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Introduction ction ClI
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The main task of logic

@ to give the laws of valid arguments (inferences, consequence
relations)

Valid arguments

e Valid arguments (inferences):

e an argument (an inference): a relation between premise(s) and
conclusion
@ a consequence relation
@ input: premise(s)
@ output: conclusion
o Valid arguments (inferences, consequence relations): if all
premises are true, then the conclusion is true.
o Logically valid arguments: when the former holds necessarily.

v
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Language of propositional logic

Definition /1

Classical zero—order language is an ordered triple
L) = (LC, Con, Form)

where

Q LC={-,D,A,V,=(,)} (the set of logical constants).

@ Con # () the countable set of non-logical constants
(propositional parameters)

Q@ LCNCon=10

©Q The set of formulae i.e. the set Form is given by the following
inductive definition:

o
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Language of propositional logic

Definition /2

@ Con C Form

e If A& Form, then —A € Form.
o If A, B € Form, then
(AD B) € Form,
(AN B) € Form,

(AV B) € Form,
(A= B) € Form.

The members of the set Con are the atomic formulae (prime
formulae).
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Subformulae

@ If Ais an atomic formula, then it has no direct subformula;

@ —A has exactly one direct subformula: A;

@ Direct subformulae of formulae (A D B), (AAB), (AV B),
(A = B) are formulae A and B, respectively.

The set of subformulae of formula A [denoting: SF(A)] is given by
the following inductive definition:

Q@ Ac RF(A) (i.e. the formula A is a subformula of itself);

@ if A € RF(A) and B is a direct subformula of A’-nek, then
B € RF(A)
(i.e., if A" is a subformula of A, then all direct subformulae of
A’ are subformulae of A).
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Construction tree

The contruction tree of a formula A is a finite ordered tree whose
nodes are formulae,

@ the root of the tree is the formmula A,

@ the node with formula —B has one child: he node with the
formula B,

@ the node with formulae (B D C), (BAC), (BV C), (B = ()
has two children: the nodes with B, and C

@ the leaves of the tree are atomic formulae.




Classical propositional logic (classical zero—order logic)
[ J

Semantics of propositional logic

Defintion ]

The function g is an interpretation of the language L(O) if

@ Dom(p) = Con
@ If p € Con, then o(p) € {0,1}.
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The semantic rules of propositional logic

e —
Let o be an interpretation and |A|, be the semantic value of the
formula A formula with respect to o.

@ If p € Con, then |p|, = o(p)
@ If A€ Form, then |[-A|, =1 — |A|,.
Q If A, B € Form, then

o fas Bl ={ | e land 1Bl =0
anon={ B0
clave,={ ] fhme 0o Bl =0
sla=Bl={ o Chane
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Central logical (semantic) notions

Definition (model — a set of formulas)

Let ' € Form be a set of formulas. An interpretation ¢ is a model
of the set of formulas I, if |A], =1 forall AcT.

Definition — a model of a formula

A model of a formula A is the model of the singleton {A}.

Definition — satisfiable a set of formulas

The set of formulas ' C Form is satisfiable if it has a model.
(If there is an interpretation in which all members of the set I are
ture.)

Definition — satisfiable a formula

A formula A € Form is satisfiable, if the singleton {A} is satisfiable.
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Central logical (semantic) notions

@ A satisfiable set of formulas does not involve a logical
contradiction; its formulas may be true together.

@ A safisfiable formula may be true.

@ If a set of formulas is satisfiable, then its members are
satisfiable.

@ But: all members of the set {p, —~p} are satisfiable, and the
set is not satisfiable.
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Central logical (semantic) notions

All subsets of a satisfiable set are satisfiable. \

@ Let I C Form be a set of formulas and A CT.
@ [ is satisfiable: it has a model. Let p be a model of I.
o A property of o: If A€ T, then |A], =1

@ Since ACT,if Aec A, then A€, and so |A|, =1. That is
the interpretation ¢ is a model of A, and so A is satisfiable.

W
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Central logical (semantic) notions

Definition — unsatisfiable set
The set ' C Form is unsatisfiable if it is not satisfiable.

Definition — unsatisfiable formula

A formula A € Form is unsatisfiable if the singleton {A} is
unsatisfiable.

A unsatisfiable set of formulas involve a logical contradiction. (lts
members cannot be true together.)
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Central logical (semantic) notions

All expansions of an unsatisfiable set of formulas are unsatisfiable.

Indirect proof

@ Suppose that [ C Form is an unsatisfiable set of formulas and
A C Form is a set of formulas.

@ Indirect condition: I is unsatisfiable, and [ U A satisfiable.
o[ CTUA

@ According to the former theorem [ is satisfiable, and it is a
contradiction.
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Central logical (semantic) notions

Definition
A formula A is the logical consequence of the set of formulas I if
the set ' U {—A} is unsatifiable. (Notation : T F A)

Definition

AE B, if {A}E B.

Definition
The formula A is valid if ) E A. (Notation: F A)

The formulas A and B are logically equivalent if AF B and B F A.
(Notation: A < B)
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Central logical (semantic) notions

Let € Form, and A € Form. T E A if and only if all models of
the set I are the models of formula A. (i.e. the singleton {A}).

Proof

— Indirect condition: There is a model of [ F A such that it is not
a model of the formula A.

Let the interpretation o be this model.

The properties of p:

Q |Bl,=1forall BeT;
@ |A|,=0,and so |[-A|, =1
In this case all members of the set ' U {—A} are true wrt p-ban,

and so [ U {—A} is satisfiable. It means that ' ¥ A, and it is a
contradiction.
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Central logical (semantic) notions

Proof

< Indirect condition: All models of the set [ are the models of
formula A, but (and) T # A.

In this case ' U {—A} is satisfiable, i.e. it has a model.

Let the interpretation p be a model.

The properties of p:

Q |Bl,=1forall BeT;
Q@ |-Al,=1,ie |A,=0

So the set [ has a model such that it is not a model of formula A,
and it is a contradiction.

Let  C Form, and A € Form. T E A if and only if for all
interpretations in which all members of [ are true, the formula A is
true.
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Central logical (semantic) notions

If Ais a valid formula ((F A)), then ' F A for all sets of formulas
. (A valid formula is a consequence of any set of formulas.)

@ If Ais a valid formula, then () E A (according to its definition).

o QU {-A} (= {—A}) is unsatisfiable, and so its expansions are
unsatisfiable.

@ U {—A} is an expansion of {—A}, and so it is unsatisfiable,
ie. [ E A
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Central logical (semantic) notions

If T is unsatisfiable, then I E A for all A. (All formulas are the
consequences of an unsatisfiable set of formulas.)

@ According to a proved theorem: If [ is unsatisfiable, the all
expansions of [ are unsatisfiable.

@ [U{—A} is an expansion of ', and so it is unsatisfiable, i.e.
[ EA.
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Central logical (semantic) notions

Deduction theorem: If T U {A} E B, then T E (A D B).

@ Indirect condition: Suppose, that I U {A} E B, and
[~ (A D B).

o NU{—(A D B)} is satisfiable, and so it has a model. Let the
interpretation o be a model.

@ The properties of p:

O All members of I are true wrt p.
Q@ [(ADB),=1

o (ADB)|,=0,ie |A,=1and |B|,=0. So|-B|, = 1.

@ All members of ' U {A} U {—=B} are true wrt interpretation p,
i.,e. [U{A} ¥ B, and it is a contradiction.
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Central logical (semantic) notions

In the opposite direction: If ' E (A D B), then ' U {A} E B.

@ Indirect condition: Suppose that ' F (A D B), and
ruU{A} ¥ B.

@ So N U{A} U{—B} is satisfiable, i.e. it has a model. Let the
interpretation o a model.

@ The properties of p:

@ All members of I are true wrt the interpretation .
Q |A,=1
Q@ [-B|,=1 andso |B|,=0
o |(A> B)l, =0, |~(A> B), =1
@ All members of ' U {=(A D B)} are true wrt the
interpretation o, i.e. I # (A D B).
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Central logical (semantic) notions

AFE B if and only if F (A D B)

Let T = () in the former theorems.

Classical propositional logic (classical zero—order logic)
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Central logical (semantic) notions

Cut elimination theorem

frU{A}EBand AE A thenTUAF B.

Indirect.
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Properties of truth functors

The truth table of negation

— —lp
0] 1
110

@ The law of double negation: -——A < A
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Properties of truth functors

The truth table of conjunction

A 10 1 (q)
0O |0 O

1 |0 1

(p)

e Commutative: (AA B) < (B A A)
for all A, B € Form.

@ Associative: (AA(BAC)) < ((AANB)AC)
for all A, B, C € Form.

@ ldempotent: (AA A) < A for all A€ Form.
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Properties of truth functors

e (ANB)FA (ANB)EB

@ The law of contradiction: F (A A —A)

@ The set {A1,As, ..., An} (A1, Az, ..., Ay € Form) is
satisfiable iff the formula A; A A> A --- A A, is satisfiable.

@ The set {Al,AQ, e ,An} (Al,AQ, LA E Form) IS
unsatisfiable iff the formula A1 A A> A --- A A, is unsatisfiable.

o {A1,As,..., A} E A (A1, As, ..., An, A € Form) iff
ALNAA---NA, E A

o {A1,As,..., A} E A (A1, A, ..., An, A € Form) iff the
formula ((A1 AAx A -+ AN Ap) A —A) is unsatisfiable.
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Properties of truth functors

v]o 1
The truth table of disjunction: 00 1
11 1

e Commutative: (AV B) < (B V A)

for all A, B € Form.

@ Associative:
(AV(BVvC(C))< ((AvB)v ()
for all A, B, C € Form.

@ |ldempotent: (AV A) < A for all A € Form.
e AF(AV B) for all A,B € Form.

o {(AVB),-A}EB

@ The law of excluded middle: E (AV —A)
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Properties of truth functors

@ Connection between conjunction and disjunction:

A0 1 (1.0 v]o 1
0[0 0 1[1 1 0[0 1
10 1 0|1 0 11 1

@ Conjunction and disjunction are dual truth functors.

@ Two laws of distributivity:

o (AV(BAC)) = ((AVB)A(AVC))
o (AA(BVC)) e ((AAB)V (AN C))

@ Properties of absorption

o (AA(BV A)) < A
o (AV(BAA)) < A
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Properties of truth functors

De Morgan's laws

What do we say when we deny a conjunction?
What do we say when we deny a disjunction?
—(AAB) < (-AV -B)
-(AV B) < (-AA-B)

@ The proofs of De Morgan's laws.

A|lB|-A| B (—|A/\—IB) (A\/ B) —I(A\/ B)
00 1 1 1 0 1

o 0|1 1 0 0 1 0
110 O 1 0 1 0
111 0 0 0 1 0
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Properties of truth functors
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@ The truth table of implication: 0|1 1

10 1
e F(ADA)

@ Modus ponens: {(AD B),A} F B

Modus tollens:
{(ADB),-B} F-A

e Chainrule: {(ADB),(B> C)} F(AD ()
@ Reduction to absurdity: {(AD B),(AD —-B)} F -A
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Properties of truth functors

e “AF (AD B)

e BFE(ADB)

o (AAB)D(C)< (AD(BD ()

e Contraposition: (A D B) < (=B D —A)

o (AD-A)E-A

o (ADAEA

e (AD(BD ()& ((A>B)D(AD0))

o F(AD(-ADB))

o (AVB)D ()<= ((ADC)A(BD())

o {A1, Ao,..., AV EA (A1, Ao, ..., An A€ Form) iff the
formula (A1 AAx A--- AN A,) D A) is valid.
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Properties of truth functors

=0 1
@ The truth table of (material) equivalence: 0 | 1 0
110 1
o F(A=A)
o F(A=-A)
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Properties of truth functors

e (ADB)& —~(AN—-B)

e (ADB)< (mAVB)

o (ANB) < =(AD -B)

e (AVB) < (-ADB)

o (AVB) < =(-AAN-B)

e (ANB) < =(-AV —B)

e (A=B)< ((ADB)A(BDA))
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Properties of truth functors

Theory of truth functors

Base

@ A base is a set of truth functors whose members can express
all truth functors.

o For example: {—, D} {—, A}, {—,V}
QO (pAg) < —(pD —q)
Q@ (pva)=(-pDq)

o Truth functor Sheffer: (p|q) < der =(p A q)
o Truth functor neither-nor: (p || q) <der (—p A —q)
o Remark: Singleton bases: (p|q), (p | q)

Classical propositional logic (classical zero—order logic)
([ Je]

Normal forms

Definition

If p € Con, then formulas p, —p are literals (p is the base of the
literals).

Definition

If the formula A is a literal or a conjunction of literals with
different bases, then A is an elementary conjunction.

Definition

If the formula A is a literal or a disjunction of literals with different
bases, the A is an elementary disjunction.
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Normal forms

Definition
A disjunction of elementary conjunctions is a disjunctive normal
form.

Definition

A conjunction of elementary disjunctions is a conjunctive normal
form.

There is a normal form of any formula of proposition logic, i. e. if
A € Form, then there is a formula B such that B is a normal form
and A& B

Classical propositional calculus ction ClI
O«

Definition

Let L(®) = (LC, Con, Form) be a language of classical propositional
logic and (LC = {—,D,(,)}).
The axiom scheme of classical propositional calculus:

o (Al): AD(BDA)

o (A2): (AD(BD(C)D((A>B)D(ADC())

e (A3): (mAD-B) D (BDA)

Definition

| \

@ The regular substitution of axiom schemes are formulas, such
that A, B, C are replaced by arbitrary formulas.

@ The axioms of classical propositional calculus are the regular
substitutions of axiom schemes.

\
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The inductive definition of syntactical consequence relation

@ Let [ C Form,A € Form. The formula A is a syntactical
consequence of the set ' (in noation ' = A), if at least one of
the followings holds:

Q fAcT, thenl - A;
@ if Ais an axiom, then I - A;
©Q@ fIT-B,and T B DA, then I - A.

Natural ded Cl

‘ |
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Definition

Let ' C Form, A € Form. If formula A is a syntactical consequence
of the set I, then 'T - A’ is a sequence.

The fundamental rule of natural deduction is based on deduction
theorem.

Deduction theorem
IfaT U{A} - B, then T - AD B.

Deduction theorem can be written in the following form:

AF B
-Ao>B
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Structural rules/1

In the following let ', A C Form, A, B, C, € Form.

Rule of assumption

AF A

Rule of expansion

A
[ BFA

Rule of constriction

[B,B,AF A
[ B.AFA

Natural ded

Structural rules/2

Rule of permutation
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Logical rules/1

Rules of implication (introduction and elimination)

[EA [FADB

(52) B

Rules of conjunction

[-A =B
'=AAB

A BFC

(A 1.)

N2) T anBFC

Rules of disjunction

rFA rrB

V1) FavE V2) T AVE
AFC T,BFC

W8 AVBEC

Natural ded

Logical rules/2

Rules of negation

MAFB T,A--B
(1) r--A

Rules of material equivalence

= 1) AFB T,BFA
- - r-FA=8B

_ [FA TFA=B
(= 2) rFB

_ [FB TFA=B
(=3) r-A




Examples

Proof:

(Expansion)
(Permutation)

(=1)

Examples

Proof:

(Asumption)
(Permutation)

(=1)

Natural ded

rLAFB @
[—BF A
rAF B 0 .
A—-BFB T.A-BF-B Eﬁsf;mft:’”n))
[—-B.A-B TI,-B Al —B ermutatio
[L—BF —A

Natural ded

AF-B

2
[ BF—A (2)
0 [AF-B _
LA BFB RABFﬂBEZ$ﬁg2M
[B.AFrB T.B.A--B .

[LBF A
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Proof:

(Expansion)
(Permutation)

(- 1)

Examples

Proof:

(Asumption)
(Permutation)

(—=1)

r-AF B
[—BF A

—-AFB 1]

L—A,-BFB T,-A-BF-B

r,-B,—AFB T,-B,—AF —B

[,—=BF——=A
52) —F-Bra

r,-AF-B
LBFA

0 r,-AF -B

L-A,BFB T,-ABF B

[ B.~A-B T.,B,—-AF —B

[LBF A
(=2) [LBFA

Natural ded

(Assumption)
(Permutation)

Natural ded

(Expansion)
(Permutation)
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Proof:

Examples

Proof:

FADA
- 0
(Assur(nDptllo;) EA
' FADA

A ADBI B

)

ASB,AF A 0

AJADBIFA AL ADBFADB

A ADBF B

Natural ded

Natural ded
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Proof:

Examples

Proof (8), (9):

AFBDA

-
B.AF A
ABFA
CLl) arB-a4

(Assumption)
(Permutation)

A -Al B
~AFADB
)
0 —A —B,AF A

A-B -AF-A -AA-BFA

A-A-BF-A A-A-BFA

A —AF ——B
A —-AF B
A AF B
—AFA>DB

Natural ded

Natural ded
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Examples

BFADB (10)
Proof:

BF B
B.AlF B
BFAOB

Natural ded

Examples

~A>B=-AVB (11)

Proof: At first let us prove that

ADBF-AVB (12)
0
—AF A
Q) (3 -AF-AVEB
A>DBFADB —(mAVB)FA

A>B,~(-AVB)FA>DB A>DB,~(-AVB)FA
A>B,~(-AVB)F B




Examples

)
BF B
(1)__BF-AVB
~(~AV B) - —B

A> B,~(-AV B)F —B

ADB,~(-AVB)FB ADB,~(-AVB)+ -B

A> BF ——(=AV B)
A>BF -AVB

Examples

To prove (11) we have to prove the following:

-_AVBFADB

(9) (10)
-AFA>B BFADOB
~AVBFADB

Natural ded

Natural ded

(13)



Examples

ADB,-BF-A

ADBF-BD-A
Proofs of (14), (15):

0
AASBFB

1) ADB,A-B
ADB,A -BF =B ADBA-BFB
ADB,-B,A+-B ADB,-B,A-B

ADB,-BF-A
ADBF-B>-A

Examples

-BD>D-A+FADB
Proof:

0
1] -B D -A,-BF-A

—BD>-A B, AFA —-B>-A -BAI A

-BD>-AAF —-—B
—B> -A Al B
-BOD-AFADB

Natural ded

(14)

(15)

Natural ded

(16)
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Examples

On the base of (15), (16):
FADB=-BD>-A (17)
Proof:

ADBF-B>-A -BD>D-AFADB
FADB=-B>-A

Natural ded

Example

- (AV —A) (18)
Proof:

0 0
A —(AV -A)F —~(AV -A) ~(AV-A),AF A
~(AV —A),AF ~(AV=A) —(AV-A),AFAV-A
—~(AV -A) F —A

0 0
—A,—(AV -A) F =(AV —A) —(AV =A),~AF —A

—~(AV —A),-AF =(AV-A)  —(AV-A),-AF AV A
—~(AV =A) F =—A
~(AV -A)F A




Examples

Examples

Proof:

Natural ded

~(AV-A)F-A  —(AV-A)F A

= —|—|(A V —lA)
= (A V —lA)

Natural ded

AANBEBAA (19)

0

0 B.AF A

ABFB ABFA
ABFBAA
ANBFBAA




Examples

ANBVCO)E(AAB)V(AAC)
Proof:
0 0
B,AFA 0 C,AFA 0
A BEA A B+ B A CEHA ACEC
A BFAAB A CEANC

Natural ded

(20)

ABF(AANB)V(AAC) ACFE(AAB)V(AACQ)

ABVCFE(AAB)V (AN C)
AN(BVC)F(AAB)V (AN C)

Examples

(AAB)V(AAC)FAA(BV C)

Natural ded

(21)

Proof:

0 0 0 0
B,A- A C,AFA A B+FB A CHC
ABIFA A CHA AANBFB AANCFEC

ANBFEA ANCEA ANBEBVC ANCEBVC

(ANB)V(AAC)F A (AAB)V(AAC)F BV C

(ANB)V(ANC)FAN(BV Q)
On the base of (20) and (21):

FAA(BVC)=(AAB)V(AAC)

(22)



Examples

Natural ded

FAV(BAC)=(AVB)A(AV C) (23)
Proof: At first let us prove the following:
AV(BANC)F(AVB)A(AV C) (24)
0 0
BB CC
0 B,C+-B 0 CFAVC
A A B,CHFAVB AF A B,CFAVC
AFAV B BANCFAVBEB AFAVC BANCEFAVC
AV(BANC)FAVB AV(BANC)FAVC

AV(BAC)F (AVB)A(AVC)

Examples

Now let us prove the following:
(AVB)A(AVC)FAV(BACQ)

0
Al A
A AV (BAC)

AV B,AF AV (BAC)

Natural ded

(25)

0 0
0 Bl B CkC
Al A B,CFB B,CFrC
A AV (BA C) B,.CFrBAC
A CFAV(BAC) B,CFAV (BAC)

AVB,CFAV(BAC)



Examples

AV B,AFAV(BAC) AVB,CHAV(BAC)

AVB,AVCF AV (BAC)
(AVB)A(AV C)F AV (BAC)

Examples

F(ADB)D(BD>C)D(ADC()

Prove:
We can use the proved sequence (6).

ADBAFB B,BOCHC
ADB,AABDCFEFC
ADB,BDCAEC
ADB,BODCFADC

ADBF(BDC)D(ADC(Q)

F(ADB)D(BDC)D(ADC()

Natural ded

Natural ded

(26)
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Examples

F(ADB)D(AD(BD>C(C))D(AD () (27)

Proof: The proved sequence (6) can be used:

AA>DBFB AAD(BDC)FBDOC
ALADB,AD(BDC)-B AAADB,AD(BDODC)FBDOC
ALADB,AD(BDC)FC
ADBAD(BDODC)FADC
ADBF(AD(BDC))D(ADC(O)
F(ADB)D(AD(BD>C))D(ADC(C)

Natural ded

Examples

De Morgan’s laws:

- ~(AAB) = (~AV —B) (28)

- ~(AV B) = (-AA =B) (29)



Examples

To prove (28) at first we have to prove the following:

-(AANB)F (=AV -B)
0 ]
—AE -A B+ -B

(3 _|A|_ _|A\/_|B (3) _lB }_ _IA\/_'B
—~(-AV-B)F A —~(-AV-B)F B

(3) —-(-AV-B)FAAB
-(AANB)F—-AV =B

Examples

To prove (28) we have to prove the following:

—AV-BF =(AA B)
—AF —A (8)
0 B,-AF —A B,-BF —A
AL A B,-AV -BI —-A
A B+ A -AV-B,BF -A
ANBF A —AV -B,A B -A
-AV-B,AANBF A -AV-B,AANBF —-A

~AV —BF —(AA B)

Natural ded

(30)

Natural ded

(31)
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Examples

To prove (29) at first we can prove the following:

~(AV B)F —=AA-B (32)
0 0
Al A Bl B
(1)__AFAVB (1)__BFAVB
~(AV B) F —A ~(AV B)F -B

~(AVB)F -AA-B

Natural ded

Examples

To prove (29) we have to prove the following:

-AAN-BF =(AV B) (33)
0 0
A —A -BI--B
—A, B -A -A,-~B I -B

(2) ~AA-BF-A ) ~AA-BF-B
At —(=A A —B) B+ —(—AA—B)

AV BF —(=ANA—-B)
~AN-BF ~(AV B)

(2)
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Language of classical first—order logic

Definition /1

The language of first—order logic is a
L(Y) = (LC, Var, Con, Term, Form)
ordered 5—tuple, where

1. LC={-,D,A,V,=,=,¥,3,(,)}: (the set of logical
constants).

2. Var (= {x,:n=0,1,2,...}): countable infinite set of
variables

ction
Language of classical first—order logic

Definition /2
3. Con = J;2o(F(n) UP(n)) the set of non—logical constants
(at best countable infinite)
F(0): the set of name parameters,
F(n): the set of n argument function parameters,

P(0): the set of prposition parameters,
P(n): the set of predicate parameters.

4. The sets LC, Var, F(n), P(n) are pairwise disjoint
(n=0,1,2,...).

\
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Language of classical first—order logic

Definition /3

5. The set of terms, i.e. the set Term is given by the following
inductive definition:

(a) VaruF(0) C Term

(b) If f € F(n), (n=1,2,...), s t1, t,...,t, € Term, then
f(t1, to, ..., ty) € Term.

\

ction
Language of classical first—order logic
Definition /4

6. The set of formulas, i.e. the set Form is given by the following
inductive definition:

(a) P(0) C Form

(b) If t1,t, € Term, then (t; = tz) € Form

(c) f PeP(n), (n=1,2,...),s ty,tp,...,t, € Term, then
P(t1, to, ..., t,) € Form.

(d) If A€ Form, then —=A € Form.

(e) If A, B € Form, then
(ADB), (ANB), (AV B), (A= B) € Form.

(f) If x € Var, A € Form, then VxA, 3xA € Form.




ction
(o)
Syntactical definitions

Megjegyzs:

@ Azokat a formulkat, amelyek a 6. (a), (b), (c) szablyok ltal
jnnek Itre, atomi formulknak vagy prmformulknak nevezzk.

Definci:

ction
o]
Semantics of classical first—order logic

Definition (interpretation)
The ordered pair (U, o) is an interpretation of the language L) if

@ U#0 (i.e. Uisa nonempty set);

@ Dom(p) = Con

If a € F(0), then o(a) € U;

If f € F(n) (n#0), then o(f) € UY"

If p € P(0), then o(p) € {0,1};

If PeP(n) (n+0), then o(P) C UM (o(P) € {0,1}Y").
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Semantics of classical first—order logic

Definition (assignment)

The function v is an assignment relying on the interpretation
(U, o) if the followings hold:

e Dom(v) = Var;
e If x € Var, then v(x) € U.

Definition (modified assignment)

Let v be an assignment relying on the interpretation (U, o),
x € Var and u € U.

u, if y = x;
v(y), otherwise.

e ln = {

for all y € Var.
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Semantics of classical first—order logic

Definition (Semantic rules/1)

Let (U, o) be a given interpretation and v be an assignment relying
on (U, 0).

o If a € F(0), then |a]‘<,U’Q> = o(a).

o If x € Var, then |x|\<,U’Q> = v(x).

o If fe F(n), (n=1,2,...), and t1,t2,...,t, € Term, then

\f(n)(tz).d.(tn)\é“ﬁ: )
oAt S 182 [l $20Y)

o If p € P(0), then ]p\s,u’@ = o(p)
@ If t1,t> € Term, then

e _ ) 1, if |£]0V9 = || SU2
0, otherwise.
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Semantics of classical first—order logic

Definition (Semantic rules/2)
o If PeP(n) (n#0), t1,...,t, € Term, then

P(tr)... ()i = b i (el el € o(P);
0, otherwise.

ction
o]
Semantics of classical first—order logic
Definition (Semantic rules/3)

o If A€ Form, then |-A|\Y? =1 —|A|{Y2.
o If A, B € Form, then

(Ao B)Ud =4 0 if A9 =1, and |B|{V? = 0;
’ 1, otherwise.

(AnB)Le = ] 1 ALY =1, and B =1,
Y 0, otherwise.

0 if |A|\Y? =0, and |B|{Y? = 0;
1, otherwise.

(Av B)L {

9

0, otherwise.

(A= By - { L if AR = B =0
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Semantics of classical first—order logic

Definition (Semantic rules/4)
e If A€ Form,x € Var, then

|VXA|‘(/U,Q) _ ) 0, if thereis an u € U such that |A|V[X:u] =0;
1, otherwise.
|E|xA|\<,U’Q> _ { 1, if there is an u € U such that |A|V[X:u] = 1;

0, otherwise.

‘ |

Central logical (semantic) notions — FolL

Definition (model — a set of formulas)

Let L(1) = (LC, Var, Con, Term, Form) be a first order language
and I' C Form be a set of formulas. An ordered triple (U, o, v) is a
model of the set I', if

e (U, o) is an interpretation of L(1);

@ v is an assignment relying on (U, g);

o |AY® =1forall AcT.

Definition — a model of a formula
A model of a formula A is the model of the singleton {A}.

ction

O«



ction
ol
Central logical (semantic) notions — FolL

Definition — satisfiable a set of formulas

The set of formulas ' C Form is satisfiable if it has a model.
(If there is an interpretation and an assignment in which all
members of the set ' are true.)

Definition — satisfiable a formula

A formula A € Form is satisfiable, if the singleton {A} is satisfiable.

ction
¢
Central logical (semantic) notions — FolL

@ A satisfiable set of formulas does not involve a logical
contradiction; its formulas may be true together.

@ A satisfiable formula may be true.

@ If a set of formulas is satisfiable, then its members are
satisfiable.

@ But: all members of the set {P(a),—~P(a)} are satisfiable, and
the set is not satisfiable.

v
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Central logical (semantic) notions — FolL
All subsets of a satisfiable set are satisfiable. \

@ Let I C Form be a set of formulas and A C T.
@ [ is satisfiable: it has a model. Let (U, g, v) be a model of T.
@ A property of (U,0,v): If A€T, then |A|\<,U’Q> =1

o Since ACT,ifAc A, then AcT, and so |A|{Y? = 1. That
is the ordered triple (U, o, v) is a model of A, and so A is
satisfiable.

ction
¢
Central logical (semantic) notions — FolL

Definition — unsatisfiable set
The set ' C Form is unsatisfiable if it is not satisfiable.

Definition — unsatisfiable formula

A formula A € Form is unsatisfiable if the singleton {A} is
unsatisfiable.

A unsatisfiable set of formulas involve a logical contradiction. (lts
members cannot be true together.)
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Central logical (semantic) notions — FolL
All expansions of an unsatisfiable set of formulas are unsatisfiable. \

Indirect proof

@ Suppose that [ C Form is an unsatisfiable set of formulas and
A C Form is a set of formulas.

@ Indirect condition: I is unsatisfiable, and [ U A satisfiable.
o[ CTUA

@ According to the former theorem [ is satisfiable, and it is a
contradiction.

ction
O«

Central logical (semantic) notions — FolL

Definition

A formula A is the logical consequence of the set of formulas I if
the set ' U {—A} is unsatifiable. (Notation : T F A)

Definition
AE B, if {A} E B.

Definition
The formula A is valid if ) E A. (Notation: E A)

Definition

The formulas A and B are logically equivalent if AF B and B F A.
(Notation: A < B)
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Properties of first order central logical notions

Let € Form, and A € Form. T E A if and only if all models of
the set I are the models of formula A. (i.e. the singleton {A}).

Proof

— Indirect condition: There is a model of [ F A such that it is not
a model of the formula A.

Let the ordered triple (U, o, v) be this model.

The properties of (U, g, v):

0 [BI\Y?Y =1forall BET;
@ |A|(U,0), =0, and so I—Ale =1

In this case all members of the set ' U {—A} are true wrt the
interpretation (U, p) and assignment v, so [ U {—A} is satisfiable.
It means that [ # A, and it is a contradiction.

\

ction
(o)
Properties of first order central logical notions

< Indirect condition: All models of the set I are the models of
formula A, but (and) I # A.

In this case [ U {—A} is satisfiable, i.e. it has a model.

Let the ordered triple (U, o, v) be a model.

The properties of (U, g, v):

0 [BI\Y? =1forall BET;
Q@ |-AYY =1, ie |AIMYY =0

So the set [ has a model such that it is not a model of formula A,
and it is a contradiction.

Let  C Form, and A € Form. T FE A if and only if for all
interpretations in which all members of ' are true, the formula A is
true.
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Properties of first order central logical notions

If Ais a valid formula ((F A)), then I A for all sets of formulas
. (A valid formula is a consequence of any set of formulas.)

e If Ais a valid formula, then () E A (according to its definition).

o QU {-A} (= {—A}) is unsatisfiable, and so its expansions are
unsatisfiable.

@ U {—A} is an expansion of {—A}, and so it is unsatisfiable,
ie. [ EA.

ction
(o)
Properties of first order central logical notions

If T is unsatisfiable, then I E A for all A. (All formulas are the
consequences of an unsatisfiable set of formulas.)

@ According to a proved theorem: If [ is unsatisfiable, the all
expansions of [ are unsatisfiable.

@ [U{—A} is an expansion of ', and so it is unsatisfiable, i.e.
[ EA.
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(o)
Properties of first order central logical notions

Deduction theorem: If T U {A} F B, then [ F (A D B).

@ Indirect condition: Suppose, that  U{A} E B, and
[~ (ADB).

o NU{—(A D B)} is satisfiable, and so it has a model. Let the
ordered triple (U, o, v) be a model.

@ The properties of (U, o, v):
© All members of I are true wrt (U, o) and v.
@ [=(A> B =1
o (ADB)YY =0, ie |AYY =1 and BV = 0.
So|ﬁB|§,U’Q> = 1.
@ All members of ' U{A} U {=B} are true wrt (U, ¢) and v, i.e.
[U{A} ¥ B, and it is a contradiction.

v

ction
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Properties of first order central logical notions

In the opposite direction: If = (A D B), then T'U {A} F B.

@ Indirect condition: Suppose that ' E (A D B), and
ruU{A} ¥ B.

@ So I U{A} U{—B} is satisfiable, i.e. it has a model. Let the
ordered triple (U, o0, v) a model.

@ The properties of (U, g, v):
© All members of I are true wrt (U, o) and v.
@ | =1
Q@ |-B|Y? =1, and so |B|{Y? =0
o [(AD BV =0, |-(A>B)|\V? =1.
@ All members of T U{—=(A D B)} are true wrt (U, o) and v, i.e.
[~ (A D B).

v
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Properties of first order central logical notions

AFE B if and only if F (A D B)

Let T = () in the former theorems. \

ction
(o)
Properties of first order central logical notions

Cut elimination theorem
frU{A}EBand AE A thenTUAF B.

Indirect. \
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Syntactical properties of variables

Definition

Let L() = (LC, Var, Con, Term, Form) be a first order language
and A € Form be a formula. The set of free variables of the
formula A (in notation: FreeVar(A)) is given by the following
inductive definition:

@ If Ais an atomic formula (i.e. A € AtForm), then the
members of the set FreeVar(A) are the variables occuring in
A.

o If the formula A is =B, then FreeVar(A) = FreeVar(B).

o If the formula Ais (B D> C), (BAC), (BVv C)or (B= (),
then FreeVar(A) = FreeVar(B) | FreeVar(C).

@ If the formula A is W¥xB or dxB, then
FreeVar(A) = FreeVar(B) \ {x}.
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Syntactical properties of variables

Let L() = (LC, Var, Con, Term, Form) be a first order language
and A € Form be a formula. The set of bound variables of the
formula A (in notation: BoundVar(A)) is given by the following
inductive definition:

@ If Ais an atomic formula (i.e. A € AtForm), then
BoundVar(A) = 0.

o If the formula A is =B, then BoundVar(A) = FreeVar(B).

@ If the formula Ais (B> C), (BAC), (BV C)or (B = C),
then BoundVar(A) = BoundVar(B) | BoundVar(C).

@ If the formula A is VxB or dxB, then
BoundVar(A) = BoundVar(B) U {x}.
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Syntactical properties of variables

@ The bases of inductive definitions of sest of free and bound
variables are given by the first requirement of the
corresponding definitions.

@ The sets of free and bound variables of a formula are not
disoint necessarily:
FreeVar((P(x) A 3xR(x))) = {x} =
BoundVar((P(x) A 3xR(x)))

A\

ction
Syntactical properties of variables

Let L) = (LC, Var, Con, Term, Form) be a first order language,
A € Form be a formula, and x € Var be a variable.

@ A fixed occurence of the variable x in the formula A is free if
It is not in the subformulas VxB or dxB of the formula A.

@ A fixed occurence of the variable x in the formula A is bound
if it is not free.
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Syntactical properties of variables

o If x is a free variable of the formula A (i.e. x € FreeVar(A)),
then it has at least one free occurence in A.

@ If x is a bound variable of the formula A
(i.e. x € BoundVar(A)), then it has at least one bound
occurence in A.
@ A fixed occurence of a variable x in the formula A is free if
e it does not follow a universal or an existential quantifier, or
e it is not in a scope of a Vx or a dx quantification.
@ A variable x may be a free and a bound variable of the

formula A:
(P(x) A 3xR(x))
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Syntactical properties of variables

Let L) = (LC, Var, Con, Term, Form) be a first order languuage
and A € Form be a formula.

o If FreeVar(A) # (), then the formula A is an open formula.
o If FreeVar(A) = (), then the formula A is a closed formula.

Remark:
The formula A is open if there is at least one variable which has at

least one free occurence in A.
The formula A is closed if there is no variable which has a free

occurence in A.
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Properties of quantification

De Morgan Laws of quantifications

Let L) = (LC, Var, Con, Term, Form) be a first order language,
A € Form be a formula and x € Var be a variable. Then

o —dxA & W—A
o WA & dx—A

A\
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Properties of quantification

Expressibilty of quantifications

Let L) = (LC, Var, Con, Term, Form) be a first order language,
A € Form be a formula and x € Var be a variable. Then

o IxA & -W—-A
o WA & —Xx—A

A\
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Properties of quantification

Conjunction and quantifications

Let L(Y) = (LC, Var, Con, Term, Form) be a first order language,
A, B € Form be formulas and x € Var be a variable.
If x & FreeVar(A), then

e ANVXB < Vx(AN B)

@ ANIxB < Ix(AN B)

Remark:

According to the commutativity of conjunction the followings hold:
If x ¢ FreeVar(A), then

o VxBAA & Vx(BAA)
@ IXxBAA< IX(BAA)
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Properties of quantification

Disjunction and quantifications

Let L(Y) = (LC, Var, Con, Term, Form) be a first order language,
A, B € Form be formulas and x € Var be a variable.
If x ¢ FreeVar(A), then

o AVWB < W(AV B)

e AV dxB < Ax(AV B)

Remark:

According to the commutativity of disjunction the followings hold:
If x ¢ FreeVar(A), then

o VxBV A& Vx(BV A)
e IxBVA<« Ix(BVA)
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Properties of quantification

Implication with existential quantification

Let L) = (LC, Var, Con, Term, Form) be a first order language,
A, B € Form be formulas and x € Var be a variable.
If x & FreeVar(A), then

e AD dxB < Ix(AV B)
@ IxB D A< Vx(B D A)
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Properties of quantification

Implication with universal quantification

Let L(Y) = (LC, Var, Con, Term, Form) be a first order language,
A, B € Form be formulas and x € Var be a variable.
If x & FreeVar(A), then

e ADVxB < Vx(AV B)
e VxB DA< Ix(BDA)
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Properties of quantification

Substitutabily a variable with an other variable

Let L() = (LC, Var, Con, Term, Form) be a first order language,

A € Form be a formula and x, y € Var be variables.

The variable x is subtitutable with the variable y in the formula A
if there is no a free occurence of x in A which is in the subformulas
VyB or dyB of A.

Example:

@ In the formula VzP(x, z) the variable x is substitutable with
the variable y, but x is not substitutable with the variable z.
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Properties of quantification

Substitutabily a variable with a term

Let LY = (LC, Var, Con, Term, Form) be a first order language,

A € Form be a formula, x € Var be a variable and t € Term be a
term.

The variable x is subtitutable with the term t in the formula A if in
the formula A the variable x is substitutable with all variables
occuring in the term t.

Example

@ In the formula VzP(x, z) the variable x is substitutable with
the term f(y1, y»), but x is not substitutable with the term

f(y,z).
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Properties of quantification

Result of a substitution
If the variable x is subtitutable with the term t in the formula A,

then [A]% denotes the formula which appear when all free
occurences of the variable x in A are substituted with the term t.
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Properties of quantification

Renaming

Let L) = (LC, Var, Con, Term, Form) be a first order language,
A € Form be a formula, and x, y € Var be variables.
If the variable x is subtitutable with the variable y in the formula A

and y ¢ FreeVar(A), then

@ the formula Vy[A]% is a regular renaming of the formula VxA;

e the formula Jy[A]X is a regular renaming of the formula 3xA.

v
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Properties of quantification

Congruent formulas

Let L) = (LC, Var, Con, Term, Form) be a first order language
and A € Form be a formula.

The set Cong(A) (the set ot formulas which are congruent with A)
is given by the following inductive definition:

e A e Cong(A);

e if =B € Cong(A) and B’ € Cong(B), then =B’ € Cong(A);

e if (Bo C) € Cong(A), B' € Cong(B) and C' € Cong(C),
then (B’ o C') € Cong(A) (o € {D,A,V,=});

o if WB € Cong(A) and W[B]X is a regular renaming of the
formula YxB, then W[B]% € Cong(A);

o if IxB € Cong(A) and Jy[B]X is a regular renaming of the
formula 3xB, then Jy[B]% € Cong(A).

ction
Properties of quantification

Let L) = (LC, Var, Con, Term, Form) be a first order language
and A, B € Form be formulas.

e If B € Cong(A), then the formula A is congruent with the
formula B.

o If B € Cong(A), then the formula B is a syntactical synonym
of the formula A.

Congruent formulas are logically equivalent, i.e. if B € Cong(A),
then A < B.
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Properties of quantification

Let L() = (LC, Var, Con, Term, Form) be a first order language
and A € Form be a formula.
The formula A is standardized if

o FreeVar(A) () BoundVar(A) = 0;

@ all bound variables of the formula A have exactly one
occurences next a quantifier.

Let L) = (LC, Var, Con, Term, Form) be a first order language
and A € Form be a formula.
Then there is a formula B € Form such that

@ the formula B is standardized;

@ the formula B is congruent with the formula A, i.e.
B € Cong(A).

ction
O«
Properties of quantification

Let L) = (LC, Var, Con, Term, Form) be a first order language
and A € Form be a formula.
The formula A is prenex if

@ there is no quantifier in A or
@ the formula A is in the form Qi1 x1 Qox> ... Qnx,B
(n=1,2,...), where

e there is no quantifier in the formula B € Form;
@ X1,X»...X, € Var are diffrent variables;

o Q1,Qy,...,Q, € {V,3} are quantifiers.
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Properties of quantification

Theorem

Let L) = (LC, Var, Con, Term, Form) be a first order language
and A € Form be a formula.
Then there is a formula B € Form such that

@ the formula B is prenex;
o A& B.
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