
OO design principles

Jeszenszky, Péter
University of Debrecen, Faculty of Informatics

jeszenszky.peter@inf.unideb.hu

Kocsis, Gergely (English version)
University of Debrecen, Faculty of Informatics

kocsis.gergely@inf.unideb.hu

Last modified: 10.05.2017

mailto:jeszenszky.peter@inf.unideb.hu
mailto:kocsis.gergely@inf.unideb.hu

 2

PMD

● A static source code analyzer (programming language: Java,
license: Apache License 2.0) https://pmd.github.io/
– Supported programming languages: Java, JavaScript, Apex,

PLSQL, Apache Velocity, XML, XSL

● Plugins:
– Apache Maven PMD Plugin

https://maven.apache.org/plugins/maven-pmd-plugin/

– Gradle: The PMD Plugin
https://docs.gradle.org/current/userguide/pmd_plugin.html

– Eclipse PMD Plug-in http://acanda.github.io/eclipse-pmd/

– SQE (NetBeans) https://github.com/sqe-team/sqe

https://pmd.github.io/
https://maven.apache.org/plugins/maven-pmd-plugin/
https://docs.gradle.org/current/userguide/pmd_plugin.html
http://acanda.github.io/eclipse-pmd/
https://github.com/sqe-team/sqe

 3

DRY (1)

● Don't Repeat Yourself
– „Every piece of knowledge must have a single,

unambiguous, authoritative representation within a
system.”

● Reference:
– Andrew Hunt, David Thomas. The Pragmatic Programmer:

From Journeyman to Master. Addison-Wesley, 1999.

● The contrary: WET.
– We enjoy typing, write everything twice, we edit terribly, …

 4

DRY (2)

● Types of duplication:
– Imposed duplication: the developers feel that they do not have

other choice than duplication, since the environment requires it.

– Inadvertent duplication: developers do not realize that they
are duplicating information.

– Impatient duplication: the reason is laziness. Duplication
seems to be the more easy way of solving a problem.

– Interdeveloper duplication: more developers in a group or in
different groups duplicate information.

● Related concept: code duplication

 5

DRY (3)

● PMD support: Copy/Paste Detector (CPD)
– Finding duplicated code

https://pmd.github.io/pmd-5.5.4/usage/cpd-usage.ht
ml

– Supported programming languages: C++, C#,
ECMAScript (JavaScript), Fortran, Go, Java,
Groovy, JSP, Matlab, Objective-C, Perl, PHP,
PL/SQL, Python, Ruby, Scala, Swift

● See:
https://pmd.github.io/pmd-5.5.4/usage/cpd-usage.html#
Supported_Languages

https://pmd.github.io/pmd-5.5.4/usage/cpd-usage.html
https://pmd.github.io/pmd-5.5.4/usage/cpd-usage.html
https://pmd.github.io/pmd-5.5.4/usage/cpd-usage.html#Supported_Languages
https://pmd.github.io/pmd-5.5.4/usage/cpd-usage.html#Supported_Languages

 6

KISS

● Keep it simple, stupid
– 1960's American navy.

– By Kelly Johnson (1910–1990) aeronautical
engineer.

 7

Law of Demeter (1)

● Law of Demeter:
– Ian M. Holland, Karl J. Lieberherr. Assuring Good

Style for Object-Oriented Programs. IEEE Software,
vol. 6, no 5, pp. 38– 48, 1989.

● In other words: Don't Talk to Strangers
– Craig Larman. Applying UML and Patterns: An

Introduction to Object-Oriented Analysis and Design
and Iterative Development. 3rd ed. Prentice Hall,
2005.

 8

Law of Demeter (2)

● Limits the message passing structure of
methods.
– For every method only message passing for a

limited set of objects is allowed.

– The aim is to structure and reduce the amount of
dependency between classes.

 9

Law of Demeter (3)

● Class form:
– The M method of a C class can use fields and methods

of only the following classes and super classes
● C
● Classes of the fields of C
● Classes of the parameters of M
● Classes whose constructors are called from M
● Classes of global variables used in M

● Can be checked in run-time.

 10

Law of Demeter (4)

● The use of it increases maintainability and
simplicity of the code.
– Limits the set of callable methods thus it reduces

the coupling of methods.

– Enforcing information closure: the inner structure of
an object is known only by itself.

 11

Law of Demeter (5)

● Example:
– All four hello() calls are allowed in the following code:

– class C {

– private B b;

– void m(A a) {

– b.hello();

– a.hello();

– Singleton.INSTANCE.hello()

– new Z().hello();

– }

– }

– a.x.hello() is not allowed however.

– See: Yegor Bugayenko. The Law of Demeter Doesn't Mean One Dot. 2016.
http://www.yegor256.com/2016/07/18/law-of-demeter.html

http://www.yegor256.com/2016/07/18/law-of-demeter.html

 12

Law of Demeter (6)

● Related PMD rule set:
– Coupling (java)

https://pmd.github.io/pmd-5.5.4/pmd-java/rules/java
/coupling.html

● See LawOfDemeter rule:
https://pmd.github.io/pmd-5.5.4/pmd-java/rules/java/co
upling.html#LawOfDemeter

https://pmd.github.io/pmd-5.5.4/pmd-java/rules/java/coupling.html
https://pmd.github.io/pmd-5.5.4/pmd-java/rules/java/coupling.html
https://pmd.github.io/pmd-5.5.4/pmd-java/rules/java/coupling.html#LawOfDemeter
https://pmd.github.io/pmd-5.5.4/pmd-java/rules/java/coupling.html#LawOfDemeter

 13

Separation of Concerns (1)

● SoC – Separation of Concerns:
– A software system is to be designed in a way that

ensures that each component has its given role and
these roles do not overlap each other..

● Examples: model-view-controller (MVC) architectural pattern,
TCP/IP protocol stack, HTML + CSS + JavaScript, …

– Reference:
● Ian Sommerville. Software Engineering. 10th ed. Pearson

Education, 2015.
http://iansommerville.com/software-engineering-book/

http://iansommerville.com/software-engineering-book/

 14

Separation of Concerns (2)

● Components of the programs (classes,
methods...) should do only one thing.
– The separated components can be edited without

taking other components into account.
● E.g. a part of the program can be understood without

understanding other parts of the program.
● When modifications are required, only a low number of

components are to be affected.
● Parts of the program can be developed and reused

separately.

 15

Separation of Concerns (3)

● A concern is something that may be important
or interesting for a component or for a group of
components.
– Example: performance, providing a given

functionality, maintainability, …

● They reflect the system requirements.

 16

Separation of Concerns (4)

● Types of concerns:
– Core concerns: concerns related to the main

functionalities of the system.

– Secondary concerns: e.g. functional concerns needed
to fulfill non-functional requirements of the system.

– Cross-cutting concerns: Concerns describing system
wide requirements.

● Secondary concerns may be cross-cutting however thy o not
always cross-cut the whole system

● Example: security, logging.

 17

Separation of Concerns (5)

● Related programming paradigm: AOP – aspect-
oriented programming
– Example: AspectJ https://eclipse.org/aspectj/

● Aspect-oriented extension of the Java language.

https://eclipse.org/aspectj/

 18

GRASP (1)

● GRASP – General Responsibility Assignment
Software Patterns
– Craig Larman. Applying UML and Patterns: An

Introduction to Object-Oriented Analysis and Design
and Iterative Development. 3rd ed. Prentice Hall, 2005.

● Design patterns expressing general responsibility
assignment concepts.
– Study tools that help to understand and apply oo

planning.

 19

GRASP (2)

● Responsibility: a contract of a classifier (UML).
● Types of responsibilities:

– Doing sg.

– Knowing sg.

● The assignment of responsibilities to classes is
done during the design.

 20

GRASP (3)

● 9 design patterns and concepts:
– Information Expert
– Creator
– Low Coupling

– High Cohesion

– Controller

– Polymorphism

– Pure Fabrication

– Indirection

– Protected Variations

 21

GRASP (5)

● Pattern template:
– Name:

– Problem:

– Example:

– Description:

– Contraindications:

– Advantages:

– Background:

– Related patterns:

 22

GRASP patterns (1)

● Information expert:
– The responsibility is assigned to the information

expert i.e. to the class that has the information to
realize the responsibility.

● Example: which class' responsibility is it to know the total
cost of an order in a selling system?

 23

GRASP patterns (2)

● Creator:
– The responsibility of instantiating an instance of class A

is for class B if something from the followings is true::
● Instances of B aggregates A objects
● Instances of B contains A objects
● Instances of B records A instances
● Instances of B closely uses A instances
● Instances of B have the initializing information for instances of

A and pass it on creation.

– B is the creator of A instances.

 24

GRASP patterns (3)

● Low coupling:
– Coupling measures how much a component is connected to other

elements, how much information it has about them, or how much it
depends on them.

– Responsibilities are to be assigned to components so that their coupling
remain low.

● The components are e.g. classes, subsystems, systems etc.
● A low coupled components does not depend on too many other components,

where the meaning of „too many” is based on the environment.
● A high coupled class depends on many others. These class are to be avoided.

They have the following problems:
– Changes in the related classes imply the need of changes in the class.
– It is more hard to understand them without the others.
– It is more hard to reuse them since all the dependent classes are also needed for that.

 25

GRASP patterns (4)

● High cohesion:
– Cohesion measures how much the responsibilities of a given

component connect to each other.

– Try to keep high cohesion while assigning the responsibilities.
● Possible components are classes, sub-systems, systems, etc.
● The cohesion of a components is high if its responsibilities are closely

connected and it does not do too much work.
● Low cohesion components do a lot of not related things. These

classes are to be avoided. They have the following problems:
– They are hard to understand
– It is hard to reuse them
– It is hard to maintain them

 26

GRASP patterns (5)

● Controller:
– The responsibility of the control of system events

are assigned to a class that
● Describes the whole system, sub-system or tool
● Or describes a scenario in which the event happens

– The controller is a non-user interface object.

 27

GRASP patterns (6)

● Polymorphism:
– Responsibility of defining the variation of behaviors based on

type is assigned to the type for which this variation happens.
This is achieved using polymorphic operations. The user of
the type should use polymorphic operations instead of explicit
branching based on type.

● Pure Fabrication:
– A set of closely related responsibilities is assigned to a class

that realizes not a domain specific part of the problem, but is
created for low coupling, high cohesion and reusability.

● Example: DAO – Data Access Object classes

 28

GRASP patterns (7)

● Indirection:
– Too high coupling between objects can be lowered

by the use of a central object that relays between
them.

● Protected Variations:
– Wrap the focus of instability with an interface and

use polymorphism to create various
implementations of this interface.

 29

GoF principles (1)

● Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-
Wesley, 1994.

 30

GoF principles (2)

● „Program to an interface, not an
implementation.”

● See creational design patterns!

 31

GoF principles (3)

● „Favor object composition over class
inheritance.”

● The two most used ways of reuse are in object
oriented systems::
– inheritance (white-box reuse)

– Object composition (black-box reuse)

 32

GoF principles (4)

● Advantages of inheritance:
– It is done in runtime. It is easy to use since it is

supported by the programming language by default.

– It simplifies the modification of the reused
realization as well. If a class overrides some
operations, the subclasses will also use this
version unless they call explicitly the previous one.

 33

GoF principles (5)

● Disadvantages if inheritance
– The realizations inherit from the super class cannot be modified in

runtime since it was already done at compilation.
– Super classes usually specify the physical structure of the

subclasses. Since inheritance allows subclasses to see the
implementation of the super class it is often said that inheritance
breaks the rules of encapsulation. The smallest modification of the
super class affects all the subclasses as well.

– Implementation dependencies may lead to problems at the time of
reuse. If the inherited implementation is not proper for our needs
we have to rewrite or substitute it with something else.

 34

GoF principles (6)

● Object composition is done dynamically at
runtime, through objects that get references for
other objects.

● For the composition it is required that the
objects know the interfaces of each other. For
this it is required to plan the interfaces carefully.

 35

GoF principles (7)

● Design patterns using object composition:
– Structural patterns: (object) adapter, bridge,

composite, decorator, facade, flyweight, proxy.

– Behavioral object patterns: chain of responsibility,
command, iterator, mediator, memento, observer,
state, strategy, visitor.

 36

GoF principles (8)

● Advantages of object composition
– Since the objects can be reached only through their

interfaces, encapsulation is not violated.
– All objects can be replaced in runtime while their types are the

same.
– Since the implementation of objects is done through interfaces

the amount of implementation dependency is reduced.
– Contrary to inheritance it helps encapsulation.
– The classes and class hierarchies remain small so it is less

probable that they grow to be unmanageable.

 37

GoF principles (9)

● Disadvantages of object composition
– In case of object composition we will have more

objects (even though we have less classes) and the
behavior of the system will depend on the
connections between them. (And not on one single
class).

 38

SOLID (1)

● Robert C. Martin's („Uncle Bob”) programming and design
principles.
– Homepage: http://cleancoder.com/
– Uncle Bob. Getting a SOLID start. 2009.

https://sites.google.com/site/unclebobconsultingllc/getting-a-solid-
start

● References:
– Robert C. Martin. Agile Software Development: Principles,

Patterns, and Practices. Pearson Education, 2002.
● C++ and Java codes

– Robert C. Martin, Micah Martin. Agile Principles, Patterns, and
Practices in C#. Prentice Hall, 2006.

http://cleancoder.com/
https://sites.google.com/site/unclebobconsultingllc/getting-a-solid-start
https://sites.google.com/site/unclebobconsultingllc/getting-a-solid-start

 39

SOLID (2)

● Single responsibility principle (SRP)
● Open/closed principle (OCP)
● Liskov substitution principle (LSP)
● Interface segregation principle (ISP)
● Dependency inversion principle (DIP)

 40

SOLID – Single responsibility
principle (1)

● Robert C. Martin:
– „A class should have only one reason to change.”

● Related patterns: decorator, chain of
responsibility

 41

SOLID – Single responsibility
principle (2)

● A responsibility is a reason of change.
● Every responsibility is an axis of change. When the

requirements change the change shows up as a
change of responsibilities.

● If a class has more than one responsibilities it has
more than one reasons to change.

● If there are more responsibilities they can be
coupled meaning that changes in a responsibility
may hinder the capability of the class to fulfill others.

 42

SOLID – Single responsibility
principle (3)

● An example of violating the principle:
– The two responsibilities of the Rectangle class:

● Model the geometry of a rectangle
● Show a rectangle on the GUI

GUI

Graphical
Applicaton

Rectangle

+draw()
+area(): double

Computational
Geometry

Application

«use»

«use»

«use»«use»

 43

SOLID – Single responsibility
principle (4)

● An example of violating the principle (2):
– The computational geometry application has to

contain the GUI.

– If the Rectangle class is changed because of the
GUI, the repeated building, testing and deploying of
the computational geometry application is required.

 44

SOLID – Single responsibility
principle (5)

● The same example fulfilling the principle:

Graphical
Applicaton

Rectangle

+draw()
GUI

Geometric
Rectangle

+area(): double

Computational
Geometry

Application

«use»

«use»

«use» «use»

«use»

 45

SOLID – Single responsibility
principle (6)

● Example: What is a responsibility?
– In the case of the Modem interface below there are

two responsibilities: connection management and
data communication

– Based on the changes of the application it may
worth or not to separate them.

«interface»
Modem

+dial(pno: String)
+hangup()
+send(c: char)
+recv(): char

 46

SOLID – Single responsibility
principle (7)

● Example: What is a responsibility?
– If the application sages in a way that changes the

signatures of connection management methods we
have to separate the responsibilities.

Modem
Implementation

«interface»
Data

Channel

+send(c: char)
+recv(): char

«interface»
Connection

+dial(pno: String)
+hangup()

 47

SOLID – Single responsibility
principle (8)

● A more precise definition of the principle:
– „A class should have only one reason to change.”

● Robert C. Martin. Agile Software Development:
Principles, Patterns, and Practices. Pearson Education,
2002. p. 95.

– „… a class or module should have one, and only
one, reason to change.”

● Robert C. Martin. Clean Code: A Handbook of Agile
Software Craftsmanship. Prentice Hall, 2008. p. 138.

 48

SOLID – Single responsibility
principle (9)

● Separation of concerns and single responsibility
principles are closely related.

● In an ideal case each concern is described by a
responsibility, but in one responsibility usually more
concerns are mixed.

● Separation of concerns does not mean that one
responsibility can describe only one concern. It just
says that the concerns have to be separated and it
has to be clear if there are more than one concerns.

 49

SOLID – Single responsibility
principle (10)

● Example code that fulfills single responsibility
principle but violates separation of concerns:
– Artur Trosin. Separation of Concern vs Single

Responsibility Principle (SoC vs SRP). 2009.
https://weblogs.asp.net/arturtrosin/separation-of-con
cern-vs-single-responsibility-principle-soc-vs-srp

https://weblogs.asp.net/arturtrosin/separation-of-concern-vs-single-responsibility-principle-soc-vs-srp
https://weblogs.asp.net/arturtrosin/separation-of-concern-vs-single-responsibility-principle-soc-vs-srp

 50

SOLID – Open/closed principle (1)

● A principle by Bertrand Meyer.
– Bertrand Meyer. Object-Oriented Software

Construction. Prentice Hall, 1988.

● Software entities (classes, modules, functions,
…) should be open for extension, but closed for
modification.

● Related design pattern: factory method, proxy,
strategy, template function, visitor

 51

SOLID – Open/closed principle (2)

● A module fulfilling the principle has two major
properties:
– Open for extension: the behavior of the module can

be extended

– Closed for modification: The extension of the
behavior of the module does not result in the
modification of the source or binary code.

 52

SOLID – Open/closed principle (3)

● Example of violating the principle:
– Client and Server are exact classes. The
Client class uses the Server class. If we want
the Client object to use a different Server object
we have to change the name of the Server class
in the Client.

ServerClient
«use»

 53

SOLID – Open/closed principle (4)

● Solution:

Server

«interface»
Client InterfaceClient

«use»

 54

SOLID – Liskov substitution
principle

● A principle by Barbara Liskov.
– Barbara Liskov. Keynote Address – Data

Abstraction and Hierarchy. 1987.

● If type S is a subtype of T, the functionality of
the program must not change if we substitute
the type T objects to type S objects in the code

 55

SOLID – Interface segregation
principle (1)

● A principle
– „Classes should not be forced to depend on

methods they do not use.”

 56

SOLID – Interface segregation
principle (2)

● Fat interface (Bjarne Stroustrup)
http://www.stroustrup.com/glossary.html#Gfat-in
terface
– „An interface with more member functions and

friends than are logically necessary.”

http://www.stroustrup.com/glossary.html#Gfat-interface
http://www.stroustrup.com/glossary.html#Gfat-interface

 57

SOLID – Interface segregation
principle (3)

● The interface segregation principle deals with fat
interfaces.

● Classes of fat interfaces are not coherent. The
methods can be organize to groups where each
group serves different clients.

● ISP accepts that there are objects that require
non-coherent interfaces, but it advises that the
clients should know these interfaces not as a
single class.

 58

SOLID – Interface segregation
principle (4)

● Interface pollution:
– Pollution of an interface with unneeded methods.

 59

SOLID – Interface segregation
principle (5)

● If a client depends on a class that has methods
not used by the client, but used by other clients
the changes enforced by these others may
affect the original client as well.

● This leads to unintentional coupling of clients.

 60

SOLID – Interface segregation
principle (6)

● Example: ATM (Robert C. Martin)

«interface»
UI

+RequestDepositAmount()
+RequestWithdrawalAmount()
+RequestTransferAmount()
+InformInsufficientFunds()

Transfer
Transaction

Deposit
Transaction

Withdrawal
Transaction

Transaction
{abstract}

+execute()

 61

SOLID – Interface segregation
principle (7)

«interface»
UI

+RequestDepositAmount()
+RequestWithdrawalAmount()
+RequestTransferAmount()
+InformInsufficientFunds()

«interface»
Deposit UI

+RequestDepositAmount()

«interface»
Transfer UI

+RequestTransferAmount()

«interface»
Withdrawal UI

+RequestWithdrawalAmount()
+InformInsufficientFunds()

Transfer
Transaction

Deposit
Transaction

Withdrawal
Transaction

Transaction
{abstract}

+execute()

 62

SOLID – Dependency inversion
principle (1)

● A principle by Robert C. Martin:
– High-level modules should not depend on low-level

modules. Both should depend on abstractions.

– Abstractions should not depend on details. Details
should depend on abstractions.

 63

SOLID – Dependency inversion
principle (2)

● The name comes from the phenomenon that
the classical software developing methods
usually produce software in which high-level
modules depend on low-level modules

● Related pattern: adapter

 64

SOLID – Dependency inversion
principle (3)

● High-level modules contain the business logic
of the application. They describe the identity of
the application. If these modules depend on
low-level modules than changes in low-level
modules may affect high-level ones implying
the need of changes of them.

● While in contrary the high-level modules are
those who should specify low-level ones.

 65

SOLID – Dependency inversion
principle (4)

● We would like to reuse the high-level modules.
The reuse of low-level modules is already
solved by program libraries.

● If high-level modules depend on low-level
modules, the reuse of them is really hard in
different situations.

● In the opposite case however this is fairly
simple.

 66

SOLID – Dependency inversion
principle (5)

● Example of the application of the layered
architectural pattern:

Business
layer

Data Access
Layer

Application
Layer

Presentation
Layer

 67

SOLID – Dependency inversion
principle (6)

● The same pattern when fulfilling the principle:
– Every high-level interface defines an interface for

the services it requires.

– The implementation of the lower level layers are
based on these interfaces.

– As a result high-level layers will not depend on low-
level layers.

 68

Data Access
Layer

Data Access

Business

«interface»
Business
Service

Interface

Business
Layer

Application

«interface»
Application

Service
Interface

Application
Layer

«interface»
Presentation

Service
Interface

Presentation
Layer

Presentation

 69

SOLID – Dependency inversion
principle (8)

● The same pattern when fulfilling the principle:
– Not only the dependencies are inverted but also the

ownership of interfaces (inversion of ownership).
● Hollywood principle: Don't call us, we'll call you.

 70

SOLID – Dependency inversion
principle (9)

● Depending on abstraction:
– The program should not depend on exact classes. It

should depend only on abstract classes and on interfaces.
● No variable should refer to an exact class.
● No class should extend an exact class.
● No class should override methods of the parent class.

– Most of thee programs usually violate the above rules at
least once.

– In case of classes that changes rarely (e.g. String)
dependency may be accepted

 71

SOLID – Dependency inversion
principle (10)

● Example of violating the principle:
– Reference:

https://springframework.guru/principles-of-object-or
iented-design/dependency-inversion-principle/

LightBulb

+turnOn()
+turnOff()

ElectricPowerSwitch

+isOn(): boolean
+press()

0..1

https://springframework.guru/principles-of-object-oriented-design/dependency-inversion-principle/
https://springframework.guru/principles-of-object-oriented-design/dependency-inversion-principle/

 72

SOLID – Dependency inversion
principle (11)

● The same example fulfilling the principle:

LightBulb

+turnOn()
+turnOff()

«interface»
Switchable

+turnOn()
+turnOff()

«interface»
Switch

+isOn(): boolean
+press()

ElectricPowerSwitch

+isOn(): boolean
+press()

0..1

 73

Dependency Injection (1)

● References:
– Dhanji R. Prasanna. Dependency Injection Design

patterns using Spring and Guice. Manning, 2009.
https://www.manning.com/books/dependency-inject
ion

– Mark Seemann. Dependency Injection in .NET.
Manning, 2011.
https://www.manning.com/books/dependency-injectio
n-in-dot-net

https://www.manning.com/books/dependency-injection
https://www.manning.com/books/dependency-injection
https://www.manning.com/books/dependency-injection-in-dot-net
https://www.manning.com/books/dependency-injection-in-dot-net

 74

Dependency Injection (2)

● DI – dependency injection is a concept from
Martin Fowler.
– Martin Fowler. Inversion of Control Containers and

the Dependency Injection pattern. 2004.
https://martinfowler.com/articles/injection.html

● A special case of IoC – inversion of control
architectural pattern
– Martin Fowler. InversionOfControl. 2005.

https://martinfowler.com/bliki/InversionOfControl.html

https://martinfowler.com/articles/injection.html
https://martinfowler.com/bliki/InversionOfControl.html

 75

Dependency Injection (3)

● Definition (Seemann):
– „Dependency Injection is a set of software design

principles and patterns that enable us to develop
loosely coupled code.”

 76

Dependency Injection (4)

● N object is handled as a service that is used as
a client by other objects.

● The client-server connection between object is
called dependency. This connection is
transitive.

 77

Dependency Injection (5)

● Dependency: a service required by a client that is required
for its job to be done.

● Dependent: a client object that need dependency of
dependencies for its job to be done.

● Object graph: a collection of dependents and their
dependencies.

● Injection: providing the dependencies of a client.
● DI container: a library providing dependency injection

functionality.
– We also use Inversion of Control (IoC) container for them

 78

Dependency Injection (6)

● Dependency injection is about planning object
graphs in an efficient way using its best
practices and patterns .

● DI containers let the clients to outsource the
creation and injection of their dependencies to
outer source codes.

 79

Dependency Injection (7)

● Example: no dependency injection

public interface SpellChecker {

 public boolean check(String text);

}

public class TextEditor {

 private SpellChecker spellChecker;

 public TextEditor() {
 spellChecker = new HungarianSpellChecker();
 }

 // …

}

 80

Dependency Injection (8)

● Constructor injection (Dependency injection by
constructor):

public class TextEditor {

 private SpellChecker spellChecker;

 public TextEditor(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }

 // …

}

 81

Dependency Injection (9)

● Setter injection (Dependency injection by
setter):

public class TextEditor {

 private SpellChecker spellChecker;

 public TextEditor() {}

 public void setSpellChecker(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }

 // …

}

 82

Dependency Injection (10)

● Interface injection (Dependency injection by
interface):

public interface SpellCheckerSetter {

 void setSpellChecker(SpellChecker spellChecker);

}

public class TextEditor implements SpellCheckerSetter {

 private SpellChecker spellChecker;

 public TextEditor() {}

 @Override
 public void setSpellChecker(SpellChecker spellChecker) {
 this.spellChecker = spellChecker;
 }

 // …

}

 83

Dependency Injection (11)

● C++ frameworks:
– [Boost].DI (license: Boost Software License)

http://boost-experimental.github.io/di/

– Fruit (license: Apache License 2.0)
https://github.com/google/fruit

– Hypodermic (license: MIT License)
https://github.com/ybainier/Hypodermic

– …

http://boost-experimental.github.io/di/
https://github.com/google/fruit
https://github.com/ybainier/Hypodermic

 84

Dependency Injection (12)

● Java:
– JSR 330: Dependency Injection for Java

https://www.jcp.org/en/jsr/detail?id=330
● From Java EE 6
● javax.inject package.
● Dependency injection through annotations

https://www.jcp.org/en/jsr/detail?id=330

 85

Dependency Injection (13)

● Java frameworks:
– Dagger (license: Apache License 2.0)

https://google.github.io/dagger/

– Guice (license: Apache License 2.0) https://github.com/google/guice

– HK2 (license: CDDL + GPLv2) https://hk2.java.net/

– Java EE 7 CDI
https://docs.oracle.com/javaee/7/tutorial/cdi-basic.htm

– Spring Framework (license: Apache License 2.0)
https://projects.spring.io/spring-framework/
http://www.vogella.com/tutorials/SpringDependencyInjection/article.h
tml

– …

https://google.github.io/dagger/
https://github.com/google/guice
https://hk2.java.net/
https://docs.oracle.com/javaee/7/tutorial/cdi-basic.htm
https://projects.spring.io/spring-framework/
http://www.vogella.com/tutorials/SpringDependencyInjection/article.html
http://www.vogella.com/tutorials/SpringDependencyInjection/article.html

 86

Dependency Injection (14)

● .NET frameworks:
– Castle Windsor (license: Apache License 2.0)

https://github.com/castleproject/Windsor

– Ninject (license: Apache License 2.0)
http://www.ninject.org/

– StructureMap (license: Apache License 2.0)
http://structuremap.github.io/

– …

https://github.com/castleproject/Windsor
http://www.ninject.org/
http://structuremap.github.io/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

