JUnit

A unit test framework for Java
- Authors: Erich Gamma, Kent Beck

- Objective:

- "If tests are simple to create and execute,
then programmers will be more inclined to
create and execute tests.”

Introduction

What do we need to do automated testing?

- Test script
- Actions to send to system under test (SUT).
- Responses expected from SUT.

- How to determine whether a test was
successful or not?

- Test execution system

- Mechanism to read test scripts, and connect
test case to SUT.,

- Keeps track of test results.

Test case verdicts

A verdict is the declared result of executing a single test.

Pass: the test case achieved its intended purpose, and the
software under test performed as expected.

Fail: the test case achieved its intended purpose, but the
software under test did not perform as expected.
Error: the test case did not achieve its intended purpose.

- Potential reasons:
- An unexpected event occurred during the test case.
- The test case could not be set up properly

A note on JUnit versions...

The current version is 4.3.1, available from Mar. 2007
- To use JUnit 4.x, you must use Java version 5 or 6

JUnit 4, introduced April 2006, is a significant (i.e. not
compatible) change from prior versions.

JUnit 4 is used in this presentation.

Much of the JUnit documentation and examples currently
available are for JUnit 3, which is slightly different.

- JUnit 3 can be used with earlier versions of Java (such
as 1.4.2).

- The junit.org web site shows JUnit version 4 unless you
ask for the old version.

- Eclipse (3.2) gives the option of using JUnit 3.8 or JUnit
4.1, which are both packaged within Eclipse.

What is a JUnit Test?

A test "script” is just a collection of Java methods.

- General idea is to create a few Java objects, do
something interesting with them, and then determine if
the objects have the correct properties.

What is added? Assertions.

- A package of methods that checks for various
properties:

- "equality” of objects
- identical object references
- null / non-null object references

- The assertions are used to determine the test case
verdict.

When is JUnit appropriate?

As the name implies...
- for unit testing of small amounts of code

On its own, it is not intended for complex testing, system
testing, etc.

In the test-driven development methodology, a JUnit test
should be written first (before any code), and executed.

- Then, implementation code should be written that would
be the minimum code required to get the test to pass -
and no extra functionality.

- Once the code is written, re-execute the test and it
should pass.

- Every time new code is added, re-execute all tests again
to be sure nothing gets broken.

A JUnit 4 Test Case

/** Test of setName () method, of class Value */

@Test
public void createAndSetName ()

{
Value vl = new Value();

vl.setName("Y");

String expected = "Y";
String actual = vl.getName();

Assert.assertEquals(expected, actual)

A JUnit 4 Test Case

/** Test of setName () method, of class Value */

QTest |dentifies this Java method
public void as a test case, for the test runner

{

Value vl = new Value();

vl.setName("Y");

String expected = "Y";
String actual = vl.getName();

Assert.assertEquals(expected, actual)

A JUnit 4 Test Case

/** Test of setName () method, of class Value */

@Test
public void createAndSetName ()

{

Value vl = new Value(); Objective:
confirm that setName

saves the specified name In
String expected = "Y"; the value object

vl.setName("Y"),; €¢—

String actual = vl.getName();

Assert.assertEquals(expected, actual)

A JUnit 4 Test Case

/** Test of setName () method, of class Value */

@Test

public void createAndSetName ()
{

Value vl = new Value(); Check to see that the
Value object really
did store the name

String expected = "Y" \
String actual = vl.getName()

Assert.assertEquals(expected, actual)

vl.setName("Y");

A JUnit 4 Test Case

/** Test of setName () method, of class Value */

@Test
public void createAndSetName ()| \We want expected and
{ actual to be equal.
Value vl = new Value();
vl.setName("Y"); If they aren’t, then |
the test case should fail.
String expected = "Y";
String actual = vl.getName()

Assert.assertEquals(expected, actual) ;

Assertions

Assertions are defined in the JUnit class Assert

- If an assertion is true, the method continues
executing.

- If any assertion is false, the method stops
executing at that point, and the result for the
test case will be fail.

- If any other exception is thrown during the
method, the result for the test case will be
error.

- If no assertions were violated for the entire
method, the test case will pass.

All assertion methods are static methods

Assertion methods (1)

Boolean conditions are true or false
assertTrue (condition)

assertFalse (condition)

Objects are null or non-null
assertNull (object)
assertNotNull (object)
Objects are identical (i.e. two references to the same
object), or not identical.
assertSame (expected, actual)
- true if: expected == actual

assertNotSame (expected, actual)

Assertion methods (2)

"Equality” of objects:
assertEquals (expected, actual)

- valid if: expected.equals(actual)

"Equality” of arrays:
assertArrayEquals (expected, actual)
- arrays must have same length
- for each valid value for i, check as appropriate:
assertEquals (expected[i] ,actual[i])

or
assertArrayEquals (expected[i] ,actual[i])

There is also an unconditional failure assertion fail () that
always results in a fail verdict.

Assertion method parameters

In any assertion method with two parameters, the first
parameter is the expected value, and the second parameter
should be the actual value.

- This does not affect the comparison, but this ordering is
assumed for creating the failure message to the user.

Any assertion method can have an additional String
parameter as the first parameter. The string will be
included in the failure message if the assertion fails.

- Examples:
fail (message)

assertEquals (message, expected, actual)

Equality assertions

- assertEquals (a,b) relieson the equals() method of
the class under test.

- The effect is to evaluate a.equals(b).

- It is up to the class under test to determine a suitable
equality relation. JUnit uses whatever is available.

- Any class under test that does not override the
equals () method from class Object will get the
default equals () behaviour - that is, object identity.

If a and b are of a primitive type such as int, boolean,
etc., then the following is done for assertEquals(a,b)

- aand b are converted to their equivalent object type
(Integer, Boolean, etc.),and then a.equals(b) is
evaluated.

Floating point assertions

When comparing floating point types (double or float),
there is an additional required parameter delta.

The assertion evaluates
Math.abs (expected - actual) <= delta

to avoid problems with round-off errors with floating point
comparisons.

Example:
assertEquals(aDouble, anotherDouble, 0.0001)

Organization of JUnit tests

Each method represents a single test case that
can independently have a verdict (pass, error, fail).

Normally, all the tests for one Java class are
grouped together into a separate class.

- Naming convention:
- Class to be tested: Value
- Class containing tests: ValueTest

Running JUnit Tests (1)

* The JUnit framework does not provide a graphical
test runner. Instead, it provides an API that can
be used by IDEs to run test cases and a textual
runner than can be used from a command line.

- Eclipse and Netbeans each provide a graphical test
runner that is integrated into their respective
environments.

Running JUnit tests (2)

With the runner provided by JUnit:

- When a class is selected for execution, all the test case
methods in the class will be run.

- The order in which the methods in the class are called
(i.e. the order of test case execution) is
not predictable.

Test runners provided by IDEs may allow the user to select
particular methods, or to set the order of execution.

It is good practice to write tests with are independent of
execution order, and that are without dependencies on the
state any previous test(s).

Test fixtures

A test fixture is the context in which a test case
runs.

Typically, test fixtures include:

- Objects or resources that are available for use
by any test case.

- Activities required to make these objects
available and/or resource allocation and de-
allocation: "setup” and "teardown”.

Setup and Teardown

For a collection of tests for a particular class, there are
often some repeated tasks that must be done prior to each
test case.

- Examples: create some "interesting” objects to work
with, open a network connection, etc.

Likewise, at the end of each test case, there may be
repeated tasks to clean up after test execution.

- Ensures resources are released, test system is in known
state for next test case, efc.

- Since a test case failure ends execution of a test method
at that point, code to clean up cannot be at the end of
the method.

Setup and Teardown

Setup:

- Use the @Before annotation on a method containing code
to run before each test case.

Teardown (regardless of the verdict):

- Use the @After annotation on a method containing code
to run after each test case.

- These methods will run even if exceptions are thrown in
the test case or an assertion fails.
It is allowed to have any number of these annotations.

- All methods annotated with @Before will be run before
each test case, but they may be run in any order.

Example: Using a file as a text fixture

public class OutputTest
{

private File output;

@Before public void createOutputFile ()
{

}

output = new File(...);

@After public void deleteOutputFile ()
{

}

output.delete() ;

@Test public void testlWithFile ()
{

}

// code for test case objective

@Test public void test2WithFile ()
{

}

// code for test case objective

Method execution order

. createOutputFile ()
. testlWithFile ()
. deleteOutputFile()
. createOutputFile ()
. test2WithFile ()
. deleteOutputFile ()

Assumption: testlWithFile runs before
test2WithFile- which is not guaranteed.

Once-only setup

It is also possible to run a method once only for the entire
test class, before any of the tests are executed, and prior
to any @Before method(s).

Useful for starting servers, opening communications, etc.
that are time-consuming to close and re-open for each test.

Indicate with @BeforeClass annotation (can only be used
on one method, which must be static):

@BeforeClass public static void anyNameHere ()

{

// class setup code here

Once-only tear down

A corresponding once-only cleanup method is also available.
It is run after all test case methods in the class have been
executed, and after any @After methods

Useful for stopping servers, closing communication links, etc.

Indicate with @AfterClass annotation (can only be used on
one method, which must be static):
@AfterClass public static void anyNameHere ()

{

// class cleanup code here

Exception testing (1)

Add parameter to @Test annotation, indicating that a
particular class of exception is expected to occur during the
test.

@Test (expected=ExceptedTypeOfException.class)
public void testException|()

{
}

If no exception is thrown, or an unexpected exception
occurs, the test will fail.

- That is, reaching the end of the method with no
exception will cause a test case failure.

exceptionCausingMethod() ;

Testing contents of the exception message, or limiting the
scope of where the exception is expected requires using the
approach on the next slide.

Exception testing (2)

- Catch exception, and use fail () if not thrown

public void testException()
{

try

{

exceptionCausingMethod() ;

// If this point is reached, the expected
// exception was not thrown.

fail ("Exception should have occurred") ;

}

catch (ExceptedTypeOfException exc)

{
String expected = "A suitable error message";
String actual = exc.getMessage() ;
Assert.assertEquals(expected, actual);

}

JUnit 3

At this point, migration is still underway from JUnit 3 to
JUnit 4

- Eclipse 3.2 has both

- The Eclipse test and performance tools platform does
not yet work with JUnit 4.

- Netbeans 5.5 has only JUnit 3.

Within the JUnit archive, the following packages are used so
that the two versions can co-exist.

- JUnit 3 junit.framework.*
- JUnit 4. org.junit.*

Topics for another day...

- Differences between JUnit 3 and JUnit 4

* More on test runners

- Parameterized tests

- Tests with timeouts

« Test suites

