App. math. test

March 25, 2019

Each question has exactly **one** correct answer. Please circle exactly **one** answer indicating your choice. Points for correct answers can be found next to the questions, there will be -1 point penalty for incorrect or ambigously answered questions. Evaluating is done by the following system:

result $(\%)$	$<\!39$	40-54	55-69	70-84	>85
mark	1	2	3	4	

1 Norms

Consider

$$A = \begin{bmatrix} 0 & 1 & -1 \\ 2 & -3 & 5 \\ -1 & 4 & 0 \end{bmatrix} \quad \text{and} \quad x = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

1. The quantities $||x||_1, ||Ax||_{\infty}, ||x||_2, ||A||_1, ||A||_{\infty}$ are:

A.
$$5, 2, \sqrt{2}, 8, 10$$
 B. $2, 5, \sqrt{5}, 8, 10$
C. $2, 5, \sqrt{2}, 8, 10$ D. $2, 5, \sqrt{2}, 8, 11$

2. For all $v \in \mathbb{R}^3$ we have:

$$\begin{split} \text{A.} & ||Av||_{\infty} \leq 10 ||v||_{\infty} & \text{B.} & ||Av||_{\infty} < 10 ||v||_{\infty} \\ \text{C.} & ||Av||_{\infty} \geq 10 ||v||_{\infty} & \text{D.} & ||Av||_{\infty} > 10 ||v||_{\infty} \\ \end{split}$$

2 Floats

Consider the floating point number system

$$\mathcal{F} = [a = 2, k_{-} = -5, k_{+} = 6, t = 4].$$

1. The quantities $\varepsilon_0, M_{\infty}, 1_+$ and the number of positive normalized elements in \mathcal{F} are:

A. $\frac{1}{32}, 64, \frac{9}{8}, 96$ B. $\frac{1}{64}, 60, \frac{17}{16}, 96$ C. $\frac{1}{64}, 60, \frac{9}{8}, 96$ D. $\frac{1}{32}, 60, \frac{9}{8}, 88$

 $(\mathbf{5})$

 $(\mathbf{2})$

 $(\mathbf{4})$

2. The representation of 0.345 (using regular rounding) and its right neighbour in \mathcal{F} :

A. 2^{-1} 0.1010 and 2^{-1} 0.1011 B. 2^{-1} 0.1011 and 2^{-1} 0.1100 C. 2^{0} 0.1011 and 2^{-1} 0.1100 D. 2^{-1} 0.1011 and 2^{0} 0.1000

3 LSA

Consider the point set P

$$(2,0), (2,2), (-1,2), (-1,1), (-1,-1)$$

1. The LSA line for P and its value at 1:

A. $\frac{1}{9}t - \frac{5}{9}$ and $-\frac{4}{9}$ B. $\frac{7}{9}t - \frac{1}{9}$ and $\frac{6}{9}$ C. $\frac{1}{9}t + \frac{7}{9}$ and $\frac{8}{9}$ D. $\frac{13}{9}t + \frac{7}{9}$ and $\frac{20}{9}$

2. For the model $F(t) = x_1 + x_2 \cos(\pi t)$ the matrix A in the Gauss normal equation is:

	1	1		1	1		1	1		1	1
	1	1		1	1		1	-1		1	-1
А.	1	-1	В.	1	1	С.	1	-1	D.	1	$^{-1}$
	1	-1		1	-1		1	-1		1	-1
	1	-1		1	$-1_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$		1	-1_		1	1

4 Factorization

Consider the matrix A and vector b:

$$A = \begin{bmatrix} 1 & -2 & 3 \\ -1 & 1 & -1 \\ 2 & -3 & 2 \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Find the LU factorization and the determinant of A! Solve Ax = b!

1. The solution of Ly = b and Ux = y and det(A) are respectively:

 $(\mathbf{7})$

A.
$$\begin{bmatrix} 1\\3\\4 \end{bmatrix}, \begin{bmatrix} -7\\-7\\-2 \end{bmatrix}, 2.$$
 B. $\begin{bmatrix} 1\\3\\-4 \end{bmatrix}, \begin{bmatrix} -7\\-7\\-2 \end{bmatrix}, -2.$
C. $\begin{bmatrix} 1\\-3\\4 \end{bmatrix}, \begin{bmatrix} 7\\-7\\-2 \end{bmatrix}, 2.$ D. $\begin{bmatrix} 1\\-3\\4 \end{bmatrix}, \begin{bmatrix} 7\\-7\\-2 \end{bmatrix}, -2.$

5 Interpolation

Consider the point set

$$Q = (-2, -13), (-1, -4), (1, 2).$$

Find the p Lagrange interpolating polynomial for Q!

(4)

 $(\mathbf{3})$

 $(\mathbf{3})$

1. p(t) =

A. 2 + 9(t+2) - 2(t+2)(t+1)B. 13 + 9(t+2) - 2(t+2)(t+1)C. 2 + 3(t-1) - 2(t-1)(t+1)D. 2 + 3(t-1) + 2(t-1)(t+1)

Let us extend Q by a new point (0,3):

$$R = (-2, -13), (-1, -4), (1, 2), (0, 3).$$

Find the q(t) Lagrange interpolating polynomial for R!

2.
$$q(t) =$$
 (3)
A. $3+8(t+2)-2(t+2)(t+1)+(t+1)(t+2)(t-1)$
B. $3+8(t+2)-2(t+2)(t+1)-(t+1)(t+2)(t-1)$
C. $2+3(t-1)+2(t-1)(t+1)+(t-1)(t+1)(t+2)$
D. $2+3(t-1)-2(t-1)(t+1)-(t-1)(t+1)(t+2)$

6 Octave

1. Without using of computer, determine the value of v, after executing the commands: (2)

```
v=1:5
for i=1:4
v(i)=v(i)-v(i+1)
end
A. \begin{bmatrix} -1 & -1 & -1 & 5 \end{bmatrix} B. \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}
C. \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} D. \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \end{bmatrix}
```

2. Without using of computer, determine the value of w, after executing the commands: (5)

```
w=10:-1:1
for i=2:9
w(i)=2*w(i+1)+w(i)-w(i-1)
end
A. \begin{bmatrix} 10 & 15 & 7 & 12 & 4 & 9 & 1 & 6 & -2 & 1 \end{bmatrix}
B. \begin{bmatrix} 10 & 15 & 7 & 12 & 4 & 9 & 1 & 6 & 2 & 1 \end{bmatrix}
C. \begin{bmatrix} 10 & 15 & 7 & 12 & 4 & 9 & 1 & 5 & 2 & 1 \end{bmatrix}
D. \begin{bmatrix} 10 & 15 & 7 & 12 & 4 & 9 & 1 & 6 & 2 & 0 \end{bmatrix}
```

7 Theo

1. For n points $(t_1, f_1), \ldots, (t_n, f_n)$ in the plane, Lagrange theorem on interpolating polynomials states: (4)

A. There is exactly one polynomial p of degree no more than n-1, for which $p(t_i) = f_i$, i = 1, ..., n.

 $(\mathbf{4})$

B. If $t_i \neq t_j$ for $i \neq j$, then there is exactly one polynomial p of degree at most n-1, for which $p(t_i) = f_i$, i = 1, ..., n,

C. If $t_i \neq t_j$ for $i \neq j$, then there is exactly one polynomial p of degree at most n, for which $p(t_i) = f_i$, i = 1, ..., n, .

D. There is exactly one polynomial p of degree at least n-1 for which $p(t_i) = f_i$, i = 1, ..., n.

2. For n > 0 points $(t_1, f_1), \ldots, (t_n, f_n)$ in the plane, the linear LSA problem:

(3)

- A. has always at most one solution.
- B. has always at least one solution.
- C. has always infinitely many solutions.
- D. has no solution at all, for some point set.