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The main task of logic J

@ to give the laws of valid arguments (inferences, consequence relations)

Valid arguments

@ Valid arguments (inferences):
e an argument (an inference): a relation between premise(s) and
conclusion
@ a consequence relation
@ input: premise(s)
@ output: conclusion
e Valid arguments (inferences, consequence relations): if all premises are
true, then the conclusion is true.
e Logically valid arguments: when the former holds necessarily.
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Classical propositional logic (classical zero—order logic) Language of propositional logic

Definition /1

Classical zero—order language is an ordered triple

LO) = (LC, Con, Form)

where

Q@ LC={-,D,AV,=,(,)} (the set of logical constants).

@ Con # () the countable set of non-logical constants (propositional
parameters)

Q@ LCNCon=10

© The set of formulae i.e. the set Form is given by the following
inductive definition:
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Classical propositional logic (classical zero—order logic) Language of propositional logic

Definition /2
@ Con C Form

e If A& Form, then —A € Form.
o If A, B € Form, then
(AD B) € Form,
(AN B) € Form,

(AV B) € Form,
(A= B) € Form.

Remark J

The members of the set Con are the atomic formulae (prime formulae).

T. Mihalydeak Logic and Computer Science September 10, 2017 4/1



Classical propositional logic (classical zero—order logic) Subformulae

Definition

@ If Ais an atomic formula, then it has no direct subformula;
@ —A has exactly one direct subformula: A;

@ Direct subformulae of formulae (A D B), (AAB), (AV B), (A= B)
are formulae A and B, respectively.

Definition
The set of subformulae of formula A [denoting: SF(A)] is given by the
following inductive definition:

Q@ Ac RF(A) (i.e. the formula A is a subformula of itself);

@ if A € RF(A) and B is a direct subformula of A’-nek, then
B € RF(A)
(i.e., if A" is a subformula of A, then all direct subformulae of A" are
subformulae of A).
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Classical propositional logic (classical zero—order logic) Construction tree

Definition
The contruction tree of a formula A is a finite ordered tree whose nodes
are formulae,

@ the root of the tree is the formmula A,

@ the node with formula —B has one child: he node with the formula B,

@ the node with formulae (B D C), (BAC), (BV C), (B = C) has two
children: the nodes with B, and C

@ the leaves of the tree are atomic formulae.
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Classical propositional logic (classical zero—order logic) Semantics of propositional logic

Definition

The function g is an interpretation of the language L(O) if

@ Dom(p) = Con
@ If p € Con, then o(p) € {0, 1}.
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Classical propositional logic (classical zero—order logic) The semantic rules of propositional logic

Definition
Let o be an interpretation and |A|, be the semantic value of the formula A
formula with respect to .

@ If p € Con, then |p|, = o(p)
@ If A€ Form, then |—A|, =1 — |A,.
© If A, B € Form, then
| 0 if|Al,=1, and |B|,=0;
° [(A> Bl = { 1, otherwise
1 if|Al,=1 and |Bl,=1,
0, otherwise
0 if|A|, =0, and |B|, =0;
1, otherwise.

o [(AAB)|, =

-

if [Al, = [Bly;

1
° [(A=B) 0, otherwise.

{
ave. -
=
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Classical propositional logic (classical zero—order logic) Central logical (semantic) notions

Definition (model — a set of formulas)

Let I C Form be a set of formulas. An interpretation ¢ is a model of the
set of formulas I, if [A|, =1 forall AeT.

Definition — a model of a formula

A model of a formula A is the model of the singleton {A}.

Definition — satisfiable a set of formulas

The set of formulas ' C Form is satisfiable if it has a model.
(If there is an interpretation in which all members of the set I are ture.)

v

Definition — satisfiable a formula
A formula A € Form is satisfiable, if the singleton {A} is satisfiable. J
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Classical propositional logic (classical zero—order logic) Central logical (semantic) notions

Remark

@ A satisfiable set of formulas does not involve a logical contradiction;
its formulas may be true together.

o A safisfiable formula may be true.
@ If a set of formulas is satisfiable, then its members are satisfiable.

@ But: all members of the set {p, —p} are satisfiable, and the set is not
satisfiable.
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Classical propositional logic (classical zero—order logic) Central logical (semantic) notions

Theorem
All subsets of a satisfiable set are satisfiable. J

Proof
@ Let [ C Form be a set of formulas and A CT.

@ [ is satisfiable: it has a model. Let p be a model of I.
o A property of p: If A€ T, then |A], =1

@ Since ACT,if Aec A, then A€ T, and so |A|, = 1. That is the
interpretation o is a model of A, and so A is satisfiable.
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Classical propositional logic (classical zero—order logic) Central logical (semantic) notions

Definition — unsatisfiable set
The set ' C Form is unsatisfiable if it is not satisfiable.

Definition — unsatisfiable formula
A formula A € Form is unsatisfiable if the singleton {A} is unsatisfiable.

v

Remark

A unsatisfiable set of formulas involve a logical contradiction. (Its
members cannot be true together.)
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Classical propositional logic (classical zero—order logic) Central logical (semantic) notions

Theorem

All expansions of an unsatisfiable set of formulas are unsatisfiable.

Indirect proof

@ Suppose that [ C Form is an unsatisfiable set of formulas and
A C Form is a set of formulas.

@ Indirect condition: I is unsatisfiable, and I U A satisfiable.
o[ CTUA

@ According to the former theorem [ is satisfiable, and it is a
contradiction.
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Classical propositional logic (classical zero—order logic) Central logical (semantic) notions

Definition
A formula A is the logical consequence of the set of formulas I if the set
U {—A} is unsatifiable. (Notation: T F A)

Definition
AE B, if {A} E B.

Definition
The formula A is valid if ) F A. (Notation: F A) J

The formulas A and B are logically equivalent if AF B and B F A.
(Notation: A< B) J
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Classical propositional logic (classical zero—order logic) Central logical (semantic) notions

Theorem

Let [ C Form, and A € Form. I E A if and only if all models of the set I
are the models of formula A. (i.e. the singleton {A}).

Proof

— Indirect condition: There is a model of [ E A such that it is not a
model of the formula A.

Let the interpretation o be this model.

The properties of p:

Q |Blp,=1forall BeT;
@ |A|,=0,andso |-A|,=1

In this case all members of the set ' U {—A} are true wrt g-ban, and so
[ U {—A} is satisfiable. It means that [ # A, and it is a contradiction.
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Classical propositional logic (classical zero—order logic) Central logical (semantic) notions

Proof

< Indirect condition: All models of the set [ are the models of formula A,
but (and) I A.

In this case ' U {—A} is satisfiable, i.e. it has a model.
Let the interpretation ¢ be a model.
The properties of p:
Q |Bl,=1forall BeT;
Q@ |[-Al,=1ie |A,=0
So the set [ has a model such that it is not a model of formula A, and it
is a contradiction.

Corollary

Let ' C Form, and A € Form. T E A if and only if for all interpretations in
which all members of I are true, the formula A is true.
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Classical propositional logic (classical zero—order logic) Central logical (semantic) notions

Theorem

If Ais a valid formula ((F A)), then T E A for all sets of formulas I'. (A
valid formula is a consequence of any set of formulas.)

Proof
e If Ais a valid formula, then () E A (according to its definition).

e ) U{—-A} (= {—A}) is unsatisfiable, and so its expansions are
unsatisfiable.

o [ U{—A} is an expansion of {—A}, and so it is unsatisfiable, i.e.
[ F A.
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Classical propositional logic (classical zero—order logic) Central logical (semantic) notions

Theorem

If T is unsatisfiable, then I E A for all A. (All formulas are the
consequences of an unsatisfiable set of formulas.)

Proof

@ According to a proved theorem: If I is unsatisfiable, the all
expansions of [ are unsatisfiable.

@ U {—A} is an expansion of ', and so it is unsatisfiable, i.e. [ E A.

v
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Classical propositional logic (classical zero—order logic) Central logical (semantic) notions

Theorem

Deduction theorem: If T U{A} E B, then T E (A D B).

Proof
@ Indirect condition: Suppose, that T U{A} E B, and I ¥ (A D B).

o U {—(A D B)} is satisfiable, and so it has a model. Let the
interpretation o be a model.

@ The properties of p:

Q All members of I are true wrt p.
Q@ [~(ADB),=1

o |(A>B)|,=0,ie |A,=1and |B|,=0. So|-B|, = 1.

@ All members of ' U {A} U {—B} are true wrt interpretation p, i.e.
U{A} ¥ B, and it is a contradiction.
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Classical propositional logic (classical zero—order logic) Central logical (semantic) notions

Theorem
In the opposite direction: If ' E (A D B), then T U {A} F B. J

Proof
@ Indirect condition: Suppose that ' E (A D B), and I U {A} E B.

e So U {A} U{—B} is satisfiable, i.e. it has a model. Let the
interpretation o a model.

@ The properties of p:

@ All members of I are true wrt the interpretation .
Q [A,=1
Q@ |[-Bl,=1andso |B|,=0
o [(A>B), =0, [-(A> B)l, = 1
@ All members of ' U {—(A D B)} are true wrt the interpretation p, i.e.
[~ (A D B).
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Classical propositional logic (classical zero—order logic) Central logical (semantic) notions

Corollary

AE B if and only if E (A D B)

Proof

Let = () in the former theorems. )
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Cut elimination theorem

IfFU{A}IZ B and AEF A, then T UA F B.

Proof

Indirect. )
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Properties of truth functors

Classical propositional logic (classical zero—order logic)

The truth table of negation

— —|p
0] 1
110

@ The law of double negation: -——A < A
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Classical propositional logic (classical zero—order logic) Properties of truth functors

The truth table of conjunction

A 10 1 (q)
0 /0 0

10 1
(p)

o Commutative: (AA B) < (BAA)
for all A, B € Form.

@ Associative: (AAN(BAC))< ((AANB)AC)
for all A, B, C € Form.

@ ldempotent: (AN A) < A for all A€ Form.
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Classical propositional logic (classical zero—order logic) Properties of truth functors

(ANB)EA (ANB)EB
@ The law of contradiction: F (A A —A)

The set {A1, Az, ..., An} (A1, A2, ..., A, € Form) is satisfiable iff the
formula A1 A A> A --- A A, is satisfiable.

@ Theset {A1,As, ..., An} (A1, Az, ..., A, € Form) is unsatisfiable iff
the formula A; A A> A --- A A, is unsatisfiable.

o {A]_,A2, e ,An} FA (Al,AQ, LA AE Form) iff
AilNAA---NA, E A

o {A1,As,..., A} E A (A1, Az, ..., An, A € Form) iff the formula
((AL AN A2 A -+ AN Ap) A —A) is unsatisfiable.
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Classical propositional logic (classical zero—order logic) Properties of truth functors

V[0 1
The truth table of disjunction: 00 1
111 1

e Commutative: (AV B) < (B V A)

for all A, B € Form.

@ Associative:
(AvV(BV ())<= ((AvB)Vv ()
for all A, B, C € Form.

@ ldempotent: (AV A) < A for all A € Form.
@ AF(AV B) for all A,B € Form.
o {(AVB),-A} kB

@ The law of excluded middle: F (AV —A)
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Classical propositional logic (classical zero—order logic) Properties of truth functors

@ Connection between conjunction and disjunction:
A0 1 1 0 V[0 1
010 O 111 1 00 1
1{0 1 0|1 O 11 1
@ Conjunction and disjunction are dual truth functors.
@ Two laws of distributivity:
o (AV(BANC))&= ((AVB)A(AV ()
o (AN(BVCC)<= ((ANB)V(ANQ))
@ Properties of absorption
o (AN(BVA)) < A
o (AV(BAA)) < A
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Classical propositional logic (classical zero—order logic) Properties of truth functors

De Morgan's laws

What do we say when we deny a conjunction?
What do we say when we deny a disjunction?
—-(AAB) < (-AV -B)
-(AV B) < (-AA-B)

@ The proofs of De Morgan's laws.

A|lB|-A| B (—|A/\—IB) (A\/ B) —l(A\/ B)
00 1 1 1 0 1

o 0|1 1 0 0 1 0
110 O 1 0 1 0
111/ 0 0 0 1 0
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Classical propositional logic (classical zero—order logic) Properties of truth functors

o o
[y

D)
@ The truth table of implication: 0
1

o F(ADA)
@ Modus ponens: {(AD B),A} F B

@ Modus tollens:
{(ADB),-B} E-A

@ Chain rule: {(ADB),(BD> C)}F(AD C)
@ Reduction to absurdity: {(AD B),(AD> —-B)} F -A
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Classical propositional logic (classical zero—order logic) Properties of truth functors

-AF (AD B)

BE(AD B)
((AANB) D C)< (AD(BD Q)
Contraposition: (A D B) < (=B D —A)
(AD-A) F-A

(FADAEA
(AD(BDC) < ((A>DB)D(AD Q)
F(AD (-ADB))
(AVB)D )< ((ADC)A(BD Q)

(
{A]_,A2, - ,An} FA (Al,AQ, LA AE Form) iff the formula
((Al NAs A+ A An) D A) is valid.
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Classical propositional logic (classical zero—order logic) Properties of truth functors

= | 0 1
@ The truth table of (material) equivalence: 0|1 0
1 (0 1
o F (A= A)
o F-(A=-A)
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Classical propositional logic (classical zero—order logic) Properties of truth functors

Expressibility
e (ADB) < ~(AA-B)
(AD B) < (-AV B)
(AANB) & —=(AD —B)
(AV B) & (-AD B)
(AV B) < =(-AN—=B)
(AANB) & ~(-AV -B)
(A=B)< ((ADB)AN(BDA)
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Classical propositional logic (classical zero—order logic) Properties of truth functors

Theory of truth functors

Base

@ A base is a set of truth functors whose members can express all truth
functors.

o For example: {—,D},{—,A}, {—,V}

O (pAg) = —(pD —q)

Q@ (pvae)=(-pDq)
o Truth functor Sheffer: (p|q) < der =(pP A q)
o Truth functor neither-nor: (p || q) <der (—p A —q)
e Remark: Singleton bases: (p|q), (p || 9)
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Classical propositional logic (classical zero—order logic) Normal forms

Definition

If p € Con, then formulas p, —p are literals (p is the base of the literals).

.

Definition
If the formula A is a literal or a conjunction of literals with different bases,
then A is an elementary conjunction.

Definition
If the formula A is a literal or a disjunction of literals with different bases,
the A is an elementary disjunction.
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Classical propositional logic (classical zero—order logic) Normal forms

Definition

A disjunction of elementary conjunctions is a disjunctive normal form.

Definition

A conjunction of elementary disjunctions is a conjunctive normal form.

Theorem

There is a normal form of any formula of proposition logic, i. e. if
A € Form, then there is a formula B such that B is a normal form and
A&s B
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Classical first—order logic Language of classical first—order logic

Definition /1
The language of first—order logic is a
L) = (LC, Var, Con, Term, Form)
ordered 5—tuple, where
L. LC={-,D,A,V,=,=,¥,3,(,)}: (the set of logical constants).
2. Var (= {x,:n=0,1,2,...}): countable infinite set of variables
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Classical first—order logic Language of classical first—order logic

Definition /2
3. Con = J72o(F(n) UP(n)) the set of non—logical constants (at best
countable infinite)

F(0): the set of name parameters,

F(n): the set of n argument function parameters,
P(0): the set of prposition parameters,

P(n): the set of predicate parameters.

4. The sets LC, Var, F(n), P(n) are pairwise disjoint (n =0,1,2,...).

T. Mihalydeak Logic and Computer Science September 10, 2017 37 /1

Classical first—order logic Language of classical first—order logic

Definition/3
5. The set of terms, i.e. the set Term is given by the following inductive
definition:

(a) VarUF(0) C Term
(b) If feF(n), (n=1,2,...),s t1,ta,...,t, € Term, then
f(ti, ta, ..., ty) € Term.
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Classical first—order logic Language of classical first—order logic

Definition /4

6. The set of formulas, i.e. the set Form is given by the following
inductive definition:

(a) P(0) C Form

(b) If t1,t, € Term, then (t; = tp) € Form

(c) f PeP(n), (n=1,2,...),s t1,ta,...,t, € Term, then
P(t1, ta, ..., t,) € Form.

(d) If A€ Form, then —=A € Form.

(e) If A, B € Form, then
(ADB), (ANB), (AV B), (A= B) € Form.

(f) If x € Var, A € Form, then VxA, 3xA € Form.
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Classical first—order logic Syntactical definitions

Megjegyzs:

@ Azokat a formulkat, amelyek a 6. (a), (b), (c) szablyok Ital jnnek Itre,
atomi formulknak vagy prmformulknak nevezzk.

Definci:
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Classical first—order logic Semantics of classical first—order logic

Definition (interpretation)
The ordered pair (U, o) is an interpretation of the language L) if

@ U#1( (i.e. Uisa nonempty set);
e Dom(p) = Con
o If a € F(0), then p(a) € U;
o If f € F(n) (n+#0), then o(f) € UY”
o If p € P(0), then o(p) € {0,1};
o If PeP(n) (n#0), then o(P) C UM (o(P) € {0,1}V").
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Classical first—order logic Semantics of classical first—order logic

Definition (assignment)

The function v is an assignment relying on the interpretation (U, o) if the
followings hold:

@ Dom(v) = Var;
@ If x € Var, then v(x) € U.

Definition (modified assignment)

Let v be an assignment relying on the interpretation (U, o), x € Var and
ueU.

u, if y = x;
v(y), otherwise.

e ) = |

for all y € Var.
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Classical first—order logic Semantics of classical first—order logic

Definition (Semantic rules/1)
Let (U, o) be a given interpretation and v be an assignment relying on
(U, 0).
o If a € F(0), then |a\‘<,U’Q> = o(a).
o If x € Var, then |X\<U’Q> = v(x).
oIffE]-"()(n_12 .), and t1, tp, ..., t, € Term, then
F(a)(t2)... (@) :(xwm“umWQWAMW%)

If p € P(0), then [p|"? = o(p)
o If t1,tr € Term, then

Kan@{L 1] = ||V

0, otherwise.
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Classical first—order logic Semantics of classical first—order logic

Definition (Semantic rules/2)
o If PeP(n) (n#0), t1,...,t, € Term, then

|P(t1) ... (tn)|§,U’Q> _ )L if <|t1|\</U’Q>, Ces |t,,|$,U’Q>> e o(P);
0, otherwise.
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Classical first—order logic Semantics of classical first—order logic

Definition (Semantic rules/3)

o If A€ Form, then \ﬂA|\<,U’Q> =

e If A, B € Form, then

(A B = { ?

1— A2

if ALY =1, and |BI\V? =0,
otherwise.

if ALY =1, and [B|{? =1,
otherwise.

if [AL%? =0, and [B\"? =0,
otherwise.

1 if ALY = BV = o;
0, otherwise.

v
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Definition (Semantic rules/4)
o If A€ Form,x € Var, then
(U,o) 0, if thereis an u € U such that \A|<U’Q> =
|VXA’V e = ’ v[x:u]
1, otherwise.
(U,0) 1, if thereis an u € U such that |A|<U’Q> = 1;
|E|XA|V e — ’ v[x:u] '
0, otherwise.
v
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(GEESIEI R eI I@lll el Central logical (semantic) notions — FolL

Definition (model — a set of formulas)
Let L(1) = (LC, Var, Con, Term, Form) be a first order language and
[ C Form be a set of formulas. An ordered triple (U, g, v) is a model of
the set I, if
e (U, o) is an interpretation of L(1);

@ v is an assignment relying on (U, 9);

o AV =1forall AeT.

Definition — a model of a formula
A model of a formula A is the model of the singleton {A}.
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(GEESIEI R e I @Il Central logical (semantic) notions — FolL

Definition — satisfiable a set of formulas

The set of formulas I C Form is satisfiable if it has a model.

(If there is an interpretation and an assignment in which all members of
the set I are true.)

Definition — satisfiable a formula
A formula A € Form is satisfiable, if the singleton {A} is satisfiable.
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(GEESIEI R eI I@lll el Central logical (semantic) notions — FolL

Remark

@ A satisfiable set of formulas does not involve a logical contradiction;
its formulas may be true together.

@ A satisfiable formula may be true.
@ If a set of formulas is satisfiable, then its members are satisfiable.

@ But: all members of the set {P(a),—~P(a)} are satisfiable, and the set
is not satisfiable.

v
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(GEESIEI R e I @Il Central logical (semantic) notions — FolL

Theorem
All subsets of a satisfiable set are satisfiable.

Proof
@ Let [ C Form be a set of formulas and A CT.

@ [ is satisfiable: it has a model. Let (U, g, v) be a model of T.
@ A property of (U,0,v): If A€T, then |A|\<,U’Q> =1

o Since ACT,ifAc A, then AcT, and so |A|{Y"? = 1. That is the
ordered triple (U, o, v) is a model of A, and so A is satisfiable.
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(GEESIEI R eI I@lll el Central logical (semantic) notions — FolL

Definition — unsatisfiable set

The set ' € Form is unsatisfiable if it is not satisfiable. J
Definition — unsatisfiable formula

A formula A € Form is unsatisfiable if the singleton {A} is unsatisfiable. J

Remark

A unsatisfiable set of formulas involve a logical contradiction. (Its
members cannot be true together.)
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(GEESIEI R el @Il Central logical (semantic) notions — FolL

Theorem
All expansions of an unsatisfiable set of formulas are unsatisfiable.

Indirect proof

@ Suppose that [ C Form is an unsatisfiable set of formulas and
A C Form is a set of formulas.

@ Indirect condition: I is unsatisfiable, and I U A satisfiable.
o[ CTUA

@ According to the former theorem [ is satisfiable, and it is a
contradiction.
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(GEESIEI R eI I@lll el Central logical (semantic) notions — FolL

Definition
A formula A is the logical consequence of the set of formulas I' if the set
[ U {—A} is unsatifiable. (Notation: T F A)

Definition

AE B, if {A}E B.

Definition
The formula A is valid if ) E A. (Notation: F A)

Definition
The formulas A and B are logically equivalent if AF B and B E A.
(Notation: A < B)
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Classical first—order logic Properties of first order central logical notions

Theorem

Let I € Form, and A € Form. T E A if and only if all models of the set I
are the models of formula A. (i.e. the singleton {A}).

Proof

— Indirect condition: There is a model of [ F A such that it is not a
model of the formula A.

Let the ordered triple (U, g, v) be this model.

The properties of (U, g, v):

0 |B\Y? =1forall BeT;
@ |A|(U, ), =0, and so |-A[{Y? =1

In this case all members of the set ' U {—A} are true wrt the
interpretation (U, ) and assignment v, so ' U {—A} is satisfiable. It
means that [ # A, and it is a contradiction.
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Proof

< Indirect condition: All models of the set [ are the models of formula A,
but (and) I # A.

In this case ' U {—A} is satisfiable, i.e. it has a model.

Let the ordered triple (U, o, v) be a model.

The properties of (U, g, v):

(1) \B|\</U’Q> =1forall BeT;
Q@ -AYY =1, ie ALY =0

So the set [ has a model such that it is not a model of formula A, and it
iIs a contradiction.

Corollary

Let ' € Form, and A € Form. T E A if and only if for all interpretations in
which all members of I are true, the formula A is true.
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Classical first—order logic Properties of first order central logical notions

Theorem

If Ais a valid formula ((F A)), then I E A for all sets of formulas I'. (A
valid formula is a consequence of any set of formulas.)

Proof
e If Ais a valid formula, then () £ A (according to its definition).

e ) U{—-A} (= {—A}) is unsatisfiable, and so its expansions are
unsatisfiable.

e [ U{—A} is an expansion of {—A}, and so it is unsatisfiable, i.e.
[E A.

T. Mihalydeak Logic and Computer Science September 10, 2017 56 /1



Classical first—order logic Properties of first order central logical notions

Theorem

If T is unsatisfiable, then ' = A for all A. (All formulas are the
consequences of an unsatisfiable set of formulas.)

Proof

@ According to a proved theorem: If ' is unsatisfiable, the all
expansions of [ are unsatisfiable.

@ U {—A} is an expansion of ', and so it is unsatisfiable, i.e. [ E A.

o
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Classical first—order logic Properties of first order central logical notions
Theorem

Deduction theorem: If T U {A} E B, then T F (A D B).

Proof
@ Indirect condition: Suppose, that T U{A} E B, and I ¥ (A D B).

o NU{—(A D B)} is satisfiable, and so it has a model. Let the ordered
triple (U, g, v) be a model.

@ The properties of (U, o, v):
@ All members of I are true wrt (U, o) and v.
@ [~(AD B =1
o (AD BV =0, ie ALY =1 and BV = 0.
So|-B[{? = 1.
@ All members of ' U {A} U {—=B} are true wrt (U, o) and v, i.e.
[U{A} ¥ B, and it is a contradiction.
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Theorem
In the opposite direction: If = (A D B), then ' U {A} F B.

Proof
@ Indirect condition: Suppose that ' (A D B), and U {A} ¥ B.

@ So [ U{A} U{—B} is satisfiable, i.e. it has a model. Let the ordered
triple (U, 0, v) a model.

@ The properties of (U, o, v):
© All members of I are true wrt (U, o) and v.
Q | =1
Q |-B/\Y"? =1, and so |B|{V'? =0
(Ao B)|\Y? =0, |-(AD BV = 1.
@ All members of ' U {=(A D B)} are true wrt (U, ¢) and v, i.e.
¥ (ADB).
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Classical first—order logic Properties of first order central logical notions

Corollary
AE B if and only if E (A D B)

Proof
Let = () in the former theorems.
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Cut elimination theorem
If TU{A}FE Band AF A, thenTUAF B.

Proof
Indirect.
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Classical first—order logic Syntactical properties of variables

Definition

Let L() = (LC, Var, Con, Term, Form) be a first order language and
A € Form be a formula. The set of free variables of the formula A (in
notation: FreeVar(A)) is given by the following inductive definition:

e If Ais an atomic formula (i.e. A € AtForm), then the members of the
set FreeVar(A) are the variables occuring in A.

o If the formula A is =B, then FreeVar(A) = FreeVar(B).

@ If the formula Ais (B> C), (BAC), (BV C) or (B = C), then
FreeVar(A) = FreeVar(B)J FreeVar(C).

@ If the formula A is ¥xB or IxB, then FreeVar(A) = FreeVar(B) \ {x}.
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Classical first—order logic Syntactical properties of variables

Definition

Let L) = (LC, Var, Con, Term, Form) be a first order language and
A € Form be a formula. The set of bound variables of the formula A (in
notation: BoundVar(A)) is given by the following inductive definition:

@ If Ais an atomic formula (i.e. A € AtForm), then BoundVar(A) = ().

o If the formula A is =B, then BoundVar(A) = FreeVar(B).

@ If the formula Ais (B D C), (BAC), (BV C)or (B = C), then
BoundVar(A) = BoundVar(B) | J BoundVar(C).

@ If the formula A is VxB or dxB, then
BoundVar(A) = BoundVar(B) U {x}.
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Classical first—order logic Syntactical properties of variables

Remark
@ The bases of inductive definitions of sest of free and bound variables
are given by the first requirement of the corresponding definitions.

@ The sets of free and bound variables of a formula are not disoint
necessarily:

FreeVar((P(x) A 3xR(x))) = {x} = BoundVar((P(x) A IxR(x)))

T. Mihalydeak Logic and Computer Science September 10, 2017 64 /1



Classical first—order logic Syntactical properties of variables

Definition
Let L(1) = (LC, Var, Con, Term, Form) be a first order language, A € Form
be a formula, and x € Var be a variable.

@ A fixed occurence of the variable x in the formula A is free if it is not
in the subformulas VxB or dxB of the formula A.

@ A fixed occurence of the variable x in the formula A is bound if it is
not free.
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Classical first—order logic Syntactical properties of variables

Remark

o If x is a free variable of the formula A (i.e. x € FreeVar(A)), then it
has at least one free occurence in A.

e If x is a bound variable of the formula A
(i.e. x € BoundVar(A)), then it has at least one bound occurence in
A.
@ A fixed occurence of a variable x in the formula A is free if
e it does not follow a universal or an existential quantifier, or
e it is not in a scope of a Vx or a dx quantification.

@ A variable x may be a free and a bound variable of the formula A:
(P(x) A 3xR(x))
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Definition
Let L) = (LC, Var, Con, Term, Form) be a first order languuage and
A € Form be a formula.

@ If FreeVar(A) # (), then the formula A is an open formula.

o If FreeVar(A) = (), then the formula A is a closed formula.

Remark:
The formula A is open if there is at least one variable which has at least

one free occurence in A.
The formula A is closed if there is no variable which has a free occurence

in A.
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Classical first—order logic Properties of quantification

De Morgan Laws of quantifications

Let L() = (LC, Var, Con, Term, Form) be a first order language, A € Form
be a formula and x € Var be a variable. Then

o —IxA & WA
o WA & dx—A )
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Expressibilty of quantifications

Let L(1) = (LC, Var, Con, Term, Form) be a first order language, A € Form
be a formula and x € Var be a variable. Then
o IXA & WA

o WA & —Xx—A
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Classical first—order logic Properties of quantification

Conjunction and quantifications

Let L() = (LC, Var, Con, Term, Form) be a first order language,
A, B € Form be formulas and x € Var be a variable.
If x ¢ FreeVar(A), then

o ANVXB < Vx(AN B)

@ ANIxB < Ix(AN B)

Remark:

According to the commutativity of conjunction the followings hold:
If x ¢ FreeVar(A), then

o VxBANA & Vx(BAA)
@ IXxBAA< Ix(BAA)

T. Mihalydeak Logic and Computer Science September 10, 2017 70 /1



Classical first—order logic Properties of quantification

Disjunction and quantifications

Let L() = (LC, Var, Con, Term, Form) be a first order language,
A, B € Form be formulas and x € Var be a variable.
If x ¢ FreeVar(A), then

o AVYWB < W(AV B)

o AV 3dxB < dx(AV B)

Remark:
According to the commutativity of disjunction the followings hold:
If x ¢ FreeVar(A), then

o VxBV A& Vx(BVA)
@ IxBVA<< Ix(BVA)
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Classical first—order logic Properties of quantification

Implication with existential quantification

Let L) = (LC, Var, Con, Term, Form) be a first order language,
A, B € Form be formulas and x € Var be a variable.
If x ¢ FreeVar(A), then

e AD dxB < dx(AV B)

e dxB D A& Vx(B D A)
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Classical first—order logic Properties of quantification

Implication with universal quantification

Let L) = (LC, Var, Con, Term, Form) be a first order language,
A, B € Form be formulas and x € Var be a variable.
If x ¢ FreeVar(A), then

e ADVxB < Vx(AV B)

e VxB DA« Ix(BDA)
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Classical first—order logic Properties of quantification

Substitutabily a variable with an other variable

Let L(1) = (LC, Var, Con, Term, Form) be a first order language, A € Form
be a formula and x, y € Var be variables.
The variable x is subtitutable with the variable y in the formula A if there

is no a free occurence of x in A which is in the subformulas VyB or dyB of
A.

v

Example:

@ In the formula VzP(x, z) the variable x is substitutable with the
variable y, but x is not substitutable with the variable z.
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Classical first—order logic Properties of quantification

Substitutabily a variable with a term

Let L(1) = (LC, Var, Con, Term, Form) be a first order language, A € Form
be a formula, x € Var be a variable and t € Term be a term.

The variable x is subtitutable with the term t in the formula A if in the
formula A the variable x is substitutable with all variables occuring in the
term t.

Example

@ In the formula VzP(x, z) the variable x is substitutable with the term
f(y1,y2), but x is not substitutable with the term f(y, z).
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Classical first—order logic Properties of quantification

Result of a substitution

If the variable x is subtitutable with the term t in the formula A, then [A]L
denotes the formula which appear when all free occurences of the variable
x in A are substituted with the term t.
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Renaming

Let L(1) = (LC, Var, Con, Term, Form) be a first order language, A € Form
be a formula, and x, y € Var be variables.

If the variable x is subtitutable with the variable y in the formula A and
y ¢ FreeVar(A), then

e the formula Vy[A]X is a regular renaming of the formula VxA,;

@ the formula Jy[A]X is a regular renaming of the formula JxA.

T. Mihalydeak Logic and Computer Science September 10, 2017 77/ 1

Classical first—order logic Properties of quantification

Congruent formulas

Let L) = (LC, Var, Con, Term, Form) be a first order language and
A € Form be a formula.

The set Cong(A) (the set ot formulas which are congruent with A) is
given by the following inductive definition:

o A e Cong(A);

e if =B € Cong(A) and B’ € Cong(B), then =B’ € Cong(A);

e if (Bo C) € Cong(A), B € Cong(B) and C' € Cong(C), then
(B0 C") € Cong(A) (c € {D,A,V,=});

e if YxB € Cong(A) and Wy[B]X is a regular renaming of the formula
B, then W [B]X € Cong(A);

e if AxB € Cong(A) and Jy[B]% is a regular renaming of the formula
JxB, then Jy[B]X € Cong(A).
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Definition
Let L) = (LC, Var, Con, Term, Form) be a first order language and
A, B € Form be formulas.
e If B € Cong(A), then the formula A is congruent with the formula B.

e If B € Cong(A), then the formula B is a syntactical synonym of the
formula A.

Theorem

Congruent formulas are logically equivalent, i.e. if B € Cong(A), then
As B.
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Classical first—order logic Properties of quantification

Definition
Let L) = (LC, Var, Con, Term, Form) be a first order language and

A € Form be a formula.
The formula A is standardized if

o FreeVar(A) () BoundVar(A) = 0;

@ all bound variables of the formula A have exactly one occurences next
a quantifier.

v

Theorem

Let L) = (LC, Var, Con, Term, Form) be a first order language and
A € Form be a formula.
Then there is a formula B € Form such that

@ the formula B is standardized:

@ the formula B is congruent with the formula A, i.e. B € Cong(A).

T. Mihalydeak Logic and Computer Science September 10, 2017 80 /1



Classical first—order logic Properties of quantification

Definition
Let L() = (LC, Var, Con, Term, Form) be a first order language and

A € Form be a formula.
The formula A is prenex if

@ there is no quantifier in A or
@ the formula A is in the form Q1 x1@Qox2 ... QuxpB (n=1,2,...),
where

e there is no quantifier in the formula B € Form;
@ X1,X»...X, € Var are diffrent variables;
o Q1,Qn,...,Q, € {V,3} are quantifiers.
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Theorem

Let L) = (LC, Var, Con, Term, Form) be a first order language and

A € Form be a formula.
Then there is a formula B € Form such that

@ the formula B is prenex;
o A& B.
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