App. math. test

March 25, 2019

Each question has exactly one correct answer. Please circle exactly one answer indicating your choice. Points for correct answers can be found next to the questions, there will be -1 point penalty for incorrect or ambigously answered questions. Evaulating is done by the following system:

result (\%)	<39	$40-54$	$55-69$	$70-84$	>85
mark	1	2	3	4	

1 Norms

Consider

$$
A=\left[\begin{array}{ccc}
0 & 1 & -1 \tag{5}\\
2 & -3 & 5 \\
-1 & 4 & 0
\end{array}\right] \quad \text { and } \quad x=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

1. The quantities $\|x\|_{1},\|A x\|_{\infty},\|x\|_{2},\|A\|_{1},\|A\|_{\infty}$ are:
A. $5,2, \sqrt{2}, 8,10$
B. $2,5, \sqrt{5}, 8,10$
C. $2,5, \sqrt{2}, 8,10$
D. $2,5, \sqrt{2}, 8,11$
2. For all $v \in \mathbb{R}^{3}$ we have:
A. $\|A v\|_{\infty} \leq 10\|v\|_{\infty}$
B. $\|A v\|_{\infty}<10\|v\|_{\infty}$
C. $\|A v\|_{\infty} \geq 10\|v\|_{\infty}$
D. $\|A v\|_{\infty}>10\|v\|_{\infty}$

2 Floats

Consider the floating point number system

$$
\mathcal{F}=\left[a=2, k_{-}=-5, k_{+}=6, t=4\right] .
$$

1. The quantities $\varepsilon_{0}, M_{\infty}, 1_{+}$and the number of positive normalized elements in \mathcal{F} are:
A. $\frac{1}{32}, 64, \frac{9}{8}, 96$
B. $\frac{1}{64}, 60, \frac{17}{16}, 96$
C. $\frac{1}{64}, 60, \frac{9}{8}, 96$
D. $\frac{1}{32}, 60, \frac{9}{8}, 88$
2. The representation of 0.345 (using regular rounding) and its right neighbour in \mathcal{F} :
A. $2^{-1} 0.1010$ and $2^{-1} 0.1011$
B. $2^{-1} 0.1011$ and $2^{-1} 0.1100$
C. $2^{0} 0.1011$ and $2^{-1} 0.1100$
D. $2^{-1} 0.1011$ and $2^{0} 0.1000$

3 LSA

Consider the point set P

$$
\begin{equation*}
(2,0),(2,2),(-1,2),(-1,1),(-1,-1) \tag{4}
\end{equation*}
$$

1. The LSA line for P and its value at 1 :
A. $\frac{1}{9} t-\frac{5}{9}$ and $-\frac{4}{9}$
B. $\frac{7}{9} t-\frac{1}{9}$ and $\frac{6}{9}$
C. $\frac{1}{9} t+\frac{7}{9}$ and $\frac{8}{9}$
D. $\frac{13}{9} t+\frac{7}{9}$ and $\frac{20}{9}$
2. For the model $F(t)=x_{1}+x_{2} \cos (\pi t)$ the matrix A in the Gauss normal equation is:
A. $\left[\begin{array}{cc}1 & 1 \\ 1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & -1\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & -1 \\ 1 & -1\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & -1 \\ 1 & -1\end{array}\right]$
D. $\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1\end{array}\right]$

4 Factorization

Consider the matrix A and vector b :

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
-1 & 1 & -1 \\
2 & -3 & 2
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Find the $L U$ factorization and the determinant of $A!$ Solve $A x=b!$

1. The solution of $L y=b$ and $U x=y$ and $\operatorname{det}(A)$ are respectively:
A. $\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}-7 \\ -7 \\ -2\end{array}\right], 2$.
B. $\left[\begin{array}{c}1 \\ 3 \\ -4\end{array}\right],\left[\begin{array}{c}-7 \\ -7 \\ -2\end{array}\right],-2$.
C. $\left[\begin{array}{c}1 \\ -3 \\ 4\end{array}\right],\left[\begin{array}{c}7 \\ -7 \\ -2\end{array}\right], 2$.
D. $\left[\begin{array}{c}1 \\ -3 \\ 4\end{array}\right],\left[\begin{array}{c}7 \\ -7 \\ -2\end{array}\right],-2$.

5 Interpolation

Consider the point set

$$
Q=(-2,-13),(-1,-4),(1,2)
$$

Find the p Lagrange interpolating polynomial for Q !

1. $p(t)=$
A. $2+9(t+2)-2(t+2)(t+1)$
B. $13+9(t+2)-2(t+2)(t+1)$
C. $2+3(t-1)-2(t-1)(t+1)$
D. $2+3(t-1)+2(t-1)(t+1)$

Let us extend Q by a new point $(0,3)$:

$$
R=(-2,-13),(-1,-4),(1,2),(0,3)
$$

Find the $q(t)$ Lagrange interpolating polynomial for R !
2. $q(t)=$
A. $3+8(t+2)-2(t+2)(t+1)+(t+1)(t+2)(t-1)$
B. $3+8(t+2)-2(t+2)(t+1)-(t+1)(t+2)(t-1)$
C. $2+3(t-1)+2(t-1)(t+1)+(t-1)(t+1)(t+2)$
D. $2+3(t-1)-2(t-1)(t+1)-(t-1)(t+1)(t+2)$

6 Octave

1. Without using of computer, determine the value of v, after executing the commands:
```
v=1:5
for i=1:4
    v(i)=v(i) -v (i+1)
end
```

A. $\left[\begin{array}{llll}-1 & -1 & -1 & 5\end{array}\right]$
B. $\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right]$
C. $\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right]$
D. $\left[\begin{array}{lllll}5 & 4 & 3 & 2 & 1\end{array}\right]$
2. Without using of computer, determine the value of w, after executing the commands:

```
W=10:-1:1
for i=2:9
    W (i) =2*W (i+1) +W (i) -W (i-1)
end
```

A. $\left[\begin{array}{llllllllll}10 & 15 & 7 & 12 & 4 & 9 & 1 & 6 & -2 & 1\end{array}\right]$
B. $\left[\begin{array}{llllllllll}10 & 15 & 7 & 12 & 4 & 9 & 1 & 6 & 2 & 1\end{array}\right]$
C. $\left[\begin{array}{llllllllll}10 & 15 & 7 & 12 & 4 & 9 & 1 & 5 & 2 & 1\end{array}\right]$
D. $\left[\begin{array}{llllllllll}10 & 15 & 7 & 12 & 4 & 9 & 1 & 6 & 2 & 0\end{array}\right]$

7 Theo

1. For n points $\left(t_{1}, f_{1}\right), \ldots,\left(t_{n}, f_{n}\right)$ in the plane,

Lagrange theorem on interpolating polynomials states:
A. There is exactly one polynomial p of degree no more than $n-1$, for which $p\left(t_{i}\right)=f_{i}, \quad i=1, \ldots, n$.
B. If $t_{i} \neq t_{j}$ for $i \neq j$, then there is exactly one polynomial p of degree at most $n-1$, for which $p\left(t_{i}\right)=f_{i}, \quad i=1, \ldots, n$.
C. If $t_{i} \neq t_{j}$ for $i \neq j$, then there is exactly one polynomial p of degree at most n, for which $p\left(t_{i}\right)=f_{i}, \quad i=1, \ldots, n$.
D. There is exactly one polynomial p of degree at least $n-1$
for which $p\left(t_{i}\right)=f_{i}, \quad i=1, \ldots, n$.
2. For $n>0$ points $\left(t_{1}, f_{1}\right), \ldots,\left(t_{n}, f_{n}\right)$ in the plane, the linear LSA problem:
A. has always at most one solution.
B. has always at least one solution.
C. has always infinitely many solutions.
D. has no solution at all, for some point set.

