Logic in Computer Science

Tamás Mihálydeák mihalydeak.tamas@inf.unideb.hu

Department of Computer Science

January 5, 2014

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

The main task of logic

 to give the laws of valid arguments (inferences, consequence relations)

Valid arguments

- Valid arguments (inferences):
 - an argument (an inference): a relation between premise(s) and conclusion
 - a consequence relation
 - input: premise(s)
 - output: conclusion
 - Valid arguments (inferences, consequence relations): if all premises are true, then the conclusion is true.
 - Logically valid arguments: when the former holds necessarily.

Definition/1

Classical zero-order language is an ordered triple

$$L^{(0)} = \langle LC, Con, Form \rangle$$

where

- $LC = \{\neg, \supset, \land, \lor, \equiv, (,)\}$ (the set of logical constants).
- 2 $Con \neq \emptyset$ the countable set of non-logical constants (propositional parameters)
- **1** LC \cap Con = \emptyset
- The set of formulae i.e. the set *Form* is given by the following inductive definition:

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction Cl

Language of propositional logic

Definition/2

- Con ⊂ Form
- If $A \in Form$, then $\neg A \in Form$.
- If $A, B \in Form$, then
 - $(A \supset B) \in Form$,
 - $(A \wedge B) \in Form$,
 - $(A \lor B) \in Form$,
 - $(A \equiv B) \in Form$.

Remark

The members of the set *Con* are the atomic formulae (prime formulae).

Definition

- If A is an atomic formula, then it has no direct subformula;
- $\neg A$ has exactly one direct subformula: A;
- Direct subformulae of formulae $(A \supset B)$, $(A \land B)$, $(A \lor B)$, $(A \equiv B)$ are formulae A and B, respectively.

Definition

The set of subformulae of formula A [denoting: SF(A)] is given by the following inductive definition:

- \bullet $A \in RF(A)$ (i.e. the formula A is a subformula of itself);
- ② if $A' \in RF(A)$ and B is a direct subformula of A'-nek, then $B \in RF(A)$

(i.e., if A' is a subformula of A, then all direct subformulae of A' are subformulae of A).

Introduction Classical propositional logic (classical zero-order logic) Classical propositional calculus

Natural deduction

Construction tree

Definition

The contruction tree of a formula A is a finite ordered tree whose nodes are formulae,

- the root of the tree is the formmula A,
- the node with formula $\neg B$ has one child: he node with the formula B,
- the node with formulae $(B \supset C)$, $(B \land C)$, $(B \lor C)$, $(B \equiv C)$ has two children: the nodes with B, and C
- the leaves of the tree are atomic formulae.

Definition

The function ϱ is an interpretation of the language $L^{(0)}$ if

- **1** $Dom(\varrho) = Con$
- 2 If $p \in Con$, then $\rho(p) \in \{0, 1\}$.

Classical propositional logic (classical zero-order logic) Classical propositional calculus

Natural deduction Cl

The semantic rules of propositional logic

Definition

Let ϱ be an interpretation and $|A|_{\varrho}$ be the semantic value of the formula A formula with respect to ρ .

- **1** If $p \in Con$, then $|p|_{o} = \varrho(p)$
- 2 If $A \in Form$, then $|\neg A|_{\rho} = 1 |A|_{\rho}$.
- \bullet If $A, B \in Form$, then
 - $|(A\supset B)|_{\varrho}=\left\{ egin{array}{ll} 0 & \mbox{if } |A|_{\varrho}=1, \mbox{ and } |B|_{\varrho}=0; \\ 1, & \mbox{otherwise} \end{array} \right.$ $|(A\land B)|_{\varrho}=\left\{ egin{array}{ll} 1 & \mbox{if } |A|_{\varrho}=1, \mbox{ and } |B|_{\varrho}=1; \\ 0, & \mbox{otherwise} \end{array} \right.$ $|(A\lor B)|_{\varrho}=\left\{ egin{array}{ll} 0 & \mbox{if } |A|_{\varrho}=0, \mbox{ and } |B|_{\varrho}=0; \\ 1, & \mbox{otherwise}. \end{array} \right.$

 - $|(A \equiv B)|_{\varrho} = \begin{cases} 1 & \text{if } |A|_{\varrho} = |B|_{\varrho}; \\ 0, & \text{otherwise.} \end{cases}$

Definition (model – a set of formulas)

Let $\Gamma \subseteq Form$ be a set of formulas. An interpretation ϱ is a model of the set of formulas Γ , if $|A|_{\varrho} = 1$ for all $A \in \Gamma$.

Definition – a model of a formula

A model of a formula A is the model of the singleton $\{A\}$.

Definition - satisfiable a set of formulas

The set of formulas $\Gamma \subseteq Form$ is satisfiable if it has a model. (If there is an interpretation in which all members of the set Γ are ture.)

Definition - satisfiable a formula

A formula $A \in Form$ is satisfiable, if the singleton $\{A\}$ is satisfiable.

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Central logical (semantic) notions

Remark

- A satisfiable set of formulas does not involve a logical contradiction; its formulas may be true together.
- A safisfiable formula may be true.
- If a set of formulas is satisfiable, then its members are satisfiable.
- But: all members of the set $\{p, \neg p\}$ are satisfiable, and the set is not satisfiable.

All subsets of a satisfiable set are satisfiable.

Proof

- Let $\Gamma \subseteq Form$ be a set of formulas and $\Delta \subseteq \Gamma$.
- Γ is satisfiable: it has a model. Let ϱ be a model of Γ .
- A property of ϱ : If $A \in \Gamma$, then $|A|_{\varrho} = 1$
- Since $\Delta \subseteq \Gamma$, if $A \in \Delta$, then $A \in \Gamma$, and so $|A|_{\varrho} = 1$. That is the interpretation ϱ is a model of Δ , and so Δ is satisfiable.

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Central logical (semantic) notions

Definition – unsatisfiable set

The set $\Gamma \subset Form$ is unsatisfiable if it is not satisfiable.

Definition – unsatisfiable formula

A formula $A \in Form$ is unsatisfiable if the singleton $\{A\}$ is unsatisfiable.

Remark

A unsatisfiable set of formulas involve a logical contradiction. (Its members cannot be true together.)

All expansions of an unsatisfiable set of formulas are unsatisfiable.

Indirect proof

- Suppose that $\Gamma \subseteq Form$ is an unsatisfiable set of formulas and $\Delta \subseteq Form$ is a set of formulas.
- Indirect condition: Γ is unsatisfiable, and $\Gamma \cup \Delta$ satisfiable.
- \bullet $\Gamma \subset \Gamma \cup \Delta$
- According to the former theorem Γ is satisfiable, and it is a contradiction.

Introduction Classical propositional logic (classical zero-order logic) Classical propositional calculus

Natural deduction Cl

Central logical (semantic) notions

Definition

A formula A is the logical consequence of the set of formulas Γ if the set $\Gamma \cup \{\neg A\}$ is unsatisfiable. (*Notation* : $\Gamma \vDash A$)

Definition

 $A \models B$, if $\{A\} \models B$.

Definition

The formula A is valid if $\emptyset \models A$. (Notation: $\models A$)

The formulas A and B are logically equivalent if $A \models B$ and $B \models A$. (Notation: $A \Leftrightarrow B$)

Let $\Gamma \subseteq Form$, and $A \in Form$. $\Gamma \models A$ if and only if all models of the set Γ are the models of formula A. (i.e. the singleton $\{A\}$).

Proof

 \rightarrow Indirect condition: There is a model of $\Gamma \vDash A$ such that it is not a model of the formula A.

Let the interpretation ρ be this model.

The properties of ϱ :

- **1** $|B|_{\varrho} = 1$ for all $B \in \Gamma$;
- **2** $|A|_{\rho} = 0$, and so $|\neg A|_{\rho} = 1$

In this case all members of the set $\Gamma \cup \{\neg A\}$ are true wrt ϱ -ban, and so $\Gamma \cup \{\neg A\}$ is satisfiable. It means that $\Gamma \nvDash A$, and it is a contradiction.

Introduction Classical propositional logic (classical zero-order logic) Classical propositional calculus

Natural deduction

Central logical (semantic) notions

Proof

 \leftarrow Indirect condition: All models of the set Γ are the models of formula A, but (and) $\Gamma \nvDash A$.

In this case $\Gamma \cup \{\neg A\}$ is satisfiable, i.e. it has a model.

Let the interpretation ϱ be a model.

The properties of ϱ :

- $|B|_{\varrho} = 1$ for all $B \in \Gamma$;
- **2** $|\neg A|_{\varrho} = 1$, i.e. $|A|_{\varrho} = 0$

So the set Γ has a model such that it is not a model of formula A, and it is a contradiction.

Corollary

Let $\Gamma \subseteq Form$, and $A \in Form$. $\Gamma \models A$ if and only if for all interpretations in which all members of Γ are true, the formula A is true.

If A is a valid formula $((\models A))$, then $\Gamma \models A$ for all sets of formulas Γ . (A valid formula is a consequence of any set of formulas.)

Proof

- If A is a valid formula, then $\emptyset \models A$ (according to its definition).
- $\emptyset \cup \{\neg A\}$ (= $\{\neg A\}$) is unsatisfiable, and so its expansions are unsatisfiable.
- $\Gamma \cup \{\neg A\}$ is an expansion of $\{\neg A\}$, and so it is unsatisfiable, i.e. $\Gamma \models A$.

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Central logical (semantic) notions

Theorem

If Γ is unsatisfiable, then $\Gamma \vDash A$ for all A. (All formulas are the consequences of an unsatisfiable set of formulas.)

- According to a proved theorem: If Γ is unsatisfiable, the all expansions of Γ are unsatisfiable.
- $\Gamma \cup \{\neg A\}$ is an expansion of Γ , and so it is unsatisfiable, i.e. $\Gamma \models A$.

Deduction theorem: If $\Gamma \cup \{A\} \models B$, then $\Gamma \models (A \supset B)$.

Proof

- Indirect condition: Suppose, that $\Gamma \cup \{A\} \vDash B$, and $\Gamma \nvDash (A \supset B)$.
- $\Gamma \cup \{\neg(A \supset B)\}$ is satisfiable, and so it has a model. Let the interpretation ϱ be a model.
- The properties of ϱ :
 - **1** All members of Γ are true wrt ϱ .
 - $|\neg (A\supset B)|_{\varrho}=1$
- $|(A\supset B)|_{\varrho}=0$, i.e. $|A|_{\varrho}=1$ and $|B|_{\varrho}=0$. So $|\neg B|_{\varrho}=1$.
- All members of $\Gamma \cup \{A\} \cup \{\neg B\}$ are true wrt interpretation ϱ , i.e. $\Gamma \cup \{A\} \nvDash B$, and it is a contradiction.

Introduction Classical propositional logic (classical zero—order logic) Classical propositional calculus

Natural deduction

Central logical (semantic) notions

Theorem

In the opposite direction: If $\Gamma \vDash (A \supset B)$, then $\Gamma \cup \{A\} \vDash B$.

- Indirect condition: Suppose that $\Gamma \vDash (A \supset B)$, and $\Gamma \cup \{A\} \nvDash B$.
- So $\Gamma \cup \{A\} \cup \{\neg B\}$ is satisfiable, i.e. it has a model. Let the interpretation ϱ a model.
- The properties of ϱ :
 - **1** All members of Γ are true wrt the interpretation ϱ .
 - $|A|_{o} = 1$
- $|(A \supset B)|_{\varrho} = 0$, $|\neg(A \supset B)|_{\varrho} = 1$.
- All members of $\Gamma \cup \{\neg (A \supset B)\}$ are true wrt the interpretation ϱ , i.e. $\Gamma \nvDash (A \supset B)$.

Central logical (semantic) notions

Corollary

 $A \vDash B$ if and only if $\vDash (A \supset B)$

Proof

Let $\Gamma = \emptyset$ in the former theorems.

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction CI

Central logical (semantic) notions

Cut elimination theorem

If $\Gamma \cup \{A\} \vDash B$ and $\Delta \vDash A$, then $\Gamma \cup \Delta \vDash B$.

Proof

Indirect.

The truth table of negation

$$\begin{array}{c|c} \neg & \neg p \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

• The law of double negation: $\neg \neg A \Leftrightarrow A$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction Cl

Properties of truth functors

The truth table of conjunction

- Commutative: $(A \land B) \Leftrightarrow (B \land A)$ for all $A, B \in Form$.
- Associative: $(A \land (B \land C)) \Leftrightarrow ((A \land B) \land C)$ for all $A, B, C \in Form$.
- Idempotent: $(A \land A) \Leftrightarrow A$ for all $A \in Form$.

- $(A \land B) \models A$, $(A \land B) \models B$
- The law of contradiction: $\vdash \neg (A \land \neg A)$
- The set $\{A_1, A_2, \dots, A_n\}$ $(A_1, A_2, \dots, A_n \in Form)$ is satisfiable iff the formula $A_1 \wedge A_2 \wedge \dots \wedge A_n$ is satisfiable.
- The set $\{A_1, A_2, \dots, A_n\}$ $(A_1, A_2, \dots, A_n \in Form)$ is unsatisfiable iff the formula $A_1 \wedge A_2 \wedge \dots \wedge A_n$ is unsatisfiable.
- $\{A_1, A_2, \dots, A_n\} \vDash A (A_1, A_2, \dots, A_n, A \in Form)$ iff $A_1 \land A_2 \land \dots \land A_n \vDash A$.
- $\{A_1, A_2, \dots, A_n\} \vDash A \ (A_1, A_2, \dots, A_n, A \in Form)$ iff the formula $((A_1 \land A_2 \land \dots \land A_n) \land \neg A)$ is unsatisfiable.

Introduction Classical propositional logic (classical zero—order logic) Classical propositional calculus

Natural deduction Cl

Properties of truth functors

The truth table of disjunction: $\begin{array}{c|cccc} & \vee & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$

- Commutative: $(A \lor B) \Leftrightarrow (B \lor A)$ for all $A, B \in Form$.
- Associative: $(A \lor (B \lor C)) \Leftrightarrow ((A \lor B) \lor C)$ for all $A, B, C \in Form$.
- Idempotent: $(A \lor A) \Leftrightarrow A$ for all $A \in Form$.
- $A \vDash (A \lor B)$ for all $A, B \in Form$.
- $\{(A \vee B), \neg A\} \models B$
- The law of excluded middle: $\models (A \lor \neg A)$

Connection between conjunction and disjunction:

\wedge	0	1
0	0	0
1	0	1

	1	0
1	1	1
0	1	0

\vee	0	1
0	0	1
1	1	1

- Conjunction and disjunction are dual truth functors.
- Two laws of distributivity:
 - $(A \lor (B \land C)) \Leftrightarrow ((A \lor B) \land (A \lor C))$
 - $(A \land (B \lor C)) \Leftrightarrow ((A \land B) \lor (A \land C))$
- Properties of absorption
 - $(A \wedge (B \vee A)) \Leftrightarrow A$
 - $(A \lor (B \land A)) \Leftrightarrow A$

Introduction Classical propositional logic (classical zero—order logic) Classical propositional calculus

Natural deduction

Properties of truth functors

De Morgan's laws

- What do we say when we deny a conjunction?
- What do we say when we deny a disjunction?
- $\neg (A \land B) \Leftrightarrow (\neg A \lor \neg B)$
- $\neg (A \lor B) \Leftrightarrow (\neg A \land \neg B)$
- The proofs of De Morgan's laws.

	$A \mid$	В	$\neg A$	$\neg B$	$(\neg A \land \neg B)$	$(A \lor B)$	$\neg(A \lor B)$
	0	0	1	1	1	0	1
•	0	1	1	0	0	1	0
	1	0	0	1	0	1	0
	1	1	0	0	0	1	0

- The truth table of implication: $\begin{array}{c|cccc} & \supset & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \end{array}$
- $\bullet \models (A \supset A)$
- Modus ponens: $\{(A \supset B), A\} \models B$
- Modus tollens: $\{(A \supset B), \neg B\} \vDash \neg A$
- Chain rule: $\{(A\supset B), (B\supset C)\} \vDash (A\supset C)$
- Reduction to absurdity: $\{(A \supset B), (A \supset \neg B)\} \vDash \neg A$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction Cl

Properties of truth functors

- $\neg A \vDash (A \supset B)$
- $B \models (A \supset B)$
- $((A \land B) \supset C) \Leftrightarrow (A \supset (B \supset C))$
- Contraposition: $(A \supset B) \Leftrightarrow (\neg B \supset \neg A)$
- $(A \supset \neg A) \vDash \neg A$
- $(\neg A \supset A) \models A$
- $(A\supset (B\supset C))\Leftrightarrow ((A\supset B)\supset (A\supset C))$
- $\bullet \models (A \supset (\neg A \supset B))$
- $((A \lor B) \supset C) \Leftrightarrow ((A \supset C) \land (B \supset C))$
- $\{A_1, A_2, \dots, A_n\} \vDash A \ (A_1, A_2, \dots, A_n, A \in Form)$ iff the formula $((A_1 \land A_2 \land \dots \land A_n) \supset A)$ is valid.

• The truth table of (material) equivalence:

\equiv	0	1
0	1	0
1	0	1

- $\bullet \models (A \equiv A)$
- $\models \neg(A \equiv \neg A)$

Introduction Classical propositional logic (classical zero—order logic) Classical propositional calculus

Natural deduction Cl

Properties of truth functors

Expressibility

- $(A \supset B) \Leftrightarrow \neg (A \land \neg B)$
- $(A \supset B) \Leftrightarrow (\neg A \lor B)$
- $(A \land B) \Leftrightarrow \neg(A \supset \neg B)$
- $(A \lor B) \Leftrightarrow (\neg A \supset B)$
- $(A \lor B) \Leftrightarrow \neg(\neg A \land \neg B)$
- $(A \wedge B) \Leftrightarrow \neg(\neg A \vee \neg B)$
- $(A \equiv B) \Leftrightarrow ((A \supset B) \land (B \supset A))$

Theory of truth functors

Base

- A base is a set of truth functors whose members can express all truth functors.
 - For example: $\{\neg, \supset\}, \{\neg, \land\}, \{\neg, \lor\}$
 - 1 $(p \land q) \Leftrightarrow \neg(p \supset \neg q)$ 2 $(p \lor q) \Leftrightarrow (\neg p \supset q)$
 - Truth functor Sheffer: $(p|q) \Leftrightarrow_{def} \neg (p \land q)$
 - Truth functor neither-nor: $(p \parallel q) \Leftrightarrow_{\mathit{def}} (\neg p \land \neg q)$
 - Remark: Singleton bases: (p|q), $(p \parallel q)$

Introduction Classical propositional logic (classical zero-order logic) Classical propositional calculus

Natural deduction Cl

Normal forms

Definition

If $p \in Con$, then formulas $p, \neg p$ are literals (p is the base of the literals).

Definition

If the formula A is a literal or a conjunction of literals with different bases, then A is an elementary conjunction.

Definition

If the formula A is a literal or a disjunction of literals with different bases, the A is an elementary disjunction.

Definition

A disjunction of elementary conjunctions is a disjunctive normal form.

Definition

A conjunction of elementary disjunctions is a conjunctive normal form.

Theorem

There is a normal form of any formula of proposition logic, i. e. if $A \in Form$, then there is a formula B such that B is a normal form and $A \Leftrightarrow B$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Definition

Let $L^{(0)} = \langle LC, Con, Form \rangle$ be a language of classical propositional logic and $(LC = \{\neg, \supset, (,)\})$.

The axiom scheme of classical propositional calculus:

- (A1): $A\supset (B\supset A)$
- (A2): $(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$
- (A3): $(\neg A \supset \neg B) \supset (B \supset A)$

Definition

- The regular substitution of axiom schemes are formulas, such that A, B, C are replaced by arbitrary formulas.
- The axioms of classical propositional calculus are the regular substitutions of axiom schemes.

- Let $\Gamma \subseteq Form$, $A \in Form$. The formula A is a syntactical consequence of the set Γ (in noation $\Gamma \vdash A$), if at least one of the followings holds:
 - **1** if $A \in \Gamma$, then $\Gamma \vdash A$;
 - 2 if A is an axiom, then $\Gamma \vdash A$;
 - 3 if $\Gamma \vdash B$, and $\Gamma \vdash B \supset A$, then $\Gamma \vdash A$.

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Definition

Let $\Gamma \subset Form$, $A \in Form$. If formula A is a syntactical consequence of the set Γ , then $\Gamma \vdash A$ is a sequence.

The fundamental rule of natural deduction is based on deduction theorem.

Deduction theorem

If a $\Gamma \cup \{A\} \vdash B$, then $\Gamma \vdash A \supset B$.

Deduction theorem can be written in the following form:

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B}$$

Structural rules/1

In the following let $\Gamma, \Delta \subseteq Form, A, B, C, \in Form$.

Rule of assumption

$$\frac{\emptyset}{\Gamma,A\vdash A}$$

Rule of expansion

$$\frac{\Gamma \vdash A}{\Gamma, B \vdash A}$$

Rule of constriction

$$\frac{\Gamma, B, B, \Delta \vdash A}{\Gamma, B, \Delta \vdash A}$$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Structural rules/2

Rule of permutation

$$\frac{\Gamma, B, C, \Delta \vdash A}{\Gamma, C, B, \Delta \vdash A}$$

Cut rule

$$\frac{\Gamma \vdash A \qquad \Delta, A \vdash B}{\Gamma, \Delta \vdash B}$$

Logical rules/1

Rules of implication (introduction and elimination)

$$(\supset 1.)$$
 $\frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B}$

$$(\supset 2.) \quad \frac{\Gamma \vdash A \qquad \Gamma \vdash A \supset B}{\Gamma \vdash B}$$

Rules of conjunction

$$(\land 1.)$$
 $\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B}$

$$(\land 2.) \quad \frac{\Gamma, A, B \vdash C}{\Gamma, A \land B \vdash C}$$

Rules of disjunction

$$(\vee 1.) \quad \frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}$$

$$(\vee 2.) \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$$

$$(\vee 3.) \quad \frac{\Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma, A \lor B \vdash C}$$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Logical rules/2

Rules of negation

$$(\neg \ 1.) \quad \frac{\Gamma, A \vdash B \qquad \Gamma, A \vdash \neg B}{\Gamma \vdash \neg A}$$

$$(\neg 2.)$$
 $\frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A}$

Rules of material equivalence

$$(\equiv 1.) \qquad \frac{\Gamma, A \vdash B \qquad \Gamma, B \vdash A}{\Gamma \vdash A \equiv B}$$

$$(\equiv 2.) \quad \frac{\Gamma \vdash A \qquad \Gamma \vdash A \equiv B}{\Gamma \vdash B}$$

$$(\equiv 3.) \quad \frac{\Gamma \vdash B \quad \Gamma \vdash A \equiv B}{\Gamma \vdash A}$$

CI

$$\frac{\Gamma, A \vdash B}{\Gamma, \neg B \vdash \neg A} \tag{1}$$

Proof:

(Expansion)
$$\frac{ \begin{array}{c} \Gamma, A \vdash B \\ \hline \Gamma, A, \neg B \vdash B \\ \hline (\neg 1.) \end{array} \begin{array}{c} \frac{\emptyset}{\Gamma, A, \neg B \vdash B} \end{array} \begin{array}{c} \frac{\emptyset}{\Gamma, A, \neg B \vdash \neg B} \end{array} \\ \hline (Assumption) \\ \hline \Gamma, \neg B, A \vdash B \end{array} \begin{array}{c} \Gamma, A, \neg B, A \vdash \neg B \\ \hline \Gamma, \neg B, A \vdash \neg A \end{array}$$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Examples

$$\frac{\Gamma, A \vdash \neg B}{\Gamma, B \vdash \neg A} \tag{2}$$

$$\frac{\Gamma, \neg A \vdash B}{\Gamma, \neg B \vdash A} \tag{3}$$

Proof:

(Expansion)
$$(Permutation) = \begin{pmatrix} \Gamma, \neg A \vdash B \\ \hline \Gamma, \neg A, \neg B \vdash B \\ \hline \Gamma, \neg B, \neg A \vdash B \end{pmatrix} = \begin{pmatrix} \emptyset \\ \hline \Gamma, \neg A, \neg B \vdash \neg B \\ \hline \Gamma, \neg B, \neg A \vdash \neg B \end{pmatrix} = \begin{pmatrix} (Assumption) \\ (Permutation) \end{pmatrix} = \begin{pmatrix} (Assumption) \\ (\neg A) \end{pmatrix} = \begin{pmatrix} (Assumption) \\ \hline (Assumption) \end{pmatrix} = \begin{pmatrix} (Assumption) \\ (Assumption) \end{pmatrix} = \begin{pmatrix} (Assu$$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Examples

$$\frac{\Gamma, \neg A \vdash \neg B}{\Gamma, B \vdash A} \tag{4}$$

Examples

$$\vdash A \supset A$$
 (5)

Proof:

(Assumption)
$$\frac{\emptyset}{A \vdash A}$$
 $\vdash A \supset A$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Examples

$$A, A \supset B \vdash B \tag{6}$$

$$\frac{0}{A \supset B, A \vdash A} \qquad 0
A, A \supset B \vdash A \qquad A, A \supset B \vdash A \supset B$$

$$A, A \supset B \vdash B$$

 $A \vdash B \supset A$

(7)

Proof:

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Examples

$$A, \neg A \vdash B$$

(8)

$$\neg A \vdash A \supset B$$

(9)

Proof (8), (9):

$$\frac{\emptyset}{A, \neg B, \neg A \vdash \neg A} \qquad \frac{0}{\neg A, \neg B, A \vdash A}$$

$$\frac{A, \neg A, \neg B \vdash \neg A}{A, \neg A, \neg B \vdash A} \qquad \frac{A, \neg A, \neg B \vdash A}{A, \neg A, \neg B \vdash A}$$

$$\frac{A, \neg A \vdash \neg \neg B}{A, \neg A \vdash B}$$

$$\frac{A, \neg A \vdash B}{\neg A, A \vdash B}$$

$$\frac{\neg A, A \vdash B}{\neg A, A \vdash B}$$

 $B \vdash A \supset B \tag{10}$

Proof:

$$\frac{\frac{\emptyset}{B \vdash B}}{B, A \vdash B}$$

$$B \vdash A \supset B$$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Examples

$$\vdash A \supset B \equiv \neg A \lor B \tag{11}$$

Proof: At first let us prove that

$$A \supset B \vdash \neg A \lor B \tag{12}$$

$$\frac{\emptyset}{\neg A \vdash \neg A}$$

$$\frac{A \supset B \vdash A \supset B}{A \supset B, \neg(\neg A \lor B) \vdash A \supset B}$$

$$(3) \frac{\neg A \vdash \neg A \lor B}{\neg(\neg A \lor B) \vdash A}$$

$$A \supset B, \neg(\neg A \lor B) \vdash A$$

$$A \supset B, \neg(\neg A \lor B) \vdash B$$

$$\frac{\frac{\emptyset}{B \vdash B}}{\frac{B \vdash \neg A \lor B}{\neg (\neg A \lor B) \vdash \neg B}}$$

$$\frac{A \supset B, \neg (\neg A \lor B) \vdash \neg B}{A \supset B, \neg (\neg A \lor B) \vdash \neg B}$$

$$\frac{A \supset B, \neg(\neg A \lor B) \vdash B \qquad A \supset B, \neg(\neg A \lor B) \vdash \neg B}{A \supset B \vdash \neg \neg(\neg A \lor B)}$$

$$\frac{A \supset B \vdash \neg \neg(\neg A \lor B)}{A \supset B \vdash \neg A \lor B}$$

Introduction Classical propositional logic (classical zero—order logic) Classical propositional calculus

Natural dedu

Examples

To prove (11) we have to prove the following:

$$\neg A \lor B \vdash A \supset B \tag{13}$$

$$\frac{(9)}{\neg A \vdash A \supset B} \quad \frac{(10)}{B \vdash A \supset B}$$
$$\neg A \lor B \vdash A \supset B$$

$$A\supset B, \neg B\vdash \neg A\tag{14}$$

$$A \supset B \vdash \neg B \supset \neg A \tag{15}$$

Proofs of (14), (15):

$$\frac{\emptyset}{A, A \supset B \vdash B}$$

$$A \supset B, A, \neg B \vdash \neg B$$

$$A \supset B, A \vdash \neg B$$

$$A \supset B, A \vdash \neg B$$

$$A \supset B, A \vdash B$$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Examples

$$\neg B \supset \neg A \vdash A \supset B \tag{16}$$

$$\frac{\emptyset}{\neg B \supset \neg A, \neg B, A \vdash A} \qquad \frac{\emptyset}{\neg B \supset \neg A, \neg B \vdash \neg A}$$

$$\frac{\neg B \supset \neg A, \neg B, A \vdash \neg A}{\neg B \supset \neg A, A \vdash \neg \neg B}$$

$$\frac{\neg B \supset \neg A, A \vdash B}{\neg B \supset \neg A, A \vdash B}$$

On the base of (15), (16):

$$\vdash A \supset B \equiv \neg B \supset \neg A \tag{17}$$

Proof:

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Example

$$\vdash (A \lor \neg A) \tag{18}$$

$$\frac{0}{A, \neg(A \lor \neg A) \vdash \neg(A \lor \neg A)} \qquad \frac{0}{\neg(A \lor \neg A), A \vdash A} \\
\frac{\neg(A \lor \neg A), A \vdash \neg(A \lor \neg A)}{\neg(A \lor \neg A) \vdash \neg A}$$

$$\frac{\emptyset}{\neg A, \neg (A \lor \neg A) \vdash \neg (A \lor \neg A)} \qquad \frac{\emptyset}{\neg (A \lor \neg A), \neg A \vdash \neg A} \\
\frac{\neg (A \lor \neg A), \neg A \vdash \neg (A \lor \neg A)}{\neg (A \lor \neg A) \vdash \neg \neg A} \\
\frac{\neg (A \lor \neg A) \vdash \neg \neg A}{\neg (A \lor \neg A) \vdash A}$$

Examples

$$\frac{\neg(A \lor \neg A) \vdash \neg A \qquad \neg(A \lor \neg A) \vdash A}{\vdash \neg \neg(A \lor \neg A)}$$
$$\vdash (A \lor \neg A)$$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Examples

$$A \wedge B \vdash B \wedge A$$

(19)

$$\frac{\emptyset}{A, B \vdash B} \qquad \frac{B, A \vdash A}{A, B \vdash A}$$

$$\frac{A, B \vdash B \land A}{A \land B \vdash B \land A}$$

$$A \wedge (B \vee C) \vdash (A \wedge B) \vee (A \wedge C) \tag{20}$$

Proof:

$$\frac{\emptyset}{B,A\vdash A} \qquad \emptyset \qquad \qquad \frac{\emptyset}{C,A\vdash A} \qquad \emptyset
A,B\vdash A \qquad A,B\vdash B \qquad A,C\vdash C
A,B\vdash A\land B \qquad A,C\vdash A\land C
A,B\vdash (A\land B)\lor (A\land C) \qquad A,C\vdash (A\land B)\lor (A\land C)
A,B\lor C\vdash (A\land B)\lor (A\land C)
A\land (B\lor C)\vdash (A\land B)\lor (A\land C)$$

Introduction Classical propositional logic (classical zero—order logic) Classical propositional calculus

Natural dedu

Examples

$$(A \wedge B) \vee (A \wedge C) \vdash A \wedge (B \vee C) \tag{21}$$

Proof:

$$\frac{0}{B,A\vdash A} \quad \frac{0}{C,A\vdash A} \quad \frac{0}{A,B\vdash B} \quad \frac{0}{A,C\vdash C}$$

$$\frac{A\land B\vdash A}{A\land B\vdash A} \quad \frac{A\land C\vdash A}{A\land C\vdash A} \quad \frac{A\land B\vdash B}{A\land B\vdash B\lor C} \quad \frac{A\land C\vdash C}{A\land C\vdash B\lor C}$$

$$\frac{(A\land B)\lor (A\land C)\vdash A}{(A\land B)\lor (A\land C)\vdash A\land (B\lor C)}$$

On the base of (20) and (21):

$$\vdash A \land (B \lor C) \equiv (A \land B) \lor (A \land C) \tag{22}$$

$$\vdash A \lor (B \land C) \equiv (A \lor B) \land (A \lor C) \tag{23}$$

Proof: At first let us prove the following:

$$A \vee (B \wedge C) \vdash (A \vee B) \wedge (A \vee C) \tag{24}$$

$$\frac{0}{A \vdash A} = \frac{0}{B \vdash B} \\
\frac{B \vdash B}{B, C \vdash B} = 0 \\
\frac{A \vdash A \lor B}{A \vdash A \lor B} = \frac{0}{A \vdash A \lor C} = \frac{0}{C \vdash C} \\
\frac{A \vdash A \lor B}{B \land C \vdash A \lor B} = \frac{A \vdash A}{A \vdash A \lor C} = \frac{B \land C \vdash A \lor C}{B \land C \vdash A \lor C} \\
\frac{A \lor (B \land C) \vdash A \lor B}{A \lor (B \land C) \vdash A \lor C} = \frac{A \lor (B \land C) \vdash A \lor C}{A \lor (B \land C) \vdash A \lor C}$$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural ded

Examples

Now let us prove the following:

$$(A \vee B) \wedge (A \vee C) \vdash A \vee (B \wedge C) \tag{25}$$

$$\frac{\frac{\emptyset}{A \vdash A}}{A \vdash A \lor (B \land C)}$$
$$A \lor B, A \vdash A \lor (B \land C)$$

$$\frac{0}{A \vdash A} \qquad \frac{0}{B \vdash B} \qquad \frac{0}{C \vdash C}$$

$$\frac{A \vdash A \lor (B \land C)}{A, C \vdash A \lor (B \land C)} \qquad \frac{B, C \vdash B \land C}{B, C \vdash A \lor (B \land C)}$$

$$A \lor B, C \vdash A \lor (B \land C)$$

$$\begin{array}{c|c}
A \lor B, A \vdash A \lor (B \land C) & A \lor B, C \vdash A \lor (B \land C) \\
\hline
A \lor B, A \lor C \vdash A \lor (B \land C) \\
\hline
(A \lor B) \land (A \lor C) \vdash A \lor (B \land C)
\end{array}$$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Examples

$$\vdash (A \supset B) \supset (B \supset C) \supset (A \supset C) \tag{26}$$

Prove:

We can use the proved sequence (6).

$$\begin{array}{c|c}
A \supset B, A \vdash B & B, B \supset C \vdash C \\
\hline
A \supset B, A, B \supset C \vdash C \\
\hline
A \supset B, B \supset C, A \vdash C \\
\hline
A \supset B, B \supset C \vdash A \supset C \\
\hline
A \supset B \vdash (B \supset C) \supset (A \supset C) \\
\hline
\vdash (A \supset B) \supset (B \supset C) \supset (A \supset C)
\end{array}$$

$$\vdash (A \supset B) \supset (A \supset (B \supset C)) \supset (A \supset C) \tag{27}$$

Proof: The proved sequence (6) can be used:

$$\begin{array}{c}
A, A \supset B \vdash B \\
\hline
A, A \supset B, A \supset (B \supset C) \vdash B \\
\hline
A, A \supset B, A \supset (B \supset C) \vdash B
\end{array}$$

$$\begin{array}{c}
A, A \supset B, A \supset (B \supset C) \vdash B \supset C \\
\hline
A, A \supset B, A \supset (B \supset C) \vdash C \\
\hline
A \supset B, A \supset (B \supset C) \vdash A \supset C \\
\hline
A \supset B \vdash (A \supset (B \supset C)) \supset (A \supset C) \\
\hline
\vdash (A \supset B) \supset (A \supset (B \supset C)) \supset (A \supset C)
\end{array}$$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Examples

De Morgan's laws:

$$\vdash \neg (A \land B) \equiv (\neg A \lor \neg B) \tag{28}$$

$$\vdash \neg (A \lor B) \equiv (\neg A \land \neg B) \tag{29}$$

To prove (28) at first we have to prove the following:

$$\neg (A \land B) \vdash (\neg A \lor \neg B) \tag{30}$$

$$(3) \frac{\frac{\emptyset}{\neg A \vdash \neg A}}{\frac{\neg A \vdash \neg A \lor \neg B}{\neg (\neg A \lor \neg B) \vdash A}} (3) \frac{\frac{\emptyset}{\neg B \vdash \neg B}}{\frac{\neg B \vdash \neg A \lor \neg B}{\neg (\neg A \lor \neg B) \vdash B}}$$
$$(3) \frac{\neg(\neg A \lor \neg B) \vdash A \land B}{\neg (A \land B) \vdash \neg A \lor \neg B}$$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Examples

To prove (28) we have to prove the following:

$$\neg A \lor \neg B \vdash \neg (A \land B) \tag{31}$$

$$\frac{0}{\neg A \vdash \neg A} \qquad (8)$$

$$\frac{A \vdash A}{A, B \vdash A}$$

$$\frac{A \land B \vdash A}{\neg A \lor \neg B, A \land B \vdash A}$$

$$\frac{\neg A \lor \neg B, A \land B \vdash \neg A}{\neg A \lor \neg B, A \land B \vdash \neg A}$$

$$\frac{\neg A \lor \neg B, A \land B \vdash \neg A}{\neg A \lor \neg B, A \land B \vdash \neg A}$$

$$\frac{\neg A \lor \neg B \vdash \neg (A \land B)}{\neg A \lor \neg B, A \land B \vdash \neg A}$$

С

To prove (29) at first we can prove the following:

$$\neg (A \lor B) \vdash \neg A \land \neg B \tag{32}$$

$$(1) \frac{\frac{0}{A \vdash A}}{\frac{A \vdash A \lor B}{\neg (A \lor B) \vdash \neg A}} \qquad (1) \frac{\frac{0}{B \vdash B}}{\frac{B \vdash A \lor B}{\neg (A \lor B) \vdash \neg B}}$$
$$\frac{\neg (A \lor B) \vdash \neg A \land \neg B}{\neg (A \lor B) \vdash \neg A \land \neg B}$$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural dedu

Examples

To prove (29) we have to prove the following:

$$\neg A \land \neg B \vdash \neg (A \lor B) \tag{33}$$

$$(2) \frac{\frac{0}{\neg A \vdash \neg A}}{\frac{\neg A, \neg B \vdash \neg A}{\neg A, \neg B \vdash \neg A}} \qquad \frac{\frac{0}{\neg B \vdash \neg B}}{\frac{\neg A, \neg B \vdash \neg B}{\neg A, \neg B \vdash \neg B}} \\ \frac{\neg A \land \neg B \vdash \neg A}{\neg A \land \neg B \vdash \neg A} \qquad (2) \frac{\frac{\neg A \land \neg B \vdash \neg B}{\neg A \land \neg B \vdash \neg B}}{B \vdash \neg (\neg A \land \neg B)} \\ (2) \frac{A \lor B \vdash \neg (\neg A \land \neg B)}{\neg A \land \neg B \vdash \neg (A \lor B)}$$

Definition/1

The language of first-order logic is a

$$L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$$

ordered 5-tuple, where

- 1. $LC = \{\neg, \supset, \land, \lor, \equiv, =, \forall, \exists, (,)\}$: (the set of logical constants).
- 2. Var (= $\{x_n : n = 0, 1, 2, ...\}$): countable infinite set of variables

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Language of classical first-order logic

Definition/2

- 3. $Con = \bigcup_{n=0}^{\infty} (\mathcal{F}(n) \cup \mathcal{P}(n))$ the set of non-logical constants (at best countable infinite)
 - $\mathcal{F}(0)$: the set of name parameters,
 - $\mathcal{F}(n)$: the set of n argument function parameters,
 - $\mathcal{P}(0)$: the set of prposition parameters,
 - $\mathcal{P}(n)$: the set of predicate parameters.
- 4. The sets LC, Var, $\mathcal{F}(n)$, $\mathcal{P}(n)$ are pairwise disjoint (n = 0, 1, 2, ...).

Definition/3

- 5. The set of terms, i.e. the set *Term* is given by the following inductive definition:
 - (a) $Var \cup \mathcal{F}(0) \subseteq Term$
 - (b) If $f \in \mathcal{F}(n)$, (n = 1, 2, ...), s $t_1, t_2, ..., t_n \in \mathit{Term}$, then $f(t_1, t_2, ..., t_n) \in \mathit{Term}$.

Introduction Classical propositional logic (classical zero—order logic) Classical propositional calculus

Natural deduction

Language of classical first-order logic

Definition/4

- 6. The set of formulas, i.e. the set *Form* is given by the following inductive definition:
 - (a) $\mathcal{P}(0) \subseteq Form$
 - (b) If $t_1, t_2 \in \mathit{Term}$, then $(t_1 = t_2) \in \mathit{Form}$
 - (c) If $P \in \mathcal{P}(n)$, (n = 1, 2, ...), s $t_1, t_2, ..., t_n \in \textit{Term}$, then $P(t_1, t_2, ..., t_n) \in \textit{Form}$.
 - (d) If $A \in Form$, then $\neg A \in Form$.
 - (e) If $A, B \in Form$, then $(A \supset B), (A \land B), (A \lor B), (A \equiv B) \in Form$.
 - (f) If $x \in Var$, $A \in Form$, then $\forall xA$, $\exists xA \in Form$.

Megjegyzs:

 Azokat a formulkat, amelyek a 6. (a), (b), (c) szablyok Ital jnnek Itre, atomi formulknak vagy prmformulknak nevezzk.

Definci:

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Semantics of classical first-order logic

Definition (interpretation)

The ordered pair $\langle U, \varrho \rangle$ is an interpretation of the language $L^{(1)}$ if

- $U \neq \emptyset$ (i.e. U is a nonempty set);
- $Dom(\varrho) = Con$
 - If $a \in \mathcal{F}(0)$, then $\varrho(a) \in U$;
 - If $f \in \mathcal{F}(n)$ $(n \neq 0)$, then $\varrho(f) \in U^{U^{(n)}}$
 - If $p \in \mathcal{P}(0)$, then $\varrho(p) \in \{0, 1\}$;
 - If $P \in \mathcal{P}(n)$ $(n \neq 0)$, then $\varrho(P) \subseteq U^{(n)}$ $(\varrho(P) \in \{0,1\}^{U^{(n)}})$.

Definition (assignment)

The function v is an assignment relying on the interpretation $\langle U, \varrho \rangle$ if the followings hold:

- Dom(v) = Var;
- If $x \in Var$, then $v(x) \in U$.

Definition (modified assignment)

Let v be an assignment relying on the interpretation $\langle U, \varrho \rangle$, $x \in Var$ and $u \in U$.

$$v[x:u](y) = \begin{cases} u, & \text{if } y = x; \\ v(y), & \text{otherwise.} \end{cases}$$

for all $y \in Var$.

Introduction Classical propositional logic (classical zero—order logic) Classical propositional calculus

Natural deductio

Semantics of classical first-order logic

Definition (Semantic rules/1)

Let $\langle U, \varrho \rangle$ be a given interpretation and v be an assignment relying on $\langle U, \varrho \rangle$.

- If $a \in \mathcal{F}(0)$, then $|a|_{v}^{\langle U,\varrho\rangle} = \varrho(a)$.
- If $x \in Var$, then $|x|_{V}^{\langle U,\varrho\rangle} = v(x)$.
- If $f \in \mathcal{F}(n)$, (n = 1, 2, ...), and $t_1, t_2, ..., t_n \in \mathit{Term}$, then $|f(t_1)(t_2)...(t_n)|_v^{\langle U,\varrho\rangle} = \varrho(f)(\langle |t_1|_v^{\langle U,\varrho\rangle}, |t_2|_v^{\langle U,\varrho\rangle}, ..., |t_n|_v^{\langle U,\varrho\rangle}\rangle)$
- If $p \in \mathcal{P}(0)$, then $|p|_{V}^{\langle U,\varrho\rangle} = \varrho(p)$
- If $t_1, t_2 \in Term$, then

$$|(t_1=t_2)|_{
u}^{\langle U,arrho
angle}=\left\{egin{array}{ll} 1, & ext{if } |t_1|_{
u}^{\langle U,arrho
angle}=|t_2|_{
u}^{\langle U,arrho
angle} \ 0, & ext{otherwise}. \end{array}
ight.$$

Definition (Semantic rules/2)

• If $P \in \mathcal{P}(n)$ $(n \neq 0)$, $t_1, \ldots, t_n \in Term$, then

$$|P(t_1)\dots(t_n)|_v^{\langle U,\varrho\rangle}=\left\{egin{array}{ll} 1, & ext{if }\langle|t_1|_v^{\langle U,\varrho
angle},\dots,|t_n|_v^{\langle U,\varrho
angle}
angle\inarrho(P); \ 0, & ext{otherwise}. \end{array}
ight.$$

Introduction Classical propositional logic (classical zero—order logic) Classical propositional calculus

Natural deductio

Semantics of classical first-order logic

Definition (Semantic rules/3)

- If $A \in Form$, then $|\neg A|_{\nu}^{\langle U,\varrho\rangle} = 1 |A|_{\nu}^{\langle U,\varrho\rangle}$.
- If $A, B \in Form$, then

$$|(A\supset B)|_v^{\langle U,\varrho
angle}=\left\{egin{array}{ll} 0 & ext{if } |A|_v^{\langle U,arrho
angle}=1, ext{ and } |B|_v^{\langle U,arrho
angle}=0; \ 1, & ext{otherwise}. \end{array}
ight.$$

$$|(A \wedge B)|_{v}^{\langle U,\varrho\rangle} = \begin{cases} 1 & \text{if } |A|_{v}^{\langle U,\varrho\rangle} = 1, \text{ and } |B|_{v}^{\langle U,\varrho\rangle} = 1; \\ 0, & \text{otherwise.} \end{cases}$$

$$|(A \lor B)|_{v}^{\langle U,\varrho\rangle} = \begin{cases} 0 & \text{if } |A|_{v}^{\langle U,\varrho\rangle} = 0, \text{ and } |B|_{v}^{\langle U,\varrho\rangle} = 0; \\ 1, & \text{otherwise.} \end{cases}$$

$$|(A \equiv B)|_{v}^{\langle U,\varrho\rangle} = \begin{cases} 1 & \text{if } |A|_{v}^{\langle U,\varrho\rangle} = |B|_{v}^{\langle U,\varrho\rangle} = 0; \\ 0, & \text{otherwise.} \end{cases}$$

า

Definition (Semantic rules/4)

• If $A \in Form, x \in Var$, then

$$|\forall x A|_{v}^{\langle U,\varrho\rangle} = \left\{ egin{array}{ll} 0, & ext{if there is an } u \in U ext{ such that } |A|_{v[x:u]}^{\langle U,\varrho\rangle} = 0; \\ 1, & ext{otherwise}. \end{array}
ight.$$

$$|\exists x A|_v^{\langle U,\varrho\rangle} = \left\{ egin{array}{ll} 1, & ext{if there is an } u \in U ext{ such that } |A|_{v[x:u]}^{\langle U,\varrho
angle} = 1; \ 0, & ext{otherwise}. \end{array}
ight.$$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Central logical (semantic) notions — FoL

Definition (model – a set of formulas)

Let $L(1) = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $\Gamma \subseteq Form$ be a set of formulas. An ordered triple $\langle U, \varrho, v \rangle$ is a model of the set Γ , if

- $\langle U, \varrho \rangle$ is an interpretation of $L^{(1)}$;
- v is an assignment relying on $\langle U, \varrho \rangle$;
- $|A|_{\nu}^{\langle U,\varrho\rangle}=1$ for all $A\in\Gamma$.

Definition - a model of a formula

A model of a formula A is the model of the singleton $\{A\}$.

Definition – satisfiable a set of formulas

The set of formulas $\Gamma \subseteq Form$ is satisfiable if it has a model. (If there is an interpretation and an assignment in which all members of the set Γ are true.)

Definition – satisfiable a formula

A formula $A \in Form$ is satisfiable, if the singleton $\{A\}$ is satisfiable.

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Central logical (semantic) notions — FoL

Remark

- A satisfiable set of formulas does not involve a logical contradiction; its formulas may be true together.
- A satisfiable formula may be true.
- If a set of formulas is satisfiable, then its members are satisfiable.
- But: all members of the set $\{P(a), \neg P(a)\}$ are satisfiable, and the set is not satisfiable.

Natural deduction

All subsets of a satisfiable set are satisfiable.

Proof

- Let $\Gamma \subseteq Form$ be a set of formulas and $\Delta \subseteq \Gamma$.
- Γ is satisfiable: it has a model. Let $\langle U, \rho, \nu \rangle$ be a model of Γ .
- A property of $\langle U, \varrho, v \rangle$: If $A \in \Gamma$, then $|A|_{v}^{\langle U, \varrho \rangle} = 1$
- Since $\Delta \subseteq \Gamma$, if $A \in \Delta$, then $A \in \Gamma$, and so $|A|_{\nu}^{\langle U, \varrho \rangle} = 1$. That is the ordered triple $\langle U, \varrho, v \rangle$ is a model of Δ , and so Δ is satisfiable.

Classical propositional logic (classical zero-order logic) Classical propositional calculus

Central logical (semantic) notions — FoL

Definition – unsatisfiable set

The set $\Gamma \subset Form$ is unsatisfiable if it is not satisfiable.

Definition – unsatisfiable formula

A formula $A \in Form$ is unsatisfiable if the singleton $\{A\}$ is unsatisfiable.

Remark

A unsatisfiable set of formulas involve a logical contradiction. (Its members cannot be true together.)

Natural deduction

All expansions of an unsatisfiable set of formulas are unsatisfiable.

Indirect proof

- Suppose that $\Gamma \subseteq Form$ is an unsatisfiable set of formulas and $\Delta \subseteq Form$ is a set of formulas.
- Indirect condition: Γ is unsatisfiable, and $\Gamma \cup \Delta$ satisfiable.
- \bullet $\Gamma \subset \Gamma \cup \Delta$
- According to the former theorem Γ is satisfiable, and it is a contradiction.

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Central logical (semantic) notions — FoL

Definition

A formula A is the logical consequence of the set of formulas Γ if the set $\Gamma \cup \{\neg A\}$ is unsatifiable. (*Notation* : $\Gamma \vDash A$)

Definition

 $A \vDash B$, if $\{A\} \vDash B$.

Definition

The formula A is valid if $\emptyset \models A$. (Notation: $\models A$)

Definition

The formulas A and B are logically equivalent if $A \models B$ and $B \models A$. (Notation: $A \Leftrightarrow B$)

Let $\Gamma \subseteq Form$, and $A \in Form$. $\Gamma \models A$ if and only if all models of the set Γ are the models of formula A. (i.e. the singleton $\{A\}$).

Proof

 \rightarrow Indirect condition: There is a model of $\Gamma \vDash A$ such that it is not a model of the formula A.

Let the ordered triple $\langle U, \varrho, v \rangle$ be this model.

The properties of $\langle U, \varrho, v \rangle$:

- $|A|\langle U, \varrho \rangle_{v} = 0$, and so $|\neg A|_{v}^{\langle U, \varrho \rangle} = 1$

In this case all members of the set $\Gamma \cup \{\neg A\}$ are true wrt the interpretation $\langle U, \varrho \rangle$ and assignment v, so $\Gamma \cup \{\neg A\}$ is satisfiable. It means that $\Gamma \not\models A$, and it is a contradiction.

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Properties of first order central logical notions

Proof

 \leftarrow Indirect condition: All models of the set Γ are the models of formula A, but (and) $\Gamma \nvDash A$.

In this case $\Gamma \cup \{\neg A\}$ is satisfiable, i.e. it has a model.

Let the ordered triple $\langle U, \varrho, v \rangle$ be a model.

The properties of $\langle U, \varrho, v \rangle$:

- $|\neg A|_{v}^{\langle U,\varrho\rangle}=1$, i.e. $|A|_{v}^{\langle U,\varrho\rangle}=0$

So the set Γ has a model such that it is not a model of formula A, and it is a contradiction.

Corollary

Let $\Gamma \subseteq Form$, and $A \in Form$. $\Gamma \models A$ if and only if for all interpretations in which all members of Γ are true, the formula A is true.

If A is a valid formula $((\models A))$, then $\Gamma \models A$ for all sets of formulas Γ. (A valid formula is a consequence of any set of formulas.)

Proof

- If A is a valid formula, then $\emptyset \models A$ (according to its definition).
- $\emptyset \cup \{\neg A\}$ (= $\{\neg A\}$) is unsatisfiable, and so its expansions are unsatisfiable.
- $\Gamma \cup \{\neg A\}$ is an expansion of $\{\neg A\}$, and so it is unsatisfiable, i.e. $\Gamma \models A$.

Classical propositional logic (classical zero-order logic) Classical propositional calculus

Natural deduction

Properties of first order central logical notions

Theorem

If Γ is unsatisfiable, then $\Gamma \models A$ for all A. (All formulas are the consequences of an unsatisfiable set of formulas.)

Proof

- ullet According to a proved theorem: If Γ is unsatisfiable, the all expansions of Γ are unsatisfiable.
- $\Gamma \cup \{\neg A\}$ is an expansion of Γ , and so it is unsatisfiable, i.e. $\Gamma \models A$.

Deduction theorem: If $\Gamma \cup \{A\} \models B$, then $\Gamma \models (A \supset B)$.

Proof

- Indirect condition: Suppose, that $\Gamma \cup \{A\} \vDash B$, and $\Gamma \nvDash (A \supset B)$.
- $\Gamma \cup \{\neg(A \supset B)\}$ is satisfiable, and so it has a model. Let the ordered triple $\langle U, \varrho, v \rangle$ be a model.
- The properties of $\langle U, \varrho, v \rangle$:
 - **1** All members of Γ are true wrt $\langle U, \varrho \rangle$ and v.
 - $|\neg (A \supset B)|_{v}^{\langle U,\varrho\rangle} = 1$
- $|(A\supset B)|_{\nu}^{\langle U,\varrho\rangle}=0$, i.e. $|A|_{\nu}^{\langle U,\varrho\rangle}=1$ and $|B|_{\nu}^{\langle U,\varrho\rangle}=0$. So $|\neg B|_{\nu}^{\langle U,\varrho\rangle}=1$.
- All members of $\Gamma \cup \{A\} \cup \{\neg B\}$ are true wrt $\langle U, \varrho \rangle$ and v, i.e. $\Gamma \cup \{A\} \not\vDash B$, and it is a contradiction.

Introduction Classical propositional logic (classical zero—order logic) Classical propositional calculus

Natural deduction

Properties of first order central logical notions

Theorem

In the opposite direction: If $\Gamma \vDash (A \supset B)$, then $\Gamma \cup \{A\} \vDash B$.

Proof

- Indirect condition: Suppose that $\Gamma \vDash (A \supset B)$, and $\Gamma \cup \{A\} \nvDash B$.
- So $\Gamma \cup \{A\} \cup \{\neg B\}$ is satisfiable, i.e. it has a model. Let the ordered triple $\langle U, \varrho, v \rangle$ a model.
- The properties of $\langle U, \varrho, v \rangle$:
 - **1** All members of Γ are true wrt $\langle U, \varrho \rangle$ and v.
 - $|A|_{v}^{\langle U,\varrho\rangle}=1$
 - $|\neg B|_{\nu}^{\langle U,\varrho\rangle}=1$, and so $|B|_{\nu}^{\langle U,\varrho\rangle}=0$
- $|(A \supset B)|_{v}^{\langle U,\varrho\rangle} = 0$, $|\neg(A \supset B)|_{v}^{\langle U,\varrho\rangle} = 1$.
- All members of $\Gamma \cup \{\neg(A \supset B)\}$ are true wrt $\langle U, \varrho \rangle$ and v, i.e. $\Gamma \nvDash (A \supset B)$.

Properties of first order central logical notions

Corollary

 $A \vDash B$ if and only if $\vDash (A \supset B)$

Proof

Let $\Gamma = \emptyset$ in the former theorems.

Natural deduction

Properties of first order central logical notions

Cut elimination theorem

If $\Gamma \cup \{A\} \vDash B$ and $\Delta \vDash A$, then $\Gamma \cup \Delta \vDash B$.

Proof

Indirect.

Definition

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula. The set of free variables of the formula A (in notation: FreeVar(A)) is given by the following inductive definition:

- If A is an atomic formula (i.e. $A \in AtForm$), then the members of the set FreeVar(A) are the variables occurring in \boldsymbol{A} .
- If the formula A is $\neg B$, then FreeVar(A) = FreeVar(B).
- If the formula A is $(B \supset C)$, $(B \land C)$, $(B \lor C)$ or $(B \equiv C)$, then $FreeVar(A) = FreeVar(B) \bigcup FreeVar(C)$.
- If the formula A is $\forall xB$ or $\exists xB$, then $FreeVar(A) = FreeVar(B) \setminus \{x\}.$

Classical propositional logic (classical zero-order logic) Classical propositional calculus

Natural deduction

Syntactical properties of variables

Definition

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula. The set of bound variables of the formula A (in notation: BoundVar(A)) is given by the following inductive definition:

- If A is an atomic formula (i.e. $A \in AtForm$), then $BoundVar(A) = \emptyset.$
- If the formula A is $\neg B$, then BoundVar(A) = FreeVar(B).
- If the formula A is $(B \supset C)$, $(B \land C)$, $(B \lor C)$ or $(B \equiv C)$, then $BoundVar(A) = BoundVar(B) \bigcup BoundVar(C)$.
- If the formula A is $\forall xB$ or $\exists xB$, then $BoundVar(A) = BoundVar(B) \cup \{x\}.$

Remark

- The bases of inductive definitions of sest of free and bound variables are given by the first requirement of the corresponding definitions.
- The sets of free and bound variables of a formula are not disoint necessarily:

FreeVar(
$$(P(x) \land \exists x R(x))$$
) = $\{x\}$ = BoundVar($(P(x) \land \exists x R(x))$)

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Syntactical properties of variables

Definition

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A \in Form$ be a formula, and $x \in Var$ be a variable.

- A fixed occurrence of the variable x in the formula A is free if it is not in the subformulas $\forall xB$ or $\exists xB$ of the formula A.
- A fixed occurrence of the variable x in the formula A is bound if it is not free.

Remark

- If x is a free variable of the formula A (i.e. $x \in FreeVar(A)$), then it has at least one free occurrence in A.
- If x is a bound variable of the formula A
 (i.e. x ∈ BoundVar(A)), then it has at least one bound occurrence in A.
- A fixed occurrence of a variable x in the formula A is free if
 - it does not follow a universal or an existential quantifier, or
 - it is not in a scope of a $\forall x$ or a $\exists x$ quantification.
- A variable x may be a free and a bound variable of the formula A: (P(x) ∧ ∃xR(x))

Classical propositional logic (classical zero-order logic) Classical propositional calculus

Natural deduction

Syntactical properties of variables

Definition

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula.

- If $FreeVar(A) \neq \emptyset$, then the formula A is an open formula.
- If $FreeVar(A) = \emptyset$, then the formula A is a closed formula.

Remark:

The formula A is open if there is at least one variable which has at least one free occurrence in A.

The formula A is closed if there is no variable which has a free occurrence in A.

De Morgan Laws of quantifications

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A \in Form$ be a formula and $x \in Var$ be a variable. Then

- $\bullet \neg \exists x A \Leftrightarrow \forall x \neg A$
- $\bullet \neg \forall x A \Leftrightarrow \exists x \neg A$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Properties of quantification

Expressibilty of quantifications

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A \in Form$ be a formula and $x \in Var$ be a variable. Then

- $\exists x A \Leftrightarrow \neg \forall x \neg A$
- $\forall x A \Leftrightarrow \neg \exists x \neg A$

Conjunction and quantifications

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A, B \in Form$ be formulas and $x \in Var$ be a variable. If $x \notin FreeVar(A)$, then

- $A \wedge \forall xB \Leftrightarrow \forall x(A \wedge B)$
- $A \wedge \exists x B \Leftrightarrow \exists x (A \wedge B)$

Remark:

According to the commutativity of conjunction the followings hold: If $x \notin FreeVar(A)$, then

- $\forall xB \land A \Leftrightarrow \forall x(B \land A)$
- $\exists x B \land A \Leftrightarrow \exists x (B \land A)$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Properties of quantification

Disjunction and quantifications

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A, B \in Form$ be formulas and $x \in Var$ be a variable. If $x \notin FreeVar(A)$, then

- $A \lor \forall x B \Leftrightarrow \forall x (A \lor B)$
- $A \lor \exists xB \Leftrightarrow \exists x(A \lor B)$

Remark:

According to the commutativity of disjunction the followings hold: If $x \notin FreeVar(A)$, then

- $\forall xB \lor A \Leftrightarrow \forall x(B \lor A)$
- $\exists x B \lor A \Leftrightarrow \exists x (B \lor A)$

Implication with existential quantification

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A, B \in Form$ be formulas and $x \in Var$ be a variable. If $x \notin FreeVar(A)$, then

- $A \supset \exists xB \Leftrightarrow \exists x(A \lor B)$
- $\exists xB \supset A \Leftrightarrow \forall x(B \supset A)$

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Properties of quantification

Implication with universal quantification

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A, B \in Form$ be formulas and $x \in Var$ be a variable. If $x \notin FreeVar(A)$, then

- $A \supset \forall xB \Leftrightarrow \forall x(A \lor B)$
- $\forall xB \supset A \Leftrightarrow \exists x(B \supset A)$

Substitutabily a variable with an other variable

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A \in Form$ be a formula and $x, y \in Var$ be variables.

The variable x is subtitutable with the variable y in the formula Aif there is no a free occurrence of x in A which is in the subformulas $\forall yB$ or $\exists yB$ of A.

Example:

• In the formula $\forall z P(x, z)$ the variable x is substitutable with the variable y, but x is not substitutable with the variable z.

Classical propositional logic (classical zero-order logic) Classical propositional calculus

Properties of quantification

Substitutabily a variable with a term

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A \in Form$ be a formula, $x \in Var$ be a variable and $t \in Term$ be a term.

The variable x is subtitutable with the term t in the formula A if in the formula A the variable x is substitutable with all variables occuring in the term t.

Example

• In the formula $\forall z P(x, z)$ the variable x is substitutable with the term $f(y_1, y_2)$, but x is not substitutable with the term f(y,z).

Natural deduction

Result of a substitution

If the variable x is subtitutable with the term t in the formula A, then $[A]_x^t$ denotes the formula which appear when all free occurrences of the variable x in A are substituted with the term t.

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Properties of quantification

Renaming

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A \in Form$ be a formula, and $x, y \in Var$ be variables. If the variable x is subtitutable with the variable y in the formula A and $y \notin FreeVar(A)$, then

- the formula $\forall y[A]_x^y$ is a regular renaming of the formula $\forall xA$;
- the formula $\exists y[A]_x^y$ is a regular renaming of the formula $\exists xA$.

Congruent formulas

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula.

The set Cong(A) (the set of formulas which are congruent with A) is given by the following inductive definition:

- $A \in Cong(A)$;
- if $\neg B \in Cong(A)$ and $B' \in Cong(B)$, then $\neg B' \in Cong(A)$;
- if $(B \circ C) \in Cong(A)$, $B' \in Cong(B)$ and $C' \in Cong(C)$, then $(B' \circ C') \in Cong(A)$ $(\circ \in \{\supset, \land, \lor, \equiv\})$;
- if $\forall x B \in Cong(A)$ and $\forall y [B]_x^y$ is a regular renaming of the formula $\forall x B$, then $\forall y [B]_x^y \in Cong(A)$;
- if $\exists xB \in Cong(A)$ and $\exists y[B]_x^y$ is a regular renaming of the formula $\exists xB$, then $\exists y[B]_x^y \in Cong(A)$.

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Properties of quantification

Definition

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A, B \in Form$ be formulas.

- If $B \in Cong(A)$, then the formula A is congruent with the formula B.
- If $B \in Cong(A)$, then the formula B is a syntactical synonym of the formula A.

Theorem

Congruent formulas are logically equivalent, i.e. if $B \in Cong(A)$, then $A \Leftrightarrow B$.

Definition

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula.

The formula A is standardized if

- FreeVar(A) \cap BoundVar(A) = \emptyset ;
- all bound variables of the formula A have exactly one occurences next a quantifier.

Theorem

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula.

Then there is a formula $B \in Form$ such that

- the formula B is standardized;
- the formula B is congruent with the formula A, i.e. $B \in Cong(A)$.

Introduction Classical propositional logic (classical zero–order logic) Classical propositional calculus

Natural deduction

Properties of quantification

Definition

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula.

The formula A is prenex if

- there is no quantifier in A or
- the formula A is in the form $Q_1x_1Q_2x_2...Q_nx_nB$ (n = 1, 2, ...), where
 - there is no quantifier in the formula $B \in Form$;
 - $x_1, x_2 \dots x_n \in Var$ are diffrent variables;
 - $Q_1, Q_2, \ldots, Q_n \in \{ \forall, \exists \}$ are quantifiers.

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula.

Then there is a formula $B \in Form$ such that

- the formula *B* is prenex;
- $A \Leftrightarrow B$.