Juhasz Istvan

PROGRAMOZAS 2

mobiDIAK kényvtar

Juhasz Istvan

Programozas 2

mobiDIAK kdnyvtar

SOROZATSZERKESZTO
Fazekas Istvan

Juhasz Istvan

Programozas 2

Egyetemi jegyzet
Elsé kiadas

mobiDIAK kényvtar

Debreceni Egyetem
Informatikai Intézet

Lektor

Espak Miklds
Debreceni Egyetem

Copyright © Juhasz Istvan 2004
Copyright © elektronikus kézlés mobiDIAK kényvtar, 2004

mobiDIAK kényvtar
Debreceni Egyetem
Informatikai Intézet

4010 Debrecen, Pf. 12
http://mobidiak.inf.unideb.hu

A mi egyéni tanulmanyozas céljara szabadon letéltheté. Minden egyéb felhasznalas
csak a szerzl elGzetes irasbeli engedélyevel torténhet.

A mi A mobiDIAK 6nszervezé mobil portal (IKTA, OMFB-00373/2003) és a GNU
Iterator, a legujabb generaciés portal szoftver (ITEM, 50/2003) projektek
keretében készult.

2. OBJEKTUMORIENTALTSAG

Meg fogunk allni a programozasi nyelvek szintjén.

Az objektum-orientalt programozasi moddszertan filozofidjat — amelynek alapgondolata, hogy az adat és a

funkcionalis modell egymastol elvalaszthatatlan, 1ényegében egyetlen modell — kovetik az objektum-orientalt

programozasi nyelvek. Az OO programozasi nyelvek imperativ jellegiiek: algoritmikus szemléletet tiikroznek.

Az OO paradigma bevonul minden més nyelvi osztalyba is.

A ’60-as évek masodik felében jelenik meg a SIMULAG67-ben az OO programozasi eszkdzrendszer.
A SIMULAG67: Algol verzio, szimulacids, absztrakcidos nyelv, minden objektum-orientalt eszk6z megvan

benne. Eszak-Eurépaban sziiletik meg.

Alan Kay amerikai egyetemista 1969-ben szakdolgozataban egy 1j vildgot vazol fol: az

OO vilagot. A Xerox-ndl probalja megvaldsitani. Egy projektet szervez, melynek

célkitiizése egy személyi szamitogép megtervezése (hardver, architektira, szoftver). O

hasznalja az objektum-orientalt elnevezést, fogalmakat. (A grafikus interfész, ablak és

egér fogalma is ekkor jelent meg el6szor.) Felvazol egy projektet:

— csinalni kell személyi szamitogépet

— Windows tipustl operacids rendszert, grafikus felhasznaloi feliiletet (ekkor még csak az elektromos
irégép az input periféria)

— mindezt objektum-orientalt programozasi kdrnyezetben

1970-es évek elején megsziiletik a Xerox-nal a Smalltalk programozési nyelv, melyet

objektum-orientaltnak terveznek, tiszta objektum-orientalt nyelv, (SIMULA elemekkel).

A vilagot csak objektum-orientaltnak hagyja lattatni, masnak nem. Ekkor még a

strukturalt elv a dont6.A Smalltatkkal egylitt megjelenik egy olyan paradigma, amelyet a

szakma még nem tud befogadni, masrészt olyan hardver kell al4, ami még nem létezik. A

‘80-as évek masodik felétdl jelenik meg ilyen hardver. Ezutan Oriiltmdd elkezd terjedni az

OO. Divatta valik. A Smalltalk napjainkban is él.

Megsziiletik a ‘80-as években a C++, jelenleg divatnyelv.

1985-ben megjelenik a Meyer altal kifejlesztett Eiffel nyelv, ami az OO teriiletén azt a

szerepet jatsza, amit az eljarasorientalt nyelvek teriiletén a Algol. Nincs gyakorlati

jelentdsége.

1989: Turbo Pascal 5.5
1990: Turbo Pascal 6.0;: OO eszkOzrendszerrel rendelkezik. A ‘80-as évek masodik

felében ‘90-es évek elsd felében minden magéara valamit is ado programozasi nyelvnek
van olyan valtozata, amely mar OO eszkozrendszerrel rendelkezik valamilyen szinten.
— Java: az OO vallasanak istene. A C++ oOta egyetlen, aminek gyakorlati jelentdsége is van.

Objektum-orientaltsag jellemzoi:

— az adatmodell és az eljarasmodell elvalaszthatatlan (igy szemléli a vilagot)
— absztrakt eszkdz és fogalomrendszer: Az tjrafelhasznalhatéosagot olyan magas szintre
elviszi, ameddig lehetséges, a valos vilagot nagyon megkdzeliti.

— szemlélete: imperativ (algoritmus — kédolni kell) eszkdzrendszer

Jelen pillanatban az OO teriiletén tobbféle iskola 1étezik, amelyek bizonyos pontokon ¢lesen
vitatkoznak egymassal, nem csak niiansznyi kiilonbségek vannak koztiik. Jelen pillanatban

folyik az OO matematikai hatterének elkészitése, kifejlesztése.

Az objektum-orientalt programnyelvek
fogalomrendszere

Objektum (object):
Az eljarasorientalt nyelvek valtozé fogalmanak kiterjesztése (4ltalanositdsa), olyan konkrét

programozasi eszkdz melynek vannak:

— Attribatumai (attribute): ez az adatrész, a struktira, tetsz6leges bonyolultsagl adatszerkezet. Szokas ezt az
objektum statikus részének is nevezni.
Minden objektum mogott van egy jol definialt tarteriilet, ezen vannak az attribatumok értékeit reprezentald
bitsorozatok.
Terminologia: az obektumok allapotairdl (state) beszéliink, ahol minden egyes allapotot egy-egy
bitkombinécid ir le, ami egy joldefinialt cimen van.

— Moddszerei (method): a viselkedés leirasara szolgal (eljarasmodell leirdsara) az eljarasorientalt nyelvek
eljarasai és fliggvényei. A modszerek adjak meg nyelvi szinten az objektum viselkedésmodjat (behavior).

— Azonossaggal rendelkezik (van azonossag tudata): barmely objektum csak €s kizardlag 6nmagaval azonos,

minden mastoél megkiilonboztetett. Minden objektumnak van azonositoja (OID: object identifier). Nyelvi

szinten ezzel nem foglakozunk.
Analogia:
valtozé — név
objektum — OID (nem egy név!)
A valtozé neve igazabdl soha nem azonosité csak hatdskdron beliill egyértelmt a névhivatkozas. Az OID

viszont tényleg egyedi, még programok kozott is!

Objektum viselkedése:
Az objektum allapota iddben modosul(hat).
Modszerek csoportjai:

— le tudja kérdezni az objektum allapotat

— meg tudja valtoztatni az objektum allapotat

Objektumok élettartama:
Az objektumot létre kell hozni, és addig él, amig meg nem sziinik. A megsziintetés lehet a nyelvi rendszer
feladata, vagy a programozoé.

Az objektumazonosité minden szinten ¢él, mindig léteznie kell.

Osztaly (class):

Absztrakt eszkoz, az eljarasorientalt nyelvek tipusfogalmanak altalanositasa (gyakran itt is
tipusként emlitjiik - szinonimék). Az osztaly absztrakt adattipus abban az értelemben, aholy az
Adaban a korlatozott privat tipust hasznaljuk. Az osztaly azonos attributumi és modszerii
objektumok egyiittese. Az osztadlyhoz kothetdek az objektumok; az osztalybol

szarmaztathatdak az objektumok.

Példany (instance):

Az osztalyon beliil Iétrehozok egy objektumot: példanyositas (instantiation).

— Az adott objektum adott osztaly példanya. Minden objektum tudja, hogy melyik osztalynak példanya.
— Adott osztalyhoz tartoz6 minden példany ugyanolyan attributumokkal és mdodszerekkel rendelkezik. Minden
példany tudja, hogy milyen mddszerekkel rendelkezik.

— A modszereket mindig konkrét példanyon futtathatom le, ezen értelmezhetdk: az aktualis példanyon.

— Példany létrehozasa: ugyanaz az adatszerkezet ujra és Ujra megjelenik a tarban. A modszereket nem
tobbszorozi !

— Létezhetnek olyan attributumok és olyan modszerek, amelyek nem arra szolgalnak, hogy az egyes
példanyok allapotait és viselkedését vizsgaljuk veliilk, hanem magahoz az osztalyhoz tartoznak. (Példany-
attribiitum, példanymadszer; osztalyattributum, osztalymodszer)

— Osztalyattribatum: hany darab példanya van (az osztaly kiterjedése).

— Az osztalyattributumok nem t6bbszor6z6dnek.

Az OO szemlélet szerint eldszor 1étre kell hozni egy osztalyt, leirni, hogy a hozza tartozé objektumoknak milyen
attribiitumai és modszerei legyenek. Es ezek utan az osztalyhoz kapcsolodoan és osztalyon beliil 1étre lehet hozni
objektumokat. Példanyositas utan az osztaly példanyair6l beszéliink.

Oroklédés (inheritance):

Az tujrafelhasznalhatosag eddig legteljesebb valasza: objektum-orientalt programozasi elv: az osztdlyok nem
figgetlenek egymastol, specialis viszony értelmezhetd kozottiik, ez az 6rokldédés. Ez a viszony aszimmetrikus.
(Az absztrakciot a lehetd legmesszebb elviszi, viszont a parhuzamossagra nem ad valaszt, bar az objektumok
parhuzamosan léteznek. Nyelvi szinten nem mindenhol jelenik meg ez explicit modon. Az adatfolyamnyelvek
adjak a parhuzamossagra a legpozitivabb valaszt.)

Az oroklédés osztalyokhoz kotott fogalom: két vagy tobb osztaly kozott értelmezhet6.A szuperosztalyhoz
kapcsolododan tudunk 1étrehozni alosztalyokat.

szuperosztaly (superclass) / sziildosztaly / dsosztaly / alaposztaly

alosztaly (subclass) / gyerekosztaly / szarmaztatott osztaly
Az alosztaly atveszi, 6rokli a szuperosztaly attriblitumait és modszereit (azokat, amelyeket a

lathatosag modszerével nem tiltottunk le).

Oroklésnél azonnal megvan az ujrafelhasznalhatosag, rendelkezésre 4ll az 6sszes eszkoz.
Az alosztaly ezen tilmenden:

— Uj attribitumokat vezethet be

—) mddszereket vezethet be

— (Ujraimplementalhatja a modszereket

— torolhet attributumokat

— tor6lhet modszereket

— alathatdsagi szabalyokat ujraértelmezheti, hatasukat felfiiggesztheti

— atnevezhet attribitumokat

— duplikalhat attribatumokat

— duplikalhat médszereket

Oroklés: valamit egy az egyben 4tvehetek, ha akarom, médosithatom.

Aszimmetria: a szuperosztaly nem latja, nem manipulalhatja alosztalyait, de forditva igen. A szuperosztalyt teljes
mértékben latja az alosztaly. Az alosztaly minden objektuma objektuma a szuperosztalynak is! Viszont forditva
ez nem all fenn. fgy minden rendszerben: mindeniitt, ahol egy szuperosztaly egy példanya szerepel, szerepelhet
az alosztaly egy példanya is és forditva nem igaz. Egy osztalybol tetszéleges szamu alosztaly szarmaztathatod
minden nyelvben.
Az egyes rendszerekben kérdés, hogy: az alosztalynak hany szuperosztalya lehet?

— egy: egyszeres 0roklodés (single)

— akarhany: tobbszoros 6roklodés (multiple). Problémak: azonos nevil attributumok, modszerek esetén:

néviitk6zés; ezt a rendszernek kezelnie kell. Rendszerfiiggd, hogy hogyan teszi.

Alosztalybol masik alosztaly szarmaztathato: droklési hierarchia. Ez egyszeres 6roklodés esetén fa., tobbszorods
6roklodés esetén aciklikus graf.

Oroklési fa:

T

Nyilt alakzat

5

— attributumai lehetnek: vonalvastagsag, nagysag, szin, hattér, kitoltottség ...

0

Példaul az Alakzat osztaly

— modszerei lehetnek: kirajzol(), elforgat() ...

Az Alakzatot elkezdem specializalni, ekkor a Zart alakzatnal johetnek mégujabb
— jellemzék: teriilet, keriilet ...
— modszerek: teriiletszamitas(), keriiletszamitas() ...

A Zart alakzat Alakzat is egyben, igy a Zart alakzat minden példanya az Alakzatnak is példanya (is_a).

A Haromszognek is lehet egy teriilet() modszere: atveszem a Zart alakzattdl, de ezt Gijraimplementalom, hiszen a

Zart alakzat teriiletét csupan kozelitéleg tudom megadni, mig a Haromszdgét pontosan.

Terminoldgia:

Fa gyokéreleme: 0Ososztaly, amibdl az dsszes tobbi szarmazik.
Eléd: pl. a Kor elddjei: Ellipszis, Zart alakzat, Alakzat.
Leszarmazott: pl. a Zart alakzat leszarmazottjai: Ellipszis, Kor.

Kliens osztalyok: azok az osztalyok, amelyek kozott nincsen 6roklédési kapesolat. P1. Kor — Otszog.

Bezaras (encapsulation):

Az OO nyelvek legkényesebb fogalma: altalaban e fogalom mentén valnak el az iskolak, attol

fliggden, hogy melyik mit vall réla. Az eljarasorientalt nyelvek hatiskér fogalmanak, a

lathatosagnak a kiterjesztése. A legtobbet félreértelmezett fogalom.

Nem objektumhoz kapcsolodik.

Bezaras_1: Nem objektumhoz kotddik. Az osztdly egy absztrakt adattipus. Az osztaly rendelkezik egy
interfész €s implementacios résszel. Az osztaly objektumaihoz csak az interfész részen keresztiil férhetiink
hozza, az implementacidhoz egyaltalan nem, korlatozott hozaférést jelent. Ez az informaciorejtés elve
(Information hiding). Egy osztaly objektumai egy az osztaly altal definialt interfészen keresztiil érhetdk el,
és csak igy! A nyelv a benne definialt attributumokat és metodusokat két részre osztja:

— Nyilvanos rész: amelybe tartoz6 eszkdzoket minden kliens osztaly 1at.

— Privat rész: kiviilrél nem lathato.
Bezaras 2: A bezaras eljarasorientalt nyelvek hataskor fogalmanak altalanositaisa OO korokben, ahol
garantaltan létezik egy olyan eszkodzrendszer, mellyel a programozoé tudja szabalyozni, hogy az osztalybol

mi lathat6 és ki szamara.

Polimorfizmus (polimorphism): vagyis tobbalakusag. Kétfajta polimorfizmus van:

Objektum polimorfizmus: Minden objektum tudja sajat magarol, hogy melyik osztaly példanyaként jott
létre. Egy objektum objektuma sajat osztalyanak, de az 6roklodési hierarchiaban objektuma valamennyi
elédosztalynak is egyben. Igy minden egyes objektum szerepelhet minden olyan szituicidban, ahol az
6sosztaly objektuma szerepelhet, nem csak a sajat osztalya példanyaként hasznalhato.
Moédszerpolimorfizmus (overriding):
Egy leszarmazott osztaly egy Orokolt modszert Gjraimplementalhat: a modszer specifikacidja valtozatlan
marad, de az implementacié mas lehet az 6r6klédéi vonalon. Ld.:

— Zart alakzat: teriilet(), keriilet() médszer

— Haromszog: teriilet(), keriilet() modszer mads! (j implementacio)

Koétés (binding):

A modszerpolimorfizmushoz kapcsolodik. Ha van egy fiiggvény és tobb implementacié hozza, kérdés, hogy
mikor melyik kod kapesolodik a specifikdciohoz. Eszerint beszéliink:

— Statikus (static) mas néven korai (early) kotésrol: a névhez a kdd hozzarendelddik forditasi idében. Az OO

rendszerek tobbsége forditdprogram orientalt.

— Dinamikus (dynamic) vagy késdi (late) kotésrél: kotés futdsi iddben torténik, igy
ugyanahhoz a névhez maés-mas kod tartozhat, attél fiiggben, hogy melyik
osztalykornyezetben dolgozunk: az aktudlis példany osztalyaban definialt kod, vagy (ha
nincs) a hierarchian felfele a legkdzelebbi kod kotddik.

A nyelvek tobbsége mindkét kotést ismeri, kérdés, hogy melyik az alapértelmezett.
Uzenet (message):

Tipikusan Smalltalk fogalom. A Smalltalk filozofia szerint az objektum {izenetek segitségével
kezelhetd. Ha az objektumtdl kérni akarok valamit, akkor tizenetet kiildok. Az objektum veszi
az lizenetet, én nem tudom, mi torténik kézben, nem tudom, hogy az objektum hogyan taldlja

ki a vélaszt, és az objektum vélaszol.

Absztrakt osztalyok

Absztrakt osztalyoknak hivjuk azokat az osztalyokat, amelyeknek nincsenek példanyaik, amelyek nem példanyosithatok. Csak drokoltetésre
valo. Beszélnek nyelvek absztrakt modszerekrél. Ezek azok a modszerek, amelyeknek csak a specifikaciojuk van megadva implementacio
nélkill. Az abszrakt osztalyokbol konkrét, példanyosithato osztalyok szarmaztathatok. Az egész eszkozrendszer az absztrakciot szolgalja. A
rendszerfejlesztési ciklusban és a programfejlesztésnél lesz érdekes.

Konténer osztalyok (Container)
Olyan adatszerkezet, amely objektumokat tartalmaz.
Alapvet6 a tdmb, lancolt lista, verem, sor, stb. Nem minden nyelvben vannak realizalva a konténer osztalyok, a

programozonak kell megvaldsitania. Alapvetd szerepiik az adatbaziskezeloknél van.

Kollekciok (Kollection)
Objektum-orientalt adatbazisok esetén a konténerosztalyok helyett a terminologia: kollekcié (Collection). Ezen

kollekcioval kapcsolatos az iterator fogalma.

Iterator
Altaliban ez is egy osztaly, tipus, ennek példanyaihoz tartozé objektumokat be tudjuk jarni. A bejaras az

adatszerkezeteknek megfelelden torténik.

Paraméterezett osztalyok:
Egyes objektum-orientalt nyelvekben vannak Uin. paraméterezett osztalyok, a C++ terminoldgia szerint template-

k. Lényegében megfelelnek osztalyszinten az Ada generikusnak.

Objektumok élettartama:

A példanyositds mindig egy explicit tevékenység eredménye, minden objektumot minden

nyelvben a programozoé hoz 1étre. Meddig ¢é1?

- A nyelvek egy részénél az objektumot megsziintetni is explicit modon kell, az objektumok torlése is a
programozo feladata. A nem tisztan objektum-orientalt nyelvek egy része vallja ezt az elvet. Ld. C++.

- A nyelvek masik része (nagyobb része) alkalmaz egy automatikus objektum torlési mechanizmust (garbage
collection), amelynek a feladata az objektumok megsziintetése aszinkron modon ugy, hogy azzal a
programozénak ne kelljen foglalkoznia, és gy, hogy a tordlt objektumok tarhelye ismét felhasznalhato
legyen. Ez az automatikus tarfelszabaditds nem csak az objektum-orientalt nyelvek sajatja, hanem egy

tarkezelési technika. Tobbféle algoritmus van arra, hogy a rendszer hogyan donti el, hogy mely objektum

tor6lhetd. Nyilvanvalo, hogy garbage collection algoritmus sokkal kényelmesebbé teszi a programozast.

Egységesség:

A nyelvben létezik-e mas eszkdzrendszer, mint az objektum? Minden objektum, vagy van

olyan eszkdz, ami nem az?
Ezek alapjan az OO nyelveknek két nagy csoportja van:

— A tisztan OO nyelvek azt valljak, hogy minden objektum (osztaly, attributum, modszer,
objektum). Csak olyan eszkozoket tartalmaznak, amelyek obektumorientaltak, és nincs
mas eszkoz. Pl.: Smalltalk, Eiffel csak OO elvek alapjan miikddik. A tisztan OO nyelvek
esetén e nyelvi rendszer egyetlen osztalyhierarchiabol all. Példaul a Smalltalk egy
osztalyhierarchia. A programozas pedig nem mas, mint definialjuk a sajat osztalyainkat, és

mwor

azokat elhelyezem az osztalyhierarchiaban: az adott osztalyhierarchiat bovitiik, és ezekbol

szarmaztatunk objektumokat.

A hibrid nyelvek alapvetden eljarasorientalt, logikai, funkcionalis, stb. nyelvi eszkdzoket
tartalmaznak, és ez a nyelvi szkozrendszer bovil OO eszkdzrendszerrel.Van tehat
objektum is, és van nem objektum is. Lehetnek benniik eljarasorientalt, deklarativ,
funkcionalis, objektum-orientalt eszk6zok. Programozhatunk benne objektumorientaltan
is. A nem tisztan OO nyelvek nem tartalmaznak osztalyokat, incs osztalyhierarchia.
Definialhatunk 06nallo osztalyokat, és egymastol fligetlen osztdlyhierarchidkat. Itt is
vannak szabvany osztalykonyvtarak, csak ezek nem a nyelv részei, és ezektdl fuggetleniil
is lehet programozni. Majdnem minden nyelvnek van olyan kiterjesztése, amelyben

szerepelnek OO eszkozok. Ilyenek példaul az OO COBOL, Object Pascal, C++.

/ Pascal

Terminologia:

— Objektum alapu nyelvek: (object-based) ha a nyelvben van objektum fogalom ¢€s bezaras,
de nincs osztaly és oroklés. (Pl. Ada)

— Osztaly alapu nyelvek: (class-based) van osztily, bezaras, objektum fogalom, de nincs
oroklodés. (PL.: CLU)

— Objektum-orientalt nyelvek: (object-orinted) minden létezik: bezaras, osztaly, 6roklodés
fogalom. Ezek a nyelvek (imperativ nyelvként) forditoprogramosak.

— Es végiil létezik az OO-nak egy olyan specialis nyelve, amelyben nincs osztaly fogalom,

de minden mas OO eszkdz megvan benne.

Programozasi nyelvek hierarchigja:

(nyil: szdrmazik, hatds; alahuzés: objektum-orientalt)

ALGOL60

(o3 VIN] ~ CRAAI I T

AMNAL . o CAAALI I T

MNAL . o A d 7~

T eaha o

CAAAI I T

v / OnNAAI I T

A .1 | RS

.

wale

CRAAI I T

AA e .

—
P>
<

Y

‘l’ VisualA

nNA

| p PN Py A V @ Y NN

3. JAVA

A Javat a SUN fejlesztette 1994-t61.

A Java, mint nyelv nyilt, heterogén, tetszéleges platformokat egyesité elosztott rendszerek nyelveként sziiletik
meg. A C++ tokéletesitéseként jon létre. A Java megsziinteti a C++ néhany eljarasorientalt nyligjét és a mutato-
orientaltsagot. Meghagyja a kifejezésorientaltsagot. Tisztabb objektum-orientalt nyelv, mint a C++, majdnem
tiszta OO nyelv, kevésbé hibrid nyelv. A Java tervezési célkitiizése a hordozhatésag. Forditoprogramos, de a
Javaban megirt forrdsprogramot a Java-fordité un. bajtkdd formatumra forditja le (ez a bajtkdd hordozhatd), és
ezt a leforditott programot pedig az in. Java Virtualis Gép (Java Virtual Machine - JVM) futtatja le. A JVM tehat
egy interpreter, de készithetd hozza célhardver, amelynek gépi kodja a bajtkdd, illetve megadhato olyan fordito,

amely a bajtkddot valamely konkrét gépi kodra forditja le.

Egyrészt a JVM tekinthet6 egy:

- Absztrakt szamitogépnek, amelynek a gépi kodja ez a bajtkod, és interpreteres, amelyet (altalaban
szoftveresen) szimuldlunk egy konkrét platformon. Ennek a koncepciénak a nagy elénye, hogy a Java
programok hordozhatoéak. Ugyanaz a bajtkod jon 1étre, ugyanaz a JVM van megirva minden platformon.
Egységes. A JVM feloldja az egyes platformok kozotti kiilonbségeket.

- Elképzelhetd, hogy a JVM egy tényleges hardver, a bajtkod mogott egy célhardver van. Es ezt a bajtkodot

tovabbforditom egy adott processzor gépi kodjara.

A Java nyelv:
- A Java meglehet6sen magas szintre elviszi az absztrakciot.
- Halobzati kdrnyezetben biztositja az ujrafelhasznalhatosagot.

- Parhuzamos programozast is lehetové tesz.

A JAVA FILOZOFIAJAN KERESZTUL BEMUTATVA
AZ OBJEKTUM-ORIENTALTSAGOT

Egyesiti az eddig targyalt fogalmakat.

Karakterkészlet
Az UNICODE 16 bites kodtablan alapul, ahol betli minden nyelv betiije lehet. Tartalmazza az

O0sszes nemzetkozi abe-t.

Egy baj van, hogy a kiilonb6z6 platformok, az operacios rendszerek egy része ezzel az UNICODE-dal nem
tudnak mit kezdeni, nem tudja kezelni ezt, tehat konkrét platformon ez az eldny nem érvényesiil. Ezért

maradunk az eddig megszokott ASCII valamely valtozatanal. A kis- és nagybetiit megkiilonbozteti.

Azonosito

Az azonositdé fogalom a szokdsos, azzal a megjegyzéssel, hogy betli nem csak az angol abc betiii, hanem a

nemzetkdzi betiik, és az és $ jel is ide tartozik.

Kulcsszavak

Eléggé C++ szerliek. A CONST és a GOTO alapszo, de nincs implementalva, nincs mogotte semmi.

Standard azonosito

Nincs.

Megjegyzés
Haromféle megjegyzés formatummal dolgozik:

-/ -tol sorvégéig megjegyzés.

- /* * zardjelek kozott tetszéleges hosszan, ahol sz6koz az elhatarold.

/¥* */ dokumentacios megjegyzés. (Ezzel nem foglalkozunk.)

Cimke

A cimke azonosito, utasitas el6tt all, kettdsponttal elvalasztva. Minden utasitas cimkézhetd.

Tipus: Nem objektumok
Mivel 1éteznek a Javaban olyan eszk6zok, amelyek nem objektumok, ezért majdnem tiszta OO nyelv.
I[lyenek példaul:
- Beépitett tipusok:
- Dboolean
- char
- Dbyte
- short
- int
- long
- float
- double
Ezek az eljarasorientaltsag értelmében tipusok. Nincs mutatd tipus, de van logikai. Ezek
tartomanyainak elemei jelenhetnek meg literalként.
Szerepiik: valtozokat lehet velilk deklaralni, amelyek szintén nem objektumok. Létezik tehat a

Javaban a hagyomanyos valtozo fogalom.

- Beépitett osztalyok: az egyes tipusok osztalyvaltozata, amelyek példanyosithatok. Neviik ugyanolyan,
mint a beépitett tipusoké, annyi kiilonbséggel, hogy ezek mindig nagybetiivel kezdddnek. Pl
Boolean, Char, Byte, stb. (Minden tipusnak 1étezik az osztalyvaltozata.)

A strukuralt tipusok koziil 1étezik az egydimenzids tomb. Tobbdimenzids tomb nincs. Az index 0-t6l

indul. A név mogott [] zarojel jelzi, hogy tombrél van szo.

Literal
Léteznek C-szeri literalok, amelyek a beépitett tipusok értékkészletébol valok.

- Taf : karakteres literal

- ”alma” : sztring literal

Beépitett nevesitett konstansok
Ilyen példaul:
- true, false
- null objektum
Neviik foglalt sz6.

Valtozo
Valtozo6 deklaracio C-szeri:

tipus névlista;

A deklaracioban kifejezéssel kezddérték adhatd a valtozoknak futasi idében kiértékel6dd

kifejezéssel:

int x=0;

Automatikus kezddértékadas nincs. Az inicializalast a Java megkoveteli.

Kifejezeések

A C kifejezés fogalmat veszi at a C++-on keresztiil. C, C++ szerli a precedencia tablazat és kiértékelés, de a
kiértékelést a hivatkozasi nyelv szabalyozza. Joval kevesebb implementaciofiiggd rész van, mint a C-ben. Ha a
C-ben meghivok két fiiggvényt, €s 6sszeadom oket, akkor implementaciofiiggd a kiértékelés, de a Javaban nem.
Szigoruan tipusos nyelv, azzal a megkdtéssel, hogy a konverziot bizonyos esetekben megengedi (nem ugy, mint

az Ada).

Utasitasok

1. A deklaracios rész csak valtozé deklaraciobol all.
2. A végrehajthato utasitasok:
- Kifejezés utasitas. Ld. értékado kifejezés.
- Uj objektum létrehozasa. Példanyositds, ami a Java szempontjabél egy miivelet. Ld. precedencia
tablazat.
- Moddszerhivas.

- Vezérl6 utasitasok: 1d. késébb. C, C++ szerii.

Blokk:
- Ablokk { } zardjelek kozott szerepel.

- Cimkézhetd.

- Tetszdleges mélységben egymasba skatulyazhato.

- Valtozo blokk lokalis valtozdjaként deklaralhato.

- A blokkon beliil tetsz6leges a deklaracios- és végrehajthato utasitasok sorrendje.

- A lokalis valtozok hataskore statikus. Létezik lokalis valtozo, de nincs lyuk a hataskorben szituacid, mert a
Java nem engedi meg az jradeklaralast.

- Ezen valtozok élettartama dinamikus.

A nemobjektumok szerepe a modszerek torzsén beliil van.
Vezérlé utasitasok

Feltételes utasitas

IF (feltétel) utasitds ELSE utasités;

Teljesen C-szerti, annyi eltéréssel, hogy a C-vel ellentétben a feltétel logikai tipust.

Tobbszoros elagaztatas
SWITCH (egész kifejezés) {
CASE egész literal: utasitasok
[CASE egész literdl: utasitéasok]
[DEFAULT: utasitésok]
}
Eléfeltételes ciklus
WHILE (feltétel) utasités;

Végfeltételes ciklus
DO utasitédsok WHILE (feltétel);

Akkor ismétel, ha a feltétel igaz.

El6irt 1épésszamu ciklus

FOR (pl; p2; p3) utasités;

Break utasitas

BREAK [cimke];

A fenti konstrukcidkban is ott vannak a blokkok.

A break utasitas befejezteti azt a legbelsé blokkot, amelyben ezt az utasitast kiadtam. Ha meg van adva az
opcionalis cimke, akkor barmelyik szintrél befejeztethetek egy egész blokksorozatot. Viszont modszerekbol és

inicializal6 blokkokbol nem lehet kilépni.

Continue utasitas
CONTINUE [cimke];
Ciklusok esetén adhato ki: a torzs hatralevo részét nem hajtja végre, hanem visszatér a vezérld részhez, a fejhez.

Ha szerepel a cimke, akkor az adott cimkéjii ciklus fejére tér ra a vezérlés.

Return utasitas
RTURN [kifejezés];

Fiiggvényben kotelez6 a return kifejezés;

Osztalyok

Az osztaly egy absztrakt adattipus implementécioja! A hangsuly a tipuson van.

A Java program legkisebb egysége az osztaly, igy a programozés az osztalyok, megirasabdl all. Az osztaly
egyben a legkisebb forditasi egység. Természetesen egy forditasi egység akarhany osztalyt tartalmazhat, de egyet
mindenképpen kell.

Az osztalyok csomagokba szervezhetok. Ha egy osztalyt leforditunk, meg kell mondani, hogy melyik csomag
osztalya. (Még visszatériink ra.)

Egy osztaly attribitumait valtozoé deklaraciok (adattagok — data member), modszereit fliggvény definiciok
alkotjak (amely fiiggvényeket a Java tagfiiggvényeknek — member function-nek hiv). K6z6s néven tehat tagokrol
beszéliink. Egy Java osztaly tagok segitségével épithetd fel. Egy osztaly minden példanya sajat készlettel
rendelkezik az adattagokbol (példanyvaltozok).

A példanyositas soran az adatoknak megfelelé tarrész lefoglalodik. Ahany példany van, annyiszor foglalunk
helyet a tarban.

Egy osztadly valamely mddszerének meghivasanal meg kell adni, hogy melyik példanyra hivtuk meg. Ez az
aktualis példany.

A Java ismeri a példanyvaltozo, példanymddszer illetve osztalyvaltozok és osztalymodszerek fogalmat. A
példanyvaltozok a példanyok allapotait, a modszerek a példanyok viselkedését irjak le. Az osztalyvaltozok és
osztalymodszerecket a Java statikus tagoknak hivja. Ezek magdhoz az osztalyhoz kapcsolddnak, az
osztalyvaltozokbol egy-egy van és az osztalymodszerek, ezeken dolgoznak. Ezek akkor is miikodnek, ha

egyetlen példanyuk sincs.

Az osztaly szerkezete:

- fej

- torzs

Fej:

[mbébdositd] CLASS név [EXTENDS szuperosztaly név]

Absztrakt adattipus 1étrehozasa a Javaban.

A Java az egyszeres 0roklddés elvét vallja. Ha nem adok meg szuperosztalyt, akkor

automatikusan az Object osztalyhoz fog kapcsolodni az adott osztily. Az

osztalyhierarchia egy fa, amelynek gyokere az Object osztaly. Terminoldgia: a Java

idénként nem 6roklédésrdl, hanem kiterjesztésrdl beszél.

Moédositok a kdvetkezok lehetnek:

- abstract: absztrakt osztaly definicio, nem példanyosithato.

- final: ennek segitségével olyan osztalyt definidlunk, amely osztaly nem kiterjeszthetd.

Az osztalyhierarchidban levélelemet definidlunk ezzel, nem lehet beldle rokdlni.
- public: ezzel olyan osztalyt definidlunk, amely barmelyik csomagbdl lathato. (Egyébként
csak abban, amelyikben van.)

Tobb is szerepelhet bel6liik értelemszeriien egyszerre: pl. abstract és final-nak nem lenne értelme.
Torzs:

{ } zardjelben tetszbleges sorrendben tetszéleges szamu tagdefinicio all.
Attributumok
Egy példanyvaltozo definicidja:

[médositd] tipus név [=kezddbérték] [,név [=kezddérték]]...
— A kezdéérték kifejezés. Az objektum szarmaztataskor sem lehet hatrozatlan allapotban, alapallapotba kell

hozni (1d. konstruktorok). Ha nincs explicit kezd6értékadas, akkor a forditdé implicit kezddértéket ad a

példanyvaltozoknak:

logikai tipus esetén: false

a tobbi beépitett tipus esetén: 0

objektum tipus esetén: null értékre allit.

A modosito:

Itt is 1étezik final, amely egy konstans adattagot ir el6 (nem valtoztathatoé adattag), vagyis ha egy
explicit kezdoértékkel ellatott adattagot definidlunk, az nevesitett konstans lesz. Ha final esetén nem
adunk meg kezddértéket, akkor ez egy lires nevesitett konstans lesz, ennek kezddértékét konstruktorral
kell rogziteni.
A lathatosagot (a bezarast) a kdvetkezé modon szabalyozza:
— Alapértelmezés szerint (amikor nincs alapszo6) “friend” azaz félnyilvanos. Ekkor ez az adattag az
adott csomagbdl latszik, ahol az osztalyt elhelyeztem.
— A private (privat) alapszoval ellatott adattagot csak az adott osztaly latja. Ezeket az osztaly
bezarja.
— Haaprotected (védett) az alapszo, akkor ezt csak a leszarmazottak lathatjak.
— A public (nyilvanos) alapszoval deklaralt adattag mindenhonnan latszik.
— Vannak még tovabbi mddositok, amelyekkel késébb foglalkozunk.
Modszerek

A modszerek definicidja a kdvetkezOképpen néz ki:

[médosito] fej tdérzs

A fejet szokas objektum-orientalt korokben signature-nek (lenyomat, szignatura) hivni (ez a korabbi

specifikacionak felel meg), és a torzs a szokasos. Ld.: C, C++. (Kiegésziil majd a kivételkezelésnél.)

A modositok a példanyvaltozoknal megbeszéltek, plusz bejonnek Gjabb modositok:

final: nem implementalhatd Gjra, nem polimorf.

abstract, mellyel absztrakt mddszer definiciot irunk eld. Ilyenkor nincs torzs (implementacio), csak
absztrakt osztalyokban szerepelhet értelemszeriien. Valamely leszarmazott adja meg az implementaciot.
Egy osztaly mindaddig absztrakt, mig legalabb egy moddszere absztrakt. Absztrakt osztalyokban
szerepelhet nem absztrakt modszerdefinicio is.

A static modositoval statikus tagokat definialhatunk.

Itt is vannak tovabbi modositok, amelyekkel kés6bb foglalkozunk.

Az osztalyon beliil definialt modszerek latjak az osztalyon beliil definialt minden adattagot. Amikor egy
modszert meghivok, az nem mas, mint egy fliggvényhvas.

Paraméterkiértékelés modszereknél:

sorrendi kotés

- szambeli egyeztetés
- tipusegyeztetés

Latni fogjuk, hogy e két utdbbi nagyon-nagyon Iényeges.

Paraméteratadas:

A paraméteratadas értékszerinti.

Hivatkozas

Mingésitéssel hivatkozunk egy tagra.

csomagnév.osztidlynév.objektumnév. tagnév

Példa osztalydefinciora a Java utikalauzbol:

public class Alkalmazott{
String nev;
int fizetes;

void fizetesEmel (int novekmeny) {

fizetes = fizetes+tnovekmeny;

boolean tobbetKeresMint (Alkalmazott masik) {

return fizetes > masik.fizetes;

- Van két példanyvaltozo:
- név,amia String osztaly egy példanya
- fizetes, amiegy egyszerl tipusu adattag.
- Van két példanymodszer:
- fizetesEmel : egy eljaras

- tobbetKeresMint :egy fliggvény, benne return kifejezés;

Konvencio:
- Az osztalynév nagybetlivel,

- A tagnév kisbetlivel kezdédik.

Modszer hivasa:
- Vagy kifejezés

- vagy utasitds: valamit csindl, azaz mellékhatasa van.

System.out.println (”szdvegkiiréas”);

Példanyositas

A new operator segitségével torténik, amely referencia tipust operator. Amikor egy objektumot hozok létre, egy
specialis valtozot definidlok. A valtozo neve segitségével nevezziik meg az objektumot. .
Alkalmazott a;
Definialunk egy osztalyt, az osztaly ezaltal része lett a hierarchianak. Definialhatok ilyen tipusu valtozokat. Az a
Alkalmazott tipust lesz. Ez nem példanyositds, nem rendelkezik értékkel.
Amennyiben egy Alkalmazott osztalybeli példanyt akarok definidlni, a kovetkez6 modon tehetem meg:
Alkalmazott a=new Alkalmazott();
Ekkor 1étrejon egy a nevi valtozo: lefoglalodik egy tarteriilet szamara. A new hatasara valahol hely foglalodik a
példanyvaltozok szamara, azok kezdéértéke bedllitasra keriil (a megirt vagy default Alkalmazott ()
konstruktor hatasara), és az a valtozo értekiil kapja a lefoglalt teriilet kezddcimét.
Ez azonban nem egy mutat6 tipus. Ezt a Java referencianak hivja. Kiilonbség a referencia és a
mutato kozott: az a valtozo mindig a mogotte 1évo objektumot fogja hivatkozni, nem cimként

kezelendd, értéke nem machinalhatd: nem lehet példaul hozzaadni egy értéket, csak az a nevii

objektummal dolgozhatok.

Lehet:

Alkalmazott a, b;

new Alkalmazott();

b = a;

a.fizetes=50000;

Ha valamely osztaly definicidban ilyen adattagot definidlok, megtehetem:

final Alkalmazott a=new Alkalmazott () ;
ami annyit jelent, hogy definidltam egy a nevill referencia tipusti valtozét, amely mindig
ugyanarra az alkalmazottra mutat (amely tetszés szerint valtoztathatja az allapotat), és nem
cimezhet mas objektumot.
A JVM minden példany vonatkozasaban tartalmaz egy referenciaszamlalot, amelyet a JVM az objektum

1étrejottekor rendeli hozza az objektumhoz. Ez a referenciaszamlald (mely megmutatja, hogy hany valtozo cimzi

az objektumot) nd, ha hivatkozok egy példanyra, és ha megsziintetek egy hivatkozast, csokken. Erre épit egy

garbage collection-t (szemétgyljtogetés). Ha a referenciaszamlalé értéke 0, akkor az adott példany tordlhetd, a
rendszer folszabaditja a helyét. Automatikus.

a = null;
barmikor lehet. Ez megsziinteti a referenciat. Nem kell explicit moédon felszabaditani egy foloslegessé valt

objektum teriiletét.

Statikus tagok

Statikus adattagok
Alakja:
static int nyugdijKorhatar = 65;

Osztalynévvel mindsithetd:

Alkalmazott.nyugdijKorhatar;

Statikus modszerek

Példaul:
static void nyugdijKorhatarEmel () {

nyugdijKorhatar++;

Osztalymodszereknél nincs példany.

Féprogram

A program inditasakor egy osztalynevet kell megadni, amelyben van egy main nevii eljaras a kovetkezo
specifikacioval:

public static void main (string args(])

— A virtualis gép ennek adja at el6szor a vezérlést.
— A specifikacio kotott
— Paramétere egy tomb, amely az inditaskor megadott argumentumokat tartalmazza. Ezek megadasa, szerepe

rendszerfiiggd.

— A program befejezddik, ha:
— Ez befejezddik vagy

— Ha a programon beliil meghivjuk a System osztaly exit modszerét.

Ha egy osztaly definicidjanal nem adunk meg szuperosztalyt, akkor automatikusan az Object osztaly alosztalya

lesz. Ez az osztaly a hierarchia gyokere a Javaban.

Példa:
class Factorialf{
public static void main(String[] args) {

int factorial = 1;

int 1 = 1;

while (i < 10) {
factorial = factorial * 1i;
System.out.println(i + “!="” + factorial + “~ "7);
it++;

}

System.out.println();

A thisésa super pszeudovaltozd

Egy moddszer térzsében hasznalhaté a this és a super pszeudovaltozo. Ezzel hivatkozhatunk egy modszer
torzsében a megfeleld aktualis példanyra, illetve a megfeleld szuperpéldanyra.
boolean kevesebbetKeresMint (Alkalmazott masik) {
return masik.tobbetKeresMint (this);

}

A this ésa super szavak talterheltek a Javaban.

Modszerek tulterhelése

A modszernevek talterhelhetdk a Javaban, azaz tobb modszert ugyanazzal a névvel nevezhetiink meg, ha a
formalis paraméterek szdma vagy a sorrendi kotés értelmében a tipusa eltérd. Ekkor a modszer meghivasakor a
megfeleld kodot a forditd az aktualis paraméterek szama és tipusa alapjan valasztja ki. A paraméterkiértékeléskor

dertil ki, hogy melyik a meghivando6 kéd. Ld. Factorial példanal a println () mddszer esetén.

Polimorfizmus

Egy 6rokolt példanymoédszer implementaciodja tetszés szerint megvaltoztathatd. Az ujraimplementalt modszernek
feliilrél kompatibilisnek kell lennie az 6r6kolt modszerhez, azaz:

— Specifikaciojuk megegyezik.

— Az yjraimplementalt modszerek csak azokat a kivételeket valthatjak ki, mint az 6rokolt modszer.

— A bezarast csak enyhiteni lehet, sziikiteni nem: pl. protected — public lehetséges, de forditva nem.

A Java a dinamikus (késdi) kotés elvét vallja, nem kell kiilon eléirni, mint a C++-ban. (Nem kell virtuall!)
Egy mddszer meghivasakor egy modszer nevéhez mindig az aktudlis példany osztalyaban definialt, vagy a
legkdzelebbi 6rokolt kod fog meghivodni. Ezzel szemben az osztalymodszerek statikusan kotnek,
osztalymodszereket nem lehet atdefinialni. (Egy osztalyhierarchia van, és az ujradefinalassal ezt a hierarchiat

ragnank szét.)

Adattagok elrejtése

Az Osszes tag orokodik. A Java tiltja, hogy bizonyos tagokat elhagyjunk az 6roklédés soran.
Viszont bevezeti az elrejtés (elfedés) fogalmat. Jelentése: az 6roklodés soran a leszdrmazott
ujraimplementalhatja a mdodszereket, és atdefinidlhatja az adattagokat, 0 tagokat definialhat,
de megszilintetni nem sziintetheti meg az Orokoltetett. Ezzel elrejti az eredetieket a

hozzaféréstol az adott €s az innen leszarmazott osztalyokban.

Konstruktorok

Amikor példanyositunk, a példany alapallapotat be kell allitani, ezt megtehetjiik paraméterek segitségével. Ezt a
nélkiili, az osztaly nevével azonos nevii modszerek, amelyek lathatosagat szabalyozhatjuk csak. A konstruktorok
a példanyositasnal automatikusan meghivodnak, és inicializaljak azt. Az adattagoknak lehet kezd6értéket adni
explicit mdédon, ha nem, akkor a rendszer inicializal.

A programoz6 egy osztalyhoz tetszéleges szamil konstruktort irhat, és ezek neve tulterhelheté (a pataméterek
szama és/vagy tipusa kiilonb6zd kell legyen). Kostruktor kizarolag a new operator mellett hivhatd meg. A

konstruktorok nem 6rokolhetok.

A konstruktor tdrzsének elsd utasitasa lehet egy adott osztalybeli, vagy egy sziildosztalybeli masik konstruktor
meghivasa a kovetkez0 szintakszissal:

this () ; illetve super () ;
A programozo nem koteles megadni konstruktort. Ha a programozé nem ad meg konstruktort, akkor a rendszer

automatikusan felépit egyet, méghozza olyat, amely paraméter nélkiili és a torzse {ires.

Példa:
public class Alkalmazott{
public Alkalmazott(String egyNev, int egyFizetes){
nev=egyNev;

fizetes=egyFizetes
evesFizetes=12*fizetes;

public Alkalmazott(String egyNev){
nev=egyNev;
fizetes=30000;
evesFizetes=12*fizetes;

Két konstruktort definidltam. Egyiknek egy paramétere van, a masiknak kett6. Ez alapjan

tudja a rendszer eldonteni, hogy aktualisan melyiket hivjuk meg.

Emlitettiik, hogy minden konstruktor torzsének elsd utasitasa lehet egy masik osztalyhoz

tartozd konstruktor meghivasa. Ebben az esetben atirhat6 a kovetkezé modon:

public class Alkalmazott{

public Alkalmazott (String egyNev, int egyFizetes) {
nev = egyNev;
fizetes = egyFizetes;
evesFizetes = 12 * fizetes;
}
public Alkalmazott (string egyNev) {
this (egyNev,30000) ;

A szuperosztaly konstruktorai nem 6roklédnek, azokat mindig minden osztalyhoz meg kell adni (vagy implicit).
Viszont minden alosztaly barmely konstruktora torzsének els utasitasaként a super kulcsszoval meghivhato a
szuperosztaly valamelyik konstruktora. (Példaul (j adattagokat definialtunk, de az atvetteket ugyanigy kell
inicializalni.)

A konstruktorok aktualis paramétereit példanyositdsnal a new operator paramétereiként kell megadni a

kovetkezOképpen:

new konstruktor név(aktudlis paraméter lista);

Alkalmazott a new Alkalmazott ("0 Pal ");

Alkalmazott b new Alkalmazott ("J6 Jend”, 55555);

A Java lehetévé teszi, hogy osztaly-konstruktorokat definialjunk, az osztaly definicion beliil akarhol, tetszdleges
szamut. Ezek lényegében blokkok, amelyek el6tt ott 4ll a static kulesszd. Ezek az Un. statikus-konstruktorok
(statikus inicializatorok).

Definidlom az osztalyt, a konstruktorokat. Amikor az osztalyt eldszor hasznalom fel tipusként, a rendszer
végrehajt egy osztaly inicializalast, melynek soran automatikusan lefutnak az osztaly-konstruktorok, abban a

sorrendben, ahogy felsoroltam dket.

A finalize () moddszer

Az osztalyokkal kapcsolatos fogalomrendszert azzal zarjuk, hogy az Object osztalyban létezik olyan modszer,
amelynek finalize () a neve (protected és void). A finalize () olyan modszer, amelyet minden
osztaly 6rokol és atdefinialhat. Minden osztaly implementalhatja.

Amikor egy objektum felszabaduldsra keriil (azaz az objektum megsemmisitésekor), a

n

tényleges felszabaditas el6tt lefut ez a modszer: "Az adott példany egy utolsod kivansaga.

Meghivasa automatikus.

Létezik ennek egy osztdly szintii valtozata is (osztalymodszer):
classFinalize ()
Abszolut platform fiiggé. Ez az osztalymodszer az osztaly megsziinésekor automatikusan lefut.

Mit jelent az, hogy megsziinik egy osztaly?

Interfészek

Specialisan JAVA eszkoz.

Az interfész egy specialis referenciatipus, amely konstans adatttagokat és modszer specifikaciokat tartalmaz. Az
interfész nem objektum.

A célja az absztrakcids szint novelése. Ugy tudunk problémat megoldani, hogy az implementaciét nem adjuk
meg. Programfejlesztés kozben behozok egy absztrakcids szintet, amikor a specifikacidval foglalkozom, és az
implementaciéval nem. Az interfészek kozott is értelmezhetd az Oroklédés, méghozza tobbszords. Kozos
Osinterfész nincs, tehat a programfejlesztés folyaman interfész hierarchia-grafok épithetdk fel. Az interfészek
az osztalynak. Tehat az interfész hierarchia aljan mindig osztalyok allnak. Egy osztily tetszdleges szami
interfészt implementalhat. Az interfészek altal jelenik meg a tobbszords implicit 6roklddés a Javaban. Az
interfész, mint referencia tipus mindeniitt szerepelhet, ahol az osztily, mint tipus szerepelhet. Lehet vele
valtozokat, tagokat definialni, és formalis paramétercket leirni. Az igy definidlt eszkdz egy olyan referenciat
kaphat értékiil, amelynek a tipusa egy olyan osztaly, amely az adott interfészt kozvetve vagy kozvetleniil

implementalja.

Multkori példankban eljarhattunk volna gy, hogy az egyes osztdlyokat, mint interfészeket definialjuk, és az

Ellipszis interfészt implementalja kozvetleniil a Kor osztaly, és a Zart alakzat és az Alakzat interfészeket

kozvetve.
Példa:
Alakzat
AN
Nyilt Zart
/N
Poligon Ellipszis

Kor

Az interfész definicioja:

médositd INTERFACE név [EXTENDS szuperinterfész nevek]

torzs

Az interfész médositd —jacsak public lehet.

A torzsben:
— az adattagok modositoi alapértelmezés szerint:
public static final
Nem irandok ki, és nem valtoztathatéak. Konstans adattagokrol van sz, tehat a kezddérték adas kotelezo.
— amodszereknek csak a specifikaciojuk szerepel
A modositok:
public abstract.
Nem kiirandok, és nem kiirhatok.

A t0bbsz0orods 6rokldédésbol szarmazod néviitkozéseket a Java nem kezeli.

Interfészek implementalasa :

modosito CLASS név IMPLEMENTS interfész_nevek

torzs

Az Osszes absztrakt modszert implementalni kell.

Nagyon kemény absztrakcios eszkdz és nagyon jol hasznalhato.

Csomag

Abban az értelemben, ahogy az Adaban. A csomagok tartalmazzak a Java fejlesztéi kornyezetet és az
alkalmazasokat is csomagokban irjuk meg. A csomag egy hataskori egység.

Forditasi egység a Javaban:

— osztaly deklaraci6 vagy

— interfész deklaracid

— vagy ezek tetszdleges egyiittese.

Az osztalyokat és az interfészeket egyiittesen hivja a Java tipusnak. Tehat forditasi egységek a tipusdeklaraciok
és ezek tetszlleges egyiittese.

A forditasi egység mogotti kod mindig kotelez6 mdédon csomagokban jelenik meg. A csomagok k6zott hierarchia
épithetd fol (konyvtarszerkezet). A Java rendszer tehat csomagfak (csomagok alkotta fak) egylittese, melyek
tartalmazzak a fejlesztéi kornyezetet és az alkalmazasokat is. A csomag tartalmazhat alcsomagokat és
tipusdeklaraciokat tetszéleges mélységben.

Megnevezés: névvel. Hivatkozas: mindsitéssel. Egyrészt a csomagfan beliili csomagra, masrészt csomagon beliil:

tipus — objektum — tag.

Egy forditasi egység teljes szerkezete:

[CSOMAGLEIRAS] [IMPORTLEIRAS] [TIPUSDEKLARACIOK]

— csomagleirés:
PACKAGE csomagnév ;
A megadott nevii csomaghoz fog tartozni a leforditott kod. Ha nem szerepel, akkor a Java rendszer egy név
nélkiili csomagba tartozonak tekinti (ebbe most nem megyiink bele). A név nélkiili csomagok kezelése
rendszerfiiggd. Nem javallott, hogy név nélkiili csomagokat hasznaljunk, a hordozhatésag sériilhet. Altaliban

igaz, hogy egy név nélkiili csomag van.

— importleirés:
import mindésitett név ;
Gyakorlati eszkdz. Az Ada kdrnyezet leirasanak felel meg. Arra szolgal, hogy mas csomagokban deklaralt
nyilvanos tipusok itteni hasznalatat segitse eld tigy, hogy egyszerii és ne mindsitett névvel kelljen rajuk
hivatkozni.
Példa:
import Alakzat.Zart.Ellipszis.Kor ;
Es ezutan elég a Kor hivatkozés, de akkor ennek egyedinek kell lennie.
Megengedett az:
import Alakzat.Zart.Ellipszis.*;

ekkor az 6sszes publikus tipust eléri a nem mindsitet neve alapjan.

— tipusdeklaraciodk: itt osztaly definiciok allnak.

A Java alapcsomagjai a java csomagban vannak. Ennek alcsomagjai:

— java.lang - Jjava.net

— Java.io — java.applet

— java.util - java.awt

- Java.sql — java.awt.event

A java.lang tartalmazza a legalapvetobb eszkdzoket, ennek minden nyilvanos tipusa automatikusan
importalodik, nem kell kiilon megadni. Ebben van példaul az Object osztaly, a primitiv tipusok, stb. Az dsszes

tobbi tagot importalnom kell.

Kivételkezelés a Javaban

Adaszert elveket vall. Ez is alapvetd eszkoze a Javanak. Ipari szabvanyszerti. A Java program miikddése kdzben
modszerek hivodnak meg. Ha bekdvetkezik egy specialis esemény egy modszer futisa kozben, akkor egy
kivétel-objektum jon 1étre: vannak kivétel-osztalyok és annak kivétel-példanyai. Ekkor a modszer “eldobja” a
kivételt, és a kivétel a Java virtualis gép hataskorébe keriil at. Az adott modszer befejezi a futasat annal az
utasitasnal, ahol a kivétel bekovetkezett, és jon a kivételkezelés. A JVM feladata, hogy megkeressen egy adott
objektumnak megfeleld tipusu, az adott pontba lathatd kivételkezeldt, amely kivételkezelé az adott kivételt
elkapja.

Egy kivételkezel6 megfeleld tipusu, ha:

— akivételkezeld tipusa megegyezik a kivétel tipusaval

— akivételkezel6 tipusa ése a kivétel tipusanak.

A lathatosagot maga a kivételkezeld definidlja. Maga a kivételkezeld egy blokk. Az Adéban
kivételkezeld forditasi egység végén helyezhetd el, ezzel szemben a Javaban tetszéleges
kodrészlethez kothetd. Ezek a kivételkezelok tetszdleges mélységben egymasba dgyazhatok.
Ha van egy kivételkezeld, amely nem kezel minden kivételt, kérdés: hogyan tovabb? A
kivételkezeloblokkon 1épked kifelé a JVM az Ada illetve a PL/1 filozofidja szerint
dinamikusan, amig nem talal megfeleld kivételkezel6t. Egy blokk végsé soron egy modszer
torzse. Ha nincs ott kezelve a kivétel, akkor a JVM tovabbadja a kivételt a hivasi lancon a
hivonak. Ha talalt megfeleld tipust kivételkezeldt a JVM, atadja annak a vezérlést, a

kivételkezeld lefut, és a program folytatodik a kivételkezeld kodjat kovetd utasitason.

A kivételkezeloben bekovetkezett kivételeket ugyanigy kezeli a JVM, mint barhol mashol.

A kivételek két csoportjarol beszél a Java:

— ellendrzott

— nem ellendrzott kivételek

Elengedi az ellendrzést olyan eseményeknél, amelyek barhol bekovetkezhetnek, ellendrzése vagy nagyon
kényelmetlen vagy lehetetlen, irredlisan nagy kodtobbletet eredményezne, vagy a programozd ezekkel a
kivételekkel nem tud mit kezdeni. Ez utobbi kivételek tartoznak a nem ellendrzott kivételek kozé. Javallott, hogy
hasznaljunk ellendrzott kivételeket.

Az ellendrzott kivételeket, amely egy metodus lathatésagi korében felléphet, a programozdénak mindig
specifikalnia kell, vagy el kell kapnia 6ket. Ezt a fordité vizsgalja, és hibat jelez, ha ez nem teljesiil. Biztonsagos
kodot kell irni!

Egy modszer fejében tehat meg kell adni azokat az ellendérzott kivételeket kivételeket, melyeket a modszer nem

kezel, de futas kdzben bekdvetkezhetnek.

Ennek specifikalasa a modszer fejének végén:

THROWS kivételnév lista
utasitasrész segitségével torténik. Itt soroljuk fel, tehat a modszer lathatosagi korében keletkezett, ellendrzott, de
nem kezelt kivételeket. A kivételek kezeléséhez a java.lang csomagban definialt 6sosztaly a Throwable
objektumai “dobhatok el” (miutan a kivétel is objektum).

Az eldobas a THROW utasitds segitségével torténik.

Két standard alosztalya van:

— Error :ide tartoznak a rendszerhibak, ezek nem ellenOrzottek.
— Exception :ellendrzott kivételek osztalya. Ebbol az osztalybdl szarmaztathat a programozo
sajat ellendrzott kivételeket. Természetesen a Java csomagjaiban szdmos

leszar-

mazottja van (standard kivételek).

A throw utasitas alakja (a kivétel-osztaly példanyositasa):
THROW NEW _OPERATOR;

Ez kivalt egy megfeleld tipusu kivétel objektumot, és eldobja a kivételt, atadja a JVM-nek.

Példa: Sajat kivétel definialasa és kivételkezelés:

class VeremMegteltException extends Exception{

Object utolso;

public VeremMegteltException(Object o) {
utolsd = o;

}

public Object nemFertBele () {

return utolso;

class Verem{

}

final static public int Meret = 100;
Object tarolol];

int mutato = 0;

public void push (Object o) {

if (mutato != Meret) {
tarolo[mutato++] = o;

}

else({

throw new VeremMegteltException (0);

A kivételkezeld szerkezete a Javaban:

TRY
{ Uta

CATCH
[CATC
[FINA

sitéasok }

-- ezzel érjik el a tetejét

--példanyosités

-- ellendérzott kivételek, amelyek 1atjadk a kivételkezeldt

(tipus valtozdbénév) {Utasitésok}
H (tipus valtozdénév){ Utasitésok}]...

LLY { Utasitéasok}]

A TRY blokkban elhelyezett utasitasokban keletkezett kivételek esetén a JVM a CATCH utasitdsoknak adja 4t a
vezérlést.

Ha ott talal megfeleld tipusu agat, lefutnak a blokkbeli utasitasok, és végrehajtodnak a FINALLY utani
utasitasok, és a program folytatodik a FINALLY utan.

Ha nincs egyetlen megfeleld kivételkezeld sem, és van FINALLY ag, lefutnak az utasitasai, és a kivétel az adott
kodrészt (TRY) meghivo modszerhez keriil, vagy beagyazott blokk esetén a tartalmazé blokkhoz.

A FINALLY ag akkor is lefut, ha nem volt kivétel!

A CATCH 4ag teljesen hianyozhat. A tipusegyeztetés miatt a feliras sorrendje nagyon lényeges, ugyanis a CATCH

ag az ellendrzott kivételt elkapja. A hierarchiaban lentr6l folfele kell elkapni. Modositsuk ezek alapjan a kodot:

class Verem{
final static public int Meret = 100;
Object tarolol];
int mutato = 0;

public void push (Object o) {

try{

if (mutato != Meret) {
tarolo[mutato++] = o;

}

else {

throw new VeremMegteltException (o) ;

}
}
catch (VeremMegteltException e) {

System.out.println (“A(z) ”“+e.nemFertBele()+

” obektum nem fért el a veremben!”);

}
catch (Exception e) {

System.out.println (“Hiba! Hivja a rendszergazdat!”);
1
finally {System.out.println(“A push lefutott.”);

SZALAK

A parhuzamos programozas eszkdzei a Javaban a szalak. A szalak objektumok, a Thread osztalybol
szarmaznak. Ezek run () modszere adja a futtatandd kodot. A Runnable interfészt implementalo osztallyal is
megadhatunk szalakat. Ebben a run () moddszert is implementalni kell. Itt is ez adja a kodot. A Thread osztaly
a Runnable egy implementacidja.
A szélak a Javaban a kovetkez6 allapotban lehetnek:
- 0
— futtatasra kész
- fut
— varakozik
— halott
Uj szalat (mint objektumot) a

new
operatorral hozunk Iétre, ekkor csak 1étrejon. El a sz4l, de semmi tobb, semmi aktivitdst nem mutat.
Futasra kész allapotba hozni a start () moédszerrel lehet. A futdsra kész éallapot annyit jelent, hogy beall a
sorba. A Java rendszerek altaldban egyprocesszorosak. A futdsra kész szalak koziil az iitemezd valasztja ki a
futtatand6 szalat. Az egyprocesszoros rendszerek indeterminisztikusak! A kivalasztott szal miikodni kezd, fut (a
run () modszer indul el).
Egy szal halott allapota lesz, ha meghivjuk a stop () modszerét, vagy a run () modszer kodja elfogy. Nem

lehet egy halott szalat ujra elinditani.

.....

szinkronizacioéra a Hoare-féle monitort alkalmazza a Java. Ezzel kapcsolatban a kovetkezd eszkdzok allnak
rendelkezésre:
— Egy szél a kdvetkez6 esetekben kertilhet varakozo allapotba:
— a sleep(x) mddszer meghivasaval, a paraméter ezredmasodpercben értendd. Hatasra az adott szal
adott ideig varakozik.
— await () mddszer meghivasaval. Szintén varakozast tudunk elidézni.
— asuspend () modszer felfiiggeszti a szal futasat
— /O miivelet befejezésére var
— Varakozo szal a kovetkezoképpen keriilhet futasra kész allapotba:
— sleep () esetén tovabbmegy a szal az id6 letelte utan.
— walt () esetén notify () vagy notifyAll () mddszer meghivasaval megsziinik a varakozas
— suspend () moddszer esetén a resume () modszerrel Gjraindul a futas

— habefejezddott az I/0O miivelet

Kolcsonés kizaras

Moddszer esetén ha a fejben szerepel a synchronized mddositd, akkor a rendszer az adott modszer futtatasat
ugy végzi, hogy érvényesiiljon a kolcsonds kizaras. Ha blokk el6tt szerepel a synchronized (objektum)
el6iras, a megadott objektum zarat helyezi el a blokkra.

A szalak csoportokba szervezhetdk, kozosen, egyiitt kezelhetok a ThreadGroup osztaly segitségével. Az egy
csoportba tartozo szalakat egyszerre vezérelhetjiik a suspend (), resume (), stop () méddszerekkel.

A Javaban vannak démonszélak. Ezek végszinkronizacios eszkozok, akkor fejezik be miikddésiiket, ha az sszes
nem-démonszal befejezddott.

A join () modszer is a szinkronizaciét szolgalja. Hatasara egy masik szal hivhaté meg gy, hogy a hivo szal

megvarja, mig lefut a hivott szal. Ez iddzithetd is.

MIT ERTUNK JAVA PROGRAM ALATT?

Kétfajta programrol szokas beszélni:

— Alkalmazas: A Java rendszerben sajat osztalyokat definialunk, és mdszereket hivogatunk.

— Appletek: programkak.

Appletek (programkak)

HTML oldalba agyazhato Java programok. Végrehajtasukat egy bongészé program végzi (Netscape vagy
Explorer) esetleg egy segédprogram. Az appletek letdlthetdk és futtathatok.

A java.applet csomag tartalmazza a sziikséges interfészeket és osztalyokat.

Tovabbi eszk6zok

A java.net osztaly eszkozei arra szolgalnak, hogy haldzatos kommunikaciot megvaldsitd programokat
tudjunk irni. Egy alkalmazast olyan komponensekre tudunk bontani, amely komponensek a halézat kiilonb6z6
pontjain futnak. Ehhez a Java a tavoli objektumok kezelését nyujtja (remote object). A tavoli objektumok
modszereit egy masik gép el tudja émi. A Java protokolja (eszkozrendszere) az RMI (Remote Method
Invocation). A tavoli objektumok moédszereit interfészekben kell rogziteni, specifikalni, és a JVM felépit egy
csonkobjektumot, amely csonkobjektum képes felépiteni a kapcsolatot a tdvoli objektummal: meghivja a tavoli
objektum moddszereit, azaz megszollitta a masik JVM-et. Ott lefut a meghivott moddszer, és a csonk
visszakOzvetiti a visszatérési értéket.

A java.sgl csomag adatbazis programozast tesz lehetévé. Relacios adatbazis kezelést valosit meg. Az
adatbazisok elérését a Java a JDBC protokolon keresztiil teszi lehetévé. Ez a JDBC egy adatbazis kezeld
programozoi interfész. A kdvetkezd szolgéltatasokat nyujtja:

— 0Osszekapcsolodas egy relacios adatabzis-kezeldvel

— SQL utasitasokat tudunk felolgozni.

Kliens — szerver architektirat hasznalunk, ahol a szerver rész a relacios adatbazis kezeld, amit megszolitunk, és a
kliens az altalaban megirt program. Ennek van egy csomd nyligje, ezt hivjak kétrétegli architekturanak. Azonban

jelen pillanatban divat a tobbrétegii architektura. A program ¢€s az adatbaziskezeld kozé jon egy kozépso réteg:

middleware. A JDBC-n keresztiil a midleware-t érem el. Ez a kdzépso rétag a kommunikaciot szolgalja. Mindkét

veégpont ezt a kozépso réteget szolitja meg, és a kozEépso réteg szolgaltat informaciot a két végnek.

4. EIFFEL

Az Eiffel egy olyan nyelv, amelyet teljesen az objektumorientalt paradigma alapjan hoztak létre
Bertrand Meyer vezetésével az 1980-as évek masodik felében. Az Eiffel tehat tiszta OO nyelv, az
egységesseég elvét azonban nem vallja. Az Eiffelnél is igaz, hogy a nyelv elvalaszthatatlan a fejlesztdi
kérnyezettdl, azzal egységes egészet alkot.

4.1. Lexikalis elemek

Az Eiffel karakterkészlete az US-ASCII szabvanyon alapszik, tehat betl alatt az angol ABC betiiit kell
érteni. Az Eiffel a kis és nagybetiiket nem kiilénbdzteti meg.

Az Eiffelben a megjegyzés a jelkombinaciotdl a sor végéig tart. Az Eiffel beszél szabad és elvart
megjegyzésrél. A szabad megjegyzés a program szdvegében barhol elhelyezhetd, szintaktikai
jelentése nincs. Az elvart megjegyzésnek szintaktikai jelentése van, bizonyos konstrukciok (I. ...)
elemeként jelenhet meg.

Az Eiffelben altalanos elhatarol6 jelek a szokdz, tabulator és sorvége jelek. Ertelmez specidlis és
tobbkarakteres szimbolumokat (pl.), kotott szintaktikai jelentéssel, ezek egy részét a késébbiekben
targyaljuk.

Az Eiffel a foglalt szavak két csoportjat kildonbozteti meg, ezek a kulcssorok és az eléredefinialt
nevek. A kulcsszavak a nyelvi konstrukciokhoz tartoznak, az el6redefinialt nevek a szévegben ott
fordulhatnak el8, ahol egy valtozé neve (pl. Result), vagy egy tipusnév (pl. INTEGER).

Az Eiffel kulcsszavai a kovetkezok:

Az Eiffel kddolasi ajanlas szerint a kulcsszavakat kisbetis félkbvér alakban, a tipusok nevét nagybetiis
délt alakban, az el6redefinialt egyedek nevét nagy kezdbbetlis délt alakban irjuk.

Az Eiffelben az azonosité betlivel kezdbédik és betlivel, szamjeggyel vagy alahuzas (_) jellel
folytatddhat. Hosszkorlatozas nincs.

Az Eiffel konstansai (literaljai) a kdvetkezok:
Egész konstans: [el6jel[szamjegy[szamjegy]...

Példaul: -3, 0, +222.

Valés konstans: [el6jel] {[szdmjegy {szamjegy]...].
szamjegy[szamjegy]...|
szamjegy[szamjegy]...[szamjegy
[szamjegy]...]} [E/e] egész literal]

Példaul: -1, 0., .0, -12E_12, 36.28E3.

Bit konstans: bit[bit]...[B/b]

Példaul: 011001B.
Karakter konstans: “karakter’

ahol karakter vagy egy lathatd karakter (pl. "a’, vagy a %karakter alaku, ahol a karakter1
jelentése specialis (pl. %N-U; sor, %-aposztrof, %B-backspace), vagy %/kéd/, ahol kod egy
eléjel nélkuli egész, az ASCII decimalis belsé kédot jelenti (pl. %/91/-]).

4.2. Tipusok
Az Eiffel egy szigoruan tipusos nyelv.

A nyelvben minden programozéi eszkozt valamilyen tipussal deklaralni kell. A tipus altalaban egy
osztaly (pontosan I. 4.11), amelynek mddszerei meghatérozzak a tipus példanyszam végezhet6
miveleteket.

A tipus lehet referencia vagy Kkiterjesztett tipus. A referencia tipusu eszkozok eértékil egy
objektumhivatkozast, a kiterjesztett tipusuak magat az objektumot vehetik fél. Az objektum viszont
mindig a tipus példanyaiként jon létre.

A Kkiterjesztett tipusok egy igen fontos csoportjat képezik az un. alaptipusok, ezek az INTEGER,
REAL, DOUBLE, CHARACTER, BOOLEAN, BIT és POINTER. Ezen osztalyok példanyai atomiak.

A POINTER tipusnak kilsé (nem Eiffelben megirt) rutinok szamara adhaté at a programbeli eszk6z6k
cime.

Az INTEGER, REAL, DOUBLE a COMPARABLE és a NUMERIC absztrakt osztalyok alosztalyai. A
CHARACTER a COMPARABLE alosztalya.

A COMPARABLE példanyai 6sszehasonlithatdak. Mddszerei a szokasos hasonlitasi miveletek.

A NUMERIC miveletei az 0sszeadas, kivonas, szorzas, osztas infix, és a pozitiv és negativ elgjel,
mint prefix mlveletek. A mddszerek formalis paraméterei és visszatérési értékik NUMERIC tipusu. Az
Oroklédés soran a modszereket az alaposztalyok implementaljak, a formalis paramétereket és a
visszatérési tipust Ujradeklaraljak, a szikséges specifikus moédszereket megadjak.

Ennek kdszonhetben az eljarasorientalt nyelveknél megszokott modon, az aritmetikai kifejezések
vegyes tipusuak lehetnek az Eiffelben és az operatorok megszokott infix alakjat hasznalhatjuk.

Itt jegyezzik meg, hogy az egész és valds konstansok az Eiffelben valdjaban kifejezések, az elgjel
operatort alkalmazzak az eldjel nélkili egészekre és valdsokra.

A CHARACTER osztaly példanyainak attribituma a ... (amely egy pozitiv egész értékd) és a
reprezentald bitsorozat.

A BOOLEAN osztaly modszerei a logikai és (révidzar és teljes), vagy (révidzar és teljes), tagadas,
kizar6 vagy, implikacio miveleteket realizaljak. A két logikai értéket a beépitett nevesitett
konstansként kezelhetd true és false attribitumok képviselik. Ezek neve kulcsszo.

A BOOLEAN, CHARACTER, INTEGER, REAL, DOUBLE kiterjesztett osztalyok rendre a
BOOLEAN_REF, CHARACTER_REF, INTEGER _REF, REAL REF, DOUBLE_REF referencia
osztalyok alosztalyai. A _REF osztalyok teszik lehetévé, hogy az atomi értékek, mint objektumok,
referenciaval elérhetbk legyenek.

Az alaptipusokhoz tartozik a fix hosszusagu bitsorozatok kezelését lehetévé tevé BIT tipus, amely
kiterjesztett tipus deklaracional a kezelendd bitek szamat meg kell adni. BIT N alakban, ahol N egy
el6jel nélkali egész vagy egy ilyen értékli nevesitett konstans. Muiveletei a bitenkénti logikai
miveletek, az eltolas és a rotacio.

Az Eiffel 6roklédési hierarchiaja graf, kitlintetett szerepli az ANY osztaly. Az Eiffelben minden osztaly
ennek leszarmazottja.

4.3. Véltozé

Az Eiffelben létezik valtozd, az eljarasorientalt értelemben. A valtozé egy osztély attribituma vagy
pedig egy rutin lokalis valtozéja lehet. Ertéke a tipustdl fiiggden egy referencia, vagy egy objektum.

4.4. Kifejezések

Az Eiffel kifejezésfogalma hasonlit az eljarasorientalt nyelvek kifejezésfogalmara. A kerek zarojelek
haszndlata ugyanaz. Operandus lehet konstans, attribdtum, fliggvényhivas, tdmb. Az Eiffel ...
operatorai prefixek, binaris operatorai infixek. A preferenciatablazat a kovetkezéképpen néz ki:

old strip not + —

A

A/ B\

= /= < > <= >=
and and then

or or else xor
implies

<< >>

L A

Az egyes operatorok jelentése:

Old, strip
not

3

<, >, <=,
and

and then
or

or else
xor
implies
<< >>

>=

a minGsités operatora (I.)

(I.)

logikai tagadéas

el6jelek

hatvanyozas

szorzas

osztas

egészosztas

maradékképzés

Osszeadas

kivonas

az any osztaly egyenldségvizsgald muveletei. e = f azonos referenciatipusok
esetén azonossagbeli (ugyanazt az objektumot hivatkozzak), azonos kiterjesztett
tipusok esetén értékbeli egyenléséget (a két objektum allapota azonos) vizsgal.
kulénb6z6 tipusok esetén el8szor konverzié megy végbe (1.).

A COMPARABLE osztaly hasonlitd miiveletei

teljes kiértékelésl logikai és

rovidzar kiértékelési logikai vagy

teljes kiértékelési logikai vagy

rovidzar kiértékelési logikai vagy

teljes kiértékelés logikai kizaré vagy

rovidzar kiértékelési logikai implikacio

téomboperatorok

l.

A kifejezések kiértékelése balrdl jobbra a precedenciatablazat figyelembevételével torténik. A

kiértékelésnél végbemend tipuskonverziokat I.

4.5. Végrehajthaté utasitasok

Az Eiffelben az algoritmusok kddolasara végrehajthaté utasitasokat hasznalunk. Az értékado utasitas

altalanos alakjat I. ... A kdvetkez6kben a vezérlési szerkezetet realizal6 utasitasokat targyaljuk.

4.5.1. Osszetett utasitas

Alakja: [utasitas][;]utasitas]...]

Az Osszetett utasitasnal a pontosvesszé opcionalis elhataroléjelként szerepel, kiirni csak akkor kell, ha
a kovet6 utasitas zardjellel kezdddik. Az Eiffel konverzié a szerepeltetését javasolja. Az utasitasok
szekvencialisan, a foliras sorrendjében kerlilnek végrehajtasra.

4.5.2. Ures utasitas

Az Eiffelben nincs kiilon alapszava, tisztan szintaktikai, programozastechnikai jelentésége van.

4.5.3. Feltételes utasitas
Alakja:

IF feltétel THEN &sszetett-utasitas

[ELSIF feltétel THEN &sszetett-utasitas]...
[ELSE &sszetett-utasitas]

END

Szemantikaja a szokasos eljarasorientalt szemantika.

4.5.4. Tobbszoros elagaztaté utasitas
Alakja:

INSPECT kifejezés

WHEN {konstans | nevesitett_konstans | intervallum}
[{konstans | nevesitett_konstans | intervallumy]...

THEN Osszetett_utasitas

[--]...

[ELSE &6sszetett utasitas]

END

Intervallum: {karakter_konstans .. karakter_konstans |

egész_konstans .. egész_konstans}

A kifejezés, konstans és nevesitett konstans tipusa egész vagy karakteres lehet és a tipusuknak
(beleértve az intervallum tipusat is) meg kell egyezniik. A WHEN-agakban szerepld értékeknek
kilonbozniuk kell. A kifejezés minden lehetséges értékére eld kell irni valamilyen tevékenységet.

Szemantikaja a kovetkezd: kiértékelédik a kifejezés, az értéke a feliras sorrendjében
Osszehasonlitasra keril a WHEN-agak értékeivel. Ha van egyezés, akkor végrehajtédik a megfelel
THEN utani Osszetett utasitas, és a vezérlés atadodik a kdvetkezé utasitasra. Ha egyetlen WHEN-
agban sincs megfelel érték és van ELSE-ag, akkor az abban megadott dsszetett utasitas hajtodik

végre és a vezérlés atadodik a kdvetkezd utasitasra, ha nincs ELSE-ag, akkor pedig egy kivétel
valtodik ki.

4.5.5. Ciklus utasitas
Alakja:

FROM [Osszetett utasitas]
[ciklus_invarians]
[ciklus_varians]

UNTIL feltétel

LOOP dsszetett utasitas
END

A FROM utéani dsszetett utasitas a ciklus inicializalo része. A feltétel végfeltételként mikodik. A LOOP
uténi 6sszetett utasitas a ciklus magja. A ciklus invarians és varians rész magyarazatat |I. ...

4.5.6. Feltételes futtatas

A DEBUG-utasitas lehet6séget biztosit arra, hogy az Eiffel-kérnyezet debug opcidjanak allapotatdl
fluggben egy kédrészletet lefuttassunk vagy ne futtassunk le.

Alakja:
DEBUG d&sszetett_utasitas END

Ha a debug opcié be van kapcsolva, akkor az Osszetett utasitas lefut, ha ki van kapcsolva (ez az
alapértelmezés), akkor nem.

4.6. Egy Eiffel program felépitése

Az Eiffel program legkisebb 6nallo része az osztaly. A klaszter az dsszetartozé osztalyok egyiittese.
Az univerzum klaszterek olyan egylttese, amelyekbdl egy Eiffel alkalmazés elkészitheté és egy
hataskori egység. Végll a rendszer osztalyoknak egy futtathatd, végrehajthaté egysége, amelynek
van egy kitintetett (gydkér) osztalya. Az 6sszes tobbi osztaly leszarmazottja, vagy kliense a
gyokérnek. A rendszer futtatéasa a gydkér osztaly példanyositasaval torténik.

A fentiek kozil csak az osztaly az, amely kdzvetlen nyelvi elemekkel kezelhetd. A klaszter, univerzum,
rendszer kezelésének feladata a kérnyezet dolga, igy ezekkel itt a tovabbiakban nem foglalkozunk.

4.7. Osztalyok létrehozasa

Egy sajat osztaly definialasanak altalanos alakja a kdvetkez6:

[INDEXING index_lista]
[DEFERRED | EXPANDED]
CLASS név
[formélis_generikus_lista]
[OBSOLETE sztring]
[6rokibdés)

[konstruktorok]
[eszkbzdeklaracid]
[INVARIANT invarians]
END

A fenti sorrend kotott.

Az INDEXING-résznek nincs kozvetlen szemantikai hatdasa az osztalyra. Az osztaly kisérd,
dokumentaciés informaciéit (szerz6, datum, javallott felhasznalas, stb.) lehet itt megadni ahhoz, hogy
egy archivald eszkozt hasznalva az osztaly a tulajdonsagai alapjan is tarolhatd és visszakereshet6
legyen.

Az index_lista szerkezete:
index_bejegyzés [;index_bejegyzés]...
ahol az index_bejegyzés alakja:
[azonosité:){azonositd | konstans}
[.{azonosité | konstans}]...
Példaul:

Indexing
absztrakt adatszerkezet, keresofa, piros_fekete fa;
szerzo:“Kiss Antal*;
irodalom:"Rivert, Leiserson:Algoritmusok”
“Meyer: Eiffel, The Language”;
keszult: 2003, augusztus, 31;
utolso_modositas: 2003, december, 10

A DEFERRED kulcsszé megadasaval absztrakt osztalyt tudunk Iétrehozni. A nem absztrakt osztalyt
az Eiffel effektiv osztalynak hivja.

Egy osztaly absztrakt, ha legalabb egy eszkdze absztrakt- Ha szerepel a DEFERRED, akkor ennek
kételez6en fenn kell allnia.

Az EXPANDED megadasa esetén egy kiterjesztett osztaly jon létre, ennek hianyaban egy referencia
tipus keletkezik.

Egy osztalyt mindig meg kell nevezni, a névnek egy univerzumon belll egyedinek kell lenni.

Ha szerepel a formalis_generikus_lista, akkor egy generikus (paremetrizalt) osztaly jon létre, ha nem
szerepel, akkor egy nem_generikus.

A formaélis_generikus_lista alakja:

[azonosité[,azonositd]...—tipus
[,azonosito[,azonositd]...—tipus]...]

A generikus osztaly felhasznalasa esetén a deklaracidban aktualis generikus listat kell megadni. Az
aktualis generikus lista elemei szdmban és sorrendben megegyezd olyan osztalynevek lehetnek,
amelynek a formalis generikus listan szerepld tipusok leszarmazottai.

A OBSOLETE-rész szerepeltetése arra szolgal, hogy jelezzik az osztaly egy korabbi Eiffel verzidoban
készilt. Ekkor az osztalyra val6é hivatkozas esetén egy olyan figyelmezteté Gzenetet kapunk, amely
tartalmazza a sztringet.

Egy osztély eszkézei attributumok és rutinok lehetnek. Ez utébbiak a modszerek. Az attributum vagy
valtozd, vagy nevesitett konstans, a rutin eljaras vagy fliggvény.

Az eszkdzok az Eiffelben példanyszintiiek. Az egyes példanyokban az attributumok mezdékben
jelennek meg.

Az eszkbzdeklaracio alakja:
FEATURE eszk6z6k [FEATURE eszk6zok]. ..
ahol az eszkézdk:

[klienslista]

[megjegyzés]
eszkbzdeklaracio[[;leszkbzdeklaracid]. ..

A klienslista szerkezete:
{osztalynév[,osztalynév]...}

Itt az un. export statust adjuk meg, vagyis felsoroljuk azon osztalyok nevét, amelyek az
eszkbzdeklaracioban megadott eszkdzoket latiak. Ha nem adunk meg osztalyneveket, akkor
publikusak az eszk6zok. Ha itt a sajat osztalynév all, akkor pedig privatak. Tehat a lathatésagot az
Eiffel explicit médin szabalyozza. Az 6roklédésnél az eszkdzok automatikusan atkeriiinek az alosztaly
hataskorébe.

A megjegyzés egy elvart megjegyzés.
A nevesitett konstans attributum deklaracidja a kdvetkez6 modon torténik.

[FROZEN] néVv[,[FROZEN] név]...:tipus
IS konstans

A FROZEN megadasaval olyan eszkdzt hozunk létre az osztalyban, amely nem fellldefinidlhaté az
alosztalyban.

A nevesitett konstans attributum esetén a példanyok megfelel6 mezdi mindig a konstans értékét
tartalmazzak.

A valtozé attributum deklaracioja:
[FROZEN]név[,[FROZEN]név]...:tipus

Tehat nem adhaté kezd&érték.

Egy rutin deklaracidja a kdvetkez6képpen néz ki:

[FROZEN]név[,[FROZEN]név]...
[(formalis_paraméter _lista)][:tipus]
IS rutin_leiras

Ha szerepel a tipus, akkor fiiggvényrdl, egyébként eljarasrol van sz6. Egy implementacidohoz tébb név
is megadhato, ezek szinonimak.

A formélis_paraméter _lista alakja:
névl,névl...:tipus[;névi,név]...:tipus]...
A rutin_leiras felépitése a kdvetkezb:

[OBSOLETE sztring]

[megjegyzés]

[el6feltétel]

[lokalis deklaraciok]
térzs

[utdfeltétel]

[kivételkezel8]

END

Az OBSOLETE szerepe ugyanaz, mint az osztalynal volt. A rutint hivé kap egy sztringet tartalmazo
figyelmeztetd Uzenetet.

A megjegyzés egy elvart megjegyzés.
A lokalis_deklaraciok alakja:

LOCAL név[,név]...:tipus
[[;Jnév],név]...:tipus]...

Itt lényegében a rutin lokalis valtozoit deklardljuk. Ezeknek a lathatésaga statikus, élettartamuk
dinamikus.

A torzs szerkezete az alabbi:

{DEFERRED | EXTERNAL"nyelv” |
{DO | ONCE} ésszetett_utasitas}

A DEFERRED kulcssz6 azt jelzi, hogy a rutin absztrakt, nincs implementalva. Ekkor a tartalmazoé
osztaly is szukségszerlien absztrakt.

Az EXTERNAL utéan a nyelv azt a programnyelvet adja meg, amelyen a rutint implementaltuk, ezéltal
egy kilsé rutint meghatarozva. Kilsé rutinoknal nem szerepelhetnek lokalis valtozok és kivételkezeld.

Ha a térzs a PO kulcsszoval indul, akkor az dsszetett utasitas minden hivasnal lefut, ONCE esetén
viszont egy adott objektumra csak a munkamenet elsd hivasakor fut le. A korabbi hivasok
hatastalanok. Ha fliggvényrél van szo, a visszatérési érték mindig az els6 hivas visszatérési értéke
lesz.

Flggveény esetén létezik egy specidlis, eléredefinialt egyed (l. ...), a Result, ez hordozza a visszatérési
értéket. A torzsben, vagy az utofeltételben kell neki értéket adni.

Egy rutin hivasanal az Eiffel a paraméterkiértékelésnél sorrendi kétést, szambeli egyeztetést (ez aldl
kivétel, ha tdombot alkalmazunk — I. ...), tipusegyeztetést (I. ...) alkalmaz. A paraméteratadas érték
szerinti. Ezaldl kivétel a POINTER tipus alkalmazasa, amivel egy eszkdz cimét tudjuk atadni egy kilsé
rutinnak.

Az elbfeltétel és utofeltétel szerepét |. ..., a kivételkezeld pedig ...-ban szerepel.

Egy osztalybeli eszkdz hivatkozhaté a rutinok t0rzsébdl, el6- és utofeltételébdl és és
kivételkezelbjébdl.

Az 6roklbdés formdja:

INHERIT szuperosztaly névieszkbzadaptacio]
[[;Jszuperosztaly névleszkdzadaptacid]]...

Az Eiffelben tdbbszdrds 6roklédés van. Az Eiffel eszkdzt ad a névitkdzések kezelésére.
Ha az ér6kidédés hianyzik egy implicit
inherit ANY
rész épll be az osztalydefinicioba.
Az eszkbzadaptacio alakja:

[atnevezés]
[export]
[érvénytelenités]
[djradefinialas)
[szelekcid)

END

A sorrend kotott.

Az atnevezés formdja:

RENAME 6r6kolt_eszkbznév AS Uj_eszkdnév
[,6rokélt_eszkdznév AS G _eszkbznév]...

Barmely 0rokolt eszkdzt az alosztaly atnevezhet. Ez szolgal a tdbbszdrds Oroklédésbdl szarmazo
névitk6zések feloldasara, illetve arra, hogy az osztaly az atvett eszkézodket a sajat kdrnyezetének
megfelel6 néven adhassa tovabb az 6roklédésnek.

Az export az atvett eszkdzok lathatdsaganak Ujraszabalyozasara vald, alakja:

EXPORT {kliens|, kliens]...} ALL | eszk6z6k}
[.{kliens[,kliens]...{ALL | eszk6z6k}

A kliens az univerzum egy osztalydnak a neve, az eszkdzlista az 6rokolt eszkdzok neveit tartalmazza,
vesszOvel elvalasztva. A felsorolt eszkdzdk vagy minden eszkdz (ALL) Uj export-statusat adja meg.

Az érvénytelenités 6rokolt effektiv rutinok absztraktta (deferred) mingsitését, tehat az implementacio
érvénytelenitését teszi lehetévé. Alakja:

UNDEFINE rutinnév_lista

Az uUjradefinialas egy valtozo vagy rutin nevének ujradefinialasat jelenti. Rutin esetén megvaltozhat a
specifikacié és az implementacié is. Itt csak jelezzik az Ujradefinialas tényét, az eszkdzdeklaraciéban
kell megadni a tényleges Uj definiciét. Egy absztrakt médszer implementaldsanal nem kell a nevét
Ujradefinialni, hiszen ilyenkor a ,,definialas” ebben az osztalyban térténik meg.

Az djradefinialas alakja:

REDEFINE eszkéznév_lista
szelekcio alakja:

SELECT eszkéznév lista

A konstruktorok az osztaly konstruktorait hatarozza meg. Csak effektiv osztélyban lehet
konstruktorokat létrehozni. Alakja:

CREATION konstruktor [CREATION konstruktor]...
ahol a konstruktor formaja:
[kliensek][megjegyzés]eljarasnév_lista
A kliensek azon osztalyok nevét tartalmazza, amelyek szamara a konstruktorok exportalédnak.
A megjegyzés egy elvart megjegyzés.
A konstruktorok eljarasok, ezeket az eszkdzdeklaracioban kell megadni.
Az INVARIANT-rész magyarazatat |I. ...

4.8. Objektum, érték, egyed

Egy Eiffel program futas kdzben objektumokat tud 1étrehozni és kezelni. Az Eiffel beszél standard és
speciélis objektumokrél. A specialis objektum nem mas mint egy adott tipussal kompatibilis értékek
sorozata. Két fajtaja van, a sztring és a témb (l. ...). A sztring értékei karakterek, a tdombben pedig
vagy referenciak vagy egy egyszer(tipus példanyai helyezkednek el.

Egy standard objektum példanyositassal vagy klénozassal jon létre. Két fajtdja az alap és a komplex
objektum. Az alap objektum az alaptipusok példanya. A komplex objektum egy nem alaptipusos
osztalyanak példanya, az adott osztaly attributumai altal meghatarozott, kététt szamua (ez lehet nulla
is!) mez&bdl all.

Eqgy érték lehet objektum vagy referencia.

A referencia vagy void (érvénytelen) vagy csatolé (érvényes) referencia. Az érvénytelen referencia
segitségével nem érhetd el semmiféle tovabbi informacié. Azt, hogy egy referencia érvényes-e az
ANY osztaly Void attributumahoz valé hasonlitassal donthetjik el.

Az érvényes referencia mindig egy konkrét objektumot, a csatolt objektumot hivatkozza.

Egy objektumot vagy annak mezéit kifejezések segitségével tudjuk kezelni az Eiffelben. A kifejezés
legegyszeriibb formajat jelentik az egyedek. Egy egyed egy olyan név, amellyel egy adott osztaly
példanyainak az értékeit tudjuk elérni.

Az egyed lehet:

— egy osztaly attributuma,

— egy rutin lokalis valtozoja beleértve a Result eléredefinialt egyedet a fliggvények esetén,
— rutin formalis paramétere,

— a Current el6redefinialt egyed, amely az aktualis példanyt hivatkozza.

A lokalis egyedek és az attributumok irhatéak (értékiik megvaltoztathato), a formalis paraméterek és a
Current csak olvashato6 (értékik nem valtoztathatd meg).

Az irhat6 egyedek értéke megadhato, illetve megvaltoztathaté értékadassal, illetve példanyositassal.
Az értékado utasitas alakja:

egyed = kifejezés

4.9. Példanyositas

A példanyositassal létrején egy Uj objektum, alapallapotba kertl és egy irhaté egyed referencia értéke
beallitédik. A példanyosité utasitas alakja:

! [tipus] ! irhatd_egyed [.konstruktorhivas]

A konstruktorhivas csak akkor maradhat el, ha nincs konstruktora az osztalynak. Ekkor a mez8k
alapértelmezett értéket kapnak (... nullazédnak).

A tipus akkor adandd meg, ha az az irhaté_egyed deklaracio tipusanak egy leszarmazottja, és ennek
konstruktoraval akarunk példanyositani.

Az objektumok megszintetésére az Eiffel egy automatikus szemétgyljtdgetét alkalmaz. Ennek
megvaldsitasa implementacié figgoé.

4.10. Objektumok duplikalasa és 6sszehasonlitasa

Futas kdzben egy Uj objektum létrehozasanak alapvetd eszkbdze a példanyositas. Néha viszont
szukség lehet arra, hogy egy mar létez6 objektum tartalmat masoljuk at egy masik, mar 1étez6
objektumba. A masolas lehet sekély, amikor csak egyetlen objektumot masolunk és mély, amikor a
hivatkozott objektumokat is masoljuk.

A masolas specidlis esete a kldbnozas, amikor egy adott objektumot duplikalunk, és igy keletkezik egy
Uj objektum. Ez is lehet sekély és mély.

Kapcsolodo probléma az objektumok dsszehasonlitasanak kérdése. Itt is beszélhetiink sekély és mély
egyenl&ségrol.

Azok az eszk6zOk, amelyek megvaldsitjak a fentieket, az ANY osztalyban talalhatok.
Az y egyed altal hivatkozott objektum masolasa x-be a kdvetkezé modon térténhet:
X .COPY (Y)

Ekkor az y altal hivatkozott objektum minden mezéje atmasolddik az x altal hivatkozott objektum
mezbibe. Ha a mezdben referencia van, akkor csak az masolodik at, tehat a mez6 altal hivatkozott
objektum nem. A masolas elétt mind y-nak, mind x-nek rendelkeznie kell csatolt objektummal.

A klénozas esetén egy Uj objektum keletkezik, az érvénytelen referencia is klénozhatd. Altalaban
értékadasnal hasznaljuk

X :=CLONE (Y)
alakban. Y tipusanak x valamely leszarmazott tipusanak kell lennie.
A meély masolas és klénozas a DEEP_COPY és DEEP_CLONE rutinokkal térténhet.

Annak meghatérozasara, hogy az X és Y egyedek altal hivatkozott objektumok mez&érél mezére
megegyeznek-e, az

EQUAL (X, Y)

logikai visszatérési értékkel rendelkezd rutin haszndlhaté. A mély egyenl8ségvizsgalat rutinjanak
neve: DEEP EQUAL

4.11. Tipusok kezelése

Az Eiffelben egy tipus a kdvetkez8 konstrukcidkban fordulhat el6:

— flggvény visszatérési tipusa

— rutin paramétereinek tipusa

— rutin lokalis egyedének tipusa

— szuperosztaly

— formalis generikus paraméter tipusa
— aktualis generikus paraméter

— példanyositas.

Egy tipus altaldnossagban a kévetkezé lehet:

— osztaly

— kiterjesztett osztaly

— atvett tipus

— bit tipus formalis generikus paraméter

Nem minden tipus szerepelhet minden konstrukcidoban, a részleteket az egyes konstrukciok
targyalasanal lathatjuk.
Az osztalyrdl (beleértve a generikus osztalyt is) és a bit tipusrél mar volt sz6. Egy kiterjesztett osztaly
az

EXPANDED osztalynév
segitségével keletkezik. Példaul

X : expanded y

Itt y egy kiterjesztett vagy referencia osztaly neve.

Az atvett tipus arra szolgal, hogy egy mar ismert egyed tipusat hasznalhassuk fel a megadott
konstrukcioban. Formaja:

LIKE egyed

Az Eiffel 6roklédési grafijanak van ,,kezdete” és ,,vége”. Azt mar lattuk, hogy az Eiffelben az 6sosztaly
az ANY, azonban a teljes hierarchidban f6lotte még van két olyan osztaly, amely platformfiiggé
eszkodzoket tartalmazza. Az ANY szuperosztalya a PLATFORM és az 8 szuperosztdlya a GENERAL,
amelynek mar nincs szuperosztalya.

A GENERAL a platformfliggd altalanos eszkdzdk (pl. a clone) osztalya. A PLATFORM nevesitett
konstans attributumokat vezet be a platformfiggd abrazolasokhoz. Az ANY maéar csak
platformfliggetlen eszkdzoket tartalmaz.

A hierarchia aljan helyezkedik el a NONE osztaly, amely minden osztalynak leszarmazottja. Egy
virtualis osztalynak tekinthet6, amelynek nincs konkrét forrasszévege (hiszen azt minden Uj osztaly
létrehozasa esetén Ujra kellene irni), amely az osztalyhierarchia teljessé tételéhez sziikséges.
Természetesen egyetlen példanya sem létezik és nem lehet alosztalya. Egyetlen eszkdéze sem
hivatkozhato.

Az ANY osztaly Void eszkdze NINE tipusu. Minden T tipus kézvetve vagy kdzvetlenil egy osztalybdl
szarmazik, ezt a tipus alaposztalyanak hivjuk.

Ha T egy osztaly, akkor a szarmaztatas kozvetlen, T vagy egy nemgenerikus osztaly neve, vagy egy
generikus osztalynév, aktualis generikus paraméterekkel. tehat itt az alaposztaly T.

A tObbi esetben a szarmaztatas indirekt. Ekkor a felhasznalt (kiterjesztett, atvett, bit) tipust
bazistipusnak nevezzik és a bazistipus alaposztalya lesz T alaposztalya.

Az Eiffeilben is a tipusegyenértékiiség az osztalyhierarchian alapul. Altalanossagban azt mondhatjuk,
hogy egy V tipus egyenértékl a T tipussal, ha

V alaposztalya leszarmazottja T alaposztalynak.

2. Ha V generikusa szarmaztatott, akkor aktualis generikus paraméterei tipusegyenértékiek T-
ével.

3. Ha T kiterjesztett, akkor V maga T, vagy T alaptipusa.

A pontos esetek targyaldsa ennél sokkal finomabban toérténhet, de ez meghaladja jelen jegyzet
kereteit.

A tipusegyenértékiiség a kifejezésekben és az értékadasnal jatszik alapvetd szerepet az Eiffelben.

4.12. Sztringek és tombok

A tomb értékek egy homogén sorozata, amely elemeit egész indexértékeken keresztil érhetjik el. A
sztring egy specifikaciés tomb, melynek értékei karakterek. Az ARRAY és a STRING osztalyok
eszkozeivel kezelhetjik dket. Ezek egyike sem kiterjesztett, tehat a tdmb és sztring objektumok mindig
referencidval hivatkozhatok.

Az ARRAY egy generikus tipus, paramétere mindig az értékek kdzds tipusat adja. Lényegében
egydimenzios dinamikus tdmbot kezel. Tobbdimenzids tdmbdt ugy tudunk létrehozni, hogy az aktuélis
generikus tipus tomb.

Az indexhatarokat a make rutin paramétereiként adhatjuk meg, amely konstruktorként van megirva.
Atméretezhetiink egy tdmbét a resize(als6_hatar, felsé_hatar) rutin segitségével.

Tombelemet az item(index)-el érhetlink el, felllirasra a put(érték,index) szolgal. A force(érték,index)
rutin esetén, ha index nem esik az indexhatarok k6zé, akkor a tdomb kiterjesztédik az adott indexig.

Tdmbkonstanst tudunk Iétrehozni explicit médon a << , >> operatorok segitségével ugy, hogy
felsoroljuk a tomb értékeit:

<<ki, ... ky>>
ahol k-k kifejezések, amelyek tipusegyenértékiiek.

A sztring Iényegében egy ARRAY[CHARACTER] tipusu tdmb, ahol az alsé hatar értéke 1. A make itt
csak a fels6 hatart rogziti.

Egy sztring konstans alakja:
“[karakter]...”

Példaul: “Ez egy sztring”.

4.13. Programhelyesség

Az Eiffelben az osztalyok és a rutinok szévegében elhelyezhetliink programhelyességi elbirasokat.
Ezek formalis specifikaciok, amelyek

— automatikus dokumentaciés eszkdzok,

— segitségével a programfejlesztd leirhatja az egyes programelemek tulajdonsagait és helyes
mikodését,

— teljesulése futas kozben ellendrizhetd és a kivételkezelésen keresztll lehet reagdlni a
problémakra.

Egy programhelyességi elbiras szerepelhet:

— egy rutin elé- és utdfeltételében,
— egy osztaly invariansaban,

— egy ciklus invariansaban,

— a CHECK-utasitasban.

A programhelyességi el6iras alakja:

[cimke:]{feltétel | megjegyzés}

[;[cimke:]{feltétel | megjegyzés}]...
A megjegyzés szerepeltetése csak dokumentacios célokat szolgal. A ; az and then logikai mlveletnek
felel meg. A cimke egy azonosito (szerepét|. ...).

Egy rutin el6- illetve utofeltételeinek alakja a kdvetkezé:

REQUIRE programhelyességi_elGiras
ENSURE programhelyességi_elbiras

Az el6- és utdfeltételekben az adott osztdly eszkdzeire és a lokalis egyedekre lehet hivatkozni. Az
eléfeltételnek a rutin mdkodésének kezdetekor, a utdfeltételnek a mikddés befejezédésekor
teljestinie kell. Az utdfeltételekben szerepelhet az old linearis operator, amely operandusanak a
rutinba valo belépésénél meglevé értékét adja meg.

Az utofeltételben altalaban azt hataroztuk meg formalisan, hogy milyen valtozasokat okoz a rutin
lefutasa. Hasznos lehet viszont az is, hogy beirjuk, mi nem valtozik meg. Erre szolgalhat specialis
esetben a strip operator.

Ha x.y,z, egy A osztaly attribUtumai és A egy rutinjaban hasznaljuk a strip(a,b) kifejezést, akkor
tulajdonképpen egy olyan témbot kapunk, ahol a strip utan felsorolt mez8kbdl all. strip() az 6sszes
mez6t tartalmazé toémbot eredményezi. Ekkor az

equal(strip(a,b), old strip(a,b))

azt jelenti, hogy a rutin nem valtoztathatja meg az a és b attribdatum értékét. A equal itt két tdmb
elemrél elemre torténd egyezdségének vizsgalatara szolgal.

Példa: Egy tetszdleges objektumokat tartalmazé sor absztrakt adatszerkezetet realizalé osztaly egy
rutinjanak elé- és utéfeltétele lehet példaul a kdvetkezd:

put(c:ANY) is
require
nincs_tele: not tele

do

— —iras asorba

ensure
szamlalo = old szamlalo + 1;
old ures implies elem = ¢;
not ures

end

Egy osztély és egy ciklus invariansanak alakja:

INVARIANT programhelyességi_elbiras
Osztaly esetén az invariansnak az osztaly minden példanyara teljesiilnie kell.
Példa: A lista absztrakt adatszerkezetet realizalé osztaly invariansa.

deferred class LISTA

M
invariant
ures = (szamlalo = 0);
elso = (pozicio = 1);
utolso = (not ures and (pozicio = szamlalo));
kivul = (pozicio = 0) or (pozicio = szamlalo + 1));
pozicio >= 0;
pozicio <= szamlalo + 1;
ures = (pozicio = 0);
(elso or utolso) implies not ures
end

Egy ciklus invaridnsainak a ciklus mikddésének befejezése utan kell teljestlnie. A ciklus variansa
viszont arra szolgal, hogy a ciklus futasa garantaltan befejez6djon. A varians alakja:

VARIANT [cimke:] egész_kifejezés

Az egész_kifejezés értékét a ciklus inicializal6 része nemnegativra kell, hogy allitsa. Ezutdn a
ciklusmag minden lefutasaval értéke 1-el csokken. Ha a varians negativva valik, a ciklus befejezi a
mikodéseét, fiiggetlentl a feltétel értékétél.

Egy rutin térzsében barhol elhelyezheté a CHECK-utasitas, amellyel egy adott feltétel teljestlését
ellenérizhetjik a program adott pontjan. Alakja:

CHECK programhelyességi_elbiras END

Az Eiffelben a kivételek a ,,szokasos” események, de a programhelyességi el6irasok megsértése is
kivételt valt ki.

Az Eiffelben a kivételek objektumok. Az &8s kivételosztaly, az EXCEPTIONS. A kivételkezelés csak
rutinhoz kdthetd, kisebb egységhez (pl. utasitas, kifejezés) nem.

Egy kivételnek az Eiffelben neve és kbdja van, ezek az EXCEPTIONS attributumai. A beépitett
kivételek kddja pozitiv, a sajatoké negativ. A név a hibatizenet szerepét jatssza, ez egy sztring.

Az Eiffelben egy rutin térzse utan helyezhetd el a kivételkezels, amely a kdvetkez6képpen néz ki:
RESCUE é&sszetett utasitas

A rutinban bekdvetkezd barmely kivétel hatasara a vezérlés erre adddik at.

Az ANY osztalyban nem egy

default_rescue is
do
end

alapértelmezett kivételkezeld modszer, amelyet minden osztaly 6rokol és atdefinialhat. igy tehat az
Eiffelben minden osztalyban van alapértelmezett kivételkezel6. Amennyiben egy rutinban nem adunk
meg explicit kivételkezel6t, akkor implicit médon kiegészil egy

rescue
default_rescue
résszel. Tehat az Eiffelben minden rutinban van kivételkezeld.

Csak a kivételkezelében hasznalhaté a RETRY-utasitas. Ennek hatasara a rutin Ujraindul, a
parameéteratadas és a lokalis egyedek inicializalasa nélkil. Alakja:

RETRY
Egy felhasznaloi kivétel kivalthaté a kdvetkezd eljarashivassal:
RAISE (kéd,név)

A felhasznaldi kivétel nevét a developer_exception_name attributum, kédjat az exception attributum
tartalmazza.

Egy rendszerkivétel figyelése letilthaté az
IGNORE (kod)
eljarashivassal.

Szintén az operacios rendszer altal kivaltott kivételekhez kapcsolédéan az Eiffel lehetéséget ad
altalanos, rutintdl fuggetlen kivételkezelésre. A

CONTINUE (kéd)

eljarashivas utan a kod kodu kivétel bekdvetkeztekor az EXCEPTIONS osztalyban megadott (és
természetesen barhol Gjraimplementalhatd) tres térzsi CONTINUE_ACTION eljaras hivodik meg.
Ennek egyetlen paramétere a kéd. Az eljaras lefutasa utan a program a kivétel bekdvetkezésének
helyén folytatodik.

Az ignore, illetve a continue meghivasa utan az alapértelmezett viselkedés visszaallitdsa a
CATCH (kod)

eljarashivas hatasara kévetkezik be.

A viselkedésmddot a
STATUS(k6d)

fuggvény adja meg, melynek visszatérési értéke comput, continued, ignored lehet.

kérdezhetjlk le:

IS _ASSERTION VIOLATION(kOd)
IS DEVELOPER EXCEPTION(KOd)
IS SIGNAL(KOd)

Ezek rendre akkor térnek vissza igaz értékkel, ha programhelyességi eléiras megsértése, felhasznaléi
kivétel vagy operacios rendszer altal kivaltott kivétel kbvetkezik be.

A kivétel tipusat EXCEPTIONS kiilénbdz6, egész tipusu, a bekovetkezett kivétel kodjat tartalmazod
attribitumai segitségével donthetjik el. Példaul Precondition (el6feltétel megsértése),
No_mor_memory (elfogyott a meméria), Void_call _target (érvénytelen referenciara val6 hivatkozas).

Programhelyességi el6iras megsértése esetén az elbirasban szerepld, a kivételt okozd feltétel
cimkéjét tartalmazza a tag_name attributum.

A kivételkezelés alapértelmezett szemantikaja az Eiffelben a kdvetkez6:
Ha egy rutin futasa kézben valahol bekévetkezik egy kivétel, akkor
— a hatralevé utasitasok nem hajtédnak végre,

— elindul a kivételkezeld,

— ha van benne RETRY-utasitas, akkor a rutin Ujra lefut (természetesen Ujra bekdvetkezhet
valamilyen kivétel és akkor ez ismétlédik rekurzivan),

— ha nincs RETRY-utasitas, akkor a kivételkezeld befejezi a mikddését és a rutin sikertelenl
véget ér. Ez a hivé rutinban egy kivételt valt ki és ennek a kivételnek a kezelése torténik a
beirt médon. Ha nincs hivo rutin, a vezérlés (sikertelen programfutassal) visszatér az
operacios rendszerhez.

Mi torténik ha kivételkezel6ben kovetkezik be kivétel??
Az Eiffel tehat a sikeres rutinvégrehajtast kényszeriti a programozora.
Példa: Egy olyan rutin, amely mindig sikeresen ér véget.

— — A lehetetlen egy BOOLEAN tipusu

— — attribatum, alapértéke false. Akkor lesz true

— —ha egyik meghivott rutin sem fut le sikeresen.

mindig sikeres is

local
nem_elso:BOOLEAN - - értéke indulaskor false
do
if not nem_elso then rutin_1
elso if not lehetetlen then rutin_2
end
rescue
if nem_elso then lehetetlen := true
end;
nem?elso := true;
retry
end

A rutinunk el8sz6ér meghivja a rutin_1-et, ha az sikeresen fut le, 6 is visszatér sikeresen, ha kivételt
okoz (sikertelenll tér vissza), akkor meghivja a rutin_2-t. Ha rutin_2 sikeresen lefut, akkor 6 is
visszatér sikeresen, egyébként a lehetetlent igazra allitja és sikeresen visszatér.

4.15.1/0

Az input-output a STANDARD_FILES és a FILES osztalyok valdsitjagk meg. Az ANY osztalynak
vannak olyan rutinjai, amelyek barmely objektum standard outputon valé megjelenitését lehetévé
teszik. Az Eiffel I/O eszkdzrendszere kézepesnek mondhato.

5. SMALLTALK

Nem tipusos nyelv.

Karakterkészlete

— aszokasos.

— Kis és nagybetli megkiilonboztetendo.

Megjegyzés

7 kozott, tetsz6leges karaktersorozat.

Elhatarold jelek
— sz0koz

-

-)

-1

A Smalltalkban minden objektum.

Mint OO nyelv elvei:

— egyszeres Oroklés

— késdi kotés (mas lehetdség nincs)

— lizenetalapu nyelv, alapeszkdze az lizenet

— automatikus objektum megsemmisités: hatékony garbage collection (referencia alapt)
— bonyolult bezarasi mechanizmus, lathatosag szabalyozasa bonyolult

— léteznek példany és osztalyszintii elemek

— vannak absztrakt osztalyok

— kollekciok léteznek

— nem léteznek template-k

— bonyolult standard osztalyhierachiaja van (fa)

A Smalltalk osztalyhierarchia részlete

Magnitude
) @D (@
SmallInteger LargelInteger

A Magnitude, Number, LookupKey absztrakt osztalyok.

Literalok

A megfelel6 osztaly példanyai.

frasmod: a belsejében szokoz és egyéb elvalaszté karakter nem lehet.

— Szamok: egész, tort, lebegdpontos

Példaul: 28, 3/4, 3.28

— Létezik a karakter, mint literal.
Alakja: Skarakter
Példaul: Sc;

— A sztring, mint literal:
Alakja: ‘tetsz&leges karakter sorozat’
Példaul: ‘almafa’

Létezik egy String osztaly, ami karakterek egy egydimenzids tombje.

— Szimbdlum: (symbol)
Alakja: #tetszbleges_karakter sorozat
Példaul: #output
Specialis jelentése van. Alapvetd szerep két szempontbol:
— Mindig egységes és oszthatatlan, bizonyos objektumok neveit kezelhetem bizonyos helyzetekben
szimbolumként.

— A szimbolikus miiveletek.

Atom: Specialis jelentése van.

Alakja: #itetszOleges karakter sorozat

— Tomb: tetszéleges literalok egydimenzids tombje, literalként:
Alakja: # (tetsz8leges literdl sorozat) egymastol szokozzel elvalasztva
Példa: #(‘egy’ ‘kettd’ ‘harom’ ‘négy’)
#(1 2 3 4°5)
#(1 ‘kettd’ #A)
#(#1 28.3 $x)

Valtozok

Létezik a valtoz6 fogalom. Minden valtoz6 egy objektumot cimez. Van neve, értéke és cime.
Nincs tipuskomponens (nem is kell).
A valtozo is objektum, értéke is csak objektum lehet. Specidlisan oldja meg az objektumazonositast: OID-vel.

Mivel minden objektum, a valtozok nem magat az objektumot tartalmazzak, hanem egy OID-t. Ez egy

referencia. Igy nem kell a tipus, hiszen az OID egyetlen médon van megvalositva.

Indirekt cimzést valosit meg. A valtozo értékként egy objektum azonositdjat veheti fel. Mutat egy objektumra.
Amig egy valtozonak nem adunk értéket, addig NIL, ahol a NIL az UndefinedObject osztaly példanya. Az

objektumazonositd egységes. Barmilyen osztalyt meg tud cimezni. (Specialis referencia)

A bezarés szintjei:
— Példanyvaltozok (1d. Java: objektumok allapotanak a leirasara szolgalnak).
— Csak az adott osztaly példanymoédszerei latjak. Az osztdlymddszerek nem latjdk a
példanyokat.
— Kisbetiivel kezdddik a neviik.
— Privat valtozo.

— Példanyoknal jra elhelyezddik.
— Ideiglenes valtozok: (temporary) modszerek lokalis valtozoi. Kisbetiivel kezdddik a neviik.

— Globalis valtozok: program globalis valtozok.
— Az adott program minden modszere 1atja dket.
— Nagybetiivel kezd6dik a neviik.

— Nyilvanos valtozok.

— Szoétarvaltozok: a szotar specialis kollekeio: tablazat.
— A Smalltalk lehetévé teszi, hogy bizonyos valtozok ilyen kollekcidkba legyenek szervezve, és dket tobb
osztaly lassa. A szotarvaltozok bizonyos osztalyok modszerei altal elérhetd valtozok.
— Félnyilvanos jellegii. Kiilon eszkoz.
— A korabbi verziok megosztott valtozoknak hivja.

— Nagybetiivel kezdédik a neviik.

— Osztalyvaltozé (1d. Java osztalyonként egy példanyban létezik). Egy osztalyhoz tartozd valtozd, minden
példany ugyanazt a valtozot latja. Latjak a leszarmazott osztalyok is.
— Az osztalymodszerek, példanymodszerek latjak Oket, beleértve a leszarmazottakat is. Lentrdl felfelé
latszik.

— Nagybetiivel kezdddik a neve.

— Osztalypéldany-valtozo:
— Egy adott osztalyban az osztalymodszerek latjak oket, a leszdrmazottak nem. Nem 6roklédik.

— Kisbettvel kezdédik a neve.

Terminoldgia:
— Kisbetiivel kezddd6 nevii valtozok: privat valtozok, lathatosaguk korlatozott.

— Nagybetiivel kezd6d6 nevii valtozok: megosztott valtozok, egyszerre tobb osztaly latja.

Osztaly
Forditéasi egység ¢és egyben programegység. (1d. még késdbb)

Blokk
Létezik a mddszereken beliil programegységként a blokk. (1d. még késobb)

Modszerek
Modszerek nem agyazhatéoak egymasba, blokkok igen. Blokkok modszerekben fordulhatnak eld. (I1d. még

késébb)

Utasitasok

A program szovege utasitasokbol all. Az utasitasokat ponttal zarjuk le. A kdd utolsé utasitasa utdn nem kdtelezd

a pont.

Uzenet

A Smalltalk egy iizenet alapt rendszer. Az objektumok iizenetek segitségével mitkodnek egyiitt. (Ez megfelel
egy alprogram hivasnak.) Az egyik objektum kiildi (kiild0); a fogadd megkapja, és valaszol mindig az iizenetre.
Az lizenet formajat a modszer interfész része irja le. Az {lizenetnek lehetnek argumentumai (~moddszer
paramétere). Minden iizenet meg van nevezve. A kiild6 elkiildi az iizenet nevét és argumentumait, a fogado
értelmezi az elkiildott lizenetet, majd megvalaszolja azt. Mindig van visszatérési érték. Tehat az ilizenetek
moddszerek. Mindkét objektumnak tudnia kell, hogy az iizenet mire valo.

Elnevezés: az lizenet neve szelektor. Ez a név kisbetiivel kezdddik. Egy iizenetnek van egy szelektora és lehetnek

argumentumai.

argumentumok

Kildé
objektum

Fogad¢

objektum

visszatérési értek
Uzenetek két csoportja:
— Lekérdez6 modszerek (lizenetek): az objektum allapotat kérdezi le. Nincs argumentumuk.

— A bedllito modszerek (lizenetek): megvaltoztatjak az objektum allapotat (beallitja a fogadd objektum

valamely véltozojanak értékét). Altalaban van argumentumuk. Neviiket kettdsponttal kell lezarni.

A valtozok és modszerek neve lehet ugyanaz: névtilterheltség. A kodban levd pozicid donti el, hogy valtozorol

vagy modszerrdl van-e szo.

Az tizeneteknek harom csoportja van:

— undris: nincs argumentumuk, lekérdezo tizenetek. Csak szelektor van, nincs paraméter.

— kulcsszd (keyword): van argumentumuk a szelektor utan. (beallitd tizenetek)

— binadris: realizaljak az eljarasorientalt nyelvek operatorait. Az aritmetikai, logikai, hasonlitd operatorokat

realizald lizenetek. Modszerekként vannak realizalva ezen operatorok.
Kifejezés
Egy Smalltalk utasitas egy vagy tobb kifejezést tartalmaz.

Kifejezés tipusai

1. els6dleges kifejezés
2. lizenet kifejezés

3. kaszkad kifejezés

1. Elsédleges kifejezés lehet:

— valtozonév
— literal

— (kifejezés)

2. Uzenet kifejezés: ez a leggyakoribb.
Alakja:

fogadbéobjektum izenet neve argumentumok

Paraméterkiértékelés:
— sorrendi kotés
— szambeli egyeztetés

— (tipus nincs)

Paraméteratadas: iizenettdl fiigg, hogy mi keriil atadasra. Az objektum vagy az objektum allapota keriil

atadasra.

— Ertékadas: A kovetkezé iizenetkifejezéssel irhat6 le a Smalltalkban:

X := 5.

X
5
Ez

: fogad6 objektum (valtozo)
: szelektor (lizenet)
: argumentum

egy 1lzenet kifejezés. Minden osztilyban létezik ez a modszer (:=). A valtozd egy

objektumazonositot tartalmaz. Ezen objektum “értéke” allitddik be — egy megadott allapotba kertil.

Hatasara az x valtozo értékét allitja be arra a referencidra, amely az 5-t, mint a SmallInteger

osztaly példanyat cimzi.

Altaldnosan:

valtozénév := utasités.
Return kifejezés:
~utasitéas : Ez egy olyan lizenet, aminek nincs fogaddja. Az objektum értékére, allapotara valod
hivatkozast jelenti. Az utasitas értékével tér vissza.

Példa: egy return kifejezésre:

X = x + 1. (:= kulcsszavas iizenet)
X,

% : fogado

:= :szelektor

x + 1:paraméter

Ki kell értékelni a paramétert, ami egy lizenetkifejezés, ahol:
x : fogado
+: szelektor

1: argumentum

De ugyanazt adja a kdvetkez0 is:

A

x = x + 1.
A
“x + 1.

is ugyanazzal az értékkel tér vissza (x-nél egyel nagyobbat), de x értéke nem valtozik.

Tombliteralok osztalyaban létezik egy modszer az index modszer:
#(1 2 3 4 5) at: 2.
A 2 index argumentum.

Az at: kulcsszavas iizenet. Fogado objektum: barmely objektum lehet, amely ismeri ezt a modszert.

A modszer visszaadja a masodik értéket, mint literalobjekumot.

3. Kaszkad kifejezés: ugyanahhoz a fogadé objektumhoz tobb iizenetet akarok kiildeni, anélkiil hogy mindig
felirnam a fogado nevét.
Alakja:

fogadd tizenetek (lizenetkifejezés lista pontosvesszovel elvalasztva)

Kifejezések kiértékelése

Prioritasi sorrend van az iizenetek hdrom csoportja kdzott:

1. unaris
2. Dbinaris
3. kulcsszavas
Egy kifejezés tetszoleges bonyolultsagu lehet. Tetszéleges sok tizenet lehet egy kifejezésben.

A balrol-jobbra szabaly érvényes. Egy kifejezésen beliil kiértékeljiik az 6sszes unaris iizenetet balrol-jobbra,
aztan az Osszes binaris, majd a kulcsszavasok, a felsorolas sorrendjében.

A kiértékelést () -kel szabalyozhatom. Egyértelmi a kiértékelés.

1. Unaris iizenetek:
A not unaris lizenet:
(3 > 2) not
(3 > 2):Boolean példany

not : lizenet (argumentum nélkiili)

2. Binaris tizenetek (kifejezések):
— Aritmetikai lizenetek: a Number osztaly modszerei.
Operatorok:
+ : Osszeadas
- :kivonas
* 1sZ0rzas
/ :osztas
// :egészosztas
\\ : maradékképzés
Példa:
4/3 Literal, a Fraction osztaly egy példanya.

4 / 3 Uzenet kifejezés. Keletkezik egy olyan objektum, amelynek értéke: 4 /3.

— Hasonlité operatorok: a Magnitude osztdly modszerei:
< : nagyobb
> : kisebb
= : egyenldség, két objektum értékének azonossaga
<= :kisebb vagy egyenld
>= :nagyobb vagy egyenld
== :két objektum azonossaga, referenciaban val6 egyenldség (ugyanaz az objektum)
Eredményiik mindig egy olyan objektum, amely a True vagy a False osztaly egy példanya.

X := SA < Sa.

— Logikai binaris lizenetek: A Boolean osztaly példanyain értelmezett.
& :és
| 1 vagy

Teljes kiértékelés van, nincs rovidzar kiértékelés.

Blokk

Olyan objektum, amely végrehajthat6 kodot tartalmaz.

— Utasitasokat tartalmaz.
— Elhelyezheté mddszerek torzsében.

— Egymaésba skatulyazhato.

— Formalisan [] zardjelek kozott all.

— Tartalmazhat lokalis valtozokat. Ezek a valtozok a blokk argumentumai. Neviik el6tt kettdspont all. A
lokalis valtozokat [| kozott soroljuk fel: kozvetleniil a [jel utan vannak felsorolva, ezutan egy | jon,
majd az utasitasok.

| 1 koOzott utasitassorozat all.

Vezérlési szerkezetek

Feltételes végrehajtas:

ifTrue:

blokk
ifFalse:

Boolean példany {

A Boolean példany afogadoosztaly.
A blokk argumentum nélkiili.

Az i fTrue ésaz ifFalse aBoolean osztaly egy-egy mddszere: lizenet.

Példa:

a < b ifTrue: [max := Db]; ifFalse: [max := a]j.

Ezek kulcsszavas lizenetek. Két egymastol fiiggetlen modszer.
Ha a moddszereket egymas utan alkalmazni akarom, vannak olyan modszerek, amelyek a
kettdt Osszevonjak. Ez kivaltja a kaszkad iizenetet. Egyetlen objektumra tobb {izenetet

alkalmazok.

Rovidzar logikai miiveleteket realizalo tizenetek:
L and: S , .
Boolean példany blokk "Logikai objektumot eredményez."
or:

Boolean példany not

Ciklusok:
Integer példany timesRepeat: blokk

Integer példany -szor hajtja végre a blokkban 1év6 kodot. A blokk argumentum nélkdili.

Kezdofeltételes ciklusnak megfeleld konstrukcio:

L whileTrue:
Boolean példany blokk

whileFalse:

A blokk argumentum nélkiili.

Példa:
x 1= b,
y = 0.
[y <= x] whileTrue: [y :=y + 1]

El6irt 1épésszamu ciklusnak megfeleld konstrukceio: elolteszteld

Number példany to: Number példany by: Number példany do
[:v | utasitésok]

Példaul:

k to: v by: 1 do: [:cv]kéd]

k, v, 1 (kezdet, vég, 1épéskoz) :a Number osztaly egy-egy példanya. Ha 1-et nem adjuk meg, annak értéke
alapértelmezés szerint 1.
cv : ciklusvaltozo

koéd :ciklusmag

Példa:

s := 0.

1/2 to: 1 by: 1/8 do: [:i | s :=s + 1].
~s.

Példa: A maganhangzdkat kicsire, a massalhangzokat pedig nagyra valtoztatja a sztringben.

string := 'Ez a sztring.’.

index := 1.
string size timesRepeat:

[c := string at: index.

string at: index put:

(c isVowel 1fTrue:[c asUpperCase];

ifFalse: [c asLowerCase]).

“string.

A string as: index a string tomb megfeleld értékéhez vald hozzaférést teszi lehetévé. A
tombindex mindig 1-t61 indul.

Az asUppercase és az asLowerCase unaris lizenet.

Példa: Hany maganhangz6 van egy adott sztringben?

m := 0.
s := ’'No ebben mennyi van?’.
v := s size.
1 to: v do: [:i|c 1= s at: 1i.
c isVowel ifTrue: [m :=m + 1]].
“m.

A Smalltalk is algoritmikus nyelv. Rengeteg miivelet implementalva van iizenet szinten.

Osztalyok

Az osztalyok definialasa (az osztalyhierarchidba valo elhelyezése) interaktiv modon, az eddigi osztalyokhoz
kapcsolodoan térténik. Onalld osztalyok nem léteznek, csak osztalyhierarchia. A Smalltalk egy integralt
fejlesztdi kornyezetet ad, €s ebben tobb lehetdség van 11j osztaly létrehozédsara. Az 0j osztaly szuperosztalydhoz
Uj példany-, osztaly- és szotarvaltozdkat, 1j modszereket definidlhat, és modszereket Gjraimplementalhat.

Itt kodiras kovetkezik, majd a modszerek leforditasa, majd tesztelése.

Minden egyes osztaly a MetaClass osztaly példanya. Egy osztaly igy jon létre. A MetaClass osztaly
alosztalya az Object osztalynak.

Uj osztaly definicioja:
szuperosztaly név SUBCLASS: #név

Példanyositani minden osztalyban a megfelel6 osztalyhoz kiildott new iizenettel lehet. Az adott valtozo értékét

az uj példany OID-jére allitom.
vadltozénév := osztdlynév NEW.

A valtozdk automatikus kezdéértéke nil, amely az UndefinedObject osztaly példanya.

Modszerek

A modszerek definicidja harom részbdl all (a masodik elmaradhat) a Smalltalk terminologidja szerint:
— interfész

— lokalis valtozok

- kod
1. Az interfész rész:

Megfelel a korabbi alprogram specifikacionak.

Szerkezete:

név argumentumok [név argumentumok]...

— Ha a név kettésponttal zarul, akkor ezek a modszerek beallitd iizenetek. Ekkor argumentumok

sziikségeltetnek, minimum 1.

— Ha nincs kettéspont, akkor lekérdez6 mddszer. Itt altalaban tilos argumentumot megadni.

— A formalis paraméterek, az argumentumok lokalis valtozoi szerepkdrben vannak.
Ha t6bb nevet adok meg, nem kell kaszkadolni, felsorolhatoak.

2. Adatrész:

Az interfész utan | | kozott szerepelnek a lokalis valtozok, amennyiben vannak. Ez az adatrész, ahol a lokalis

valtozokat sorolja fel.

3. Kod:

Utasitasok sorozata.

A modszer visszatérési értékét egy ~tizenet realizalja. Ez megfelel egy return kifejezés
A modszerek neve kisbetlivel kezdddik, ha beallité modszer, akkor a végén ott a kettéspont.

Definialjuk példaul az Object osztilyhoz kapcsoldoddan a Szemely osztalyt.
Object subclass: #Szemely

Példanyvaltozoi:

- nev

- cim

— telefonszam

Modszerei lehetnek példaul a kovetkezok:
nev ”lekérdezd mbdédszer, unaris”
“nev

nev: egyNev “beallitd, kulcsszavas mbdbdszer”
nev := egyNev

cim
~cim

cim: egyCim
cim := egyCim

C utasitasnak.

Valtozok és modszerek nevei lehetnek azonosak, mert a poziciojuk egyértelmiien eldonti, hogy melyikrél van

sz6. A Smalltalk kifejezetten javasolja is.

OO kordkben kodolasi szabalynak tekinthetd, hogy ha osztalyrdl és példanyardl vagy valtozorol és értékérdl van
sz0, akkor a kovetkez6 kodolasi konvencio érvényes:

egySzemély (angolul: aPerson)

nev: egyNev cim: egyCim
self nev: egyNev.

self cim: egyCim.

A self az aktualis példanyt, mint objektumot jelenti a Smalltalkban.

Az intrefész részt nem zarjuk ponttal, csak az utasitast.

Ezek utan a kovetkez6 utasitasok alkalmazhatoak (példanyosités):

Valaki := Szemely new.
Valaki nev: 'Kovéacs Jend'.

Valaki nev.

Az Integer osztalynak van egy factorial nevii modszere:

factorial

self > 1 ifTrue: ["(self - 1) factorial * self].

self < 0 1ifTrue: ["(self error: 'negative factorial']

~1.

Példa: Egy sztring szamma konvertalasanak a kodja a kovetkezé (egy egész vagy valds szamot

tartalmazo sztringet szdmma konvertal)

ConvertToNumber: aString

| subStrings whole decimal exponent|

subStrings := aString subStrings: $.
whole := (subStrings at: 1) asNumber.
subStrings size =1

ifTrue: [“whole]
ifFalse: [decimal := subStrings at: 2.

(decimal includes: $e)

ifTrue: [subStrings := decimal subStrings: Se.
exponent := (subStrings at: 2) asNumber.
decimal := subStrings at: 1]

ifFalse: [exponent := 0].

~(whole + (decimal asNumber / (10 raisedTo:

(decimal (size))))* (10 raisedTo: exponent)

asFloat].

Besz¢€l16 lizenetnevek hasznalata javasolt. A sztringet egydimenzios tombkeént tekinti, megnézi, hogy van-e benne
pont, vagy exponens rész.
A kollekciokrol nem szolunk, de a Smalltalk ismeri a kovetkezoket: halmaz, multihalmaz, tomb, lista, rendezett

lista, tablazat.

6. A funkcionalis paradigma

A funkcionalis paradigma k&zéppontjaban a fliggvények allnak. Egy funkcionalis (vagy applikativ)
nyelvben egy program tipus-, osztaly-, és fuggvénydeklaraciok, illetve fuggvénydeklaraciok, illetve
fuggvénydefiniciok sorozatabdl, valamint egy kezdeti kifejezésbdl all. A kezdeti kifejezésben
tetsz6leges hosszusagu (esetleg egymasba agyazott) fliggvényhivas sorozat jelenhet meg. A program
végrehajtasat a kezdeti kifejezés kiértékelése jelenti. Ezt ugy képzelhetjiuk el, hogy a kezdeti
kifejezésben szereplé flggvények meghivasa ugy zajlik le, hogy a hivast szdvegszerlien (a
paraméterek figyelembevételével) helyettesitjlk a definicié torzsével. A helyettesités pontos
szemantikajat az egyes nyelvek kiértékelési (atirasi) modellje hatarozza meg.

A funkcionalis nyelvek esetén nem valaszthatdé szét a nyelvi rendszer a kdrnyezettdl. Ezek a nyelvi
rendszerek interpreter alapuak, interaktivak, de tartalmaznak forditéprogramokat is. K6zéppontjukban
mindig egy redukciés (atird) rendszer all. Ha a redukciés rendszer olyan, hogy az egyes
részkifejezések atirdsdnak sorrendje nincs hatassal a végeredményre, akkor azt konfliktusnak
nevezzuk.

Egy funkcionalis nyelvii program legfontosabb épitdkdvei a sajat fliggvények. Ezek fogalmilag
semmiben sem kilénbéznek az eljarasorientalt nyelvek flggvényeitél. A flggvény torzse
meghatdrozza adott aktualis paraméterek mellett a visszatérési érték kiszamitasdnak mddjat. A
fuggvény toérzse a funkcionalis nyelvekben kifejezés.

Egy funkcionalis nyelvi rendszer beépitett fUggvények sokasagabdl all. Sajat fliggvényt beépitett, vagy
altalunk mar korabban definialt fliggvények segitségével definialni (flggvényosszetétel).

Egy funkcionalis nyelvben a fuggvények alapértelmezett médon rekurzivak lehetnek, sét [étrehozhatok
kolcsdndsen rekurziv fuggvények.

A kezdeti kifejezés redukalasa (a nyelv altal megvaldsitott kiértékelési stratégia alapjan) mindig egy
redukalhatd részkifejezés (egy redex) atirasaval kezdédik. Ha a kifejezés mar nem redukalhato
tovabb, akkor normal formaju kifejezésrél beszélhetlnk.

A kiértékelés lehet lusta kiértékelés, ekkor a kifejezésben a legbaloldalibb, legkilsé redex kerdl
atirasra. Ez azt jelenti, hogy ha a kifejezés egy fiiggvényhivas, akkor az aktualis paraméterek
kiértékelését csak akkor végzi el a rendszer, ha szikség van rajuk. A lusta kiértékelés mindig eljut a
normal formaig, ha az létezik.

A moho kiértékelés a legbaloldalibb, legbelsé redexet irja at el6szdér. Ekkor tehat az aktualis
paraméterek kiértékelése torténik meg el6szor.

A moh¢ kiértékelés gyakran hatékonyabb, de nem biztos, hogy véget ér, még akkor sem, ha létezik a
normal forma.

Egy funkcionalis nyelvet tisztéan funkcionalisnak (tisztan applikativnak) nevezunk, ha nyelvi elemeinek
nincs mellékhatasa és nincs lehet6ség értékadasra vagy mas eljarasorientalt nyelvi elem
hasznalatéara.

A nem tisztan funkcionalis nyelvekben viszont van mellékhatas, vannak eljarasorientalt (néha
objektumorientalt) vagy azokhoz hasonlé eszkézok.

A tisztan funkcionalis nyelvekben teljesll a hivatkozasi atlathatésag. Ez azt jelenti, hogy egy kifejezés
értéke nem fligg attdl, hogy a program mely részén fordul eld. Tehat ugyanazon kifejezés értéke a
szbveg barmely pontjan ugyanaz. A fuggvények nem valtoztatjdk meg a kornyezetlket, azaz a
tartalmazo kifejezés értékét nem befolyasoljak. Az ilyen nyelvnek nincsenek valtozoi, csak konstansai
és nevesitett konstansai.

A tisztan funkcionalis nyelvek altalaban szigordan tipusosak, a forditoprogram ellenérzi a
tipuskompatibilitast.

Ezek a nyelvek eszkdzként tartalmaznak olyan fliggvényeket, melyek paramétere, vagy visszatérési
értéke flggvény (funkcionalok, vagy magasabb rend(figgvények). Ez a funkcionalis absztrakciot
szolgdlja.

A funkcionalis nyelvek egy részének kivételkezelése gyenge vagy nem létezik, masoknal hatékony

eszkozrendszer all rendelkezésre.

A flggvényoOsszetétel asszociativ, igy a funkciondlis nyelven megirt programok kiértékelése jol
parhuzamosithatd. Az elterjedt funkcionalis nyelveknek altaldaban van parhuzamos valtozata.

A kovetkezb két fejezetben a funkcionalis nyelvek két jellegzetes képviseljét targyaljuk, azokon

A Haskell egy erfsen tipusos, tisztan funkcionadlis, lusta kiértékelést megvaldsitd, a LISP egy
imperativ eszkdzoket is tartalmazd, objektumorientalt valtozattal (LLOS) is rendelkez6, moho
kiértékelést vallo funkcionalis nyelv.

7. LISP

A LISP a funkcionadlis paradigma elsé nyelveként az 1950-es évek masodik felében jott létre, mint
mesterséges intelligencia kutatasokat tamogaté nyelv. Sok verzidja létezik. Mi a Common LISP
valtozatot, illetve ennek objektumorientélt eszkdzdkkel kibdvitett verzidjat targyaljuk, ennek neve
CLOS (Common LISP Object System).

A LISP egy interpreteres, interaktiv nyelvi rendszer, amelyet beépitett fliggvények alkotnak. Ezek
azonnal, parbeszédes tizemmadba hivhatok.

A LISP programozas sajat fliggvények definidlasat és azok alkalmazasat jelenti.

A nyelv nem tipusos.

7.1. A CLOS alapelemei
Karakterkészlete az ASCII-n alapul, a kis és nagy betiiket nem kiilénbézteti meg.
A nyelvnek nincsenek alapszavai. A beépitett flggvények nevei standard azonositok.

Az azonositdk betlkbdl, szédmjegyekbdl és a kovetkezd karakterekbdl alkotott, tetszéleges
hosszUsagu karaktersorozatok: +, —, *, /, @, $, %, *, &, ,=,<,>,~,.

Az azonositok a nyelvben valtozok és flggvények nevei lehetnek. Ezeknél a LISP a kisbetlket
automatikusan nagybetisre alakitja at, az outputban mar csak ez az adat jelenik meg.

Megjegyzést barmely sor végén helyezhetlink el a ; karakter utan, a sor végéig.

A nyelv alapépité elemei az atomok. Egy atom lehet numerikus atom vagy szam. Ez megfelel az
eljarasorientalt nyelvek numerikus literaljanak. A LISP decimalis szamrendszert hanszal. A szamok
fajtai a kovetkezdk:

Szam
Valos
Racionalis
Tort
Egész
A valdés szamnak megvan a tizedestort és az exponencialis alakja, az egész a szokasos. A tort esetén
a szamlalot és a nevez6t egy / valasztja el.

A LISP a tortet mindig harmonikus alakra alakitja (tehat a szamlalé és nevezd relativ primek és a
nevezd pozitiv).

Példak szamokra:
-1, 28, .07, -11.3, 0.888e-3, 1416, -518.

A szimbolikus atom vagy szimbdlum egy azonositd, amely szovegkornyezettdl fliggéen csak 6nmagat,
mint karaktersorozatot jelenti, vagy pedig egy programozéi eszkdz neve.

A nyelvnek vannak beépitett szimbdlumai. Példaul a T egy nevesitett konstansnak tekinthetd,
amelynek értéke a logikai igaz.

Az atomokon kivul a LISP masik alapeszkdze a lista, amelyrdl a nevét is kapta (List Processing). A
lista kerek zardjelbe zart atomok és listak sorozata. A hierarchikus lista (1. Adatszerkezetek és
algoritmusok cim(targy) absztrakt adatszerkezet nyelvi realizacidja.

Példak listara:

() ; Ures lista
(Ez egy 5 elemu lista)

((@b)(cd)

Az atomokat és a listakat a LISP k6zos néven S-kifejezésnek (szimbolikus kifejezésnek) hivja.

A LISP-ben mind a program, mind az adat S-kifejezés segitségével kezelhetd. Tehat egy LISP
program feldolgozhat egy masik LISP programot adatként és a futdas eredménye egy uUjabb LISP
program lehet.

A LISP-ben van valtozé. A valtozot definialni kell, lehet neki explicit kezd6értéket adni és értéke
tetszélegesen megvaltoztathato.

A LISP-ben van kifejezés. Ugyanis az S-kifejezés vagy adatot hataroz meg, vagy csak énmagat, mint
karaktersorozatot jelenti, vagy kifejezés és mint ilyen kiértékelendd. A numerikus atom értéke dnmaga,
valtozo6 értéke az aktualis érték. Lista esetén viszont ekkor a lista elsé elemének egy fuggvénynévnek
kell lennie és ekkor ez egy fluggvényhivas. A lista tovabbi elemei a fliggvény aktualis paraméterei. A
kifejezés eredményét ekkor a fliggvény visszatérési értéke adja. Az aktualis paraméterek S-
kifejezések lehetnek.

A LISP kifejezése prefix kifejezés, az operatoroknak a fliggvénynevek, az operandusoknak S-
kifejezések felelnek meg.

A kifejezés értéke maga is S-kifejezés.
Egy valtozo értékéll S-kifejezést vehet fel.

A LISP flggvényei lehetnek fix és valtozd paraméterszamuak, igy az operatorok egy része
tetsz6leges szamu operandusra értelmezett.

A LISP interpreter ezek utan alaphelyzetben a kovetkez6képpen mikodik:

1. Megadunk neki egy S-kifejezést, ez a program. Ezt beolvassa (read).

2. Ertelmezi az S-kifejezést, meghatarozza az értékét (evaluate).

3. Kiirja az értékét a képernybre (print).
Ezt hivja a LISP read-evaluate-print ciklusnak.
A LISP fuggvények esetén a paraméterkiértékelésnél mindig sorrendi kétés, a fix paraméteriieknél
szambeli egyeztetés érvényesul. A paraméteratadas lehet érték szerinti, ekkor az aktudlis

paraméterként megadott S-kifejezés kiértékelddik. Az ilyen fliggvények nem vaéltoztatjdk meg
paramétereiket, tehat ebbdl a szempontbdl mellékhatas mentesek (tisztan applikativak).

A paraméteratadas azonban lehet szimbolikus, ekkor az aktualis paraméter nem értékelédik ki, hanem

mint szimbolum kerll atadasra. Ezek a figgvények meg tudjak valtoztatni a paraméteriiket, tehat

lehet mellékhatasuk. Az ilyen figgvényeket egyes LISP verzidk alfiiggvényeknek hivjak. A CLOS

ekkor makroérdl beszél, megkildnboztetve Sket a fiiggvényektsl. A makrokrol részletesebben ...

7.2. CLOS beépitett fliggvények

Aritmetikus fliggvények

+

*

/
rem
1+
1—
Sqrt
exp
gcd
lcm
abs
min
max

Példak:

Osszeadas, tetsz6leges szamu paraméter

kivonas, legalabb 1 paraméter

szorzas, tetszbleges szamu paraméter

egeészosztas, 2 paraméter

maradékképzés, 2 paraméter

novelés 1-el, 1 paraméter

csokkentés 1-el, 1 paraméter

négyzetgyok, 1 paraméter

hatvanyozas, 2 paraméter

legnagyobb kdzds oszto, tetszbleges szamu paraméter
legkisebb kdz6s tébbszoros, tetszbleges szamu (legaldbb 1) paraméter
abszolut érték, 1 paraméter

legkisebb érték, legalabb 1 paraméter

legnagyobb érték, legalabb 1 paraméter

A példakban a > a promptjel, a LIST valasza az alatta levé sor(ok)ban lathaté.

Predikatumok

Olyan flggvények, amelyek logikai visszatérési értékkel rendelkeznek. Nevik p-re végzédik. Itt

jegyezzik meg, hogy a logikai hamis értéket a LISP a NIL beépitett szimbdélumokkal (mint nevesitett

konstanssal) kezeli. Az iires lista értéke is NIL!

>()
NIL

Sok LISP verzi6 az un. altalanositott logikai értékeket kezeli. Ezek azt mondjak meg, hogy ha

valaminek az értéke nem NIL, akkor az igaz. A CLOS is ezt az elvet valésitja meg.

Néhany predikatum szamok fajtajat donti el:

numberp a paramétere szam-e
realp a paramétere valds-e
rationalp a paramétere racionalis-e
ratiop a paramétere tort-e

integerp a paramétere egész-e

Példak:
M

A kovetkez6 predikatumok szintén szadmokat vizsgalnak:

zerop a paramétere nulla-e
plusp a parameétere pozitiv-e
minusp a paramétere negativ-e
oddp a paramétere paratlan-e
evenp a paramétere paros-e

Az aldbbi fuggvények legalabb egy paraméterrel rendelkeznek, ezek is predikatumok, a
paramétereiket hasonlitjdk 6ssze:

= < > [= >= <=
» oy by

Konverziés fliggvények

A paraméterik egy szam, amelyet masik fajtaju szamma alakitanak at.

float valossa alakit
rational tortté alakit at
truncate csonkit
round kerekit
Példak:
M

Logikai fliggvények
A not, and, or rendre a logikai tagadas, és illetve vagy miiveletet realizalja.
A not egy paraméterii, az and és or tetszéleges szamu paraméterrel rendelkezik.

Az and fluggvény visszatérési értéke NIL, ha valamelyik paramétere NIL, kilénben a legutolso
paraméterének értéke. Ha paraméter nélkul hivtuk meg, T-vel tér vissza.

Az or visszatérési értéke NIL, ha valamennyi paramétere NIL értékl, egyébként az els6 nem NIL
ertékld paraméterének értéke. Ha paraméter nélkil hivtuk meg, NIL-el tér vissza.

Tehat az and és or rovidzar kiértékelés.
Példak:

M

Feltételes fliggvények

Segitséglikkel feltételes kifejezéseket tudunk dsszeallitani, szereplk a sajat figgvény létrehozasanal

van.

Az if figgvénynek két vagy harom paramétere van. Ha az elsé paraméter értéke nem NIL, akkor a
masodik paraméter kiértékelédik,és ez adja a visszatérési értéket. Ha NIL, akkor, ha meg van adva
harmadik paraméter, akkor annak értéke lesz a visszatérési érték, egyébként pedig NIL.

Példak:
A cond fliggvény nem fix paraméterszamu fliggvény, paraméterei listak. Formaja:

(COND (feltétel [S-kifejezés]...)
[(feltétel [S-kifejezés]...)]...)

Szemantikaja a kdvetkez6: A megadas sorrendjében kiértékelésre kerllnek a feltételek. Ha valamelyik
értéke nem NIL, akkor a mellette megadott S-kifejezések kozil az utolsé értéke adja a visszatérési
értéket. Ha nincs S-kifejezés, akkor a feltétel értéke (ami nem NIL) hatarozza meg a visszatérési
értéket. Ha minden feltétel értéke NIL, akkor a cond is NIL-el tér vissza.

A quote fliggvény

Egyparaméteres fliggvény, amelynek visszatérési értéke a aktudlis paraméterként megadott S-
kifejezés. Arra szolgal, hogy érték szerinti paraméteratadassal rendelkezd paramétereknél az aktualis
paraméter kiértékelését megakadalyozzuk

Példa:

>(quote (+ 5 6))
(+56)

Szerepe annyira fontos, hogy réviditeni lehet a ’ karakterrel, a fenti fliggvényhivas ekvivalens az
alabbival:

>’(+ 56)

7.3. Nevesitett konstans, valtozo, sajat fuggvény

A programoz6é a CLOS-ban sajat nevesitett konstanst a defconstant makréval hozhat létre,
melynek elsé paramétere a nevesitett konstans neve, a masodik az értéke.

Példa:
M

A CLOS-ban egy valtozot a defrar makréoval lehet definialni. Elsé paramétere a valtozé neve, masodik
opcionalis paramétere a kezd6értéke.

Példak:

> (defrar a 8)

> (defrar a)

Az els6 esetben a kezd6érték 8, a masodikban nincs kezdéértékadas.

A makré visszatérési értéke a valtozé neve, mint szimbdélum. A defrar a masodik paraméterét
kiértékeli, az els6t nem. Mellékhatasként viszont az elsé paraméterének értéket adhat.

Egy valtozd értékét a setf makrd segitségével tudjuk megvaltoztatni (értékadas). Legaldbb két
paramétere van, az els6 a valtozd neve, a masodik az Uj érték. Visszatérési érték a masodik
paraméter értéke. Egyszerre tdébb valtozénak is tudunk értéket adni segitségével.

Példak:

> (setfa 5)

5

> (setfa5b 6)
6

Sajat fuggvényt a defun makré segitségével hozhatunk Iétre. A fuggvénydefinicio altalanos formaja:
(defun név formalis_paraméter _lista t6rzs)

A név egy szimbolum. A formaélis_paraméter_lista egy szimbdlumokat tartalmazo lista. A formalis
paraméterek a fuggvény lokalis valtozéi. A térzs egy S-kifejezés sorozat. A defun fuggvény
visszatérési értéke hatarozatlan, CLOS nem hatdrozza meg azt. Az implementaciok viszont
generalhatnak valamilyen visszatérési értéket (pl. a flliggvény nevét).

A visszatérési értéket a torzs hatdrozza meg. Az igy definialt figgvény paramétereinek
paraméteratadasi modja érték szerinti lesz. Meghivni annyi aktualis paraméterrel lehet, ahany formalis
paraméter megadtunk, tehat az uj figgvény fix paraméterszamu lesz.

A defun segitségével definialhatunk nem fix paraméterszamu sajat fuggvényt is, ugy, hogy a formalis
paraméter listan egyetlen szimbdlumot adunk meg, és elétte szerepeltetjik az &rest kulcsszot (I. ...).
Ha a paraméterek szamanak als6 korlatot akarunk megszabni, akkor a formalis paraméter listan
megadunk adott szamu szimbdlumot és a listat zarja a fenti konstrukcio.

Példak:
1. A kovetkezd sajat flggvény az abszolutérték fliggvényt implementalja logikai fuggvények
segitségével)az altalanositott logikai értékek miatt):
(defun absz (n)
(or (and (minusp n) (* =1 n)) n))
2. A faktoridlis fliggvény rekurziv valtozata
(defun fakt (n)

(cond ((zerop n) 1)
(T)(n (fakt (=n 1))))

A tovabbiakban a sajat fliggvénydefinicidk lezarasaként a > jelet fogjuk alkalmazni (mint ahogy tobb
implementacio is), az egy kényelmi jeldlés, az 6sszes olyan balzardjelhez, amelynek még nincs
jobbzardjele, hozzaparosit egy jobbzarojelet.

7.4. Listak

Egy lista fejét a car, a farkat a cdr figgvény szolgaltatja. Paraméterik természetesen egy lista. Az
Ures listara értékik NIL.

A cons fliggvénynek két paramétere van, ezekbdl allit elé egy listat ugy, hogy kiértékeli 6ket és az
elsd paraméter értéke lesz a lista feje, a masodik a farka.
Példak:

> (defrara ‘(+ 2 3 4))

A

>’a

A

>a

(+2 3 4)

> (car a)

+

> (cdr a)

(2 3 4)

> (car (cdr’ (a b ¢))

B

> (cons’a’(b c))

(A B C)

> (cons’a’())

(A)

> (cons 'a’b)

(A.B)

Az utolsé példa mutatja a lista és a valddi lista kdzotti fogalmi kildnbséget. A valddi lista mindig az
ures listaval végzédik. Tehat rendre alkalmazza ... a cdr figgvényt, az utolsé mindig NIL-el tér vissza.
A nemvalddi lista esetén viszont az utolsé cdr visszatérési értéke nem NIL, ilyen akkor keletkezik, ha a
cons masodik paramétere nem lista. llyenkor a kiirt lista egy pontozott part tartalmaz, ahol a pont utani
rész az utolso cdr értékét mutatja.

Az endp predikatum a lista végét teszteli. Ertéke igaz, ha paramétere az iires lista és NIL, ha nem.
A listak memoariaban torténd abrazolasa a kdvetkezéképpen torténik:

A valddi lista mindig egy pointerparbdl all. Ezek kozil az elsd cimzi a lista fejét, a masodik a farkat. A
cons fliggvény ezt a két pointert hozza létre. Tehat a

> (cons ’'a (cons ’b nil))
(A B)

hatésara az alabbi abrazolasi lista jon 1étre:

> (cons (cons ‘a nil) nil)
((A)

lista viszont a kdvetkez6képpen néz ki:

A nemvalddi
> (cons ‘a ‘b)

(A.B)

pontozott par szerkezete viszont:

A listakra vonatkozo tovabbi fliggvények az alabbiak:
A list egy nem fix paraméterszamu fliggvény, amely paramétereinek értékébdl listat képez.
Példak:

> (list)

NIL

>(list1 2 3)

(12 3)

> (list '(ab) ’(cd))

((AB)(CD))

> list 'a (list ’'b ’c))

(A(B C))
Az append nem fix paraméterszamu figgvény, amely listat alkotd6 paramétereibdl egyetlen listat
képez (6sszefiizés).

Példak:
> (append '(ab) ‘(cd))
>(A B C D)

A length a lista elemeinek szamat adja, a reverse pedig a lista legklilsé szintjén levd elemek
sorrendjét megforditja (tehat a beagyazott listak valtozatlanok maradnak).

Példak:

> (length *())
0

> (length ’((ab) 1 (x))
3

> reverse ’((abc) (de))
(D E)(A B Q)

A subst fuggvénynek harom paramétere van. A harmadik paraméter egy lista. Ezen listdban a
masodik paraméter O6sszes (tehat nemcsak a legkllsd szint(i) el6fordulasat helyettesiti az elsé
paraméterrel.

Példa:

> (substr5 00 1 2 0))
5125)

A flggvények a nyelvnek ugyanazon eszkdzei, mint a szimbolumok vagy a listak. A function
fuggvények egyetlen argumentuma egy fiiggvény neve, és visszatérési értéke maga a fliggveény. A
fluggvény nevét viszont S-kifejezés értékeként allithatjuk el6. A funcall fliggvénnyel pedig explicit
mddon meg tudunk hivni egy figgvényt. A function fuggvény roéviditheté a # szimbdlumparral (a
quote mintajara).

Példa:

> (funcall# +1 2 3)
6

A LISP listak kezelésének egy igen hatékony eszkdze, a proceduralis absztrakciét nagyban tdmogato
mapcar fuggvény. Elsé paramétere egy fliggvény, tovabbiak pedig listak. A visszatérési értéke pedig
olyan lista, amely ugy keletkezik, hogy a fliggvény meghivodik minden paraméterként, megadott lista
elsd, masodik, stb. elemeire. Az eredmény lista hossza a legrévidebb lista hossza lesz.

A mapcar figgvény tehat egy olyan figgvény, amelynek paramétere fiiggvény. Ezeket hivja a LISP
altalanositott fliggvényeknek vagy funkcionalisoknak.

Példa:

> (mapcar#+ ‘(1 2 3) ‘(4 5))
6 7)

A listdk kezelésére szolgalnak a kovetkez6 predikatumok:

symbolp igaz, ha paramétere szimbdolum
consp igaz, ha paramétere valddi lista
atom igaz, ha paramétere nem valddi lista
listp igaz, ha paramétere lista

null igaz, ha paramétere az Ures lista

Itt jegyezziik meg, hogy az Ures lista, nem valddi lista és a symbolp szimbolumnak (NIL) tekinti.

Eszkdzok Osszehasonlitasara szolgal az eq és equalp flggvény. Az eq figgvény akkor ad igen
értéket, ha pontosan azonos két eszkdz (vagyis pontosan azonos memoriatertleten vannak!). Az
equalp viszont akkor igaz, ha paraméterei mind szamok, szimbdlumok vagy listak azonosak
(figgetlenll a memdriabeli elhelyezkedésuktdl).

Példak:

> (eq ‘a ‘a) ; azonos szimboélumok cime azonos
T

> (eq’(a) '(a)) ; két lista cime kilonbozik

NIL

> (equalp ‘(a) ‘(a)) ; lista és lista

T

> (equalp (+22) 4) ;4 és4

T

> (equalp (+22) 4) ; lista és szam

NIL

A LISP definidlja a car és cdr fuggvények kombinacioit:

car (cor x)) = (car x)

car (cdr x)) = (codr x)
cdr (cor x)) = (cdar x)
cdr (cdr x)) = (cddr x)

~ o~ o~ o~

A beagyazasi szint maximum négy lehet (tehat még létezik a caaddr).

A nth fliggvény egy lista i elemét adja vissza (a sorszamozas 0-val indul). Ertéke NIL, ha nincs ilyen
elem.
Példak:

>(nth0°(1 2 3 4)
1

>(nth4’(1 2 3 4))
NIL

A last egy lista utols6 elemét, a butlast egy lista utolsé eleme nélkdli listat adja meg.

A member és a remove flggvények elsé paramétere egy elem, masodik egy lista. A member
visszaadja a lista azon részlistajat, amely az elemmel kezdddik, vagy NIL-t. A remove a lista legkulsd
szintjérdl eltavolitja az elem 6sszes eléfordulasat.
Definialjunk néhany sajat figgvényt, amelyek listakat kezelnek.
1. Adjuk meg a reverse definiciéjat.
(defun reverse (lista)
cond ((null) lista) NIL)
(T (append (reverse (cdr lista))
(list (car lista>
2. irjunk egy fiiggvényt, amely egy lista legkiilsé szintjérél eltavolitja a 0-kat.

(defun nulla_eltavolitas (lista)
(remove 0 lista>

3. Adjuk meg azt a fliggvényt, amely egy lista elejéhez hozzafiizi az els6 paraméterének értékét,
ha az szam

(defun szammal_borit (n lista)
(cond ((numberp n) (cons n lista))
(T lista>

4. Adjunk meg egy predikatumot, amely elddnti, hogy paramétere valédi lista-e.

(defun valodi_lista (lista)
(if (not listp lista)) NIL
(not (cdr (last lista>

5. Egy lista legkiilsé szintjén szlintessik meg a szimbolumok t6bbszords el6fordulasat.

(defun tobbsz_elt (lista)
(cond ((endp lista) NIL)
((member (car lista) (cdr lista))
(tobbsz_elt (cdr lista)))
(T cons (car lista)
(tobbsz_elt (cdr lista>

6. Hatarozzuk meg, hogy egy atom hanyszor fordul el6 egy listaban (barmelyik szinten).

(defun gyakorisag (atom lista)
(cond ((endp lista) 0)
((eq atom lista) 1)
((atom lista) 0)
(T (+ (gyakorisag atom (car lista))
(gyakorisag atom (cdr lista>

7. Rendszerezziink egy szamokbdl allé listat nagysag szerint ndvekvdleg.

(defun rendez (szamok)
(cond ((null szamok) NIL)
((null (cdr szamok)) szamok)
(T beszur (car szamok)
(rendez (cdr szamok>

8. Vizsgaljuk meg, hogy egy csak szimbdlumokat tartalmazé listaban el6fordul-e egy adott
szimboélumsorozat (mintaillesztés). A szimbdlumsorozatban szerepelhet a *** elem, amely
barmely mas szimbdélumsorozatra illeszkedik.

(defun mink_ill (minta alap)
(cond ((and (endp minta) (endp alap)) T)
((equalp (car minta) (car alap))
(minta_ill (cdr minta) (cdr alap)))
((eq (car minta) ***)
(cond ((endp alap) (endp (cdrp (cdr minta)))
(T (or (mink_ill (cdr minta) alap)

(minta_ill minta ‘cdr alap))))))
(T NIL>

7.5. Lokalis és globalis eszkdzék

A CLOS-ban a nevesitett konstansok, a fliggvények és a defvar makrdval létrehozott valtozok nevei
globélisak, mindenhonnan lathatdk. A sajat figgvények formalis paraméterei viszont lokalisak, csak az
adott figgvényben hivatkozhaték. Ha egy lokdlis név megegyezik egy globalissal, akkor az adott
fuggvény vonatkozasaban elfedi azt.

Globalis nevet egy fuggvényben is definidlhatunk és egy globalis valtozo értékét megvaltoztathatjuk.
Ez viszont mellékhatas, a LISP szerint keriilendd. A CLOS ilyen esetben a defparaméter makrd
hasznalatat javasolja, amely segitségével egy fliggvényben megvaltoztathaté globalis valtozot tudunk
definialni. A CLOS konvencio szerint az ilyen valtozdk neve elétt és utan *, a nevesitett konstansoknal
pedig + szerepel.

Egy fuggvénydefinicio részeként definidlhatunk lokalis valtozokat a 1et makroval, ennek alakja:

(LET ((valtozénév [érték])
[(valtozoneév) [érték])]...

torzs)

A térzs S-kifejezések sorozata, az igy definialt valtozék csak itt hivatkozhaték. Ha nem adunk
kezddéértéket, akkor automatikusan NIL-t kapunk.

Példa: Egy csak szamokat tartalmazé tetszéleges (akarhanyszorosan egymasbaagyazott) lista
elemeinek atlagat hatarozzuk meg.

(defun atlag (lista)
(let ((a (atl lista 0 0)))
(/ (car a) (cdr a>
(defun atl (I db ossz)
(cond ((endp 1) ‘(0.. 0))
((atom 1) (cons (+ ossz)
(+db 1))
(T (val (atl (car 1) db ossz)
(atl (cdr 1) db ossz>
(defun val (x y)
(cons (+ (car x) (car y))
(+ (cdr x) (cdry>

A LISP lehet6séget ad arra, hogy meg nem nevezett fliggvényeket tudjunk hasznalni. Erre szolgal a
lambda makré, amely utan egy fliggvény formalis paraméter listaja és a térzse allhat. Ezzel
tulajdonképpen egy lokalis, a definiciéjanal azonnal meghivasra is kerll6, a globalis fuggvények kdzé
fel nem veendd fiiggvény hasznalatara nyilik lehetéség.

Példak:

> ((lambda (n) (+ n 2)) 5)

7
> (mapcar #(lambda (x) (+ x 2))‘(1 2 3))
(3 4 5)

A flot flggvény lehetdvé teszi sajat fliggvényen belll lokalis nemrekurziv, a 1abels pedig lokalis

rekurziv figgvény definialasat.
Példak:
1. A length fuggvény definicidja lehet az alabbi:

(defun length (lista)
(labels ((hossz (lista n)
(cond ((null lista) n)
(T hossz (cdr lista)

(1+ 1))

(hossz lista 0>
2. A reverse fuggvény lokalis figgvénnyel.

(defun reverse (lista)
(labels ((fordit (lista uj)
(cond ((null lista) uj)
(T (fordit (cdr lista)
(cons (car lista) uj))))))
(fordit lista NIL>

7.6. Karakterek és sztringek
A karakterek és sztringek (akarcsak a szamok) a LISP dsszdefiniald eszkozei.
A lathato karakterek alakja:

\ karakter
Példaul: #\a, #\L.
A nem lathato és vezérl6 karakterekre pedig a #\ utan irt névvel lehet hivatkozni.
Példaul: #\tab (tabulator), #\newline (U] sor).

A sztring karakterek listajaként értelmezendd. Sztring viszont sztringbe nem agyazhaté. A sztring
alakja:

“[karakter]...”
A karakterek és sztringek ugyanugy lehetnek elemei egy listanak mint az atomok és a listak.
Példak: “ “ (ires sztring), “almafa’.

>"sztring”
“sztring”
>#\a

a

A karakterek és sztringek kezelését és predikdtumok és egyéb fliggvények segitik. Izelitéul néhany

ezek kozul:
stringp igaz, ha paramétere sztring
characterp igaz, ha paramétere karakter
alphanumericp igaz, ha paramétere alfanumerikus karakter
upper_case_p igaz, ha paramétere nagybetl
char_code visszaadja a karakter ACSII kédjat
code_char visszaadja az adott kodu karaktert
length megadja egy sztring hosszat

concatenate Osszeflizi a sztringeket.

7.7.110
A LISP kezeli az implicit allomanyokat. I/O-ja az adatfolyam elven alapszik.
Alaphelyzetben a LISP mindig képernydre irja a legutoljara kiértékelt S-kifejezés értékeét.

Az alapértelmezett adatfolyam nevek:

standard-input® alapértelmezett bemenet (billentziizet)
*standard-output® alapértelmezett kimenet (képernyd)
terminal-i0 a felhasznaloi terminal

query-io a felhasznal6i interakciok javallott adatfolyama
debug-io az interaktiv belovés adatfolyama
trace-output® a trace makr6 kimenete

*error-output™® hibaiizenetek

Az adatfolyamok hasznalata természetesen makrok segitségével torténik. Az irdsnal a
formatumos technika alkalmazhato.

7.8. A kiértékelés vezérlése

A LISP alaphelyzetben azt mondja, hogy egy fliggvény visszatérési értéke a torzset alkotod S-
kifejezések kozil a legutolso értéke lesz. Most megismeriink néhany olyan eszkdzt, amely a
szekvencionalis kiértékelés megvaltoztatasat célozza.

A progl fiiggvény visszatérési értéke az elsd paraméterének értéke, a prog2 fliggvényé pedig
a masodik paraméterének értéke. A progn fliggvény az alapértelmezett viselkedést mutatja.

Példa:

>(progl (setf n 3) (setf n (1+ n)))
3

>n

>n

A LISP tartalmaz iterativ eszkdzoket, ezek hatarozottan imperativ jellegiiek.
A do makr6 egy kezdofeltételes ciklust realizal, alakja a kovetkezo:
(do ([(valtozo [kezdderték [uj érték]])]...)

(feltetel [S-kifejezés]...)

[S-kifejezés]...)
A do makré paraméterei harom csoportba sorolhatok. Az elsé paramétere egy maximum
haromelemi listdkbol allo lista. Ez egy inicializacids rész. A vdltozo a makrd lokalis
valtozdja, kezddértéke kezdoérték, vagy ennek hidnydban NIL. Ezek a valtozok a
ciklusvaltozok. A harmadik paramétercsoportban szerepld S-kifejezések alkotjak a ciklus
magjat.
A masodik paraméter egy legalabb egy elem lista. A feltétel nem NIL volta mellett fut le a

mag (kezddfeltétel). A do makro visszatérési értékét a masodik paraméter hatarozza meg. Ha
a listdban csak a feltétel szerepel, akkor a visszatérési érték NIL.

Ha az els6 paraméternél a listdk haromelemiek, akkor minden cikluslépés utdn a
ciklusvaltozok értéke feliilirddik az uj értek értékével.
Példak:
1. A faktorialist kiszdmol¢ fiiggvény:
(defun fakt(n)
(do (eredmeny 1 (* szamlalo eredmeny)

(szamlalo n) (1-szamlalo)))
((zerop szamlalo) eredmeny>

2. Hatarozzuk meg egy szamokat tartalmazo nemiires lista elemeinek atlagat.
(defun atlag(l)
(do ((vI(cdrv))

(szamlalo 1 (1+ szamlalo))
(osszeg (car v) (+ (car v) osszeg)))
((null (cdr v) (/ osszeg szamlalo>

3. Adjuk meg egy lista hosszat meghatarozo fiiggvény rekurziv és iterativ valtozatat.

a. (defun r-length (1)
(cond (1 null 1) 0)
(T (1+ (r-length (cdr 1>
b. (defun i-length (1)

(do ((I1'1 (cdr 1))
(eredmeny 0 (1+ eredmeny)))
((null 1) eredmeny>

A végtelen ciklust valositja meg a loop makrd, melynek paraméterei kozott szerepelnie kell
return fliggvény meghivasanak. A return egyetlen paraméterének értékével tér vissza, vagy

paraméter nélkiil a NIL-t adja. Ha nem adtuk meg a return fliggvényt, akkor a paraméterek
(mint ciklusmag) ujra €s Gjra kiértékelddnek.
Példa:
frjuk 4t az atlagszamité fiiggvényt loop segitségével
(defun loop_atlag(l)
(let ((szamlalo 0)
(osszeg 0))
(loop (cond ((null 1 (return (/osszeg szamlalo)))
(T (setf osszeg (+osszeg (car 1)))

(setfl (cdrl))
(1+ szamlalo>

A CLOS ismeri a blokk fogalmat is, ezt a block makré segitségével kezelhetjiik, ennek alakja:
(block név [S-kifejezés]...)

Egyrészt tekinthetd egy egyszerl, megnevezett kifejezéssorozatnak, amikor visszatérési
érteke az utolsd S-kifejezés értéke. Masrészt a paraméterei kozott szerepelhet (return-from
név érték) fiiggvényhivas, ami megadja a visszatérési értéket.

A prog makro6 alakja:

(prog ([{valtozo | (valtozo [kezdoeértek))}]...)
[{cimke | S-kifejezés}]...)

A prog makr6 imperativ jellegli. A valtozo a makrd lokalis valtozoja, explicit kezddérték
adhat6 neki, automatikus kezdéértéke NIL. A cimke egy szimbolikus atom, az S-kifejezések
kozott szerepelhet egy (go cimke) alakli makrohivas, ami egy GOTO-utasitasnak felel meg.
Hasznalhatjuk a return fiiggvényt is.

Példa:

(defun fakt(n)

(prog ((kn) (1 1))
kovetkezo

(cond ((zerop k) (return 1)))
(setf1 (* k1)

(setf k (1-k))

(go kovetkezo>

7.9. Makrok

A LISP nyelv Kkiterjeszthetd. A programozo uUjradefinidlhatja a nyelv eszkozeit és j
eszkozoket adhat hozza a nyelvhez.

Barmelyik fliggvény nevét tetszOlegesen megvaltoztathatjuk a szamunkra hasznalhatobb,
ismertebb elnevezést vezetve be.

Példak:

(defun fej (x) (car x))
(defun farok (x) (cdr x))

A sajat fiiggvények definidldsa az eddigi eszkdzrendszert 1j, a tobbiektdl
megkiilonbozhetetlen eszkozokkel boviti.

Ennek kovetkezménye az, hogy barmely LISP verzio testreszabhato, illetve barmely mas
verzioba 4tirhato.

Az igazi nyelvkiterjesztd eszkdzok azonban a sajat makrok.

Egy sajat makrot a defmacro makréd segitségével hozhatunk létre. Hasznalatanak forméja
egyébként teljesen azonos a defun hasznalataval.

Egy fliggvény és egy makro kozott az alapvetd kiilonbség a paraméterek kiértékelésében van.

A filiggvénynél elOszor kiértékelddik az Osszes paraméter, majd kiértékelddik a torzs. A
makrondl eldszor kiértékelddik a torzs, majd kiértekelddik az eredményiil kapott 4 torzs.

Egy makrédefinicioban elkeriilhetetlen a ° hasznalata. Segitségével egy lista részleges
kiertékelesét tudjuk megvaldsitani, ugyanis csak a lista azon eleme keriil kiértékelésre, amely
elott vessz0 szerepel, a tobbi nem. A vesszO hasznéalata nélkiil hatdsa azonos a quote
hatasaval.
Példak:

>’atom

ATOM

>’(abc)

(ABC)

>’(abc)

(ABC)

>(setfx (* 3 7))

(SETF X (* 3 7))

> (setfx ,(* 3 7))

(SETF X 21)

>(setfx ,(car’(, (+34)(—=73)(*57))))

(SETF X 7)

Ugyancsak a ¢ esetén alkalmazhat6 a (@, amely egy lista kiilsé zarojeleit elhagyva, a lista
elemeinek sorozatat adja vissza.

Példa:

> f(setf x (*, @(cdr “(+34) (=73)(*57)))
(SETF X (* (=7 3) (* 5 7))

Nagyon sok probléma csak makrok segitségével oldhaté meg, a CLOS sok beépitett makrot
tartalmaz (j6 néhanyat mar lattunk koziliik).

Vizsgaljuk meg a fliggvény és a makro alkalmazéasa kozotti kiilonbséget.

Definialjuk a verembdl val6 olvasést, mint fiiggvényt. A vermet most képzeljiik el gy, mint
egy olyan listat, ahol a verem tetején az 1. elem van.

(defun pop (verem)
(progl (car verem)
(setf verem (cdr verem>

Hivjuk meg.
> (setfx ‘(12 34))
(1234)

> (pop x)
1

>X

(1234)

Valami probléma van. Igen, mert a fliggvény csak a lokdlis verem értékét modositotta,
amelynek kezdéértéke a meghivasnal x értéke volt, de a globalis x nem valtozott meg.

Nézziik most ugyanazt makrédval.

(defmacro pop(verem)
‘(progl (car , verem)
(setf, verem (cdr , verem>

A makro paramétere nem értékelddik ki, a paraméteratadds név szerinti. Meghivasanal a
globalis valtozo csak a torzsben értékelddik ki, egyszer.

A fiiggvény a LISP-ben adatobjektum, atadhaté paraméterként, a makr6 azonban nem.

Amikor a LISP kiértékel egy olyan listat, amelynek feje egy szimbolum, akkor a
kovetkezoképpen jar el:

1. Ha a szimbolum egy foglalt szd, akkor a hozzatartoz6 kod alapjan torténik a lista
kiértékelése. A CLOS foglalt szavai a kovetkezok:

2. Kiilonben, ha a szimbolum egy makr6 neve, akkor végrehajtja a makrot €s kiértékeli
az eredményt.
3. Kiilonben a szimbolumot fliggvénynévnek tekinti.

Példak:
1. Irjunk makrot, amely megeseréli két paraméterének értékét.

(def macro csere (x y)

‘(let | (z, x))
(setf x,y)
(setf,y z>

2. Irjuk meg azt a makrot, amely megadott szamszor kiértékel egy S-kifejezés sorozatot.

(def macro ismetel (n rest mag)

J(do ((i,n(=11)))
((<=10) nil)

,@mag>

7.10. Objektumorientalt eszk6zok

A legtobb LISP valtozat a funkciondlis paradigma mentén épiil fol, azonban a CLOS egy
hibrid nyelv, amely tartalmaz objektumorientalt eszkdzrendszert.

A CLOS-ban nincs lathatosagszabalyozas. Az 6roklodés tobbszords. A nyelv tartalmaz egy
beépitett osztalyhierarchiat, a programozd viszont 6nallo osztalyhierarchidkat hozhat 1étre, a
beépitett osztadlyok nem 6rokoltethetdk.

A beépitett osztalyhierarchia a kovetkezo:

float
number ratienral—— ratio

complex \ integer

function

symbol null

sequence list 4 cons
array ; vector —_ string
character \ bit-vector

stream

N

pathname
readtable
package
random-state

hash-table

A korabbi LISP verzidk nem tipusosak €s az eddigi targyaldsunkban ez tiikr6z6dott. Azonban
a CLOS, a beépitett osztalyhierarchia elemeit tipusoknak tekinti és a programozé altal
definiélt osztalyok is egy-egy tipust képviselnek.

Sajat osztaly létrehozasara a defclass makré szolgal, hasznalatanak alakja:

(DEFCLASS név szuperosztaly nevek
attributum_specifikdciok
osztaly opciok)

A név egy szimbOlum, az osztaly (tipus) neve. A szuperosztdily nevek egy létezd
osztalynevekbdl allo (esetleg tires) lista.

Az attributum_specifikaciok alakja:
([nev [kulcsszo [érték]]...]...)

A név az attributum neve, a kulcsszo az alabbiak valamelyike:

:reader
writer

.aCCcessor

:allocation

:initarg

:initform

‘type

:documentation

az attributum lekérdez6 modszerének a neve
az attributum beallitd modszerének a neve

egy olyan modszer neve, amellyel az attributumot egyarant le lehet
kérdezni és le lehet allitani

értéke :instance (ez az alapértelmezett), vagy :class lehet. :instance
esetén az adott attribitum értéke példanyonként kiilonbozhet, :class
esetén viszont azonos (vagyis akkor ez egy nevesitett konstans
attributum).

az attributum kezddértéke, ami a példanyositaskor beallitasra kertil.

az attributum alapértelmezett értékr, az :initarg feliilirja, ha meg van
adva.

az attributum tipusa.

érteke egy sztring, ez egy dokumentacids megjegyzes.

Latjuk tehat, hogy a CLOS-ban az attributumokhoz kapcsolodoan adhatok meg a beallito és

lekérdezé moddszerek nevei, ezek automatikusan Iétrejonnek. Az osztalyhoz kapcsolodo

tovabbi fliggvényeket, makrokat az osztalydefiniciotol fliiggetleniil kell 1étrehozni.

Az osztdly opciok a kovetkezok lehetnek:

:default_initargs értéklista az attribitumok kezddértékét allitja be, az egyes

attributumokbol megadott :initarg feliilirja ezt.

:metaclass osztalynév a CLOS-ban az osztalyok alapértelmezés szerint a

standard class metaosztaly példanyai. Ezzel az opcidval egy
ettd] kiilonbozé metaosztalyt adhatunk meg.

Egy osztaly példanyositdsa a make ms tance fliggvény segitségével torténik, ennek alakja:

(MAKE-INSTANCE osztdlynév [kezdéérték]...)

A CLOS lehet6vé teszi generikus fiiggvenyek hasznalatat. Ezeknél kiilon definialhatjuk a

kiilonb6z6 tipust argumentumok esetén a mitkodést. Ezeket a kiilonb6z6 definicidkat a CLOS

metodusoknak nevezi (nem tévesztendd dssze az OO metddussal!). Egy generikus fiiggvényt a
defgeneric makro segitségével tudunk l1étrehozni. Alakja:

(DEFGENERIC név formalis_paraméter lista
(:METHOD specializalt formalis paraméter lista torzs)
[(METHOD specializalt formalis_paraméter_lista torzs)]...)

A specializalt formalis_paraméter lista
(formalis_parameéter [tipus])

alaku listakbol allo lista. A torzs az adott tipust formalis paraméterekre torténd miikodést irja
le. Ha nem szerepel a tipus, akkor a mitkddés tetszdleges tipusra vonatkozik.

Egy generikus fiiggvényt (fliggetleniil az esetleg nem is ismert definiciétol) mindig
kiegészithetiink j metddussal a defmethod makré segitségével. Ennek alakja:

(DEFMETHOD generikus név specializalt formalis paraméter lista torzs)
A generikus fiiggvények hasznalata alapvetd az osztalyok esetén.
Példak:
(defclass szemely()
((nev :initarg :nev :reader szemely neve)

(eletkor :initform O :accessor szemely kora))
(:documentum “Onéll6 osztaly”))

A szemely osztalynak nincs szuperosztalya. Két attribituma van, ezek koziil a nev csak
olvashato, a kor irhatd-olvashato.

(defun szemely kons (nev)
(make-instance ’szemely :nev nev))

Ez a fiiggvény az osztaly konstruktoranak tekinthetd. A kor alapértelmezett értéke 0.

> (defvar x (szemely kons ‘KISS))

#<SZEMELY @#x11bca2e> ;implemetaciofiiggd’
> (szemely kora x)

0

> (szemely neve Xx)

KISS

> (setf (szemely kore x) 22)

>22

Adjunk meg egy predikatumot, amely eldonti, hogy paramétere a szemely osztaly példanya-e.

(defgeneric szemelyp (obj)
(:method ((obj szemely)) T)
(:method (obj) NIL))

> (szemelyp x)

T

> (szemelyp 'x)

NIL

A CLOS tartalmaz egy print-object nevli generikus fiiggvényt, amely az objektumok
megjelenitését szolgalja. Ezt barmikor kiegészithetjiik sajat objektumaink megjelenitésének
metodusaival.

(def method print-object ((obj szemey) stream)
(format stream “#<SZEMELY:~A (Kora: ~A)>”
(szemely-neve obj) (szemely-kora obj>
> X
#<SZEMELY:: KISS (Kora> 22)>

Hozzuk 1étre a szemely egy alosztalyat.

(defclass programozo (szemely)
((nyelvek :initform NIL initarg :nyelvek
:accessor ismert))
(documentation "Ez egy alosztaly"))

(defnn programozo-konstr (nev nyelvek)
(make-instance 'programozo :nev nev
:nyelvek nyelvek))

A CLOS-ban az objektumok futas kézben, dinamikusan meg tudjak valtoztatni a strukturgjukat és a
viselkedésmaodjukat!

Tekintsik a kordbbi szemely osztaly definicidjat és definidljuk azt a4t a kévetkez6képpen:

(defclass szemely()
((nev :initorg :nev :reader személy_neve)
(eletkor :initform 0 :accessor személy_kora)
(munkakor:initform ‘Programozo :accessor munkakor :allocation :class)))

Ekkor

> X

#< SZEMELY: KISS (Kora: 22)>
> (munkakor x)

#< SZEMELY: NAGY (Kora: 0)>
> (munkakor y)

PROGRAMOZO

> (setf (munkakor x) 'Kereskedo)
KERESKEDO

> (munkakor y)

KERESKEDO

A CLOS automatikusan a régi osztaly példanyait az Uj osztaly példanyaiva, alakitva a strukturajukat és
az Uj viselkedésmodddal latva el Oket. KISS-nél megjelenik a munkakor attribGtum, amely
lekérdezhetd és beallithatd. Ez az attribltum egy megosztott attributum, amelyet az egyes példanyok
kbézbsen birtokolnak.

A CLOS-ban az osztalyok a metaosztalyok példanyai. Harom beépitett metaosztaly van:

— built-in-class : a beépitett osztalyok metaosztalya

— stadard-class : adefclass makroval definialt sajat osztalyok metaosztalya

— structure-class : a destruct makréval definialt rekordok metaosztalya (nem
foglalkozunk vele).

Egy osztdly metaosztalyat a class-of segitségével kérdezhetjik le.
A CLOS metaobjektumainak osztalyai a kovetkezok:

— standard-method : a defmethod és defgeneric segitségével definialt metddusok
osztalya

— standard-generic-function: a generikuis fliggvények metaosztalya

— standard-object: standard-class, standard-method, standard-generic-function
szuperosztalya

A CLOS-ban lehet6ség van a metaosztalyok kiterjesztésére a metaobject protocol (MOP)
segitségével. Ez a témakdr meghaladja jelen jegyzet kereteit, részletesen |.

7.11. Altalanositott fliggvények
Az apply fliggvény a LISP egy altalanositott fliggvénye, alakja:
(APPLY [fiiggvény listal...)
A fliggvény rendre meghivodik a tovabbi paraméterekként megadott listak mindegyikére.

Példa: Adjuk meg az append rekurziv definiciéjat.

(defun append2 (birtok1 lista2)
(cond ((endp lista1) lista2)
(T (cons (car lista1) (append2
(cdr lista1) lista2>

(defun append (&rest listak)
(cond ((endp listak) ’L))
((endp (cdr listak) (car listak))
((endp (cddr listak) (append2
(car listak) (cadr listak)))
(T (append (car listak) (apply
#append (cdr listak>

Az apply a procedurdlis absztrakcid6 magas absztrakciés szintjét biztositja. Példaul segitségével

megirhatunk egy altalanos levalogato figgvény, amely egy lista elemei kdzul azokat irja at egy masik
listaba, amelyek egy predikatumot igazza tesznek. A fiiggvény:

(defun levelogat (lista predikatum)
(cond ((null lista) NIL)
((apply predikatum (Lista (car lista)))

(cons (car lista) (levalogat
(cdr lista) predikatum)))
(T (levalogat (cdr lista) predikatum>

Ennek segitségével egy csak szamokat tartalmazo listabol a negativokat a kdvetkezé fliggvénnyel
tudjuk levalogatni:

(defun negativ (lista) (levalogat lista ‘'minusp))

8. Logikai nyelvek: Prolog

A logikai nyelvek legjelentdsebb képviseldje. '72-ben sziiletik meg. A szoftverkrizisre adott egyfajta valasz,
iranyzat. Franciaorszagban sziiletik. A ’80-as években tobb logikai nyelv sziiletik. Mindegyiknek az alapja a
matematikai logika valamely irdnyzata. Az elsérendii predikatumkalkulusra épiil fel a Prolog. A Prolog vissza
fog koszonni a mesterséges intelligenciakutatasban, alapvetd szerepet jatszik. Az adatbazis-kezeld rendszerekben
is felbukkan, pl. deduktiv adatbazis-kezeld rendszerekben is fontos. Magyarorszagon a '80-as ¢években
kifejlesztenek egy Prolog rendszert, az MProlog-ot. Ez azon kevés termékek k6zé tartozik, amely szerepet jatszik

a vildgon (a masik az Ada). A Japanok az 6todik generacios gép nyelveként ezt valasztottak.

A logikai programozas szemlélete:

— A Prolog nem tipusos nyelv.

— Karakterkészlete a szokasos.

— A Prolog elemi objektumai (alap épitdelemei) a kovetkezok:

— Azonositok: nem azonos az imperativ nyelvek azonositd fogalmaval, hanem tetszéleges karaktersorozat
lehet. Nincs olyan gond, hogy magyarul irom vagy nem.

— Numerikus konstansok: A szokasosak.

— Karakterlanc (sztring), idézdjelben all.

— Elhatarolé jelek: pl. a kerek zarojelek, idézo jelek ...

— Eles kiilonbséget tesz kis és nagybetiik kozott.

— A Prolognak is van valtozé fogalma. A valtozéonak van neve, amely egy specialis azonosit6, amely
nagybetlivel vagy aldhuzasjellel kezdodik, és betiivel vagy szamjeggyel folytatodhat. Nincs attriblituma.
Van értéke, de: egy valtozo két allapotban lehet:

— nincs értékkomponense, ekkor lehet értéket adni neki

— van érték komponense, nem lehet ekkor értéket adni neki, a valtozo értéke nem feliilirhat6. Nem 1étezik
az s:=s+1 utasitas. Ez az egyszeres értékadas szabalya. At kell vinni abba az allapotba, hogy ne
legyen neki értéke, és csak ekkor adhatok értéket.

Deklarativ jelleg:

A valtozd értékének a beallitasa els6sorban a rendszer feladata. Bizonyos esetekben a
programozo6 is bedllithatja a valtozok értékét, de ez az eszkdzrendszer minimalis. A
valtozonak cime van, de ehhez a programozo nem férhet hozza. Van még egy érdekessége a
valtozonak: szemben az imperativ szemlélettel a teljes szovegben ugyanazt az értéket jelenti,

ha egyszer értéket kapott.

A deklarativ nyelvek altalaban szimbolikus nyelvek, ami a kovetkezdt jelenti: ha egy

imperativ nyelvben leirtam egy valtozé nevét, akkor az altaldban a cimet vagy értéket

jelentette, elvétve a tipust vagy nevet. A deklarativ nyelvekben Xyz vagy az objektum neve,
vagy attol fiiggden, hogy milyen szdvegkornyezetben van azt a szimbolumsorozatot jelenti,

amit leirtam: Xyz.

A Prologban: a valtozé csak a nevet, mint karaktersorozatot jelenti, ha nincs értéke a valtozoénak. Ha van értéke,
akkor vagy szimbolumsorozat, vagy a valtozé értékét jelenti. Ha Prologban programot irok, akkor a matematikai

logikaban kell gondolkodnunk: meghatarozom azt a kérnyezetet, ahol le akarom futtatni.

Alapvetd eszkozok:
— atények

— aszabalyok

— afeladat.

A tények igaz értéki allitasok. A tények alakja formalisan:

név (argumentumok) .

— név: azonositd, mint elemi objektum

— argumentumok: ()-ben, egymastdl vesszével elvalasztva. Egy argumentumnak illik lennie, tobb
lehet. Szemléletében tények megadasakor az argumentumokra vonatkozé igaz allitasokat sorolom fel.
Az argumentumok Osszetett objektumok lehetnek. (6sszetett objektumok fogalma 1d. révidesen)

— ponttal zarja le

A Szabalyok: az elsérendi predikdtumkalkulus kdvetkeztetési szabalyai, logikai formulak. Van a szabalyoknak
feje és torzse. Alakja:
fej:-torzs.

— A fej szerkezete megfelel a tények szerkezetének.
— A torzs pedig egy feltételsorozat, vesszovel elvalasztva. Ezek a feltételek éssel vannak Osszefliizve. A

feltételek Osszetett objektumok (majd beszéliink rola).

Ez attol egy kovetkeztetési szabaly, hogy ha igaz a torzs, akkor igaz a fej.

A tények torzs nélkiili szabalyoknak tekinthetok.
A Feladat vagy kérdés: A rendszer a megadott kornyezetben keresi azokat az objektumokat, amelyek igazza
teszik a kérdést. Formalisan a kérdés ugy néz ki, mint egy fej nélkiili szabaly:

:—feltételsorozat.

A szabalyok és tények az imperativ szemlélet szerint alprogramoknak tekinthetdk: elsdsorban eljarasnak.

A Prolog programozas nem més, mint megadjuk elészor a tényeket, majd utina a szabélyokat, ezzel

definialom a megoldando feladat kornyezetét. Végiil feltessziik a kérdést:

:-feltételsorozat.
Keresse meg a rendszer azokat a megoldasokat, amelyek ezt a feltételsorozatot igazza teszik.
A Prolog a feladatot mintaillesztéssel és backtrack-kel oldja meg. Alapveté a felsorolas sorrendje: tények,

szabalyok, feladat.

Nézziink egy feladatot:

apja(janos, ferenc).

apja (ferenc, péter).

Itt van két tény, mindkettonek két argumentuma van, két azonosito. Ilyen értelemben szimbdlumsorozat. Ami
mogotte van, igaz allitasok, a Prolog szempontjabdl tények.

Nézziink egy kovetkeztetési szabalyt:
nagyapja(X,Z) e apja(XlY)l apja(Y,Z) .

X, Y, Z valtozok. Logikailag annyit jelent, hogy X nagyapja Z-nek akkor, ha X apja Y-nak, és Y apja Z-nek.
Feltesziink egy kérdést:

:—-nagyapja (Valaki, péter).

Keressiik azon objektumokat, amelyekre igaz, hogy mindegyikiik péter nagyapja.

Hogyan valaszolja meg a Prolog ezt a kérdést?

Mint mar emlitettik: mintaillesztéssel: a karaktersorozatokra vonatkozodan. Abszolut a szimbolikus szinten

vagyunk.

A kovetkezokképpen jar el a Prolog rendszer:
— Nekiesik a feladatoknak, és veszi a kérdés els6 feltételét, mint karaktersorozatot
— Ezek utan veszi a tényeket a feliras sorrendjében és a feladat elsé feltételét probalja illeszteni a tényekhez.
El6szor az elsd tényhez. (Jelen esetben nincs illeszkedés.)
— Ha nem sikeriil karakterr6l karakterre illeszkedést talalni, akkor megnézi a rendszer, hogy van-e valtoz6. Ha
van valtozo, akkor a rendszer értéket ad a valtozonak. Most mar nem a nevével, hanem az értékével hasonlit
a rendszer. Két valasz lehetséges:
— Ha talal illeszkedést, a feltételt a valtozo helyettesitésével olyan formara hozta, hogy megegyezik a
ténnyel. A rendszer a feladat torzsébdl torli az adott feltételt. Megylink tovabb a masodik feltétellel.
— Ha semmilyen valtozd helyettesitéssel nem sikeriilt ténnyel egyezést talalni, veszi a szabalyokat a
feliras sorrendjében, és az illesztést a szabaly fejével jatssza el. Két eset lehetséges:
— Nem taldl egyezést. A rendszer megnézi, hogy van-e valtoz6. Ha van valtoz6, akkor a rendszer
értéket ad a valtozonak, és a kapott értékkel hasonlit.
— Talal egyezést, azaz a szabaly feje megegyezik a feltétellel. Ez a feltétel igaz, ha a megfeleld
szabaly torzse igaz. Az adott feltételt helyettesiti a feladatban az illeszkedd szabaly torzsével.
Ha a ténnyel illeszthetd, akkor csokken a torzs. Ha szaballyal illeszthetd, akkor néhet a torzs.

— Ha elfogynak feltételeim, kiliriil a feladat térzse, megvan az elsé megoldas. Minden eredeti feltételt sikerdilt

igazza tennem. A kérdésre a valasz igaz, és a megoldast a feladatban szerepld valtozok értéke adja.

Feladatunk esetén:

X <« Valaki

7 <« péter
Taldltam egy szabalyfejet, ami kozvetlenil nem egyezik meg, de a valtozo egy
helyettesitésével igen. Be kell masolnom a szabaly torzsét, ugy, hogy a szabdly torzsben

szerepelnek azok a valtozok, amelyeknek értéket adtam. Makrozas.

:—apja(Valaki,Y), apja(Y,péter)
-vé alakul a feladat torzse. Vessziik az elsd feltételt: kozvetleniil nem illeszkedik az elsé tényhez, de valtozo
helyettesitéssel igen.

Valaki <« jéanos

Y <« ferenc

fgy az illeszkedés fennall. Taldltam egy illeszkedd tényt, torlom az elsd feltételt. A feladat

torzsében marad:
:—apja(ferenc, péter)
Az elsdvel nem egyezik, a masodikkal igen. : - . Kiiiriilt a feladat torzse. A megoldas janos. Tehat janos
péter nagyapja.
Ez az els6 megoldas. Mi van, ha tobb megoldas érdekel?

Mi van, ha felcserélem a két tény sorrendjét? Ekkor nem tudjuk kiiiriteni a feladat torzsét, zsakutcaba jutunk.

Mi van akkor, ha a feladat torzse nem iiriil ki ? Ekkor jon a backtrack.

Backtrack(visszalépés):

Torli az utolso illesztés hatdsat, ha az utolso illesztésnél volt valtozd helyettesités, akkor a
valtoz6 értékét megsziinteti, visszalép, és probal 0j illesztést keresni. Ehhez, mint barmely

illesztéses algoritmushoz hozza lehet rendelni egy illesztési fat. Tegytik fel a

:—nagyapja (A, B) .

kérdést az el6z6 kornyezettel. Tehat:

apja (janos, ferenc).

apja (ferenc, péter).

nagyapja(X,z) :- apja(X,Y), apja(Y,Z).
:-nagyapja (A, B)

Mikor mondja a Prolog, hogy megvan az 6sszes megoldas?

Ekkor az illesztési fa a kovetkezdképpen néz ki:

— gyokérelem az indulo kérdés
— ¢éleit cimkézziik a valtozo helyettesitésekkel

— atovabbi csomopontokban ott szerepel a kérdés aktualis allapota egy illesztés utan

[: -nagyapja (A, B)]

X <~ A, Z «< B
:—apja(A,Y),apja(Y,B)|

A <« ferenc

Y « pétecr A <« jéanos, Y <« ferenc
® [:-apja(péter, B)] [:-apja (ferenc, B)|
zsékutca

B <« péter
[: -] kitirilt, tehat van megoldas.

Tovabbi megoldasok keresése visszalépéssel (backtrack).

Azon levélelemeknél van megoldas, ahol a feladat torzse kiiiriilt, egyébként zsdkutcaba
futottunk. Az adott uton szerepld valtozok értékei képezik a feladat megoldast: A <«
janos, B <« péter. Ez a megoldasfa nem létezik eleve, fel kell épiteni, majd utana
bejarni. A Prolog nem egyenld a fabejarassal. Az 6sszes megoldast akkor talaljuk meg, ha a

backtrack véget ér.

Alapvetéen a Prologban a szabalyok rekurzivak.

Osszetett objektumok (kifejezések)

— A kifejezés operandusokbol, operatorokbdl all. Viszont a Prolog operandusainak a kore
joval szélesebb, mint az imperativ nyelveké. Van itt nulla-, egy-, kétoperandosu és
tobboperandust operator.

— Az operandus lehet elemi objektum vagy valtozo.

— Az operandusok és bizonyos operatorok egyiitt dsszetett objektumokat (kifejezéseket)
alkotnak. Az dsszetett objektumok a kifejezések.

— A Prolog tudja kezelni a kifejezés mindhdrom alakjat: a pre-, in- és postfix alakot.

— A feltétel nem mas, mint egy kifejezés.

— Kiértékelésnél a balrol-jobbra szabaly érvényes.

— A Prolog rendszer ismerete a beépitett operatorok ismeretét jelenti.

— A programozo is definialhat sajat operatort.

— A Prolog beépitett operdtorainak a egy része az imperativ nyelvekbdl ismert operatorokkal
egyezik meg. Vannak:

— aritmetikai operdtorok: +, -, *, /, div, mod. Ezek bizonyos szitudciokban a
megszokott médon viselkednek (aritmetikai operatorok), néha szimbolumként.
Példaul: 1étezik egy IS kétoperandusu operator, melynek baloldalan allhat egy valtozé
neve, jobboldalan pedig egy a fenti operatorok segitségével felépitett kifejezés all.

Ekkor ez egy aritmetikai operator:

— Ha a valtozonak nincs értéke, akkor a valtozo felveszi az IS jobboldalan allo aritmetikai
kifejezés értékét. Ez azon ritka esetek kozé tartozik, amikor a programozo allitja be egy valtozo
értékét (egyszer!).

— Ha a valtozonak van értéke, akkor illesztés torténik az IS operator két oldala kozt, amire a
valasz logikai értékii lesz: igaz vagy hamis.

— szovegkezeld operatorok
— I/O operatorok
— tudasbazis kezeld része is van a Prolognak (deduktiv adatbazis-kezeld), van kivételkezeldje is, és
grafikai része is van
— Az adatszerkezetek koziil a Prolog programok kezelik a:
— alistat és

— azegydimenzids tombot.

Példaul:
paros _szam(N) :— 0 IS N mod 2.

Ha nem valtozonév all a baloldalon, akkor egyértelmiien illesztés torténik.

A backtrack technikat (kiértékelést) tudjuk befolyasolni a Prologban a vezérlésatadd operatorokkal. Ilyen példaul
a vago, vagy vagasi operator. Jele: ! jel.

Példaul, ha csak arra vagyok kivancsi, hogy egy feladatnak van-e megoldasa vagy sem, akkor célszer(i ezt az
operatort hasznalni. Ha valahol talalkozik a ! operatorral kiértékelés kdzben, akkor elvagom a fat, és ezen feliil a

backtracket leallitom, az alsé részfara korlatozom.

< Ha itt elvagom, a backtrack nem 1ép vissza az elsé ¢és masodik

szintre.

Példa:
faktorialis (0,1).

faktoridlis (N,X) :-M is N-1, faktoridlis (M,Y), X is N*Y.

Amit eddig feltételnek hivtunk, a kifejezés. Itt egy rekurziv szabalyt lathatunk. Nézziik meg,
hogy ilyen kdrnyezetben milyen problémak adodhatnak.

— Mennyia0!?

:—-faktoridlis (0,K).
N « 0, X « K.

: = Itt megvan a megoldas, :-M IS 0-1, faktorialis(M,Y), K IS 0*Y.
de a program az Gsszes

megoldast keresi.

:-M is 0-1, faktoridlis(M,Y), K IS O0*Y. esetén a nullit kezdi el csokkentgetni, igy
végtelen rekurziéd alakul ki, mert megengedtem, hogy a program belemenjen olyan dgba, amibe nem

szabadott volna. Itt a ! operator sziikségessége.
Javitva tehat:
faktorialis (0,1):-!.

faktorialis (N,X) :-M is N-1, faktoridlis(M,Y), X is N*Y.

— Még mindig probléma van a:
-faktorialis(0,2).

esetben. Megint végtelen a rekurzio.

A j6 megoldas:
faktoridlis(0,1):-!, X is 1.

faktoridlis(N,X):-M is N-1, faktoridlis(M,Y), X is N*Y.

9. ADATFOLYAM NYELVEK

Az OO paradigma pillanatnyi allapotdban a legmesszebbre elviszi az Gjrafelhasznalas és az
absztrakcio eszkozrendszerét. A parhuzamossag kérdésére viszont nem ad valaszt. Az OO

nyelvek egyrésze ismeri a pArhuzamossagot, mas része nem.

De van olyan nyelvcsalad, amely specialitasanal fogva ,.kilog a sorbol”, amely valaszt ad a parhuzamossag
kérdésére. Kb. kéttucatnyi nyelv tartozik ide. Ezek a Neumann architektirat tagadjak. Azt mondjak, hogy a
Neumann architektura szilk keresztmetszete a tarkezelés illetve a szekvencialis mikddésti processzor. Egy
z=x+y jellegl utasitds mogott sok gépi szintll utasitas all. A tarbol eld kell venni az x-szel illetve az y-nal
jelolt adatot stb., mindez szekvencialisan mitkodik. Ezt totalisan tagadja. Mas hardverplattformot igényel.

Azt mondja, hogy minden algoritmust parhuzamos algoritmusként kell tekinteni, és az algoritmust realizalo
program pedig minden parhuzamosan végrehajthatdé kodot hajtson végre parhuzamosan. Totalis
parhuzamossagra kell torekedni. Ez a paradigma felersiti a parhuzamos algoritmusok kutatasanak elméletét.
Gondoljunk a gyorsrendezésre: megirhatd szekvencialisan, de parhuzamosan is, és ekkor az Osszes létezd

csoportra egyszerre hajtja végre a gyorsrendezést.

Minden szekvencidlis algoritmus atirhaté parhuzamos algoritmussa. (Eddig csak szekvencialis

algoritmusokrol besz¢éltiink.)

Teljesen mas vilagszemlélet. A kultirank olyan, hogy szekvencialisan latjuk a vilagot, igy tanitjak. Ld. az iras

olvasas tipikus szekvencialis tevékenység. Holott az agyunk parhuzamos miikddésii.

Mint mar emlitettiik, minden szekvencialis algoritmus atirhaté parhuzamos algoritmussa. A szekvencialis
algoritmusleiras egyik eszkoze a folyamatabra. Ehhez hasonléan az adatvezérelt paradigmanak is van egy leiro
eszkoze: egy Osszefiiggd, iranyitott graf, amelynek van egy Kkitiintetett kezdopontja, vannak csomopontok,
amelyek tevékenységeket irnak le és lehet tobb végpontja (kimeneti pontok). Egy csomoépontnak egy
tevékenység felel meg (operatorok), a miiveletek realizalasara szolgalnak. Az egyes programnyelvekben kérdés,
hogy mi az operatorkészlete.
Iranyitott a grafrol van szo, tehat a csomopontokhoz vezets- €s a csomopontokbdl kivezetd élek nyilak. Az élek
mentén a nyilak irdnyaban Un. tokenek, adatcsoportok mozognak (mig a folyamatabra statikus).
Algoritmus: van egy input token, amit a kezdéponton keresztiil halad az operator felé. Az operator (csomopont)
csak akkor kezd el dolgozni, amikor a bemend élei mindegyikén megjelenik egy token. Es ha rendelkezésre ll
minden adat, azonnal dolgozik vele, és a kimend nyilak mentén kiadja az eredményt. Ez az adatvezéreltség elve.

&

O
<

Az adatcsomagok tetszéleges adatszerkezetet reprezentalhatnak, és a miiveletek tetszéleges bonyolultsagtiak
lehetnek.

Vannak konvencionalis jelolések a modellben:

— Egy ¢l akarhanyfelé agazhat:

Y

Kapcsolat: a graf kiilonbozd pontjaibél kapcsolodhatnak a tokenek. Elek nem végzddhetnek élen,

csomopontban kell végzddjenek. Sziikséges egy gylijto.

—

T

Specialis csomdpontok:

Feladata: egy logikai értékii tokent produkal egy vizsgalat és feltételkiértékelés utan.

%

Igazkapu: két bemend- és egy kimend éle van. A bemend élek egyike egy logikai értékli token, a masik
értéke tetszOleges. Ha a logikai token értéke igaz, akkor a masik tokent atengedi, egyébként nem lesz

kimenet, a kapu lezar.

{
O

Hamiskapu: hasonl6é az igazkapuhoz, annyi kulonbséggel, hogy hamis esetben engedi at a masik input

Y
—O—>

tokent.

Kivalasztd csomopont: az igaz- és hamis kapu kombinacidja. Lényeges a szerkezet is: 2+1 bemend- és egy
kimend éle van. A legels6 bemend €l a vezérlo él, értéke egy logikai token. A két masik bejovo token koziil
kivalasztja, hogy melyiket engedi at. Ha a vezérld token értéke igaz, akkor az elsd tokent teszi a kimenetre,

mig ha hamis, akkor a masodikat.

%@F
Elosztd csomopont: két bemend tokent és két kimend tokent tartalmaz. A bemend tokenek koziil az elsd, a
vezérld token csak logikai értéket hordozhat. Miikodése: ha a vezérld token értéke igaz, akkor a bemend

adat token az els6 outputon jelenik meg, ellenkez6 esetben a masodikon. Egyetlen csomdpont, aminek két

kimenete van.

Ilyen elemekbdl épitiink fel egy Osszefiiggd iranyitott grafot. Ezzel tudjuk leirni a parhuzamos algoritmusokat.

Az adatvezérelt paradigman beliil tobbféle modell 1étezik, attol fliggden, hogy milyen megszoritasokat tesziink a

grafra.

Modellek:
— Alapmodell:
Determinisztikus, csak korlatozott parhuzamossagot enged meg.

A kovetkezoket mondja:

— Az egy input tokennel inditott tokensorozat hulldmfrontszeriien terjedjen végig a grafon.
— Késobb inditott tokensorozat nem eldzhet meg korabban inditott tokensorozatot.

— A hullamfront mintegy 6sszekdti a tokeneket, nem hajolhat el, nem értelmezhetd ciklus és rekurzio.

Példaul:

-

— Denis-féle (MIT) modell:
Megszoritas: koveteljik meg, hogy grafban egy csomdpont csak akkor mitkddhessen, ha nincs az output
¢len token. Két hullamfront kozott mindig legyen operator. A hullamfrontot eltoljuk legalabb egy
csomoéponttal. gy valik lehet6vé ciklus létrehozasa. Egy tokent visszakiildhetek, bekiildhetem egy kérutba,
¢és addig nem engedem ki, amig valamilyen feltételnek nem tesz eleget. Itt is igaz, hogy hullamfront nem
el6zhet meg hullamfrontot. De még mindig determinisztikus a modellem.

P¢éldaul:

-
O

O

— Szinezett modell:
Jelenleg a legfejlettebb adatvezérelt programozasi modell. Parhuzamos, igy nem determinisztikus. Az egy
inputtal inditott tokensorozatot szinezziik egy szinnel. A csomdpont akkor miikddik, ha az azonos szin
tokenek koziil az 6sszes input, azaz az dsszes bemend €len azonos szini tokenek jelennek meg (addig

pufferel). Adott szintii tokent ad ki. Ertelmezheté az iteraci6 és a rekurzio.

Nincs hullamfront. Ugyanazon feladatot megoldé grafban az 6sszes azonos jellegii feladat egyszerre

megoldasra kertil.

Kérdés, hogy hol van az az architektura, ahol ez a feladat leprogramozhato és futtathat6? Léteznek ilyen

architekturak prototipus szinten minden modell mogott.

Jellemzojik:
— asszociativ tar
— A program végrehajtasanal biztositja a parhuzamossagot.
— A tokent kezelni tudja.

— Csomopontok leprogramozasat lehetdvé teszi.

Példa: Az n! szinezett grafja hibavizsgalat nélkiil.

[<—e
<

@
A7

@: egy csokkentd cikus

@: egy szorzo ciklus

Ha ezek az 4gak hamisak, akkor lezarul mindkét ciklus.

Példa:
n

Példa:

Az el6z0 feladat altalanositasa tetszdleges f fliggvény négyzetosszegére.

3 @IT@WI T

&

Az adatfolyam nyelvek, mint
programozasi nyelvek jellemzbi

— Az altalanos csomodpontokat altalanos fliggvénnyel reprezentaljak. Ezeknek a fliggvényeknek nincs
mellékhatasuk. A paraméteratadas mindig értékszerinti. Altalaban nem hasznalnak globalis véltozokat, de ha
mégis, akkor az egyszeres értékadas érvényes. A valtozo értékének modositdsa nem megengedett. Csak
lokalis adattér van.

— Altalaban a rekurzi6 alapeszkoz.

— A programfejlesztés is nagyon egyszerli. Megirok egy primitiv programot, €s azt transzformalom. Az igy
fejlesztiink bonyolult programok biztosan jok. Egy token akarmilyen bonyolult adatot ir le, akkor is egy
tokennek szamit.

— Gond: az architektiira hianya. Ezen nyelveknek 1étezik a Neumann-architektiran futé implementacioja.

— A programhelyességbizonyitas automatikus, és nagyon egyszert.

— Altaldban forditoprogram-orientaltak, és a gépi kodjuk ez a graf (grafikus gépi kod). Hordozhato, hiszen

ugyanazt a gépi kodot generaljak. Ez a graf automatikusan kénnyen kezelhetd.

Igényvezérelt programozas:
Kb. lassan 15 éve a programfejlesztés iranya: az adatvezérelt programozas kiterjesztése az igényvezérelt
programozasra. Itt eltiinik az iranyitott graf, a tokenek mindkét irinyban mozoghatnak. Prioritdsok vezethet6k

be. Ez ala architektiira még prototipus szinten sem 1étezik. Ez még mindig kutatasi szinten all.

Adatvezérelt programnyelvek:
Néhany adatvezérelt programozasi nyelv: VAL, LUCID, ID, LAU, SISAL, HDFL.

VAL: Denis féle modellt megvaldsité nyelv.
for Y:integer:=1; P:integer:=N

do if P # 1 then iter Y:=Y*P; P:=P-1

enditer
else Y endif

endfor

LUCID: Deklarativ plattformu.

Példa: n! kiszamitasa:

FIRST (i,3)=(n,1)
NEXT(l,]):(l—l,j*l)
OUTPUT = j AS SOON AZ i=1

