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Introduction

The main task of logic

to give the laws of valid arguments (inferences, consequence relations)

Valid arguments

Valid arguments (inferences):

an argument (an inference): a relation between premise(s) and
conclusion
a consequence relation

input: premise(s)
output: conclusion

Valid arguments (inferences, consequence relations): if all premises are
true, then the conclusion is true.
Logically valid arguments: when the former holds necessarily.
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Classical propositional logic (classical zero–order logic) Language of propositional logic

Definition/1

Classical zero–order language is an ordered triple

L(0) = 〈LC ,Con,Form〉

where

1 LC = {¬,⊃,∧,∨,≡, (, )} (the set of logical constants).

2 Con 6= ∅ the countable set of non-logical constants (propositional
parameters)

3 LC ∩ Con = ∅
4 The set of formulae i.e. the set Form is given by the following

inductive definition:
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Classical propositional logic (classical zero–order logic) Language of propositional logic

Definition/2

Con ⊆ Form

If A ∈ Form, then ¬A ∈ Form.

If A,B ∈ Form, then

(A ⊃ B) ∈ Form,
(A ∧ B) ∈ Form,
(A ∨ B) ∈ Form,
(A ≡ B) ∈ Form.

Remark

The members of the set Con are the atomic formulae (prime formulae).
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Classical propositional logic (classical zero–order logic) Subformulae

Definition

If A is an atomic formula, then it has no direct subformula;

¬A has exactly one direct subformula: A;

Direct subformulae of formulae (A ⊃ B), (A ∧ B), (A ∨ B), (A ≡ B)
are formulae A and B, respectively.

Definition

The set of subformulae of formula A [denoting: SF (A)] is given by the
following inductive definition:

1 A ∈ RF (A) (i.e. the formula A is a subformula of itself);

2 if A′ ∈ RF (A) and B is a direct subformula of A′-nek, then
B ∈ RF (A)
(i.e., if A′ is a subformula of A, then all direct subformulae of A′ are
subformulae of A).
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Classical propositional logic (classical zero–order logic) Construction tree

Definition

The contruction tree of a formula A is a finite ordered tree whose nodes
are formulae,

the root of the tree is the formmula A,

the node with formula ¬B has one child: he node with the formula B,

the node with formulae (B ⊃ C ), (B ∧ C ), (B ∨ C ), (B ≡ C ) has two
children: the nodes with B, and C

the leaves of the tree are atomic formulae.
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Classical propositional logic (classical zero–order logic) Semantics of propositional logic

Definition

The function % is an interpretation of the language L(0) if

1 Dom(%) = Con

2 If p ∈ Con, then %(p) ∈ {0, 1}.
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Classical propositional logic (classical zero–order logic) The semantic rules of propositional logic

Definition

Let % be an interpretation and |A|% be the semantic value of the formula A
formula with respect to %.

1 If p ∈ Con, then |p|% = %(p)

2 If A ∈ Form, then |¬A|% = 1− |A|%.
3 If A,B ∈ Form, then

|(A ⊃ B)|% =

{
0 if |A|% = 1, and |B|% = 0;
1, otherwise

|(A ∧ B)|% =

{
1 if |A|% = 1, and |B|% = 1;
0, otherwise

|(A ∨ B)|% =

{
0 if |A|% = 0, and |B|% = 0;
1, otherwise.

|(A ≡ B)|% =

{
1 if |A|% = |B|%;
0, otherwise.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Definition (model – a set of formulas)

Let Γ ⊆ Form be a set of formulas. An interpretation % is a model of the
set of formulas Γ, if |A|% = 1 for all A ∈ Γ.

Definition – a model of a formula

A model of a formula A is the model of the singleton {A}.

Definition – satisfiable a set of formulas

The set of formulas Γ ⊆ Form is satisfiable if it has a model.
(If there is an interpretation in which all members of the set Γ are ture.)

Definition – satisfiable a formula

A formula A ∈ Form is satisfiable, if the singleton {A} is satisfiable.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Remark

A satisfiable set of formulas does not involve a logical contradiction;
its formulas may be true together.

A safisfiable formula may be true.

If a set of formulas is satisfiable, then its members are satisfiable.

But: all members of the set {p,¬p} are satisfiable, and the set is not
satisfiable.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Theorem

All subsets of a satisfiable set are satisfiable.

Proof

Let Γ ⊆ Form be a set of formulas and ∆ ⊆ Γ.

Γ is satisfiable: it has a model. Let % be a model of Γ.

A property of %: If A ∈ Γ, then |A|% = 1

Since ∆ ⊆ Γ, if A ∈ ∆, then A ∈ Γ, and so |A|% = 1. That is the
interpretation % is a model of ∆, and so ∆ is satisfiable.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Definition – unsatisfiable set

The set Γ ⊆ Form is unsatisfiable if it is not satisfiable.

Definition – unsatisfiable formula

A formula A ∈ Form is unsatisfiable if the singleton {A} is unsatisfiable.

Remark

A unsatisfiable set of formulas involve a logical contradiction. (Its
members cannot be true together.)
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Theorem

All expansions of an unsatisfiable set of formulas are unsatisfiable.

Indirect proof

Suppose that Γ ⊆ Form is an unsatisfiable set of formulas and
∆ ⊆ Form is a set of formulas.

Indirect condition: Γ is unsatisfiable, and Γ ∪∆ satisfiable.

Γ ⊆ Γ ∪∆

According to the former theorem Γ is satisfiable, and it is a
contradiction.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Definition

A formula A is the logical consequence of the set of formulas Γ if the set
Γ ∪ {¬A} is unsatifiable. (Notation : Γ � A)

Definition

A � B, if {A} � B.

Definition

The formula A is valid if ∅ � A. (Notation: � A)

The formulas A and B are logically equivalent if A � B and B � A.
(Notation: A⇔ B)
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Theorem

Let Γ ⊆ Form, and A ∈ Form. Γ � A if and only if all models of the set Γ
are the models of formula A. (i.e. the singleton {A}).

Proof

→ Indirect condition: There is a model of Γ � A such that it is not a
model of the formula A.
Let the interpretation % be this model.
The properties of %:

1 |B|% = 1 for all B ∈ Γ;

2 |A|% = 0, and so |¬A|% = 1

In this case all members of the set Γ ∪ {¬A} are true wrt %-ban, and so
Γ ∪ {¬A} is satisfiable. It means that Γ 2 A, and it is a contradiction.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Proof

← Indirect condition: All models of the set Γ are the models of formula A,
but (and) Γ 2 A.
In this case Γ ∪ {¬A} is satisfiable, i.e. it has a model.
Let the interpretation % be a model.
The properties of %:

1 |B|% = 1 for all B ∈ Γ;

2 |¬A|% = 1, i.e. |A|% = 0

So the set Γ has a model such that it is not a model of formula A, and it
is a contradiction.

Corollary

Let Γ ⊆ Form, and A ∈ Form. Γ � A if and only if for all interpretations in
which all members of Γ are true, the formula A is true.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Theorem

If A is a valid formula ((� A)), then Γ � A for all sets of formulas Γ. (A
valid formula is a consequence of any set of formulas.)

Proof

If A is a valid formula, then ∅ � A (according to its definition).

∅ ∪ {¬A} (= {¬A}) is unsatisfiable, and so its expansions are
unsatisfiable.

Γ ∪ {¬A} is an expansion of {¬A}, and so it is unsatisfiable, i.e.
Γ � A.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Theorem

If Γ is unsatisfiable, then Γ � A for all A. (All formulas are the
consequences of an unsatisfiable set of formulas.)

Proof

According to a proved theorem: If Γ is unsatisfiable, the all
expansions of Γ are unsatisfiable.

Γ ∪ {¬A} is an expansion of Γ, and so it is unsatisfiable, i.e. Γ � A.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Theorem

Deduction theorem: If Γ ∪ {A} � B, then Γ � (A ⊃ B).

Proof

Indirect condition: Suppose, that Γ ∪ {A} � B, and Γ 2 (A ⊃ B).

Γ ∪ {¬(A ⊃ B)} is satisfiable, and so it has a model. Let the
interpretation % be a model.

The properties of %:

1 All members of Γ are true wrt %.
2 |¬(A ⊃ B)|% = 1

|(A ⊃ B)|% = 0, i.e. |A|% = 1 and |B|% = 0. So|¬B|% = 1.

All members of Γ ∪ {A} ∪ {¬B} are true wrt interpretation %, i.e.
Γ ∪ {A} 2 B, and it is a contradiction.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Theorem

In the opposite direction: If Γ � (A ⊃ B), then Γ ∪ {A} � B.

Proof

Indirect condition: Suppose that Γ � (A ⊃ B), and Γ ∪ {A} 2 B.

So Γ ∪ {A} ∪ {¬B} is satisfiable, i.e. it has a model. Let the
interpretation % a model.

The properties of %:

1 All members of Γ are true wrt the interpretation %.
2 |A|% = 1
3 |¬B|% = 1, and so |B|% = 0

|(A ⊃ B)|% = 0, |¬(A ⊃ B)|% = 1.

All members of Γ ∪ {¬(A ⊃ B)} are true wrt the interpretation %, i.e.
Γ 2 (A ⊃ B).
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Corollary

A � B if and only if � (A ⊃ B)

Proof

Let Γ = ∅ in the former theorems.
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Classical propositional logic (classical zero–order logic) Central logical (semantic) notions

Cut elimination theorem

If Γ ∪ {A} � B and ∆ � A, then Γ ∪∆ � B.

Proof

Indirect.
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Classical propositional logic (classical zero–order logic) Properties of truth functors

The truth table of negation

¬ ¬p
0 1
1 0

The law of double negation: ¬¬A⇔ A
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Classical propositional logic (classical zero–order logic) Properties of truth functors

The truth table of conjunction

∧ 0 1 (q)

0 0 0
1 0 1

(p)

Commutative: (A ∧ B)⇔ (B ∧ A)
for all A,B ∈ Form.

Associative: (A ∧ (B ∧ C ))⇔ ((A ∧ B) ∧ C )
for all A,B,C ∈ Form.

Idempotent: (A ∧ A)⇔ A for all A ∈ Form.
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Classical propositional logic (classical zero–order logic) Properties of truth functors

(A ∧ B) � A, (A ∧ B) � B

The law of contradiction: � ¬(A ∧ ¬A)

The set {A1,A2, . . . ,An} (A1,A2, . . . ,An ∈ Form) is satisfiable iff the
formula A1 ∧ A2 ∧ · · · ∧ An is satisfiable.

The set {A1,A2, . . . ,An} (A1,A2, . . . ,An ∈ Form) is unsatisfiable iff
the formula A1 ∧ A2 ∧ · · · ∧ An is unsatisfiable.

{A1,A2, . . . ,An} � A (A1,A2, . . . ,An,A ∈ Form) iff
A1 ∧ A2 ∧ · · · ∧ An � A.

{A1,A2, . . . ,An} � A (A1,A2, . . . ,An,A ∈ Form) iff the formula
((A1 ∧ A2 ∧ · · · ∧ An) ∧ ¬A) is unsatisfiable.
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Classical propositional logic (classical zero–order logic) Properties of truth functors

The truth table of disjunction:

∨ 0 1

0 0 1
1 1 1

Commutative: (A ∨ B)⇔ (B ∨ A)
for all A,B ∈ Form.

Associative:
(A ∨ (B ∨ C ))⇔ ((A ∨ B) ∨ C )
for all A,B,C ∈ Form.

Idempotent: (A ∨ A)⇔ A for all A ∈ Form.

A � (A ∨ B) for all A,B ∈ Form.

{(A ∨ B),¬A} � B

The law of excluded middle: � (A ∨ ¬A)
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Classical propositional logic (classical zero–order logic) Properties of truth functors

Connection between conjunction and disjunction:

∧ 0 1

0 0 0
1 0 1

1 0

1 1 1
0 1 0

∨ 0 1

0 0 1
1 1 1

Conjunction and disjunction are dual truth functors.

Two laws of distributivity:

(A ∨ (B ∧ C ))⇔ ((A ∨ B) ∧ (A ∨ C ))
(A ∧ (B ∨ C ))⇔ ((A ∧ B) ∨ (A ∧ C ))

Properties of absorption

(A ∧ (B ∨ A))⇔ A
(A ∨ (B ∧ A))⇔ A
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Classical propositional logic (classical zero–order logic) Properties of truth functors

De Morgan’s laws

What do we say when we deny a conjunction?

What do we say when we deny a disjunction?

¬(A ∧ B)⇔ (¬A ∨ ¬B)

¬(A ∨ B)⇔ (¬A ∧ ¬B)

The proofs of De Morgan’s laws.

A B ¬A ¬B (¬A ∧ ¬B) (A ∨ B) ¬(A ∨ B)

0 0 1 1 1 0 1
0 1 1 0 0 1 0
1 0 0 1 0 1 0
1 1 0 0 0 1 0
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Classical propositional logic (classical zero–order logic) Properties of truth functors

The truth table of implication:

⊃ 0 1

0 1 1
1 0 1

� (A ⊃ A)

Modus ponens: {(A ⊃ B),A} � B

Modus tollens:
{(A ⊃ B),¬B} � ¬A
Chain rule: {(A ⊃ B), (B ⊃ C )} � (A ⊃ C )

Reduction to absurdity: {(A ⊃ B), (A ⊃ ¬B)} � ¬A
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Classical propositional logic (classical zero–order logic) Properties of truth functors

¬A � (A ⊃ B)

B � (A ⊃ B)

((A ∧ B) ⊃ C )⇔ (A ⊃ (B ⊃ C ))

Contraposition: (A ⊃ B)⇔ (¬B ⊃ ¬A)

(A ⊃ ¬A) � ¬A
(¬A ⊃ A) � A

(A ⊃ (B ⊃ C ))⇔ ((A ⊃ B) ⊃ (A ⊃ C ))

� (A ⊃ (¬A ⊃ B))

((A ∨ B) ⊃ C )⇔ ((A ⊃ C ) ∧ (B ⊃ C ))

{A1,A2, . . . ,An} � A (A1,A2, . . . ,An,A ∈ Form) iff the formula
((A1 ∧ A2 ∧ · · · ∧ An) ⊃ A) is valid.
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Classical propositional logic (classical zero–order logic) Properties of truth functors

The truth table of (material) equivalence:

≡ 0 1

0 1 0
1 0 1

� (A ≡ A)

� ¬(A ≡ ¬A)
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Classical propositional logic (classical zero–order logic) Properties of truth functors

Expressibility

(A ⊃ B)⇔ ¬(A ∧ ¬B)

(A ⊃ B)⇔ (¬A ∨ B)

(A ∧ B)⇔ ¬(A ⊃ ¬B)

(A ∨ B)⇔ (¬A ⊃ B)

(A ∨ B)⇔ ¬(¬A ∧ ¬B)

(A ∧ B)⇔ ¬(¬A ∨ ¬B)

(A ≡ B)⇔ ((A ⊃ B) ∧ (B ⊃ A))
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Classical propositional logic (classical zero–order logic) Properties of truth functors

Theory of truth functors

Base

A base is a set of truth functors whose members can express all truth
functors.

For example: {¬,⊃},{¬,∧}, {¬,∨}
1 (p ∧ q)⇔ ¬(p ⊃ ¬q)
2 (p ∨ q)⇔ (¬p ⊃ q)

Truth functor Sheffer: (p|q)⇔def ¬(p ∧ q)
Truth functor neither-nor: (p ‖ q)⇔def (¬p ∧ ¬q)
Remark: Singleton bases: (p|q), (p ‖ q)
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Classical propositional logic (classical zero–order logic) Normal forms

Definition

If p ∈ Con, then formulas p,¬p are literals (p is the base of the literals).

Definition

If the formula A is a literal or a conjunction of literals with different bases,
then A is an elementary conjunction.

Definition

If the formula A is a literal or a disjunction of literals with different bases,
the A is an elementary disjunction.
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Classical propositional logic (classical zero–order logic) Normal forms

Definition

A disjunction of elementary conjunctions is a disjunctive normal form.

Definition

A conjunction of elementary disjunctions is a conjunctive normal form.

Theorem

There is a normal form of any formula of proposition logic, i. e. if
A ∈ Form, then there is a formula B such that B is a normal form and
A⇔ B
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Classical first–order logic Language of classical first–order logic

Definition/1

The language of first–order logic is a
L(1) = 〈LC ,Var ,Con,Term,Form〉

ordered 5–tuple, where

1. LC = {¬,⊃,∧,∨,≡,=, ∀, ∃, (, )}: (the set of logical constants).

2. Var (= {xn : n = 0, 1, 2, . . . }): countable infinite set of variables
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Classical first–order logic Language of classical first–order logic

Definition/2

3. Con =
⋃∞

n=0(F(n) ∪ P(n)) the set of non–logical constants (at best
countable infinite)

F(0): the set of name parameters,
F(n): the set of n argument function parameters,
P(0): the set of prposition parameters,
P(n): the set of predicate parameters.

4. The sets LC , Var , F(n), P(n) are pairwise disjoint (n = 0, 1, 2, . . . ).
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Classical first–order logic Language of classical first–order logic

Definition/3

5. The set of terms, i.e. the set Term is given by the following inductive
definition:

(a) Var ∪ F(0) ⊆ Term
(b) If f ∈ F(n), (n = 1, 2, . . . ), s t1, t2, . . . , tn ∈ Term, then

f (t1, t2, . . . , tn) ∈ Term.
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Classical first–order logic Language of classical first–order logic

Definition/4

6. The set of formulas, i.e. the set Form is given by the following
inductive definition:

(a) P(0) ⊆ Form
(b) If t1, t2 ∈ Term, then (t1 = t2) ∈ Form
(c) If P ∈ P(n), (n = 1, 2, . . . ), s t1, t2, . . . , tn ∈ Term, then

P(t1, t2, . . . , tn) ∈ Form.
(d) If A ∈ Form, then ¬A ∈ Form.
(e) If A,B ∈ Form, then

(A ⊃ B), (A ∧ B), (A ∨ B), (A ≡ B) ∈ Form.
(f) If x ∈ Var , A ∈ Form, then ∀xA, ∃xA ∈ Form.
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Classical first–order logic Syntactical definitions

Megjegyzs:

Azokat a formulkat, amelyek a 6. (a), (b), (c) szablyok ltal jnnek ltre,
atomi formulknak vagy prmformulknak nevezzk.

Definci:
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Classical first–order logic Semantics of classical first–order logic

Definition (interpretation)

The ordered pair 〈U, %〉 is an interpretation of the language L(1) if

U 6= ∅ (i.e. U is a nonempty set);

Dom(%) = Con

If a ∈ F(0), then %(a) ∈ U;

If f ∈ F(n) (n 6= 0), then %(f ) ∈ UU(n)

If p ∈ P(0), then %(p) ∈ {0, 1};
If P ∈ P(n) (n 6= 0), then %(P) ⊆ U(n) (%(P) ∈ {0, 1}U(n)

).
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Classical first–order logic Semantics of classical first–order logic

Definition (assignment)

The function v is an assignment relying on the interpretation 〈U, %〉 if the
followings hold:

Dom(v) = Var ;

If x ∈ Var , then v(x) ∈ U.

Definition (modified assignment)

Let v be an assignment relying on the interpretation 〈U, %〉, x ∈ Var and
u ∈ U.

v [x : u](y) =

{
u, if y = x ;
v(y), otherwise.

for all y ∈ Var .
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Classical first–order logic Semantics of classical first–order logic

Definition (Semantic rules/1)

Let 〈U, %〉 be a given interpretation and v be an assignment relying on
〈U, %〉.

If a ∈ F(0), then |a|〈U,%〉
v = %(a).

If x ∈ Var , then |x |〈U,%〉
v = v(x).

If f ∈ F(n), (n = 1, 2, . . . ), and t1, t2, . . . , tn ∈ Term, then

|f (t1)(t2) . . . (tn)|〈U,%〉
v = %(f )(〈|t1|〈U,%〉

v , |t2|〈U,%〉
v , . . . , |tn|〈U,%〉

v 〉)
If p ∈ P(0), then |p|〈U,%〉

v = %(p)

If t1, t2 ∈ Term, then

|(t1 = t2)|〈U,%〉
v =

{
1, if |t1|〈U,%〉

v = |t2|〈U,%〉
v

0, otherwise.
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Classical first–order logic Semantics of classical first–order logic

Definition (Semantic rules/2)

If P ∈ P(n) (n 6= 0), t1, . . . , tn ∈ Term, then

|P(t1) . . . (tn)|〈U,%〉
v =

{
1, if 〈|t1|〈U,%〉

v , . . . , |tn|〈U,%〉
v 〉 ∈ %(P);

0, otherwise.
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Classical first–order logic Semantics of classical first–order logic

Definition (Semantic rules/3)

If A ∈ Form, then |¬A|〈U,%〉
v = 1− |A|〈U,%〉

v .

If A,B ∈ Form, then

|(A ⊃ B)|〈U,%〉
v =

{
0 if |A|〈U,%〉

v = 1, and |B|〈U,%〉
v = 0;

1, otherwise.

|(A ∧ B)|〈U,%〉
v =

{
1 if |A|〈U,%〉

v = 1, and |B|〈U,%〉
v = 1;

0, otherwise.

|(A ∨ B)|〈U,%〉
v =

{
0 if |A|〈U,%〉

v = 0, and |B|〈U,%〉
v = 0;

1, otherwise.

|(A ≡ B)|〈U,%〉
v =

{
1 if |A|〈U,%〉

v = |B|〈U,%〉
v = 0;

0, otherwise.
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Classical first–order logic Semantics of classical first–order logic

Definition (Semantic rules/4)

If A ∈ Form, x ∈ Var , then

|∀xA|〈U,%〉
v =

{
0, if there is an u ∈ U such that |A|〈U,%〉

v [x :u] = 0;

1, otherwise.

|∃xA|〈U,%〉
v =

{
1, if there is an u ∈ U such that |A|〈U,%〉

v [x :u] = 1;

0, otherwise.
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Classical first–order logic Central logical (semantic) notions — FoL

Definition (model – a set of formulas)

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
Γ ⊆ Form be a set of formulas. An ordered triple 〈U, %, v〉 is a model of
the set Γ, if

〈U, %〉 is an interpretation of L(1);

v is an assignment relying on 〈U, %〉;
|A|〈U,%〉

v = 1 for all A ∈ Γ.

Definition – a model of a formula

A model of a formula A is the model of the singleton {A}.
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Classical first–order logic Central logical (semantic) notions — FoL

Definition – satisfiable a set of formulas

The set of formulas Γ ⊆ Form is satisfiable if it has a model.
(If there is an interpretation and an assignment in which all members of
the set Γ are true.)

Definition – satisfiable a formula

A formula A ∈ Form is satisfiable, if the singleton {A} is satisfiable.
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Classical first–order logic Central logical (semantic) notions — FoL

Remark

A satisfiable set of formulas does not involve a logical contradiction;
its formulas may be true together.

A satisfiable formula may be true.

If a set of formulas is satisfiable, then its members are satisfiable.

But: all members of the set {P(a),¬P(a)} are satisfiable, and the set
is not satisfiable.
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Classical first–order logic Central logical (semantic) notions — FoL

Theorem

All subsets of a satisfiable set are satisfiable.

Proof

Let Γ ⊆ Form be a set of formulas and ∆ ⊆ Γ.

Γ is satisfiable: it has a model. Let 〈U, %, v〉 be a model of Γ.

A property of 〈U, %, v〉: If A ∈ Γ, then |A|〈U,%〉
v = 1

Since ∆ ⊆ Γ, if A ∈ ∆, then A ∈ Γ, and so |A|〈U,%〉
v = 1. That is the

ordered triple 〈U, %, v〉 is a model of ∆, and so ∆ is satisfiable.
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Classical first–order logic Central logical (semantic) notions — FoL

Definition – unsatisfiable set

The set Γ ⊆ Form is unsatisfiable if it is not satisfiable.

Definition – unsatisfiable formula

A formula A ∈ Form is unsatisfiable if the singleton {A} is unsatisfiable.

Remark

A unsatisfiable set of formulas involve a logical contradiction. (Its
members cannot be true together.)
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Classical first–order logic Central logical (semantic) notions — FoL

Theorem

All expansions of an unsatisfiable set of formulas are unsatisfiable.

Indirect proof

Suppose that Γ ⊆ Form is an unsatisfiable set of formulas and
∆ ⊆ Form is a set of formulas.

Indirect condition: Γ is unsatisfiable, and Γ ∪∆ satisfiable.

Γ ⊆ Γ ∪∆

According to the former theorem Γ is satisfiable, and it is a
contradiction.
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Classical first–order logic Central logical (semantic) notions — FoL

Definition

A formula A is the logical consequence of the set of formulas Γ if the set
Γ ∪ {¬A} is unsatifiable. (Notation : Γ � A)

Definition

A � B, if {A} � B.

Definition

The formula A is valid if ∅ � A. (Notation: � A)

Definition

The formulas A and B are logically equivalent if A � B and B � A.
(Notation: A⇔ B)
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Classical first–order logic Properties of first order central logical notions

Theorem

Let Γ ⊆ Form, and A ∈ Form. Γ � A if and only if all models of the set Γ
are the models of formula A. (i.e. the singleton {A}).

Proof

→ Indirect condition: There is a model of Γ � A such that it is not a
model of the formula A.
Let the ordered triple 〈U, %, v〉 be this model.
The properties of 〈U, %, v〉:

1 |B|〈U,%〉
v = 1 for all B ∈ Γ;

2 |A|〈U, %〉v = 0, and so |¬A|〈U,%〉
v = 1

In this case all members of the set Γ ∪ {¬A} are true wrt the
interpretation 〈U, %〉 and assignment v , so Γ ∪ {¬A} is satisfiable. It
means that Γ 2 A, and it is a contradiction.

T. Mihálydeák Logic and Computer Science September 10, 2017 54 / 1



Classical first–order logic Properties of first order central logical notions

Proof

← Indirect condition: All models of the set Γ are the models of formula A,
but (and) Γ 2 A.
In this case Γ ∪ {¬A} is satisfiable, i.e. it has a model.
Let the ordered triple 〈U, %, v〉 be a model.
The properties of 〈U, %, v〉:

1 |B|〈U,%〉
v = 1 for all B ∈ Γ;

2 |¬A|〈U,%〉
v = 1, i.e. |A|〈U,%〉

v = 0

So the set Γ has a model such that it is not a model of formula A, and it
is a contradiction.

Corollary

Let Γ ⊆ Form, and A ∈ Form. Γ � A if and only if for all interpretations in
which all members of Γ are true, the formula A is true.
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Classical first–order logic Properties of first order central logical notions

Theorem

If A is a valid formula ((� A)), then Γ � A for all sets of formulas Γ. (A
valid formula is a consequence of any set of formulas.)

Proof

If A is a valid formula, then ∅ � A (according to its definition).

∅ ∪ {¬A} (= {¬A}) is unsatisfiable, and so its expansions are
unsatisfiable.

Γ ∪ {¬A} is an expansion of {¬A}, and so it is unsatisfiable, i.e.
Γ � A.
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Classical first–order logic Properties of first order central logical notions

Theorem

If Γ is unsatisfiable, then Γ � A for all A. (All formulas are the
consequences of an unsatisfiable set of formulas.)

Proof

According to a proved theorem: If Γ is unsatisfiable, the all
expansions of Γ are unsatisfiable.

Γ ∪ {¬A} is an expansion of Γ, and so it is unsatisfiable, i.e. Γ � A.
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Classical first–order logic Properties of first order central logical notions

Theorem

Deduction theorem: If Γ ∪ {A} � B, then Γ � (A ⊃ B).

Proof

Indirect condition: Suppose, that Γ ∪ {A} � B, and Γ 2 (A ⊃ B).

Γ ∪ {¬(A ⊃ B)} is satisfiable, and so it has a model. Let the ordered
triple 〈U, %, v〉 be a model.

The properties of 〈U, %, v〉:
1 All members of Γ are true wrt 〈U, %〉 and v .
2 |¬(A ⊃ B)|〈U,%〉

v = 1

|(A ⊃ B)|〈U,%〉
v = 0, i.e. |A|〈U,%〉

v = 1 and |B|〈U,%〉
v = 0.

So|¬B|〈U,%〉
v = 1.

All members of Γ ∪ {A} ∪ {¬B} are true wrt 〈U, %〉 and v , i.e.
Γ ∪ {A} 2 B, and it is a contradiction.
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Classical first–order logic Properties of first order central logical notions

Theorem

In the opposite direction: If Γ � (A ⊃ B), then Γ ∪ {A} � B.

Proof

Indirect condition: Suppose that Γ � (A ⊃ B), and Γ ∪ {A} 2 B.

So Γ ∪ {A} ∪ {¬B} is satisfiable, i.e. it has a model. Let the ordered
triple 〈U, %, v〉 a model.

The properties of 〈U, %, v〉:
1 All members of Γ are true wrt 〈U, %〉 and v .
2 |A|〈U,%〉

v = 1
3 |¬B|〈U,%〉

v = 1, and so |B|〈U,%〉
v = 0

|(A ⊃ B)|〈U,%〉
v = 0, |¬(A ⊃ B)|〈U,%〉

v = 1.

All members of Γ ∪ {¬(A ⊃ B)} are true wrt 〈U, %〉 and v , i.e.
Γ 2 (A ⊃ B).
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Classical first–order logic Properties of first order central logical notions

Corollary

A � B if and only if � (A ⊃ B)

Proof

Let Γ = ∅ in the former theorems.
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Classical first–order logic Properties of first order central logical notions

Cut elimination theorem

If Γ ∪ {A} � B and ∆ � A, then Γ ∪∆ � B.

Proof

Indirect.
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Classical first–order logic Syntactical properties of variables

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A ∈ Form be a formula. The set of free variables of the formula A (in
notation: FreeVar(A)) is given by the following inductive definition:

If A is an atomic formula (i.e. A ∈ AtForm), then the members of the
set FreeVar(A) are the variables occuring in A.

If the formula A is ¬B, then FreeVar(A) = FreeVar(B).

If the formula A is (B ⊃ C ), (B ∧ C ), (B ∨ C ) or (B ≡ C ), then
FreeVar(A) = FreeVar(B)

⋃
FreeVar(C ).

If the formula A is ∀xB or ∃xB, then FreeVar(A) = FreeVar(B) \ {x}.
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Classical first–order logic Syntactical properties of variables

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A ∈ Form be a formula. The set of bound variables of the formula A (in
notation: BoundVar(A)) is given by the following inductive definition:

If A is an atomic formula (i.e. A ∈ AtForm), then BoundVar(A) = ∅.
If the formula A is ¬B, then BoundVar(A) = FreeVar(B).

If the formula A is (B ⊃ C ), (B ∧ C ), (B ∨ C ) or (B ≡ C ), then
BoundVar(A) = BoundVar(B)

⋃
BoundVar(C ).

If the formula A is ∀xB or ∃xB, then
BoundVar(A) = BoundVar(B) ∪ {x}.
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Classical first–order logic Syntactical properties of variables

Remark

The bases of inductive definitions of sest of free and bound variables
are given by the first requirement of the corresponding definitions.

The sets of free and bound variables of a formula are not disoint
necessarily:
FreeVar((P(x) ∧ ∃xR(x))) = {x} = BoundVar((P(x) ∧ ∃xR(x)))
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Classical first–order logic Syntactical properties of variables

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language, A ∈ Form
be a formula, and x ∈ Var be a variable.

A fixed occurence of the variable x in the formula A is free if it is not
in the subformulas ∀xB or ∃xB of the formula A.

A fixed occurence of the variable x in the formula A is bound if it is
not free.

T. Mihálydeák Logic and Computer Science September 10, 2017 65 / 1

Classical first–order logic Syntactical properties of variables

Remark

If x is a free variable of the formula A (i.e. x ∈ FreeVar(A)), then it
has at least one free occurence in A.

If x is a bound variable of the formula A
(i.e. x ∈ BoundVar(A)), then it has at least one bound occurence in
A.

A fixed occurence of a variable x in the formula A is free if

it does not follow a universal or an existential quantifier, or
it is not in a scope of a ∀x or a ∃x quantification.

A variable x may be a free and a bound variable of the formula A:
(P(x) ∧ ∃xR(x))
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Classical first–order logic Syntactical properties of variables

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order languuage and
A ∈ Form be a formula.

If FreeVar(A) 6= ∅, then the formula A is an open formula.

If FreeVar(A) = ∅, then the formula A is a closed formula.

Remark:
The formula A is open if there is at least one variable which has at least
one free occurence in A.
The formula A is closed if there is no variable which has a free occurence
in A.
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Classical first–order logic Properties of quantification

De Morgan Laws of quantifications

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language, A ∈ Form
be a formula and x ∈ Var be a variable. Then

¬∃xA⇔ ∀x¬A
¬∀xA⇔ ∃x¬A
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Classical first–order logic Properties of quantification

Expressibilty of quantifications

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language, A ∈ Form
be a formula and x ∈ Var be a variable. Then

∃xA⇔ ¬∀x¬A
∀xA⇔ ¬∃x¬A
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Classical first–order logic Properties of quantification

Conjunction and quantifications

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A,B ∈ Form be formulas and x ∈ Var be a variable.
If x /∈ FreeVar(A), then

A ∧ ∀xB ⇔ ∀x(A ∧ B)

A ∧ ∃xB ⇔ ∃x(A ∧ B)

Remark:
According to the commutativity of conjunction the followings hold:
If x /∈ FreeVar(A), then

∀xB ∧ A⇔ ∀x(B ∧ A)

∃xB ∧ A⇔ ∃x(B ∧ A)
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Classical first–order logic Properties of quantification

Disjunction and quantifications

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A,B ∈ Form be formulas and x ∈ Var be a variable.
If x /∈ FreeVar(A), then

A ∨ ∀xB ⇔ ∀x(A ∨ B)

A ∨ ∃xB ⇔ ∃x(A ∨ B)

Remark:
According to the commutativity of disjunction the followings hold:
If x /∈ FreeVar(A), then

∀xB ∨ A⇔ ∀x(B ∨ A)

∃xB ∨ A⇔ ∃x(B ∨ A)
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Classical first–order logic Properties of quantification

Implication with existential quantification

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A,B ∈ Form be formulas and x ∈ Var be a variable.
If x /∈ FreeVar(A), then

A ⊃ ∃xB ⇔ ∃x(A ∨ B)

∃xB ⊃ A⇔ ∀x(B ⊃ A)
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Classical first–order logic Properties of quantification

Implication with universal quantification

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A,B ∈ Form be formulas and x ∈ Var be a variable.
If x /∈ FreeVar(A), then

A ⊃ ∀xB ⇔ ∀x(A ∨ B)

∀xB ⊃ A⇔ ∃x(B ⊃ A)
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Classical first–order logic Properties of quantification

Substitutabily a variable with an other variable

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language, A ∈ Form
be a formula and x , y ∈ Var be variables.
The variable x is subtitutable with the variable y in the formula A if there
is no a free occurence of x in A which is in the subformulas ∀yB or ∃yB of
A.

Example:

In the formula ∀zP(x , z) the variable x is substitutable with the
variable y , but x is not substitutable with the variable z .
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Classical first–order logic Properties of quantification

Substitutabily a variable with a term

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language, A ∈ Form
be a formula, x ∈ Var be a variable and t ∈ Term be a term.
The variable x is subtitutable with the term t in the formula A if in the
formula A the variable x is substitutable with all variables occuring in the
term t.

Example

In the formula ∀zP(x , z) the variable x is substitutable with the term
f (y1, y2), but x is not substitutable with the term f (y , z).
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Classical first–order logic Properties of quantification

Result of a substitution

If the variable x is subtitutable with the term t in the formula A, then [A]tx
denotes the formula which appear when all free occurences of the variable
x in A are substituted with the term t.
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Classical first–order logic Properties of quantification

Renaming

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language, A ∈ Form
be a formula, and x , y ∈ Var be variables.
If the variable x is subtitutable with the variable y in the formula A and
y /∈ FreeVar(A), then

the formula ∀y [A]yx is a regular renaming of the formula ∀xA;

the formula ∃y [A]yx is a regular renaming of the formula ∃xA.
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Classical first–order logic Properties of quantification

Congruent formulas

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A ∈ Form be a formula.
The set Cong(A) (the set ot formulas which are congruent with A) is
given by the following inductive definition:

A ∈ Cong(A);

if ¬B ∈ Cong(A) and B ′ ∈ Cong(B), then ¬B ′ ∈ Cong(A);

if (B ◦ C ) ∈ Cong(A), B ′ ∈ Cong(B) and C ′ ∈ Cong(C ), then
(B ′ ◦ C ′) ∈ Cong(A) (◦ ∈ {⊃,∧,∨,≡});

if ∀xB ∈ Cong(A) and ∀y [B]yx is a regular renaming of the formula
∀xB, then ∀y [B]yx ∈ Cong(A);

if ∃xB ∈ Cong(A) and ∃y [B]yx is a regular renaming of the formula
∃xB, then ∃y [B]yx ∈ Cong(A).
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Classical first–order logic Properties of quantification

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A,B ∈ Form be formulas.

If B ∈ Cong(A), then the formula A is congruent with the formula B.

If B ∈ Cong(A), then the formula B is a syntactical synonym of the
formula A.

Theorem

Congruent formulas are logically equivalent, i.e. if B ∈ Cong(A), then
A⇔ B.
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Classical first–order logic Properties of quantification

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A ∈ Form be a formula.
The formula A is standardized if

FreeVar(A)
⋂
BoundVar(A) = ∅;

all bound variables of the formula A have exactly one occurences next
a quantifier.

Theorem

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A ∈ Form be a formula.
Then there is a formula B ∈ Form such that

the formula B is standardized;

the formula B is congruent with the formula A, i.e. B ∈ Cong(A).
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Classical first–order logic Properties of quantification

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A ∈ Form be a formula.
The formula A is prenex if

there is no quantifier in A or

the formula A is in the form Q1x1Q2x2 . . .QnxnB (n = 1, 2, . . .),
where

there is no quantifier in the formula B ∈ Form;
x1, x2 . . . xn ∈ Var are diffrent variables;
Q1,Q2, . . . ,Qn ∈ {∀,∃} are quantifiers.
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Classical first–order logic Properties of quantification

Theorem

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language and
A ∈ Form be a formula.
Then there is a formula B ∈ Form such that

the formula B is prenex;

A⇔ B.
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