Floating-point numbers

Ágnes Baran, Csaba Noszály

Ágnes Baran, Csaba Noszály

э

문에 비용에

< □ > < 同 >

On-line documentation:

- Octave at www.gnu.org
- Matlab at www.mathworks.com

э

Image: Image:

You can write expressions, statements in the command window:

>> 1+1			
ans =			
2			
>> 2*2			
ans =			
4			

The result will get into the variable named ans, unless we used assignment.

э

イロト イヨト イヨト

We can define our own variables:

>> a=2*3 a = 6 >> b=3; c=a+b;

As you see, writing a semicolon after the expression, will turn off echoing the result - although the evaluation will be done. The value of a variable can be accessed by typing its name:

>> c	
c =	
9	

くロ と く 同 と く ヨ と 一

Variable names

- For the name of a variable one can use a sequence of characters that begins with a letter (of the english alphabet), and consists only of letters, digits and underscores. It is case sensitive!
- It is forbidden (and impossible) to use for naming variables the so called keywords: if, for, while, function, For a full list keywords type iskeyword.
- It is strongly discouraged (but possible) to use the names of the so called built-in's: size,sin,cos,exp,...
- You can query the system about the existence of a particular name: exist cos
- You can destroy a variable with: clear yourVariableName You can destroy all variables in the workspace with: clear all
- for further details, see Variable names.

Relational operators

The result of a comparison is a logical 1 (=true) or logical 0 (=false).

- a<b is true iff. a is less than b</p>
- **a**<=b is true iff. *a* is less than or equal to *b*
- a>b is true iff. a is greater than b
- $a \ge b$ is true iff. *a* is greater than or equal to *b*
- a==b is true iff. *a* is equal to *b*
- $a \sim = b$ is true iff. *a* is not equal to *b*

For matrices of the same size the comparison is performed elementwise, i.e. comparing elements in the same location. The result is a logical matrix of the same shape.

・ロト ・雪 ト ・ヨ ト ・

script : A series of commands that you write into a file. It can be executed as a complete unit.

• Open in the editor window a new script and write our program here.

Comments: Everything is ignored (not parsed,executed) after the % sign.

- Note that each of the statements are executed as it were typed in the command window, so without using ; the results are printed on the screen.
- Save the file.
- Execute the script: either by pressing the run button in the top of editor window, or switching back to the command window by typing the name of script (without the .m extension)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The for-loop

for variable = vector
 statements
end

$$s=0;for k=100:-3:1s=s+k^2end$$

<ロト <部ト <きト <きト = 目

The while-loop

while logical-expression statements end

$$s=0; \ k=100; \\ while \ k>=1 \\ s=s+k^2; \ k=k-3; \\ end$$

Ágnes Baran, Csaba Noszály

æ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

How can we trust in machine computations?

$\mathsf{Exercise}\ 1$

Examine the value of the (logical) expression: 0.4 - 0.5 + 0.1 == 0. What is the value of 0.1 - 0.5 + 0.4 == 0?

Exercise 2

What is the theoretical (expected) value of \mathbf{x} after performing the following algorithm:

 $\begin{array}{l} x = 1/3; \\ \text{for } i = 1:40 \\ x = 4^* x - 1; \\ \text{end} \end{array}$

Examine values of the following expressions:

$$2^{66} + 1 == 2^{66}, \ 2^{66} + 100 == 2^{66}, \ 2^{66} + 1000 == 2^{66}$$

Exercise 4

What are the results of algorithms below?

Try to explain!

Ágnes Baran, Csaba Noszály

э

Floating point numbers

Example

a = 10

$$0.3721 = \frac{3}{10} + \frac{7}{10^2} + \frac{2}{10^3} + \frac{1}{10^4}$$
$$21.65 = 0.2165 \cdot 10^2 = \left(\frac{2}{10} + \frac{1}{10^2} + \frac{6}{10^3} + \frac{5}{10^4}\right) \cdot 10^2$$

a = 2

$$0.1101 = \frac{1}{2} + \frac{1}{2^2} + \frac{0}{2^3} + \frac{1}{2^4}$$
$$0.001011 = 0.1011 \cdot 2^{-2} = \left(\frac{1}{2} + \frac{0}{2^2} + \frac{1}{2^3} + \frac{1}{2^4}\right) \cdot 2^{-2}$$

æ

Floating point numbers

The form of non-zero floating point numbers:

$$\pm a^k \left(\frac{m_1}{a} + \frac{m_2}{a^2} + \dots + \frac{m_t}{a^t}\right)$$

where

a>1 is an integer, the base ,

t > 1 is an integer, the length of the mantissa

 $k_- \le k \le k_+$ are integers, k is the characteristic , $k_- < 0$ and $k_+ > 0$ are fixed.

 $1 \le m_1 \le a - 1$ is an integer, (the number is in normalized form)

 $0 \le m_i \le a-1$ is an integer, for $i = 2, \ldots, t$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のQの

In short:

$\pm |k|m_1,\ldots,m_t$

The set of the representable numbers is uniquely determined by the numbers

$$a, t, k_-, k_+$$

3

イロト イヨト イヨト

Example

Let a = 2, t = 4, $k_{-} = -3$, $k_{+} = 2$.

• Compute the floating-point form the numbers below:

 $0.6875, \quad 0.8125, \quad 3.25, \quad 0.875$

Of how many positive, normalized numbers can be represented in the given system?

イロト イポト イヨト イヨト 三日

Facts

For a given a, t, k_-, k_+

• the largest (positive) representable number:

$$M_{\infty} = a^{k_{+}} \left(\frac{a-1}{a} + \frac{a-1}{a^{2}} + \dots + \frac{a-1}{a^{t}} \right) =$$

= $a^{k_{+}} \left(1 - \frac{1}{a} + \frac{1}{a} - \frac{1}{a^{2}} + \dots + \frac{1}{a^{t-1}} - \frac{1}{a^{t}} \right) =$
= $a^{k_{+}} \left(1 - a^{-t} \right)$

• the smallest (positive) representable number:

$$arepsilon_0=a^{k_-}\left(rac{1}{a}+0+\dots+0
ight)=a^{k_--1}$$

subnormal numbers: if $k = k_{-}$ and $m_1 = 0$.

Ágnes Baran, Csaba Noszály

э

물에 비용에 다

• The number 1 is always representable:

$$1=a^1\cdot rac{1}{a}$$

or

$$1 = [+|1|1, 0, \dots, 0]$$

• The right neighbour of 1:

$$1 + arepsilon_1 = [+|1|1, 0, \dots, 0, 1]$$

or

$$1+\varepsilon_1=a\left(\frac{1}{a}+0+\cdots+0+\frac{1}{a^t}\right)=1+a^{1-t}$$

that is $\varepsilon_1 = a^{1-t}$ (the machine epsilon)

Ágnes Baran, Csaba Noszály

э

물에 비용에

Image: A matrix and a matrix

Exercise 5

- (a) Write a code that computes the machine epsilon!
- (b) Read the help of the function eps! What is the value of eps(1)?

Exercise 6

- (a) Write a code that computes ε_0 !
- (b) What is the value of eps(0)?

Exercise 7

Examine the values of realmin and realmax! What is realmin('single') and realmax('single')?

The IEEE floating point standard:

	single precision	double precision
size	32 bits	64 bits
mantissa	23+1 bits	52+1 bits
characteristic	8 bits	11 bits
ε_1	$pprox 1.19 \cdot 10^{-7}$	$pprox 2.22 \cdot 10^{-16}$
M_{∞}	$pprox 10^{38}$	$pprox 10^{308}$

Note that here m_1 is 1 (a constant), so it is not stored explicitly. For the sign 1 bit is reserved.

э

For a given a, t, k_+, k_- the floating-point numbers is finite subset of the real interval $[-M_{\infty}, M_{\infty}]$

Exercise 8

Let a = 2, t = 4, $k_{-} = -3$, $k_{+} = 2$.

- (a) Draw all positive (normalized) numbers from the system!
- (b) What is the value of M_{∞} , ε_0 és ε_1 ?
- (c) What is the distance of two neighbouring numbers?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

The set of all positive normalized numbers in the system $a = 2, t = 4, k_{-} = -3, k_{+} = 2$

	k = 0	k = 1	<i>k</i> = 2	k = -1	k = -2	k = -3
0.1000	$\frac{8}{16}$	<u>8</u>	<u>8</u> 4	$\frac{8}{32}$	$\frac{8}{64}$	$\frac{8}{128}$
0.1001	$\frac{9}{16}$	$\frac{9}{8}$	$\frac{9}{4}$	$\frac{9}{32}$	$\frac{9}{64}$	$\frac{9}{128}$
0.1010	$\frac{10}{16}$	$\frac{10}{8}$	$\frac{10}{4}$	$\frac{10}{32}$	$\frac{10}{64}$	$\frac{10}{128}$
0.1011	$\frac{11}{16}$	$\frac{11}{8}$	$\frac{11}{4}$	$\frac{11}{32}$	$\frac{11}{64}$	$\frac{11}{128}$
0.1100	$\frac{12}{16}$	$\frac{12}{8}$	$\frac{12}{4}$	$\frac{12}{32}$	$\frac{12}{64}$	$\frac{12}{128}$
0.1101	$\frac{13}{16}$	$\frac{13}{8}$	$\frac{13}{4}$	$\frac{13}{32}$	$\frac{13}{64}$	$\frac{13}{128}$
0.1110	$\frac{14}{16}$	$\frac{14}{8}$	$\frac{14}{4}$	$\frac{14}{32}$	$\frac{14}{64}$	$\frac{14}{128}$
0.1111	$\frac{15}{16}$	$\frac{15}{8}$	$\frac{15}{4}$	$\frac{15}{32}$	$\frac{15}{64}$	$\frac{15}{128}$

$$M_{\infty}=2^2(1-2^{-4})=rac{15}{4}$$
 and $arepsilon_0=2^{-3-1}=rac{1}{16}\left(=rac{8}{128}
ight)$

문에 수준에 드는

Let
$$y = a^k \cdot 0.m_1m_2...m_t$$
.

The closest number that is greater than y is in distance:

$$a^k \cdot \frac{1}{a^t} = a^{k-t}$$

Bigger characteristic means bigger distance (stepsize) between neighbouring numbers.

If k > t, then the stepsize is larger than 1.

Exercise 9

Examine again the values of the following expressions:

$$2^{66} + 1 == 2^{66}, \ 2^{66} + 10 == 2^{66}, \ 2^{66} + 100 == 2^{66}, \ 2^{66} + 1000 == 2^{66}, \ 2^{66} + 10000 == 2^{66}$$

Try to find the smallest n > 0 for which $2^{66} + n = 2^{66}$ is false! What is the value of eps(2⁶⁶)?

혼에 세종에

For double precision (t = 53):

у	distance of the right neighbour
1	$pprox 2.22 \cdot 10^{-16}$
16	$pprox 3.5527 \cdot 10^{-15}$
1024	$pprox 2.27 \cdot 10^{-13}$
$2^{20}pprox 10^6$	$pprox 2.33 \cdot 10^{-10}$
$2^{52}\approx 4.5\cdot 10^{15}$	1
$2^{60}\approx 1.15\cdot 10^{18}$	256
$2^{66}\approx 7.38\cdot 10^{19}$	16384

<ロト <部ト <きト <きト = 目

Not all numbers has an exact representation in a floating point number system.

Example

The binary representation of $\frac{1}{10}$:

 $0.0001100110011001100\ldots$

The binary representation of $\frac{1}{3}$:

0.0101010101010....

イロト イポト イヨト イヨト 三日

Rounding

Let $x \in [-M_{\infty}, M_{\infty}]$ a real number, and denote by f(x) the corresponding floating-point number.

Regular rounding

$$fl(x) = \begin{cases} 0, & \text{if } |x| < \varepsilon_0 \\ \text{among the nearest floating point} \\ \text{numbers to } x, \text{ the larger} \\ \text{in absolute value, } & \text{if } |x| \ge \varepsilon_0 \end{cases}$$

Cutting, choping

$$fl(x) = \begin{cases} 0, & \text{if } |x| < \varepsilon_0 \\ \text{the nearest floating point} \\ \text{number towards zero, if } |x| \ge \varepsilon_0 \end{cases}$$

Ágnes Baran, Csaba Noszály

э

Remark

The rounding rules implemented in todays processors are more involved. For simplicity we will use the rules above.

э

글 🖌 🖌 글 🛌 👘

< □ > < 同 >

Example

Let a = 2, t = 4, $k_{-} = -3$, $k_{+} = 2$. What is fl(0.1) in case of choping and regular rounding?

From the binary expansion of 0.1, we get the form:

 $2^{-3} \cdot 0.1100110011001100....$

Regular rounding:

$$fl(0.1) = 2^{-3} \cdot 0.1101$$

Choping:

$$fl(0.1) = 2^{-3} \cdot 0.1100$$

イロト 不得 トイヨト イヨト 二日

Exercise 10 Let a = 2, t = 4, $k_{-} = -3$, $k_{+} = 2$. Compute the corresponding floating point numbers for:

$$0.4, \quad 0.3, \quad \frac{1}{3}, \quad 0.7, \quad \frac{1}{32}$$

Exercise 11

Examine the value of expression 0.4 - 0.5 + 0.1 == 0! Explain! Examine the value of expression 0.1 - 0.5 + 0.4 == 0! Explain!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Exercise 8 (cont.)

Let a = 2, t = 4, $k_{-} = -3$, $k_{+} = 2$. Try to find positive $x \neq y$ floating point numbers, for which:

(f) x + y < M_∞, but x + y is not a floating point number.
(g) fl(x + y) = x.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Exercise 12 What will be the value of x after executing the code below?

=1/3;	
r = 1.40	İ
x=4*x-1;	
nd	

Why is so different what we see?

э

문에 비원에 다

< □ > < 同 >

Exercise 13

The code below modifies and restores the value of x by successive squarerooting and squareing. In theory x remains the same. What we see in practice? Why?

or i=1:60	
x=sqrt(x);	
nd	
or i=1:60	
x=x^2;	
nd	

▶ < ∃ ▶

Rounding

Estimating the absolute error in case of regular rounding:

$$|\mathit{fl}(x) - x| \leq egin{cases} arepsilon_0, & \mathsf{ha} \; |x| < arepsilon_0 \ rac{1}{2}arepsilon_1 |x|, & \mathsf{ha} \; |x| \geq arepsilon_0 \end{cases}$$

in case of choping :

$$|fl(x) - x| \leq egin{cases} arepsilon_0, & \mathsf{ha} \; |x| < arepsilon_0 \ arepsilon_1 |x|, & \mathsf{ha} \; |x| \geq arepsilon_0 \end{cases}$$

Ágnes Baran, Csaba Noszály

э

Rounding

Estimating the relative error in case of regular rounding :

$$\frac{|fl(x)-x|}{|x|} \leq \frac{1}{2}\varepsilon_1$$

in case of choping :

$$\frac{|fl(x)-x|}{|x|} \le \varepsilon_1$$

э

医下颌 医下

< □ > < 同 >

Example

Let a = 10, t = 3. Assuming 1 spare digit compute f/(x + y) = ! $x = 0.425 \cdot 10^{-1}$, $y = 0.677 \cdot 10^{-2}$

 $y \rightarrow y = 0.0677 \cdot 10^{-1}$ (1 spare digit)

 $x + y = 0.425 \cdot 10^{-1} + 0.0677 \cdot 10^{-1} = 0.4927 \cdot 10^{-1}$

 $fl(x + y) = \begin{cases} 0.492 \cdot 10^{-1}, & \text{choping} \\ 0.493 \cdot 10^{-1}, & \text{regular rounding} \end{cases}$

Ágnes Baran, Csaba Noszály

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Denote by \triangle one of the +,-,*/, let x and y floating point numbers. Assuming that the computer performs the operations exactly and assigns a floating point number to the result. Then in case of regular rounding we have:

$$|fl(x \triangle y) - x \triangle y| \le \begin{cases} \varepsilon_0, & \text{if } |x \triangle y| < \varepsilon_0 \\ \frac{1}{2} \varepsilon_1 |x \triangle y|, & \text{if } |x \triangle y| \ge \varepsilon_0 \end{cases}$$

in case of choping we have:

$$|fl(x riangle y) - x riangle y| \le egin{cases} arepsilon_0, & ext{if } |x riangle y| < arepsilon_0 \ arepsilon_1 |x riangle y|, & ext{if } |x riangle y| \ge arepsilon_0 \end{cases}$$

Ágnes Baran, Csaba Noszály

$$|x \triangle y| > M_{\infty} \implies \text{overflow}$$

 $|x \triangle y| < \varepsilon_0 \implies \text{underflow}(f(x \triangle y) = 0)$

Ágnes Baran, Csaba Noszály

37 / 37

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● < ○ < ○ >