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Introduction

The main task of logic

to give the laws of valid arguments (inferences, consequence relations)

Valid arguments

Valid arguments (inferences):

an argument (an inference): a relation between premise(s) and
conclusion
a consequence relation

input: premise(s)
output: conclusion

Valid arguments (inferences, consequence relations): if all premises are
true, then the conclusion is true.
Logically valid arguments: when the former holds necessarily.
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Classical propositional logic (classical zero–order logic) Language of propositional logic

Definition/1

Classical zero–order language is an ordered triple

L(0) = 〈LC ,Con,Form〉

where

1 LC = {¬,⊃,∧,∨,≡, (, )} (the set of logical constants).

2 Con 6= ∅ the countable set of non-logical constants (propositional
parameters)

3 LC ∩ Con = ∅
4 The set of formulae i.e. the set Form is given by the following

inductive definition:
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Classical propositional logic (classical zero–order logic) Language of propositional logic

Definition/2

Con ⊆ Form

If A ∈ Form, then ¬A ∈ Form.

If A,B ∈ Form, then

(A ⊃ B) ∈ Form,
(A ∧ B) ∈ Form,
(A ∨ B) ∈ Form,
(A ≡ B) ∈ Form.

Remark

The members of the set Con are the atomic formulae (prime formulae).
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Classical propositional logic (classical zero–order logic) Subformulae

Definition

If A is an atomic formula, then it has no direct subformula;

¬A has exactly one direct subformula: A;

Direct subformulae of formulae (A ⊃ B), (A ∧ B), (A ∨ B), (A ≡ B)
are formulae A and B, respectively.

Definition

The set of subformulae of formula A [denoting: SF (A)] is given by the
following inductive definition:

1 A ∈ SF (A) (i.e. the formula A is a subformula of itself);

2 if A′ ∈ SF (A) and B is a direct subformula of A′-nek, then B ∈ SF (A)
(i.e., if A′ is a subformula of A, then all direct subformulae of A′ are
subformulae of A).
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Classical propositional logic (classical zero–order logic) Construction tree

Definition

The contruction tree of a formula A is a finite ordered tree whose nodes
are formulae,

the root of the tree is the formmula A,

the node with formula ¬B has one child: he node with the formula B,

the node with formulae (B ⊃ C ), (B ∧ C ), (B ∨ C ), (B ≡ C ) has two
children: the nodes with B, and C

the leaves of the tree are atomic formulae.
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Classical propositional logic (classical zero–order logic) Semantics of propositional logic

Definition

The function % is an interpretation of the language L(0) if

1 Dom(%) = Con

2 If p ∈ Con, then %(p) ∈ {0, 1}.
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Classical propositional logic (classical zero–order logic) The semantic rules of propositional logic

Definition

Let % be an interpretation and |A|% be the semantic value of the formula A
formula with respect to %.

1 If p ∈ Con, then |p|% = %(p)

2 If A ∈ Form, then |¬A|% = 1− |A|%.
3 If A,B ∈ Form, then

|(A ⊃ B)|% =

{
0 if |A|% = 1, and |B|% = 0;
1, otherwise

|(A ∧ B)|% =

{
1 if |A|% = 1, and |B|% = 1;
0, otherwise

|(A ∨ B)|% =

{
0 if |A|% = 0, and |B|% = 0;
1, otherwise.

|(A ≡ B)|% =

{
1 if |A|% = |B|%;
0, otherwise.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Definition (model – a set of formulas)

Let Γ ⊆ Form be a set of formulas. An interpretation % is a model of the
set of formulas Γ, if |A|% = 1 for all A ∈ Γ.

Definition – a model of a formula

A model of a formula A is the model of the singleton {A}.

Definition – satisfiable a set of formulas

The set of formulas Γ ⊆ Form is satisfiable if it has a model.
(If there is an interpretation in which all members of the set Γ are ture.)

Definition – satisfiable a formula

A formula A ∈ Form is satisfiable, if the singleton {A} is satisfiable.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Remark

A satisfiable set of formulas does not involve a logical contradiction;
its formulas may be true together.

A safisfiable formula may be true.

If a set of formulas is satisfiable, then its members are satisfiable.

But: all members of the set {p,¬p} are satisfiable, and the set is not
satisfiable.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Theorem

All subsets of a satisfiable set are satisfiable.

Proof

Let Γ ⊆ Form be a set of formulas and ∆ ⊆ Γ.

Γ is satisfiable: it has a model. Let % be a model of Γ.

A property of %: If A ∈ Γ, then |A|% = 1

Since ∆ ⊆ Γ, if A ∈ ∆, then A ∈ Γ, and so |A|% = 1. That is the
interpretation % is a model of ∆, and so ∆ is satisfiable.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Definition – unsatisfiable set

The set Γ ⊆ Form is unsatisfiable if it is not satisfiable.

Definition – unsatisfiable formula

A formula A ∈ Form is unsatisfiable if the singleton {A} is unsatisfiable.

Remark

A unsatisfiable set of formulas involve a logical contradiction. (Its
members cannot be true together.)
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Theorem

All expansions of an unsatisfiable set of formulas are unsatisfiable.

Indirect proof

Suppose that Γ ⊆ Form is an unsatisfiable set of formulas and
∆ ⊆ Form is a set of formulas.

Indirect condition: Γ is unsatisfiable, and Γ ∪∆ satisfiable.

Γ ⊆ Γ ∪∆

According to the former theorem Γ is satisfiable, and it is a
contradiction.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Definition

A formula A is the logical consequence of the set of formulas Γ if the set
Γ ∪ {¬A} is unsatifiable. (Notation : Γ � A)

Definition

A � B, if {A} � B.

Definition

The formula A is valid if ∅ � A. (Notation: � A)

The formulas A and B are logically equivalent if A � B and B � A.
(Notation: A⇔ B)
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Theorem

Let Γ ⊆ Form, and A ∈ Form. Γ � A if and only if all models of the set Γ
are the models of formula A. (i.e. the singleton {A}).

Proof

→ Indirect condition: There is a model of Γ � A such that it is not a
model of the formula A.
Let the interpretation % be this model.
The properties of %:

1 |B|% = 1 for all B ∈ Γ;

2 |A|% = 0, and so |¬A|% = 1

In this case all members of the set Γ ∪ {¬A} are true wrt %-ban, and so
Γ ∪ {¬A} is satisfiable. It means that Γ 2 A, and it is a contradiction.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Proof

← Indirect condition: All models of the set Γ are the models of formula A,
but (and) Γ 2 A.
In this case Γ ∪ {¬A} is satisfiable, i.e. it has a model.
Let the interpretation % be a model.
The properties of %:

1 |B|% = 1 for all B ∈ Γ;

2 |¬A|% = 1, i.e. |A|% = 0

So the set Γ has a model such that it is not a model of formula A, and it
is a contradiction.

Corollary

Let Γ ⊆ Form, and A ∈ Form. Γ � A if and only if for all interpretations in
which all members of Γ are true, the formula A is true.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Theorem

If A is a valid formula ((� A)), then Γ � A for all sets of formulas Γ. (A
valid formula is a consequence of any set of formulas.)

Proof

If A is a valid formula, then ∅ � A (according to its definition).

∅ ∪ {¬A} (= {¬A}) is unsatisfiable, and so its expansions are
unsatisfiable.

Γ ∪ {¬A} is an expansion of {¬A}, and so it is unsatisfiable, i.e.
Γ � A.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Theorem

If Γ is unsatisfiable, then Γ � A for all A. (All formulas are the
consequences of an unsatisfiable set of formulas.)

Proof

According to a proved theorem: If Γ is unsatisfiable, the all
expansions of Γ are unsatisfiable.

Γ ∪ {¬A} is an expansion of Γ, and so it is unsatisfiable, i.e. Γ � A.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Theorem

Deduction theorem: If Γ ∪ {A} � B, then Γ � (A ⊃ B).

Proof

Indirect condition: Suppose, that Γ ∪ {A} � B, and Γ 2 (A ⊃ B).

Γ ∪ {¬(A ⊃ B)} is satisfiable, and so it has a model. Let the
interpretation % be a model.

The properties of %:

1 All members of Γ are true wrt %.
2 |¬(A ⊃ B)|% = 1

|(A ⊃ B)|% = 0, i.e. |A|% = 1 and |B|% = 0. So|¬B|% = 1.

All members of Γ ∪ {A} ∪ {¬B} are true wrt interpretation %, i.e.
Γ ∪ {A} 2 B, and it is a contradiction.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Theorem

In the opposite direction: If Γ � (A ⊃ B), then Γ ∪ {A} � B.

Proof

Indirect condition: Suppose that Γ � (A ⊃ B), and Γ ∪ {A} 2 B.

So Γ ∪ {A} ∪ {¬B} is satisfiable, i.e. it has a model. Let the
interpretation % a model.

The properties of %:

1 All members of Γ are true wrt the interpretation %.
2 |A|% = 1
3 |¬B|% = 1, and so |B|% = 0

|(A ⊃ B)|% = 0, |¬(A ⊃ B)|% = 1.

All members of Γ ∪ {¬(A ⊃ B)} are true wrt the interpretation %, i.e.
Γ 2 (A ⊃ B).
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Corollary

A � B if and only if � (A ⊃ B)

Proof

Let Γ = ∅ in the former theorems.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Cut elimination theorem

If Γ ∪ {A} � B and ∆ � A, then Γ ∪∆ � B.

Proof

Indirect.
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Classical propositional logic (classical zero–order logic) Decision diagrams

Problems

Is there any algorithm to decide the satisfiability of a given formula?
This problem is crucial:

Finite set of formulas → formula;
Consequence relation with finite set of premisses → formula
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Classical propositional logic (classical zero–order logic) Decision diagrams

Truth tables

p q r p ∨ (q ∧ r)

1. 1 1 1 1
2. 1 1 0 1
3. 1 0 1 1
4. 1 0 0 1
5. 0 1 1 1
6. 0 1 0 0
7. 0 0 1 0
8. 0 0 0 0

p q r p ∨ (q ∧ r)

1.,2. 1 1 ? 1
3.,4. 1 0 ? 1

5. 0 1 1 1
6. 0 1 0 0

7.,8. 0 0 ? 0

p q r p ∨ (q ∧ r)

1.,2., 3.,4. 1 ? ? 1
5. 0 1 1 1
6. 0 1 0 0

7.,8. 0 0 ? 0
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Classical propositional logic (classical zero–order logic) Decision diagrams

p ∨ (q ∧ r)

p

q q

r r r r

0 0 1 1

0

1
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Classical propositional logic (classical zero–order logic) Decision diagrams

p ∨ (q ∧ r)

p

q q

r r r r

0 1
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Classical propositional logic (classical zero–order logic) Decision diagrams

p ∨ (q ∧ r)

p

q q

r r r

0 1
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Classical propositional logic (classical zero–order logic) Decision diagrams

p ∨ (q ∧ r)

p

q q

r r

0 1
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Classical propositional logic (classical zero–order logic) Decision diagrams

p ∨ (q ∧ r)

p

q q

r

0 1
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Classical propositional logic (classical zero–order logic) Decision diagrams

p ∨ (q ∧ r)

p

q

r

0 1
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Classical propositional logic (classical zero–order logic) Decision diagrams

Binary decision diagram (BDD)

A binary decision diagram (BDD) is a data structure for representing
the semantics of a formula in propositional logic:

formula → directed graph → algorithm → directed reduced graph;
reduced graphs have the property that the graphs for logically
equivalent formulas are identical;
A formula is valid iff its reduced BDD is identical to the trivial BDD for
true (i.e. the trivial BDD of verum [↑⇔def (p ∨ ¬p)]);
a formula is satisfiable iff its reduced BDD is not identical to the trivial
BDD for false (i.e. the trivial BDD of falsum [↓⇔def (p ∧ ¬p)]).
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Classical propositional logic (classical zero–order logic) Decision diagrams

Definition

Let A ∈ Form (i.e. A is a formula of propositional logic). A binary decision
diagram (BDD) for a formula A in propositional logic is a directed acyclic
graph such that

each leaf is labeled with a truth value 1 or 0;

each interior node is labeled with a parameter and has two outgoing
edges: one, the false edge, is denoted by a dotted line, while the
other, the true edge, is denoted by a solid line;

no atom appears more than once in a branch from the root to an
edge.

Remark

Given a branch b and its associated interpretation ρ, the leaf is
labeled with |A|%, the truth value of the formula wrt ρ.

If the interpretation is partial, it must assign to enough atoms so that
the truth value is defined.
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Classical propositional logic (classical zero–order logic) Decision diagrams

Algorithm Reduce

Input: A binary decision diagram bdd .
Output: A reduced binary decision diagram bdd ′.

If bdd has more than two distinct leaves (one labeled 1 and one
labeled 0), remove duplicate leaves. Direct all edges that pointed to
leaves to the remaining two leaves.

Perform the following steps as long as possible:

1 If both outgoing edges of a node labeled pi point to the same node
labeled pj , delete this node for pi and direct pi ’s incoming edges to pj .

2 If two nodes labeled pi are the roots of identical sub-BDDs, delete one
sub- BDD and direct its incoming edges to the other node.
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Classical propositional logic (classical zero–order logic) Decision diagrams

Definition

A BDD that results from applying the algorithm Reduce is a reduced
binary decision diagram.

Theorem

The reduced BDD bdd ′ returned by the algorithm Reduce is logically
equivalent to the input BDD bdd (in the sense that it determines the
same truth value in all interpretations).
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Classical propositional logic (classical zero–order logic) Properties of truth functors

The truth table of negation

¬ ¬p
0 1
1 0

The law of double negation: ¬¬A⇔ A
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Classical propositional logic (classical zero–order logic) Properties of truth functors

The truth table of conjunction

∧ 0 1 (q)

0 0 0
1 0 1

(p)

Commutative: (A ∧ B)⇔ (B ∧ A)
for all A,B ∈ Form.

Associative: (A ∧ (B ∧ C ))⇔ ((A ∧ B) ∧ C )
for all A,B,C ∈ Form.

Idempotent: (A ∧ A)⇔ A for all A ∈ Form.
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Classical propositional logic (classical zero–order logic) Properties of truth functors

(A ∧ B) � A, (A ∧ B) � B

The law of contradiction: � ¬(A ∧ ¬A)

The set {A1,A2, . . . ,An} (A1,A2, . . . ,An ∈ Form) is satisfiable iff the
formula A1 ∧ A2 ∧ · · · ∧ An is satisfiable.

The set {A1,A2, . . . ,An} (A1,A2, . . . ,An ∈ Form) is unsatisfiable iff
the formula A1 ∧ A2 ∧ · · · ∧ An is unsatisfiable.

{A1,A2, . . . ,An} � A (A1,A2, . . . ,An,A ∈ Form) iff
A1 ∧ A2 ∧ · · · ∧ An � A.

{A1,A2, . . . ,An} � A (A1,A2, . . . ,An,A ∈ Form) iff the formula
((A1 ∧ A2 ∧ · · · ∧ An) ∧ ¬A) is unsatisfiable.
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Classical propositional logic (classical zero–order logic) Properties of truth functors

The truth table of disjunction:

∨ 0 1

0 0 1
1 1 1

Commutative: (A ∨ B)⇔ (B ∨ A)
for all A,B ∈ Form.

Associative:
(A ∨ (B ∨ C ))⇔ ((A ∨ B) ∨ C )
for all A,B,C ∈ Form.

Idempotent: (A ∨ A)⇔ A for all A ∈ Form.

A � (A ∨ B) for all A,B ∈ Form.

{(A ∨ B),¬A} � B

The law of excluded middle: � (A ∨ ¬A)
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Classical propositional logic (classical zero–order logic) Properties of truth functors

Connection between conjunction and disjunction:

∧ 0 1

0 0 0
1 0 1

1 0

1 1 1
0 1 0

∨ 0 1

0 0 1
1 1 1

Conjunction and disjunction are dual truth functors.

Two laws of distributivity:

(A ∨ (B ∧ C ))⇔ ((A ∨ B) ∧ (A ∨ C ))
(A ∧ (B ∨ C ))⇔ ((A ∧ B) ∨ (A ∧ C ))

Properties of absorption

(A ∧ (B ∨ A))⇔ A
(A ∨ (B ∧ A))⇔ A
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Classical propositional logic (classical zero–order logic) Properties of truth functors

De Morgan’s laws

What do we say when we deny a conjunction?

What do we say when we deny a disjunction?

¬(A ∧ B)⇔ (¬A ∨ ¬B)

¬(A ∨ B)⇔ (¬A ∧ ¬B)

The proofs of De Morgan’s laws.

A B ¬A ¬B (¬A ∧ ¬B) (A ∨ B) ¬(A ∨ B)

0 0 1 1 1 0 1
0 1 1 0 0 1 0
1 0 0 1 0 1 0
1 1 0 0 0 1 0
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Classical propositional logic (classical zero–order logic) Properties of truth functors

The truth table of implication:

⊃ 0 1

0 1 1
1 0 1

� (A ⊃ A)

Modus ponens: {(A ⊃ B),A} � B

Modus tollens:
{(A ⊃ B),¬B} � ¬A
Chain rule: {(A ⊃ B), (B ⊃ C )} � (A ⊃ C )

Reduction to absurdity: {(A ⊃ B), (A ⊃ ¬B)} � ¬A
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Classical propositional logic (classical zero–order logic) Properties of truth functors

¬A � (A ⊃ B)

B � (A ⊃ B)

((A ∧ B) ⊃ C )⇔ (A ⊃ (B ⊃ C ))

Contraposition: (A ⊃ B)⇔ (¬B ⊃ ¬A)

(A ⊃ ¬A) � ¬A
(¬A ⊃ A) � A

(A ⊃ (B ⊃ C ))⇔ ((A ⊃ B) ⊃ (A ⊃ C ))

� (A ⊃ (¬A ⊃ B))

((A ∨ B) ⊃ C )⇔ ((A ⊃ C ) ∧ (B ⊃ C ))

{A1,A2, . . . ,An} � A (A1,A2, . . . ,An,A ∈ Form) iff the formula
((A1 ∧ A2 ∧ · · · ∧ An) ⊃ A) is valid.
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Classical propositional logic (classical zero–order logic) Properties of truth functors

The truth table of (material) equivalence:

≡ 0 1

0 1 0
1 0 1

� (A ≡ A)

� ¬(A ≡ ¬A)
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Classical propositional logic (classical zero–order logic) Properties of truth functors

Expressibility

(A ⊃ B)⇔ ¬(A ∧ ¬B)

(A ⊃ B)⇔ (¬A ∨ B)

(A ∧ B)⇔ ¬(A ⊃ ¬B)

(A ∨ B)⇔ (¬A ⊃ B)

(A ∨ B)⇔ ¬(¬A ∧ ¬B)

(A ∧ B)⇔ ¬(¬A ∨ ¬B)

(A ≡ B)⇔ ((A ⊃ B) ∧ (B ⊃ A))
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Classical propositional logic (classical zero–order logic) Properties of truth functors

Theory of truth functors

Base

A base is a set of truth functors whose members can express all truth
functors.

For example: {¬,⊃},{¬,∧}, {¬,∨}
1 (p ∧ q)⇔ ¬(p ⊃ ¬q)
2 (p ∨ q)⇔ (¬p ⊃ q)

Truth functor Sheffer: (p|q)⇔def ¬(p ∧ q)
Truth functor neither-nor: (p ‖ q)⇔def (¬p ∧ ¬q)
Remark: Singleton bases: (p|q), (p ‖ q)
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Classical propositional logic (classical zero–order logic) Normal forms

Definition

If p ∈ Con, then formulas p,¬p are literals (p is the base of the literals).

Definition

If the formula A is a literal or a conjunction of literals, then A is an
elementary conjunction.

Definition

If the formula A is a literal or a disjunction of literals, the A is an
elementary disjunction.

Remark

If the literals of an elementary conjunction/disjunction have different
bases, then the elementary conjunction/disjunction represents an
interpretation (or a family of interpretations).
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Classical propositional logic (classical zero–order logic) Normal forms

Definition

A disjunction of elementary conjunctions is a disjunctive normal form.

Definition

A conjunction of elementary disjunctions is a conjunctive normal form.

Theorem

There is a normal form of any formula of proposition logic, i. e. if
A ∈ Form, then there is a formula B such that B is a normal form and
A⇔ B
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Classical propositional calculus

Definition

Let L(0) = 〈LC ,Con,Form〉 be a language of classical propositional logic
and (LC = {¬,⊃, (, )}).
The axiom scheme of classical propositional calculus:

(A1): A ⊃ (B ⊃ A)

(A2): (A ⊃ (B ⊃ C )) ⊃ ((A ⊃ B) ⊃ (A ⊃ C ))

(A3): (¬A ⊃ ¬B) ⊃ (B ⊃ A)

Definition

The regular substitution of axiom schemes are formulas, such that
A,B,C are replaced by arbitrary formulas.

The axioms of classical propositional calculus are the regular
substitutions of axiom schemes.
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Classical propositional calculus

The inductive definition of syntactical consequence relation

Let Γ ⊆ Form,A ∈ Form. The formula A is a syntactical consequence
of the set Γ (in noation Γ ` A), if at least one of the followings holds:

1 if A ∈ Γ, then Γ ` A;
2 if A is an axiom, then Γ ` A;
3 if Γ ` B, and Γ ` B ⊃ A, then Γ ` A.
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Natural deduction

Definition

Let Γ ⊂ Form,A ∈ Form. If formula A is a syntactical consequence of the
set Γ, then ’Γ ` A’ is a sequence.

The fundamental rule of natural deduction is based on deduction theorem.

Deduction theorem

Ifa Γ ∪ {A} ` B, then Γ ` A ⊃ B.

Deduction theorem can be written in the following form:

Γ,A ` B

Γ ` A ⊃ B
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Natural deduction

Structural rules/1

In the following let Γ,∆ ⊆ Form,A,B,C ,∈ Form.

Rule of assumption

∅
Γ,A ` A

Rule of expansion

Γ ` A
Γ,B ` A

Rule of constriction

Γ,B,B,∆ ` A

Γ,B,∆ ` A
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Natural deduction

Structural rules/2

Rule of permutation

Γ,B,C ,∆ ` A

Γ,C ,B,∆ ` A

Cut rule

Γ ` A ∆,A ` B

Γ,∆ ` B
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Natural deduction

Logical rules/1

Rules of implication (introduction and elimination)

Γ,A ` B
(⊃ 1.)

Γ ` A ⊃ B
Γ ` A Γ ` A ⊃ B(⊃ 2.)

Γ ` B

Rules of conjunction

Γ ` A Γ ` B(∧ 1.)
Γ ` A ∧ B

Γ,A,B ` C
(∧ 2.)

Γ,A ∧ B ` C

Rules of disjunction

Γ ` A(∨ 1.)
Γ ` A ∨ B

Γ ` B(∨ 2.)
Γ ` A ∨ B

Γ,A ` C Γ,B ` C
(∨ 3.)

Γ,A ∨ B ` C
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Natural deduction

Logical rules/2

Rules of negation

Γ,A ` B Γ,A ` ¬B
(¬ 1.)

Γ ` ¬A
Γ ` ¬¬A(¬ 2.)

Γ ` A

Rules of material equivalence

Γ,A ` B Γ,B ` A
(≡ 1.)

Γ ` A ≡ B

Γ ` A Γ ` A ≡ B(≡ 2.)
Γ ` B

Γ ` B Γ ` A ≡ B(≡ 3.)
Γ ` A
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Natural deduction

Examples

Γ,A ` B

Γ,¬B ` ¬A
(1)

Proof:

Γ,A ` B
(Expansion)

Γ,A,¬B ` B
(Permutation)

Γ,¬B,A ` B

∅
(Assumption)

Γ,A,¬B ` ¬B
(Permutation)

Γ,¬B,A ` ¬B
(¬ 1.)

Γ,¬B ` ¬A

T. Mihálydeák Logical Algorithms May 6, 2019 55 / 158

Natural deduction

Examples

Γ,A ` ¬B
Γ,B ` ¬A

(2)

Proof:

∅
(Asumption)

Γ,A,B ` B
(Permutation)

Γ,B,A ` B

Γ,A ` ¬B
(Expansion)

Γ,A,B ` ¬B
(Permutation)

Γ,B,A ` ¬B
(¬ 1.)

Γ,B ` ¬A
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Natural deduction

Examples

Γ,¬A ` B

Γ,¬B ` A
(3)

Proof:

Γ,¬A ` B
(Expansion)

Γ,¬A,¬B ` B
(Permutation)

Γ,¬B,¬A ` B

∅
(Assumption)

Γ,¬A,¬B ` ¬B
(Permutation)

Γ,¬B,¬A ` ¬B
(¬ 1.)

Γ,¬B ` ¬¬A
(¬ 2.)

Γ,¬B ` A
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Natural deduction

Examples

Γ,¬A ` ¬B
Γ,B ` A

(4)

Proof:

∅
(Asumption)

Γ,¬A,B ` B
(Permutation)

Γ,B,¬A ` B

Γ,¬A ` ¬B
(Expansion)

Γ,¬A,B ` ¬B
(Permutation)

Γ,B,¬A ` ¬B
(¬ 1.)

Γ,B ` ¬¬A
(¬ 2.)

Γ,B ` A
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Natural deduction

Examples

` A ⊃ A (5)

Proof:

∅
(Assumption)

A ` A(⊃ 1.) ` A ⊃ A
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Natural deduction

Examples

A,A ⊃ B ` B (6)

Proof:

∅
A ⊃ B,A ` A

A, A ⊃ B ` A
∅

A,A ⊃ B ` A ⊃ B

A,A ⊃ B ` B
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Natural deduction

Examples

A ` B ⊃ A (7)

Proof:

∅
(Assumption)

B,A ` A
(Permutation)

A,B ` A
(⊃ 1.)

A ` B ⊃ A
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Natural deduction

Examples

A,¬A ` B (8)

¬A ` A ⊃ B (9)

Proof (8), (9):

∅
A,¬B,¬A ` ¬A
A,¬A,¬B ` ¬A

∅
¬A,¬B,A ` A

¬A,A,¬B ` A

A,¬A,¬B ` A

A,¬A ` ¬¬B
A,¬A ` B

¬A,A ` B

¬A ` A ⊃ B
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Natural deduction

Examples

B ` A ⊃ B (10)

Proof:

∅
B ` B

B,A ` B

B ` A ⊃ B
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Natural deduction

Examples

` A ⊃ B ≡ ¬A ∨ B (11)

Proof: At first let us prove that

A ⊃ B ` ¬A ∨ B (12)

∅
A ⊃ B ` A ⊃ B

A ⊃ B,¬(¬A ∨ B) ` A ⊃ B

∅
¬A ` ¬A
¬A ` ¬A ∨ B(3)
¬(¬A ∨ B) ` A

A ⊃ B,¬(¬A ∨ B) ` A

A ⊃ B,¬(¬A ∨ B) ` B
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Natural deduction

Examples

∅
B ` B

B ` ¬A ∨ B(1)
¬(¬A ∨ B) ` ¬B

A ⊃ B,¬(¬A ∨ B) ` ¬B

A ⊃ B,¬(¬A ∨ B) ` B A ⊃ B,¬(¬A ∨ B) ` ¬B
A ⊃ B ` ¬¬(¬A ∨ B)

A ⊃ B ` ¬A ∨ B
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Natural deduction

Examples

To prove (11) we have to prove the following:

¬A ∨ B ` A ⊃ B (13)

(9)

¬A ` A ⊃ B

(10)

B ` A ⊃ B
¬A ∨ B ` A ⊃ B
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Natural deduction

Examples

A ⊃ B,¬B ` ¬A (14)

A ⊃ B ` ¬B ⊃ ¬A (15)

Proofs of (14), (15):

∅
A ⊃ B,A,¬B ` ¬B
A ⊃ B,¬B,A ` ¬B

∅
A,A ⊃ B ` B

A ⊃ B,A ` B

A ⊃ B,A,¬B ` B

A ⊃ B,¬B,A ` B

A ⊃ B,¬B ` ¬A
A ⊃ B ` ¬B ⊃ ¬A
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Natural deduction

Examples

¬B ⊃ ¬A ` A ⊃ B (16)

Proof:

∅
¬B ⊃ ¬A,¬B,A ` A

∅
¬B ⊃ ¬A,¬B ` ¬A
¬B ⊃ ¬A,¬B,A ` ¬A

¬B ⊃ ¬A,A ` ¬¬B
¬B ⊃ ¬A,A ` B

¬B ⊃ ¬A ` A ⊃ B
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Natural deduction

Examples

On the base of (15), (16):

` A ⊃ B ≡ ¬B ⊃ ¬A (17)

Proof:

A ⊃ B ` ¬B ⊃ ¬A ¬B ⊃ ¬A ` A ⊃ B
` A ⊃ B ≡ ¬B ⊃ ¬A
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Natural deduction

Example

` (A ∨ ¬A) (18)

Proof:

∅
A,¬(A ∨ ¬A) ` ¬(A ∨ ¬A)

¬(A ∨ ¬A),A ` ¬(A ∨ ¬A)

∅
¬(A ∨ ¬A),A ` A

¬(A ∨ ¬A),A ` A ∨ ¬A
¬(A ∨ ¬A) ` ¬A

∅
¬A,¬(A ∨ ¬A) ` ¬(A ∨ ¬A)

¬(A ∨ ¬A),¬A ` ¬(A ∨ ¬A)

∅
¬(A ∨ ¬A),¬A ` ¬A
¬(A ∨ ¬A),¬A ` A ∨ ¬A

¬(A ∨ ¬A) ` ¬¬A
¬(A ∨ ¬A) ` A
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Natural deduction

Examples

¬(A ∨ ¬A) ` ¬A ¬(A ∨ ¬A) ` A

` ¬¬(A ∨ ¬A)

` (A ∨ ¬A)
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Natural deduction

Examples

A ∧ B ` B ∧ A (19)

Proof:

∅
A,B ` B

∅
B,A ` A

A,B ` A

A,B ` B ∧ A

A ∧ B ` B ∧ A
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Natural deduction

Examples

A ∧ (B ∨ C ) ` (A ∧ B) ∨ (A ∧ C ) (20)

Proof:

∅
B,A ` A

A,B ` A
∅

A,B ` B

A,B ` A ∧ B

A,B ` (A ∧ B) ∨ (A ∧ C )

∅
C ,A ` A

A,C ` A
∅

A,C ` C

A,C ` A ∧ C

A,C ` (A ∧ B) ∨ (A ∧ C )

A,B ∨ C ` (A ∧ B) ∨ (A ∧ C )

A ∧ (B ∨ C ) ` (A ∧ B) ∨ (A ∧ C )
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Natural deduction

Examples

(A ∧ B) ∨ (A ∧ C ) ` A ∧ (B ∨ C ) (21)

Proof:

∅
B,A ` A

A,B ` A

A ∧ B ` A

∅
C ,A ` A

A,C ` A

A ∧ C ` A
(A ∧ B) ∨ (A ∧ C ) ` A

∅
A,B ` B

A ∧ B ` B
A ∧ B ` B ∨ C

∅
A,C ` C

A ∧ C ` C
A ∧ C ` B ∨ C

(A ∧ B) ∨ (A ∧ C ) ` B ∨ C

(A ∧ B) ∨ (A ∧ C ) ` A ∧ (B ∨ C )

On the base of (20) and (21):

` A ∧ (B ∨ C ) ≡ (A ∧ B) ∨ (A ∧ C ) (22)
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Natural deduction

Examples

` A ∨ (B ∧ C ) ≡ (A ∨ B) ∧ (A ∨ C ) (23)

Proof: At first let us prove the following:

A ∨ (B ∧ C ) ` (A ∨ B) ∧ (A ∨ C ) (24)

∅
A ` A

A ` A ∨ B

∅
B ` B

B,C ` B

B,C ` A ∨ B

B ∧ C ` A ∨ B
A ∨ (B ∧ C ) ` A ∨ B

∅
A ` A

A ` A ∨ C

∅
C ` C

C ` A ∨ C
B,C ` A ∨ C

B ∧ C ` A ∨ C
A ∨ (B ∧ C ) ` A ∨ C

A ∨ (B ∧ C ) ` (A ∨ B) ∧ (A ∨ C )
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Natural deduction

Examples

Now let us prove the following:

(A ∨ B) ∧ (A ∨ C ) ` A ∨ (B ∧ C ) (25)

∅
A ` A

A ` A ∨ (B ∧ C )

A ∨ B,A ` A ∨ (B ∧ C )

∅
A ` A

A ` A ∨ (B ∧ C )

A,C ` A ∨ (B ∧ C )

∅
B ` B

B,C ` B

∅
C ` C

B,C ` C

B,C ` B ∧ C

B,C ` A ∨ (B ∧ C )

A ∨ B,C ` A ∨ (B ∧ C )
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Natural deduction

Examples

A ∨ B,A ` A ∨ (B ∧ C ) A ∨ B,C ` A ∨ (B ∧ C )

A ∨ B,A ∨ C ` A ∨ (B ∧ C )

(A ∨ B) ∧ (A ∨ C ) ` A ∨ (B ∧ C )
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Natural deduction

Examples

` (A ⊃ B) ⊃ (B ⊃ C ) ⊃ (A ⊃ C ) (26)

Prove:
We can use the proved sequence (6).

A ⊃ B,A ` B B ,B ⊃ C ` C

A ⊃ B,A,B ⊃ C ` C

A ⊃ B,B ⊃ C ,A ` C

A ⊃ B,B ⊃ C ` A ⊃ C

A ⊃ B ` (B ⊃ C ) ⊃ (A ⊃ C )

` (A ⊃ B) ⊃ (B ⊃ C ) ⊃ (A ⊃ C )
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Natural deduction

Examples

` (A ⊃ B) ⊃ (A ⊃ (B ⊃ C )) ⊃ (A ⊃ C ) (27)

Proof: The proved sequence (6) can be used:

A,A ⊃ B ` B

A,A ⊃ B,A ⊃ (B ⊃ C ) ` B

A,A ⊃ (B ⊃ C ) ` B ⊃ C

A,A ⊃ B,A ⊃ (B ⊃ C ) ` B ⊃ C

A,A ⊃ B,A ⊃ (B ⊃ C ) ` C

A ⊃ B,A ⊃ (B ⊃ C ) ` A ⊃ C

A ⊃ B ` (A ⊃ (B ⊃ C )) ⊃ (A ⊃ C )

` (A ⊃ B) ⊃ (A ⊃ (B ⊃ C )) ⊃ (A ⊃ C )
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Natural deduction

Examples

De Morgan’s laws:

` ¬(A ∧ B) ≡ (¬A ∨ ¬B) (28)

` ¬(A ∨ B) ≡ (¬A ∧ ¬B) (29)
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Natural deduction

Examples

To prove (28) at first we have to prove the following:

¬(A ∧ B) ` (¬A ∨ ¬B) (30)

∅
¬A ` ¬A

¬A ` ¬A ∨ ¬B(3)
¬(¬A ∨ ¬B) ` A

∅
¬B ` ¬B

¬B ` ¬A ∨ ¬B(3)
¬(¬A ∨ ¬B) ` B

¬(¬A ∨ ¬B) ` A ∧ B
(3)
¬(A ∧ B) ` ¬A ∨ ¬B
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Natural deduction

Examples

To prove (28) we have to prove the following:

¬A ∨ ¬B ` ¬(A ∧ B) (31)

∅
A ` A

A,B ` A

A ∧ B ` A
¬A ∨ ¬B,A ∧ B ` A

∅
¬A ` ¬A

B,¬A ` ¬A
(8)

B,¬B ` ¬A
B,¬A ∨ ¬B ` ¬A
¬A ∨ ¬B,B ` ¬A
¬A ∨ ¬B,A,B ` ¬A
¬A ∨ ¬B,A ∧ B ` ¬A

¬A ∨ ¬B ` ¬(A ∧ B)
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Natural deduction

Examples

To prove (29) at first we can prove the following:

¬(A ∨ B) ` ¬A ∧ ¬B (32)

∅
A ` A

A ` A ∨ B(1)
¬(A ∨ B) ` ¬A

∅
B ` B

B ` A ∨ B(1)
¬(A ∨ B) ` ¬B

¬(A ∨ B) ` ¬A ∧ ¬B
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Natural deduction

Examples

To prove (29) we have to prove the following:

¬A ∧ ¬B ` ¬(A ∨ B) (33)

∅
¬A ` ¬A
¬A,¬B ` ¬A
¬A ∧ ¬B ` ¬A(2)
A ` ¬(¬A ∧ ¬B)

∅
¬B ` ¬B
¬A,¬B ` ¬B
¬A ∧ ¬B ` ¬B(2)
B ` ¬(¬A ∧ ¬B)

A ∨ B ` ¬(¬A ∧ ¬B)
(2)
¬A ∧ ¬B ` ¬(A ∨ B)
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Propositional Logic: SAT solvers

A computer program that searches for a model for a propositional
formula is called a SAT Solver.

When you build a truth table for an unsatisfiable formula of size n you
will have to generate all 2n rows, but if the formula is satisfiable you
might get lucky and find a model after generating only a few rows.

Even an incomplete algorithm – one that can find a model if one
exists but may not be able to detect if a formula is unsatisfiable – can
be useful in practice.

Many problems in computer science can be encoded in propositional
logic so that a model for a formula is a solution to the problem.
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Propositional Logic: SAT solvers

Definition

A clause is a set of literals.

A clause is considered to be an implicit disjunction of its literals.

A unit clause is a clause consisting of exactly one literal.

The empty set of literals is the empty clause, denoted by �.

A formula in clausal form is a set of clauses. A formula is considered
to be an implicit conjunction of its clauses.

The formula that is the empty set of clauses is denoted by ∅.

The only significant difference between clausal form and the standard
syntax is that clausal form is defined in terms of sets, while our
standard syntax was defined in terms of trees.

A node in a tree may have multiple children that are identical
subtrees, but a set has only one occurrence of each of its elements.
However, this difference is of no logical significance: (p ⇔ p ∨ p)
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Propositional Logic: SAT solvers

Theorem

Every formula A in propositional logic can be transformed into an
logically equivalent formula in clausal form.

A clause if trivial if it contains a pair of clashing literals (positive and
negative literals with the same base).

Let S be a set of clauses and let (i.e. a clausal form), and let C ∈ S a
trivial clause Then S \ {C} is logically equivalent to S (i.e.
corresponding formulas are logically equivalent).
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Propositional Logic: SAT solvers

Lemma

�, the empty clause, is unsatisfiable. (The corresponding formula is
unsatisfiable.)

∅, the empty set of clauses, is valid.

A clause is satisfiable iff there is some interpretation under which at
least one literal in the clause is true. Let % be an arbitrary
interpretation. Since there are no literals in �, there are no literals
whose value is true under %. But % was an arbitrary interpretation, so
� is unsatisfiable

A set of clauses is valid iff every clause in the set is true in every
interpretation. But there are no clauses in ∅ that need be true, so ∅ is
valid.
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Propositional Logic: SAT solvers

Definition

Let S , S ′ be sets of clauses. S ≈ S ′ denotes that S is satisfiable if and
only if S ′ is satisfiable.

Remark

It is important to understand that S ≈ S ′ (S is satisfiable if and only if S ′

is satisfiable) does not imply that S ⇔ S ′ (S is logically equivalent to S ′).

S = {pqr̄ , pq̄, p̄q}, S ′ = {pq̄, p̄q}
%(p) = 0, %(q) = 0, %(r) = 1
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Propositional Logic: SAT solvers

Definition

if l is a literal then lc is its complement:

if l = p, then lc = ¬p;
if l = ¬p, then lc = p.

Let S be a set of clauses. A pure literal in S is a literal l that appears
in at least one clause of S , but its complement lc does not appear in
any clause of S .

Theoreml

Let S be a set of clauses and let l be a pure literal in S . Let S ′ be
obtained from S by deleting every clause containing l . Then S ≈ S ′.
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Propositional Logic: SAT solvers

Theorem (Unit clause)

Let {l} ∈ S be a unit clause and let S ′ be obtained from S by deleting
every clause containing l and by deleting lc from every (remaining) clause.
Then S ≈ S ′.

Proof

It is trivial from the definition of clause form.

S = {r , pqr̄ , pq̄, p̄q}, S ′ = {pq, pq̄, p̄q}
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Propositional Logic: SAT solvers

Corollary

� is unsatisfiable.

{{p}, {p̄}} is the clausal form of the unsatisfiable formula p ∧ ¬p. Delete
the first clause {p} from the formula and the literal p̄ from the second
clause; the result is {{}} = {}. {} ≈ {{p}, {p̄}} and therefore � is
unsatisfiable.
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Propositional Logic: SAT solvers

Definition

Let C1,C2 be two clauses. If C1 ⊆ C2, then clause C1 subsumes the clause
C2 and C2 is subsumed by C1.

Ttel

Let C1,C2 ∈ S , C1 subsumes C2, S ′ = S \ {C2}. Then S ≈ S ′.

Example

S = {pr , p̄qr̄ , qr̄}, S ′ = {pr , qr̄}
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Propositional Logic: SAT solvers

Definition

Let S be a set of clauses and U a set of atomic propositions. RU(S), the
renaming of S by U, is obtained from S by replacing each literal l on an
atomic proposition in U by lc .

Theorem

S ≈ RU(S)
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Propositional Logic: SAT solvers

Definition

Let C1,C2 be clauses such that l ∈ C1, l
c ∈ C2. The clauses C1,C2 are

said to be clashing clauses and to clash on the complementary pair of
literals l , lc .

Resolution rule

Let C1,C2 be clauses such that l ∈ C1, l
c ∈ C2. C, the resolvent of C1 and

C2, is the clause: Res(C1,C2) = (C1 \ {l}) ∪ (C2 \ {lc}).
C1 and C2 are the parent clauses of C .
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Propositional Logic: SAT solvers

Example

The pair of clauses C1 = abc̄ and C2 = bcē clash on the pair of
complementary literals c , c̄ . The resolvent is:
C = (abc̄{c̄}) ∪ (bcē \ {c}) = ab ∪ bē = abē.

Recall that a clause is a set so duplicate literals are removed when
taking the union:
{a, b} ∪ {b, ē} = {a, b, ē}.
Resolution is only performed if the pair of clauses clash on exactly one
pair of complementary literals.
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Propositional Logic: SAT solvers

Theorem

If two clauses clash on more than one literal, their resolvent is a trivial
clause.

Example

Consider a pair of clauses:

{l1, l2} ∪ C1, {lc1 , lc2 } ∪ C2,

and suppose that we perform the resolution rule because the clauses clash
on the pair of literals {l1, lc1 }. The resolvent is the trivial clause:
{l2, lc2 } ∪ C1 ∪ C2.

Theorem

The resolvent C is satisfiable if and only if the parent clauses C1 and C2

are both satisfiable.
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Propositional Logic: SAT solvers

Resolution algorithm

Input: A set of clauses S .

Output: S is satisfiable or unsatisfiable.

Let S be a set of clauses and define S0 = S .

Repeat the following steps to obtain Si+1 from Si until the procedure
terminates as defined below:

Choose a pair of clashing clauses {C1,C2} ⊆ Si that has not been
chosen before.
Compute C = Res(C1,C2) according to the resolution rule.
If C is not a trivial clause, let Si+1 = Si ∪ {C}; otherwise, Si+1 = Si .

Terminate the procedure if:

C = �
All pairs of clashing clauses have be resolved.
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Propositional Logic: SAT solvers

Example

Consider the set of clauses:
S = {(1)p, (2)p̄q, (3)r̄ , (4)p̄q̄r},
where the clauses have been numbered. Here is a resolution derivation of
� from S , where the justification for each line is the pair of the numbers
of the parent clauses that have been resolved to give the resolvent clause:

(5) p̄q̄ from (3), (4)

(6) p̄ from (5), (2)

(7) � from (6), (1)
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Propositional Logic: SAT solvers

Definition

A derivation of � from a set of clauses S is a refutation by resolution of S
or a resolution refutation of S .

Theorem

If the set of clauses labeling the leaves of a resolution tree is satisfiable
then the clause at the root is satisfiable.

Theorem (Soundness)

Let S be a set of clauses. If there is a refutation by resolution for S then S
is unsatisfiable.

Theorem (Completeness)

If a set of clauses is unsatisfiable then the empty clause � will be derived
by the resolution procedure.
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Propositional Logic: SAT solvers

Davis-Putnam algorithm

Input: A formula A in clausal form.

Output: Report that A is satisfiable or unsatisfiable.

Perform the following rules repeatedly, but the third rule is used only
if the first two do not apply:

Unit-literal rule: If there is a unit clause {l}, delete all clauses
containing l and delete all occurrences of lc from all other clauses.
Pure-literal rule: If there is a pure literal l , delete all clauses containing
l .
Eliminate a variable by resolution: Choose an atom p and perform all
possible resolutions on clauses that clash on p and p̄. Add these
resolvents to the set of clauses and then delete all clauses containing p
or p̄.

Terminate the algorithm under the following conditions:

If empty clause � is produced, report that the formula is unsatisfiable.
If no more rules are applicable, report that the formula is satisfiable.
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Propositional Logic: SAT solvers

Example

Consider the set of clauses: {p, pq, qr , rst}.
Performing the unit-literal rule on p leads to the creation of a new
unit clause q upon which the rule can be applied again.

This leads to a new unit clause r and applying the rule results in the
singleton set of clauses {st}.
Since no more rules are applicable, the set of clauses is satisfiable.
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Propositional Logic: SAT solvers

Definition

Repeatedly applying the unit-literal rule until it is no longer applicable is
called unit propagation or Boolean constraint propagation.

Definition

Let A be a set of clauses and let % be a partial interpretation for A. For
C ∈ A, if |C |% = 1 , the interpretation % satisfies C , while if |C |% = 0, then
C is a conflict clause for %.
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Propositional Logic: SAT solvers

DPLL algorithm

Input: A formula A in clausal form.

Output: Report that A is unsatisfiable or report that A is satisfiable
and return a partial interpretation that satisfies A.

The algorithm is expressed as the recursive function DPLL(B, %) which
takes two parameters: a formula B in clausal form and a partial
interpretation %. It is initially called with the formula A and the empty
partial interpretation.

Remark

The DPLL algorithm is highly nondeterministic: it must choose an
unassigned atom and then choose which truth value will be assigned to it
first.
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Propositional Logic: SAT solvers

DPLL(B, %)

Construct the set of clauses B ′ by performing unit propagation on B.
Construct %′ by adding to % all the assignments made during
propagation.

Evaluate B ′ under the partial interpretation %′:

If B ′ contains a conflict clause return ‘unsatisfiable’;
If B ′ is satisfied return %′;
(otherwise, continue).

Choose an atom p in B ′; choose a truth value val as 1 or 0; %1 is the
interpretation %′ together with the assignment of val to p.

result ← DPLL(B ′, %1)

If result is not unsatisfiable return result;
(otherwise, continue).

%2 is the interpretation %1 together with the assignment of the
complement of val to p.

result ← DPLL(B ′, %2)

Return result.
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Classical first–order logic Language of classical first–order logic

Definition/1

The language of first–order logic is a
L(1) = 〈LC ,Var ,Con,Term,Form〉

ordered 5–tuple, where

1. LC = {¬,⊃,∧,∨,≡,=, ∀, ∃, (, )}: (the set of logical constants).

2. Var (= {xn : n = 0, 1, 2, . . . }): countable infinite set of variables
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Classical first–order logic Language of classical first–order logic

Definition/2

3. Con =
⋃∞

n=0(F(n) ∪ P(n)) the set of non–logical constants (at best
countable infinite)

F(0): the set of name parameters,
F(n): the set of n argument function parameters,
P(0): the set of prposition parameters,
P(n): the set of predicate parameters.

4. The sets LC , Var , F(n), P(n) are pairwise disjoint (n = 0, 1, 2, . . . ).
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Classical first–order logic Language of classical first–order logic

Definition/3

5. The set of terms, i.e. the set Term is given by the following inductive
definition:

(a) Var ∪ F(0) ⊆ Term
(b) If f ∈ F(n), (n = 1, 2, . . . ), s t1, t2, . . . , tn ∈ Term, then

f (t1, t2, . . . , tn) ∈ Term.
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Classical first–order logic Language of classical first–order logic

Definition/4

6. The set of formulas, i.e. the set Form is given by the following
inductive definition:

(a) P(0) ⊆ Form
(b) If t1, t2 ∈ Term, then (t1 = t2) ∈ Form
(c) If P ∈ P(n), (n = 1, 2, . . . ), s t1, t2, . . . , tn ∈ Term, then

P(t1, t2, . . . , tn) ∈ Form.
(d) If A ∈ Form, then ¬A ∈ Form.
(e) If A,B ∈ Form, then

(A ⊃ B), (A ∧ B), (A ∨ B), (A ≡ B) ∈ Form.
(f) If x ∈ Var , A ∈ Form, then ∀xA, ∃xA ∈ Form.
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Classical first–order logic Semantics of classical first–order logic

Definition (interpretation)

The ordered pair 〈U, %〉 is an interpretation of the language L(1) if

U 6= ∅ (i.e. U is a nonempty set);

Dom(%) = Con

If a ∈ F(0), then %(a) ∈ U;

If f ∈ F(n) (n 6= 0), then %(f ) ∈ UU(n)

If p ∈ P(0), then %(p) ∈ {0, 1};
If P ∈ P(n) (n 6= 0), then %(P) ⊆ U(n) (%(P) ∈ {0, 1}U(n)

).
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Classical first–order logic Semantics of classical first–order logic

Definition (assignment)

The function v is an assignment relying on the interpretation 〈U, %〉 if the
followings hold:

Dom(v) = Var ;

If x ∈ Var , then v(x) ∈ U.

Definition (modified assignment)

Let v be an assignment relying on the interpretation 〈U, %〉, x ∈ Var and
u ∈ U.

v [x : u](y) =

{
u, if y = x ;
v(y), otherwise.

for all y ∈ Var .
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Classical first–order logic Semantics of classical first–order logic

Definition (Semantic rules/1)

Let 〈U, %〉 be a given interpretation and v be an assignment relying on
〈U, %〉.

If a ∈ F(0), then |a|〈U,%〉
v = %(a).

If x ∈ Var , then |x |〈U,%〉
v = v(x).

If f ∈ F(n), (n = 1, 2, . . . ), and t1, t2, . . . , tn ∈ Term, then

|f (t1)(t2) . . . (tn)|〈U,%〉
v = %(f )(〈|t1|〈U,%〉

v , |t2|〈U,%〉
v , . . . , |tn|〈U,%〉

v 〉)
If p ∈ P(0), then |p|〈U,%〉

v = %(p)

If t1, t2 ∈ Term, then

|(t1 = t2)|〈U,%〉
v =

{
1, if |t1|〈U,%〉

v = |t2|〈U,%〉
v

0, otherwise.
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Classical first–order logic Semantics of classical first–order logic

Definition (Semantic rules/2)

If P ∈ P(n) (n 6= 0), t1, . . . , tn ∈ Term, then

|P(t1) . . . (tn)|〈U,%〉
v =

{
1, if 〈|t1|〈U,%〉

v , . . . , |tn|〈U,%〉
v 〉 ∈ %(P);

0, otherwise.
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Classical first–order logic Semantics of classical first–order logic

Definition (Semantic rules/3)

If A ∈ Form, then |¬A|〈U,%〉
v = 1− |A|〈U,%〉

v .

If A,B ∈ Form, then

|(A ⊃ B)|〈U,%〉
v =

{
0 if |A|〈U,%〉

v = 1, and |B|〈U,%〉
v = 0;

1, otherwise.

|(A ∧ B)|〈U,%〉
v =

{
1 if |A|〈U,%〉

v = 1, and |B|〈U,%〉
v = 1;

0, otherwise.

|(A ∨ B)|〈U,%〉
v =

{
0 if |A|〈U,%〉

v = 0, and |B|〈U,%〉
v = 0;

1, otherwise.

|(A ≡ B)|〈U,%〉
v =

{
1 if |A|〈U,%〉

v = |B|〈U,%〉
v = 0;

0, otherwise.
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Classical first–order logic Semantics of classical first–order logic

Definition (Semantic rules/4)

If A ∈ Form, x ∈ Var , then

|∀xA|〈U,%〉
v =

{
0, if there is an u ∈ U such that |A|〈U,%〉

v [x :u] = 0;

1, otherwise.

|∃xA|〈U,%〉
v =

{
1, if there is an u ∈ U such that |A|〈U,%〉

v [x :u] = 1;

0, otherwise.
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Classical first–order logic Central logical (semantic) notions — FoL

Definition (model – a set of formulas)

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
Γ ⊆ Form be a set of formulas. An ordered triple 〈U, %, v〉 is a model of
the set Γ, if

〈U, %〉 is an interpretation of L(1);

v is an assignment relying on 〈U, %〉;
|A|〈U,%〉

v = 1 for all A ∈ Γ.

Definition – a model of a formula

A model of a formula A is the model of the singleton {A}.
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Classical first–order logic Central logical (semantic) notions — FoL

Definition – satisfiable a set of formulas

The set of formulas Γ ⊆ Form is satisfiable if it has a model.
(If there is an interpretation and an assignment in which all members of
the set Γ are true.)

Definition – satisfiable a formula

A formula A ∈ Form is satisfiable, if the singleton {A} is satisfiable.
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Classical first–order logic Central logical (semantic) notions — FoL

Remark

A satisfiable set of formulas does not involve a logical contradiction;
its formulas may be true together.

A satisfiable formula may be true.

If a set of formulas is satisfiable, then its members are satisfiable.

But: all members of the set {P(a),¬P(a)} are satisfiable, and the set
is not satisfiable.
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Classical first–order logic Central logical (semantic) notions — FoL

Theorem

All subsets of a satisfiable set are satisfiable.

Proof

Let Γ ⊆ Form be a set of formulas and ∆ ⊆ Γ.

Γ is satisfiable: it has a model. Let 〈U, %, v〉 be a model of Γ.

A property of 〈U, %, v〉: If A ∈ Γ, then |A|〈U,%〉
v = 1

Since ∆ ⊆ Γ, if A ∈ ∆, then A ∈ Γ, and so |A|〈U,%〉
v = 1. That is the

ordered triple 〈U, %, v〉 is a model of ∆, and so ∆ is satisfiable.
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Classical first–order logic Central logical (semantic) notions — FoL

Definition – unsatisfiable set

The set Γ ⊆ Form is unsatisfiable if it is not satisfiable.

Definition – unsatisfiable formula

A formula A ∈ Form is unsatisfiable if the singleton {A} is unsatisfiable.

Remark

A unsatisfiable set of formulas involve a logical contradiction. (Its
members cannot be true together.)
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Classical first–order logic Central logical (semantic) notions — FoL

Theorem

All expansions of an unsatisfiable set of formulas are unsatisfiable.

Indirect proof

Suppose that Γ ⊆ Form is an unsatisfiable set of formulas and
∆ ⊆ Form is a set of formulas.

Indirect condition: Γ is unsatisfiable, and Γ ∪∆ satisfiable.

Γ ⊆ Γ ∪∆

According to the former theorem Γ is satisfiable, and it is a
contradiction.
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Classical first–order logic Central logical (semantic) notions — FoL

Definition

A formula A is the logical consequence of the set of formulas Γ if the set
Γ ∪ {¬A} is unsatifiable. (Notation : Γ � A)

Definition

A � B, if {A} � B.

Definition

The formula A is valid if ∅ � A. (Notation: � A)

Definition

The formulas A and B are logically equivalent if A � B and B � A.
(Notation: A⇔ B)
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Classical first–order logic Properties of first order central logical notions

Theorem

Let Γ ⊆ Form, and A ∈ Form. Γ � A if and only if all models of the set Γ
are the models of formula A. (i.e. the singleton {A}).

Proof

→ Indirect condition: There is a model of Γ � A such that it is not a
model of the formula A.
Let the ordered triple 〈U, %, v〉 be this model.
The properties of 〈U, %, v〉:

1 |B|〈U,%〉
v = 1 for all B ∈ Γ;

2 |A|〈U, %〉v = 0, and so |¬A|〈U,%〉
v = 1

In this case all members of the set Γ ∪ {¬A} are true wrt the
interpretation 〈U, %〉 and assignment v , so Γ ∪ {¬A} is satisfiable. It
means that Γ 2 A, and it is a contradiction.

T. Mihálydeák Logical Algorithms May 6, 2019 123 / 158

Classical first–order logic Properties of first order central logical notions

Proof

← Indirect condition: All models of the set Γ are the models of formula A,
but (and) Γ 2 A.
In this case Γ ∪ {¬A} is satisfiable, i.e. it has a model.
Let the ordered triple 〈U, %, v〉 be a model.
The properties of 〈U, %, v〉:

1 |B|〈U,%〉
v = 1 for all B ∈ Γ;

2 |¬A|〈U,%〉
v = 1, i.e. |A|〈U,%〉

v = 0

So the set Γ has a model such that it is not a model of formula A, and it
is a contradiction.

Corollary

Let Γ ⊆ Form, and A ∈ Form. Γ � A if and only if for all interpretations in
which all members of Γ are true, the formula A is true.
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Classical first–order logic Properties of first order central logical notions

Theorem

If A is a valid formula ((� A)), then Γ � A for all sets of formulas Γ. (A
valid formula is a consequence of any set of formulas.)

Proof

If A is a valid formula, then ∅ � A (according to its definition).

∅ ∪ {¬A} (= {¬A}) is unsatisfiable, and so its expansions are
unsatisfiable.

Γ ∪ {¬A} is an expansion of {¬A}, and so it is unsatisfiable, i.e.
Γ � A.
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Classical first–order logic Properties of first order central logical notions

Theorem

If Γ is unsatisfiable, then Γ � A for all A. (All formulas are the
consequences of an unsatisfiable set of formulas.)

Proof

According to a proved theorem: If Γ is unsatisfiable, the all
expansions of Γ are unsatisfiable.

Γ ∪ {¬A} is an expansion of Γ, and so it is unsatisfiable, i.e. Γ � A.
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Classical first–order logic Properties of first order central logical notions

Theorem

Deduction theorem: If Γ ∪ {A} � B, then Γ � (A ⊃ B).

Proof

Indirect condition: Suppose, that Γ ∪ {A} � B, and Γ 2 (A ⊃ B).

Γ ∪ {¬(A ⊃ B)} is satisfiable, and so it has a model. Let the ordered
triple 〈U, %, v〉 be a model.

The properties of 〈U, %, v〉:
1 All members of Γ are true wrt 〈U, %〉 and v .
2 |¬(A ⊃ B)|〈U,%〉

v = 1

|(A ⊃ B)|〈U,%〉
v = 0, i.e. |A|〈U,%〉

v = 1 and |B|〈U,%〉
v = 0.

So|¬B|〈U,%〉
v = 1.

All members of Γ ∪ {A} ∪ {¬B} are true wrt 〈U, %〉 and v , i.e.
Γ ∪ {A} 2 B, and it is a contradiction.
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Classical first–order logic Properties of first order central logical notions

Theorem

In the opposite direction: If Γ � (A ⊃ B), then Γ ∪ {A} � B.

Proof

Indirect condition: Suppose that Γ � (A ⊃ B), and Γ ∪ {A} 2 B.

So Γ ∪ {A} ∪ {¬B} is satisfiable, i.e. it has a model. Let the ordered
triple 〈U, %, v〉 a model.

The properties of 〈U, %, v〉:
1 All members of Γ are true wrt 〈U, %〉 and v .
2 |A|〈U,%〉

v = 1
3 |¬B|〈U,%〉

v = 1, and so |B|〈U,%〉
v = 0

|(A ⊃ B)|〈U,%〉
v = 0, |¬(A ⊃ B)|〈U,%〉

v = 1.

All members of Γ ∪ {¬(A ⊃ B)} are true wrt 〈U, %〉 and v , i.e.
Γ 2 (A ⊃ B).

T. Mihálydeák Logical Algorithms May 6, 2019 128 / 158



Classical first–order logic Properties of first order central logical notions

Corollary

A � B if and only if � (A ⊃ B)

Proof

Let Γ = ∅ in the former theorems.
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Classical first–order logic Properties of first order central logical notions

Cut elimination theorem

If Γ ∪ {A} � B and ∆ � A, then Γ ∪∆ � B.

Proof

Indirect.
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Classical first–order logic Syntactical properties of variables

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A ∈ Form be a formula. The set of free variables of the formula A (in
notation: FreeVar(A)) is given by the following inductive definition:

If A is an atomic formula (i.e. A ∈ AtForm), then the members of the
set FreeVar(A) are the variables occuring in A.

If the formula A is ¬B, then FreeVar(A) = FreeVar(B).

If the formula A is (B ⊃ C ), (B ∧ C ), (B ∨ C ) or (B ≡ C ), then
FreeVar(A) = FreeVar(B)

⋃
FreeVar(C ).

If the formula A is ∀xB or ∃xB, then FreeVar(A) = FreeVar(B) \ {x}.
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Classical first–order logic Syntactical properties of variables

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A ∈ Form be a formula. The set of bound variables of the formula A (in
notation: BoundVar(A)) is given by the following inductive definition:

If A is an atomic formula (i.e. A ∈ AtForm), then BoundVar(A) = ∅.
If the formula A is ¬B, then BoundVar(A) = FreeVar(B).

If the formula A is (B ⊃ C ), (B ∧ C ), (B ∨ C ) or (B ≡ C ), then
BoundVar(A) = BoundVar(B)

⋃
BoundVar(C ).

If the formula A is ∀xB or ∃xB, then
BoundVar(A) = BoundVar(B) ∪ {x}.
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Classical first–order logic Syntactical properties of variables

Remark

The bases of inductive definitions of sest of free and bound variables
are given by the first requirement of the corresponding definitions.

The sets of free and bound variables of a formula are not disoint
necessarily:
FreeVar((P(x) ∧ ∃xR(x))) = {x} = BoundVar((P(x) ∧ ∃xR(x)))
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Classical first–order logic Syntactical properties of variables

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language, A ∈ Form
be a formula, and x ∈ Var be a variable.

A fixed occurence of the variable x in the formula A is free if it is not
in the subformulas ∀xB or ∃xB of the formula A.

A fixed occurence of the variable x in the formula A is bound if it is
not free.
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Classical first–order logic Syntactical properties of variables

Remark

If x is a free variable of the formula A (i.e. x ∈ FreeVar(A)), then it
has at least one free occurence in A.

If x is a bound variable of the formula A
(i.e. x ∈ BoundVar(A)), then it has at least one bound occurence in
A.

A fixed occurence of a variable x in the formula A is free if

it does not follow a universal or an existential quantifier, or
it is not in a scope of a ∀x or a ∃x quantification.

A variable x may be a free and a bound variable of the formula A:
(P(x) ∧ ∃xR(x))
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Classical first–order logic Syntactical properties of variables

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order languuage and
A ∈ Form be a formula.

If FreeVar(A) 6= ∅, then the formula A is an open formula.

If FreeVar(A) = ∅, then the formula A is a closed formula.

Remark:
The formula A is open if there is at least one variable which has at least
one free occurence in A.
The formula A is closed if there is no variable which has a free occurence
in A.
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Classical first–order logic Properties of quantification

De Morgan Laws of quantifications

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language, A ∈ Form
be a formula and x ∈ Var be a variable. Then

¬∃xA⇔ ∀x¬A
¬∀xA⇔ ∃x¬A
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Classical first–order logic Properties of quantification

Expressibilty of quantifications

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language, A ∈ Form
be a formula and x ∈ Var be a variable. Then

∃xA⇔ ¬∀x¬A
∀xA⇔ ¬∃x¬A
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Classical first–order logic Properties of quantification

Conjunction and quantifications

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A,B ∈ Form be formulas and x ∈ Var be a variable.
If x /∈ FreeVar(A), then

A ∧ ∀xB ⇔ ∀x(A ∧ B)

A ∧ ∃xB ⇔ ∃x(A ∧ B)

Remark:
According to the commutativity of conjunction the followings hold:
If x /∈ FreeVar(A), then

∀xB ∧ A⇔ ∀x(B ∧ A)

∃xB ∧ A⇔ ∃x(B ∧ A)

T. Mihálydeák Logical Algorithms May 6, 2019 139 / 158

Classical first–order logic Properties of quantification

Disjunction and quantifications

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A,B ∈ Form be formulas and x ∈ Var be a variable.
If x /∈ FreeVar(A), then

A ∨ ∀xB ⇔ ∀x(A ∨ B)

A ∨ ∃xB ⇔ ∃x(A ∨ B)

Remark:
According to the commutativity of disjunction the followings hold:
If x /∈ FreeVar(A), then

∀xB ∨ A⇔ ∀x(B ∨ A)

∃xB ∨ A⇔ ∃x(B ∨ A)
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Classical first–order logic Properties of quantification

Implication with existential quantification

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A,B ∈ Form be formulas and x ∈ Var be a variable.
If x /∈ FreeVar(A), then

A ⊃ ∃xB ⇔ ∃x(A ∨ B)

∃xB ⊃ A⇔ ∀x(B ⊃ A)
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Classical first–order logic Properties of quantification

Implication with universal quantification

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A,B ∈ Form be formulas and x ∈ Var be a variable.
If x /∈ FreeVar(A), then

A ⊃ ∀xB ⇔ ∀x(A ∨ B)

∀xB ⊃ A⇔ ∃x(B ⊃ A)
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Classical first–order logic Properties of quantification

Substitutabily a variable with an other variable

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language, A ∈ Form
be a formula and x , y ∈ Var be variables.
The variable x is subtitutable with the variable y in the formula A if there
is no a free occurence of x in A which is in the subformulas ∀yB or ∃yB of
A.

Example:

In the formula ∀zP(x , z) the variable x is substitutable with the
variable y , but x is not substitutable with the variable z .
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Classical first–order logic Properties of quantification

Substitutabily a variable with a term

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language, A ∈ Form
be a formula, x ∈ Var be a variable and t ∈ Term be a term.
The variable x is subtitutable with the term t in the formula A if in the
formula A the variable x is substitutable with all variables occuring in the
term t.

Example

In the formula ∀zP(x , z) the variable x is substitutable with the term
f (y1, y2), but x is not substitutable with the term f (y , z).
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Classical first–order logic Properties of quantification

Result of a substitution

If the variable x is subtitutable with the term t in the formula A, then [A]tx
denotes the formula which appear when all free occurences of the variable
x in A are substituted with the term t.
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Classical first–order logic Properties of quantification

Renaming

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language, A ∈ Form
be a formula, and x , y ∈ Var be variables.
If the variable x is subtitutable with the variable y in the formula A and
y /∈ FreeVar(A), then

the formula ∀y [A]yx is a regular renaming of the formula ∀xA;

the formula ∃y [A]yx is a regular renaming of the formula ∃xA.
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Classical first–order logic Properties of quantification

Congruent formulas

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A ∈ Form be a formula.
The set Cong(A) (the set ot formulas which are congruent with A) is
given by the following inductive definition:

A ∈ Cong(A);

if ¬B ∈ Cong(A) and B ′ ∈ Cong(B), then ¬B ′ ∈ Cong(A);

if (B ◦ C ) ∈ Cong(A), B ′ ∈ Cong(B) and C ′ ∈ Cong(C ), then
(B ′ ◦ C ′) ∈ Cong(A) (◦ ∈ {⊃,∧,∨,≡});

if ∀xB ∈ Cong(A) and ∀y [B]yx is a regular renaming of the formula
∀xB, then ∀y [B]yx ∈ Cong(A);

if ∃xB ∈ Cong(A) and ∃y [B]yx is a regular renaming of the formula
∃xB, then ∃y [B]yx ∈ Cong(A).
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Classical first–order logic Properties of quantification

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A,B ∈ Form be formulas.

If B ∈ Cong(A), then the formula A is congruent with the formula B.

If B ∈ Cong(A), then the formula B is a syntactical synonym of the
formula A.

Theorem

Congruent formulas are logically equivalent, i.e. if B ∈ Cong(A), then
A⇔ B.
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Classical first–order logic Properties of quantification

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A ∈ Form be a formula.
The formula A is standardized if

FreeVar(A)
⋂
BoundVar(A) = ∅;

all bound variables of the formula A have exactly one occurences next
a quantifier.

Theorem

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A ∈ Form be a formula.
Then there is a formula B ∈ Form such that

the formula B is standardized;

the formula B is congruent with the formula A, i.e. B ∈ Cong(A).
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Classical first–order logic Properties of quantification

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A ∈ Form be a formula.
The formula A is prenex if

there is no quantifier in A or

the formula A is in the form Q1x1Q2x2 . . .QnxnB (n = 1, 2, . . .),
where

there is no quantifier in the formula B ∈ Form;
x1, x2 . . . xn ∈ Var are diffrent variables;
Q1,Q2, . . . ,Qn ∈ {∀,∃} are quantifiers.

T. Mihálydeák Logical Algorithms May 6, 2019 150 / 158



Classical first–order logic Properties of quantification

Theorem

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A ∈ Form be a formula.
Then there is a formula B ∈ Form such that

the formula B is prenex;

A⇔ B.
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PCNF and Clausal Forms

Recall

A formula of propositional logic is in conjunctive normal form (CNF)
iff it is a conjunction of disjunctions of literals.

A notational variant of CNF is clausal form:

the formula is represented as a set of clauses, where each clause is a
set of literals.

We now proceed to generalize CNF to first-order logic by defining a
normal form that takes the quantifiers into account.
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PCNF and Clausal Forms

Definition

A formula is in prenex conjunctive normal form (PCNF) iff it is of the form:

Q1x1 . . .QnxnA

where the Qi are quantifiers and A is a quantifier-free formula in CNF.
The sequence Q1x1Qnxn is the prefix and A is the matrix.

Example

The following formula is in PCNF:

∀y∀z((P(f (y))¬P(g(z)) ∨ R(z)] ∧ (¬R(z) ∨ ¬P(g(z)) ∨ R(y)))

Prefix: ∀y∀z
Matrix: ((P(f (y))¬P(g(z)) ∨ R(z)] ∧ (¬R(z) ∨ ¬P(g(z)) ∨ R(y)))
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PCNF and Clausal Forms

PCNF algorithm for closed formulas

Input: A closed formula A of first-order logic.

Output: A formula A′ in PCNF such that A′ ⇔ A .

Steps:

Eliminate all binary logical operators other than ∨ and ∧.
Rename bound variables so that no variable appears in two quantifiers.
Push negation operators inward, collapsing double negation, until they
apply to atomic formulas only. Use De Morgan’s laws.
Extract quantifiers. Choose an outermost quantifier, that is not within
the scope of another quantifier. Extract the quantifier using the
following equivalences, where Q is a quantifier and ◦ ∈ {∨,∧}:
A ◦ QxB(x)⇔ Qx(A ◦ B(x)),QxA(x) ◦ B ⇔ Qx(A(x) ◦ B).
Use the distributive laws to transform the matrix into CNF. The
formula is now in PCNF.
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PCNF and Clausal Forms

Definition

Let A be a closed formula in PCNF whose prefix consists only of universal
quantifiers. The clausal form of A consists of the matrix of A written as a
set of clauses.

Example

The formula in previous example is closed and has only universal
quantifiers, so it can be written in clausal form as:

{{P(f (y)),¬P(g(z)),R(z)}, {¬R(z),¬P(g(z)),R(y)}}
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PCNF and Clausal Forms

In propositional logic, every formula is equivalent to one in CNF, but this
is not true in first-order logic. However, a formula in first-order logic can
be transformed into one in clausal form without modifying its satisfiability.

Skolem’s theorem

Let A be a closed formula. Then there exists a formula A′′ in clausal form
such that A ≈ A′′.
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PCNF and Clausal Forms

Skolem’s algorithm

Input: A closed formula A of first-order logic.

Output: A formula A′′ in clausal form such that A′′ ≈ A .

Steps:

PCNF algorithm for formula A. Output is the formula A′.
For every existential quantifier ∃x in A′, let y1, . . . , yn be the
universally quantified variables preceding ∃x and let f be a new n-ary
function symbol. Delete ∃x and replace every occurrence of x by
f (y1, . . . , yn). If there are no universal quantifiers preceding ∃x , replace
x by a new constant (name parameter, 0-ary function). These new
function symbols are Skolem functions and the process of replacing
existential quantifiers by functions is Skolemization.
The formula can be written in clausal form by dropping the (universal)
quantifiers and writing the matrix as sets of clauses.
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PCNF and Clausal Forms

Example

Original formula: ∃x∀yP(x , y) ⊃ ∀y∃xP(x , y)

Rename bound variables: ∃x1∀y1P(x1, y1) ⊃ ∀y2∃x2P(x2, y2)

Eliminate Boolean operators: ¬∃x1∀y1P(x1, y1) ∨ ∀y2∃x2P(x2, y2)

Push negation inwards: ∀x1∃y1¬P(x1, y1) ∨ ∀y2∃x2P(x2, y2)

Extract quantifiers: ∀x1∃y1∀y2∃x2(¬P(x1, y1) ∨ P(x2, y2))

Distribute matrix (no change)

Replace existential quantifiers:
∀x1∀y2(¬P(x1, f (x1)) ∨ P(g(x1, y2), y2))

Write in clausal form {{¬P(x1, f (x1)),P(g(x1, y2), y2)}}.
f is unary because ∃y1 is preceded by one universal quantifier ∀x1,
while g is binary because ∃x2 is preceded by two universal quantifiers
∀x1 and ∀y2.
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