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The main task of logic

to give the laws of valid arguments (inferences, consequence
relations)

Valid arguments

Valid arguments (inferences):

an argument (an inference): a relation between premise(s) and
conclusion
a consequence relation

input: premise(s)
output: conclusion

Valid arguments (inferences, consequence relations): if all
premises are true, then the conclusion is true.
Logically valid arguments: when the former holds necessarily.
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Language of propositional logic

Definition/1

Classical zero–order language is an ordered triple

L(0) = 〈LC ,Con,Form〉

where

1 LC = {¬,⊃,∧,∨,≡, (, )} (the set of logical constants).

2 Con 6= ∅ the countable set of non-logical constants
(propositional parameters)

3 LC ∩ Con = ∅
4 The set of formulae i.e. the set Form is given by the following

inductive definition:
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Language of propositional logic

Definition/2

Con ⊆ Form

If A ∈ Form, then ¬A ∈ Form.

If A,B ∈ Form, then

(A ⊃ B) ∈ Form,
(A ∧ B) ∈ Form,
(A ∨ B) ∈ Form,
(A ≡ B) ∈ Form.

Remark

The members of the set Con are the atomic formulae (prime
formulae).
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Subformulae

Definition

If A is an atomic formula, then it has no direct subformula;

¬A has exactly one direct subformula: A;

Direct subformulae of formulae (A ⊃ B), (A ∧ B), (A ∨ B),
(A ≡ B) are formulae A and B, respectively.

Definition

The set of subformulae of formula A [denoting: SF (A)] is given by
the following inductive definition:

1 A ∈ RF (A) (i.e. the formula A is a subformula of itself);

2 if A′ ∈ RF (A) and B is a direct subformula of A′-nek, then
B ∈ RF (A)
(i.e., if A′ is a subformula of A, then all direct subformulae of
A′ are subformulae of A).
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Construction tree

Definition

The contruction tree of a formula A is a finite ordered tree whose
nodes are formulae,

the root of the tree is the formmula A,

the node with formula ¬B has one child: he node with the
formula B,

the node with formulae (B ⊃ C ), (B ∧ C ), (B ∨ C ), (B ≡ C )
has two children: the nodes with B, and C

the leaves of the tree are atomic formulae.
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Semantics of propositional logic

Definition

The function % is an interpretation of the language L(0) if

1 Dom(%) = Con

2 If p ∈ Con, then %(p) ∈ {0, 1}.
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The semantic rules of propositional logic

Definition

Let % be an interpretation and |A|% be the semantic value of the
formula A formula with respect to %.

1 If p ∈ Con, then |p|% = %(p)

2 If A ∈ Form, then |¬A|% = 1− |A|%.
3 If A,B ∈ Form, then

|(A ⊃ B)|% =

{
0 if |A|% = 1, and |B|% = 0;
1, otherwise

|(A ∧ B)|% =

{
1 if |A|% = 1, and |B|% = 1;
0, otherwise

|(A ∨ B)|% =

{
0 if |A|% = 0, and |B|% = 0;
1, otherwise.

|(A ≡ B)|% =

{
1 if |A|% = |B|%;
0, otherwise.
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Central logical (semantic) notions

Definition (model – a set of formulas)

Let Γ ⊆ Form be a set of formulas. An interpretation % is a model
of the set of formulas Γ, if |A|% = 1 for all A ∈ Γ.

Definition – a model of a formula

A model of a formula A is the model of the singleton {A}.

Definition – satisfiable a set of formulas

The set of formulas Γ ⊆ Form is satisfiable if it has a model.
(If there is an interpretation in which all members of the set Γ are
ture.)

Definition – satisfiable a formula

A formula A ∈ Form is satisfiable, if the singleton {A} is satisfiable.
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Central logical (semantic) notions

Remark

A satisfiable set of formulas does not involve a logical
contradiction; its formulas may be true together.

A safisfiable formula may be true.

If a set of formulas is satisfiable, then its members are
satisfiable.

But: all members of the set {p,¬p} are satisfiable, and the
set is not satisfiable.



Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus Natural deduction Classical first–order logic

Central logical (semantic) notions

Theorem

All subsets of a satisfiable set are satisfiable.

Proof

Let Γ ⊆ Form be a set of formulas and ∆ ⊆ Γ.

Γ is satisfiable: it has a model. Let % be a model of Γ.

A property of %: If A ∈ Γ, then |A|% = 1

Since ∆ ⊆ Γ, if A ∈ ∆, then A ∈ Γ, and so |A|% = 1. That is
the interpretation % is a model of ∆, and so ∆ is satisfiable.
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Central logical (semantic) notions

Definition – unsatisfiable set

The set Γ ⊆ Form is unsatisfiable if it is not satisfiable.

Definition – unsatisfiable formula

A formula A ∈ Form is unsatisfiable if the singleton {A} is
unsatisfiable.

Remark

A unsatisfiable set of formulas involve a logical contradiction. (Its
members cannot be true together.)
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Central logical (semantic) notions

Theorem

All expansions of an unsatisfiable set of formulas are unsatisfiable.

Indirect proof

Suppose that Γ ⊆ Form is an unsatisfiable set of formulas and
∆ ⊆ Form is a set of formulas.

Indirect condition: Γ is unsatisfiable, and Γ ∪∆ satisfiable.

Γ ⊆ Γ ∪∆

According to the former theorem Γ is satisfiable, and it is a
contradiction.
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Central logical (semantic) notions

Definition

A formula A is the logical consequence of the set of formulas Γ if
the set Γ ∪ {¬A} is unsatifiable. (Notation : Γ � A)

Definition

A � B, if {A} � B.

Definition

The formula A is valid if ∅ � A. (Notation: � A)

The formulas A and B are logically equivalent if A � B and B � A.
(Notation: A⇔ B)
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Central logical (semantic) notions

Theorem

Let Γ ⊆ Form, and A ∈ Form. Γ � A if and only if all models of
the set Γ are the models of formula A. (i.e. the singleton {A}).

Proof

→ Indirect condition: There is a model of Γ � A such that it is not
a model of the formula A.
Let the interpretation % be this model.
The properties of %:

1 |B|% = 1 for all B ∈ Γ;

2 |A|% = 0, and so |¬A|% = 1

In this case all members of the set Γ ∪ {¬A} are true wrt %-ban,
and so Γ ∪ {¬A} is satisfiable. It means that Γ 2 A, and it is a
contradiction.
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Central logical (semantic) notions

Proof

← Indirect condition: All models of the set Γ are the models of
formula A, but (and) Γ 2 A.
In this case Γ ∪ {¬A} is satisfiable, i.e. it has a model.
Let the interpretation % be a model.
The properties of %:

1 |B|% = 1 for all B ∈ Γ;

2 |¬A|% = 1, i.e. |A|% = 0

So the set Γ has a model such that it is not a model of formula A,
and it is a contradiction.

Corollary

Let Γ ⊆ Form, and A ∈ Form. Γ � A if and only if for all
interpretations in which all members of Γ are true, the formula A is
true.
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Central logical (semantic) notions

Theorem

If A is a valid formula ((� A)), then Γ � A for all sets of formulas
Γ. (A valid formula is a consequence of any set of formulas.)

Proof

If A is a valid formula, then ∅ � A (according to its definition).

∅ ∪ {¬A} (= {¬A}) is unsatisfiable, and so its expansions are
unsatisfiable.

Γ ∪ {¬A} is an expansion of {¬A}, and so it is unsatisfiable,
i.e. Γ � A.
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Central logical (semantic) notions

Theorem

If Γ is unsatisfiable, then Γ � A for all A. (All formulas are the
consequences of an unsatisfiable set of formulas.)

Proof

According to a proved theorem: If Γ is unsatisfiable, the all
expansions of Γ are unsatisfiable.

Γ ∪ {¬A} is an expansion of Γ, and so it is unsatisfiable, i.e.
Γ � A.
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Central logical (semantic) notions

Theorem

Deduction theorem: If Γ ∪ {A} � B, then Γ � (A ⊃ B).

Proof

Indirect condition: Suppose, that Γ ∪ {A} � B, and
Γ 2 (A ⊃ B).

Γ ∪ {¬(A ⊃ B)} is satisfiable, and so it has a model. Let the
interpretation % be a model.

The properties of %:

1 All members of Γ are true wrt %.
2 |¬(A ⊃ B)|% = 1

|(A ⊃ B)|% = 0, i.e. |A|% = 1 and |B|% = 0. So|¬B|% = 1.

All members of Γ ∪ {A} ∪ {¬B} are true wrt interpretation %,
i.e. Γ ∪ {A} 2 B, and it is a contradiction.
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Central logical (semantic) notions

Theorem

In the opposite direction: If Γ � (A ⊃ B), then Γ ∪ {A} � B.

Proof

Indirect condition: Suppose that Γ � (A ⊃ B), and
Γ ∪ {A} 2 B.

So Γ ∪ {A} ∪ {¬B} is satisfiable, i.e. it has a model. Let the
interpretation % a model.

The properties of %:

1 All members of Γ are true wrt the interpretation %.
2 |A|% = 1
3 |¬B|% = 1, and so |B|% = 0

|(A ⊃ B)|% = 0, |¬(A ⊃ B)|% = 1.

All members of Γ ∪ {¬(A ⊃ B)} are true wrt the
interpretation %, i.e. Γ 2 (A ⊃ B).
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Central logical (semantic) notions

Corollary

A � B if and only if � (A ⊃ B)

Proof

Let Γ = ∅ in the former theorems.

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus Natural deduction Classical first–order logic

Central logical (semantic) notions

Cut elimination theorem

If Γ ∪ {A} � B and ∆ � A, then Γ ∪∆ � B.

Proof

Indirect.
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Properties of truth functors

The truth table of negation

¬ ¬p
0 1
1 0

The law of double negation: ¬¬A⇔ A

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus Natural deduction Classical first–order logic

Properties of truth functors

The truth table of conjunction

∧ 0 1 (q)

0 0 0
1 0 1

(p)

Commutative: (A ∧ B)⇔ (B ∧ A)
for all A,B ∈ Form.

Associative: (A ∧ (B ∧ C ))⇔ ((A ∧ B) ∧ C )
for all A,B,C ∈ Form.

Idempotent: (A ∧ A)⇔ A for all A ∈ Form.
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Properties of truth functors

(A ∧ B) � A, (A ∧ B) � B

The law of contradiction: � ¬(A ∧ ¬A)

The set {A1,A2, . . . ,An} (A1,A2, . . . ,An ∈ Form) is
satisfiable iff the formula A1 ∧ A2 ∧ · · · ∧ An is satisfiable.

The set {A1,A2, . . . ,An} (A1,A2, . . . ,An ∈ Form) is
unsatisfiable iff the formula A1 ∧ A2 ∧ · · · ∧ An is unsatisfiable.

{A1,A2, . . . ,An} � A (A1,A2, . . . ,An,A ∈ Form) iff
A1 ∧ A2 ∧ · · · ∧ An � A.

{A1,A2, . . . ,An} � A (A1,A2, . . . ,An,A ∈ Form) iff the
formula ((A1 ∧ A2 ∧ · · · ∧ An) ∧ ¬A) is unsatisfiable.
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Properties of truth functors

The truth table of disjunction:

∨ 0 1

0 0 1
1 1 1

Commutative: (A ∨ B)⇔ (B ∨ A)
for all A,B ∈ Form.

Associative:
(A ∨ (B ∨ C ))⇔ ((A ∨ B) ∨ C )
for all A,B,C ∈ Form.

Idempotent: (A ∨ A)⇔ A for all A ∈ Form.

A � (A ∨ B) for all A,B ∈ Form.

{(A ∨ B),¬A} � B

The law of excluded middle: � (A ∨ ¬A)
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Properties of truth functors

Connection between conjunction and disjunction:

∧ 0 1

0 0 0
1 0 1

1 0

1 1 1
0 1 0

∨ 0 1

0 0 1
1 1 1

Conjunction and disjunction are dual truth functors.

Two laws of distributivity:

(A ∨ (B ∧ C ))⇔ ((A ∨ B) ∧ (A ∨ C ))
(A ∧ (B ∨ C ))⇔ ((A ∧ B) ∨ (A ∧ C ))

Properties of absorption

(A ∧ (B ∨ A))⇔ A
(A ∨ (B ∧ A))⇔ A
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Properties of truth functors

De Morgan’s laws

What do we say when we deny a conjunction?

What do we say when we deny a disjunction?

¬(A ∧ B)⇔ (¬A ∨ ¬B)

¬(A ∨ B)⇔ (¬A ∧ ¬B)

The proofs of De Morgan’s laws.

A B ¬A ¬B (¬A ∧ ¬B) (A ∨ B) ¬(A ∨ B)

0 0 1 1 1 0 1
0 1 1 0 0 1 0
1 0 0 1 0 1 0
1 1 0 0 0 1 0
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Properties of truth functors

The truth table of implication:

⊃ 0 1

0 1 1
1 0 1

� (A ⊃ A)

Modus ponens: {(A ⊃ B),A} � B

Modus tollens:
{(A ⊃ B),¬B} � ¬A
Chain rule: {(A ⊃ B), (B ⊃ C )} � (A ⊃ C )

Reduction to absurdity: {(A ⊃ B), (A ⊃ ¬B)} � ¬A
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Properties of truth functors

¬A � (A ⊃ B)

B � (A ⊃ B)

((A ∧ B) ⊃ C )⇔ (A ⊃ (B ⊃ C ))

Contraposition: (A ⊃ B)⇔ (¬B ⊃ ¬A)

(A ⊃ ¬A) � ¬A
(¬A ⊃ A) � A

(A ⊃ (B ⊃ C ))⇔ ((A ⊃ B) ⊃ (A ⊃ C ))

� (A ⊃ (¬A ⊃ B))

((A ∨ B) ⊃ C )⇔ ((A ⊃ C ) ∧ (B ⊃ C ))

{A1,A2, . . . ,An} � A (A1,A2, . . . ,An,A ∈ Form) iff the
formula ((A1 ∧ A2 ∧ · · · ∧ An) ⊃ A) is valid.
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Properties of truth functors

The truth table of (material) equivalence:

≡ 0 1

0 1 0
1 0 1

� (A ≡ A)

� ¬(A ≡ ¬A)
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Properties of truth functors

Expressibility

(A ⊃ B)⇔ ¬(A ∧ ¬B)

(A ⊃ B)⇔ (¬A ∨ B)

(A ∧ B)⇔ ¬(A ⊃ ¬B)

(A ∨ B)⇔ (¬A ⊃ B)

(A ∨ B)⇔ ¬(¬A ∧ ¬B)

(A ∧ B)⇔ ¬(¬A ∨ ¬B)

(A ≡ B)⇔ ((A ⊃ B) ∧ (B ⊃ A))
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Properties of truth functors

Theory of truth functors

Base

A base is a set of truth functors whose members can express
all truth functors.

For example: {¬,⊃},{¬,∧}, {¬,∨}
1 (p ∧ q)⇔ ¬(p ⊃ ¬q)
2 (p ∨ q)⇔ (¬p ⊃ q)

Truth functor Sheffer: (p|q)⇔def ¬(p ∧ q)
Truth functor neither-nor: (p ‖ q)⇔def (¬p ∧ ¬q)
Remark: Singleton bases: (p|q), (p ‖ q)
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Normal forms

Definition

If p ∈ Con, then formulas p,¬p are literals (p is the base of the
literals).

Definition

If the formula A is a literal or a conjunction of literals with
different bases, then A is an elementary conjunction.

Definition

If the formula A is a literal or a disjunction of literals with different
bases, the A is an elementary disjunction.
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Normal forms

Definition

A disjunction of elementary conjunctions is a disjunctive normal
form.

Definition

A conjunction of elementary disjunctions is a conjunctive normal
form.

Theorem

There is a normal form of any formula of proposition logic, i. e. if
A ∈ Form, then there is a formula B such that B is a normal form
and A⇔ B
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Definition

Let L(0) = 〈LC ,Con,Form〉 be a language of classical propositional
logic and (LC = {¬,⊃, (, )}).
The axiom scheme of classical propositional calculus:

(A1): A ⊃ (B ⊃ A)

(A2): (A ⊃ (B ⊃ C )) ⊃ ((A ⊃ B) ⊃ (A ⊃ C ))

(A3): (¬A ⊃ ¬B) ⊃ (B ⊃ A)

Definition

The regular substitution of axiom schemes are formulas, such
that A,B,C are replaced by arbitrary formulas.

The axioms of classical propositional calculus are the regular
substitutions of axiom schemes.
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The inductive definition of syntactical consequence relation

Let Γ ⊆ Form,A ∈ Form. The formula A is a syntactical
consequence of the set Γ (in noation Γ ` A), if at least one of
the followings holds:

1 if A ∈ Γ, then Γ ` A;
2 if A is an axiom, then Γ ` A;
3 if Γ ` B, and Γ ` B ⊃ A, then Γ ` A.
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Definition

Let Γ ⊂ Form,A ∈ Form. If formula A is a syntactical consequence
of the set Γ, then ’Γ ` A’ is a sequence.

The fundamental rule of natural deduction is based on deduction
theorem.

Deduction theorem

Ifa Γ ∪ {A} ` B, then Γ ` A ⊃ B.

Deduction theorem can be written in the following form:

Γ,A ` B

Γ ` A ⊃ B
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Structural rules/1

In the following let Γ,∆ ⊆ Form,A,B,C ,∈ Form.

Rule of assumption

∅
Γ,A ` A

Rule of expansion

Γ ` A
Γ,B ` A

Rule of constriction

Γ,B,B,∆ ` A

Γ,B,∆ ` A

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus Natural deduction Classical first–order logic

Structural rules/2

Rule of permutation

Γ,B,C ,∆ ` A

Γ,C ,B,∆ ` A

Cut rule

Γ ` A ∆,A ` B

Γ,∆ ` B
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Logical rules/1

Rules of implication (introduction and elimination)

Γ,A ` B
(⊃ 1.)

Γ ` A ⊃ B
Γ ` A Γ ` A ⊃ B(⊃ 2.)

Γ ` B

Rules of conjunction

Γ ` A Γ ` B(∧ 1.)
Γ ` A ∧ B

Γ,A,B ` C
(∧ 2.)

Γ,A ∧ B ` C

Rules of disjunction

Γ ` A(∨ 1.)
Γ ` A ∨ B

Γ ` B(∨ 2.)
Γ ` A ∨ B

Γ,A ` C Γ,B ` C
(∨ 3.)

Γ,A ∨ B ` C
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Logical rules/2

Rules of negation

Γ,A ` B Γ,A ` ¬B
(¬ 1.)

Γ ` ¬A
Γ ` ¬¬A(¬ 2.)

Γ ` A

Rules of material equivalence

Γ,A ` B Γ,B ` A
(≡ 1.)

Γ ` A ≡ B

Γ ` A Γ ` A ≡ B(≡ 2.)
Γ ` B

Γ ` B Γ ` A ≡ B(≡ 3.)
Γ ` A
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Examples

Γ,A ` B

Γ,¬B ` ¬A
(1)

Proof:

Γ,A ` B
(Expansion)

Γ,A,¬B ` B
(Permutation)

Γ,¬B,A ` B

∅
(Assumption)

Γ,A,¬B ` ¬B
(Permutation)

Γ,¬B,A ` ¬B
(¬ 1.)

Γ,¬B ` ¬A
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Examples

Γ,A ` ¬B
Γ,B ` ¬A

(2)

Proof:

∅
(Asumption)

Γ,A,B ` B
(Permutation)

Γ,B,A ` B

Γ,A ` ¬B
(Expansion)

Γ,A,B ` ¬B
(Permutation)

Γ,B,A ` ¬B
(¬ 1.)

Γ,B ` ¬A
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Examples

Γ,¬A ` B

Γ,¬B ` A
(3)

Proof:

Γ,¬A ` B
(Expansion)

Γ,¬A,¬B ` B
(Permutation)

Γ,¬B,¬A ` B

∅
(Assumption)

Γ,¬A,¬B ` ¬B
(Permutation)

Γ,¬B,¬A ` ¬B
(¬ 1.)

Γ,¬B ` ¬¬A
(¬ 2.)

Γ,¬B ` A
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Examples

Γ,¬A ` ¬B
Γ,B ` A

(4)

Proof:

∅
(Asumption)

Γ,¬A,B ` B
(Permutation)

Γ,B,¬A ` B

Γ,¬A ` ¬B
(Expansion)

Γ,¬A,B ` ¬B
(Permutation)

Γ,B,¬A ` ¬B
(¬ 1.)

Γ,B ` ¬¬A
(¬ 2.)

Γ,B ` A
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Examples

` A ⊃ A (5)

Proof:

∅
(Assumption)

A ` A(⊃ 1.) ` A ⊃ A
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Examples

A,A ⊃ B ` B (6)

Proof:

∅
A ⊃ B,A ` A

A, A ⊃ B ` A
∅

A,A ⊃ B ` A ⊃ B

A,A ⊃ B ` B
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Examples

A ` B ⊃ A (7)

Proof:

∅
(Assumption)

B,A ` A
(Permutation)

A,B ` A
(⊃ 1.)

A ` B ⊃ A
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Examples

A,¬A ` B (8)

¬A ` A ⊃ B (9)

Proof (8), (9):

∅
A,¬B,¬A ` ¬A
A,¬A,¬B ` ¬A

∅
¬A,¬B,A ` A

¬A,A,¬B ` A

A,¬A,¬B ` A

A,¬A ` ¬¬B
A,¬A ` B

¬A,A ` B

¬A ` A ⊃ B
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Examples

B ` A ⊃ B (10)

Proof:

∅
B ` B

B,A ` B

B ` A ⊃ B
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Examples

` A ⊃ B ≡ ¬A ∨ B (11)

Proof: At first let us prove that

A ⊃ B ` ¬A ∨ B (12)

∅
A ⊃ B ` A ⊃ B

A ⊃ B,¬(¬A ∨ B) ` A ⊃ B

∅
¬A ` ¬A
¬A ` ¬A ∨ B(3)
¬(¬A ∨ B) ` A

A ⊃ B,¬(¬A ∨ B) ` A

A ⊃ B,¬(¬A ∨ B) ` B
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Examples

∅
B ` B

B ` ¬A ∨ B(1)
¬(¬A ∨ B) ` ¬B

A ⊃ B,¬(¬A ∨ B) ` ¬B

A ⊃ B,¬(¬A ∨ B) ` B A ⊃ B,¬(¬A ∨ B) ` ¬B
A ⊃ B ` ¬¬(¬A ∨ B)

A ⊃ B ` ¬A ∨ B
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Examples

To prove (11) we have to prove the following:

¬A ∨ B ` A ⊃ B (13)

(9)

¬A ` A ⊃ B

(10)

B ` A ⊃ B
¬A ∨ B ` A ⊃ B
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Examples

A ⊃ B,¬B ` ¬A (14)

A ⊃ B ` ¬B ⊃ ¬A (15)

Proofs of (14), (15):

∅
A ⊃ B,A,¬B ` ¬B
A ⊃ B,¬B,A ` ¬B

∅
A,A ⊃ B ` B

A ⊃ B,A ` B

A ⊃ B,A,¬B ` B

A ⊃ B,¬B,A ` B

A ⊃ B,¬B ` ¬A
A ⊃ B ` ¬B ⊃ ¬A
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Examples

¬B ⊃ ¬A ` A ⊃ B (16)

Proof:

∅
¬B ⊃ ¬A,¬B,A ` A

∅
¬B ⊃ ¬A,¬B ` ¬A
¬B ⊃ ¬A,¬B,A ` ¬A

¬B ⊃ ¬A,A ` ¬¬B
¬B ⊃ ¬A,A ` B

¬B ⊃ ¬A ` A ⊃ B



Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus Natural deduction Classical first–order logic

Examples

On the base of (15), (16):

` A ⊃ B ≡ ¬B ⊃ ¬A (17)

Proof:

A ⊃ B ` ¬B ⊃ ¬A ¬B ⊃ ¬A ` A ⊃ B
` A ⊃ B ≡ ¬B ⊃ ¬A
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Example

` (A ∨ ¬A) (18)

Proof:

∅
A,¬(A ∨ ¬A) ` ¬(A ∨ ¬A)

¬(A ∨ ¬A),A ` ¬(A ∨ ¬A)

∅
¬(A ∨ ¬A),A ` A

¬(A ∨ ¬A),A ` A ∨ ¬A
¬(A ∨ ¬A) ` ¬A

∅
¬A,¬(A ∨ ¬A) ` ¬(A ∨ ¬A)

¬(A ∨ ¬A),¬A ` ¬(A ∨ ¬A)

∅
¬(A ∨ ¬A),¬A ` ¬A
¬(A ∨ ¬A),¬A ` A ∨ ¬A

¬(A ∨ ¬A) ` ¬¬A
¬(A ∨ ¬A) ` A
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Examples

¬(A ∨ ¬A) ` ¬A ¬(A ∨ ¬A) ` A

` ¬¬(A ∨ ¬A)

` (A ∨ ¬A)
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Examples

A ∧ B ` B ∧ A (19)

Proof:

∅
A,B ` B

∅
B,A ` A

A,B ` A

A,B ` B ∧ A

A ∧ B ` B ∧ A
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Examples

A ∧ (B ∨ C ) ` (A ∧ B) ∨ (A ∧ C ) (20)

Proof:

∅
B,A ` A

A,B ` A
∅

A,B ` B

A,B ` A ∧ B

A,B ` (A ∧ B) ∨ (A ∧ C )

∅
C ,A ` A

A,C ` A
∅

A,C ` C

A,C ` A ∧ C

A,C ` (A ∧ B) ∨ (A ∧ C )

A,B ∨ C ` (A ∧ B) ∨ (A ∧ C )

A ∧ (B ∨ C ) ` (A ∧ B) ∨ (A ∧ C )
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Examples

(A ∧ B) ∨ (A ∧ C ) ` A ∧ (B ∨ C ) (21)

Proof:

∅
B,A ` A

A,B ` A

A ∧ B ` A

∅
C ,A ` A

A,C ` A

A ∧ C ` A
(A ∧ B) ∨ (A ∧ C ) ` A

∅
A,B ` B

A ∧ B ` B
A ∧ B ` B ∨ C

∅
A,C ` C

A ∧ C ` C
A ∧ C ` B ∨ C

(A ∧ B) ∨ (A ∧ C ) ` B ∨ C

(A ∧ B) ∨ (A ∧ C ) ` A ∧ (B ∨ C )

On the base of (20) and (21):

` A ∧ (B ∨ C ) ≡ (A ∧ B) ∨ (A ∧ C ) (22)
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Examples

` A ∨ (B ∧ C ) ≡ (A ∨ B) ∧ (A ∨ C ) (23)

Proof: At first let us prove the following:

A ∨ (B ∧ C ) ` (A ∨ B) ∧ (A ∨ C ) (24)

∅
A ` A

A ` A ∨ B

∅
B ` B

B,C ` B

B,C ` A ∨ B

B ∧ C ` A ∨ B
A ∨ (B ∧ C ) ` A ∨ B

∅
A ` A

A ` A ∨ C

∅
C ` C

C ` A ∨ C
B,C ` A ∨ C

B ∧ C ` A ∨ C
A ∨ (B ∧ C ) ` A ∨ C

A ∨ (B ∧ C ) ` (A ∨ B) ∧ (A ∨ C )
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Examples

Now let us prove the following:

(A ∨ B) ∧ (A ∨ C ) ` A ∨ (B ∧ C ) (25)

∅
A ` A

A ` A ∨ (B ∧ C )

A ∨ B,A ` A ∨ (B ∧ C )

∅
A ` A

A ` A ∨ (B ∧ C )

A,C ` A ∨ (B ∧ C )

∅
B ` B

B,C ` B

∅
C ` C

B,C ` C

B,C ` B ∧ C

B,C ` A ∨ (B ∧ C )

A ∨ B,C ` A ∨ (B ∧ C )
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Examples

A ∨ B,A ` A ∨ (B ∧ C ) A ∨ B,C ` A ∨ (B ∧ C )

A ∨ B,A ∨ C ` A ∨ (B ∧ C )

(A ∨ B) ∧ (A ∨ C ) ` A ∨ (B ∧ C )
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Examples

` (A ⊃ B) ⊃ (B ⊃ C ) ⊃ (A ⊃ C ) (26)

Prove:
We can use the proved sequence (6).

A ⊃ B,A ` B B ,B ⊃ C ` C

A ⊃ B,A,B ⊃ C ` C

A ⊃ B,B ⊃ C ,A ` C

A ⊃ B,B ⊃ C ` A ⊃ C

A ⊃ B ` (B ⊃ C ) ⊃ (A ⊃ C )

` (A ⊃ B) ⊃ (B ⊃ C ) ⊃ (A ⊃ C )
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Examples

` (A ⊃ B) ⊃ (A ⊃ (B ⊃ C )) ⊃ (A ⊃ C ) (27)

Proof: The proved sequence (6) can be used:

A,A ⊃ B ` B

A,A ⊃ B,A ⊃ (B ⊃ C ) ` B

A,A ⊃ (B ⊃ C ) ` B ⊃ C

A,A ⊃ B,A ⊃ (B ⊃ C ) ` B ⊃ C

A,A ⊃ B,A ⊃ (B ⊃ C ) ` C

A ⊃ B,A ⊃ (B ⊃ C ) ` A ⊃ C

A ⊃ B ` (A ⊃ (B ⊃ C )) ⊃ (A ⊃ C )

` (A ⊃ B) ⊃ (A ⊃ (B ⊃ C )) ⊃ (A ⊃ C )
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Examples

De Morgan’s laws:

` ¬(A ∧ B) ≡ (¬A ∨ ¬B) (28)

` ¬(A ∨ B) ≡ (¬A ∧ ¬B) (29)
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Examples

To prove (28) at first we have to prove the following:

¬(A ∧ B) ` (¬A ∨ ¬B) (30)

∅
¬A ` ¬A

¬A ` ¬A ∨ ¬B(3)
¬(¬A ∨ ¬B) ` A

∅
¬B ` ¬B

¬B ` ¬A ∨ ¬B(3)
¬(¬A ∨ ¬B) ` B

¬(¬A ∨ ¬B) ` A ∧ B
(3)
¬(A ∧ B) ` ¬A ∨ ¬B
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Examples

To prove (28) we have to prove the following:

¬A ∨ ¬B ` ¬(A ∧ B) (31)

∅
A ` A

A,B ` A

A ∧ B ` A
¬A ∨ ¬B,A ∧ B ` A

∅
¬A ` ¬A

B,¬A ` ¬A
(8)

B,¬B ` ¬A
B,¬A ∨ ¬B ` ¬A
¬A ∨ ¬B,B ` ¬A
¬A ∨ ¬B,A,B ` ¬A
¬A ∨ ¬B,A ∧ B ` ¬A

¬A ∨ ¬B ` ¬(A ∧ B)
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Examples

To prove (29) at first we can prove the following:

¬(A ∨ B) ` ¬A ∧ ¬B (32)

∅
A ` A

A ` A ∨ B(1)
¬(A ∨ B) ` ¬A

∅
B ` B

B ` A ∨ B(1)
¬(A ∨ B) ` ¬B

¬(A ∨ B) ` ¬A ∧ ¬B
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Examples

To prove (29) we have to prove the following:

¬A ∧ ¬B ` ¬(A ∨ B) (33)

∅
¬A ` ¬A
¬A,¬B ` ¬A
¬A ∧ ¬B ` ¬A(2)
A ` ¬(¬A ∧ ¬B)

∅
¬B ` ¬B
¬A,¬B ` ¬B
¬A ∧ ¬B ` ¬B(2)
B ` ¬(¬A ∧ ¬B)

A ∨ B ` ¬(¬A ∧ ¬B)
(2)
¬A ∧ ¬B ` ¬(A ∨ B)
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Language of classical first–order logic

Definition/1

The language of first–order logic is a
L(1) = 〈LC ,Var ,Con,Term,Form〉

ordered 5–tuple, where

1. LC = {¬,⊃,∧,∨,≡,=,∀,∃, (, )}: (the set of logical
constants).

2. Var (= {xn : n = 0, 1, 2, . . . }): countable infinite set of
variables
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Language of classical first–order logic

Definition/2

3. Con =
⋃∞

n=0(F(n) ∪ P(n)) the set of non–logical constants
(at best countable infinite)

F(0): the set of name parameters,
F(n): the set of n argument function parameters,
P(0): the set of prposition parameters,
P(n): the set of predicate parameters.

4. The sets LC , Var , F(n), P(n) are pairwise disjoint
(n = 0, 1, 2, . . . ).
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Language of classical first–order logic

Definition/3

5. The set of terms, i.e. the set Term is given by the following
inductive definition:

(a) Var ∪ F(0) ⊆ Term
(b) If f ∈ F(n), (n = 1, 2, . . . ), s t1, t2, . . . , tn ∈ Term, then

f (t1, t2, . . . , tn) ∈ Term.
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Language of classical first–order logic

Definition/4

6. The set of formulas, i.e. the set Form is given by the following
inductive definition:

(a) P(0) ⊆ Form
(b) If t1, t2 ∈ Term, then (t1 = t2) ∈ Form
(c) If P ∈ P(n), (n = 1, 2, . . . ), s t1, t2, . . . , tn ∈ Term, then

P(t1, t2, . . . , tn) ∈ Form.
(d) If A ∈ Form, then ¬A ∈ Form.
(e) If A,B ∈ Form, then

(A ⊃ B), (A ∧ B), (A ∨ B), (A ≡ B) ∈ Form.
(f) If x ∈ Var , A ∈ Form, then ∀xA, ∃xA ∈ Form.



Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus Natural deduction Classical first–order logic

Syntactical definitions

Megjegyzs:

Azokat a formulkat, amelyek a 6. (a), (b), (c) szablyok ltal
jnnek ltre, atomi formulknak vagy prmformulknak nevezzk.

Definci:
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Semantics of classical first–order logic

Definition (interpretation)

The ordered pair 〈U, %〉 is an interpretation of the language L(1) if

U 6= ∅ (i.e. U is a nonempty set);

Dom(%) = Con

If a ∈ F(0), then %(a) ∈ U;

If f ∈ F(n) (n 6= 0), then %(f ) ∈ UU(n)

If p ∈ P(0), then %(p) ∈ {0, 1};
If P ∈ P(n) (n 6= 0), then %(P) ⊆ U(n) (%(P) ∈ {0, 1}U(n)

).
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Semantics of classical first–order logic

Definition (assignment)

The function v is an assignment relying on the interpretation
〈U, %〉 if the followings hold:

Dom(v) = Var ;

If x ∈ Var , then v(x) ∈ U.

Definition (modified assignment)

Let v be an assignment relying on the interpretation 〈U, %〉,
x ∈ Var and u ∈ U.

v [x : u](y) =

{
u, if y = x ;
v(y), otherwise.

for all y ∈ Var .
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Semantics of classical first–order logic

Definition (Semantic rules/1)

Let 〈U, %〉 be a given interpretation and v be an assignment relying
on 〈U, %〉.

If a ∈ F(0), then |a|〈U,%〉
v = %(a).

If x ∈ Var , then |x |〈U,%〉
v = v(x).

If f ∈ F(n), (n = 1, 2, . . . ), and t1, t2, . . . , tn ∈ Term, then

|f (t1)(t2) . . . (tn)|〈U,%〉
v =

%(f )(〈|t1|〈U,%〉
v , |t2|〈U,%〉

v , . . . , |tn|〈U,%〉
v 〉)

If p ∈ P(0), then |p|〈U,%〉
v = %(p)

If t1, t2 ∈ Term, then

|(t1 = t2)|〈U,%〉
v =

{
1, if |t1|〈U,%〉

v = |t2|〈U,%〉
v

0, otherwise.
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Semantics of classical first–order logic

Definition (Semantic rules/2)

If P ∈ P(n) (n 6= 0), t1, . . . , tn ∈ Term, then

|P(t1) . . . (tn)|〈U,%〉
v =

{
1, if 〈|t1|〈U,%〉

v , . . . , |tn|〈U,%〉
v 〉 ∈ %(P);

0, otherwise.
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Semantics of classical first–order logic

Definition (Semantic rules/3)

If A ∈ Form, then |¬A|〈U,%〉
v = 1− |A|〈U,%〉

v .

If A,B ∈ Form, then

|(A ⊃ B)|〈U,%〉
v =

{
0 if |A|〈U,%〉

v = 1, and |B|〈U,%〉
v = 0;

1, otherwise.

|(A ∧ B)|〈U,%〉
v =

{
1 if |A|〈U,%〉

v = 1, and |B|〈U,%〉
v = 1;

0, otherwise.

|(A ∨ B)|〈U,%〉
v =

{
0 if |A|〈U,%〉

v = 0, and |B|〈U,%〉
v = 0;

1, otherwise.

|(A ≡ B)|〈U,%〉
v =

{
1 if |A|〈U,%〉

v = |B|〈U,%〉
v = 0;

0, otherwise.
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Semantics of classical first–order logic

Definition (Semantic rules/4)

If A ∈ Form, x ∈ Var , then

|∀xA|〈U,%〉
v =

{
0, if there is an u ∈ U such that |A|〈U,%〉

v [x :u] = 0;

1, otherwise.

|∃xA|〈U,%〉
v =

{
1, if there is an u ∈ U such that |A|〈U,%〉

v [x :u] = 1;

0, otherwise.
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Central logical (semantic) notions — FoL

Definition (model – a set of formulas)

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language
and Γ ⊆ Form be a set of formulas. An ordered triple 〈U, %, v〉 is a
model of the set Γ, if

〈U, %〉 is an interpretation of L(1);

v is an assignment relying on 〈U, %〉;
|A|〈U,%〉

v = 1 for all A ∈ Γ.

Definition – a model of a formula

A model of a formula A is the model of the singleton {A}.
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Central logical (semantic) notions — FoL

Definition – satisfiable a set of formulas

The set of formulas Γ ⊆ Form is satisfiable if it has a model.
(If there is an interpretation and an assignment in which all
members of the set Γ are true.)

Definition – satisfiable a formula

A formula A ∈ Form is satisfiable, if the singleton {A} is satisfiable.
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Central logical (semantic) notions — FoL

Remark

A satisfiable set of formulas does not involve a logical
contradiction; its formulas may be true together.

A satisfiable formula may be true.

If a set of formulas is satisfiable, then its members are
satisfiable.

But: all members of the set {P(a),¬P(a)} are satisfiable, and
the set is not satisfiable.
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Central logical (semantic) notions — FoL

Theorem

All subsets of a satisfiable set are satisfiable.

Proof

Let Γ ⊆ Form be a set of formulas and ∆ ⊆ Γ.

Γ is satisfiable: it has a model. Let 〈U, %, v〉 be a model of Γ.

A property of 〈U, %, v〉: If A ∈ Γ, then |A|〈U,%〉
v = 1

Since ∆ ⊆ Γ, if A ∈ ∆, then A ∈ Γ, and so |A|〈U,%〉
v = 1. That

is the ordered triple 〈U, %, v〉 is a model of ∆, and so ∆ is
satisfiable.
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Central logical (semantic) notions — FoL

Definition – unsatisfiable set

The set Γ ⊆ Form is unsatisfiable if it is not satisfiable.

Definition – unsatisfiable formula

A formula A ∈ Form is unsatisfiable if the singleton {A} is
unsatisfiable.

Remark

A unsatisfiable set of formulas involve a logical contradiction. (Its
members cannot be true together.)
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Central logical (semantic) notions — FoL

Theorem

All expansions of an unsatisfiable set of formulas are unsatisfiable.

Indirect proof

Suppose that Γ ⊆ Form is an unsatisfiable set of formulas and
∆ ⊆ Form is a set of formulas.

Indirect condition: Γ is unsatisfiable, and Γ ∪∆ satisfiable.

Γ ⊆ Γ ∪∆

According to the former theorem Γ is satisfiable, and it is a
contradiction.
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Central logical (semantic) notions — FoL

Definition

A formula A is the logical consequence of the set of formulas Γ if
the set Γ ∪ {¬A} is unsatifiable. (Notation : Γ � A)

Definition

A � B, if {A} � B.

Definition

The formula A is valid if ∅ � A. (Notation: � A)

Definition

The formulas A and B are logically equivalent if A � B and B � A.
(Notation: A⇔ B)
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Properties of first order central logical notions

Theorem

Let Γ ⊆ Form, and A ∈ Form. Γ � A if and only if all models of
the set Γ are the models of formula A. (i.e. the singleton {A}).

Proof

→ Indirect condition: There is a model of Γ � A such that it is not
a model of the formula A.
Let the ordered triple 〈U, %, v〉 be this model.
The properties of 〈U, %, v〉:

1 |B|〈U,%〉
v = 1 for all B ∈ Γ;

2 |A|〈U, %〉v = 0, and so |¬A|〈U,%〉
v = 1

In this case all members of the set Γ ∪ {¬A} are true wrt the
interpretation 〈U, %〉 and assignment v , so Γ ∪ {¬A} is satisfiable.
It means that Γ 2 A, and it is a contradiction.
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Properties of first order central logical notions

Proof

← Indirect condition: All models of the set Γ are the models of
formula A, but (and) Γ 2 A.
In this case Γ ∪ {¬A} is satisfiable, i.e. it has a model.
Let the ordered triple 〈U, %, v〉 be a model.
The properties of 〈U, %, v〉:

1 |B|〈U,%〉
v = 1 for all B ∈ Γ;

2 |¬A|〈U,%〉
v = 1, i.e. |A|〈U,%〉

v = 0

So the set Γ has a model such that it is not a model of formula A,
and it is a contradiction.

Corollary

Let Γ ⊆ Form, and A ∈ Form. Γ � A if and only if for all
interpretations in which all members of Γ are true, the formula A is
true.
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Properties of first order central logical notions

Theorem

If A is a valid formula ((� A)), then Γ � A for all sets of formulas
Γ. (A valid formula is a consequence of any set of formulas.)

Proof

If A is a valid formula, then ∅ � A (according to its definition).

∅ ∪ {¬A} (= {¬A}) is unsatisfiable, and so its expansions are
unsatisfiable.

Γ ∪ {¬A} is an expansion of {¬A}, and so it is unsatisfiable,
i.e. Γ � A.
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Properties of first order central logical notions

Theorem

If Γ is unsatisfiable, then Γ � A for all A. (All formulas are the
consequences of an unsatisfiable set of formulas.)

Proof

According to a proved theorem: If Γ is unsatisfiable, the all
expansions of Γ are unsatisfiable.

Γ ∪ {¬A} is an expansion of Γ, and so it is unsatisfiable, i.e.
Γ � A.
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Properties of first order central logical notions

Theorem

Deduction theorem: If Γ ∪ {A} � B, then Γ � (A ⊃ B).

Proof

Indirect condition: Suppose, that Γ ∪ {A} � B, and
Γ 2 (A ⊃ B).

Γ ∪ {¬(A ⊃ B)} is satisfiable, and so it has a model. Let the
ordered triple 〈U, %, v〉 be a model.

The properties of 〈U, %, v〉:
1 All members of Γ are true wrt 〈U, %〉 and v .
2 |¬(A ⊃ B)|〈U,%〉

v = 1

|(A ⊃ B)|〈U,%〉
v = 0, i.e. |A|〈U,%〉

v = 1 and |B|〈U,%〉
v = 0.

So|¬B|〈U,%〉
v = 1.

All members of Γ∪ {A} ∪ {¬B} are true wrt 〈U, %〉 and v , i.e.
Γ ∪ {A} 2 B, and it is a contradiction.
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Properties of first order central logical notions

Theorem

In the opposite direction: If Γ � (A ⊃ B), then Γ ∪ {A} � B.

Proof

Indirect condition: Suppose that Γ � (A ⊃ B), and
Γ ∪ {A} 2 B.

So Γ ∪ {A} ∪ {¬B} is satisfiable, i.e. it has a model. Let the
ordered triple 〈U, %, v〉 a model.

The properties of 〈U, %, v〉:
1 All members of Γ are true wrt 〈U, %〉 and v .
2 |A|〈U,%〉

v = 1
3 |¬B|〈U,%〉

v = 1, and so |B|〈U,%〉
v = 0

|(A ⊃ B)|〈U,%〉
v = 0, |¬(A ⊃ B)|〈U,%〉

v = 1.

All members of Γ∪ {¬(A ⊃ B)} are true wrt 〈U, %〉 and v , i.e.
Γ 2 (A ⊃ B).
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Properties of first order central logical notions

Corollary

A � B if and only if � (A ⊃ B)

Proof

Let Γ = ∅ in the former theorems.
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Properties of first order central logical notions

Cut elimination theorem

If Γ ∪ {A} � B and ∆ � A, then Γ ∪∆ � B.

Proof

Indirect.
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Syntactical properties of variables

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language
and A ∈ Form be a formula. The set of free variables of the
formula A (in notation: FreeVar(A)) is given by the following
inductive definition:

If A is an atomic formula (i.e. A ∈ AtForm), then the
members of the set FreeVar(A) are the variables occuring in
A.

If the formula A is ¬B, then FreeVar(A) = FreeVar(B).

If the formula A is (B ⊃ C ), (B ∧ C ), (B ∨ C ) or (B ≡ C ),
then FreeVar(A) = FreeVar(B)

⋃
FreeVar(C ).

If the formula A is ∀xB or ∃xB, then
FreeVar(A) = FreeVar(B) \ {x}.
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Syntactical properties of variables

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language
and A ∈ Form be a formula. The set of bound variables of the
formula A (in notation: BoundVar(A)) is given by the following
inductive definition:

If A is an atomic formula (i.e. A ∈ AtForm), then
BoundVar(A) = ∅.
If the formula A is ¬B, then BoundVar(A) = FreeVar(B).

If the formula A is (B ⊃ C ), (B ∧ C ), (B ∨ C ) or (B ≡ C ),
then BoundVar(A) = BoundVar(B)

⋃
BoundVar(C ).

If the formula A is ∀xB or ∃xB, then
BoundVar(A) = BoundVar(B) ∪ {x}.
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Syntactical properties of variables

Remark

The bases of inductive definitions of sest of free and bound
variables are given by the first requirement of the
corresponding definitions.

The sets of free and bound variables of a formula are not
disoint necessarily:
FreeVar((P(x) ∧ ∃xR(x))) = {x} =
BoundVar((P(x) ∧ ∃xR(x)))
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Syntactical properties of variables

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A ∈ Form be a formula, and x ∈ Var be a variable.

A fixed occurence of the variable x in the formula A is free if
it is not in the subformulas ∀xB or ∃xB of the formula A.

A fixed occurence of the variable x in the formula A is bound
if it is not free.



Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus Natural deduction Classical first–order logic

Syntactical properties of variables

Remark

If x is a free variable of the formula A (i.e. x ∈ FreeVar(A)),
then it has at least one free occurence in A.

If x is a bound variable of the formula A
(i.e. x ∈ BoundVar(A)), then it has at least one bound
occurence in A.

A fixed occurence of a variable x in the formula A is free if

it does not follow a universal or an existential quantifier, or
it is not in a scope of a ∀x or a ∃x quantification.

A variable x may be a free and a bound variable of the
formula A:
(P(x) ∧ ∃xR(x))
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Syntactical properties of variables

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order languuage
and A ∈ Form be a formula.

If FreeVar(A) 6= ∅, then the formula A is an open formula.

If FreeVar(A) = ∅, then the formula A is a closed formula.

Remark:
The formula A is open if there is at least one variable which has at
least one free occurence in A.
The formula A is closed if there is no variable which has a free
occurence in A.
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Properties of quantification

De Morgan Laws of quantifications

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A ∈ Form be a formula and x ∈ Var be a variable. Then

¬∃xA⇔ ∀x¬A
¬∀xA⇔ ∃x¬A
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Properties of quantification

Expressibilty of quantifications

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A ∈ Form be a formula and x ∈ Var be a variable. Then

∃xA⇔ ¬∀x¬A
∀xA⇔ ¬∃x¬A
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Properties of quantification

Conjunction and quantifications

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A,B ∈ Form be formulas and x ∈ Var be a variable.
If x /∈ FreeVar(A), then

A ∧ ∀xB ⇔ ∀x(A ∧ B)

A ∧ ∃xB ⇔ ∃x(A ∧ B)

Remark:
According to the commutativity of conjunction the followings hold:
If x /∈ FreeVar(A), then

∀xB ∧ A⇔ ∀x(B ∧ A)

∃xB ∧ A⇔ ∃x(B ∧ A)

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus Natural deduction Classical first–order logic

Properties of quantification

Disjunction and quantifications

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A,B ∈ Form be formulas and x ∈ Var be a variable.
If x /∈ FreeVar(A), then

A ∨ ∀xB ⇔ ∀x(A ∨ B)

A ∨ ∃xB ⇔ ∃x(A ∨ B)

Remark:
According to the commutativity of disjunction the followings hold:
If x /∈ FreeVar(A), then

∀xB ∨ A⇔ ∀x(B ∨ A)

∃xB ∨ A⇔ ∃x(B ∨ A)
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Properties of quantification

Implication with existential quantification

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A,B ∈ Form be formulas and x ∈ Var be a variable.
If x /∈ FreeVar(A), then

A ⊃ ∃xB ⇔ ∃x(A ∨ B)

∃xB ⊃ A⇔ ∀x(B ⊃ A)
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Properties of quantification

Implication with universal quantification

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A,B ∈ Form be formulas and x ∈ Var be a variable.
If x /∈ FreeVar(A), then

A ⊃ ∀xB ⇔ ∀x(A ∨ B)

∀xB ⊃ A⇔ ∃x(B ⊃ A)
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Properties of quantification

Substitutabily a variable with an other variable

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A ∈ Form be a formula and x , y ∈ Var be variables.
The variable x is subtitutable with the variable y in the formula A
if there is no a free occurence of x in A which is in the subformulas
∀yB or ∃yB of A.

Example:

In the formula ∀zP(x , z) the variable x is substitutable with
the variable y , but x is not substitutable with the variable z .
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Properties of quantification

Substitutabily a variable with a term

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A ∈ Form be a formula, x ∈ Var be a variable and t ∈ Term be a
term.
The variable x is subtitutable with the term t in the formula A if in
the formula A the variable x is substitutable with all variables
occuring in the term t.

Example

In the formula ∀zP(x , z) the variable x is substitutable with
the term f (y1, y2), but x is not substitutable with the term
f (y , z).
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Properties of quantification

Result of a substitution

If the variable x is subtitutable with the term t in the formula A,
then [A]tx denotes the formula which appear when all free
occurences of the variable x in A are substituted with the term t.
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Properties of quantification

Renaming

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language,
A ∈ Form be a formula, and x , y ∈ Var be variables.
If the variable x is subtitutable with the variable y in the formula A
and y /∈ FreeVar(A), then

the formula ∀y [A]yx is a regular renaming of the formula ∀xA;

the formula ∃y [A]yx is a regular renaming of the formula ∃xA.
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Properties of quantification

Congruent formulas

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language
and A ∈ Form be a formula.
The set Cong(A) (the set ot formulas which are congruent with A)
is given by the following inductive definition:

A ∈ Cong(A);

if ¬B ∈ Cong(A) and B ′ ∈ Cong(B), then ¬B ′ ∈ Cong(A);

if (B ◦ C ) ∈ Cong(A), B ′ ∈ Cong(B) and C ′ ∈ Cong(C ),
then (B ′ ◦ C ′) ∈ Cong(A) (◦ ∈ {⊃,∧,∨,≡});

if ∀xB ∈ Cong(A) and ∀y [B]yx is a regular renaming of the
formula ∀xB, then ∀y [B]yx ∈ Cong(A);

if ∃xB ∈ Cong(A) and ∃y [B]yx is a regular renaming of the
formula ∃xB, then ∃y [B]yx ∈ Cong(A).
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Properties of quantification

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language
and A,B ∈ Form be formulas.

If B ∈ Cong(A), then the formula A is congruent with the
formula B.

If B ∈ Cong(A), then the formula B is a syntactical synonym
of the formula A.

Theorem

Congruent formulas are logically equivalent, i.e. if B ∈ Cong(A),
then A⇔ B.



Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus Natural deduction Classical first–order logic

Properties of quantification

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language
and A ∈ Form be a formula.
The formula A is standardized if

FreeVar(A)
⋂
BoundVar(A) = ∅;

all bound variables of the formula A have exactly one
occurences next a quantifier.

Theorem

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language
and A ∈ Form be a formula.
Then there is a formula B ∈ Form such that

the formula B is standardized;

the formula B is congruent with the formula A, i.e.
B ∈ Cong(A).
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Properties of quantification

Definition

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language
and A ∈ Form be a formula.
The formula A is prenex if

there is no quantifier in A or

the formula A is in the form Q1x1Q2x2 . . .QnxnB
(n = 1, 2, . . .), where

there is no quantifier in the formula B ∈ Form;
x1, x2 . . . xn ∈ Var are diffrent variables;
Q1,Q2, . . . ,Qn ∈ {∀,∃} are quantifiers.
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Properties of quantification

Theorem

Let L(1) = 〈LC ,Var ,Con,Term,Form〉 be a first order language
and A ∈ Form be a formula.
Then there is a formula B ∈ Form such that

the formula B is prenex;

A⇔ B.
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