Norms, condition numbers

Ágnes Baran, Csaba Noszály

Ágnes Baran, Csaba Noszály

э

(日)

Example

Compare the solutions of the linear systems below:

$$\begin{bmatrix} 1 & 1 \\ 1 & 1.0001 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 \\ 1 & 1.0001 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2.0001 \end{bmatrix}$$
$$x = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \qquad \qquad y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Observation: small change in the right-hand side - big change in the solution. Explanation?

물 에 물 에

Exercise 1

Implement a function that returns the $n \times n$ matrix $A = (a_{ij})$:

$$a_{ij} = egin{cases} 1, & ext{if } i = j, \ -1, & ext{if } i < j, \ 0, & ext{otherwise.} \end{cases}$$

Hint

Solution

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exercise 2

Using the 100×100 matrix A of the previous exercise, compare the solutions of the linear systems below:

$$Ax = b_1 \qquad \qquad Ay = b_2$$

where $b_1 = -98:1$ and b_2 is a "perturbed" version of b_1 , that is

$$b_2 = b_1$$

 $b_2(100) = b_2(100) + 1e - 6$

Use the backslash operator (\land) !

Hint

Solution

Suppose that $A \in \mathbb{R}^{n \times n}$ is invertible, $b \in \mathbb{R}^n$, $b \neq 0$. We are searching for the solution of Ax = b. In practice the right hand side (observations, measurements) is not exactly known, it contains errors (δb) , so we have to solve $Ay = b + \delta b$.

The question: how big can be the vector y - x? We want to measure vectors, difference of vectors, so we introduce the notion of norm.

Let X a linear vector space over \mathbb{R} . The map $\|.\|: X \to \mathbb{R}$ is a norm on X if:

$$\begin{array}{l} \|x\| \ge 0 \text{ for all } x \in X \\ \\ \|x\| = 0 \iff x = 0 \\ \\ \\ \|\lambda x\| = |\lambda| \|x\|, \text{ for all } \lambda \in \mathbb{R} \text{ and } x \in X \\ \\ \\ \\ \\ \|x + y\| \le \|x\| + \|y\| \text{ for all } x, y \in X \end{array}$$
 triangle inequality

Norms on \mathbb{R}^n

Example

For

$$x = \left(\begin{array}{c} -3\\0\\1\end{array}\right)$$

$$\begin{split} \|x\|_1 &= |-3| + |0| + |1| = 4 \\ \|x\|_2 &= \left(|-3|^2 + |0|^2 + |1|^2\right)^{1/2} = \sqrt{10} \\ \|x\|_{\infty} &= \max\{|-3|, |0|, |1|\} = 3 \end{split}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣

Exercise 3

Depict the set $\{x \in \mathbb{R}^2 : ||x|| = 1\}$ for 1,2 and ∞ -norm!

Exercise 4

Implement functions for computing the 1,2 and ∞ norm!

Exercise 5

Compute the ∞ -norm of vectors b_1, b_2 and x, y!

Exercise 6

Read the help of the function norm !

イロト 不得 トイヨト イヨト 二日

Let $\|\cdot\|$ be a vector-norm on \mathbb{R}^n and $A \in \mathbb{R}^{n \times n}$ is a matrix. Then the quantity

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

defines a **norm** on $\mathbb{R}^{n \times n}$. It is the matrix norm **induced** by the given vector norm.

Remark

It can be verified that $\|.\|$ is a norm.

э

イロト イヨト イヨト

Properties of the matrix-norm

||E|| = 1

- 2 $||Ax|| \le ||A|| \cdot ||x||$ for all $x \in \mathbb{R}^n$
- 3 $||AB|| \le ||A|| \cdot ||B||$ for all $A, B \in \mathbb{R}^{n \times n}$

Remark

The (induced) matrix norm can be defined as the smallest number M, for which

$$\|Ax\| \le M \cdot \|x\|$$

holds, for all $x \in \mathbb{R}^n$

イロト イポト イヨト イヨト 三日

Computational rules for $1, 2, \infty$ matrix norms

1 1-norm (column norm):

$$\|A\|_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

2 ∞ norm (row norm):

$$\|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

3 2-norm (spectral norm):

$$\|A\|_2 = \sqrt{\lambda_{\max}(A^T A)}$$

where
$$\lambda_{\max}(A^T A)$$
 is the largest eigenvalue of $A^T A$. $A = 0$ $A^T A$ is the largest $A^T A$ is the largest

$$A = \begin{pmatrix} -3 & 0 & 4 \\ 1 & -1 & 2 \\ -2 & 1 & -2 \end{pmatrix}, \qquad \|A\|_1 = ? \quad \|A\|_{\infty} = ?$$

$$\begin{pmatrix} -3 & 0 & 4 \\ 1 & -1 & 2 \\ -2 & 1 & -2 \end{pmatrix} \begin{array}{c} \leftarrow 7 \\ \leftarrow 4 \\ \leftarrow 5 \\ \uparrow & \uparrow & \uparrow \\ 6 & 2 & 8 \end{array}$$

 $\|A\|_1 = 8$ and $\|A\|_{\infty} = 7$

(日)

$$A = \begin{pmatrix} 3 & -1 \\ -2 & 2 \end{pmatrix}, \qquad ||A||_2 = ?$$
$$A^{\mathsf{T}}A = \begin{pmatrix} 3 & -2 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} 13 & -7 \\ -7 & 5 \end{pmatrix}$$

the eigenvalues of $A^T A$:

$$\begin{vmatrix} 13 - \lambda & -7 \\ -7 & 5 - \lambda \end{vmatrix} = (13 - \lambda)(5 - \lambda) - 49 = \lambda^2 - 18\lambda + 16 = 0$$
$$\lambda_{1,2} = \frac{18 \pm \sqrt{18^2 - 64}}{2} = 9 \pm \sqrt{65}$$

 $||A||_2 = \sqrt{9 + \sqrt{65}} \approx 4.13$

Exercise 7

Implement functions for computing the induced $1, \infty$ matrix norms!

Hint

Ágnes Baran, Csaba Noszály

э

イロト イヨト イヨト

The condition number

Suppose that $A \in \mathbb{R}^{n \times n}$ is invertible, $b \in \mathbb{R}^n$, $b \neq 0$. We are searching for the solution of Ax = b. Suppose that we have error in the right hand side, so we have to solve the $A(x + \delta x) = b + \delta b$ system. Then, on the one hand:

$$A(x + \delta x) = b + \delta b$$

$$\underline{Ax} + A \cdot \delta x = \underline{b} + \delta b$$

$$A \cdot \delta x = \delta b$$

$$\delta x = A^{-1} \delta b$$

$$|\delta x|| = ||A^{-1} \delta b|| \le ||A^{-1}|| \cdot ||\delta b||$$

イロト 不得 トイヨト イヨト 三日

On the other hand: $Ax = b \implies$

$$\|b\| = \|Ax\| \le \|A\| \cdot \|x\|$$

 $\frac{1}{\|x\|} \le \|A\| \cdot \frac{1}{\|b\|}$

Putting them together:

$$\frac{\|\delta x\|}{\|x\|} \leq \underbrace{\|A\| \cdot \|A^{-1}\|}_{\operatorname{cond}(A):=} \frac{\|\delta b\|}{\|b\|}$$

$$\frac{\|\delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\delta b\|}{\|b\|}$$

Ágnes Baran, Csaba Noszály

æ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Let A be an invertible matrix. Then

$$\mathit{cond}(A) = \|A\| \cdot \|A^{-1}\|$$

is called the condition number of A.

3

Properties

- 1 its value *does* depend on the norm used
- 2 $cond(A) \ge 1$
- **3** if A is orthogonal $(A^T A = E)$, then $cond_2(A) = 1$

4

$$\left| rac{\lambda_{\mathsf{max}}}{\lambda_{\mathsf{min}}}
ight| \leq \mathit{cond}(A)$$

where λ_{\max} and λ_{\min} are the largest and smallest eigenvalues in absolute value of A

5 for
$$c \neq 0$$
, $cond(cA) = cond(A)$

イロト イポト イヨト イヨト 三日

Remark

Let C = cond(A). The condition number tells us, that the relative error in the right-hand side can get C-times large in the solution. Note that it is the worst case scenario.

$$A = \left(egin{array}{cc} 1 & 1 \ 1 & 1.0001 \end{array}
ight), \quad cond_\infty(A) = ?$$

Then $det(A) = 10^{-4}$,

$${\mathcal A}^{-1}=\left(egin{array}{cc} 10001 & -10000\ -10000 & 10000 \end{array}
ight)$$

 $\|A\|_{\infty} = 2.0001$ and $\|A^{-1}\|_{\infty} = 20001$,

 $cond_{\infty}(A) = 2.0001 \cdot 20001 \approx 40000.$

The error in the solution can be as large as 40000 times the error in the right hand side.

Ágnes Baran, Csaba Noszály

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Remark

The condition number does not depend on the determinant!

2

・ロト ・四ト ・ヨト ・ヨト

Exercise 2 cont.

Compute the relative error of the right-hand side, the solution and the condition number! Use 1 and ∞ norm!

э

・ロト ・雪 ト ・ ヨ ト ・

Review

Inverse of a 2 × 2 matrix:
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow A^{-1} = \frac{\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}}{\frac{det(A)}{det(A)}}$$

Ágnes Baran, Csaba Noszály

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Exercise 8

Solve the system Ax = b where

$$A = \left(\begin{array}{cc} 1 & 0.99 \\ 0.99 & 0.98 \end{array} \right), \qquad b = \left(\begin{array}{c} 1.99 \\ 1.97 \end{array} \right).$$

Now, suppose that instead of b, we have

$$b + \delta b = \left(egin{array}{c} 1.98 \\ 1.98 \end{array}
ight)$$

Solve the system $Ay = b + \delta b!$ Also, compute the relative error of the right-hand side and the solution in ∞ -norm. What is $cond_{\infty}(A)$?

くロ と く 同 と く ヨ と 一

Hilbert matrix

$$H_n = \begin{pmatrix} 1 & 1/2 & 1/3 & \cdots & 1/n \\ 1/2 & 1/3 & 1/4 & \cdots & 1/(n+1) \\ 1/3 & 1/4 & 1/5 & \cdots & 1/(n+2) \\ \vdots & & & & \\ 1/n & 1/(n+1) & 1/(n+2) & \cdots & 1/(2n-1) \end{pmatrix}$$

Ágnes Baran, Csaba Noszály

26 / 31

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣

Exercise 9a

Implement a function that computes the $n \times n$ Hilbert-matrix!

Ágnes Baran, Csaba Noszály

Norms, condition numbers

3

イロト イヨト イヨト

Exercise 9b

Compute the condition number of the Hilbert matrix of size $6 \times 6!$ Use hilb and cond !

Exercise 9c

What is the condition numbers of a random matrix of size 6×6 ? Experiment with different instances, use rand !

э

3 k 4 3 k -

Remark

For computing the condition numbers of large matrices use the condest function! It computes an estimation of $cond_1(A)$, without the expensive A^{-1} computations.

э

Suppose for the relative error of *b*:

$$\frac{\|\delta \boldsymbol{b}\|}{\|\boldsymbol{b}\|} \approx \varepsilon_1$$

If, in addition we have:

$$cond(A) \geq \frac{1}{\varepsilon_1}$$

then

$$\operatorname{cond}(A) \frac{\|\delta b\|}{\|b\|} \geq 1,$$

that is, the error in the solution can be as large as the solution itself. It is bad. Such matrices (or linear systems) are called ill-conditioned.

In order to get at least 1 exact digit in the solution, we need smaller condition number. For example, if

$$\mathsf{cond}(\mathsf{A}) \leq rac{1}{\mathsf{a}arepsilon_1}$$

then

$$\frac{\|\delta x\|}{\|x\|} \le \frac{1}{a}$$

Ágnes Baran, Csaba Noszály

э