Floating-point numbers

Ágnes Baran, Csaba Noszály

Octave/Matlab basics

On-line documentation:

- Octave at www.gnu.org

■ Matlab at www.mathworks.com

You can write expressions,statements in the command window:

```
>> 1+1
ans =
    2
>> 2*2
ans =
    4
```

The result will get into the variable named ans, unless we used assignment.

We can define our own variables:

$$
\begin{aligned}
& \gg a=2 * 3 \\
& a= \\
& \quad 6 \\
& \gg b=3 ; c=a+b ;
\end{aligned}
$$

As you see, writing a semicolon after the expression, will turn off echoing the result - although the evaluation will be done. The value of a variable can be accessed by typing its name:

```
>> c
c=
    9
```


Variable names

- For the name of a variable one can use a sequence of characters that begins with a letter (of the english alphabet), and consists only of letters, digits and underscores. It is case sensitive!
- It is forbidden (and impossible) to use for naming variables the so called keywords: if, for, while, function, For a full list keywords type iskeyword.
- It is strongly discouraged (but possible) to use the names of the so called built-in's: size,sin, cos,exp,...
- You can query the system about the existence of a particular name: exist cos

■ You can destroy a variable with: clear yourVariableName You can destroy all variables in the workspace with: clear all

- for further details, see Variable names.

Relational operators

The result of a comparison is a logical 1 (=true) or logical 0 (=false).
■ $\mathrm{a}<\mathrm{b}$ is true iff. a is less than b

- $\mathrm{a}<=\mathrm{b}$ is true iff. a is less than or equal to b
- $\mathrm{a}>\mathrm{b}$ is true iff. a is greater than b
- $\mathrm{a}>=\mathrm{b}$ is true iff. a is greater than or equal to b

■ $\mathrm{a}==\mathrm{b}$ is true iff. a is equal to b

- $\mathrm{a} \sim=\mathrm{b}$ is true iff. a is not equal to b

For matrices of the same size the comparison is performed elementwise, i.e. comparing elements in the same location. The result is a logical matrix of the same shape.

m-files

script: A series of commands that you write into a file. It can be executed as a complete unit.

■ Open in the editor window a new script and write our program here.
Comments: Everything is ignored (not parsed,executed) after the \% sign.

- Note that each of the statements are executed as it were typed in the command window, so without using ; the results are printed on the screen.
- Save the file.

■ Execute the script: either by pressing the run button in the top of editor window, or switching back to the command window by typing the name of script (without the .m extension)

The for-loop

for variable $=$ vector statements end

```
s=0;
for k=1:100
    s=s+k;
end
```

$$
\begin{aligned}
& s=0 ; \\
& \text { for } k=\left[\begin{array}{llll}
1 & 3 & -2 & 5
\end{array}\right] \\
& s=s+1 / k ; \\
& \text { end }
\end{aligned}
$$

```
s=0;
for k=100:-3:1
    s=s+k^2
end
```


The while-loop

```
while logical-expression
    statements
end
```

```
s=0; k=1;
while k<=100
    s=s+k; k=k+1;
end
```

$$
\begin{aligned}
& s=1 ; k=10 ; \\
& \text { while } k>1 \\
& s=s^{*} k ; k=k-1 \text {; } \\
& \text { end }
\end{aligned}
$$

```
s=0; k=100;
while k>=1
    s=s+k^2; k=k-3;
end
```


How can we trust in machine computations?

Exercise 1

Examine the value of the (logical) expression: $0.4-0.5+0.1==0$. What is the value of $0.1-0.5+0.4==0$?

Exercise 2

What is the theoretical (expected) value of x after performing the following algorithm:

```
x=1/3;
for i=1:40
    x=4*x-1;
end
```


Exercise 3

Examine values of the following expressions:

$$
2^{66}+1==2^{66}, 2^{66}+100==2^{66}, 2^{66}+10000==2^{66}
$$

Exercise 4

What are the results of algorithms below?

$$
\begin{aligned}
& a=0 ; \\
& \text { for } i=1: 5 \\
& a=a+0.2 ; \\
& \text { end } \\
& a==1
\end{aligned}
$$

$$
\begin{aligned}
& a=1 ; \\
& \text { for } i=1: 5 \\
& \quad a=a-0.2 ; \\
& \text { end } \\
& a==0
\end{aligned}
$$

Try to explain!

Floating point numbers

Example

$a=10$
$0.3721=\frac{3}{10}+\frac{7}{10^{2}}+\frac{2}{10^{3}}+\frac{1}{10^{4}}$
$21.65=0.2165 \cdot 10^{2}=\left(\frac{2}{10}+\frac{1}{10^{2}}+\frac{6}{10^{3}}+\frac{5}{10^{4}}\right) \cdot 10^{2}$
$a=2$

$$
\begin{aligned}
0.1101 & =\frac{1}{2}+\frac{1}{2^{2}}+\frac{0}{2^{3}}+\frac{1}{2^{4}} \\
0.001011 & =0.1011 \cdot 2^{-2}=\left(\frac{1}{2}+\frac{0}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}\right) \cdot 2^{-2}
\end{aligned}
$$

Floating point numbers

The form of non-zero floating point numbers:

$$
\pm a^{k}\left(\frac{m_{1}}{a}+\frac{m_{2}}{a^{2}}+\cdots+\frac{m_{t}}{a^{t}}\right)
$$

where
$a>1$ is an integer, the base,
$t>1$ is an integer, the length of the mantissa
$k_{-} \leq k \leq k_{+}$are integers, k is the characteristic, $k_{-}<0$ and $k_{+}>0$ are fixed.
$1 \leq m_{1} \leq a-1$ is an integer, (the number is in normalized form)
$0 \leq m_{i} \leq a-1$ is an integer, for $i=2, \ldots, t$

In short:

$$
\pm|k| m_{1}, \ldots, m_{t}
$$

The set of the representable numbers is uniquely determined by the numbers

$$
a, t, k_{-}, k_{+}
$$

Example

Let $a=2, t=4, k_{-}=-3, k_{+}=2$.
■ Compute the floating-point form the numbers below:

$$
0.6875, \quad 0.8125, \quad 3.25, \quad 0.875
$$

- Of how many positive, normalized numbers can be represented in the given system?

Facts

For a given a, t, k_{-}, k_{+}

- the largest (positive) representable number:

$$
\begin{gathered}
M_{\infty}=a^{k_{+}}\left(\frac{a-1}{a}+\frac{a-1}{a^{2}}+\cdots+\frac{a-1}{a^{t}}\right)= \\
=a^{k_{+}}\left(1-\frac{1}{a}+\frac{1}{a}-\frac{1}{a^{2}}+\cdots+\frac{1}{a^{t-1}}-\frac{1}{a^{t}}\right)= \\
=a^{k_{+}}\left(1-a^{-t}\right)
\end{gathered}
$$

- the smallest (positive) representable number:

$$
\varepsilon_{0}=a^{k-}\left(\frac{1}{a}+0+\cdots+0\right)=a^{k_{-}-1}
$$

■ subnormal numbers: if $k=k_{-}$and $m_{1}=0$.

Facts

- The number 1 is always representable:

$$
1=a^{1} \cdot \frac{1}{a}
$$

or

$$
1=[+|1| 1,0, \ldots, 0]
$$

- The right neighbour of 1 :

$$
1+\varepsilon_{1}=[+|1| 1,0, \ldots, 0,1]
$$

or

$$
1+\varepsilon_{1}=a\left(\frac{1}{a}+0+\cdots+0+\frac{1}{a^{t}}\right)=1+a^{1-t}
$$

that is $\varepsilon_{1}=a^{1-t}$ (the machine epsilon)

Exercise 5

(a) Write a code that computes the machine epsilon!
(b) Read the help of the function eps! What is the value of eps(1)?

Exercise 6

(a) Write a code that computes ε_{0} !
(b) What is the value of eps (0)?

Exercise 7

Examine the values of realmin and realmax! What is realmin('single') and realmax('single')?

The IEEE floating point standard:

	single precision	double precision
size	32 bits	64 bits
mantissa	$23+1$ bits	$52+1$ bits
characteristic	8 bits	11 bits
ε_{1}	$\approx 1.19 \cdot 10^{-7}$	$\approx 2.22 \cdot 10^{-16}$
M_{∞}	$\approx 10^{38}$	$\approx 10^{308}$

Note that here m_{1} is 1 (a constant), so it is not stored explicitly. For the sign 1 bit is reserved.

For a given a, t, k_{+}, k_{-}the floating-point numbers is finite subset of the real interval $\left[-M_{\infty}, M_{\infty}\right.$]
Exercise 8
Let $a=2, t=4, k_{-}=-3, k_{+}=2$.
(a) Draw all positive (normalized) numbers from the system!
(b) What is the value of $M_{\infty}, \varepsilon_{0}$ és ε_{1} ?
(c) What is the distance of two neighbouring numbers?

Example

The set of all positive normalized numbers in the system

$$
a=2, t=4, k_{-}=-3, k_{+}=2
$$

	$k=0$	$k=1$	$k=2$	$k=-1$	$k=-2$	$k=-3$
0.1000	$\frac{8}{16}$	$\frac{8}{8}$	$\frac{8}{4}$	$\frac{8}{32}$	$\frac{8}{64}$	$\frac{8}{128}$
0.1001	$\frac{9}{16}$	$\frac{9}{8}$	$\frac{9}{4}$	$\frac{9}{32}$	$\frac{9}{64}$	$\frac{9}{128}$
0.1010	$\frac{10}{16}$	$\frac{10}{8}$	$\frac{10}{4}$	$\frac{10}{32}$	$\frac{10}{64}$	$\frac{10}{128}$
0.1011	$\frac{11}{16}$	$\frac{11}{8}$	$\frac{11}{4}$	$\frac{11}{32}$	$\frac{11}{64}$	$\frac{11}{128}$
0.1100	$\frac{12}{16}$	$\frac{12}{8}$	$\frac{12}{4}$	$\frac{12}{32}$	$\frac{12}{64}$	$\frac{12}{128}$
0.1101	$\frac{13}{16}$	$\frac{13}{8}$	$\frac{13}{4}$	$\frac{13}{32}$	$\frac{13}{64}$	$\frac{13}{128}$
0.1110	$\frac{14}{16}$	$\frac{14}{8}$	$\frac{14}{4}$	$\frac{14}{32}$	$\frac{14}{64}$	$\frac{14}{128}$
0.1111	$\frac{15}{16}$	$\frac{15}{8}$	$\frac{15}{4}$	$\frac{15}{32}$	$\frac{15}{64}$	$\frac{15}{128}$

$M_{\infty}=2^{2}\left(1-2^{-4}\right)=\frac{15}{4}$ and $\varepsilon_{0}=2^{-3-1}=\frac{1}{16}\left(=\frac{8}{128}\right)$

Let $y=a^{k} \cdot 0 . m_{1} m_{2} \ldots m_{t}$.
The closest number that is greater than y is in distance:

$$
a^{k} \cdot \frac{1}{a^{t}}=a^{k-t}
$$

Bigger characteristic means bigger distance (stepsize) between neighbouring numbers.

If $k>t$, then the stepsize is larger than 1 .

Exercise 9

Examine again the values of the following expressions:

$$
\begin{gathered}
2^{66}+1==2^{66}, 2^{66}+10==2^{66}, 2^{66}+100==2^{66} \\
2^{66}+1000==2^{66}, 2^{66}+10000==2^{66}
\end{gathered}
$$

Try to find the smallest $n>0$ for which $2^{66}+n==2^{66}$ is false! What is the value of eps $\left(2^{\wedge} 66\right)$?

For double precision $(t=53)$:

y	distance of the right neighbour
1	$\approx 2.22 \cdot 10^{-16}$
16	$\approx 3.5527 \cdot 10^{-15}$
1024	$\approx 2.27 \cdot 10^{-13}$
$2^{20} \approx 10^{6}$	$\approx 2.33 \cdot 10^{-10}$
$2^{52} \approx 4.5 \cdot 10^{15}$	1
$2^{60} \approx 1.15 \cdot 10^{18}$	256
$2^{66} \approx 7.38 \cdot 10^{19}$	16384

Rounding

Not all numbers has an exact representation in a floating point number system.

Example

The binary representation of $\frac{1}{10}$:

$$
0.0001100110011001100 \ldots
$$

The binary representation of $\frac{1}{3}$:
0.0101010101010....

Rounding

Let $x \in\left[-M_{\infty}, M_{\infty}\right]$ a real number, and denote by $f(x)$ the corresponding floating-point number.

Regular rounding

$$
f(x)=\left\{\begin{array}{l}
0, \\
\text { among the nearest floating point } \\
\text { numbers to } x, \text { the larger } \\
\text { in absolute value, if }|x| \geq \varepsilon_{0}
\end{array}\right.
$$

Cutting, choping

$$
f(x)= \begin{cases}0, & \text { if }|x|<\varepsilon_{0} \\ \text { the nearest floating point } \\ \text { number towards zero,if }|x| \geq \varepsilon_{0}\end{cases}
$$

Remark
 The rounding rules implemented in todays processors are more involved. For simplicity we will use the rules above.

Example

Let $a=2, t=4, k_{-}=-3, k_{+}=2$. What is $f(0.1)$ in case of choping and regular rounding?

From the binary expansion of 0.1, we get the form:

$$
2^{-3} \cdot 0.1100110011001100 \ldots
$$

Regular rounding:

$$
f I(0.1)=2^{-3} \cdot 0.1101
$$

Choping:

$$
f I(0.1)=2^{-3} \cdot 0.1100
$$

Exercise 10

Let $a=2, t=4, k_{-}=-3, k_{+}=2$. Compute the corresponding floating point numbers for:

$$
0.4, \quad 0.3, \quad \frac{1}{3}, \quad 0.7, \quad \frac{1}{32}
$$

Exercise 11

Examine the value of expression $0.4-0.5+0.1==0$! Explain! Examine the value of expression $0.1-0.5+0.4==0$! Explain!

Exercise 8 (cont.)

Let $a=2, t=4, k_{-}=-3, k_{+}=2$. Try to find positive $x \neq y$ floating point numbers, for which:
(f) $x+y<M_{\infty}$, but $x+y$ is not a floating point number.
(g) $f(x+y)=x$.

Exercise 12

What will be the value of x after executing the code below?

```
x=1/3;
for i=1:40
    x=4*}x-1
end
```

Why is so different what we see?

Exercise 13

The code below modifies and restores the value of x by successive squarerooting and squareing. In theory x remains the same. What we see in practice? Why?

```
for i=1:60
    x=sqrt(x);
end
for i=1:60
    x=x^2;
end
```


Rounding

Estimating the absolute error in case of regular rounding :

$$
|f|(x)-x \left\lvert\, \leq \begin{cases}\varepsilon_{0}, & \text { ha }|x|<\varepsilon_{0} \\ \frac{1}{2} \varepsilon_{1}|x|, & \text { ha }|x| \geq \varepsilon_{0}\end{cases}\right.
$$

in case of choping :

$$
|f|(x)-x \left\lvert\, \leq \begin{cases}\varepsilon_{0}, & \text { ha }|x|<\varepsilon_{0} \\ \varepsilon_{1}|x|, & \text { ha }|x| \geq \varepsilon_{0}\end{cases}\right.
$$

Rounding

Estimating the relative error in case of regular rounding :

$$
\frac{|f|(x)-x \mid}{|x|} \leq \frac{1}{2} \varepsilon_{1}
$$

in case of choping :

$$
\frac{|f|(x)-x \mid}{|x|} \leq \varepsilon_{1}
$$

Addition

Example

Let $a=10, t=3$. Assuming 1 spare digit compute $f(x+y)=$! $x=0.425 \cdot 10^{-1}, y=0.677 \cdot 10^{-2}$
$y \rightarrow y=0.0677 \cdot 10^{-1} \quad(1$ spare digit)
$x+y=0.425 \cdot 10^{-1}+0.0677 \cdot 10^{-1}=0.4927 \cdot 10^{-1}$

$$
f(x+y)= \begin{cases}0.492 \cdot 10^{-1}, & \text { choping } \\ 0.493 \cdot 10^{-1}, & \text { regular rounding }\end{cases}
$$

Error and operations

Denote by \triangle one of the,,$+- * /$, let x and y floating point numbers. Assuming that the computer performs the operations exactly and assigns a floating point number to the result. Then in case of regular rounding we have:

$$
|f|(x \triangle y)-x \triangle y \left\lvert\, \leq \begin{cases}\varepsilon_{0}, & \text { if }|x \triangle y|<\varepsilon_{0} \\ \frac{1}{2} \varepsilon_{1}|x \triangle y|, & \text { if }|x \triangle y| \geq \varepsilon_{0}\end{cases}\right.
$$

in case of choping we have:

$$
|f|(x \triangle y)-x \triangle y \left\lvert\, \leq \begin{cases}\varepsilon_{0}, & \text { if }|x \triangle y|<\varepsilon_{0} \\ \varepsilon_{1}|x \triangle y|, & \text { if }|x \triangle y| \geq \varepsilon_{0}\end{cases}\right.
$$

$$
\begin{gathered}
|x \triangle y|>M_{\infty} \quad \Longrightarrow \text { overflow } \\
|x \triangle y|<\varepsilon_{0} \quad \Longrightarrow \text { underflow }(f \mid(x \triangle y)=0)
\end{gathered}
$$

