

The main task of logic

• to give the laws of valid arguments (inferences, consequence relations)

Valid arguments

- Valid arguments (inferences):
 - an argument (an inference): a relation between premise(s) and conclusion
 - a consequence relation
 - input: premise(s)
 - output: conclusion
 - Valid arguments (inferences, consequence relations): if all premises are true, then the conclusion is true.
 - Logically valid arguments: when the former holds necessarily.

- $(A \land B) \in Form$,
- $(A \lor B) \in Form$,
- $(A \equiv B) \in Form.$

Remark

The members of the set *Con* are the atomic formulae (prime formulae).

- If A is an atomic formula, then it has no direct subformula;
- $\neg A$ has exactly one direct subformula: A;
- Direct subformulae of formulae (A ⊃ B), (A ∧ B), (A ∨ B), (A ≡ B) are formulae A and B, respectively.

Definition

The set of subformulae of formula A [denoting: SF(A)] is given by the following inductive definition:

- $A \in RF(A)$ (i.e. the formula A is a subformula of itself);
- if A' ∈ RF(A) and B is a direct subformula of A'-nek, then B ∈ RF(A)

(i.e., if A' is a subformula of A, then all direct subformulae of A' are subformulae of A).

Definition

The contruction tree of a formula *A* is a finite ordered tree whose nodes are formulae,

- the root of the tree is the formmula A,
- the node with formula $\neg B$ has one child: he node with the formula B,
- the node with formulae (B ⊃ C), (B ∧ C), (B ∨ C), (B ≡ C) has two children: the nodes with B, and C
- the leaves of the tree are atomic formulae.

Classical propositional logic (classical zero-order logic) The semantic rules of propositional logic

Definition

Let ρ be an interpretation and $|A|_{\rho}$ be the semantic value of the formula A formula with respect to ρ .

If $p \in Con$, then $|p|_{\varrho} = \varrho(p)$ If $A \in Form$, then $|\neg A|_{\varrho} = 1 - |A|_{\varrho}$.
If $A, B \in Form$, then $|(A \supset B)|_{\varrho} = \begin{cases} 0 & \text{if } |A|_{\varrho} = 1, \text{ and } |B|_{\varrho} = 0; \\ 1, & \text{otherwise} \end{cases}$ $|(A \land B)|_{\varrho} = \begin{cases} 1 & \text{if } |A|_{\varrho} = 1, \text{ and } |B|_{\varrho} = 1; \\ 0, & \text{otherwise} \end{cases}$ $|(A \lor B)|_{\varrho} = \begin{cases} 0 & \text{if } |A|_{\varrho} = 0, \text{ and } |B|_{\varrho} = 0; \\ 1, & \text{otherwise} \end{cases}$ $|(A \lor B)|_{\varrho} = \begin{cases} 1 & \text{if } |A|_{\varrho} = 0, \text{ and } |B|_{\varrho} = 0; \\ 1, & \text{otherwise} \end{cases}$ $|(A \equiv B)|_{\varrho} = \begin{cases} 1 & \text{if } |A|_{\varrho} = |B|_{\varrho}; \\ 0, & \text{otherwise}. \end{cases}$

Remark

- A satisfiable set of formulas does not involve a logical contradiction; its formulas may be true together.
- A safisfiable formula may be true.
- If a set of formulas is satisfiable, then its members are satisfiable.
- But: all members of the set {p, ¬p} are satisfiable, and the set is not satisfiable.

All subsets of a satisfiable set are satisfiable.

Proof

- Let $\Gamma \subseteq$ *Form* be a set of formulas and $\Delta \subseteq \Gamma$.
- Γ is satisfiable: it has a model. Let ϱ be a model of Γ .
- A property of ϱ : If $A \in \Gamma$, then $|A|_{\rho} = 1$
- Since Δ ⊆ Γ, if A ∈ Δ, then A ∈ Γ, and so |A|_ρ = 1. That is the interpretation ρ is a model of Δ, and so Δ is satisfiable.

All expansions of an unsatisfiable set of formulas are unsatisfiable.

Indirect proof

- Suppose that $\Gamma \subseteq Form$ is an unsatisfiable set of formulas and $\Delta \subseteq Form$ is a set of formulas.
- Indirect condition: Γ is unsatisfiable, and $\Gamma \cup \Delta$ satisfiable.
- $\Gamma \subseteq \Gamma \cup \Delta$
- According to the former theorem Γ is satisfiable, and it is a contradiction.

T. Mihálydeák Logic and Computer Science September 10, 2017 13 / 1

Classical propositional logic (classical zero-order logic) Central logical (semantic) notions

Definition

```
A formula A is the logical consequence of the set of formulas \Gamma if the set \Gamma \cup \{\neg A\} is unsatifiable. (Notation : \Gamma \vDash A)
```

```
Definition A \vDash B, if \{A\} \vDash B.
```

Definition

The formula A is valid if $\emptyset \vDash A$. (Notation: $\vDash A$)

```
The formulas A and B are logically equivalent if A \vDash B and B \vDash A.
(Notation: A \Leftrightarrow B)
```

Let $\Gamma \subseteq Form$, and $A \in Form$. $\Gamma \vDash A$ if and only if all models of the set Γ are the models of formula A. (i.e. the singleton $\{A\}$).

Proof

 \rightarrow Indirect condition: There is a model of $\Gamma \vDash A$ such that it is not a model of the formula A.

Let the interpretation ρ be this model.

The properties of ϱ :

•
$$|B|_{\rho} = 1$$
 for all $B \in \Gamma$;

2
$$|A|_{\varrho} = 0$$
, and so $|\neg A|_{\varrho} = 1$

In this case all members of the set $\Gamma \cup \{\neg A\}$ are true wrt ρ -ban, and so $\Gamma \cup \{\neg A\}$ is satisfiable. It means that $\Gamma \nvDash A$, and it is a contradiction.

T. Mihálydeák	Logic and Computer Science	September 10, 2017	15 / 1
Classical propositional logic (class	ical zero, order logic) Control logical (con	mantic) nations	

Proof

← Indirect condition: All models of the set Γ are the models of formula A, but (and) $\Gamma \nvDash A$.

In this case $\Gamma \cup \{\neg A\}$ is satisfiable, i.e. it has a model.

Let the interpretation ρ be a model.

The properties of ϱ :

• $|B|_{\rho} = 1$ for all $B \in \Gamma$;

2
$$|\neg A|_{\varrho} = 1$$
, i.e. $|A|_{\varrho} = 0$

So the set Γ has a model such that it is not a model of formula A, and it is a contradiction.

Corollary

Let $\Gamma \subseteq Form$, and $A \in Form$. $\Gamma \vDash A$ if and only if for all interpretations in which all members of Γ are true, the formula A is true.

If A is a valid formula $((\models A))$, then $\Gamma \models A$ for all sets of formulas Γ . (A valid formula is a consequence of any set of formulas.)

Proof

- If A is a valid formula, then $\emptyset \vDash A$ (according to its definition).
- Ø ∪ {¬A} (= {¬A}) is unsatisfiable, and so its expansions are unsatisfiable.
- $\Gamma \cup \{\neg A\}$ is an expansion of $\{\neg A\}$, and so it is unsatisfiable, i.e. $\Gamma \vDash A$.

Proof

- According to a proved theorem: If Γ is unsatisfiable, the all expansions of Γ are unsatisfiable.
- $\Gamma \cup \{\neg A\}$ is an expansion of Γ , and so it is unsatisfiable, i.e. $\Gamma \vDash A$.

Deduction theorem: If $\Gamma \cup \{A\} \vDash B$, then $\Gamma \vDash (A \supset B)$.

Proof

- Indirect condition: Suppose, that $\Gamma \cup \{A\} \vDash B$, and $\Gamma \nvDash (A \supset B)$.
- Γ ∪ {¬(A ⊃ B)} is satisfiable, and so it has a model. Let the interpretation *ρ* be a model.
- The properties of ϱ :
 - **1** All members of Γ are true wrt ϱ .

$$2 |\neg (A \supset B)|_{\varrho} = 1$$

- $|(A \supset B)|_{\varrho} = 0$, i.e. $|A|_{\varrho} = 1$ and $|B|_{\varrho} = 0$. So $|\neg B|_{\varrho} = 1$.
- All members of Γ ∪ {A} ∪ {¬B} are true wrt interpretation *ρ*, i.e.
 Γ ∪ {A} ⊭ B, and it is a contradiction.

T Miháludaál	Levie and Con		Contomber 10, 2017	10 / 1
T. Mihálydeák	Logic and Con	nputer Science	September 10, 2017	19 / 1
Classical propositional logic (class	ical zero–order logic)	Central logical (sema	antic) notions	

Theorem

In the opposite direction: If $\Gamma \vDash (A \supset B)$, then $\Gamma \cup \{A\} \vDash B$.

Proof

- Indirect condition: Suppose that $\Gamma \vDash (A \supset B)$, and $\Gamma \cup \{A\} \nvDash B$.
- So Γ ∪ {A} ∪ {¬B} is satisfiable, i.e. it has a model. Let the interpretation *ρ* a model.
- The properties of ϱ :
 - **1** All members of Γ are true wrt the interpretation ϱ .

2
$$|A|_o = 1$$

- (3) $|\neg B|_{\varrho} = 1$, and so $|B|_{\varrho} = 0$
- $|(A \supset B)|_{\varrho} = 0$, $|\neg (A \supset B)|_{\varrho} = 1$.
- All members of $\Gamma \cup \{\neg(A \supset B)\}$ are true wrt the interpretation ϱ , i.e. $\Gamma \nvDash (A \supset B)$.

- $(A \land B) \vDash A$, $(A \land B) \vDash B$
- The law of contradiction: $\vDash \neg (A \land \neg A)$
- The set {A₁, A₂,..., A_n} (A₁, A₂,..., A_n ∈ Form) is satisfiable iff the formula A₁ ∧ A₂ ∧ · · · ∧ A_n is satisfiable.
- The set {A₁, A₂, ..., A_n} (A₁, A₂, ..., A_n ∈ Form) is unsatisfiable iff the formula A₁ ∧ A₂ ∧ ··· ∧ A_n is unsatisfiable.
- $\{A_1, A_2, \ldots, A_n\} \vDash A (A_1, A_2, \ldots, A_n, A \in Form)$ iff $A_1 \land A_2 \land \cdots \land A_n \vDash A$.
- $\{A_1, A_2, \ldots, A_n\} \vDash A (A_1, A_2, \ldots, A_n, A \in Form)$ iff the formula $((A_1 \land A_2 \land \cdots \land A_n) \land \neg A)$ is unsatisfiable.

De Morgan's laws

- What do we say when we deny a conjunction?
- What do we say when we deny a disjunction?
- $\neg (A \land B) \Leftrightarrow (\neg A \lor \neg B)$
- $\neg (A \lor B) \Leftrightarrow (\neg A \land \neg B)$

• The proofs of De Morgan's laws.

	Α	В	$\neg A$	$\neg B$	$(\neg A \land \neg B)$	$(A \lor B)$	$\neg (A \lor B)$
	0	0	1	1	1	0	1
۲	0	1	1	0	0	1	0
	1	0	0	1	0	1	0
	1	1	0	0	0	1	0

Theory of truth functors

Base

- A base is a set of truth functors whose members can express all truth functors.
 - For example: $\{\neg, \supset\}, \{\neg, \wedge\}, \{\neg, \vee\}$
 - $\begin{array}{c} \textcircled{1} \quad (p \land q) \Leftrightarrow \neg (p \supset \neg q) \\ \textcircled{2} \quad (p \lor q) \Leftrightarrow (\neg p \supset q) \end{array}$
 - Truth functor Sheffer: $(p|q) \Leftrightarrow_{def}
 eg(p \wedge q)$
 - Truth functor neither-nor: $(p \parallel q) \Leftrightarrow_{def} (\neg p \land \neg q)$
 - Remark: Singleton bases: (p|q), $(p \parallel q)$

Definition

If $p \in Con$, then formulas $p, \neg p$ are literals (p is the base of the literals).

Definition

If the formula A is a literal or a conjunction of literals with different bases, then A is an elementary conjunction.

Definition

If the formula A is a literal or a disjunction of literals with different bases, the A is an elementary disjunction.

A disjunction of elementary conjunctions is a disjunctive normal form.

Definition

A conjunction of elementary disjunctions is a conjunctive normal form.

Theorem

There is a normal form of any formula of proposition logic, i. e. if $A \in Form$, then there is a formula B such that B is a normal form and $A \Leftrightarrow B$

T. Mihálydeák
 Logic and Computer Science
 September 10, 2017
 35 / 1

 Classical first-order logic

 Language of classical first-order logic

 Definition/1

 The language of first-order logic is a

$$L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$$

 ordered 5-tuple, where

 1.
 $LC = \{\neg, \supset, \land, \lor, \equiv, =, \forall, \exists, (,)\}$: (the set of logical constants).

 2.

 Var (= { $x_n : n = 0, 1, 2, ... \}$): countable infinite set of variables

- 3. $Con = \bigcup_{n=0}^{\infty} (\mathcal{F}(n) \cup \mathcal{P}(n))$ the set of non-logical constants (at best countable infinite)
 - $\mathcal{F}(0)$: the set of name parameters,
 - $\mathcal{F}(n)$: the set of *n* argument function parameters,
 - $\mathcal{P}(0)$: the set of prposition parameters,
 - $\mathcal{P}(n)$: the set of predicate parameters.
- 4. The sets LC, Var, $\mathcal{F}(n)$, $\mathcal{P}(n)$ are pairwise disjoint (n = 0, 1, 2, ...).

Classical first-order logic

Megjegyzs:

• Azokat a formulkat, amelyek a 6. (a), (b), (c) szablyok Ital jnnek Itre, atomi formulknak vagy prmformulknak nevezzk.

Syntactical definitions

Definci:

Definition (interpretation)

The ordered pair $\langle U, \varrho \rangle$ is an interpretation of the language $L^{(1)}$ if

• $U \neq \emptyset$ (i.e. U is a nonempty set);

•
$$Dom(\varrho) = Con$$

- If $a \in \mathcal{F}(0)$, then $\varrho(a) \in U$;
- If $f \in \mathcal{F}(n)$ $(n \neq 0)$, then $\varrho(f) \in U^{U^{(n)}}$
- If $p \in \mathcal{P}(0)$, then $\varrho(p) \in \{0,1\}$;
- If $P \in \mathcal{P}(n)$ $(n \neq 0)$, then $\varrho(P) \subseteq U^{(n)}$ $(\varrho(P) \in \{0,1\}^{U^{(n)}})$.

Classical first-order logic Semantics of classical first-order logic

Definition (assignment)

The function v is an assignment relying on the interpretation $\langle U, \varrho \rangle$ if the followings hold:

- Dom(v) = Var;
- If $x \in Var$, then $v(x) \in U$.

Definition (modified assignment)

Let v be an assignment relying on the interpretation $\langle U, \varrho \rangle$, $x \in Var$ and $u \in U$.

$$v[x:u](y) = \begin{cases} u, & \text{if } y = x; \\ v(y), & \text{otherwise.} \end{cases}$$

for all $y \in Var$.

Definition (Semantic rules/1)

Let $\langle U, \varrho \rangle$ be a given interpretation and v be an assignment relying on $\langle U, \varrho \rangle$.

• If
$$a \in \mathcal{F}(0)$$
, then $|a|_{v}^{\langle U,\varrho \rangle} = \varrho(a)$.
• If $x \in Var$, then $|x|_{v}^{\langle U,\varrho \rangle} = v(x)$.
• If $f \in \mathcal{F}(n)$, $(n = 1, 2, ...)$, and $t_{1}, t_{2}, ..., t_{n} \in Term$, then
 $|f(t_{1})(t_{2})...(t_{n})|_{v}^{\langle U,\varrho \rangle} = \varrho(f)(\langle |t_{1}|_{v}^{\langle U,\varrho \rangle}, |t_{2}|_{v}^{\langle U,\varrho \rangle}, ..., |t_{n}|_{v}^{\langle U,\varrho \rangle}\rangle)$
• If $p \in \mathcal{P}(0)$, then $|p|_{v}^{\langle U,\varrho \rangle} = \varrho(p)$
• If $t_{1}, t_{2} \in Term$, then
 $|(t_{1} = t_{2})|_{v}^{\langle U,\varrho \rangle} = \begin{cases} 1, & \text{if } |t_{1}|_{v}^{\langle U,\varrho \rangle} = |t_{2}|_{v}^{\langle U,\varrho \rangle} \\ 0, & \text{otherwise.} \end{cases}$
T. Mihálydeák Logic and Computer Science September 10, 2017 43 / 1

Definition (Semantic rules/2)

• If
$$P \in \mathcal{P}(n)$$
 $(n \neq 0), t_1, \ldots, t_n \in Term$, then

$$|P(t_1)\dots(t_n)|_{v}^{\langle U,\varrho\rangle} = \begin{cases} 1, & \text{if } \langle |t_1|_{v}^{\langle U,\varrho\rangle},\dots,|t_n|_{v}^{\langle U,\varrho\rangle}\rangle \in \varrho(P); \\ 0, & \text{otherwise.} \end{cases}$$

Definition (Semantic rules/3)

- If $A \in Form$, then $|\neg A|_{v}^{\langle U, \varrho \rangle} = 1 |A|_{v}^{\langle U, \varrho \rangle}$.
- If $A, B \in Form$, then

$$\begin{split} |(A \supset B)|_{\nu}^{\langle U,\varrho\rangle} &= \begin{cases} 0 & \text{if } |A|_{\nu}^{\langle U,\varrho\rangle} = 1, \text{ and } |B|_{\nu}^{\langle U,\varrho\rangle} = 0; \\ 1, & \text{otherwise.} \end{cases} \\ |(A \land B)|_{\nu}^{\langle U,\varrho\rangle} &= \begin{cases} 1 & \text{if } |A|_{\nu}^{\langle U,\varrho\rangle} = 1, \text{ and } |B|_{\nu}^{\langle U,\varrho\rangle} = 1; \\ 0, & \text{otherwise.} \end{cases} \\ |(A \lor B)|_{\nu}^{\langle U,\varrho\rangle} &= \begin{cases} 0 & \text{if } |A|_{\nu}^{\langle U,\varrho\rangle} = 0, \text{ and } |B|_{\nu}^{\langle U,\varrho\rangle} = 0; \\ 1, & \text{otherwise.} \end{cases} \\ |(A \equiv B)|_{\nu}^{\langle U,\varrho\rangle} &= \begin{cases} 1 & \text{if } |A|_{\nu}^{\langle U,\varrho\rangle} = |B|_{\nu}^{\langle U,\varrho\rangle} = 0; \\ 0, & \text{otherwise.} \end{cases} \end{split}$$

T. Mihálydeák

Logic and Computer Science

September 10, 2017 45 / 1

Classical first-order logic Semantics of classical first-order logic

Definition (Semantic rules/4)

- If $A \in Form, x \in Var$, then
 - $|\forall x A|_{\nu}^{\langle U, \varrho \rangle} = \begin{cases} 0, & \text{if there is an } u \in U \text{ such that } |A|_{\nu[x:u]}^{\langle U, \varrho \rangle} = 0; \\ 1, & \text{otherwise.} \end{cases}$

$$|\exists x A|_{v}^{\langle U, \varrho \rangle} = \begin{cases} 1, & \text{if there is an } u \in U \text{ such that } |A|_{v[x:u]}^{\langle U, \varrho \rangle} = 1; \\ 0, & \text{otherwise.} \end{cases}$$

Definition (model – a set of formulas)

Let $L(1) = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $\Gamma \subseteq Form$ be a set of formulas. An ordered triple $\langle U, \varrho, v \rangle$ is a model of the set Γ , if

- $\langle U, \varrho \rangle$ is an interpretation of $L^{(1)}$;
- v is an assignment relying on $\langle U, \varrho \rangle$;

•
$$|A|_{v}^{\langle U,\varrho\rangle} = 1$$
 for all $A \in \Gamma$.

Definition – a model of a formula

A model of a formula A is the model of the singleton $\{A\}$.

T. Mihálydeák	Logic and Comp	utor Science	September 10, 2017
	Logic and Comp	uter Science	September 10, 2017 -
Clas	sical first–order logic	Central logical (sema	ntic) notions — FoL
Definition – satisfiable a	set of formula	S	
The set of formulas $\Gamma \subseteq$	Form is satisfi	able if it has	s a model.
It there is an interpreta		signmont in	Which all members of
If there is an interpreta he set Γ are true.)	tion and an as	signment in	which all members of

A formula $A \in Form$ is satisfiable, if the singleton $\{A\}$ is satisfiable.

Remark

- A satisfiable set of formulas does not involve a logical contradiction; its formulas may be true together.
- A satisfiable formula may be true.
- If a set of formulas is satisfiable, then its members are satisfiable.
- But: all members of the set {P(a), ¬P(a)} are satisfiable, and the set is not satisfiable.

A formula A is the logical consequence of the set of formulas Γ if the set $\Gamma \cup \{\neg A\}$ is unsatifiable. (*Notation* : $\Gamma \vDash A$)

Definition

 $A \vDash B$, if $\{A\} \vDash B$.

Definition

The formula A is valid if $\emptyset \vDash A$. (Notation: $\vDash A$)

Definition

```
The formulas A and B are logically equivalent if A \vDash B and B \vDash A.
(Notation: A \Leftrightarrow B)
```

T. Mihálydeák

Logic and Computer Science

September 10, 2017 53 / 1

Classical first-order logic Properties of first order central logical notions

Theorem

Let $\Gamma \subseteq Form$, and $A \in Form$. $\Gamma \vDash A$ if and only if all models of the set Γ are the models of formula A. (i.e. the singleton $\{A\}$).

Proof

 \rightarrow Indirect condition: There is a model of $\Gamma \vDash A$ such that it is not a model of the formula A.

Let the ordered triple $\langle U, \varrho, v \rangle$ be this model. The properties of $\langle U, \varrho, v \rangle$:

$$|B|_{\nu}^{\langle U,\varrho\rangle} = 1 \text{ for all } B \in \Gamma;$$

()
$$|A|\langle U, arrho
angle_{m{v}} = 0$$
, and so $|
eg A|_{m{v}}^{\langle U, arrho
angle} = 1$

In this case all members of the set $\Gamma \cup \{\neg A\}$ are true wrt the interpretation $\langle U, \varrho \rangle$ and assignment v, so $\Gamma \cup \{\neg A\}$ is satisfiable. It means that $\Gamma \nvDash A$, and it is a contradiction.

Proof

← Indirect condition: All models of the set Γ are the models of formula A, but (and) $\Gamma \nvDash A$.

In this case $\Gamma \cup \{\neg A\}$ is satisfiable, i.e. it has a model.

Let the ordered triple $\langle U, \varrho, v \rangle$ be a model.

The properties of $\langle U, \varrho, v \rangle$:

$$\begin{array}{l} \bullet \quad |B|_{v}^{\langle U,\varrho\rangle} = 1 \text{ for all } B \in \Gamma; \\ \bullet \quad |\neg A|_{v}^{\langle U,\varrho\rangle} = 1, \text{ i.e. } |A|_{v}^{\langle U,\varrho\rangle} = 0 \end{array}$$

So the set Γ has a model such that it is not a model of formula A, and it is a contradiction.

Corollary

Let $\Gamma \subseteq Form$, and $A \in Form$. $\Gamma \vDash A$ if and only if for all interpretations in which all members of Γ are true, the formula A is true.

T. Mihálydeák	Logic and Compu	ter Science	September 10, 2017	55 / 1
Cla	ssical first-order logic	roperties of first order cen	tral logical notions	

Theorem

If A is a valid formula $((\models A))$, then $\Gamma \models A$ for all sets of formulas Γ . (A valid formula is a consequence of any set of formulas.)

Proof

- If A is a valid formula, then $\emptyset \vDash A$ (according to its definition).
- Ø ∪ {¬A} (= {¬A}) is unsatisfiable, and so its expansions are unsatisfiable.
- $\Gamma \cup \{\neg A\}$ is an expansion of $\{\neg A\}$, and so it is unsatisfiable, i.e. $\Gamma \vDash A$.

If Γ is unsatisfiable, then $\Gamma \vDash A$ for all A. (All formulas are the consequences of an unsatisfiable set of formulas.)

Proof

- According to a proved theorem: If Γ is unsatisfiable, the all expansions of Γ are unsatisfiable.
- $\Gamma \cup \{\neg A\}$ is an expansion of Γ , and so it is unsatisfiable, i.e. $\Gamma \vDash A$.

T. Mihálydeák

Logic and Computer Science

Classical first-order logic Properties of first order central logical notions

Theorem

Deduction theorem: If $\Gamma \cup \{A\} \vDash B$, then $\Gamma \vDash (A \supset B)$.

Proof

- Indirect condition: Suppose, that $\Gamma \cup \{A\} \vDash B$, and $\Gamma \nvDash (A \supset B)$.
- Γ ∪ {¬(A ⊃ B)} is satisfiable, and so it has a model. Let the ordered triple ⟨U, ρ, ν⟩ be a model.
- The properties of $\langle U, \varrho, \nu \rangle$:
 - **1** All members of Γ are true wrt $\langle U, \varrho \rangle$ and v.

$$(|\neg (A \supset B)|_{v}^{\langle U, \varrho \rangle} = 1$$

- $|(A \supset B)|_{\nu}^{\langle U, \varrho \rangle} = 0$, i.e. $|A|_{\nu}^{\langle U, \varrho \rangle} = 1$ and $|B|_{\nu}^{\langle U, \varrho \rangle} = 0$. So $|\neg B|_{\nu}^{\langle U, \varrho \rangle} = 1$.
- All members of Γ ∪ {A} ∪ {¬B} are true wrt ⟨U, ρ⟩ and v, i.e.
 Γ ∪ {A} ⊭ B, and it is a contradiction.

57 / 1

September 10, 2017

In the opposite direction: If $\Gamma \vDash (A \supset B)$, then $\Gamma \cup \{A\} \vDash B$.

Proof

- Indirect condition: Suppose that $\Gamma \vDash (A \supset B)$, and $\Gamma \cup \{A\} \nvDash B$.
- So Γ ∪ {A} ∪ {¬B} is satisfiable, i.e. it has a model. Let the ordered triple ⟨U, ρ, ν⟩ a model.
- The properties of $\langle U, \varrho, v \rangle$:
 - **1** All members of Γ are true wrt $\langle U, \varrho \rangle$ and v.

2
$$|A|_{v}^{\langle U,\varrho\rangle} = 1$$

3 $|\neg B|_{v}^{\langle U,\varrho\rangle} = 1$, and so $|B|_{v}^{\langle U,\varrho\rangle} = 0$

•
$$|(A \supset B)|_{v}^{\langle U, \varrho \rangle} = 0, \ |\neg(A \supset B)|_{v}^{\langle U, \varrho \rangle} = 1.$$

• All members of $\Gamma \cup \{\neg (A \supset B)\}$ are true wrt $\langle U, \varrho \rangle$ and v, i.e. $\Gamma \nvDash (A \supset B)$.

T. Mihálydeák	Logic and Com	nuter Science	September 10, 2017	59 / 1
				00/1
Clas	sical first–order logic	Properties of first or	der central logical notions	
Corollony				
Corollary				- 1
$A \vDash B$ if and only if $\vDash (A)$	$A \supset B)$			- 11
Proof				
Let $\Gamma = \emptyset$ in the former	theorems.			

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula. The set of free variables of the formula A (in notation: FreeVar(A)) is given by the following inductive definition:

- If A is an atomic formula (i.e. A ∈ AtForm), then the members of the set FreeVar(A) are the variables occuring in A.
- If the formula A is $\neg B$, then FreeVar(A) = FreeVar(B).
- If the formula A is (B ⊃ C), (B ∧ C), (B ∨ C) or (B ≡ C), then FreeVar(A) = FreeVar(B) ∪ FreeVar(C).
- If the formula A is $\forall xB$ or $\exists xB$, then $FreeVar(A) = FreeVar(B) \setminus \{x\}$.

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula. The set of bound variables of the formula A (in notation: BoundVar(A)) is given by the following inductive definition:

- If A is an atomic formula (i.e. $A \in AtForm$), then $BoundVar(A) = \emptyset$.
- If the formula A is $\neg B$, then BoundVar(A) = FreeVar(B).
- If the formula A is (B ⊃ C), (B ∧ C), (B ∨ C) or (B ≡ C), then BoundVar(A) = BoundVar(B) ∪ BoundVar(C).
- If the formula A is ∀xB or ∃xB, then BoundVar(A) = BoundVar(B) ∪ {x}.

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A \in Form$ be a formula, and $x \in Var$ be a variable.

- A fixed occurrence of the variable x in the formula A is free if it is not in the subformulas ∀xB or ∃xB of the formula A.
- A fixed occurrence of the variable x in the formula A is bound if it is not free.

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula.

- If $FreeVar(A) \neq \emptyset$, then the formula A is an open formula.
- If $FreeVar(A) = \emptyset$, then the formula A is a closed formula.

Remark:

The formula A is open if there is at least one variable which has at least one free occurrence in A.

The formula A is closed if there is no variable which has a free occurence in A.

De Morgan Laws of quantifications

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A \in Form$ be a formula and $x \in Var$ be a variable. Then

- $\neg \exists x A \Leftrightarrow \forall x \neg A$
- $\neg \forall x A \Leftrightarrow \exists x \neg A$

Expressibilty of quantifications

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A \in Form$ be a formula and $x \in Var$ be a variable. Then

•
$$\exists x A \Leftrightarrow \neg \forall x \neg A$$

• $\forall x A \Leftrightarrow \neg \exists x \neg A$

Conjunction and quantifications

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A, B \in Form$ be formulas and $x \in Var$ be a variable. If $x \notin FreeVar(A)$, then

- $A \land \forall xB \Leftrightarrow \forall x(A \land B)$
- $A \land \exists x B \Leftrightarrow \exists x (A \land B)$

Remark:

According to the commutativity of conjunction the followings hold: If $x \notin FreeVar(A)$, then

- $\forall xB \land A \Leftrightarrow \forall x(B \land A)$
- $\exists x B \land A \Leftrightarrow \exists x (B \land A)$

Disjunction and quantifications

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A, B \in Form$ be formulas and $x \in Var$ be a variable. If $x \notin FreeVar(A)$, then

- $A \lor \forall x B \Leftrightarrow \forall x (A \lor B)$
- $A \lor \exists x B \Leftrightarrow \exists x (A \lor B)$

Remark:

According to the commutativity of disjunction the followings hold: If $x \notin FreeVar(A)$, then

- $\forall x B \lor A \Leftrightarrow \forall x (B \lor A)$
- $\exists x B \lor A \Leftrightarrow \exists x (B \lor A)$

T. Mihálydeák	Logic and Con	nputer Science	September 10, 2017	71 / 1
Clas	sical first–order logic	Properties of quantifi	cation	

Implication with existential quantification

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A, B \in Form$ be formulas and $x \in Var$ be a variable. If $x \notin FreeVar(A)$, then

- $A \supset \exists x B \Leftrightarrow \exists x (A \lor B)$
- $\exists x B \supset A \Leftrightarrow \forall x (B \supset A)$

Implication with universal quantification

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A, B \in Form$ be formulas and $x \in Var$ be a variable. If $x \notin FreeVar(A)$, then

- $A \supset \forall xB \Leftrightarrow \forall x(A \lor B)$
- $\forall xB \supset A \Leftrightarrow \exists x(B \supset A)$

T. Mihálydeák	Logic and Con	nputer Science	September 10, 2017	73 / 1
Clas	ssical first–order logic	Properties of quantification	I. Contraction of the second se	

Substitutabily a variable with an other variable

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A \in Form$ be a formula and $x, y \in Var$ be variables.

The variable x is subtitutable with the variable y in the formula A if there is no a free occurrence of x in A which is in the subformulas $\forall yB$ or $\exists yB$ of A.

Example:

In the formula ∀zP(x, z) the variable x is substitutable with the variable y, but x is not substitutable with the variable z.

Substitutabily a variable with a term

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A \in Form$ be a formula, $x \in Var$ be a variable and $t \in Term$ be a term. The variable x is subtitutable with the term t in the formula A if in the formula A the variable x is substitutable with all variables occuring in the term t.

Example

• In the formula $\forall z P(x, z)$ the variable x is substitutable with the term $f(y_1, y_2)$, but x is not substitutable with the term f(y, z).

T. Mihálydeák	Logic and Computer Science	September 10, 2017	75 / 1
Clas	ssical first-order logic Properties of quanti	ification	

Result of a substitution

If the variable x is subtitutable with the term t in the formula A, then $[A]_x^t$ denotes the formula which appear when all free occurences of the variable x in A are substituted with the term t.

Renaming

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A \in Form$ be a formula, and $x, y \in Var$ be variables.

If the variable x is subtitutable with the variable y in the formula A and $y \notin FreeVar(A)$, then

- the formula $\forall y[A]_x^y$ is a regular renaming of the formula $\forall xA$;
- the formula $\exists y[A]_x^y$ is a regular renaming of the formula $\exists xA$.

Congruent formulas

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula.

The set Cong(A) (the set of formulas which are congruent with A) is given by the following inductive definition:

- $A \in Cong(A)$;
- if $\neg B \in Cong(A)$ and $B' \in Cong(B)$, then $\neg B' \in Cong(A)$;
- if $(B \circ C) \in Cong(A)$, $B' \in Cong(B)$ and $C' \in Cong(C)$, then $(B' \circ C') \in Cong(A)$ ($\circ \in \{\supset, \land, \lor, \equiv\}$);
- if $\forall x B \in Cong(A)$ and $\forall y [B]_x^y$ is a regular renaming of the formula $\forall x B$, then $\forall y [B]_x^y \in Cong(A)$;
- if $\exists x B \in Cong(A)$ and $\exists y [B]_x^y$ is a regular renaming of the formula $\exists x B$, then $\exists y [B]_x^y \in Cong(A)$.

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A, B \in Form$ be formulas.

- If $B \in Cong(A)$, then the formula A is congruent with the formula B.
- If B ∈ Cong(A), then the formula B is a syntactical synonym of the formula A.

Theorem

Congruent formulas are logically equivalent, i.e. if $B \in Cong(A)$, then $A \Leftrightarrow B$.

T. Mihálydeák Logic and Computer Science September 10, 2017 79 / 1

Classical first-order logic Properties of quantification

Definition

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula.

The formula A is standardized if

- FreeVar(A) \bigcap BoundVar(A) = \emptyset ;
- all bound variables of the formula A have exactly one occurences next a quantifier.

Theorem

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula.

Then there is a formula $B \in Form$ such that

- the formula *B* is standardized;
- the formula B is congruent with the formula A, i.e. $B \in Cong(A)$.

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula. The formula A is prenex if

- there is no quantifier in A or
- the formula A is in the form $Q_1x_1Q_2x_2...Q_nx_nB$ (n = 1, 2, ...), where
 - there is no quantifier in the formula $B \in Form$;
 - $x_1, x_2 \dots x_n \in Var$ are diffrent variables;
 - $Q_1, Q_2, \ldots, Q_n \in \{\forall, \exists\}$ are quantifiers.

T. Mihálydeák	Logic and Con	anuter Science	September 10, 2017	81 / 1
	_08.0 and 00.0			01/1
Clas	sical first–order logic	Properties of quantif	ication	
- T I				
Theorem				- II
Let $L^{(1)} = \langle LC, Var, Cor \rangle$	n, Term, Form	angle be a first or	rder language and	- 1
$A \in Form$ be a formula.				- 1
Then there is a formula	$B \in Form such$	ch that		- 1
• the formula <i>B</i> is pr	enex;			- 1
• $A \Leftrightarrow B$.	·			- 1