A

‘80-as évek második felétől jelenik meg ilyen hardver. Ezután őrültmód elkezd terjedni az

OO. Divattá válik. A Smalltalk napjainkban is él.

− Megszületik a ‘80-as években a C++, jelenleg divatnyelv.

− 1985-ben megjelenik a Meyer által kifejlesztett Eiffel nyelv, ami az OO területén azt a

szerepet játsza, amit az eljárásorientált nyelvek területén a Algol. Nincs gyakorlati

jelentősége.

− 1989: Turbo Pascal 5.5

− 1990: Turbo Pascal 6.0: OO eszközrendszerrel rendelkezik. A ‘80-as évek második

felében ‘90-es évek első felében minden magára valamit is adó programozási nyelvnek

van olyan változata, amely már OO eszközrendszerrel rendelkezik valamilyen szinten.

− Java: az OO vallásának istene. A C++ óta egyetlen, aminek gyakorlati jelentősége is van.

Objektum-orientáltság jellemzői:

− az adatmodell és az eljárásmodell elválaszthatatlan (így szemléli a világot)

− absztrakt eszköz és fogalomrendszer: Az újrafelhasználhatóságot olyan magas szintre

elviszi, ameddig lehetséges, a valós világot nagyon megközelíti.

− szemlélete: imperatív (algoritmus – kódolni kell) eszközrendszer

Jelen pillanatban az OO területén többféle iskola létezik, amelyek bizonyos pontokon élesen

vitatkoznak egymással, nem csak nüansznyi különbségek vannak köztük. Jelen pillanatban

folyik az OO matematikai hátterének elkészítése, kifejlesztése.

Az objektum-orientált programnyelvek
fogalomrendszere

Objektum (object):

Az eljárásorientált nyelvek változó fogalmának kiterjesztése (általánosítása), olyan konkrét

programozási eszköz melynek vannak:

− Attribútumai (attribute): ez az adatrész, a struktúra, tetszőleges bonyolultságú adatszerkezet. Szokás ezt az

objektum statikus részének is nevezni.

Minden objektum mögött van egy jól definiált tárterület, ezen vannak az attribútumok értékeit reprezentáló

bitsorozatok.

Terminológia: az obektumok állapotairól (state) beszélünk, ahol minden egyes állapotot egy-egy

bitkombináció ír le, ami egy jóldefiniált címen van.

− Módszerei (method): a viselkedés leírására szolgál (eljárásmodell leírására) az eljárásorientált nyelvek

eljárásai és függvényei. A módszerek adják meg nyelvi szinten az objektum viselkedésmódját (behavior).

− Azonossággal rendelkezik (van azonosság tudata): bármely objektum csak és kizárólag önmagával azonos,

minden mástól megkülönböztetett. Minden objektumnak van azonosítója (OID: object identifier). Nyelvi

szinten ezzel nem foglakozunk.

Analógia:

változó – név

objektum – OID (nem egy név!)

A változó neve igazából soha nem azonosító csak hatáskörön belül egyértelmű a névhivatkozás. Az OID

viszont tényleg egyedi, még programok között is!

Objektum viselkedése:

Az objektum állapota időben módosul(hat).

Módszerek csoportjai:

− le tudja kérdezni az objektum állapotát

− meg tudja változtatni az objektum állapotát

Objektumok élettartama:

Az objektumot létre kell hozni, és addig él, amíg meg nem szűnik. A megszüntetés lehet a nyelvi rendszer

feladata, vagy a programozóé.

Az objektumazonosító minden szinten él, mindig léteznie kell.

Osztály (class):

Absztrakt eszköz, az eljárásorientált nyelvek típusfogalmának általánosítása (gyakran itt is

típusként említjük - szinonimák). Az osztály absztrakt adattípus abban az értelemben, aholy az

Adában a korlátozott privát típust használjuk. Az osztály azonos attribútumú és módszerű

objektumok együttese. Az osztályhoz köthetőek az objektumok; az osztályból

származtathatóak az objektumok.

Példány (instance):

Az osztályon belül létrehozok egy objektumot: példányosítás (instantiation).

− Az adott objektum adott osztály példánya. Minden objektum tudja, hogy melyik osztálynak példánya.

− Adott osztályhoz tartozó minden példány ugyanolyan attribútumokkal és módszerekkel rendelkezik. Minden

példány tudja, hogy milyen módszerekkel rendelkezik.

− A módszereket mindig konkrét példányon futtathatom le, ezen értelmezhetők: az aktuális példányon.

− Példány létrehozása: ugyanaz az adatszerkezet újra és újra megjelenik a tárban. A módszereket nem

többszörözi !

− Létezhetnek olyan attribútumok és olyan módszerek, amelyek nem arra szolgálnak, hogy az egyes

példányok állapotait és viselkedését vizsgáljuk velük, hanem magához az osztályhoz tartoznak. (Példány-

attribútum, példánymódszer; osztályattribútum, osztálymódszer)

− Osztályattribútum: hány darab példánya van (az osztály kiterjedése).

− Az osztályattribútumok nem többszöröződnek.

Az OO szemlélet szerint először létre kell hozni egy osztályt, leírni, hogy a hozzá tartozó objektumoknak milyen

attribútumai és módszerei legyenek. És ezek után az osztályhoz kapcsolódóan és osztályon belül létre lehet hozni

objektumokat. Példányosítás után az osztály példányairól beszélünk.

Öröklődés (inheritance):

Az újrafelhasználhatóság eddig legteljesebb válasza: objektum-orientált programozási elv: az osztályok nem

függetlenek egymástól, speciális viszony értelmezhető közöttük, ez az öröklődés. Ez a viszony aszimmetrikus.

(Az absztrakciót a lehető legmesszebb elviszi, viszont a párhuzamosságra nem ad választ, bár az objektumok

párhuzamosan léteznek. Nyelvi szinten nem mindenhol jelenik meg ez explicit módon. Az adatfolyamnyelvek

adják a párhuzamosságra a legpozitívabb választ.)

Az öröklődés osztályokhoz kötött fogalom: két vagy több osztály között értelmezhető.A szuperosztályhoz

kapcsolódóan tudunk létrehozni alosztályokat.

 szuperosztály (superclass) / szülőosztály / ősosztály / alaposztály

 alosztály (subclass) / gyerekosztály / származtatott osztály

Az alosztály átveszi, örökli a szuperosztály attribútumait és módszereit (azokat, amelyeket a

láthatóság módszerével nem tiltottunk le).

Öröklésnél azonnal megvan az újrafelhasználhatóság, rendelkezésre áll az összes eszköz.

Az alosztály ezen túlmenően:

− új attribútumokat vezethet be

− új módszereket vezethet be

− újraimplementálhatja a módszereket

− törölhet attribútumokat

− törölhet módszereket

− a láthatósági szabályokat újraértelmezheti, hatásukat felfüggesztheti

− átnevezhet attribútumokat

− duplikálhat attribútumokat

− duplikálhat módszereket

Öröklés: valamit egy az egyben átvehetek, ha akarom, módosíthatom.

Aszimmetria: a szuperosztály nem látja, nem manipulálhatja alosztályait, de fordítva igen. A szuperosztályt teljes

mértékben látja az alosztály. Az alosztály minden objektuma objektuma a szuperosztálynak is! Viszont fordítva

ez nem áll fenn. Így minden rendszerben: mindenütt, ahol egy szuperosztály egy példánya szerepel, szerepelhet

az alosztály egy példánya is és fordítva nem igaz. Egy osztályból tetszőleges számú alosztály származtatható

minden nyelvben.

Az egyes rendszerekben kérdés, hogy: az alosztálynak hány szuperosztálya lehet?

− egy: egyszeres öröklődés (single)

− akárhány: többszörös öröklődés (multiple). Problémák: azonos nevű attribútumok, módszerek esetén:

névütközés; ezt a rendszernek kezelnie kell. Rendszerfüggő, hogy hogyan teszi.

Alosztályból másik alosztály származtatható: öröklési hierarchia. Ez egyszeres öröklődés esetén fa., többszörös

öröklődés esetén aciklikus gráf.

Öröklési fa:

Alakzat

Nyílt alakzat Zárt alakzat

Poligon Ellipszis

 Háromszög Négyszög Ötszög Kör

Például az Alakzat osztály

− attributumai lehetnek: vonalvastagság, nagyság, szín, háttér, kitöltöttség ...

− módszerei lehetnek: kirajzol(), elforgat() …

Az Alakzatot elkezdem specializálni, ekkor a Zárt alakzatnál jöhetnek mégújabb

− jellemzők: terület, kerület …

− módszerek: területszámítás(), kerületszámítás() …

A Zárt alakzat Alakzat is egyben, így a Zárt alakzat minden példánya az Alakzatnak is példánya (is_a).

A Háromszögnek is lehet egy terület() módszere: átveszem a Zárt alakzattól, de ezt újraimplementálom, hiszen a

Zárt alakzat területét csupán közelítőleg tudom megadni, míg a Háromszögét pontosan.

Terminológia:

− Fa gyökéreleme: ősosztály, amiből az összes többi származik.

− Előd: pl. a Kör elődjei: Ellipszis, Zárt alakzat, Alakzat.

− Leszármazott: pl. a Zárt alakzat leszármazottjai: Ellipszis, Kör.

− Kliens osztályok: azok az osztályok, amelyek között nincsen öröklődési kapcsolat. Pl. Kör − Ötszög.

Bezárás (encapsulation):

Az OO nyelvek legkényesebb fogalma: általában e fogalom mentén válnak el az iskolák, attól

függően, hogy melyik mit vall róla. Az eljárásorientált nyelvek hatáskör fogalmának, a

láthatóságnak a kiterjesztése. A legtöbbet félreértelmezett fogalom.

Nem objektumhoz kapcsolódik.

− Bezárás_1: Nem objektumhoz kötődik. Az osztály egy absztrakt adattípus. Az osztály rendelkezik egy

interfész és implementációs résszel. Az osztály objektumaihoz csak az interfész részen keresztül férhetünk

hozzá, az implementációhoz egyáltalán nem, korlátozott hozáférést jelent. Ez az információrejtés elve

(Information hiding). Egy osztály objektumai egy az osztály által definiált interfészen keresztül érhetők el,

és csak így! A nyelv a benne definiált attributumokat és metódusokat két részre osztja:

− Nyilvános rész: amelybe tartozó eszközöket minden kliens osztály lát.

− Privát rész: kívülről nem látható.

− Bezárás_2: A bezárás eljárásorientált nyelvek hatáskör fogalmának általánosítása OO körökben, ahol

garantáltan létezik egy olyan eszközrendszer, mellyel a programozó tudja szabályozni, hogy az osztályból

mi látható és ki számára.

Polimorfizmus (polimorphism): vagyis többalakúság. Kétfajta polimorfizmus van:

− Objektum polimorfizmus: Minden objektum tudja saját magáról, hogy melyik osztály példányaként jött

létre. Egy objektum objektuma saját osztályának, de az öröklődési hierarchiában objektuma valamennyi

elődosztálynak is egyben. Így minden egyes objektum szerepelhet minden olyan szituációban, ahol az

ősosztály objektuma szerepelhet, nem csak a saját osztálya példányaként használható.

− Módszerpolimorfizmus (overriding):

Egy leszármazott osztály egy örökölt módszert újraimplementálhat: a módszer specifikációja változatlan

marad, de az implementáció más lehet az öröklődéi vonalon. Ld.:

− Zárt alakzat: terület(), kerület() módszer

− Háromszög: terület(), kerület() módszer más! (új implementáció)

Kötés (binding):

A módszerpolimorfizmushoz kapcsolódik. Ha van egy függvény és több implementáció hozzá, kérdés, hogy

mikor melyik kód kapcsolódik a specifikációhoz. Eszerint beszélünk:

− Statikus (static) más néven korai (early) kötésről: a névhez a kód hozzárendelődik fordítási időben. Az OO

rendszerek többsége fordítóprogram orientált.

− Dinamikus (dynamic) vagy késői (late) kötésről: kötés futási időben történik, így

ugyanahhoz a névhez más-más kód tartozhat, attól függően, hogy melyik

osztálykörnyezetben dolgozunk: az aktuális példány osztályában definiált kód, vagy (ha

nincs) a hierarchián felfele a legközelebbi kód kötődik.

A nyelvek többsége mindkét kötést ismeri, kérdés, hogy melyik az alapértelmezett.

Üzenet (message):

Tipikusan Smalltalk fogalom. A Smalltalk filozófia szerint az objektum üzenetek segítségével

kezelhető. Ha az objektumtól kérni akarok valamit, akkor üzenetet küldök. Az objektum veszi

az üzenetet, én nem tudom, mi történik közben, nem tudom, hogy az objektum hogyan találja

ki a választ, és az objektum válaszol.

Absztrakt osztályok
Absztrakt osztályoknak hívjuk azokat az osztályokat, amelyeknek nincsenek példányaik, amelyek nem példányosíthatók. Csak örököltetésre
való. Beszélnek nyelvek absztrakt módszerekről. Ezek azok a módszerek, amelyeknek csak a specifikációjuk van megadva implementáció
nélkül. Az abszrakt osztályokból konkrét, példányosítható osztályok származtathatók. Az egész eszközrendszer az absztrakciót szolgálja. A
rendszerfejlesztési ciklusban és a programfejlesztésnél lesz érdekes.

Konténer osztályok (Container)

Olyan adatszerkezet, amely objektumokat tartalmaz.

Alapvető a tömb, láncolt lista, verem, sor, stb. Nem minden nyelvben vannak realizálva a konténer osztályok, a

programozónak kell megvalósítania. Alapvető szerepük az adatbáziskezelőknél van.

Kollekciók (Kollection)

Objektum-orientált adatbázisok esetén a konténerosztályok helyett a terminológia: kollekció (Collection). Ezen

kollekcióval kapcsolatos az iterátor fogalma.

Iterátor

Általában ez is egy osztály, típus, ennek példányaihoz tartozó objektumokat be tudjuk járni. A bejárás az

adatszerkezeteknek megfelelően történik.

Paraméterezett osztályok:

Egyes objektum-orientált nyelvekben vannak ún. paraméterezett osztályok, a C++ terminológia szerint template-

k. Lényegében megfelelnek osztályszinten az Ada generikusnak.

Objektumok élettartama:

A példányosítás mindig egy explicit tevékenység eredménye, minden objektumot minden

nyelvben a programozó hoz létre. Meddig él?

- A nyelvek egy részénél az objektumot megszüntetni is explicit módon kell, az objektumok törlése is a

programozó feladata. A nem tisztán objektum-orientált nyelvek egy része vallja ezt az elvet. Ld. C++.

- A nyelvek másik része (nagyobb része) alkalmaz egy automatikus objektum törlési mechanizmust (garbage

collection), amelynek a feladata az objektumok megszüntetése aszinkron módon úgy, hogy azzal a

programozónak ne kelljen foglalkoznia, és úgy, hogy a törölt objektumok tárhelye ismét felhasználható

legyen. Ez az automatikus tárfelszabadítás nem csak az objektum-orientált nyelvek sajátja, hanem egy

tárkezelési technika. Többféle algoritmus van arra, hogy a rendszer hogyan dönti el, hogy mely objektum

törölhető. Nyilvánvaló, hogy garbage collection algoritmus sokkal kényelmesebbé teszi a programozást.

Egységesség:

A nyelvben létezik-e más eszközrendszer, mint az objektum? Minden objektum, vagy van

olyan eszköz, ami nem az?

Ezek alapján az OO nyelveknek két nagy csoportja van:

− A tisztán OO nyelvek azt vallják, hogy minden objektum (osztály, attribútum, módszer,

objektum). Csak olyan eszközöket tartalmaznak, amelyek obektumorientáltak, és nincs

más eszköz. Pl.: Smalltalk, Eiffel csak OO elvek alapján működik. A tisztán OO nyelvek

esetén e nyelvi rendszer egyetlen osztályhierarchiából áll. Például a Smalltalk egy

osztályhierarchia. A programozás pedig nem más, mint definiáljuk a saját osztályainkat, és

azokat elhelyezem az osztályhierarchiában: az adott osztályhierarchiát bővítük, és ezekből

származtatunk objektumokat.

− A hibrid nyelvek alapvetően eljárásorientált, logikai, funkcionális, stb. nyelvi eszközöket

tartalmaznak, és ez a nyelvi szközrendszer bővül OO eszközrendszerrel.Van tehát

objektum is, és van nem objektum is. Lehetnek bennük eljárásorientált, deklaratív,

funkcionális, objektum-orientált eszközök. Programozhatunk benne objektumorientáltan

is. A nem tisztán OO nyelvek nem tartalmaznak osztályokat, incs osztályhierarchia.

Definiálhatunk önálló osztályokat, és egymástól fügetlen osztályhierarchiákat. Itt is

vannak szabvány osztálykönyvtárak, csak ezek nem a nyelv részei, és ezektől fuggetlenül

is lehet programozni. Majdnem minden nyelvnek van olyan kiterjesztése, amelyben

szerepelnek OO eszközök. Ilyenek például az OO COBOL, Object Pascal, C++.

Terminológia:

− Objektum alapú nyelvek: (object-based) ha a nyelvben van objektum fogalom és bezárás,

de nincs osztály és öröklés. (Pl. Ada)

− Osztály alapú nyelvek: (class-based) van osztály, bezárás, objektum fogalom, de nincs

öröklődés. (Pl.: CLU)

− Objektum-orientált nyelvek: (object-orinted) minden létezik: bezárás, osztály, öröklődés

fogalom. Ezek a nyelvek (imperatív nyelvként) fordítóprogramosak.

− És végül létezik az OO-nak egy olyan speciális nyelve, amelyben nincs osztály fogalom,

de minden más OO eszköz megvan benne.

Programozási nyelvek hierarchiája:

(nyíl: származik, hatás; aláhúzás: objektum-orientált)

Turbo

Turbo

ALGOL60

Pascal

SIMU C

Objec

Delphi

Ada

Ada

Modul

Oberon

C ++

JavaEiffel

Objec

SMALLT

SMALLT

SMALLT

SMALLT

SMALLT

VisualA
ge

33.. JJAAVVAA

A Javát a SUN fejlesztette 1994-től.

A Java, mint nyelv nyílt, heterogén, tetszőleges platformokat egyesítő elosztott rendszerek nyelveként születik

meg. A C++ tökéletesítéseként jön létre. A Java megszünteti a C++ néhány eljárásorientált nyűgjét és a mutató-

orientáltságot. Meghagyja a kifejezésorientáltságot. Tisztább objektum-orientált nyelv, mint a C++, majdnem

tiszta OO nyelv, kevésbé hibrid nyelv. A Java tervezési célkitűzése a hordozhatóság. Fordítóprogramos, de a

Javaban megírt forrásprogramot a Java-fordító ún. bájtkód formátumra fordítja le (ez a bájtkód hordozható), és

ezt a lefordított programot pedig az ún. Java Virtuális Gép (Java Virtual Machine - JVM) futtatja le. A JVM tehát

egy interpreter, de készíthető hozzá célhardver, amelynek gépi kódja a bájtkód, illetve megadható olyan fordító,

amely a bájtkódot valamely konkrét gépi kódra fordítja le.

Egyrészt a JVM tekinthető egy:

- Absztrakt számítógépnek, amelynek a gépi kódja ez a bájtkód, és interpreteres, amelyet (általában

szoftveresen) szimulálunk egy konkrét platformon. Ennek a koncepciónak a nagy előnye, hogy a Java

programok hordozhatóak. Ugyanaz a bájtkód jön létre, ugyanaz a JVM van megírva minden platformon.

Egységes. A JVM feloldja az egyes platformok közötti különbségeket.

- Elképzelhető, hogy a JVM egy tényleges hardver, a bájtkód mögött egy célhardver van. És ezt a bájtkódot

továbbfordítom egy adott processzor gépi kódjára.

A Java nyelv:

- A Java meglehetősen magas szintre elviszi az absztrakciót.

- Hálózati környezetben biztosítja az újrafelhasználhatóságot.

- Párhuzamos programozást is lehetővé tesz.

AA JJAAVVAA FFIILLOOZZÓÓFFIIÁÁJJÁÁNN KKEERREESSZZTTÜÜLL BBEEMMUUTTAATTVVAA
AAZZ OOBBJJEEKKTTUUMM--OORRIIEENNTTÁÁLLTTSSÁÁGGOOTT

Egyesíti az eddig tárgyalt fogalmakat.

Karakterkészlet
Az UNICODE 16 bites kódtáblán alapul, ahol betű minden nyelv betűje lehet. Tartalmazza az

összes nemzetközi abc-t.

Egy baj van, hogy a különböző platformok, az operációs rendszerek egy része ezzel az UNICODE-dal nem

tudnak mit kezdeni, nem tudja kezelni ezt, tehát konkrét platformon ez az előny nem érvényesül. Ezért

maradunk az eddig megszokott ASCII valamely változatánál. A kis- és nagybetűt megkülönbözteti.

Azonosító
Az azonosító fogalom a szokásos, azzal a megjegyzéssel, hogy betű nem csak az angol abc betűi, hanem a

nemzetközi betűk, és az _ és $ jel is ide tartozik.

Kulcsszavak
Eléggé C++ szerűek. A CONST és a GOTO alapszó, de nincs implementálva, nincs mögötte semmi.

Standard azonosító
Nincs.

Megjegyzés
Háromféle megjegyzés formátummal dolgozik:

- // -től sorvégéig megjegyzés.

- /* */ zárójelek között tetszőleges hosszan, ahol szóköz az elhatároló.

- /** */ dokumentációs megjegyzés. (Ezzel nem foglalkozunk.)

Címke
A címke azonosító, utasítás előtt áll, kettősponttal elválasztva. Minden utasítás címkézhető.

Típus: Nem objektumok
Mivel léteznek a Javában olyan eszközök, amelyek nem objektumok, ezért majdnem tiszta OO nyelv.
Ilyenek például:

- Beépített típusok:

- boolean

- char

- byte

- short

- int

- long

- float

- double

Ezek az eljárásorientáltság értelmében típusok. Nincs mutató típus, de van logikai. Ezek

tartományainak elemei jelenhetnek meg literálként.

Szerepük: változókat lehet velük deklarálni, amelyek szintén nem objektumok. Létezik tehát a

Javában a hagyományos változó fogalom.

- Beépített osztályok: az egyes típusok osztályváltozata, amelyek példányosíthatók. Nevük ugyanolyan,

mint a beépített típusoké, annyi különbséggel, hogy ezek mindig nagybetűvel kezdődnek. Pl.

Boolean, Char, Byte, stb. (Minden típusnak létezik az osztályváltozata.)

A strukurált típusok közül létezik az egydimenziós tömb. Többdimenziós tömb nincs. Az index 0-tól

indul. A név mögött [] zárójel jelzi, hogy tömbről van szó.

Literál
Léteznek C-szerű literálok, amelyek a beépített típusok értékkészletéből valók.

- ’a’ : karakteres literál

- ”alma” : sztring literál

Beépített nevesített konstansok
Ilyen például:

- true, false

- null objektum

Nevük foglalt szó.

Változó
Változó deklaráció C-szerű:

 típus névlista;

A deklarációban kifejezéssel kezdőérték adható a változóknak futási időben kiértékelődő

kifejezéssel:

int x=0;

Automatikus kezdőértékadás nincs. Az inicializálást a Java megköveteli.

Kifejezések
A C kifejezés fogalmát veszi át a C++-on keresztül. C, C++ szerű a precedencia táblázat és kiértékelés, de a

kiértékelést a hivatkozási nyelv szabályozza. Jóval kevesebb implementációfüggő rész van, mint a C-ben. Ha a

C-ben meghívok két függvényt, és összeadom őket, akkor implementációfüggő a kiértékelés, de a Javában nem.

Szigorúan típusos nyelv, azzal a megkötéssel, hogy a konverziót bizonyos esetekben megengedi (nem úgy, mint

az Ada).

Utasítások
1. A deklarációs rész csak változó deklarációból áll.

2. A végrehajtható utasítások:

- Kifejezés utasítás. Ld. értékadó kifejezés.

- Új objektum létrehozása. Példányosítás, ami a Java szempontjából egy művelet. Ld. precedencia

táblázat.

- Módszerhívás.

- Vezérlő utasítások: ld. később. C, C++ szerű.

Blokk:
- A blokk { } zárójelek között szerepel.

- Cimkézhető.

- Tetszőleges mélységben egymásba skatulyázható.

- Változó blokk lokális változójaként deklarálható.

- A blokkon belül tetszőleges a deklarációs- és végrehajtható utasítások sorrendje.

- A lokális változók hatásköre statikus. Létezik lokális változó, de nincs lyuk a hatáskörben szituáció, mert a

Java nem engedi meg az újradeklarálást.

- Ezen változók élettartama dinamikus.

A nemobjektumok szerepe a módszerek törzsén belül van.

Vezérlő utasítások

Feltételes utasítás

 IF(feltétel) utasítás ELSE utasítás;

Teljesen C-szerű, annyi eltéréssel, hogy a C-vel ellentétben a feltétel logikai típusú.

Többszörös elágaztatás

SWITCH(egész_kifejezés) {

CASE egész_literál: utasítások

[CASE egész_literál: utasítások] ...

[DEFAULT: utasítások]

 }

Előfeltételes ciklus

 WHILE(feltétel) utasítás;

Végfeltételes ciklus

 DO utasítások WHILE(feltétel);

Akkor ismétel, ha a feltétel igaz.

Előírt lépésszámú ciklus

 FOR(p1; p2; p3) utasítás;

Break utasítás

 BREAK[cimke];

A fenti konstrukciókban is ott vannak a blokkok.

A break utasítás befejezteti azt a legbelső blokkot, amelyben ezt az utasítást kiadtam. Ha meg van adva az

opcionális címke, akkor bármelyik szintről befejeztethetek egy egész blokksorozatot. Viszont módszerekből és

inicializáló blokkokból nem lehet kilépni.

Continue utasítás

 CONTINUE[címke];

Ciklusok esetén adható ki: a törzs hátralevő részét nem hajtja végre, hanem visszatér a vezérlő részhez, a fejhez.

Ha szerepel a címke, akkor az adott címkéjű ciklus fejére tér rá a vezérlés.

Return utasítás

 RTURN[kifejezés];

Függvényben kötelező a return kifejezés;

Osztályok

Az osztály egy absztrakt adattípus implementációja! A hangsúly a típuson van.

A Java program legkisebb egysége az osztály, így a programozás az osztályok, megírásából áll. Az osztály

egyben a legkisebb fordítási egység. Természetesen egy fordítási egység akárhány osztályt tartalmazhat, de egyet

mindenképpen kell.

Az osztályok csomagokba szervezhetők. Ha egy osztályt lefordítunk, meg kell mondani, hogy melyik csomag

osztálya. (Még visszatérünk rá.)

Egy osztály attribútumait változó deklarációk (adattagok − data member), módszereit függvény definíciók

alkotják (amely függvényeket a Java tagfüggvényeknek – member function-nek hív). Közös néven tehát tagokról

beszélünk. Egy Java osztály tagok segítségével építhető fel. Egy osztály minden példánya saját készlettel

rendelkezik az adattagokból (példányváltozók).

A példányosítás során az adatoknak megfelelő tárrész lefoglalódik. Ahány példány van, annyiszor foglalunk

helyet a tárban.

Egy osztály valamely módszerének meghívásánál meg kell adni, hogy melyik példányra hívtuk meg. Ez az

aktuális példány.

A Java ismeri a példányváltozó, példánymódszer illetve osztályváltozók és osztálymódszerek fogalmát. A

példányváltozók a példányok állapotait, a módszerek a példányok viselkedését írják le. Az osztályváltozók és

osztálymódszereket a Java statikus tagoknak hívja. Ezek magához az osztályhoz kapcsolódnak, az

osztályváltozókból egy-egy van és az osztálymódszerek, ezeken dolgoznak. Ezek akkor is működnek, ha

egyetlen példányuk sincs.

Az osztály szerkezete:

- fej

- törzs

Fej:

 [módosító] CLASS név [EXTENDS szuperosztály_név]

Absztrakt adattípus létrehozása a Javaban.

A Java az egyszeres öröklődés elvét vallja. Ha nem adok meg szuperosztályt, akkor

automatikusan az Object osztályhoz fog kapcsolódni az adott osztály. Az

osztályhierarchia egy fa, amelynek gyökere az Object osztály. Terminológia: a Java

időnként nem öröklődésről, hanem kiterjesztésről beszél.

Módosítók a következők lehetnek:

- abstract: absztrakt osztály definíció, nem példányosítható.

- final: ennek segítségével olyan osztályt definiálunk, amely osztály nem kiterjeszthető.

Az osztályhierarchiában levélelemet definiálunk ezzel, nem lehet belőle örökölni.

- public: ezzel olyan osztályt definiálunk, amely bármelyik csomagból látható. (Egyébként

 csak abban, amelyikben van.)

Több is szerepelhet belőlük értelemszerűen egyszerre: pl. abstract és final-nak nem lenne értelme.

Törzs:

 { } zárójelben tetszőleges sorrendben tetszőleges számú tagdefiníció áll.

Attribútumok

Egy példányváltozó definíciója:

 [módosító] típus név [=kezdőérték] [,név [=kezdőérték]]...

;

− A kezdőérték kifejezés. Az objektum származtatáskor sem lehet hatrozatlan állapotban, alapállapotba kell

hozni (ld. konstruktorok). Ha nincs explicit kezdőértékadás, akkor a fordító implicit kezdőértéket ad a

példányváltozóknak:

− logikai típus esetén: false

− a többi beépített típus esetén: 0

− objektum típus esetén: null értékre állít.

− A módosító:

− Itt is létezik final, amely egy konstans adattagot ír elő (nem változtatható adattag), vagyis ha egy

explicit kezdőértékkel ellátott adattagot definiálunk, az nevesített konstans lesz. Ha final esetén nem

adunk meg kezdőértéket, akkor ez egy üres nevesített konstans lesz, ennek kezdőértékét konstruktorral

kell rögzíteni.

− A láthatóságot (a bezárást) a következő módon szabályozza:

− Alapértelmezés szerint (amikor nincs alapszó) “friend” azaz félnyilvános. Ekkor ez az adattag az

adott csomagból látszik, ahol az osztályt elhelyeztem.

− A private (privát) alapszóval ellátott adattagot csak az adott osztály látja. Ezeket az osztály

bezárja.

− Ha a protected (védett) az alapszó, akkor ezt csak a leszármazottak láthatják.

− A public (nyilvános) alapszóval deklarált adattag mindenhonnan látszik.

− Vannak még további módosítók, amelyekkel később foglalkozunk.

Módszerek

A módszerek definíciója a következőképpen néz ki:

 [módosító] fej törzs

- A fejet szokás objektum-orientált körökben signature-nek (lenyomat, szignatúra) hívni (ez a korábbi

specifikációnak felel meg), és a törzs a szokásos. Ld.: C, C++. (Kiegészül majd a kivételkezelésnél.)

- A módosítók a példányváltozóknál megbeszéltek, plusz bejönnek újabb módosítók:

- final: nem implementálható újra, nem polimorf.

- abstract, mellyel absztrakt módszer definíciót írunk elő. Ilyenkor nincs törzs (implementáció), csak

absztrakt osztályokban szerepelhet értelemszerűen. Valamely leszármazott adja meg az implementációt.

Egy osztály mindaddig absztrakt, míg legalább egy módszere absztrakt. Absztrakt osztályokban

szerepelhet nem absztrakt módszerdefiníció is.

- A static módosítóval statikus tagokat definiálhatunk.

- Itt is vannak további módosítók, amelyekkel később foglalkozunk.

Az osztályon belül definiált módszerek látják az osztályon belül definiált minden adattagot. Amikor egy
módszert meghívok, az nem más, mint egy függvényhvás.

Paraméterkiértékelés módszereknél:

- sorrendi kötés

- számbeli egyeztetés

- típusegyeztetés

Látni fogjuk, hogy e két utóbbi nagyon-nagyon lényeges.

Paraméterátadás:

A paraméterátadás értékszerinti.

Hivatkozás

Minősítéssel hivatkozunk egy tagra.

 csomagnév.osztálynév.objektumnév.tagnév

Példa osztálydefincióra a Java útikalauzból:

 public class Alkalmazott{

 String nev;

 int fizetes;

 void fizetesEmel(int novekmeny){

 fizetes = fizetes+novekmeny;

 }

 boolean tobbetKeresMint(Alkalmazott masik){

 return fizetes > masik.fizetes;

 }

 }

- Van két példányváltozó:

- név, ami a String osztály egy példánya

- fizetes, ami egy egyszerű típusú adattag.

- Van két példánymódszer:

- fizetesEmel : egy eljárás

- tobbetKeresMint : egy függvény, benne return kifejezés;

Konvenció:

- Az osztálynév nagybetűvel,

- A tagnév kisbetűvel kezdődik.

Módszer hívása:

- Vagy kifejezés

- vagy utasítás: valamit csinál, azaz mellékhatása van.

 System.out.println(”szövegkiírás”);

Példányosítás

A new operátor segítségével történik, amely referencia típusú operátor. Amikor egy objektumot hozok létre, egy

speciális változót definiálok. A változó neve segítségével nevezzük meg az objektumot. .

 Alkalmazott a;

Definiálunk egy osztályt, az osztály ezáltal része lett a hierarchiának. Definiálhatok ilyen típusú változókat. Az a

Alkalmazott típusú lesz. Ez nem példányosítás, nem rendelkezik értékkel.

Amennyiben egy Alkalmazott osztálybeli példányt akarok definiálni, a következő módon tehetem meg:

 Alkalmazott a=new Alkalmazott();

Ekkor létrejön egy a nevű változó: lefoglalódik egy tárterület számára. A new hatására valahol hely foglalódik a

példányváltozók számára, azok kezdőértéke beállításra kerül (a megírt vagy default Alkalmazott()

konstruktor hatására), és az a változó értékül kapja a lefoglalt terület kezdőcímét.

Ez azonban nem egy mutató típus. Ezt a Java referenciának hívja. Különbség a referencia és a

mutató között: az a változó mindig a mögötte lévő objektumot fogja hivatkozni, nem címként

kezelendő, értéke nem machinálható: nem lehet például hozzáadni egy értéket, csak az a nevű

objektummal dolgozhatok.

Lehet:

 Alkalmazott a, b; -- Változók, de nincs értékük,

 -- vagy null értékűek (ha adattagok).

 a = new Alkalmazott();

 b = a; -- a cím átmásolását jeleni,

 -- nincs új terület foglalás

 -- az a és b ugyanazt az obektumot hivatkozza

 a.fizetes=50000;

Ha valamely osztály definícióban ilyen adattagot definiálok, megtehetem:

 final Alkalmazott a=new Alkalmazott();

ami annyit jelent, hogy definiáltam egy a nevű referencia típusú változót, amely mindig

ugyanarra az alkalmazottra mutat (amely tetszés szerint változtathatja az állapotát), és nem

címezhet más objektumot.

A JVM minden példány vonatkozásában tartalmaz egy referenciaszámlálót, amelyet a JVM az objektum

létrejöttekor rendeli hozzá az objektumhoz. Ez a referenciaszámláló (mely megmutatja, hogy hány változó címzi

az objektumot) nő, ha hivatkozok egy példányra, és ha megszüntetek egy hivatkozást, csökken. Erre épít egy

garbage collection-t (szemétgyűjtögetés). Ha a referenciaszámláló értéke 0, akkor az adott példány törölhető, a

rendszer fölszabadítja a helyét. Automatikus.

 a = null;

bármikor lehet. Ez megszünteti a referenciát. Nem kell explicit módon felszabadítani egy fölöslegessé vált

objektum területét.

Statikus tagok

Statikus adattagok

Alakja:

 static int nyugdijKorhatar = 65;

Osztálynévvel minősíthető:

 Alkalmazott.nyugdijKorhatar;

Statikus módszerek

Például:
 static void nyugdijKorhatarEmel(){

 nyugdijKorhatar++;

 }

Osztálymódszereknél nincs példány.

Főprogram

A program indításakor egy osztálynevet kell megadni, amelyben van egy main nevű eljárás a következő

specifikációval:

 public static void main (string args[])

− A virtuális gép ennek adja át először a vezérlést.

− A specifikáció kötött

− Paramétere egy tömb, amely az indításkor megadott argumentumokat tartalmazza. Ezek megadása, szerepe

rendszerfüggő.

− A program befejeződik, ha:

− Ez befejeződik vagy

− Ha a programon belül meghívjuk a System osztály exit módszerét.

Ha egy osztály definíciójánál nem adunk meg szuperosztályt, akkor automatikusan az Object osztály alosztálya

lesz. Ez az osztály a hierarchia gyökere a Javaban.

Példa:

 class Factorial{

 public static void main(String[] args){

 int factorial = 1;

 int i = 1;

 while(i < 10){

 factorial = factorial * i;

 System.out.println(i + “!=” + factorial + “ ”);

 i++;

 }

 System.out.println();

 }

}

A this és a super pszeudóváltozó

Egy módszer törzsében használható a this és a super pszeudóváltozó. Ezzel hivatkozhatunk egy módszer

törzsében a megfelelő aktuális példányra, illetve a megfelelő szuperpéldányra.

boolean kevesebbetKeresMint (Alkalmazott masik){

 return masik.tobbetKeresMint(this);

}

A this és a super szavak túlterheltek a Javaban.

Módszerek túlterhelése

A módszernevek túlterhelhetők a Javaban, azaz több módszert ugyanazzal a névvel nevezhetünk meg, ha a

formális paraméterek száma vagy a sorrendi kötés értelmében a típusa eltérő. Ekkor a módszer meghívásakor a

megfelelő kódot a fordító az aktuális paraméterek száma és típusa alapján választja ki. A paraméterkiértékeléskor

derül ki, hogy melyik a meghívandó kód. Ld. Factorial példánál a println() módszer esetén.

Polimorfizmus

Egy örökölt példánymódszer implementációja tetszés szerint megváltoztatható. Az újraimplementált módszernek

felülről kompatibilisnek kell lennie az örökölt módszerhez, azaz:

− Specifikációjuk megegyezik.

− Az újraimplementált módszerek csak azokat a kivételeket válthatják ki, mint az örökölt módszer.

− A bezárást csak enyhíteni lehet, szűkíteni nem: pl. protected → public lehetséges, de fordítva nem.

A Java a dinamikus (késői) kötés elvét vallja, nem kell külön előírni, mint a C++-ban. (Nem kell virtual!)

Egy módszer meghívásakor egy módszer nevéhez mindig az aktuális példány osztályában definiált, vagy a

legközelebbi örökölt kód fog meghívódni. Ezzel szemben az osztálymódszerek statikusan kötnek,

osztálymódszereket nem lehet átdefiniálni. (Egy osztályhierarchia van, és az újradefinálással ezt a hierarchiát

rúgnánk szét.)

Adattagok elrejtése

Az összes tag örökődik. A Java tiltja, hogy bizonyos tagokat elhagyjunk az öröklődés során.

Viszont bevezeti az elrejtés (elfedés) fogalmát. Jelentése: az öröklődés során a leszármazott

újraimplementálhatja a módszereket, és átdefiniálhatja az adattagokat, új tagokat definiálhat,

de megszüntetni nem szüntetheti meg az örököltetett. Ezzel elrejti az eredetieket a

hozzáféréstől az adott és az innen leszármazott osztályokban.

Konstruktorok

Amikor példányosítunk, a példány alapállapotát be kell állítani, ezt megtehetjük paraméterek segítségével. Ezt a

célt szolgálják a konstruktorok (a konstruktorok tehát az alapállapot definícióját segítik elő), amelyek típus

nélküli, az osztály nevével azonos nevű módszerek, amelyek láthatóságát szabályozhatjuk csak. A konstruktorok

a példányosításnál automatikusan meghívódnak, és inicializálják azt. Az adattagoknak lehet kezdőértéket adni

explicit módon, ha nem, akkor a rendszer inicializál.

A programozó egy osztályhoz tetszőleges számú konstruktort írhat, és ezek neve túlterhelhető (a pataméterek

száma és/vagy típusa különböző kell legyen). Kostruktor kizárólag a new operátor mellett hívható meg. A

konstruktorok nem örökölhetők.

A konstruktor törzsének első utasítása lehet egy adott osztálybeli, vagy egy szülőosztálybeli másik konstruktor

meghívása a következő szintakszissal:

 this(); illetve super();

A programozó nem köteles megadni konstruktort. Ha a programozó nem ad meg konstruktort, akkor a rendszer

automatikusan felépít egyet, méghozzá olyat, amely paraméter nélküli és a törzse üres.

Példa:

public class Alkalmazott{
 ...
 public Alkalmazott(String egyNev, int egyFizetes){
 nev=egyNev;
 fizetes=egyFizetes
 evesFizetes=12*fizetes;
 }
 public Alkalmazott(String egyNev){
 nev=egyNev;
 fizetes=30000;
 evesFizetes=12*fizetes;
 }
 ...

}

Két konstruktort definiáltam. Egyiknek egy paramétere van, a másiknak kettő. Ez alapján

tudja a rendszer eldönteni, hogy aktuálisan melyiket hívjuk meg.

Említettük, hogy minden konstruktor törzsének első utasítása lehet egy másik osztályhoz

tartozó konstruktor meghívása. Ebben az esetben átírható a következő módon:

public class Alkalmazott{

 ...

 public Alkalmazott(String egyNev, int egyFizetes) {

 nev = egyNev;

 fizetes = egyFizetes;

 evesFizetes = 12 * fizetes;

 }

 public Alkalmazott(string egyNev){

 this(egyNev,30000);

}

...

}

A szuperosztály konstruktorai nem öröklődnek, azokat mindig minden osztályhoz meg kell adni (vagy implicit).

Viszont minden alosztály bármely konstruktora törzsének első utasításaként a super kulcsszóval meghívható a

szuperosztály valamelyik konstruktora. (Például új adattagokat definiáltunk, de az átvetteket ugyanígy kell

inicializálni.)

A konstruktorok aktuális paramétereit példányosításnál a new operátor paramétereiként kell megadni a

következőképpen:

 new konstruktor_név(aktuális_paraméter_lista);

 Alkalmazott a = new Alkalmazott("Ó Pál ");

 Alkalmazott b = new Alkalmazott("Jó Jenő”, 55555);

A Java lehetővé teszi, hogy osztály-konstruktorokat definiáljunk, az osztály definíción belül akárhol, tetszőleges

számút. Ezek lényegében blokkok, amelyek előtt ott áll a static kulcsszó. Ezek az ún. statikus-konstruktorok

(statikus inicializátorok).

Definiálom az osztályt, a konstruktorokat. Amikor az osztályt először használom fel típusként, a rendszer

végrehajt egy osztály inicializálást, melynek során automatikusan lefutnak az osztály-konstruktorok, abban a

sorrendben, ahogy felsoroltam őket.

A finalize() módszer

Az osztályokkal kapcsolatos fogalomrendszert azzal zárjuk, hogy az Object osztályban létezik olyan módszer,

amelynek finalize() a neve (protected és void). A finalize() olyan módszer, amelyet minden

osztály örököl és átdefiniálhat. Minden osztály implementálhatja.

Amikor egy objektum felszabadulásra kerül (azaz az objektum megsemmisítésekor), a

tényleges felszabadítás előtt lefut ez a módszer: "Az adott példány egy utolsó kívánsága. "

Meghívása automatikus.

Létezik ennek egy osztály szintű változata is (osztálymódszer):

 classFinalize()

Abszolút platform függő. Ez az osztálymódszer az osztály megszünésekor automatikusan lefut.

Mit jelent az, hogy megszünik egy osztály?

Interfészek

Speciálisan JAVA eszköz.

Az interfész egy speciális referenciatípus, amely konstans adatttagokat és módszer specifikációkat tartalmaz. Az

interfész nem objektum.

A célja az absztrakciós szint növelése. Úgy tudunk problémát megoldani, hogy az implementációt nem adjuk

meg. Programfejlesztés közben behozok egy absztrakciós szintet, amikor a specifikációval foglalkozom, és az

implementációval nem. Az interfészek között is értelmezhető az öröklődés, méghozzá többszörös. Közös

ősinterfész nincs, tehát a programfejlesztés folyamán interfész hierarchia-gráfok építhetők fel. Az interfészek

implementációját mindig egy osztály végzi teljes mértékben. Az interfészt teljes mértékben implementálnia kell

az osztálynak. Tehát az interfész hierarchia alján mindig osztályok állnak. Egy osztály tetszőleges számú

interfészt implementálhat. Az interfészek által jelenik meg a többszörös implicit öröklődés a Javaban. Az

interfész, mint referencia típus mindenütt szerepelhet, ahol az osztály, mint típus szerepelhet. Lehet vele

változókat, tagokat definiálni, és formális paramétereket leírni. Az így definiált eszköz egy olyan referenciát

kaphat értékül, amelynek a típusa egy olyan osztály, amely az adott interfészt közvetve vagy közvetlenül

implementálja.

Múltkori példánkban eljárhattunk volna úgy, hogy az egyes osztályokat, mint interfészeket definiáljuk, és az

Ellipszis interfészt implementálja közvetlenül a Kör osztály, és a Zárt alakzat és az Alakzat interfészeket

közvetve.

Példa:

 Alakzat

 Nyílt Zárt

 Poligon Ellipszis

 Kör

Az interfész definíciója:

módosító INTERFACE név [EXTENDS szuperinterfész_nevek]

törzs

Az interfész módosító – ja csak public lehet.

A törzsben:

− az adattagok módosítói alapértelmezés szerint:

public static final

Nem írandók ki, és nem változtathatóak. Konstans adattagokról van szó, tehát a kezdőérték adás kötelező.

− a módszereknek csak a specifikációjuk szerepel

A módosítók:

public abstract.

Nem kiírandók, és nem kiírhatók.

A többszörös öröklődésből származó névütközéseket a Java nem kezeli.

Interfészek implementálása :

módosító CLASS név IMPLEMENTS interfész_nevek

törzs

Az összes absztrakt módszert implementálni kell.

Nagyon kemény absztrakciós eszköz és nagyon jól használható.

Csomag

Abban az értelemben, ahogy az Adában. A csomagok tartalmazzák a Java fejlesztői környezetet és az

alkalmazásokat is csomagokban írjuk meg. A csomag egy hatásköri egység.

Fordítási egység a Javaban:

− osztály deklaráció vagy

− interfész deklaráció

− vagy ezek tetszőleges együttese.

Az osztályokat és az interfészeket együttesen hívja a Java típusnak. Tehát fordítási egységek a típusdeklarációk

és ezek tetszőleges együttese.

A fordítási egység mögötti kód mindig kötelező módon csomagokban jelenik meg. A csomagok között hierarchia

építhető föl (könyvtárszerkezet). A Java rendszer tehát csomagfák (csomagok alkotta fák) együttese, melyek

tartalmazzák a fejlesztői környezetet és az alkalmazásokat is. A csomag tartalmazhat alcsomagokat és

típusdeklarációkat tetszőleges mélységben.

Megnevezés: névvel. Hivatkozás: minősítéssel. Egyrészt a csomagfán belüli csomagra, másrészt csomagon belül:

típus – objektum – tag.

Egy fordítási egység teljes szerkezete:

 [CSOMAGLEÍRÁS][IMPORTLEÍRÁS][TÍPUSDEKLARÁCIÓK]

− csomagleírás:

 PACKAGE csomagnév ;

A megadott nevű csomaghoz fog tartozni a lefordított kód. Ha nem szerepel, akkor a Java rendszer egy név

nélküli csomagba tartozónak tekinti (ebbe most nem megyünk bele). A név nélküli csomagok kezelése

rendszerfüggő. Nem javallott, hogy név nélküli csomagokat használjunk, a hordozhatóság sérülhet. Általában

igaz, hogy egy név nélküli csomag van.

− importleírás:

import minősített_név ;

Gyakorlati eszköz. Az Ada környezet leírásának felel meg. Arra szolgál, hogy más csomagokban deklarált

nyilvános típusok itteni használatát segítse elő úgy, hogy egyszerű és ne minősített névvel kelljen rájuk

hivatkozni.

Példa:

 import Alakzat.Zart.Ellipszis.Kor ;

És ezután elég a Kor hivatkozás, de akkor ennek egyedinek kell lennie.

Megengedett az:

 import Alakzat.Zart.Ellipszis.*;

ekkor az összes publikus típust eléri a nem minősítet neve alapján.

− típusdeklarációk: itt osztály definíciók állnak.

A Java alapcsomagjai a java csomagban vannak. Ennek alcsomagjai:

− java.lang

− java.io

− java.util

− java.sql

− java.net

− java.applet

− java.awt

− java.awt.event

A java.lang tartalmazza a legalapvetőbb eszközöket, ennek minden nyilvános típusa automatikusan

importálódik, nem kell külön megadni. Ebben van például az Object osztály, a primitív típusok, stb. Az összes

többi tagot importálnom kell.

Kivételkezelés a Javaban

Adaszerű elveket vall. Ez is alapvető eszköze a Javanak. Ipari szabványszerű. A Java program működése közben

módszerek hívódnak meg. Ha bekövetkezik egy speciális esemény egy módszer futása közben, akkor egy

kivétel-objektum jön létre: vannak kivétel-osztályok és annak kivétel-példányai. Ekkor a módszer “eldobja” a

kivételt, és a kivétel a Java virtuális gép hatáskörébe kerül át. Az adott módszer befejezi a futását annál az

utasításnál, ahol a kivétel bekövetkezett, és jön a kivételkezelés. A JVM feladata, hogy megkeressen egy adott

objektumnak megfelelő típusú, az adott pontba látható kivételkezelőt, amely kivételkezelő az adott kivételt

elkapja.

Egy kivételkezelő megfelelő típusú, ha:

− a kivételkezelő típusa megegyezik a kivétel típusával

− a kivételkezelő típusa őse a kivétel típusának.

A láthatóságot maga a kivételkezelő definiálja. Maga a kivételkezelő egy blokk. Az Adában

kivételkezelő fordítási egység végén helyezhető el, ezzel szemben a Javában tetszőleges

kódrészlethez köthető. Ezek a kivételkezelők tetszőleges mélységben egymásba ágyazhatók.

Ha van egy kivételkezelő, amely nem kezel minden kivételt, kérdés: hogyan tovább? A

kivételkezelőblokkon lépked kifelé a JVM az Ada illetve a PL/1 filozófiája szerint

dinamikusan, amíg nem talál megfelelő kivételkezelőt. Egy blokk végső soron egy módszer

törzse. Ha nincs ott kezelve a kivétel, akkor a JVM továbbadja a kivételt a hívási láncon a

hívónak. Ha talált megfelelő típusú kivételkezelőt a JVM, átadja annak a vezérlést, a

kivételkezelő lefut, és a program folytatódik a kivételkezelő kódját követő utasításon.

A kivételkezelőben bekövetkezett kivételeket ugyanígy kezeli a JVM, mint bárhol máshol.

A kivételek két csoportjáról beszél a Java:

− ellenőrzött

− nem ellenőrzött kivételek

Elengedi az ellenőrzést olyan eseményeknél, amelyek bárhol bekövetkezhetnek, ellenőrzése vagy nagyon

kényelmetlen vagy lehetetlen, irreálisan nagy kódtöbbletet eredményezne, vagy a programozó ezekkel a

kivételekkel nem tud mit kezdeni. Ez utóbbi kivételek tartoznak a nem ellenőrzött kivételek közé. Javallott, hogy

használjunk ellenőrzött kivételeket.

Az ellenőrzött kivételeket, amely egy metódus láthatósági körében felléphet, a programozónak mindig

specifikálnia kell, vagy el kell kapnia őket. Ezt a fordító vizsgálja, és hibát jelez, ha ez nem teljesül. Biztonságos

kódot kell írni!

Egy módszer fejében tehát meg kell adni azokat az ellenőrzött kivételeket kivételeket, melyeket a módszer nem

kezel, de futás közben bekövetkezhetnek.

Ennek specifikálása a módszer fejének végén:

 THROWS kivételnév_lista

utasításrész segítségével történik. Itt soroljuk fel, tehát a módszer láthatósági körében keletkezett, ellenőrzött, de

nem kezelt kivételeket. A kivételek kezeléséhez a java.lang csomagban definiált ősosztály a Throwable

objektumai “dobhatók el” (miután a kivétel is objektum).

Az eldobás a THROW utasítás segítségével történik.

Két standard alosztálya van:

− Error : ide tartoznak a rendszerhibák, ezek nem ellenőrzöttek.

− Exception : ellenőrzött kivételek osztálya. Ebből az osztályból származtathat a programozó

 saját ellenőrzött kivételeket. Természetesen a Java csomagjaiban számos

leszár-

 mazottja van (standard kivételek).

A throw utasítás alakja (a kivétel-osztály példányosítása):

 THROW NEW_OPERÁTOR;

Ez kivált egy megfelelő típusú kivétel objektumot, és eldobja a kivételt, átadja a JVM-nek.

Példa: Saját kivétel definiálása és kivételkezelés:

 class VeremMegteltException extends Exception{

 Object utolso;

 public VeremMegteltException(Object o){

 utolsó = o;

 }

 public Object nemFertBele(){ -- ezzel érjük el a tetejét

 return utolso;

 }

 }

 class Verem{

 final static public int Meret = 100;

 Object tarolo[];

 int mutato = 0;

 :

 public void push (Object o){

 ...

 if (mutato != Meret){

 tarolo[mutato++] = o;

 }

 else{

 throw new VeremMegteltException(o); --példányosítás

 } ...

 } ...

 }

A kivételkezelő szerkezete a Javaban:

TRY
 { Utasítások }

 -- ellenőrzött kivételek, amelyek látják a kivételkezelőt

 CATCH (típus változónév) {Utasítások}

 [CATCH (típus változónév){ Utasítások}]...

 [FINALLY { Utasítások}]

A TRY blokkban elhelyezett utasításokban keletkezett kivételek esetén a JVM a CATCH utasításoknak adja át a

vezérlést.

Ha ott talál megfelelő típusú ágat, lefutnak a blokkbeli utasítások, és végrehajtódnak a FINALLY utáni

utasítások, és a program folytatódik a FINALLY után.

Ha nincs egyetlen megfelelő kivételkezelő sem, és van FINALLY ág, lefutnak az utasításai, és a kivétel az adott

kódrészt (TRY) meghívó módszerhez kerül, vagy beágyazott blokk esetén a tartalmazó blokkhoz.

A FINALLY ág akkor is lefut, ha nem volt kivétel!

A CATCH ág teljesen hiányozhat. A típusegyeztetés miatt a felírás sorrendje nagyon lényeges, ugyanis a CATCH

ág az ellenőrzött kivételt elkapja. A hierarchiában lentről fölfele kell elkapni. Módosítsuk ezek alapján a kódot:

 class Verem{
 final static public int Meret = 100;
 Object tarolo[];
 int mutato = 0;
 :
 public void push (Object o){

 ...
 try{

 if (mutato != Meret){
 tarolo[mutato++] = o;
 }
 else {
 throw new VeremMegteltException(o);
 } ...
 } /*try*/
 catch(VeremMegteltException e){
 System.out.println(“A(z) ”+e.nemFertBele()+
 ” obektum nem fért el a veremben!”);
 }
 catch(Exception e){
 System.out.println(“Hiba! Hívja a rendszergazdát!”);
 }
 finally {System.out.println(“A push lefutott.”);
 }...
 }

SSZZÁÁLLAAKK

A párhuzamos programozás eszközei a Javában a szálak. A szálak objektumok, a Thread osztályból

származnak. Ezek run() módszere adja a futtatandó kódot. A Runnable interfészt implementáló osztállyal is

megadhatunk szálakat. Ebben a run() módszert is implementálni kell. Itt is ez adja a kódot. A Thread osztály

a Runnable egy implementációja.

A szálak a Javaban a következő állapotban lehetnek:

− új

− futtatásra kész

− fut

− várakozik

− halott

Új szálat (mint objektumot) a

 new

operátorral hozunk létre, ekkor csak létrejön. Él a szál, de semmi több, semmi aktivitást nem mutat.

Futásra kész állapotba hozni a start() módszerrel lehet. A futásra kész állapot annyit jelent, hogy beáll a

sorba. A Java rendszerek általában egyprocesszorosak. A futásra kész szálak közül az ütemező választja ki a

futtatandó szálat. Az egyprocesszoros rendszerek indeterminisztikusak! A kiválasztott szál működni kezd, fut (a

run() módszer indul el).

Egy szál halott állapotú lesz, ha meghívjuk a stop() módszerét, vagy a run() módszer kódja elfogy. Nem

lehet egy halott szálat újra elindítani.

A várakozás a szinkronizáció eszköze a Javában. A szálak szinkroniációja meglehetősen sokszinű. A

szinkronizációra a Hoare-féle monitort alkalmazza a Java. Ezzel kapcsolatban a következő eszközök állnak

rendelkezésre:

− Egy szál a következő esetekben kerülhet várakozó állapotba:

− a sleep(x) módszer meghívásával, a paraméter ezredmásodpercben értendő. Hatásra az adott szál

adott ideig várakozik.

− a wait() módszer meghívásával. Szintén várakozást tudunk előidézni.

− a suspend() módszer felfüggeszti a szál futását

− I/O művelet befejezésére vár

− Várakozó szál a következőképpen kerülhet futásra kész állapotba:

− sleep() esetén továbbmegy a szál az idő letelte után.

− wait() esetén notify() vagy notifyAll() módszer meghívásával megszűnik a várakozás

− suspend() módszer esetén a resume() módszerrel újraindul a futás

− ha befejeződött az I/O művelet

Kölcsönös kizárás
Módszer esetén ha a fejben szerepel a synchronized módosító, akkor a rendszer az adott módszer futtatását

úgy végzi, hogy érvényesüljön a kölcsönös kizárás. Ha blokk előtt szerepel a synchronized(objektum)

előírás, a megadott objektum zárát helyezi el a blokkra.

A szálak csoportokba szervezhetők, közösen, együtt kezelhetők a ThreadGroup osztály segítségével. Az egy

csoportba tartozó szálakat egyszerre vezérelhetjük a suspend(), resume(), stop() módszerekkel.

A Javaban vannak démonszálak. Ezek végszinkronizációs eszközök, akkor fejezik be működésüket, ha az összes

nem-démonszál befejeződött.

A join() módszer is a szinkronizációt szolgálja. Hatására egy másik szál hívható meg úgy, hogy a hívó szál

megvárja, míg lefut a hívott szál. Ez időzíthető is.

MMIITT ÉÉRRTTÜÜNNKK JJAAVVAA PPRROOGGRRAAMM AALLAATTTT??

Kétfajta programról szokás beszélni:

−− Alkalmazás: A Java rendszerben saját osztályokat definiálunk, és mószereket hívogatunk.

−− Appletek: programkák.

Appletek (programkák)

HTML oldalba ágyazható Java programok. Végrehajtásukat egy böngésző program végzi (Netscape vagy

Explorer) esetleg egy segédprogram. Az appletek letölthetők és futtathatók.

A java.applet csomag tartalmazza a szükséges interfészeket és osztályokat.

További eszközök

A java.net osztály eszközei arra szolgálnak, hogy hálózatos kommunikációt megvalósító programokat

tudjunk írni. Egy alkalmazást olyan komponensekre tudunk bontani, amely komponensek a hálózat különböző

pontjain futnak. Ehhez a Java a távoli objektumok kezelését nyújtja (remote object). A távoli objektumok

módszereit egy másik gép el tudja érni. A Java protokolja (eszközrendszere) az RMI (Remote Method

Invocation). A távoli objektumok módszereit interfészekben kell rögzíteni, specifikálni, és a JVM felépít egy

csonkobjektumot, amely csonkobjektum képes felépíteni a kapcsolatot a távoli objektummal: meghívja a távoli

objektum módszereit, azaz megszóllítja a másik JVM-et. Ott lefut a meghívott módszer, és a csonk

visszaközvetíti a visszatérési értéket.

A java.sql csomag adatbázis programozást tesz lehetővé. Relációs adatbázis kezelést valósít meg. Az

adatbázisok elérését a Java a JDBC protokolon keresztül teszi lehetővé. Ez a JDBC egy adatbázis kezelő

programozói interfész. A következő szolgáltatásokat nyújtja:

− összekapcsolódás egy relációs adatábzis-kezelővel

− SQL utasításokat tudunk felolgozni.

Kliens – szerver architektúrát használunk, ahol a szerver rész a relációs adatbázis kezelő, amit megszólítunk, és a

kliens az általában megírt program. Ennek van egy csomó nyűgje, ezt hívják kétrétegű architektúrának. Azonban

jelen pillanatban divat a többrétegű architektúra. A program és az adatbáziskezelő közé jön egy középső réteg:

middleware. A JDBC-n keresztül a midleware-t érem el. Ez a középső rétag a kommunikációt szolgálja. Mindkét

végpont ezt a középső réteget szólítja meg, és a középső réteg szolgáltat információt a két végnek.

4. EIFFEL

Az Eiffel egy olyan nyelv, amelyet teljesen az objektumorientált paradigma alapján hoztak létre
Bertrand Meyer vezetésével az 1980-as évek második felében. Az Eiffel tehát tiszta OO nyelv, az
egységesség elvét azonban nem vallja. Az Eiffelnél is igaz, hogy a nyelv elválaszthatatlan a fejlesztői
környezettől, azzal egységes egészet alkot.

4.1. Lexikális elemek

Az Eiffel karakterkészlete az US-ASCII szabványon alapszik, tehát betű alatt az angol ABC betűit kell
érteni. Az Eiffel a kis és nagybetűket nem különbözteti meg.

Az Eiffelben a megjegyzés a jelkombinációtól a sor végéig tart. Az Eiffel beszél szabad és elvárt
megjegyzésről. A szabad megjegyzés a program szövegében bárhol elhelyezhető, szintaktikai
jelentése nincs. Az elvárt megjegyzésnek szintaktikai jelentése van, bizonyos konstrukciók (l. …)
elemeként jelenhet meg.

Az Eiffelben általános elhatároló jelek a szóköz, tabulátor és sorvége jelek. Értelmez speciális és
többkarakteres szimbólumokat (pl.), kötött szintaktikai jelentéssel, ezek egy részét a későbbiekben
tárgyaljuk.

Az Eiffel a foglalt szavak két csoportját különbözteti meg, ezek a kulcssorok és az előredefiniált
nevek. A kulcsszavak a nyelvi konstrukciókhoz tartoznak, az előredefiniált nevek a szövegben ott
fordulhatnak elő, ahol egy változó neve (pl. Result), vagy egy típusnév (pl. INTEGER).

Az Eiffel kulcsszavai a következők:

Az Eiffel kódolási ajánlás szerint a kulcsszavakat kisbetűs félkövér alakban, a típusok nevét nagybetűs
dőlt alakban, az előredefiniált egyedek nevét nagy kezdőbetűs dőlt alakban írjuk.

Az Eiffelben az azonosító betűvel kezdődik és betűvel, számjeggyel vagy aláhúzás (_) jellel
folytatódhat. Hosszkorlátozás nincs.

Az Eiffel konstansai (literáljai) a következők:

Egész konstans: [előjel]számjegy[számjegy]…

Például: -3, 0, +222.

Valós konstans: [előjel] {[számjegy{számjegy]…].

 számjegy[számjegy]…|

számjegy[számjegy]…[számjegy

[számjegy]…]} [E/e] egész literál]

 Például: -1, 0., .0, -12E_12, 36.28E3.

Bit konstans: bit[bit]…[B/b]

 Például: 011001B.

Karakter konstans: `karakter`

ahol karakter vagy egy látható karakter (pl. `a`, vagy a %karakter alakú, ahol a karakter1
jelentése speciális (pl. %N-ú; sor, %-aposztróf, %B-backspace), vagy %/kód/, ahol kód egy
előjel nélküli egész, az ASCII decimális belső kódot jelenti (pl. %/91/-[).

4.2. Típusok

Az Eiffel egy szigorúan típusos nyelv.

A nyelvben minden programozói eszközt valamilyen típussal deklarálni kell. A típus általában egy
osztály (pontosan l. 4.11), amelynek módszerei meghatározzák a típus példányszám végezhető
műveleteket.

A típus lehet referencia vagy kiterjesztett típus. A referencia típusú eszközök értékül egy
objektumhivatkozást, a kiterjesztett típusúak magát az objektumot vehetik föl. Az objektum viszont
mindig a típus példányaiként jön létre.

A kiterjesztett típusok egy igen fontos csoportját képezik az ún. alaptípusok, ezek az INTEGER,
REAL, DOUBLE, CHARACTER, BOOLEAN, BIT és POINTER. Ezen osztályok példányai atomiak.

A POINTER típusnak külső (nem Eiffelben megírt) rutinok számára adható át a programbeli eszközök
címe.

Az INTEGER, REAL, DOUBLE a COMPARABLE és a NUMERIC absztrakt osztályok alosztályai. A
CHARACTER a COMPARABLE alosztálya.

A COMPARABLE példányai összehasonlíthatóak. Módszerei a szokásos hasonlítási műveletek.

A NUMERIC műveletei az összeadás, kivonás, szorzás, osztás infix, és a pozitív és negatív előjel,
mint prefix műveletek. A módszerek formális paraméterei és visszatérési értékük NUMERIC típusú. Az
öröklődés során a módszereket az alaposztályok implementálják, a formális paramétereket és a
visszatérési típust újradeklarálják, a szükséges specifikus módszereket megadják.

Ennek köszönhetően az eljárásorientált nyelveknél megszokott módon, az aritmetikai kifejezések
vegyes típusúak lehetnek az Eiffelben és az operátorok megszokott infix alakját használhatjuk.

Itt jegyezzük meg, hogy az egész és valós konstansok az Eiffelben valójában kifejezések, az előjel
operátort alkalmazzák az előjel nélküli egészekre és valósokra.

A CHARACTER osztály példányainak attribútuma a … (amely egy pozitív egész értékű) és a
reprezentáló bitsorozat.

A BOOLEAN osztály módszerei a logikai és (rövidzár és teljes), vagy (rövidzár és teljes), tagadás,
kizáró vagy, implikáció műveleteket realizálják. A két logikai értéket a beépített nevesített
konstansként kezelhető true és false attribútumok képviselik. Ezek neve kulcsszó.

A BOOLEAN, CHARACTER, INTEGER, REAL, DOUBLE kiterjesztett osztályok rendre a
BOOLEAN_REF, CHARACTER_REF, INTEGER_REF, REAL_REF, DOUBLE_REF referencia
osztályok alosztályai. A _REF osztályok teszik lehetővé, hogy az atomi értékek, mint objektumok,
referenciával elérhetők legyenek.

Az alaptípusokhoz tartozik a fix hosszúságú bitsorozatok kezelését lehetővé tevő BIT típus, amely
kiterjesztett típus deklarációnál a kezelendő bitek számát meg kell adni. BIT N alakban, ahol N egy
előjel nélküli egész vagy egy ilyen értékű nevesített konstans. Műveletei a bitenkénti logikai
műveletek, az eltolás és a rotáció.

Az Eiffel öröklődési hierarchiája gráf, kitüntetett szerepű az ANY osztály. Az Eiffelben minden osztály
ennek leszármazottja.

4.3. Változó

Az Eiffelben létezik változó, az eljárásorientált értelemben. A változó egy osztály attribútuma vagy
pedig egy rutin lokális változója lehet. Értéke a típustól függően egy referencia, vagy egy objektum.

4.4. Kifejezések

Az Eiffel kifejezésfogalma hasonlít az eljárásorientált nyelvek kifejezésfogalmára. A kerek zárójelek
használata ugyanaz. Operandus lehet konstans, attribútum, függvényhívás, tömb. Az Eiffel …
operátorai prefixek, bináris operátorai infixek. A preferenciatáblázat a következőképpen néz ki:

. ←
old strip not + – ←
^ ←
* / // \\ →
= /= < > <= >= →
and and then →
or or else xor →
implies →
<< >> →
; →

Az egyes operátorok jelentése:

. a minősítés operátora (l.)
Old, strip (l.)
not logikai tagadás
+, – előjelek
^ hatványozás
* szorzás
/ osztás
// egészosztás
\\ maradékképzés
+ összeadás
– kivonás
=, \= az any osztály egyenlőségvizsgáló műveletei. e = f azonos referenciatípusok

esetén azonosságbeli (ugyanazt az objektumot hivatkozzák), azonos kiterjesztett
típusok esetén értékbeli egyenlőséget (a két objektum állapota azonos) vizsgál.
különböző típusok esetén először konverzió megy végbe (l.).

<, >, <=, >= A COMPARABLE osztály hasonlító műveletei
and teljes kiértékelésű logikai és
and then rövidzár kiértékelésű logikai vagy
or teljes kiértékelésű logikai vagy
or else rövidzár kiértékelésű logikai vagy
xor teljes kiértékelésű logikai kizáró vagy
implies rövidzár kiértékelésű logikai implikáció
<< >> tömboperátorok
; l.

A kifejezések kiértékelése balról jobbra a precedenciatáblázat figyelembevételével történik. A
kiértékelésnél végbemenő típuskonverziókat l.

4.5. Végrehajtható utasítások

Az Eiffelben az algoritmusok kódolására végrehajtható utasításokat használunk. Az értékadó utasítás
általános alakját l. … A következőkben a vezérlési szerkezetet realizáló utasításokat tárgyaljuk.

4.5.1. Összetett utasítás

Alakja: [utasítás][;]utasítás]…]

Az összetett utasításnál a pontosvessző opcionális elhatárolójelként szerepel, kiírni csak akkor kell, ha
a követő utasítás zárójellel kezdődik. Az Eiffel konverzió a szerepeltetését javasolja. Az utasítások
szekvenciálisan, a fölírás sorrendjében kerülnek végrehajtásra.

4.5.2. Üres utasítás

Az Eiffelben nincs külön alapszava, tisztán szintaktikai, programozástechnikai jelentősége van.

4.5.3. Feltételes utasítás

Alakja:

 IF feltétel THEN összetett-utasítás
 [ELSIF feltétel THEN összetett-utasítás]…
 [ELSE összetett-utasítás]

END

Szemantikája a szokásos eljárásorientált szemantika.

4.5.4. Többszörös elágaztató utasítás

Alakja:

 INSPECT kifejezés
 WHEN {konstans | nevesített_konstans | intervallum}
 [,{konstans | nevesített_konstans | intervallum}]…
 THEN összetett_utasítás
 [-„-]…
 [ELSE összetett_utasítás]
 END
 Intervallum: {karakter_konstans .. karakter_konstans |
 egész_konstans .. egész_konstans}

A kifejezés, konstans és nevesített_konstans típusa egész vagy karakteres lehet és a típusuknak
(beleértve az intervallum típusát is) meg kell egyezniük. A WHEN-ágakban szereplő értékeknek
különbözniük kell. A kifejezés minden lehetséges értékére elő kell írni valamilyen tevékenységet.

Szemantikája a következő: kiértékelődik a kifejezés, az értéke a felírás sorrendjében
összehasonlításra kerül a WHEN-ágak értékeivel. Ha van egyezés, akkor végrehajtódik a megfelelő
THEN utáni összetett utasítás, és a vezérlés átadódik a következő utasításra. Ha egyetlen WHEN-
ágban sincs megfelelő érték és van ELSE-ág, akkor az abban megadott összetett utasítás hajtódik

végre és a vezérlés átadódik a következő utasításra, ha nincs ELSE-ág, akkor pedig egy kivétel
váltódik ki.

4.5.5. Ciklus utasítás

Alakja:

FROM [összetett_utasítás]
 [ciklus_invariáns]
 [ciklus_variáns]
UNTIL feltétel
LOOP összetett_utasítás
END

A FROM utáni összetett utasítás a ciklus inicializáló része. A feltétel végfeltételként működik. A LOOP
utáni összetett utasítás a ciklus magja. A ciklus invariáns és variáns rész magyarázatát l. …

4.5.6. Feltételes futtatás

A DEBUG-utasítás lehetőséget biztosít arra, hogy az Eiffel-környezet debug opciójának állapotától
függően egy kódrészletet lefuttassunk vagy ne futtassunk le.

Alakja:

 DEBUG összetett_utasítás END

Ha a debug opció be van kapcsolva, akkor az összetett utasítás lefut, ha ki van kapcsolva (ez az
alapértelmezés), akkor nem.

4.6. Egy Eiffel program felépítése

Az Eiffel program legkisebb önálló része az osztály. A klaszter az összetartozó osztályok együttese.
Az univerzum klaszterek olyan együttese, amelyekből egy Eiffel alkalmazás elkészíthető és egy
hatásköri egység. Végül a rendszer osztályoknak egy futtatható, végrehajtható egysége, amelynek
van egy kitüntetett (gyökér) osztálya. Az összes többi osztály leszármazottja, vagy kliense a
gyökérnek. A rendszer futtatása a gyökér osztály példányosításával történik.

A fentiek közül csak az osztály az, amely közvetlen nyelvi elemekkel kezelhető. A klaszter, univerzum,
rendszer kezelésének feladata a környezet dolga, így ezekkel itt a továbbiakban nem foglalkozunk.

4.7. Osztályok létrehozása

Egy saját osztály definiálásának általános alakja a következő:

 [INDEXING index_lista]
 [DEFERRED | EXPANDED]
 CLASS név
 [formális_generikus_lista]
 [OBSOLETE sztring]
 [öröklődés]
 [konstruktorok]
 [eszközdeklaráció]
 [INVARIANT invariáns]
 END

A fenti sorrend kötött.

Az INDEXING-résznek nincs közvetlen szemantikai hatása az osztályra. Az osztály kísérő,
dokumentációs információit (szerző, dátum, javallott felhasználás, stb.) lehet itt megadni ahhoz, hogy
egy archiváló eszközt használva az osztály a tulajdonságai alapján is tárolható és visszakereshető
legyen.

Az index_lista szerkezete:

 index_bejegyzés [;index_bejegyzés]...

ahol az index_bejegyzés alakja:

 [azonosító:]{azonosító | konstans}

[,{azonosító | konstans}]…

Például:

Indexing
absztrakt_adatszerkezet, keresofa, piros_fekete_fa;
szerzo:“Kiss Antal“;
irodalom:”Rivert, Leiserson:Algoritmusok”

“Meyer: Eiffel, The Language”;
 keszult: 2003, augusztus, 31;
 utolso_modositas: 2003, december, 10

A DEFERRED kulcsszó megadásával absztrakt osztályt tudunk létrehozni. A nem absztrakt osztályt
az Eiffel effektív osztálynak hívja.

Egy osztály absztrakt, ha legalább egy eszköze absztrakt- Ha szerepel a DEFERRED, akkor ennek
kötelezően fenn kell állnia.

Az EXPANDED megadása esetén egy kiterjesztett osztály jön létre, ennek hiányában egy referencia
típus keletkezik.

Egy osztályt mindig meg kell nevezni, a névnek egy univerzumon belül egyedinek kell lenni.

Ha szerepel a formális_generikus_lista, akkor egy generikus (paremetrizált) osztály jön létre, ha nem
szerepel, akkor egy nem_generikus.

A formális_generikus_lista alakja:

 [azonosító[,azonosító]…→típus
 [,azonosító[,azonosító]…→típus]…]

A generikus osztály felhasználása esetén a deklarációban aktuális generikus listát kell megadni. Az
aktuális generikus lista elemei számban és sorrendben megegyező olyan osztálynevek lehetnek,
amelynek a formális generikus listán szereplő típusok leszármazottai.

A OBSOLETE-rész szerepeltetése arra szolgál, hogy jelezzük az osztály egy korábbi Eiffel verzióban
készült. Ekkor az osztályra való hivatkozás esetén egy olyan figyelmeztető üzenetet kapunk, amely
tartalmazza a sztringet.

Egy osztály eszközei attribútumok és rutinok lehetnek. Ez utóbbiak a módszerek. Az attribútum vagy
változó, vagy nevesített konstans, a rutin eljárás vagy függvény.

Az eszközök az Eiffelben példányszintűek. Az egyes példányokban az attribútumok mezőkben
jelennek meg.

Az eszközdeklaráció alakja:

 FEATURE eszközök [FEATURE eszközök]…

ahol az eszközök:

 [klienslista]
 [megjegyzés]

eszközdeklaráció[[;]eszközdeklaráció]…

A klienslista szerkezete:

 {osztálynév[,osztálynév]…}

Itt az ún. export státust adjuk meg, vagyis felsoroljuk azon osztályok nevét, amelyek az
eszközdeklarációban megadott eszközöket látják. Ha nem adunk meg osztályneveket, akkor
publikusak az eszközök. Ha itt a saját osztálynév áll, akkor pedig privátak. Tehát a láthatóságot az
Eiffel explicit módin szabályozza. Az öröklődésnél az eszközök automatikusan átkerülnek az alosztály
hatáskörébe.

A megjegyzés egy elvárt megjegyzés.

A nevesített konstans attribútum deklarációja a következő módon történik.

 [FROZEN] név[,[FROZEN] név]…:típus
 IS konstans

A FROZEN megadásával olyan eszközt hozunk létre az osztályban, amely nem felüldefiniálható az
alosztályban.

A nevesített konstans attribútum esetén a példányok megfelelő mezői mindig a konstans értékét
tartalmazzák.

A változó attribútum deklarációja:

 [FROZEN]név[,[FROZEN]név]…:típus

Tehát nem adható kezdőérték.

Egy rutin deklarációja a következőképpen néz ki:

 [FROZEN]név[,[FROZEN]név]…
 [(formális_paraméter_lista)][:típus]
 IS rutin_leírás

Ha szerepel a típus, akkor függvényről, egyébként eljárásról van szó. Egy implementációhoz több név
is megadható, ezek szinonimák.

A formális_paraméter_lista alakja:

 név[,név]…:típus[;név[,név]…:típus]…

A rutin_leírás felépítése a következő:

 [OBSOLETE sztring]
 [megjegyzés]
 [előfeltétel]
 [lokális deklarációk]
 törzs
 [utófeltétel]
 [kivételkezelő]
 END

Az OBSOLETE szerepe ugyanaz, mint az osztálynál volt. A rutint hívó kap egy sztringet tartalmazó
figyelmeztető üzenetet.

A megjegyzés egy elvárt megjegyzés.

A lokális_deklarációk alakja:

 LOCAL név[,név]…:típus
 [[;]név[,név]…:típus]…

Itt lényegében a rutin lokális változóit deklaráljuk. Ezeknek a láthatósága statikus, élettartamuk
dinamikus.

A törzs szerkezete az alábbi:

 {DEFERRED | EXTERNAL”nyelv” |
 {DO | ONCE} összetett_utasítás}

A DEFERRED kulcsszó azt jelzi, hogy a rutin absztrakt, nincs implementálva. Ekkor a tartalmazó
osztály is szükségszerűen absztrakt.

Az EXTERNAL után a nyelv azt a programnyelvet adja meg, amelyen a rutint implementáltuk, ezáltal
egy külső rutint meghatározva. Külső rutinoknál nem szerepelhetnek lokális változók és kivételkezelő.

Ha a törzs a PO kulcsszóval indul, akkor az összetett utasítás minden hívásnál lefut, ONCE esetén
viszont egy adott objektumra csak a munkamenet első hívásakor fut le. A korábbi hívások
hatástalanok. Ha függvényről van szó, a visszatérési érték mindig az első hívás visszatérési értéke
lesz.

Függvény esetén létezik egy speciális, előredefiniált egyed (l. …), a Result, ez hordozza a visszatérési
értéket. A törzsben, vagy az utófeltételben kell neki értéket adni.

Egy rutin hívásánál az Eiffel a paraméterkiértékelésnél sorrendi kötést, számbeli egyeztetést (ez alól
kivétel, ha tömböt alkalmazunk – l. …), típusegyeztetést (l. …) alkalmaz. A paraméterátadás érték
szerinti. Ezalól kivétel a POINTER típus alkalmazása, amivel egy eszköz címét tudjuk átadni egy külső
rutinnak.

Az előfeltétel és utófeltétel szerepét l. …, a kivételkezelő pedig …-ban szerepel.

Egy osztálybeli eszköz hivatkozható a rutinok törzséből, elő- és utófeltételéből és és
kivételkezelőjéből.

Az öröklődés formája:

INHERIT szuperosztály_név[eszközadaptáció]
[[;]szuperosztály_név[eszközadaptáció]]…

Az Eiffelben többszörös öröklődés van. Az Eiffel eszközt ad a névütközések kezelésére.

Ha az öröklődés hiányzik egy implicit

 inherit ANY

rész épül be az osztálydefinícióba.

Az eszközadaptáció alakja:

[átnevezés]
[export]
[érvénytelenítés]
[újradefiniálás]
[szelekció]
END

A sorrend kötött.

Az átnevezés formája:

RENAME örökölt_eszköznév AS új_eszkönév
 [,örökölt_eszköznév AS új_eszköznév]…

Bármely örökölt eszközt az alosztály átnevezhet. Ez szolgál a többszörös öröklődésből származó
névütközések feloldására, illetve arra, hogy az osztály az átvett eszközöket a saját környezetének
megfelelő néven adhassa tovább az öröklődésnek.

Az export az átvett eszközök láthatóságának újraszabályozására való, alakja:

EXPORT {kliens[, kliens]…} ALL | eszközök}
 [,{kliens[,kliens]…}{ALL | eszközök}

A kliens az univerzum egy osztályának a neve, az eszközlista az örökölt eszközök neveit tartalmazza,
vesszővel elválasztva. A felsorolt eszközök vagy minden eszköz (ALL) új export-státusát adja meg.

Az érvénytelenítés örökölt effektív rutinok absztrakttá (deferred) minősítését, tehát az implementáció
érvénytelenítését teszi lehetővé. Alakja:

 UNDEFINE rutinnév_lista

Az újradefiniálás egy változó vagy rutin nevének újradefiniálását jelenti. Rutin esetén megváltozhat a
specifikáció és az implementáció is. Itt csak jelezzük az újradefiniálás tényét, az eszközdeklarációban
kell megadni a tényleges új definíciót. Egy absztrakt módszer implementálásánál nem kell a nevét
újradefiniálni, hiszen ilyenkor a ,,definiálás” ebben az osztályban történik meg.

Az újradefiniálás alakja:

REDEFINE eszköznév_lista

szelekció alakja:

 SELECT eszköznév_lista

A konstruktorok az osztály konstruktorait határozza meg. Csak effektív osztályban lehet
konstruktorokat létrehozni. Alakja:

 CREATION konstruktor [CREATION konstruktor]...

ahol a konstruktor formája:

 [kliensek][megjegyzés]eljárásnév_lista

A kliensek azon osztályok nevét tartalmazza, amelyek számára a konstruktorok exportálódnak.

A megjegyzés egy elvárt megjegyzés.

A konstruktorok eljárások, ezeket az eszközdeklarációban kell megadni.

Az INVARIANT-rész magyarázatát l. …

4.8. Objektum, érték, egyed

Egy Eiffel program futás közben objektumokat tud létrehozni és kezelni. Az Eiffel beszél standard és
speciális objektumokról. A speciális objektum nem más mint egy adott típussal kompatibilis értékek
sorozata. Két fajtája van, a sztring és a tömb (l. …). A sztring értékei karakterek, a tömbben pedig
vagy referenciák vagy egy egyszerű típus példányai helyezkednek el.

Egy standard objektum példányosítással vagy klónozással jön létre. Két fajtája az alap és a komplex
objektum. Az alap objektum az alaptípusok példánya. A komplex objektum egy nem alaptípusos
osztályának példánya, az adott osztály attribútumai által meghatározott, kötött számú (ez lehet nulla
is!) mezőből áll.

Egy érték lehet objektum vagy referencia.

A referencia vagy void (érvénytelen) vagy csatoló (érvényes) referencia. Az érvénytelen referencia
segítségével nem érhető el semmiféle további információ. Azt, hogy egy referencia érvényes-e az
ANY osztály Void attribútumához való hasonlítással dönthetjük el.

Az érvényes referencia mindig egy konkrét objektumot, a csatolt objektumot hivatkozza.

Egy objektumot vagy annak mezőit kifejezések segítségével tudjuk kezelni az Eiffelben. A kifejezés
legegyszerűbb formáját jelentik az egyedek. Egy egyed egy olyan név, amellyel egy adott osztály
példányainak az értékeit tudjuk elérni.

Az egyed lehet:

– egy osztály attribútuma,
– egy rutin lokális változója beleértve a Result előredefiniált egyedet a függvények esetén,
– rutin formális paramétere,
– a Current előredefiniált egyed, amely az aktuális példányt hivatkozza.

A lokális egyedek és az attribútumok írhatóak (értékük megváltoztatható), a formális paraméterek és a
Current csak olvasható (értékük nem változtatható meg).

Az írható egyedek értéke megadható, illetve megváltoztatható értékadással, illetve példányosítással.

Az értékadó utasítás alakja:

 egyed := kifejezés

4.9. Példányosítás

A példányosítással létrejön egy új objektum, alapállapotba kerül és egy írható egyed referencia értéke
beállítódik. A példányosító utasítás alakja:

 ! [típus] ! írható_egyed [.konstruktorhívás]

A konstruktorhívás csak akkor maradhat el, ha nincs konstruktora az osztálynak. Ekkor a mezők
alapértelmezett értéket kapnak (… nullázódnak).

A típus akkor adandó meg, ha az az írható_egyed deklaráció típusának egy leszármazottja, és ennek
konstruktorával akarunk példányosítani.

Az objektumok megszüntetésére az Eiffel egy automatikus szemétgyűjtögetőt alkalmaz. Ennek
megvalósítása implementáció függő.

4.10. Objektumok duplikálása és összehasonlítása

Futás közben egy új objektum létrehozásának alapvető eszköze a példányosítás. Néha viszont
szükség lehet arra, hogy egy már létező objektum tartalmát másoljuk át egy másik, már létező
objektumba. A másolás lehet sekély, amikor csak egyetlen objektumot másolunk és mély, amikor a
hivatkozott objektumokat is másoljuk.

A másolás speciális esete a klónozás, amikor egy adott objektumot duplikálunk, és így keletkezik egy
új objektum. Ez is lehet sekély és mély.

Kapcsolódó probléma az objektumok összehasonlításának kérdése. Itt is beszélhetünk sekély és mély
egyenlőségről.

Azok az eszközök, amelyek megvalósítják a fentieket, az ANY osztályban találhatók.

Az y egyed által hivatkozott objektum másolása x-be a következő módon történhet:

 X.COPY(Y)

Ekkor az y által hivatkozott objektum minden mezője átmásolódik az x által hivatkozott objektum
mezőibe. Ha a mezőben referencia van, akkor csak az másolódik át, tehát a mező által hivatkozott
objektum nem. A másolás előtt mind y-nak, mind x-nek rendelkeznie kell csatolt objektummal.

A klónozás esetén egy új objektum keletkezik, az érvénytelen referencia is klónozható. Általában
értékadásnál használjuk

 X:=CLONE(Y)

alakban. Y típusának x valamely leszármazott típusának kell lennie.

A mély másolás és klónozás a DEEP_COPY és DEEP_CLONE rutinokkal történhet.

Annak meghatározására, hogy az X és Y egyedek által hivatkozott objektumok mezőről mezőre
megegyeznek-e, az

 EQUAL(X,Y)

logikai visszatérési értékkel rendelkező rutin használható. A mély egyenlőségvizsgálat rutinjának
neve: DEEP_EQUAL

4.11. Típusok kezelése

Az Eiffelben egy típus a következő konstrukciókban fordulhat elő:

– függvény visszatérési típusa
– rutin paramétereinek típusa
– rutin lokális egyedének típusa
– szuperosztály
– formális generikus paraméter típusa
– aktuális generikus paraméter
– példányosítás.

Egy típus általánosságban a következő lehet:

– osztály
– kiterjesztett osztály
– átvett típus
– bit típus formális generikus paraméter

Nem minden típus szerepelhet minden konstrukcióban, a részleteket az egyes konstrukciók
tárgyalásánál láthatjuk.

Az osztályról (beleértve a generikus osztályt is) és a bit típusról már volt szó. Egy kiterjesztett osztály
az

 EXPANDED osztálynév

segítségével keletkezik. Például

 X : expanded y

Itt y egy kiterjesztett vagy referencia osztály neve.

Az átvett típus arra szolgál, hogy egy már ismert egyed típusát használhassuk fel a megadott
konstrukcióban. Formája:

 LIKE egyed

Az Eiffel öröklődési gráfjának van ,,kezdete” és ,,vége”. Azt már láttuk, hogy az Eiffelben az ősosztály
az ANY, azonban a teljes hierarchiában fölötte még van két olyan osztály, amely platformfüggő
eszközöket tartalmazza. Az ANY szuperosztálya a PLATFORM és az ő szuperosztálya a GENERAL,
amelynek már nincs szuperosztálya.

A GENERAL a platformfüggő általános eszközök (pl. a clone) osztálya. A PLATFORM nevesített
konstans attribútumokat vezet be a platformfüggő ábrázolásokhoz. Az ANY már csak
platformfüggetlen eszközöket tartalmaz.

A hierarchia alján helyezkedik el a NONE osztály, amely minden osztálynak leszármazottja. Egy
virtuális osztálynak tekinthető, amelynek nincs konkrét forrásszövege (hiszen azt minden új osztály
létrehozása esetén újra kellene írni), amely az osztályhierarchia teljessé tételéhez szükséges.
Természetesen egyetlen példánya sem létezik és nem lehet alosztálya. Egyetlen eszköze sem
hivatkozható.

Az ANY osztály Void eszköze NINE típusú. Minden T típus közvetve vagy közvetlenül egy osztályból
származik, ezt a típus alaposztályának hívjuk.

Ha T egy osztály, akkor a származtatás közvetlen, T vagy egy nemgenerikus osztály neve, vagy egy
generikus osztálynév, aktuális generikus paraméterekkel. tehát itt az alaposztály T.

A többi esetben a származtatás indirekt. Ekkor a felhasznált (kiterjesztett, átvett, bit) típust
bázistípusnak nevezzük és a bázistípus alaposztálya lesz T alaposztálya.

Az Eiffeilben is a típusegyenértékűség az osztályhierarchián alapul. Általánosságban azt mondhatjuk,
hogy egy V típus egyenértékű a T típussal, ha

1. V alaposztálya leszármazottja T alaposztálynak.
2. Ha V generikusa származtatott, akkor aktuális generikus paraméterei típusegyenértékűek T-

ével.
3. Ha T kiterjesztett, akkor V maga T, vagy T alaptípusa.

A pontos esetek tárgyalása ennél sokkal finomabban történhet, de ez meghaladja jelen jegyzet
kereteit.

A típusegyenértékűség a kifejezésekben és az értékadásnál játszik alapvető szerepet az Eiffelben.

4.12. Sztringek és tömbök

A tömb értékek egy homogén sorozata, amely elemeit egész indexértékeken keresztül érhetjük el. A
sztring egy specifikációs tömb, melynek értékei karakterek. Az ARRAY és a STRING osztályok
eszközeivel kezelhetjük őket. Ezek egyike sem kiterjesztett, tehát a tömb és sztring objektumok mindig
referenciával hivatkozhatók.

Az ARRAY egy generikus típus, paramétere mindig az értékek közös típusát adja. Lényegében
egydimenziós dinamikus tömböt kezel. Többdimenziós tömböt úgy tudunk létrehozni, hogy az aktuális
generikus típus tömb.

Az indexhatárokat a make rutin paramétereiként adhatjuk meg, amely konstruktorként van megírva.

Átméretezhetünk egy tömböt a resize(alsó_határ, felső_határ) rutin segítségével.

Tömbelemet az item(index)-el érhetünk el, felülírásra a put(érték,index) szolgál. A force(érték,index)
rutin esetén, ha index nem esik az indexhatárok közé, akkor a tömb kiterjesztődik az adott indexig.

Tömbkonstanst tudunk létrehozni explicit módon a << , >> operátorok segítségével úgy, hogy
felsoroljuk a tömb értékeit:

 << k1, … kn >>

ahol ki-k kifejezések, amelyek típusegyenértékűek.

A sztring lényegében egy ARRAY[CHARACTER] típusú tömb, ahol az alsó határ értéke 1. A make itt
csak a felső határt rögzíti.

Egy sztring konstans alakja:

 “[karakter]…”

Például: “Ez egy sztring”.

4.13. Programhelyesség

Az Eiffelben az osztályok és a rutinok szövegében elhelyezhetünk programhelyességi előírásokat.
Ezek formális specifikációk, amelyek

– automatikus dokumentációs eszközök,
– segítségével a programfejlesztő leírhatja az egyes programelemek tulajdonságait és helyes

működését,
– teljesülése futás közben ellenőrizhető és a kivételkezelésen keresztül lehet reagálni a

problémákra.

Egy programhelyességi előírás szerepelhet:

– egy rutin elő- és utófeltételében,
– egy osztály invariánsában,
– egy ciklus invariánsában,
– a CHECK-utasításban.

A programhelyességi előírás alakja:

 [címke:]{feltétel | megjegyzés}
 [;[címke:]{feltétel | megjegyzés}]…

A megjegyzés szerepeltetése csak dokumentációs célokat szolgál. A ; az and then logikai műveletnek
felel meg. A címke egy azonosító (szerepét l. …).

Egy rutin elő- illetve utófeltételeinek alakja a következő:

 REQUIRE programhelyességi_előírás
 ENSURE programhelyességi_előírás

Az elő- és utófeltételekben az adott osztály eszközeire és a lokális egyedekre lehet hivatkozni. Az
előfeltételnek a rutin működésének kezdetekor, a utófeltételnek a működés befejeződésekor
teljesülnie kell. Az utófeltételekben szerepelhet az old lineáris operátor, amely operandusának a
rutinba való belépésénél meglevő értékét adja meg.

Az utófeltételben általában azt határoztuk meg formálisan, hogy milyen változásokat okoz a rutin
lefutása. Hasznos lehet viszont az is, hogy beírjuk, mi nem változik meg. Erre szolgálhat speciális
esetben a strip operátor.

Ha x.y,z, egy A osztály attribútumai és A egy rutinjában használjuk a strip(a,b) kifejezést, akkor
tulajdonképpen egy olyan tömböt kapunk, ahol a strip után felsorolt mezőkből áll. strip() az összes
mezőt tartalmazó tömböt eredményezi. Ekkor az

 equal(strip(a,b), old strip(a,b))

azt jelenti, hogy a rutin nem változtathatja meg az a és b attribútum értékét. A equal itt két tömb
elemről elemre történő egyezőségének vizsgálatára szolgál.

Példa: Egy tetszőleges objektumokat tartalmazó sor absztrakt adatszerkezetet realizáló osztály egy
rutinjának elő- és utófeltétele lehet például a következő:

 put(c:ANY) is
 require
 nincs_tele: not tele
 do

– – írás a sorba
ensure
 szamlalo = old szamlalo + 1;
 old ures implies elem = e;
 not ures
end

Egy osztály és egy ciklus invariánsának alakja:

 INVARIANT programhelyességi_előírás

Osztály esetén az invariánsnak az osztály minden példányára teljesülnie kell.

Példa: A lista absztrakt adatszerkezetet realizáló osztály invariánsa.

 deferred class LISTA
 Μ
 invariant
 ures = (szamlalo = 0);
 elso = (pozicio = 1);
 utolso = (not ures and (pozicio = szamlalo));
 kivul = (pozicio = 0) or (pozicio = szamlalo + 1));
 pozicio >= 0;
 pozicio <= szamlalo + 1;
 ures = (pozicio = 0);
 (elso or utolso) implies not ures
 end

Egy ciklus invariánsainak a ciklus működésének befejezése után kell teljesülnie. A ciklus variánsa
viszont arra szolgál, hogy a ciklus futása garantáltan befejeződjön. A variáns alakja:

 VARIANT [címke:] egész_kifejezés

Az egész_kifejezés értékét a ciklus inicializáló része nemnegatívra kell, hogy állítsa. Ezután a
ciklusmag minden lefutásával értéke 1-el csökken. Ha a variáns negatívvá válik, a ciklus befejezi a
működését, függetlenül a feltétel értékétől.

Egy rutin törzsében bárhol elhelyezhető a CHECK-utasítás, amellyel egy adott feltétel teljesülését
ellenőrizhetjük a program adott pontján. Alakja:

 CHECK programhelyességi_előírás END

Az Eiffelben a kivételek a ,,szokásos” események, de a programhelyességi előírások megsértése is
kivételt vált ki.

Az Eiffelben a kivételek objektumok. Az ős kivételosztály, az EXCEPTIONS. A kivételkezelés csak
rutinhoz köthető, kisebb egységhez (pl. utasítás, kifejezés) nem.

Egy kivételnek az Eiffelben neve és kódja van, ezek az EXCEPTIONS attribútumai. A beépített
kivételek kódja pozitív, a sajátoké negatív. A név a hibaüzenet szerepét játssza, ez egy sztring.

Az Eiffelben egy rutin törzse után helyezhető el a kivételkezelő, amely a következőképpen néz ki:

 RESCUE összetett_utasítás

A rutinban bekövetkező bármely kivétel hatására a vezérlés erre adódik át.

Az ANY osztályban nem egy

 default_rescue is
 do
 end

alapértelmezett kivételkezelő módszer, amelyet minden osztály örököl és átdefiniálhat. Így tehát az
Eiffelben minden osztályban van alapértelmezett kivételkezelő. Amennyiben egy rutinban nem adunk
meg explicit kivételkezelőt, akkor implicit módon kiegészül egy

 rescue

 default_rescue

résszel. Tehát az Eiffelben minden rutinban van kivételkezelő.

Csak a kivételkezelőben használható a RETRY-utasítás. Ennek hatására a rutin újraindul, a
paraméterátadás és a lokális egyedek inicializálása nélkül. Alakja:

 RETRY

Egy felhasználói kivétel kiváltható a következő eljáráshívással:

 RAISE (kód,név)

A felhasználói kivétel nevét a developer_exception_name attribútum, kódját az exception attribútum
tartalmazza.

Egy rendszerkivétel figyelése letiltható az

 IGNORE (kód)

eljáráshívással.

Szintén az operációs rendszer által kiváltott kivételekhez kapcsolódóan az Eiffel lehetőséget ad
általános, rutintól független kivételkezelésre. A

 CONTINUE (kód)

eljáráshívás után a kód kódú kivétel bekövetkeztekor az EXCEPTIONS osztályban megadott (és
természetesen bárhol újraimplementálható) üres törzsű CONTINUE_ACTION eljárás hívódik meg.
Ennek egyetlen paramétere a kód. Az eljárás lefutása után a program a kivétel bekövetkezésének
helyén folytatódik.

Az ignore, illetve a continue meghívása után az alapértelmezett viselkedés visszaállítása a

 CATCH (kód)

eljáráshívás hatására következik be.

A viselkedésmódot a

 STATUS(kód)

függvény adja meg, melynek visszatérési értéke comput, continued, ignored lehet.

A kivételkezelőben a bekövetkezett kivétel kategóriáját az alábbi logikai függvények segítségével
kérdezhetjük le:

 IS_ASSERTION_VIOLATION(kód)
 IS_DEVELOPER_EXCEPTION(kód)
 IS_SIGNAL(kód)

Ezek rendre akkor térnek vissza igaz értékkel, ha programhelyességi előírás megsértése, felhasználói
kivétel vagy operációs rendszer által kiváltott kivétel következik be.

A kivétel típusát EXCEPTIONS különböző, egész típusú, a bekövetkezett kivétel kódját tartalmazó
attribútumai segítségével dönthetjük el. Például Precondition (előfeltétel megsértése),
No_mor_memory (elfogyott a memória), Void_call_target (érvénytelen referenciára való hivatkozás).

Programhelyességi előírás megsértése esetén az előírásban szereplő, a kivételt okozó feltétel
címkéjét tartalmazza a tag_name attribútum.

A kivételkezelés alapértelmezett szemantikája az Eiffelben a következő:

Ha egy rutin futása közben valahol bekövetkezik egy kivétel, akkor

– a hátralevő utasítások nem hajtódnak végre,

– elindul a kivételkezelő,

– ha van benne RETRY-utasítás, akkor a rutin újra lefut (természetesen újra bekövetkezhet
valamilyen kivétel és akkor ez ismétlődik rekurzívan),

– ha nincs RETRY-utasítás, akkor a kivételkezelő befejezi a működését és a rutin sikertelenül
véget ér. Ez a hívó rutinban egy kivételt vált ki és ennek a kivételnek a kezelése történik a
beírt módon. Ha nincs hívó rutin, a vezérlés (sikertelen programfutással) visszatér az
operációs rendszerhez.

Mi történik ha kivételkezelőben következik be kivétel??

Az Eiffel tehát a sikeres rutinvégrehajtást kényszeríti a programozóra.

Példa: Egy olyan rutin, amely mindig sikeresen ér véget.

– – A lehetetlen egy BOOLEAN típusú

– – attribútum, alapértéke false. Akkor lesz true

– – ha egyik meghívott rutin sem fut le sikeresen.

mindig sikeres is

local
 nem_elso:BOOLEAN - - értéke induláskor false
do
 if not nem_elso then rutin_1
 elso if not lehetetlen then rutin_2
 end
rescue
 if nem_elso then lehetetlen := true
 end;
 nem?elso := true;
 retry
end

A rutinunk először meghívja a rutin_1-et, ha az sikeresen fut le, ő is visszatér sikeresen, ha kivételt
okoz (sikertelenül tér vissza), akkor meghívja a rutin_2-t. Ha rutin_2 sikeresen lefut, akkor ő is
visszatér sikeresen, egyébként a lehetetlent igazra állítja és sikeresen visszatér.

4.15. I/O

Az input-output a STANDARD_FILES és a FILES osztályok valósítják meg. Az ANY osztálynak
vannak olyan rutinjai, amelyek bármely objektum standard outputon való megjelenítését lehetővé
teszik. Az Eiffel I/O eszközrendszere közepesnek mondható.

55.. SSMMAALLLLTTAALLKK

Nem típusos nyelv.

Karakterkészlete
− a szokásos.

− Kis és nagybetű megkülönböztetendő.

Megjegyzés
− ” ” között, tetszőleges karaktersorozat.

Elhatároló jelek
− szóköz

− (

−)

− [

−]

− .

− |

A Smalltalkban minden objektum.

Mint OO nyelv elvei:

− egyszeres öröklés

− késői kötés (más lehetőség nincs)

− üzenetalapú nyelv, alapeszköze az üzenet

− automatikus objektum megsemmisítés: hatékony garbage collection (referencia alapú)

− bonyolult bezárási mechanizmus, láthatóság szabályozása bonyolult

− léteznek példány és osztályszintű elemek

− vannak absztrakt osztályok

− kollekciók léteznek

− nem léteznek template-k

− bonyolult standard osztályhierachiája van (fa)

A Smalltalk osztályhierarchia részlete

 Object

 Collection Dispatcher Boolean

 True False

 Magnitude

 LookupKey Date Time Character

 Assosiation Number

 Integer Fraction Float

 SmallInteger LargeInteger

A Magnitude, Number, LookupKey absztrakt osztályok.

Literálok

A megfelelő osztály példányai.

Írásmód: a belsejében szóköz és egyéb elválasztó karakter nem lehet.

− Számok: egész, tört, lebegőpontos

Például: 28, 3/4, 3.28

− Létezik a karakter, mint literál.

Alakja: $karakter

Például: $c;

− A sztring, mint literál:

Alakja: ‘tetszőleges karakter sorozat’

Például: ‘almafa’

Létezik egy String osztály, ami karakterek egy egydimenziós tömbje.

− Szimbólum: (symbol)

Alakja: #tetszőleges_karakter_sorozat

Például: #output

Speciális jelentése van. Alapvető szerep két szempontból:

− Mindig egységes és oszthatatlan, bizonyos objektumok neveit kezelhetem bizonyos helyzetekben

szimbólumként.

− A szimbolikus műveletek.

Atom: Speciális jelentése van.

 Alakja: ##tetszőleges_karakter_sorozat

− Tömb: tetszőleges literálok egydimenziós tömbje, literálként:

 Alakja: #(tetszőleges literál sorozat) egymástól szóközzel elválasztva

 Példa: #(‘egy’ ‘kettő’ ‘három’ ‘négy’)

#(1 2 3 4 5)

#(1 ‘kettő’ #A)

#(#1 28.3 $x)

Változók

Létezik a változó fogalom. Minden változó egy objektumot címez. Van neve, értéke és címe.

Nincs típuskomponens (nem is kell).

 A változó is objektum, értéke is csak objektum lehet. Speciálisan oldja meg az objektumazonosítást: OID-vel.

Mivel minden objektum, a változók nem magát az objektumot tartalmazzák, hanem egy OID-t. Ez egy

referencia. Így nem kell a típus, hiszen az OID egyetlen módon van megvalósítva.

Indirekt címzést valósít meg. A változó értékként egy objektum azonosítóját veheti fel. Mutat egy objektumra.

Amíg egy változónak nem adunk értéket, addig NIL, ahol a NIL az UndefinedObject osztály példánya. Az

objektumazonosító egységes. Bármilyen osztályt meg tud címezni. (Speciális referencia)

A bezárás szintjei:

− Példányváltozók (ld. Java: objektumok állapotának a leírására szolgálnak).

− Csak az adott osztály példánymódszerei látják. Az osztálymódszerek nem látják a

példányokat.

− Kisbetűvel kezdődik a nevük.

− Privát változó.

− Példányoknál újra elhelyeződik.

− Ideiglenes változók: (temporary) módszerek lokális változói. Kisbetűvel kezdődik a nevük.

− Globális változók: program globális változók.

− Az adott program minden módszere látja őket.

− Nagybetűvel kezdődik a nevük.

− Nyilvános változók.

− Szótárváltozók: a szótár speciális kollekció: táblázat.

− A Smalltalk lehetővé teszi, hogy bizonyos változók ilyen kollekciókba legyenek szervezve, és őket több

osztály lássa. A szótárváltozók bizonyos osztályok módszerei által elérhető változók.

− Félnyilvános jellegű. Külön eszköz.

− A korábbi verziók megosztott változóknak hívja.

− Nagybetűvel kezdődik a nevük.

− Osztályváltozó (ld. Java osztályonként egy példányban létezik). Egy osztályhoz tartozó változó, minden

példány ugyanazt a változót látja. Látják a leszármazott osztályok is.

− Az osztálymódszerek, példánymódszerek látják őket, beleértve a leszármazottakat is. Lentről felfelé

látszik.

− Nagybetűvel kezdődik a neve.

− Osztálypéldány-változó:

− Egy adott osztályban az osztálymódszerek látják őket, a leszármazottak nem. Nem öröklődik.

− Kisbetűvel kezdődik a neve.

Terminológia:

− Kisbetűvel kezdődő nevű változók: privát változók, láthatóságuk korlátozott.

− Nagybetűvel kezdődő nevű változók: megosztott változók, egyszerre több osztály látja.

Osztály
Fordítási egység és egyben programegység. (ld. még később)

Blokk
Létezik a módszereken belül programegységként a blokk. (ld. még később)

Módszerek
Módszerek nem ágyazhatóak egymásba, blokkok igen. Blokkok módszerekben fordulhatnak elő. (ld. még

később)

Utasítások
A program szövege utasításokból áll. Az utasításokat ponttal zárjuk le. A kód utolsó utasítása után nem kötelező

a pont.

Üzenet

A Smalltalk egy üzenet alapú rendszer. Az objektumok üzenetek segítségével működnek együtt. (Ez megfelel

egy alprogram hívásnak.) Az egyik objektum küldi (küldő); a fogadó megkapja, és válaszol mindig az üzenetre.

Az üzenet formáját a módszer interfész része írja le. Az üzenetnek lehetnek argumentumai (~módszer

paramétere). Minden üzenet meg van nevezve. A küldő elküldi az üzenet nevét és argumentumait, a fogadó

értelmezi az elküldött üzenetet, majd megválaszolja azt. Mindig van visszatérési érték. Tehát az üzenetek

módszerek. Mindkét objektumnak tudnia kell, hogy az üzenet mire való.

Elnevezés: az üzenet neve szelektor. Ez a név kisbetűvel kezdődik. Egy üzenetnek van egy szelektora és lehetnek

argumentumai.

 argumentumok

Küldő Fogadó

objektum objektum

 visszatérési érték

Üzenetek két csoportja:

− Lekérdező módszerek (üzenetek): az objektum állapotát kérdezi le. Nincs argumentumuk.

− A beállító módszerek (üzenetek): megváltoztatják az objektum állapotát (beállítja a fogadó objektum

valamely változójának értékét). Általában van argumentumuk. Nevüket kettősponttal kell lezárni.

A változók és módszerek neve lehet ugyanaz: névtúlterheltség. A kódban levő pozíció dönti el, hogy változóról

vagy módszerről van-e szó.

Az üzeneteknek három csoportja van:

− unáris: nincs argumentumuk, lekérdező üzenetek. Csak szelektor van, nincs paraméter.

− kulcsszó (keyword): van argumentumuk a szelektor után. (beállító üzenetek)

− bináris: realizálják az eljárásorientált nyelvek operátorait. Az aritmetikai, logikai, hasonlító operátorokat

realizáló üzenetek. Módszerekként vannak realizálva ezen operátorok.

Kifejezés

Egy Smalltalk utasítás egy vagy több kifejezést tartalmaz.

Kifejezés típusai

1. elsődleges kifejezés

2. üzenet kifejezés

3. kaszkád kifejezés

1. Elsődleges kifejezés lehet:

− változónév

− literál

− (kifejezés)

2. Üzenet kifejezés: ez a leggyakoribb.

Alakja:

 fogadóobjektum üzenet_neve argumentumok

Paraméterkiértékelés:

− sorrendi kötés

− számbeli egyeztetés

− (típus nincs)

Paraméterátadás: üzenettől függ, hogy mi kerül átadásra. Az objektum vagy az objektum állapota kerül

átadásra.

− Értékadás: A következő üzenetkifejezéssel írható le a Smalltalkban:

 x := 5.

x : fogadó objektum (változó)

:= : szelektor (üzenet)

5 : argumentum

Ez egy üzenet kifejezés. Minden osztályban létezik ez a módszer (:=). A változó egy

objektumazonosítót tartalmaz. Ezen objektum “értéke” állítódik be – egy megadott állapotba kerül.

Hatására az x változó értékét állítja be arra a referenciára, amely az 5-t, mint a SmallInteger

osztály példányát címzi.

Általánosan:

 változónév := utasítás.

− Return kifejezés:

^utasítás : Ez egy olyan üzenet, aminek nincs fogadója. Az objektum értékére, állapotára való

 hivatkozást jelenti. Az utasítás értékével tér vissza.

Példa: egy return kifejezésre:

x := x + 1. (:= kulcsszavas üzenet)

^x.

x : fogadó

:= : szelektor

x + 1: paraméter

Ki kell értékelni a paramétert, ami egy üzenetkifejezés, ahol:

x : fogadó

+ : szelektor

1 : argumentum

De ugyanazt adja a következő is:

^x := x + 1.

A

^x + 1.

is ugyanazzal az értékkel tér vissza (x-nél egyel nagyobbat), de x értéke nem változik.

− Tömbliterálok osztályában létezik egy módszer az index_módszer:

 #(1 2 3 4 5) at: 2.

A 2 index argumentum.

Az at: kulcsszavas üzenet. Fogadó objektum: bármely objektum lehet, amely ismeri ezt a módszert.

A módszer visszaadja a második értéket, mint literálobjekumot.

3. Kaszkád kifejezés: ugyanahhoz a fogadó objektumhoz több üzenetet akarok küldeni, anélkül hogy mindig

 felírnám a fogadó nevét.

Alakja:

 fogadó üzenetek (üzenetkifejezés_lista pontosvesszővel elválasztva)

Kifejezések kiértékelése

Prioritási sorrend van az üzenetek három csoportja között:

1. unáris

2. bináris

3. kulcsszavas

Egy kifejezés tetszőleges bonyolultságú lehet. Tetszőleges sok üzenet lehet egy kifejezésben.

A balról-jobbra szabály érvényes. Egy kifejezésen belül kiértékeljük az összes unáris üzenetet balról-jobbra,
aztán az összes bináris, majd a kulcsszavasok, a felsorolás sorrendjében.

A kiértékelést ()-kel szabályozhatom. Egyértelmű a kiértékelés.

1. Unáris üzenetek:

A not unáris üzenet:

 (3 > 2) not ”De a 3>2 not ROSSZ!”

 (3 > 2) : Boolean példány

 not : üzenet (argumentum nélküli)

2. Bináris üzenetek (kifejezések):

− Aritmetikai üzenetek: a Number osztály módszerei.

 Operátorok:

 + : összeadás

- : kivonás

* : szorzás

/ : osztás

// : egészosztás

\\ : maradékképzés

Példa:

 4/3 Literál, a Fraction osztály egy példánya.

 4 / 3 Üzenet kifejezés. Keletkezik egy olyan objektum, amelynek értéke: 4/3.

− Hasonlító operátorok: a Magnitude osztály módszerei:

< : nagyobb

> : kisebb

= : egyenlőség, két objektum értékének azonossága

<= : kisebb vagy egyenlő

>= : nagyobb vagy egyenlő

== : két objektum azonossága, referenciában való egyenlőség (ugyanaz az objektum)

Eredményük mindig egy olyan objektum, amely a True vagy a False osztály egy példánya.

 x := $A < $a.

 kulcsszavas bináris

− Logikai bináris üzenetek: A Boolean osztály példányain értelmezett.

 & : és

 | : vagy

Teljes kiértékelés van, nincs rövidzár kiértékelés.

Blokk

Olyan objektum, amely végrehajtható kódot tartalmaz.

− Utasításokat tartalmaz.

− Elhelyezhető módszerek törzsében.

− Egymásba skatulyázható.

− Formálisan [] zárójelek között áll.

− Tartalmazhat lokális változókat. Ezek a változók a blokk argumentumai. Nevük előtt kettőspont áll. A

lokális változókat [| között soroljuk fel: közvetlenül a [jel után vannak felsorolva, ezután egy | jön,

majd az utasítások.

|] között utasítássorozat áll.

Vezérlési szerkezetek

Feltételes végrehajtás:

blokk
:ifFalse

:ifTrue
 ldányBoolean_pé

⎭
⎬
⎫

⎩
⎨
⎧

A Boolean_példány a fogadóosztály.

A blokk argumentum nélküli.

Az ifTrue és az ifFalse a Boolean osztály egy-egy módszere: üzenet.

Példa:

 a < b ifTrue: [max := b]; ifFalse: [max := a]. ”kaszkád

üzenet”

Ezek kulcsszavas üzenetek. Két egymástól független módszer.

Ha a módszereket egymás után alkalmazni akarom, vannak olyan módszerek, amelyek a

kettőt összevonják. Ez kiváltja a kaszkád üzenetet. Egyetlen objektumra több üzenetet

alkalmazok.

Rövidzár logikai műveleteket realizáló üzenetek:

blokk
:or

:and
 ldányBoolean_pé

⎭
⎬
⎫

⎩
⎨
⎧

 "Logikai objektumot eredményez."

Boolean_példány not

Ciklusok:

 Integer_példány timesRepeat: blokk

Integer_példány -szor hajtja végre a blokkban lévő kódot. A blokk argumentum nélküli.

Kezdőfeltételes ciklusnak megfelelő konstrukció:

blokk
:whileFalse

:whileTrue
 ldányBoolean_pé

⎭
⎬
⎫

⎩
⎨
⎧

A blokk argumentum nélküli.

Példa:

x := 5.

y := 0.

[y <= x] whileTrue: [y := y + 1]

Előírt lépésszámú ciklusnak megfelelő konstrukció: elöltesztelő

 Number_példány to: Number_példány by: Number_példány do
 [:v | utasítások]

Például:

 k to: v by: l do: [:cv⏐kód]

k, v, l (kezdet, vég, lépésköz) :a Number osztály egy-egy példánya. Ha l-et nem adjuk meg, annak értéke

alapértelmezés szerint 1.

cv : ciklusváltozó

kód :ciklusmag

Példa:

s := 0.
1/2 to: 1 by: 1/8 do: [:i ⏐ s := s + i].
^s.

Példa: A magánhangzókat kicsire, a mássalhangzókat pedig nagyra változtatja a sztringben.

 string := ’Ez a sztring.’.

 index := 1.

 string size timesRepeat: "a size egy üzenet"

 [c := string at: index.

 string at: index put:"a megfelelő indexű elem

helyettesítése"

 (c isVowel ifTrue:[c asUpperCase];

 ifFalse:[c asLowerCase]).

 index := index + 1].

 ^string.

A string as: index a string tömb megfelelő értékéhez való hozzáférést teszi lehetővé. A

tömbindex mindig 1-től indul.

Az asUppercase és az asLowerCase unáris üzenet.

Példa: Hány magánhangzó van egy adott sztringben?

m := 0.

s := ’No ebben mennyi van?’.

v := s size.

1 to: v do: [:i⏐c := s at: i.

 c isVowel ifTrue: [m := m + 1]].

 ^m.

A Smalltalk is algoritmikus nyelv. Rengeteg művelet implementálva van üzenet szinten.

Osztályok

Az osztályok definiálása (az osztályhierarchiába való elhelyezése) interaktív módon, az eddigi osztályokhoz

kapcsolódóan történik. Önálló osztályok nem léteznek, csak osztályhierarchia. A Smalltalk egy integrált

fejlesztői környezetet ad, és ebben több lehetőség van új osztály létrehozására. Az új osztály szuperosztályához

új példány-, osztály- és szótárváltozókat, új módszereket definiálhat, és módszereket újraimplementálhat.

Itt kódírás következik, majd a módszerek lefordítása, majd tesztelése.

Minden egyes osztály a MetaClass osztály példánya. Egy osztály így jön létre. A MetaClass osztály

alosztálya az Object osztálynak.

Új osztály definíciója:

 szuperosztály_név SUBCLASS: #név ”A #név egy szimbólum.”

Példányosítani minden osztályban a megfelelő osztályhoz küldött new üzenettel lehet. Az adott változó értékét

az új példány OID-jére állítom.

változónév := osztálynév NEW.

A változók automatikus kezdőértéke nil, amely az UndefinedObject osztály példánya.

Módszerek

A módszerek definíciója három részből áll (a második elmaradhat) a Smalltalk terminológiája szerint:

− interfész

− lokális változók

− kód

1. Az interfész rész:

Megfelel a korábbi alprogram specifikációnak.

Szerkezete:

 név argumentumok [név argumentumok]... .

− Ha a név kettősponttal zárul, akkor ezek a módszerek beállító üzenetek. Ekkor argumentumok

szükségeltetnek, minimum 1.

− Ha nincs kettőspont, akkor lekérdező módszer. Itt általában tilos argumentumot megadni.

− A formális paraméterek, az argumentumok lokális változói szerepkörben vannak.

Ha több nevet adok meg, nem kell kaszkádolni, felsorolhatóak.

2. Adatrész:

Az interfész után | | között szerepelnek a lokális változók, amennyiben vannak. Ez az adatrész, ahol a lokális

változókat sorolja fel.

3. Kód:

Utasítások sorozata.

A módszer visszatérési értékét egy ^üzenet realizálja. Ez megfelel egy return kifejezés C utasításnak.

A módszerek neve kisbetűvel kezdődik, ha beállító módszer, akkor a végén ott a kettőspont.

Definiáljuk például az Object osztályhoz kapcsolódóan a Szemely osztályt.

 Object subclass: #Szemely

Példányváltozói:

− nev

− cim

− telefonszam

Módszerei lehetnek például a következők:

nev ”lekérdező módszer, unáris”
 ^nev

nev: egyNev ”beállító, kulcsszavas módszer”
 nev := egyNev

cim
 ^cim

cim: egyCim
 cím := egyCim

Változók és módszerek nevei lehetnek azonosak, mert a pozíciójuk egyértelműen eldönti, hogy melyikről van

szó. A Smalltalk kifejezetten javasolja is.

OO körökben kódolási szabálynak tekinthető, hogy ha osztályról és példányáról vagy változóról és értékéről van
szó, akkor a következő kódolási konvenció érvényes:

 egySzemély (angolul: aPerson)

nev: egyNev cim: egyCim

 self nev: egyNev.

 self cim: egyCim.

A self az aktuális példányt, mint objektumot jelenti a Smalltalkban.

Az intrefész részt nem zárjuk ponttal, csak az utasítást.

Ezek után a következő utasítások alkalmazhatóak (példányosítás):

Valaki := Szemely new.

Valaki nev: 'Kovács Jenő'.

Valaki nev.

Az Integer osztálynak van egy factorial nevű módszere:

factorial

 self > 1 ifTrue: [^(self - 1) factorial * self].

 self < 0 ifTrue: [^(self error: 'negative factorial'] .

^1.

Példa: Egy sztring számmá konvertálásának a kódja a következő (egy egész vagy valós számot

 tartalmazó sztringet számmá konvertál)

 ConvertToNumber: aString

 |subStrings whole decimal exponent|

 subStrings := aString subStrings: $. .

 whole := (subStrings at: 1) asNumber.

 subStrings size = 1

 ifTrue: [^whole]

 ifFalse: [decimal := subStrings at: 2.

 (decimal includes: $e)

 ifTrue: [subStrings := decimal subStrings: $e.

 exponent := (subStrings at: 2) asNumber.

 decimal := subStrings at: 1]

 ifFalse: [exponent := 0].

 ^(whole + (decimal asNumber / (10 raisedTo:

 (decimal(size))))*(10 raisedTo: exponent)

asFloat].

Beszélő üzenetnevek használata javasolt. A sztringet egydimenziós tömbként tekinti, megnézi, hogy van-e benne

pont, vagy exponens rész.

A kollekciókról nem szólunk, de a Smalltalk ismeri a következőket: halmaz, multihalmaz, tömb, lista, rendezett

lista, táblázat.

6. A funkcionális paradigma

A funkcionális paradigma középpontjában a függvények állnak. Egy funkcionális (vagy applikatív)
nyelvben egy program típus-, osztály-, és függvénydeklarációk, illetve függvénydeklarációk, illetve
függvénydefiníciók sorozatából, valamint egy kezdeti kifejezésből áll. A kezdeti kifejezésben
tetszőleges hosszúságú (esetleg egymásba ágyazott) függvényhívás sorozat jelenhet meg. A program
végrehajtását a kezdeti kifejezés kiértékelése jelenti. Ezt úgy képzelhetjük el, hogy a kezdeti
kifejezésben szereplő függvények meghívása úgy zajlik le, hogy a hívást szövegszerűen (a
paraméterek figyelembevételével) helyettesítjük a definíció törzsével. A helyettesítés pontos
szemantikáját az egyes nyelvek kiértékelési (átírási) modellje határozza meg.

A funkcionális nyelvek esetén nem választható szét a nyelvi rendszer a környezettől. Ezek a nyelvi
rendszerek interpreter alapúak, interaktívak, de tartalmaznak fordítóprogramokat is. Középpontjukban
mindig egy redukciós (átíró) rendszer áll. Ha a redukciós rendszer olyan, hogy az egyes
részkifejezések átírásának sorrendje nincs hatással a végeredményre, akkor azt konfliktusnak
nevezzük.

Egy funkcionális nyelvű program legfontosabb építőkövei a saját függvények. Ezek fogalmilag
semmiben sem különböznek az eljárásorientált nyelvek függvényeitől. A függvény törzse
meghatározza adott aktuális paraméterek mellett a visszatérési érték kiszámításának módját. A
függvény törzse a funkcionális nyelvekben kifejezés.

Egy funkcionális nyelvi rendszer beépített függvények sokaságából áll. Saját függvényt beépített, vagy
általunk már korábban definiált függvények segítségével definiálni (függvényösszetétel).

Egy funkcionális nyelvben a függvények alapértelmezett módon rekurzívak lehetnek, sőt létrehozhatók
kölcsönösen rekurzív függvények.

A kezdeti kifejezés redukálása (a nyelv által megvalósított kiértékelési stratégia alapján) mindig egy
redukálható részkifejezés (egy redex) átírásával kezdődik. Ha a kifejezés már nem redukálható
tovább, akkor normál formájú kifejezésről beszélhetünk.

A kiértékelés lehet lusta kiértékelés, ekkor a kifejezésben a legbaloldalibb, legkülső redex kerül
átírásra. Ez azt jelenti, hogy ha a kifejezés egy függvényhívás, akkor az aktuális paraméterek
kiértékelését csak akkor végzi el a rendszer, ha szükség van rájuk. A lusta kiértékelés mindig eljut a
normál formáig, ha az létezik.

A mohó kiértékelés a legbaloldalibb, legbelső redexet írja át először. Ekkor tehát az aktuális
paraméterek kiértékelése történik meg először.

A mohó kiértékelés gyakran hatékonyabb, de nem biztos, hogy véget ér, még akkor sem, ha létezik a
normál forma.

Egy funkcionális nyelvet tisztán funkcionálisnak (tisztán applikatívnak) nevezünk, ha nyelvi elemeinek
nincs mellékhatása és nincs lehetőség értékadásra vagy más eljárásorientált nyelvi elem
használatára.

A nem tisztán funkcionális nyelvekben viszont van mellékhatás, vannak eljárásorientált (néha
objektumorientált) vagy azokhoz hasonló eszközök.

A tisztán funkcionális nyelvekben teljesül a hivatkozási átláthatóság. Ez azt jelenti, hogy egy kifejezés
értéke nem függ attól, hogy a program mely részén fordul elő. Tehát ugyanazon kifejezés értéke a
szöveg bármely pontján ugyanaz. A függvények nem változtatják meg a környezetüket, azaz a
tartalmazó kifejezés értékét nem befolyásolják. Az ilyen nyelvnek nincsenek változói, csak konstansai
és nevesített konstansai.

A tisztán funkcionális nyelvek általában szigorúan típusosak, a fordítóprogram ellenőrzi a
típuskompatibilitást.

Ezek a nyelvek eszközként tartalmaznak olyan függvényeket, melyek paramétere, vagy visszatérési
értéke függvény (funkcionálok, vagy magasabb rendű függvények). Ez a funkcionális absztrakciót
szolgálja.

A funkcionális nyelvek egy részének kivételkezelése gyenge vagy nem létezik, másoknál hatékony
eszközrendszer áll rendelkezésre.

A függvényösszetétel asszociatív, így a funkcionális nyelven megírt programok kiértékelése jól
párhuzamosítható. Az elterjedt funkcionális nyelveknek általában van párhuzamos változata.

A következő két fejezetben a funkcionális nyelvek két jellegzetes képviselőjét tárgyaljuk, azokon
bemutatva a paradigma szokásos eszközeit, … és filozófiáját.

A Haskell egy erősen típusos, tisztán funkcionális, lusta kiértékelést megvalósító, a LISP egy
imperatív eszközöket is tartalmazó, objektumorientált változattal (LLOS) is rendelkező, mohó
kiértékelést valló funkcionális nyelv.

7. LISP

A LISP a funkcionális paradigma első nyelveként az 1950-es évek második felében jött létre, mint
mesterséges intelligencia kutatásokat támogató nyelv. Sok verziója létezik. Mi a Common LISP
változatot, illetve ennek objektumorientált eszközökkel kibővített verzióját tárgyaljuk, ennek neve
CLOS (Common LISP Object System).

A LISP egy interpreteres, interaktív nyelvi rendszer, amelyet beépített függvények alkotnak. Ezek
azonnal, párbeszédes üzemmódba hívhatók.

A LISP programozás saját függvények definiálását és azok alkalmazását jelenti.

A nyelv nem típusos.

7.1. A CLOS alapelemei

Karakterkészlete az ASCII-n alapul, a kis és nagy betűket nem különbözteti meg.

A nyelvnek nincsenek alapszavai. A beépített függvények nevei standard azonosítók.

Az azonosítók betűkből, számjegyekből és a következő karakterekből alkotott, tetszőleges
hosszúságú karaktersorozatok: +, –, *, /, @, $, %, ^, &, _, =, <, >, ~, .

Az azonosítók a nyelvben változók és függvények nevei lehetnek. Ezeknél a LISP a kisbetűket
automatikusan nagybetűsre alakítja át, az outputban már csak ez az adat jelenik meg.

Megjegyzést bármely sor végén helyezhetünk el a ; karakter után, a sor végéig.

A nyelv alapépítő elemei az atomok. Egy atom lehet numerikus atom vagy szám. Ez megfelel az
eljárásorientált nyelvek numerikus literáljának. A LISP decimális számrendszert hanszál. A számok
fajtái a következők:

Szám
 Valós
 Racionális
 Tört
 Egész

A valós számnak megvan a tizedestört és az exponenciális alakja, az egész a szokásos. A tört esetén
a számlálót és a nevezőt egy / választja el.

A LISP a törtet mindig harmonikus alakra alakítja (tehát a számláló és nevező relatív prímek és a
nevező pozitív).

Példák számokra:

 -1, 28, .07, -11.3, 0.888e-3, 1416, -518.

A szimbolikus atom vagy szimbólum egy azonosító, amely szövegkörnyezettől függően csak önmagát,
mint karaktersorozatot jelenti, vagy pedig egy programozói eszköz neve.

A nyelvnek vannak beépített szimbólumai. Például a T egy nevesített konstansnak tekinthető,
amelynek értéke a logikai igaz.

Az atomokon kívül a LISP másik alapeszköze a lista, amelyről a nevét is kapta (List Processing). A
lista kerek zárójelbe zárt atomok és listák sorozata. A hierarchikus lista (1. Adatszerkezetek és
algoritmusok című tárgy) absztrakt adatszerkezet nyelvi realizációja.

Példák listára:

 () ; üres lista
 (Ez egy 5 elemu lista)
 ((a b) (c d))

Az atomokat és a listákat a LISP közös néven S-kifejezésnek (szimbolikus kifejezésnek) hívja.

A LISP-ben mind a program, mind az adat S-kifejezés segítségével kezelhető. Tehát egy LISP
program feldolgozhat egy másik LISP programot adatként és a futás eredménye egy újabb LISP
program lehet.

A LISP-ben van változó. A változót definiálni kell, lehet neki explicit kezdőértéket adni és értéke
tetszőlegesen megváltoztatható.

A LISP-ben van kifejezés. Ugyanis az S-kifejezés vagy adatot határoz meg, vagy csak önmagát, mint
karaktersorozatot jelenti, vagy kifejezés és mint ilyen kiértékelendő. A numerikus atom értéke önmaga,
változó értéke az aktuális érték. Lista esetén viszont ekkor a lista első elemének egy függvénynévnek
kell lennie és ekkor ez egy függvényhívás. A lista további elemei a függvény aktuális paraméterei. A
kifejezés eredményét ekkor a függvény visszatérési értéke adja. Az aktuális paraméterek S-
kifejezések lehetnek.

A LISP kifejezése prefix kifejezés, az operátoroknak a függvénynevek, az operandusoknak S-
kifejezések felelnek meg.

A kifejezés értéke maga is S-kifejezés.

Egy változó értékéül S-kifejezést vehet fel.

A LISP függvényei lehetnek fix és változó paraméterszámúak, így az operátorok egy része
tetszőleges számú operandusra értelmezett.

A LISP interpreter ezek után alaphelyzetben a következőképpen működik:

1. Megadunk neki egy S-kifejezést, ez a program. Ezt beolvassa (read).
2. Értelmezi az S-kifejezést, meghatározza az értékét (evaluate).
3. Kiírja az értékét a képernyőre (print).

Ezt hívja a LISP read-evaluate-print ciklusnak.

A LISP függvények esetén a paraméterkiértékelésnél mindig sorrendi kötés, a fix paraméterűeknél
számbeli egyeztetés érvényesül. A paraméterátadás lehet érték szerinti, ekkor az aktuális
paraméterként megadott S-kifejezés kiértékelődik. Az ilyen függvények nem változtatják meg
paramétereiket, tehát ebből a szempontból mellékhatás mentesek (tisztán applikatívak).

A paraméterátadás azonban lehet szimbolikus, ekkor az aktuális paraméter nem értékelődik ki, hanem
mint szimbólum kerül átadásra. Ezek a függvények meg tudják változtatni a paraméterüket, tehát
lehet mellékhatásuk. Az ilyen függvényeket egyes LISP verziók álfüggvényeknek hívják. A CLOS
ekkor makróról beszél, megkülönböztetve őket a függvényektől. A makrókról részletesebben l….

7.2. CLOS beépített függvények

Aritmetikus függvények

+ összeadás, tetszőleges számú paraméter
– kivonás, legalább 1 paraméter
* szorzás, tetszőleges számú paraméter
/ egészosztás, 2 paraméter
rem maradékképzés, 2 paraméter
1+ növelés 1-el, 1 paraméter
1– csökkentés 1-el, 1 paraméter
Sqrt négyzetgyök, 1 paraméter
exp hatványozás, 2 paraméter
gcd legnagyobb közös osztó, tetszőleges számú paraméter
lcm legkisebb közös többszörös, tetszőleges számú (legalább 1) paraméter
abs abszolút érték, 1 paraméter
min legkisebb érték, legalább 1 paraméter
max legnagyobb érték, legalább 1 paraméter

Példák:

A példákban a > a promptjel, a LIST válasza az alatta levő sor(ok)ban látható.

Predikátumok

Olyan függvények, amelyek logikai visszatérési értékkel rendelkeznek. Nevük p-re végződik. Itt
jegyezzük meg, hogy a logikai hamis értéket a LISP a NIL beépített szimbólumokkal (mint nevesített
konstanssal) kezeli. Az üres lista értéke is NIL!

> ()

NIL

Sok LISP verzió az ún. általánosított logikai értékeket kezeli. Ezek azt mondják meg, hogy ha
valaminek az értéke nem NIL, akkor az igaz. A CLOS is ezt az elvet valósítja meg.

Néhány predikátum számok fajtáját dönti el:

 numberp a paramétere szám-e
 realp a paramétere valós-e
 rationalp a paramétere racionális-e
 ratiop a paramétere tört-e

integerp a paramétere egész-e

Példák:

Μ

A következő predikátumok szintén számokat vizsgálnak:

 zerop a paramétere nulla-e
 plusp a paramétere pozitív-e
 minusp a paramétere negatív-e
 oddp a paramétere páratlan-e
 evenp a paramétere páros-e

Az alábbi függvények legalább egy paraméterrel rendelkeznek, ezek is predikátumok, a
paramétereiket hasonlítják össze:

 = , < , > , /= , >= , <=

Konverziós függvények

A paraméterük egy szám, amelyet másik fajtájú számmá alakítanak át.

 float valóssá alakít
 rational törtté alakít át
 truncate csonkít
 round kerekít

Példák:

Μ

Logikai függvények

A not, and, or rendre a logikai tagadás, és illetve vagy műveletet realizálja.

A not egy paraméterű, az and és or tetszőleges számú paraméterrel rendelkezik.

Az and függvény visszatérési értéke NIL, ha valamelyik paramétere NIL, különben a legutolsó
paraméterének értéke. Ha paraméter nélkül hívtuk meg, T-vel tér vissza.

Az or visszatérési értéke NIL, ha valamennyi paramétere NIL értékű, egyébként az első nem NIL
értékű paraméterének értéke. Ha paraméter nélkül hívtuk meg, NIL-el tér vissza.

Tehát az and és or rövidzár kiértékelésű.

Példák:

Μ

Feltételes függvények

Segítségükkel feltételes kifejezéseket tudunk összeállítani, szerepük a saját függvény létrehozásánál
van.

Az if függvénynek két vagy három paramétere van. Ha az első paraméter értéke nem NIL, akkor a
második paraméter kiértékelődik,és ez adja a visszatérési értéket. Ha NIL, akkor, ha meg van adva
harmadik paraméter, akkor annak értéke lesz a visszatérési érték, egyébként pedig NIL.

Példák:

A cond függvény nem fix paraméterszámú függvény, paraméterei listák. Formája:

 (COND (feltétel [S-kifejezés]…)
 [(feltétel [S-kifejezés]…)]…)

Szemantikája a következő: A megadás sorrendjében kiértékelésre kerülnek a feltételek. Ha valamelyik
értéke nem NIL, akkor a mellette megadott S-kifejezések közül az utolsó értéke adja a visszatérési
értéket. Ha nincs S-kifejezés, akkor a feltétel értéke (ami nem NIL) határozza meg a visszatérési
értéket. Ha minden feltétel értéke NIL, akkor a cond is NIL-el tér vissza.

A quote függvény

Egyparaméteres függvény, amelynek visszatérési értéke a aktuális paraméterként megadott S-
kifejezés. Arra szolgál, hogy érték szerinti paraméterátadással rendelkező paramétereknél az aktuális
paraméter kiértékelését megakadályozzuk

Példa:

> (quote (+ 5 6))
(+ 5 6)

Szerepe annyira fontos, hogy rövidíteni lehet a ’ karakterrel, a fenti függvényhívás ekvivalens az
alábbival:

 > ’ (+ 5 6)

7.3. Nevesített konstans, változó, saját függvény

A programozó a CLOS-ban saját nevesített konstanst a defconstant makróval hozhat létre,
melynek első paramétere a nevesített konstans neve, a második az értéke.

Példa:

Μ

A CLOS-ban egy változót a defrar makróval lehet definiálni. Első paramétere a változó neve, második
opcionális paramétere a kezdőértéke.

Példák:

 > (defrar a 8)

A

 > (defrar a)

Az első esetben a kezdőérték 8, a másodikban nincs kezdőértékadás.

A makró visszatérési értéke a változó neve, mint szimbólum. A defrar a második paraméterét
kiértékeli, az elsőt nem. Mellékhatásként viszont az első paraméterének értéket adhat.

Egy változó értékét a setf makró segítségével tudjuk megváltoztatni (értékadás). Legalább két
paramétere van, az első a változó neve, a második az új érték. Visszatérési érték a második
paraméter értéke. Egyszerre több változónak is tudunk értéket adni segítségével.

Példák:

 > (setf a 5)
 5
 > (setf a 5 b 6)
 6

Saját függvényt a defun makró segítségével hozhatunk létre. A függvénydefiníció általános formája:

 (defun név formális_paraméter_lista törzs)

A név egy szimbólum. A formális_paraméter_lista egy szimbólumokat tartalmazó lista. A formális
paraméterek a függvény lokális változói. A törzs egy S-kifejezés sorozat. A defun függvény
visszatérési értéke határozatlan, CLOS nem határozza meg azt. Az implementációk viszont
generálhatnak valamilyen visszatérési értéket (pl. a függvény nevét).

A visszatérési értéket a törzs határozza meg. Az így definiált függvény paramétereinek
paraméterátadási módja érték szerinti lesz. Meghívni annyi aktuális paraméterrel lehet, ahány formális
paraméter megadtunk, tehát az új függvény fix paraméterszámú lesz.

A defun segítségével definiálhatunk nem fix paraméterszámú saját függvényt is, úgy, hogy a formális
paraméter listán egyetlen szimbólumot adunk meg, és előtte szerepeltetjük az &rest kulcsszót (l. …).
Ha a paraméterek számának alsó korlátot akarunk megszabni, akkor a formális paraméter listán
megadunk adott számú szimbólumot és a listát zárja a fenti konstrukció.

Példák:

1. A következő saját függvény az abszolútérték függvényt implementálja logikai függvények
segítségével)az általánosított logikai értékek miatt):

(defun absz (n)
 (or (and (minusp n) (* –1 n)) n))

2. A faktoriális függvény rekurzív változata

(defun fakt (n)
 (cond ((zerop n) 1)
 (T)(n (fakt (–n 1))))

A továbbiakban a saját függvénydefiníciók lezárásaként a > jelet fogjuk alkalmazni (mint ahogy több
implementáció is), az egy kényelmi jelölés, az összes olyan balzárójelhez, amelynek még nincs
jobbzárójele, hozzápárosít egy jobbzárójelet.

7.4. Listák

Egy lista fejét a car, a farkát a cdr függvény szolgáltatja. Paraméterük természetesen egy lista. Az
üres listára értékük NIL.

A cons függvénynek két paramétere van, ezekből állít elő egy listát úgy, hogy kiértékeli őket és az
első paraméter értéke lesz a lista feje, a második a farka.

Példák:

 > (defrar a ‘(+ 2 3 4))
A
> ’a
A

 > a
 (+ 2 3 4)

> (car a)
 +
 > (cdr a)
 (2 3 4)
 > (car (cdr ’ (a b c))
 B
 > (cons ’a ’(b c))
 (A B C)
 > (cons ’a ’())
 (A)
 > (cons ’a ’b)
 (A . B)

Az utolsó példa mutatja a lista és a valódi lista közötti fogalmi különbséget. A valódi lista mindig az
üres listával végződik. Tehát rendre alkalmazza … a cdr függvényt, az utolsó mindig NIL-el tér vissza.
A nemvalódi lista esetén viszont az utolsó cdr visszatérési értéke nem NIL, ilyen akkor keletkezik, ha a
cons második paramétere nem lista. Ilyenkor a kiírt lista egy pontozott párt tartalmaz, ahol a pont utáni
rész az utolsó cdr értékét mutatja.

Az endp predikátum a lista végét teszteli. Értéke igaz, ha paramétere az üres lista és NIL, ha nem.

A listák memóriában történő ábrázolása a következőképpen történik:

A valódi lista mindig egy pointerpárból áll. Ezek közül az első címzi a lista fejét, a második a farkát. A
cons függvény ezt a két pointert hozza létre. Tehát a

 > (cons ’a (cons ’b nil))
 (A B)

hatására az alábbi ábrázolási lista jön létre:

A

> (cons (cons ‘a nil) nil)
((A)

lista viszont a következőképpen néz ki:

A nemvalódi

 > (cons ‘a ‘b)
 (A . B)

pontozott pár szerkezete viszont:

A listákra vonatkozó további függvények az alábbiak:

A list egy nem fix paraméterszámú függvény, amely paramétereinek értékéből listát képez.

Példák:

 > (list)
 NIL

> (list 1 2 3)
(1 2 3)

 > (list ’(ab) ’(cd))
 ((AB)(CD))
 > list ’a (list ’b ’c))
 (A (B C))

Az append nem fix paraméterszámú függvény, amely listát alkotó paramétereiből egyetlen listát
képez (összefűzés).

Példák:

 > (append ’(ab) ’(cd))
 > (A B C D)

A length a lista elemeinek számát adja, a reverse pedig a lista legkülső szintjén levő elemek
sorrendjét megfordítja (tehát a beágyazott listák változatlanok maradnak).

Példák:

 > (length ‘())
 0

 > (length ’((ab) 1 (x))
 3

> reverse ’((abc) (de))
((D E) (A B C))

A subst függvénynek három paramétere van. A harmadik paraméter egy lista. Ezen listában a
második paraméter összes (tehát nemcsak a legkülső szintű) előfordulását helyettesíti az első
paraméterrel.

Példa:

 > (substr 5 0 ‘(0 1 2 0))
 (5 1 2 5)

A függvények a nyelvnek ugyanazon eszközei, mint a szimbólumok vagy a listák. A function
függvények egyetlen argumentuma egy függvény neve, és visszatérési értéke maga a függvény. A
függvény nevét viszont S-kifejezés értékeként állíthatjuk elő. A funcall függvénnyel pedig explicit
módon meg tudunk hívni egy függvényt. A function függvény rövidíthető a #’ szimbólumpárral (a
quote mintájára).

Példa:

 > (funcall #’ + 1 2 3)
 6

A LISP listák kezelésének egy igen hatékony eszköze, a procedurális absztrakciót nagyban támogató
mapcar függvény. Első paramétere egy függvény, továbbiak pedig listák. A visszatérési értéke pedig
olyan lista, amely úgy keletkezik, hogy a függvény meghívódik minden paraméterként, megadott lista
első, második, stb. elemeire. Az eredmény lista hossza a legrövidebb lista hossza lesz.

A mapcar függvény tehát egy olyan függvény, amelynek paramétere függvény. Ezeket hívja a LISP
általánosított függvényeknek vagy funkcionálisoknak.

Példa:

 > (mapcar #’+ ‘(1 2 3) ‘(4 5))
 (5 7)

A listák kezelésére szolgálnak a következő predikátumok:

 symbolp igaz, ha paramétere szimbólum
 consp igaz, ha paramétere valódi lista
 atom igaz, ha paramétere nem valódi lista
 listp igaz, ha paramétere lista
 null igaz, ha paramétere az üres lista

Itt jegyezzük meg, hogy az üres lista, nem valódi lista és a symbolp szimbólumnak (NIL) tekinti.

Eszközök összehasonlítására szolgál az eq és equalp függvény. Az eq függvény akkor ad igen
értéket, ha pontosan azonos két eszköz (vagyis pontosan azonos memóriaterületen vannak!). Az
equalp viszont akkor igaz, ha paraméterei mind számok, szimbólumok vagy listák azonosak
(függetlenül a memóriabeli elhelyezkedésüktől).

Példák:

> (eq ‘a ‘a) ; azonos szimbólumok címe azonos
 T
 > (eq ’(a) ’(a)) ; két lista címe különbözik
 NIL

> (equalp ‘(a) ‘(a)) ; lista és lista
T
> (equalp (+ 2 2) 4) ; 4 és 4
T
> (equalp ‘(+ 2 2) 4) ; lista és szám
NIL

A LISP definiálja a car és cdr függvények kombinációit:

 (car (cor x)) = (car x)
 (car (cdr x)) = (codr x)
 (cdr (cor x)) = (cdar x)
 (cdr (cdr x)) = (cddr x)

A beágyazási szint maximum négy lehet (tehát még létezik a caaddr).

A nth függvény egy lista i elemét adja vissza (a sorszámozás 0-val indul). Értéke NIL, ha nincs ilyen
elem.

Példák:

 > (nth 0 ’(1 2 3 4)
 1
 > (nth 4 ’(1 2 3 4))
 NIL

A last egy lista utolsó elemét, a butlast egy lista utolsó eleme nélküli listát adja meg.

A member és a remove függvények első paramétere egy elem, második egy lista. A member
visszaadja a lista azon részlistáját, amely az elemmel kezdődik, vagy NIL-t. A remove a lista legkülső
szintjéről eltávolítja az elem összes előfordulását.

Definiáljunk néhány saját függvényt, amelyek listákat kezelnek.

1. Adjuk meg a reverse definícióját.

(defun reverse (lista)
 cond ((null) lista) NIL)
 (T (append (reverse (cdr lista))
 (list (car lista>

2. Írjunk egy függvényt, amely egy lista legkülső szintjéről eltávolítja a 0-kat.

(defun nulla_eltavolitas (lista)
 (remove 0 lista>

3. Adjuk meg azt a függvényt, amely egy lista elejéhez hozzáfűzi az első paraméterének értékét,
ha az szám

(defun szammal_borit (n lista)
 (cond ((numberp n) (cons n lista))
 (T lista>

4. Adjunk meg egy predikátumot, amely eldönti, hogy paramétere valódi lista-e.

(defun valodi_lista (lista)
 (if (not listp lista)) NIL
 (not (cdr (last lista>

5. Egy lista legkülső szintjén szüntessük meg a szimbólumok többszörös előfordulását.

(defun tobbsz_elt (lista)
 (cond ((endp lista) NIL)
 ((member (car lista) (cdr lista))
 (tobbsz_elt (cdr lista)))
 (T cons (car lista)
 (tobbsz_elt (cdr lista>

6. Határozzuk meg, hogy egy atom hányszor fordul elő egy listában (bármelyik szinten).

(defun gyakorisag (atom lista)
 (cond ((endp lista) 0)
 ((eq atom lista) 1)
 ((atom lista) 0)
 (T (+ (gyakorisag atom (car lista))
 (gyakorisag atom (cdr lista>

7. Rendszerezzünk egy számokból álló listát nagyság szerint növekvőleg.

(defun rendez (szamok)
 (cond ((null szamok) NIL)
 ((null (cdr szamok)) szamok)
 (T beszur (car szamok)
 (rendez (cdr szamok>

8. Vizsgáljuk meg, hogy egy csak szimbólumokat tartalmazó listában előfordul-e egy adott
szimbólumsorozat (mintaillesztés). A szimbólumsorozatban szerepelhet a *** elem, amely
bármely más szimbólumsorozatra illeszkedik.

(defun mink_ill (minta alap)
 (cond ((and (endp minta) (endp alap)) T)
 ((equalp (car minta) (car alap))
 (minta_ill (cdr minta) (cdr alap)))
 ((eq (car minta) ‘***)
 (cond ((endp alap) (endp (cdrp (cdr minta)))
 (T (or (mink_ill (cdr minta) alap)

 (minta_ill minta ‘cdr alap))))))
 (T NIL>

7.5. Lokális és globális eszközök

A CLOS-ban a nevesített konstansok, a függvények és a defvar makróval létrehozott változók nevei
globálisak, mindenhonnan láthatók. A saját függvények formális paraméterei viszont lokálisak, csak az
adott függvényben hivatkozhatók. Ha egy lokális név megegyezik egy globálissal, akkor az adott
függvény vonatkozásában elfedi azt.

Globális nevet egy függvényben is definiálhatunk és egy globális változó értékét megváltoztathatjuk.
Ez viszont mellékhatás, a LISP szerint kerülendő. A CLOS ilyen esetben a defparaméter makró
használatát javasolja, amely segítségével egy függvényben megváltoztatható globális változót tudunk
definiálni. A CLOS konvenció szerint az ilyen változók neve előtt és után *, a nevesített konstansoknál
pedig + szerepel.

Egy függvénydefiníció részeként definiálhatunk lokális változókat a let makróval, ennek alakja:

 (LET ((változónév [érték])
 [(változónév) [érték])]…
 törzs)

A törzs S-kifejezések sorozata, az így definiált változók csak itt hivatkozhatók. Ha nem adunk
kezdőértéket, akkor automatikusan NIL-t kapunk.

Példa: Egy csak számokat tartalmazó tetszőleges (akárhányszorosan egymásbaágyazott) lista
elemeinek átlagát határozzuk meg.

 (defun atlag (lista)
 (let ((a (atl lista 0 0)))
 (/ (car a) (cdr a>
 (defun atl (l db ossz)
 (cond ((endp l) ‘(0.. 0))
 ((atom l) (cons (+ ossz l)
 (+ db 1)))
 (T (val (atl (car l) db ossz)
 (atl (cdr l) db ossz>
 (defun val (x y)
 (cons (+ (car x) (car y))
 (+ (cdr x) (cdr y>

A LISP lehetőséget ad arra, hogy meg nem nevezett függvényeket tudjunk használni. Erre szolgál a
lambda makró, amely után egy függvény formális paraméter listája és a törzse állhat. Ezzel
tulajdonképpen egy lokális, a definíciójánál azonnal meghívásra is kerülő, a globális függvények közé
fel nem veendő függvény használatára nyílik lehetőség.

Példák:

> ((lambda (n) (+ n 2)) 5)

7
> (mapcar #’(lambda (x) (+ x 2)) ‘(1 2 3))
(3 4 5)

A flot függvény lehetővé teszi saját függvényen belül lokális nemrekurzív, a labels pedig lokális
rekurzív függvény definiálását.

Példák:

1. A length függvény definíciója lehet az alábbi:

(defun length (lista)
 (labels ((hossz (lista n)
 (cond ((null lista) n)
 (T hossz (cdr lista)
 (1+ n))))))
 (hossz lista 0>

2. A reverse függvény lokális függvénnyel.

(defun reverse (lista)
 (labels ((fordit (lista uj)
 (cond ((null lista) uj)
 (T (fordit (cdr lista)
 (cons (car lista) uj))))))
 (fordit lista NIL>

7.6. Karakterek és sztringek

A karakterek és sztringek (akárcsak a számok) a LISP összdefiniáló eszközei.

A látható karakterek alakja:

 # \ karakter

Például: #\a, #\L.

A nem látható és vezérlő karakterekre pedig a #\ után írt névvel lehet hivatkozni.

Például: #\tab (tabulátor), #\newline (új sor).

A sztring karakterek listájaként értelmezendő. Sztring viszont sztringbe nem ágyazható. A sztring
alakja:

 “[karakter]…”

A karakterek és sztringek ugyanúgy lehetnek elemei egy listának mint az atomok és a listák.

Példák: “ “ (üres sztring), “almafa”.

 >”sztring”
 “sztring”
 >#\a

 a

A karakterek és sztringek kezelését és predikátumok és egyéb függvények segítik. Izelítőül néhány
ezek közül:

 stringp igaz, ha paramétere sztring
 characterp igaz, ha paramétere karakter
 alphanumericp igaz, ha paramétere alfanumerikus karakter
 upper_case_p igaz, ha paramétere nagybetű
 char_code visszaadja a karakter ACSII kódját
 code_char visszaadja az adott kódú karaktert

 length megadja egy sztring hosszát
 concatenate összefűzi a sztringeket.

7.7. I/O

A LISP kezeli az implicit állományokat. I/O-ja az adatfolyam elven alapszik.

Alaphelyzetben a LISP mindig képernyőre írja a legutoljára kiértékelt S-kifejezés értékét.

Az alapértelmezett adatfolyam nevek:

 standard-input alapértelmezett bemenet (billentzűzet)
 standard-output alapértelmezett kimenet (képernyő)
 terminal-io a felhasználói terminál
 query-io a felhasználói interakciók javallott adatfolyama
 debug-io az interaktív belövés adatfolyama
 trace-output a trace makró kimenete
 error-output hibaüzenetek

Az adatfolyamok használata természetesen makrók segítségével történik. Az írásnál a
formátumos technika alkalmazható.

7.8. A kiértékelés vezérlése

A LISP alaphelyzetben azt mondja, hogy egy függvény visszatérési értéke a törzset alkotó S-
kifejezések közül a legutolsó értéke lesz. Most megismerünk néhány olyan eszközt, amely a
szekvencionális kiértékelés megváltoztatását célozza.

A prog1 függvény visszatérési értéke az első paraméterének értéke, a prog2 függvényé pedig
a második paraméterének értéke. A progn függvény az alapértelmezett viselkedést mutatja.

Példa:

 >(prog1 (setf n 3) (setf n (1+ n)))
 3

> n
> n

A LISP tartalmaz iteratív eszközöket, ezek határozottan imperatív jellegűek.

A do makró egy kezdőfeltételes ciklust realizál, alakja a következő:

 (do ([(változó [kezdőérték [új_érték]])]…)
 (feltétel [S-kifejezés]...)
 [S-kifejezés]...)

A do makró paraméterei három csoportba sorolhatók. Az első paramétere egy maximum
háromelemű listákból álló lista. Ez egy inicializációs rész. A változó a makró lokális
változója, kezdőértéke kezdőérték, vagy ennek hiányában NIL. Ezek a változók a
ciklusváltozók. A harmadik paramétercsoportban szereplő S-kifejezések alkotják a ciklus
magját.

A második paraméter egy legalább egy elemű lista. A feltétel nem NIL volta mellett fut le a
mag (kezdőfeltétel). A do makró visszatérési értékét a második paraméter határozza meg. Ha
a listában csak a feltétel szerepel, akkor a visszatérési érték NIL.

Ha az első paraméternél a listák háromeleműek, akkor minden cikluslépés után a
ciklusváltozók értéke felülíródik az új_érték értékével.

Példák:

1. A faktoriálist kiszámoló függvény:

(defun fakt(n)
 (do (eredmeny 1 (* szamlalo eredmeny)
 (szamlalo n) (1-szamlalo)))
 ((zerop szamlalo) eredmeny>

2. Határozzuk meg egy számokat tartalmazó nemüres lista elemeinek átlagát.

(defun atlag(l)

 (do ((v l (cdr v))
 (szamlalo 1 (1+ szamlalo))
 (osszeg (car v) (+ (car v) osszeg)))
 ((null (cdr v) (/ osszeg szamlalo>

3. Adjuk meg egy lista hosszát meghatározó függvény rekurzív és iteratív változatát.

a. (defun r-length (l)
(cond (l null l) 0)
 (T (1+ (r-length (cdr l>

b. (defun i-length (l)

(do ((ll l (cdr ll))
 (eredmeny 0 (1+ eredmeny)))
 ((null ll) eredmeny>

A végtelen ciklust valósítja meg a loop makró, melynek paraméterei között szerepelnie kell
return függvény meghívásának. A return egyetlen paraméterének értékével tér vissza, vagy

paraméter nélkül a NIL-t adja. Ha nem adtuk meg a return függvényt, akkor a paraméterek
(mint ciklusmag) újra és újra kiértékelődnek.

Példa:

Írjuk át az átlagszámító függvényt loop segítségével

(defun loop_atlag(l)
 (let ((szamlalo 0)
 (osszeg 0))
 (loop (cond ((null l (return (/osszeg szamlalo)))
 (T (setf osszeg (+osszeg (car l)))
 (setf l (cdr l))
 (1+ szamlalo>

A CLOS ismeri a blokk fogalmát is, ezt a block makró segítségével kezelhetjük, ennek alakja:

 (block név [S-kifejezés]...)

Egyrészt tekinthető egy egyszerű, megnevezett kifejezéssorozatnak, amikor visszatérési
értéke az utolsó S-kifejezés értéke. Másrészt a paraméterei között szerepelhet (return-from
név érték) függvényhívás, ami megadja a visszatérési értéket.

A prog makró alakja:

(prog ([{változó | (változó [kezdőérték])}]…)
 [{címke | S-kifejezés}]…)

A prog makró imperatív jellegű. A változó a makró lokális változója, explicit kezdőérték
adható neki, automatikus kezdőértéke NIL. A címke egy szimbolikus atom, az S-kifejezések
között szerepelhet egy (go címke) alakú makróhívás, ami egy GOTO-utasításnak felel meg.
Használhatjuk a return függvényt is.

Példa:

 (defun fakt(n)
 (prog ((k n) (l 1))
 kovetkezo
 (cond ((zerop k) (return l)))
 (setf l (* k l)
 (setf k (1-k))
 (go kovetkezo>

7.9. Makrók

A LISP nyelv kiterjeszthető. A programozó újradefiniálhatja a nyelv eszközeit és új
eszközöket adhat hozzá a nyelvhez.

Bármelyik függvény nevét tetszőlegesen megváltoztathatjuk a számunkra használhatóbb,
ismertebb elnevezést vezetve be.

Példák:

 (defun fej (x) (car x))
 (defun farok (x) (cdr x))

A saját függvények definiálása az eddigi eszközrendszert új, a többiektől
megkülönbözhetetlen eszközökkel bővíti.

Ennek következménye az, hogy bármely LISP verzió testreszabható, illetve bármely más
verzióba átírható.

Az igazi nyelvkiterjesztő eszközök azonban a saját makrók.

Egy saját makrót a defmacro makró segítségével hozhatunk létre. Használatának formája
egyébként teljesen azonos a defun használatával.

Egy függvény és egy makró között az alapvető különbség a paraméterek kiértékelésében van.

A függvénynél először kiértékelődik az összes paraméter, majd kiértékelődik a törzs. A
makrónál először kiértékelődik a törzs, majd kiértékelődik az eredményül kapott új törzs.

Egy makródefinícióban elkerülhetetlen a ‘ használata. Segítségével egy lista részleges
kiértékelését tudjuk megvalósítani, ugyanis csak a lista azon eleme kerül kiértékelésre, amely
előtt vessző szerepel, a többi nem. A vessző használata nélkül hatása azonos a quote
hatásával.

Példák:

 >’atom
 ATOM
 >’(a b c)
 (A B C)

> ’(a b c)
(A B C)
> ’(setf x (* 3 7))

 (SETF X (* 3 7))
 > ’(setf x ,(* 3 7))
 (SETF X 21)
 > ’(setf x ,(car ’(, (+ 3 4) (– 7 3) (* 5 7))))

(SETF X 7)

Ugyancsak a ‘ esetén alkalmazható a @, amely egy lista külső zárójeleit elhagyva, a lista
elemeinek sorozatát adja vissza.

Példa:

> ‘(setf x (*, @(cdr ‘((+ 3 4) (– 7 3) (* 5 7)))))
(SETF X (* (– 7 3) (* 5 7)))

Nagyon sok probléma csak makrók segítségével oldható meg, a CLOS sok beépített makrót
tartalmaz (jó néhányat már láttunk közülük).

Vizsgáljuk meg a függvény és a makró alkalmazása közötti különbséget.

Definiáljuk a veremből való olvasást, mint függvényt. A vermet most képzeljük el úgy, mint
egy olyan listát, ahol a verem tetején az 1. elem van.

 (defun pop (verem)
 (prog1 (car verem)
 (setf verem (cdr verem>

Hívjuk meg.

> (setf x ‘(1 2 3 4))
(1 2 3 4)
> (pop x)
1
> x
(1 2 3 4)

Valami probléma van. Igen, mert a függvény csak a lokális verem értékét módosította,
amelynek kezdőértéke a meghívásnál x értéke volt, de a globális x nem változott meg.

Nézzük most ugyanazt makróval.

 (defmacro pop(verem)
 ‘(prog1 (car , verem)
 (setf , verem (cdr , verem>

A makró paramétere nem értékelődik ki, a paraméterátadás név szerinti. Meghívásánál a
globális változó csak a törzsben értékelődik ki, egyszer.

A függvény a LISP-ben adatobjektum, átadható paraméterként, a makró azonban nem.

Amikor a LISP kiértékel egy olyan listát, amelynek feje egy szimbólum, akkor a
következőképpen jár el:

1. Ha a szimbólum egy foglalt szó, akkor a hozzátartozó kód alapján történik a lista
kiértékelése. A CLOS foglalt szavai a következők:
⋮

2. Különben, ha a szimbólum egy makró neve, akkor végrehajtja a makrót és kiértékeli
az eredményt.

3. Különben a szimbólumot függvénynévnek tekinti.

Példák:

1. Írjunk makrót, amely megcseréli két paraméterének értékét.

(def macro csere (x y)
 ‘(let | (z , x))
 (setf ,x ,y)
 (setf ,y z>

2. Írjuk meg azt a makrót, amely megadott számszor kiértékel egy S-kifejezés sorozatot.

(def macro ismetel (n rest mag)

 ‚(do ((i ,n (– i 1)))
 ((<= i 0) nil)
 ,@mag>

7.10. Objektumorientált eszközök

A legtöbb LISP változat a funkcionális paradigma mentén épül föl, azonban a CLOS egy
hibrid nyelv, amely tartalmaz objektumorientált eszközrendszert.

A CLOS-ban nincs láthatóságszabályozás. Az öröklődés többszörös. A nyelv tartalmaz egy
beépített osztályhierarchiát, a programozó viszont önálló osztályhierarchiákat hozhat létre, a
beépített osztályok nem örököltethetők.

A beépített osztályhierarchia a következő:

 float

number rational ratio

 complex integer

function

symbol null

sequence list cons

array vector string

character bit-vector

T stream

pathname

readtable

package

random-state

hash-table

A korábbi LISP verziók nem típusosak és az eddigi tárgyalásunkban ez tükröződött. Azonban
a CLOS, a beépített osztályhierarchia elemeit típusoknak tekinti és a programozó által
definiált osztályok is egy-egy típust képviselnek.

Saját osztály létrehozására a defclass makró szolgál, használatának alakja:

 (DEFCLASS név szuperosztály_nevek
 attribútum_specifikációk
 osztály_opciók)

A név egy szimbólum, az osztály (típus) neve. A szuperosztály_nevek egy létező
osztálynevekből álló (esetleg üres) lista.

Az attribútum_specifikációk alakja:

 ([név [kulcsszó [érték]]…]…)

A név az attribútum neve, a kulcsszó az alábbiak valamelyike:

:reader az attribútum lekérdező módszerének a neve

:writer az attribútum beállító módszerének a neve

:accessor egy olyan módszer neve, amellyel az attribútumot egyaránt le lehet
kérdezni és le lehet állítani

:allocation értéke :instance (ez az alapértelmezett), vagy :class lehet. :instance
esetén az adott attribútum értéke példányonként különbözhet, :class
esetén viszont azonos (vagyis akkor ez egy nevesített konstans
attribútum).

:initarg az attribútum kezdőértéke, ami a példányosításkor beállításra kerül.

:initform az attribútum alapértelmezett értékr, az :initarg felülírja, ha meg van
adva.

:type az attribútum típusa.

:documentation értéke egy sztring, ez egy dokumentációs megjegyzés.

Látjuk tehát, hogy a CLOS-ban az attribútumokhoz kapcsolódóan adhatók meg a beállító és
lekérdező módszerek nevei, ezek automatikusan létrejönnek. Az osztályhoz kapcsolódó
további függvényeket, makrókat az osztálydefiníciótól függetlenül kell létrehozni.

Az osztály_opciók a következők lehetnek:

:default_initargs értéklista az attribútumok kezdőértékét állítja be, az egyes
attribútumokból megadott :initarg felülírja ezt.

:metaclass osztálynév a CLOS-ban az osztályok alapértelmezés szerint a
standard_class metaosztály példányai. Ezzel az opcióval egy
ettől különböző metaosztályt adhatunk meg.

Egy osztály példányosítása a make_ms_tance függvény segítségével történik, ennek alakja:

 (MAKE-INSTANCE osztálynév [kezdőérték]...)

A CLOS lehetővé teszi generikus függvények használatát. Ezeknél külön definiálhatjuk a
különböző típusú argumentumok esetén a működést. Ezeket a különböző definíciókat a CLOS
metódusoknak nevezi (nem tévesztendő össze az OO metódussal!). Egy generikus függvényt a
defgeneric makró segítségével tudunk létrehozni. Alakja:

 (DEFGENERIC név formális_paraméter_lista
 (:METHOD specializált_formális_paraméter_lista törzs)
 [(:METHOD specializált_formális_paraméter_lista törzs)]…)

A specializált_formális_paraméter_lista

 (formális_paraméter [típus])

alakú listákból álló lista. A törzs az adott típusú formális paraméterekre történő működést írja
le. Ha nem szerepel a típus, akkor a működés tetszőleges típusra vonatkozik.

Egy generikus függvényt (függetlenül az esetleg nem is ismert definíciótól) mindig
kiegészíthetünk új metódussal a defmethod makró segítségével. Ennek alakja:

 (DEFMETHOD generikus_név specializált_formális_paraméter_lista törzs)

A generikus függvények használata alapvető az osztályok esetén.

Példák:

 (defclass szemely()
 ((nev :initarg :nev :reader szemely_neve)
 (eletkor :initform 0 :accessor szemely_kora))
 (:documentum “Önálló osztály”))

A szemely osztálynak nincs szuperosztálya. Két attribútuma van, ezek közül a nev csak
olvasható, a kor írható-olvasható.

 (defun szemely_kons (nev)
 (make-instance ’szemely :nev nev))

Ez a függvény az osztály konstruktorának tekinthető. A kor alapértelmezett értéke 0.

 > (defvar x (szemely_kons ‘KISS))
 #<SZEMELY @#x11bca2e> ;implemetációfüggő’
 > (szemely_kora x)
 0
 > (szemely_neve x)
 KISS
 > (setf (szemely_kore x) 22)
 > 22

Adjunk meg egy predikátumot, amely eldönti, hogy paramétere a szemely osztály példánya-e.

 (defgeneric szemelyp (obj)
 (:method ((obj szemely)) T)
 (:method (obj) NIL))
 > (szemelyp x)
 T
 > (szemelyp ’x)
 NIL

A CLOS tartalmaz egy print-object nevű generikus függvényt, amely az objektumok
megjelenítését szolgálja. Ezt bármikor kiegészíthetjük saját objektumaink megjelenítésének
metódusaival.

 (def method print-object ((obj szemey) stream)
 (format stream “#<SZEMELY:~A (Kora: ~A)>”
 (szemely-neve obj) (szemely-kora obj>
 > x
 #<SZEMELY: KISS (Kora> 22)>

Hozzuk létre a szemely egy alosztályát.

(defclass programozo (szemely)
 ((nyelvek :initform NIL initarg :nyelvek
 :accessor ismert))
 (documentation "Ez egy alosztály"))

(defnn programozo-konstr (nev nyelvek)
 (make-instance ’programozo :nev nev
 :nyelvek nyelvek))

A CLOS-ban az objektumok futás közben, dinamikusan meg tudják változtatni a struktúrájukat és a
viselkedésmódjukat!

Tekintsük a korábbi szemely osztály definícióját és definiáljuk azt át a következőképpen:

 (defclass szemely()
 ((nev :initorg :nev :reader személy_neve)
 (eletkor :initform 0 :accessor személy_kora)
 (munkakor:initform ‘Programozo :accessor munkakor :allocation :class)))

Ekkor

> x
#< SZEMELY: KISS (Kora: 22)>
> (munkakor x)
#< SZEMELY: NAGY (Kora: 0)>
> (munkakor y)
PROGRAMOZO
> (setf (munkakor x) ’Kereskedo)
KERESKEDO
> (munkakor y)
KERESKEDO

A CLOS automatikusan a régi osztály példányait az új osztály példányaivá, alakítva a struktúrájukat és
az új viselkedésmóddal látva el őket. KISS-nél megjelenik a munkakor attribútum, amely
lekérdezhető és beállítható. Ez az attribútum egy megosztott attribútum, amelyet az egyes példányok
közösen birtokolnak.

A CLOS-ban az osztályok a metaosztályok példányai. Három beépített metaosztály van:

– built-in-class : a beépített osztályok metaosztálya
– stadard-class : a defclass makróval definiált saját osztályok metaosztálya
– structure-class : a destruct makróval definiált rekordok metaosztálya (nem

foglalkozunk vele).

Egy osztály metaosztályát a class-of segítségével kérdezhetjük le.

A CLOS metaobjektumainak osztályai a következők:

– standard-method : a defmethod és defgeneric segítségével definiált metódusok
osztálya

– standard-generic-function: a generikuis függvények metaosztálya

– standard-object: standard-class, standard-method, standard-generic-function
szuperosztálya

A CLOS-ban lehetőség van a metaosztályok kiterjesztésére a metaobject protocol (MOP)
segítségével. Ez a témakör meghaladja jelen jegyzet kereteit, részletesen l. … .

7.11. Általánosított függvények

Az apply függvény a LISP egy általánosított függvénye, alakja:

 (APPLY [függvény lista]…)

A függvény rendre meghívódik a további paraméterekként megadott listák mindegyikére.

Példa: Adjuk meg az append rekurzív definícióját.

 (defun append2 (birtok1 lista2)
 (cond ((endp lista1) lista2)
 (T (cons (car lista1) (append2
 (cdr lista1) lista2>

 (defun append (&rest listak)
 (cond ((endp listak) ’L))
 ((endp (cdr listak) (car listak))
 ((endp (cddr listak) (append2
 (car listak) (cadr listak)))
 (T (append (car listak) (apply
 #’append (cdr listak>

Az apply a procedurális absztrakció magas absztrakciós szintjét biztosítja. Például segítségével
megírhatunk egy általános leválogató függvény, amely egy lista elemei közül azokat írja át egy másik
listába, amelyek egy predikátumot igazzá tesznek. A függvény:

 (defun levelogat (lista predikatum)
 (cond ((null lista) NIL)
 ((apply predikatum (Lista (car lista)))

 (cons (car lista) (levalogat
 (cdr lista) predikatum)))
 (T (levalogat (cdr lista) predikatum>

Ennek segítségével egy csak számokat tartalmazó listából a negatívokat a következő függvénnyel
tudjuk leválogatni:

 (defun negativ (lista) (levalogat lista ’minusp))

8. Logikai nyelvek: Prolog

A logikai nyelvek legjelentősebb képviselője. '72-ben születik meg. A szoftverkrízisre adott egyfajta válasz,

irányzat. Franciaországban születik. A ’80-as években több logikai nyelv születik. Mindegyiknek az alapja a

matematikai logika valamely irányzata. Az elsőrendű predikátumkalkulusra épül fel a Prolog. A Prolog vissza

fog köszönni a mesterséges intelligenciakutatásban, alapvető szerepet játszik. Az adatbázis-kezelő rendszerekben

is felbukkan, pl. deduktív adatbázis-kezelő rendszerekben is fontos. Magyarországon a '80-as években

kifejlesztenek egy Prolog rendszert, az MProlog-ot. Ez azon kevés termékek közé tartozik, amely szerepet játszik

a világon (a másik az Ada). A Japánok az ötödik generációs gép nyelveként ezt választották.

A logikai programozás szemlélete:

− A Prolog nem típusos nyelv.

− Karakterkészlete a szokásos.

− A Prolog elemi objektumai (alap építőelemei) a következők:

− Azonosítók: nem azonos az imperatív nyelvek azonosító fogalmával, hanem tetszőleges karaktersorozat

lehet. Nincs olyan gond, hogy magyarul írom vagy nem.

− Numerikus konstansok: A szokásosak.

− Karakterlánc (sztring), idézőjelben áll.

− Elhatároló jelek: pl. a kerek zárójelek, idéző jelek ...

− Éles különbséget tesz kis és nagybetűk között.

− A Prolognak is van változó fogalma. A változónak van neve, amely egy speciális azonosító, amely

nagybetűvel vagy aláhúzásjellel kezdődik, és betűvel vagy számjeggyel folytatódhat. Nincs attribútuma.

Van értéke, de: egy változó két állapotban lehet:

− nincs értékkomponense, ekkor lehet értéket adni neki

− van érték komponense, nem lehet ekkor értéket adni neki, a változó értéke nem felülírható. Nem létezik

az s:=s+1 utasítás. Ez az egyszeres értékadás szabálya. Át kell vinni abba az állapotba, hogy ne

legyen neki értéke, és csak ekkor adhatok értéket.

Deklaratív jelleg:

A változó értékének a beállítása elsősorban a rendszer feladata. Bizonyos esetekben a

programozó is beállíthatja a változók értékét, de ez az eszközrendszer minimális. A

változónak címe van, de ehhez a programozó nem férhet hozzá. Van még egy érdekessége a

változónak: szemben az imperatív szemlélettel a teljes szövegben ugyanazt az értéket jelenti,

ha egyszer értéket kapott.

A deklaratív nyelvek általában szimbolikus nyelvek, ami a következőt jelenti: ha egy

imperatív nyelvben leírtam egy változó nevét, akkor az általában a címet vagy értéket

jelentette, elvétve a típust vagy nevet. A deklaratív nyelvekben Xyz vagy az objektum neve,

vagy attól függően, hogy milyen szövegkörnyezetben van azt a szimbólumsorozatot jelenti,

amit leírtam: Xyz.

A Prologban: a változó csak a nevet, mint karaktersorozatot jelenti, ha nincs értéke a változónak. Ha van értéke,

akkor vagy szimbólumsorozat, vagy a változó értékét jelenti. Ha Prologban programot írok, akkor a matematikai

logikában kell gondolkodnunk: meghatározom azt a környezetet, ahol le akarom futtatni.

Alapvető eszközök:

− a tények

− a szabályok

− a feladat.

A tények igaz értékű állítások. A tények alakja formálisan:

 név(argumentumok).

− név: azonosító, mint elemi objektum

− argumentumok: ()-ben, egymástól vesszővel elválasztva. Egy argumentumnak illik lennie, több

lehet. Szemléletében tények megadásakor az argumentumokra vonatkozó igaz állításokat sorolom fel.

Az argumentumok összetett objektumok lehetnek. (összetett objektumok fogalma ld. rövidesen)

− ponttal zárja le

A Szabályok: az elsőrendű predikátumkalkulus következtetési szabályai, logikai formulák. Van a szabályoknak

feje és törzse. Alakja:

 fej:-törzs.

− A fej szerkezete megfelel a tények szerkezetének.

− A törzs pedig egy feltételsorozat, vesszővel elválasztva. Ezek a feltételek éssel vannak összefűzve. A

feltételek összetett objektumok (majd beszélünk róla).

Ez attól egy következtetési szabály, hogy ha igaz a törzs, akkor igaz a fej.

A tények törzs nélküli szabályoknak tekinthetők.

A Feladat vagy kérdés: A rendszer a megadott környezetben keresi azokat az objektumokat, amelyek igazzá

teszik a kérdést. Formálisan a kérdés úgy néz ki, mint egy fej nélküli szabály:

 :-feltételsorozat.

A szabályok és tények az imperatív szemlélet szerint alprogramoknak tekinthetők: elsősorban eljárásnak.

A Prolog programozás nem más, mint megadjuk először a tényeket, majd utána a szabályokat, ezzel

definiálom a megoldandó feladat környezetét. Végül feltesszük a kérdést:

 :-feltételsorozat.

Keresse meg a rendszer azokat a megoldásokat, amelyek ezt a feltételsorozatot igazzá teszik.

A Prolog a feladatot mintaillesztéssel és backtrack-kel oldja meg. Alapvető a felsorolás sorrendje: tények,

szabályok, feladat.

Nézzünk egy feladatot:

apja(jános, ferenc).

apja(ferenc, péter).

Itt van két tény, mindkettőnek két argumentuma van, két azonosító. Ilyen értelemben szimbólumsorozat. Ami

mögötte van, igaz állítások, a Prolog szempontjából tények.

Nézzünk egy következtetési szabályt:

 nagyapja(X,Z) :- apja(X,Y), apja(Y,Z).

X, Y, Z változók. Logikailag annyit jelent, hogy X nagyapja Z-nek akkor, ha X apja Y-nak, és Y apja Z-nek.

Felteszünk egy kérdést:

 :-nagyapja(Valaki, péter).

Keressük azon objektumokat, amelyekre igaz, hogy mindegyikük péter nagyapja.

Hogyan válaszolja meg a Prolog ezt a kérdést?

Mint már említettük: mintaillesztéssel: a karaktersorozatokra vonatkozóan. Abszolút a szimbolikus szinten

vagyunk.

A következőkképpen jár el a Prolog rendszer:

− Nekiesik a feladatoknak, és veszi a kérdés első feltételét, mint karaktersorozatot

− Ezek után veszi a tényeket a felírás sorrendjében és a feladat első feltételét próbálja illeszteni a tényekhez.

Először az első tényhez. (Jelen esetben nincs illeszkedés.)

− Ha nem sikerül karakterről karakterre illeszkedést találni, akkor megnézi a rendszer, hogy van-e változó. Ha

van változó, akkor a rendszer értéket ad a változónak. Most már nem a nevével, hanem az értékével hasonlít

a rendszer. Két válasz lehetséges:

− Ha talál illeszkedést, a feltételt a változó helyettesítésével olyan formára hozta, hogy megegyezik a

ténnyel. A rendszer a feladat törzséből törli az adott feltételt. Megyünk tovább a második feltétellel.

− Ha semmilyen változó helyettesítéssel nem sikerült ténnyel egyezést találni, veszi a szabályokat a

felírás sorrendjében, és az illesztést a szabály fejével játssza el. Két eset lehetséges:

− Nem talál egyezést. A rendszer megnézi, hogy van-e változó. Ha van változó, akkor a rendszer

értéket ad a változónak, és a kapott értékkel hasonlít.

− Talál egyezést, azaz a szabály feje megegyezik a feltétellel. Ez a feltétel igaz, ha a megfelelő

szabály törzse igaz. Az adott feltételt helyettesíti a feladatban az illeszkedő szabály törzsével.

Ha a ténnyel illeszthető, akkor csökken a törzs. Ha szabállyal illeszthető, akkor nőhet a törzs.

− Ha elfogynak feltételeim, kiürül a feladat törzse, megvan az első megoldás. Minden eredeti feltételt sikerült

igazzá tennem. A kérdésre a válasz igaz, és a megoldást a feladatban szereplő változók értéke adja.

Feladatunk esetén:

X ← Valaki

Z ← péter

Találtam egy szabályfejet, ami közvetlenül nem egyezik meg, de a változó egy

helyettesítésével igen. Be kell másolnom a szabály törzsét, úgy, hogy a szabály törzsben

szerepelnek azok a változók, amelyeknek értéket adtam. Makrózás.

 :-apja(Valaki,Y), apja(Y,péter)

-vé alakul a feladat törzse. Vesszük az első feltételt: közvetlenül nem illeszkedik az első tényhez, de változó

helyettesítéssel igen.

Valaki ← jános

Y ← ferenc

Így az illeszkedés fennáll. Találtam egy illeszkedő tényt, törlöm az első feltételt. A feladat

törzsében marad:

 :-apja(ferenc, péter)

Az elsővel nem egyezik, a másodikkal igen. :- . Kiürült a feladat törzse. A megoldás jános. Tehát jános

péter nagyapja.

Ez az első megoldás. Mi van, ha több megoldás érdekel?

Mi van, ha felcserélem a két tény sorrendjét? Ekkor nem tudjuk kiüríteni a feladat törzsét, zsákutcába jutunk.

Mi van akkor, ha a feladat törzse nem ürül ki ? Ekkor jön a backtrack.

Backtrack(visszalépés):

Törli az utolsó illesztés hatását, ha az utolsó illesztésnél volt változó helyettesítés, akkor a

változó értékét megszünteti, visszalép, és próbál új illesztést keresni. Ehhez, mint bármely

illesztéses algoritmushoz hozzá lehet rendelni egy illesztési fát. Tegyük fel a

 :-nagyapja(A,B).

kérdést az előző környezettel. Tehát:

apja (jános, ferenc).

apja (ferenc, péter).

 nagyapja(X,Z) :- apja(X,Y), apja(Y,Z).

 :-nagyapja(A,B)

Mikor mondja a Prolog, hogy megvan az összes megoldás?

Ekkor az illesztési fa a következőképpen néz ki:

− gyökérelem az induló kérdés

− éleit címkézzük a változó helyettesítésekkel

− a további csomópontokban ott szerepel a kérdés aktuális állapota egy illesztés után

 :-nagyapja(A,B)

 X ← A, Z ← B
 :-apja(A,Y),apja(Y,B)
 A ← ferenc
 Y ← péter A ← jános, Y ← ferenc
 :-apja(péter,B) :-apja(ferenc,B)
 zsákutca
 B ← péter
 :- kiürült, tehát van megoldás.

További megoldások keresése visszalépéssel (backtrack).

Azon levélelemeknél van megoldás, ahol a feladat törzse kiürült, egyébként zsákutcába

futottunk. Az adott úton szereplő változók értékei képezik a feladat megoldást: A ←

jános, B ← péter. Ez a megoldásfa nem létezik eleve, fel kell építeni, majd utána

bejárni. A Prolog nem egyenlő a fabejárással. Az összes megoldást akkor találjuk meg, ha a

backtrack véget ér.

Alapvetően a Prologban a szabályok rekurzívak.

Összetett objektumok (kifejezések)

− A kifejezés operandusokból, operátorokból áll. Viszont a Prolog operandusainak a köre

jóval szélesebb, mint az imperatív nyelveké. Van itt nulla-, egy-, kétoperandosú és

többoperandusú operátor.

− Az operandus lehet elemi objektum vagy változó.

− Az operandusok és bizonyos operátorok együtt összetett objektumokat (kifejezéseket)

alkotnak. Az összetett objektumok a kifejezések.

− A Prolog tudja kezelni a kifejezés mindhárom alakját: a pre-, in- és postfix alakot.

− A feltétel nem más, mint egy kifejezés.

− Kiértékelésnél a balról-jobbra szabály érvényes.

− A Prolog rendszer ismerete a beépített operátorok ismeretét jelenti.

− A programozó is definiálhat saját operátort.

− A Prolog beépített operátorainak a egy része az imperatív nyelvekből ismert operátorokkal

egyezik meg. Vannak:

− aritmetikai operátorok: +, - , *, /, div, mod. Ezek bizonyos szituációkban a

megszokott módon viselkednek (aritmetikai operátorok), néha szimbolumként.

Például: létezik egy IS kétoperandusú operátor, melynek baloldalán állhat egy változó

neve, jobboldalán pedig egy a fenti operátorok segítségével felépített kifejezés áll.

Ekkor ez egy aritmetikai operátor:

− Ha a változónak nincs értéke, akkor a változó felveszi az IS jobboldalán álló aritmetikai

kifejezés értékét. Ez azon ritka esetek közé tartozik, amikor a programozó állítja be egy változó

értékét (egyszer!).

− Ha a változónak van értéke, akkor illesztés történik az IS operátor két oldala közt, amire a

válasz logikai értékű lesz: igaz vagy hamis.

− szövegkezelő operátorok

− I/O operátorok

− tudásbázis kezelő része is van a Prolognak (deduktív adatbázis-kezelő), van kivételkezelője is, és

grafikai része is van

− Az adatszerkezetek közül a Prolog programok kezelik a:

− a listát és

− az egydimenziós tömböt.

Például:

 páros_szám(N) :- 0 IS N mod 2.

Ha nem változónév áll a baloldalon, akkor egyértelműen illesztés történik.

A backtrack technikát (kiértékelést) tudjuk befolyásolni a Prologban a vezérlésátadó operátorokkal. Ilyen például

a vágó, vagy vágási operátor. Jele: ! jel.

Például, ha csak arra vagyok kíváncsi, hogy egy feladatnak van-e megoldása vagy sem, akkor célszerű ezt az

operátort használni. Ha valahol találkozik a ! operátorral kiértékelés közben, akkor elvágom a fát, és ezen felül a

backtracket leállítom, az alsó részfára korlátozom.

 ← Ha itt elvágom, a backtrack nem lép vissza az első és második

szintre.

Példa:

 faktoriális (0,1).

 faktoriális (N,X) :-M is N-1, faktoriális (M,Y), X is N*Y.

Amit eddig feltételnek hívtunk, a kifejezés. Itt egy rekurzív szabályt láthatunk. Nézzük meg,

hogy ilyen környezetben milyen problémák adódhatnak.

− Mennyi a 0!?

 :-faktoriális(0,K).
K=1 N ← 0, X ← K.

:- Itt megvan a megoldás, :-M IS 0-1, faktorialis(M,Y), K IS 0*Y.
de a program az összes

megoldást keresi.

:-M is 0-1, faktoriális(M,Y), K IS 0*Y. esetén a nullát kezdi el csökkentgetni, így

végtelen rekurzió alakul ki, mert megengedtem, hogy a program belemenjen olyan ágba, amibe nem

szabadott volna. Itt a ! operátor szükségessége.

Javítva tehát:

faktoriális (0,1):-!.

faktoriális (N,X) :-M is N-1, faktoriális(M,Y), X is N*Y.

− Még mindig probléma van a:

: -faktoriális(0,2).

esetben. Megint végtelen a rekurzió.

A jó megoldás:

 faktoriális(0,1):-!, X is 1.

 faktoriális(N,X):-M is N-1, faktoriális(M,Y), X is N*Y.

9. AADDAATTFFOOLLYYAAMM NNYYEELLVVEEKK

Az OO paradigma pillanatnyi állapotában a legmesszebbre elviszi az újrafelhasználás és az

absztrakció eszközrendszerét. A párhuzamosság kérdésére viszont nem ad választ. Az OO

nyelvek egyrésze ismeri a párhuzamosságot, más része nem.

De van olyan nyelvcsalád, amely specialitásánál fogva „kilóg a sorból”, amely választ ad a párhuzamosság

kérdésére. Kb. kéttucatnyi nyelv tartozik ide. Ezek a Neumann architektúrát tagadják. Azt mondják, hogy a

Neumann architektúra szűk keresztmetszete a tárkezelés illetve a szekvenciális működésű processzor. Egy

z=x+y jellegű utasítás mögött sok gépi szintű utasítás áll. A tárból elő kell venni az x-szel illetve az y-nal

jelölt adatot stb., mindez szekvenciálisan működik. Ezt totálisan tagadja. Más hardverplattformot igényel.

Azt mondja, hogy minden algoritmust párhuzamos algoritmusként kell tekinteni, és az algoritmust realizáló

program pedig minden párhuzamosan végrehajtható kódot hajtson végre párhuzamosan. Totális

párhuzamosságra kell törekedni. Ez a paradigma felerősíti a párhuzamos algoritmusok kutatásának elméletét.

Gondoljunk a gyorsrendezésre: megírható szekvenciálisan, de párhuzamosan is, és ekkor az összes létező

csoportra egyszerre hajtja végre a gyorsrendezést.

Minden szekvenciális algoritmus átírható párhuzamos algoritmussá. (Eddig csak szekvenciális

algoritmusokról beszéltünk.)

Teljesen más világszemlélet. A kultúránk olyan, hogy szekvenciálisan látjuk a világot, így tanítják. Ld. az írás

olvasás tipikus szekvenciális tevékenység. Holott az agyunk párhuzamos működésű.

Mint már említettük, minden szekvenciális algoritmus átírható párhuzamos algoritmussá. A szekvenciális

algoritmusleírás egyik eszköze a folyamatábra. Ehhez hasonlóan az adatvezérelt paradigmának is van egy leíró

eszköze: egy összefüggő, irányított gráf, amelynek van egy kitüntetett kezdőpontja, vannak csomópontok,

amelyek tevékenységeket írnak le és lehet több végpontja (kimeneti pontok). Egy csomópontnak egy

tevékenység felel meg (operátorok), a műveletek realizálására szolgálnak. Az egyes programnyelvekben kérdés,

hogy mi az operátorkészlete.

Irányított a gráfról van szó, tehát a csomópontokhoz vezető- és a csomópontokból kivezető élek nyilak. Az élek

mentén a nyilak irányában ún. tokenek, adatcsoportok mozognak (míg a folyamatábra statikus).

Algoritmus: van egy input token, amit a kezdőponton keresztül halad az operátor felé. Az operátor (csomópont)

csak akkor kezd el dolgozni, amikor a bemenő élei mindegyikén megjelenik egy token. És ha rendelkezésre áll

minden adat, azonnal dolgozik vele, és a kimenő nyilak mentén kiadja az eredményt. Ez az adatvezéreltség elve.

 x

 + z

 y

Az adatcsomagok tetszőleges adatszerkezetet reprezentálhatnak, és a műveletek tetszőleges bonyolultságúak
lehetnek.

Vannak konvencionális jelölések a modellben:

− Egy él akárhányfelé ágazhat:

− Kapcsolat: a gráf különböző pontjaiból kapcsolódhatnak a tokenek. Élek nem végződhetnek élen,

csomópontban kell végződjenek. Szükséges egy gyűjtő.

Speciális csomópontok:

− Feladata: egy logikai értékű tokent produkál egy vizsgálat és feltételkiértékelés után.

− Igazkapu: két bemenő- és egy kimenő éle van. A bemenő élek egyike egy logikai értékű token, a másik

értéke tetszőleges. Ha a logikai token értéke igaz, akkor a másik tokent átengedi, egyébként nem lesz

kimenet, a kapu lezár.

 T

− Hamiskapu: hasonló az igazkapuhoz, annyi kulönbséggel, hogy hamis esetben engedi át a másik input

tokent.

 F

− Kiválasztó csomópont: az igaz- és hamis kapu kombinációja. Lényeges a szerkezet is: 2+1 bemenő- és egy

kimenő éle van. A legelső bemenő él a vezérlő él, értéke egy logikai token. A két másik bejövő token közül

kiválasztja, hogy melyiket engedi át. Ha a vezérlő token értéke igaz, akkor az első tokent teszi a kimenetre,

míg ha hamis, akkor a másodikat.

 T F

− Elosztó csomópont: két bemenő tokent és két kimenő tokent tartalmaz. A bemenő tokenek közül az első, a

vezérlő token csak logikai értéket hordozhat. Működése: ha a vezérlő token értéke igaz, akkor a bemenő

adat token az első outputon jelenik meg, ellenkező esetben a másodikon. Egyetlen csomópont, aminek két

kimenete van.

 T F

Ilyen elemekből építünk fel egy összefüggő irányított gráfot. Ezzel tudjuk leírni a párhuzamos algoritmusokat.

Az adatvezérelt paradigmán belül többféle modell létezik, attól függően, hogy milyen megszorításokat teszünk a

gráfra.

Modellek:

− Alapmodell:

Determinisztikus, csak korlátozott párhuzamosságot enged meg.

A következőket mondja:

− Az egy input tokennel indított tokensorozat hullámfrontszerűen terjedjen végig a gráfon.

− Később indított tokensorozat nem előzhet meg korábban indított tokensorozatot.

− A hullámfront mintegy összeköti a tokeneket, nem hajolhat el, nem értelmezhető ciklus és rekurzió.

 Például:

− Denis-féle (MIT) modell:

Megszorítás: követeljük meg, hogy gráfban egy csomópont csak akkor működhessen, ha nincs az output

élen token. Két hullámfront között mindig legyen operátor. A hullámfrontot eltoljuk legalább egy

csomóponttal. Így válik lehetővé ciklus létrehozása. Egy tokent visszaküldhetek, beküldhetem egy körútba,

és addig nem engedem ki, amíg valamilyen feltételnek nem tesz eleget. Itt is igaz, hogy hullámfront nem

előzhet meg hullámfrontot. De még mindig determinisztikus a modellem.

 Például:

− Színezett modell:

Jelenleg a legfejlettebb adatvezérelt programozási modell. Párhuzamos, így nem determinisztikus. Az egy

inputtal indított tokensorozatot színezzük egy szinnel. A csomópont akkor működik, ha az azonos színű

tokenek közül az összes input, azaz az összes bemenő élen azonos színű tokenek jelennek meg (addig

pufferel). Adott szintű tokent ad ki. Értelmezhető az iteráció és a rekurzió.

Nincs hullámfront. Ugyanazon feladatot megoldó gráfban az összes azonos jellegű feladat egyszerre

megoldásra kerül.

Kérdés, hogy hol van az az architektúra, ahol ez a feladat leprogramozható és futtatható? Léteznek ilyen

architektúrák prototípus szinten minden modell mögött.

Jellemzőjük:

− asszociatív tár

− A program végrehajtásánál biztosítja a párhuzamosságot.

− A tokent kezelni tudja.

− Csomópontok leprogramozását lehetővé teszi.

Példa: Az n! szinezett gráfja hibavizsgálat nélkül.

 1

 >1

 F T T

 * -1

-1 : egy csökkentő cikus

 * : egy szorzó ciklus

Ha ezek az ágak hamisak, akkor lezárul mindkét ciklus.

Példa:
 n

 ∑i2
 i=1

 1 0

 n

 ≤n

 T T F

 +1
 i2 +

Példa:

Az előző feladat általánosítása tetszőleges f függvény négyzetösszegére.

 n

∑[f(i)]2
i=k k

 0

 n

 ≤n

 T T F

 +1
 f2(i) +

Az adatfolyam nyelvek, mint
programozási nyelvek jellemzői

− Az általános csomópontokat általános függvénnyel reprezentálják. Ezeknek a függvényeknek nincs

mellékhatásuk. A paraméterátadás mindig értékszerinti. Általában nem használnak globális változókat, de ha

mégis, akkor az egyszeres értékadás érvényes. A változó értékének módosítása nem megengedett. Csak

lokális adattér van.

− Általában a rekurzió alapeszköz.

− A programfejlesztés is nagyon egyszerű. Megírok egy primitív programot, és azt transzformálom. Az így

fejlesztünk bonyolult programok biztosan jók. Egy token akármilyen bonyolult adatot ír le, akkor is egy

tokennek számít.

− Gond: az architektúra hiánya. Ezen nyelveknek létezik a Neumann-architektúrán futó implementációja.

− A programhelyességbizonyítás automatikus, és nagyon egyszerű.

− Általában fordítóprogram-orientáltak, és a gépi kódjuk ez a gráf (grafikus gépi kód). Hordozható, hiszen

ugyanazt a gépi kódot generálják. Ez a gráf automatikusan könnyen kezelhető.

Igényvezérelt programozás:
Kb. lassan 15 éve a programfejlesztés iránya: az adatvezérelt programozás kiterjesztése az igényvezérelt

programozásra. Itt eltűnik az irányított gráf, a tokenek mindkét irányban mozoghatnak. Prioritások vezethetők

be. Ez alá architektúra még prototípus szinten sem létezik. Ez még mindig kutatási szinten áll.

Adatvezérelt programnyelvek:
Néhány adatvezérelt programozási nyelv: VAL, LUCID, ID, LAU, SISAL, HDFL.

VAL: Denis féle modellt megvalósító nyelv.

 for Y:integer:=1; P:integer:=N

 do if P ≠ 1 then iter Y:=Y*P; P:=P-1

enditer

 else Y endif

 endfor

LUCID: Deklaratív plattformú.

Példa: n! kiszámítása:

FIRST(i,j)=(n,1)

NEXT(i,j)=(i-1,j*i)

OUTPUT = j AS SOON AZ i=1

