Norms, condition numbers

Ágnes Baran, Csaba Noszály

Example

Compare the solutions of the linear systems below:

$$
\begin{gathered}
{\left[\begin{array}{rr}
1 & 1 \\
1 & 1.0001
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]\left[\begin{array}{lr}
1 & 1 \\
1 & 1.0001
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{r}
2 \\
2.0001
\end{array}\right]} \\
x=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
\end{gathered}
$$

Observation: small change in the right-hand side - big change in the solution. Explanation?

Exercise 1

Implement a function that returns the $n \times n$ matrix $A=\left(a_{i j}\right)$:

$$
a_{i j}=\left\{\begin{array}{lc}
1, & \text { if } i=j \\
-1, & \text { if } i<j \\
0, & \text { otherwise }
\end{array}\right.
$$

Hint

Solution

Exercise 2

Using the 100×100 matrix A of the previous exercise, compare the solutions of the linear systems below:

$$
A x=b_{1}
$$

$$
A y=b_{2}
$$

where $b_{1}=-98: 1$ and b_{2} is a "perturbed" version of b_{1}, that is

$$
\begin{gathered}
b_{2}=b_{1} \\
b_{2}(100)=b_{2}(100)+1 e-6
\end{gathered}
$$

Use the backslash operator (\)!

Hint

Solution

Suppose that $A \in \mathbb{R}^{n \times n}$ is invertible, $b \in \mathbb{R}^{n}, b \neq 0$. We are searching for the solution of $\quad A x=b \quad$. In practice the right hand side (observations, measurements) is not exactly known, it contains errors (δb), so we have to solve $A y=b+\delta b$

The question: how big can be the vector $y-x$? We want to measure vectors, difference of vectors, so we introduce the notion of norm.

Norm

Let X a linear vector space over \mathbb{R}. The map $\|\|:. X \rightarrow \mathbb{R}$ is a norm on X if:
$1\|x\| \geq 0$ for all $x \in X$
$2\|x\|=0 \Longleftrightarrow x=0$
$3\|\lambda x\|=|\lambda|\|x\|$, for all $\lambda \in \mathbb{R}$ and $x \in X$
$4\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X \quad$ triangle inequality

Norms on \mathbb{R}^{n}

Let $X=\mathbb{R}^{n}$
1 1-norm (or octahedron, or Manhattan)

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

2 2-norm (or euclidean):

$$
\|x\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}
$$

3∞-norm (or maximum):

$$
\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

Example

For

$$
x=\left(\begin{array}{r}
-3 \\
0 \\
1
\end{array}\right)
$$

we have:

$$
\begin{aligned}
& \|x\|_{1}=|-3|+|0|+|1|=4 \\
& \|x\|_{2}=\left(|-3|^{2}+|0|^{2}+|1|^{2}\right)^{1 / 2}=\sqrt{10} \\
& \|x\|_{\infty}=\max \{|-3|,|0|,|1|\}=3
\end{aligned}
$$

Exercise 3

Depict the set $\left\{x \in \mathbb{R}^{2}:\|x\|=1\right\}$ for 1,2 and ∞-norm!
Exercise 4
Implement functions for computing the 1,2 and ∞ norm!
Exercise 5
Compute the ∞-norm of vectors b_{1}, b_{2} and x, y !
Exercise 6
Read the help of the function norm !

Matrix-norm

Let $\|\cdot\|$ be a vector-norm on \mathbb{R}^{n} and $A \in \mathbb{R}^{n \times n}$ is a matrix. Then the quantity

$$
\|A\|=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

defines a norm on $\mathbb{R}^{n \times n}$. It is the matrix norm induced by the given vector norm.

Remark

It can be verified that $\|$.$\| is a norm.$

Properties of the matrix-norm

$1\|E\|=1$
$2\|A x\| \leq\|A\| \cdot\|x\|$ for all $x \in \mathbb{R}^{n}$
$3\|A B\| \leq\|A\| \cdot\|B\|$ for all $A, B \in \mathbb{R}^{n \times n}$

Remark

The (induced) matrix norm can be defined as the smallest number M, for which

$$
\|A x\| \leq M \cdot\|x\|
$$

holds, for all $x \in \mathbb{R}^{n}$

Computational rules for $1,2, \infty$ matrix norms

1 1-norm (column norm):

$$
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

2∞ norm (row norm):

$$
\|A\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

3 2-norm (spectral norm):

$$
\|A\|_{2}=\sqrt{\lambda_{\max }\left(A^{T} A\right)}
$$

where $\lambda_{\max }\left(A^{T} A\right)$ is the largest eigenvalue of $A^{T} A$.

Example

$$
A=\left(\begin{array}{rrr}
-3 & 0 & 4 \\
1 & -1 & 2 \\
-2 & 1 & -2
\end{array}\right), \quad\|A\|_{1}=? \quad\|A\|_{\infty}=?
$$

$$
\begin{array}{rlr}
\left(\begin{array}{rrr}
-3 & 0 & 4 \\
1 & -1 & 2 \\
-2 & 1 & -2
\end{array}\right) & \leftarrow 7 \\
\uparrow & \uparrow & \uparrow \\
6 & 2 & 8
\end{array}
$$

$\|A\|_{1}=8$ and $\|A\|_{\infty}=7$

Example

$$
\begin{gathered}
A=\left(\begin{array}{rr}
3 & -1 \\
-2 & 2
\end{array}\right), \quad\|A\|_{2}=? \\
A^{T} A=\left(\begin{array}{rr}
3 & -2 \\
-1 & 2
\end{array}\right)\left(\begin{array}{rr}
3 & -1 \\
-2 & 2
\end{array}\right)=\left(\begin{array}{rr}
13 & -7 \\
-7 & 5
\end{array}\right)
\end{gathered}
$$

the eigenvalues of $A^{T} A$:

$$
\begin{gathered}
\left|\begin{array}{cc}
13-\lambda & -7 \\
-7 & 5-\lambda
\end{array}\right|=(13-\lambda)(5-\lambda)-49=\lambda^{2}-18 \lambda+16=0 \\
\lambda_{1,2}=\frac{18 \pm \sqrt{18^{2}-64}}{2}=9 \pm \sqrt{65} \\
\|A\|_{2}=\sqrt{9+\sqrt{65}} \approx 4.13
\end{gathered}
$$

Exercise 7

Implement functions for computing the induced $1, \infty$ matrix norms! Hint

The condition number

Suppose that $A \in \mathbb{R}^{n \times n}$ is invertible, $b \in \mathbb{R}^{n}, b \neq 0$. We are searching for the solution of $A x=b$. Suppose that we have error in the right hand side, so we have to solve the $\quad A(x+\delta x)=b+\delta b \quad$ system. Then, on the one hand:

$$
\begin{gathered}
A(x+\delta x)=b+\delta b \\
\underline{A x}+A \cdot \delta x=\underline{b}+\delta b \\
A \cdot \delta x=\delta b \\
\delta x=A^{-1} \delta b \\
\|\delta x\|=\left\|A^{-1} \delta b\right\| \leq\left\|A^{-1}\right\| \cdot\|\delta b\|
\end{gathered}
$$

On the other hand: $A x=b \Longrightarrow$

$$
\begin{gathered}
\|b\|=\|A x\| \leq\|A\| \cdot\|x\| \\
\frac{1}{\|x\|} \leq\|A\| \cdot \frac{1}{\|b\|}
\end{gathered}
$$

Putting them together:

$$
\frac{\|\delta x\|}{\|x\|} \leq \underbrace{\|A\| \cdot\left\|A^{-1}\right\|}_{\operatorname{cond}(A):=} \frac{\|\delta b\|}{\|b\|}
$$

$$
\frac{\|\delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\delta b\|}{\|b\|}
$$

Definition

Let A be an invertible matrix. Then

$$
\operatorname{cond}(A)=\|A\| \cdot\left\|A^{-1}\right\|
$$

is called the condition number of A.

Properties

1 its value does depend on the norm used
$2 \operatorname{cond}(A) \geq 1$
3 if A is orthogonal $\left(A^{T} A=E\right)$, then $\operatorname{cond}_{2}(A)=1$
4

$$
\left|\frac{\lambda_{\max }}{\lambda_{\min }}\right| \leq \operatorname{cond}(A)
$$

where $\lambda_{\text {max }}$ and $\lambda_{\text {min }}$ are the largest and smallest eigenvalues in absolute value of A
5 for $c \neq 0, \operatorname{cond}(c A)=\operatorname{cond}(A)$

Remark

Let $C=\operatorname{cond}(A)$. The condition number tells us, that the relative error in the right-hand side can get C-times large in the solution. Note that it is the worst case scenario.

Example

$$
A=\left(\begin{array}{rr}
1 & 1 \\
1 & 1.0001
\end{array}\right), \quad \operatorname{cond}_{\infty}(A)=?
$$

Then $\operatorname{det}(A)=10^{-4}$,

$$
A^{-1}=\left(\begin{array}{rr}
10001 & -10000 \\
-10000 & 10000
\end{array}\right)
$$

$\|A\|_{\infty}=2.0001$ and $\left\|A^{-1}\right\|_{\infty}=20001$, $\operatorname{cond}_{\infty}(A)=2.0001 \cdot 20001 \approx 40000$.

The error in the solution can be as large as 40000 times the error in the right hand side.

Remark
 The condition number does not depend on the determinant!

Exercise 2 cont.

Compute the relative error of the right-hand side, the solution and the condition number! Use 1 and ∞ norm!

Review

Inverse of a 2×2 matrix: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \rightarrow A^{-1}=\frac{\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right)}{\operatorname{det}(A)}$

Exercise 8

Solve the system $A x=b$ where

$$
A=\left(\begin{array}{ll}
1 & 0.99 \\
0.99 & 0.98
\end{array}\right), \quad b=\binom{1.99}{1.97} .
$$

Now, suppose that instead of b, we have

$$
b+\delta b=\binom{1.98}{1.98}
$$

Solve the system $A y=b+\delta b$! Also, compute the relative error of the right-hand side and the solution in ∞-norm. What is $\operatorname{cond}_{\infty}(A)$?

Hilbert matrix

$$
H_{n}=\left(\begin{array}{ccccc}
1 & 1 / 2 & 1 / 3 & \cdots & 1 / n \\
1 / 2 & 1 / 3 & 1 / 4 & \cdots & 1 /(n+1) \\
1 / 3 & 1 / 4 & 1 / 5 & \cdots & 1 /(n+2) \\
\vdots & & & & \\
1 / n & 1 /(n+1) & 1 /(n+2) & \cdots & 1 /(2 n-1)
\end{array}\right)
$$

Exercise 9a

Implement a function that computes the $n \times n$ Hilbert-matrix!

Exercise 9b

Compute the condition number of the Hilbert matrix of size 6×6 ! Use hilb and cond!

Exercise 9c

What is the condition numbers of a random matrix of size 6×6 ? Experiment with different instances, use rand !

Remark

For computing the condition numbers of large matrices use the condest function! It computes an estimation of $\operatorname{cond}_{1}(A)$, without the expensive A^{-1} computations.

Suppose for the relative error of b :

$$
\frac{\|\delta b\|}{\|b\|} \approx \varepsilon_{1}
$$

If, in addition we have:

$$
\operatorname{cond}(A) \geq \frac{1}{\varepsilon_{1}}
$$

then

$$
\operatorname{cond}(A) \frac{\|\delta b\|}{\|b\|} \geq 1
$$

that is, the error in the solution can be as large as the solution itself. It is bad. Such matrices (or linear systems) are called ill-conditioned

In order to get at least 1 exact digit in the solution, we need smaller condition number. For example, if

$$
\operatorname{cond}(A) \leq \frac{1}{a \varepsilon_{1}}
$$

then

$$
\frac{\|\delta x\|}{\|x\|} \leq \frac{1}{a}
$$

