
UML

Jeszenszky, Péter
University of Debrecen, Faculty of Informatics

jeszenszky.peter@inf.unideb.hu

Kocsis, Gergely (English version)
University of Debrecen, Faculty of Informatics

kocsis.gergely@inf.unideb.hu

Last modified: 24.10.2017

mailto:jeszenszky.peter@inf.unideb.hu
mailto:kocsis.gergely@inf.unideb.hu


  2

What is UML?

● „The OMG's Unified Modeling Language (UML) 
helps you specify, visualize, and document 
models of software systems, including their 
structure and design [...]. (You can use UML for 
business modeling and modeling of other non-
software systems too.)”
– Source: Introduction To OMG's Unified Modeling 

Language http://www.omg.org/UML/what-is-uml.htm

http://www.omg.org/UML/what-is-uml.htm


  3

Design Principles 

● Source: OMG UML, Infrastructure, Version 2.4.1
– Modularity: Strong cohesion and loose coupling is applied to group 

constructs into packages and organize features into metaclasses.  

– Layering: 
● The package structure is layered to separate the metalanguage core 

constructs from the higher-level constructs.  
● A 4-layer metamodel architectural pattern is consistently applied to separate 

concerns 

– Partitioning: Partitioning is used to organize conceptual areas within 
the same layer.  

– Extensibility 

– Reuse 



  4

Object Management Group (OMG)

● The Object Management Group® (OMG®) is an international, 
open membership, not-for-profit technology standards 
consortium, founded in 1989. http://www.omg.org/

● Standards:
– Common Object Request Broker Architecture (CORBA) 

http://www.omg.org/corba/

– MetaObject Facility (MOF) http://www.omg.org/mof/

– Model Driven Architecture (MDA) http://www.omg.org/mda/

– Unified Modeling Language (UML) http://www.uml.org/

– XML Metadata Interchange (XMI) http://www.omg.org/spec/XMI/

– …

http://www.omg.org/
http://www.omg.org/corba/
http://www.omg.org/mof/
http://www.omg.org/mda/
http://www.uml.org/
http://www.omg.org/spec/XMI/


  5

History

● Previous solutions were object oriented software engineering 
methods:
– Booch (Grady Booch)

– OMT (object-modeling technique) (James E. Rumbaugh and others)

– OOSE (object-oriented software engineering) (Ivar Jacobson)

● „Three Amigos”: Booch, Jacobson and Rumbaugh
– By the lead of these three people the construction of UML has started

● See more:
– The Unified Modeling Language – Versions of UML Versions of UML 

http://www.uml-diagrams.org/

http://www.uml-diagrams.org/


  6

The current standard

● OMG Unified Modeling Language (OMG UML) Version 2.5. 
March 2015. http://www.omg.org/spec/UML/2.5/

● Diagram Definition (DD) Version 1.1. June 2015. 
http://www.omg.org/spec/DD/1.1/

● XML Metadata Interchange (XMI) Version 2.5.1. June 2015. 
http://www.omg.org/spec/XMI/2.5.1/ 

● OMG Meta Object Facility (MOF) Core Specification 
Version 2.5. June 2015. http://www.omg.org/spec/MOF/2.5/

● Object Constraint Language Version 2.4. February 2014. 
http://www.omg.org/spec/OCL/2.4/  

http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/DD/1.1/
http://www.omg.org/spec/XMI/2.5.1/
http://www.omg.org/spec/MOF/2.5/
http://www.omg.org/spec/OCL/2.4/


  7

UML 2.5

● The specification is a minor revision of the previous 
release

● The text of the specification has been rewritten at many 
points for the sake of readability. Redundancies have 
been removed. Some parts have been explained better.
– e.g. there are less forward references in the text.

● The whole UML specification is one document.
– In the previous version there were two separate documents 

(Infrastructure, Superstructure), see: 
http://www.omg.org/spec/UML/2.4.1/

http://www.omg.org/spec/UML/2.4.1/


  8

Object Constraint Language (OCL)

● A formal language with which expressions can be written about UML 
models

● Not a programming but a modeling language language!
– OCL expressions cannot be executed

● OCL expressions do not have side effects
● Strongly typed
● There are multiple uses of it:

– Query language.
– Describe invariant constraints about classes and types

– Describe pre-, and post conditions of methods and operations
– …



  9

 XML Metadata Interchange (XMI)

● XML format used to exchange metadata 
between applications

● It is most widely used as a tool for exchanging 
UML models, but also can be used for other  
purposes



  10

Diagram Definition (DD)

● The Diagram Definition (DD) specification 
provides a basis for modeling and 
interchanging graphical notations, specifically 
node and arc style diagrams as found in UML, 
SysML, and BPMN, for example, where the 
notations are tied to abstract language 
syntaxes defined with MOF.

● It provides a framework for other modeling 
languages to specify their own diagrams



  11

Model

● A model is a description of a system, where the word 
„system” can mean e.g. software, organizations, 
processes, etc...).

● The model describes the system from a given 
viewpoint for a given group of audience (e.g. the 
users or the developers) at a given level of 
abstraction

● It is full in the sense that it covers the whole system 
however only those aspects are included that are 
important for the given purposes



  12

Metamodel

● Model of the model.
● In UML, metamodel is a model modeling itself

– It can be used to model other models and meta-
models as well (besides itself)

– e.g. MOF model is a metamodel 
(http://www.omg.org/mof/)



  13

Metaclass

● In object-oriented programming, a metaclass is a class whose 
instances are classes.
– Python:

● PEP 3115 – Metaclasses in Python 3000 https://www.python.org/dev/peps/pep-3115/
● Python 3.6.0 documentation – Data model – Metaclasses 

https://docs.python.org/3/reference/datamodel.html#metaclasses 

– Groovy:
● The Groovy programming language – Runtime and compile-time metaprogramming 

http://groovy-lang.org/metaprogramming.html
● groovy.lang.MetaClass 

http://docs.groovy-lang.org/latest/html/api/groovy/lang/MetaClass.html 

– UML: a metaclass is a class in the metamodel (e.g. Element, 
Classifier, …). 

https://www.python.org/dev/peps/pep-3115/
https://docs.python.org/3/reference/datamodel.html#metaclasses
http://groovy-lang.org/metaprogramming.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/MetaClass.html


  14

Syntax (1)

● Abstract syntax: A form of representation of 
language elements that is independent of 
machine-oriented structures and encoding and 
also of the physical representation of them. 

● Concrete syntax: The concrete syntax is 
defined by mapping the notation onto the 
abstract syntax. 



  15

Syntax (2)

● Abstract syntax: ● Concrete syntax:
– Infix form:

● (1 + 2) * 3

– Prefix form:
● (* (+ 1 2) 3)

– Postfix form:
● ((1 2 +) 3 *)

operation

arg
1

arg
2



  16

Syntax (3)

● The abstract syntax of UML is given by a UML 
model, that is called the UML metamodel



  17

Semantics

● „Colorless green ideas sleep furiously.” / 
– Source: Noam Chomsky. Syntactic Structures. 

Mouton & Co., 1957.

● The fact that something is syntactically correct 
does not mean that is has a semantic meaning 



  18

Meta Object Facility (MOF)

● The Meta Object Facility (MOF) provides an 
open and platform-independent metadata 
management framework and associated set of 
metadata services to enable the development 
and interoperability of model and metadata 
driven systems. 
– Source: OMG Meta Object Facility (MOF) Core 

Specification, Version 2.5



  19

Meta Object Facility (MOF)

● MOF is a DSL (domain-specific language): a 
computer language that's targeted to a particular 
kind of problem, rather than a general purpose 
language that's aimed at any kind of software 
problem
– e.g.: BibTeX/LaTeX, CSS, DOT (Graphviz), Gradle DSL, 

SQL, …

– See: Martin Fowler. DomainSpecificLanguage. 
https://martinfowler.com/bliki/DomainSpecificLanguage.ht
ml

● MOF is a DSL targeting the definition of metamodels

https://martinfowler.com/bliki/DomainSpecificLanguage.html
https://martinfowler.com/bliki/DomainSpecificLanguage.html


  20

Meta Object Facility (MOF)

● Reuses the modeling facilities of UML
– It shares and extends a common meta-model with 

UML (e.g. with reflection).

● It is used to model itself and other metamodels 
(e.g. UML, CWM)
– It can be used for any type of metadata (e.g. 

software configuration or specification metadata)



  21

Meta Object Facility (MOF)

● UML metamodel:
– A UML model defining the abstract syntax of UML 

– A metamodel using the constructions of only a 
subset of UML, specified by the MOF specification

– It is a metamodel of metamodels



  22

4-layer metamodel architectural 
pattern  (UML 2.4.1)

● When defining languages usually 3 layers are 
used:
– The specification of the language (metamodel)

– The user specification (model)

– Objects of the model



  23

4-layer metamodel architectural 
pattern  (UML 2.4.1)

● Metamodeling:

model

metamodel

Car

Class

Person

Association

«instanceOf»

*
car

«instanceOf»
«instanceOf»



  24

4-layer metamodel architectural 
pattern  (UML 2.4.1)

● Meta-metamodel:
– The main goal is to provide a language that can describe metamodels
– Usually a meta-metamodel is more robust than the described metamodel

– Usually it is required that the meta-metamodel and the metamodel have the same design concepts and 
structures.

● Metamodel
– An instance of a meta-metamodel, which also means that all elements in the metamodel are instances 

of the elements of the meta-metamodel
– The main goal is to define a language with which models can be described

● Model:
– An instance of a metamodel
– The main goal is to model problems of different areas (e.g. software, business processes, requirements) 
– Usually it builds up from model elements

● Runtime instances:
– Contains runtime instances of model elements defined in the model



  25

4-layer metamodel architectural 
pattern  (UML 2.4.1)

● A model can be a metamodel and vice-verse in 
different cases e.g.: UML and MOF.
– UML and MOF are eta-models, with which users 

can define their own models

– From the point of view of MOF UML is a user 
specification (model) that relies on the MOF 
metamodel



  26

4-layer metamodel architectural 
pattern  (UML 2.4.1)

M3 (MOF)

M2 (UML)
InstanceClass

Class

Attribute

: Video
title = "2001: A Space Odyssey"

M0 (run-time instances) aVideo

M1 (user model)
Video

+ title : String

«instanceOf»
«instanceOf»

«instanceOf»

«instanceOf» «instanceOf»
«instanceOf»

classifier

«instanceOf»

«snapshot»

«instanceOf»



  27

Meta Object Facility (MOF)

● The key concepts are class, object and the capability 
of navigation from an object to its meta-object
– The latter is done through reflection

● By the use of these any number of meta-layers can 
be handled

● Most systems use only a small number of layers (4 or 
less)
– e.g. general reflective systems use two layers (class and 

instance)



  28

Meta Object Facility (MOF)

● Two main packages:
– Essential MOF (EMOF): provides metamodeling 

features similar to object oriented languages for the 
creation of simple metamodels

– Complete MOF (CMOF): full metamodeling toolbox 
● The UML is defined e.g. by this



  29

Model entities (1)

● Major categories of UML model elements:

– Classifiers. A classifier describes a set of objects. An object 
is an individual with a state and relationships to other 
objects. 

– Events: An event describes a set of possible occurrences. 
An occurrence is something that happens that has some 
consequence with regard to the system.

– Behaviors: A behavior describes a set of possible 
executions. An execution is a performance of a set of actions 
(potentially over some period of time) that may generate and 
respond to occurrences of events,



  30

Model entities (2)

● UML models do not contain objects, 
occurrences, or executions, because such 
individuals are part of the domain being 
modeled, not the content of the models 
themselves!
– UML does have modeling constructs for directly 

modeling Individuals however, these are just model 
elements



  31

Classsifier

● A UML model element that groups together a set 
of instances having common attributes 

● A classifier has properties (attributes and 
methods).

● They can be organizes to a hierarchy.
● Specializations:  DataType,  Association, 
Interface,  Class, ...

● Notation: just like classes (use boldface letters)



  32

Abstract and concrete syntax

● Example:

Abstract 
syntax

Concrete
syntax

Comment

Comment
+ body : String[0..1]

Element

*
+ annotatedElement

*
+ comment

0..1

{subsets owner}
+ owningElement

*

{subsets ownedElement}
+ ownedComment



  33

UML definitions

DirectedRelationship

Comment
+ body : String[0..1]

Relationship

Element
{readOnly, union, subsets relatedElement}

+ /source
1..*

{readOnly, union, subsets relationship}
+ /directedRelationship

*

{readOnly, union, subsets
relatedElement}

+ /target
1..*

{readOnly, union, subsets relationship}
+ /directedRelationship

*

{readOnly, union}
+ /relatedElement

1..*

{readOnly, union}
+ /relationship

*

*
+ annotatedElement

*
+ comment

0..1

{subsets owner}
+ owningElement

*

{subsets ownedElement}
+ ownedComment

{readOnly, union}
+ /owner
0..1

*

{readOnly, union}
+ /ownedElement



  34

UML diagram types (1)

● The 2 types of UML diagrams are:
– Structure diagrams:

● The describe the static structure of objects in the system
● Time independent elements are described

– e.g. definitions of an application 

– Behavior diagrams:
● They describe the dynamic behavior of objects in the system including 

cooperation, activities and state-changes
● The dynamic behavior of the system can be described as a sequence of 

changes of the system in time

● The two categories are not distinct. Diagram types can be 
combined.



  35

UML diagram types (2)

● Structure diagrams:
– package diagram
– component diagram

– object diagram

– class diagram
– composite structure 

diagram

– profile diagram

– deployment diagram

● Behavior diagrams:
– activity diagram
– state machine diagram
– use case diagram
– interaction diagram

● timing diagram
● communication diagram
● interaction overview 

diagram
● sequence diagram



  36

Diagram

● Optionally they can have a frame and heading

heading

<contents>



  37

Package (1)

● It is used to group model elements. A package 
is a namespace

● Notation:

Package name



  38

Package (2)

● The contained elements can be referred as  
package_name::element_name (e.g. 
pkg::Point, pkg::Shape).

       pkg

ShapePoint

ShapePoint

pkgpkg



  39

Keyword, Stereotype

● Notation: between « and » 

– If these characters are not present in the character set 
>> and << are to be used.

● More than one keyword or stereotype can be 
used on one model element
– They can be listed after each other (each one 

separately closed between « and »)

– More than one can be given separated by commas all 
together between « and »



  40

Keyword

● A word that is a part of the UML notation 
● It is a textual annotation connected to a 

graphical element or as a part of a diagram
– For each keyword the places of possible uses are 

given.

● With it similarly noted graphical UML elements 
can be distinguished (e.g. «interface»).



  41

Stereotype (1)

● Defines the extension of one or more 
metaclasses.

● It makes possible the use of platform-, and 
domain specific terminology

● A restricted form of metaclasses that cannot be 
used alone, just together with an extended 
metaclass.



  42

Stereotype (2)

● The stereotype has to be given above or before (or 
instead of) the model element when applied..

● A stereotype can change the graphical appearance of 
the extended model element by the use of icons.

● Names of stereotypes usually start with capital letters
– E.g.: «Create», «Instantiate», «Metaclass», …

● The standard provides a lot of pre-defined stereotypes



  43

Comment

● Provides information for the reader of the model
● Notation:

This class was added
right after watching
the movie 'Monty Python
and the Holy Grail'.

Shrubbery



  44

Dependency

● Defines provider-client connection between 
model elements, where the modification of the 
provider may have an effect on the client

● Notation:
– A dashed arrow to the client.  A keyword/stereotype 

can be optionally given.

CarCarFactory
«Instantiate»



  45

Constraint (1)

● A statement that describes a restriction that has 
to be fulfilled by all the valid realizations of 
model containing the constraint

● Notation:
– { [name:] logical-expression }

● The user constraints can be given in any language (e.g. a 
formal language like OCL, or a programming language 
like Java)



  46

Constraint (2)

● Generally a constraint is given as a comment 
connected to those element by a dashed line 
on which the constraint has to be true

{self.boss->isEmpty() or
self.employer = self.boss.employer}

CompanyPerson
0..1

boss
*
employee

0..1
employer



  47

Constraint (3)

● If a constraint is for only one model element 
then it is enough to place it close to the element 
(if it has a name then close to the name)

● If the model element is represented by a 
character sequence then the constraint is to be 
put after it.



  48

Constraint (4)

● A constraint for two model elements can be 
marked by writing it on a dashed line that 
connects the two elements.
– Example:

Corporation

Account

Person

{xor}

owner

owner



  49

Class diagram (1)

● A class diagram describes the types of objects in the system 
and the various kinds of static relationships that exist among 
them. Class diagrams also show the properties and 
operations of a class and the constraints that apply to the way 
objects are connected. The UML uses the term feature as a 
general term that covers properties and operations of a class.
– Source: Martin Fowler. UML Distilled – A Brief Guide to the Standard 

Object Modeling Language. Third Edition. Addison-Wesley, 2003.

● „[…] a class diagram is a diagram where the primary symbols 
in the contents area are class symbols.”
– Source: OMG UML Version 2.5



  50

Class diagram (2)

● Class diagram types (Störrle):
– Analysis: At the analysis level the classes are 

definitions of the domain. The class diagram 
models the structure of the domain.

– Design: The methods of realization appear in the 
classes

– Creational: The classes are equivalent to the 
constructions of the implementing language (e.g. 
C++, Java)



  51

Forrás: http://www.uml-diagrams.org/class-diagrams-overview.html

http://www.uml-diagrams.org/class-diagrams-overview.html


  52

Class

● Notation:

Name

Attributes

Operations



  53

Visibility

● + (public)

● - (private)

● # (protected)

● ~ (package private)



  54

Multiplicity

● Describes a constraint on the number of elements of a collection
– The number of elements cannot be lower than the lower limit
– The number of elements cannot be bigger than the upper limit, if it is not 
*.

● Notation:
– [lower_limit ..] upper_limit

● The lower limit is a non-negative whole number, the upper limit is a non-negative 
whole number or * (* means „unlimited”)

● If the lower limit is equal to the upper limit, then showing the upper limit is enough 

– e.g. 1..1 means the same as 1 and 5..5 means the same as 5

● 0..* is equivalent to *



  55

Property (1)

● An attribute or an association end
● Notation:

– [^] [visibility] [/] name [: type] [[ multiplicity ]]
[= default_value] [{ modifier [, modifier]* }]

● ^ means that the attribute is inherited (UML 2.5).
● / means  the the attribute is derived
● If no multiplicity is present the default value is 1.
● Modifier: e.g. readOnly, ordered, unordered, 
unique, …



  56

Property (2)

● Modifiers (not the full list):
– id: it means that the attribute is a part of the identifier of the class

– nonunique: means that the same values may appear multiple times
– ordered: the attribute is ordered

– readOnly: the attribute cannot be modified

– redefines name: means that the attribute redefines the attribute with the 
given name

– seq or sequence: means that the attribute describes an ordered multiset

– unordered: means that the attribute is not ordered

– unique: means that there are no multiple appearances of the same value 
– constraint: a constraint of the attribute.



  57

Parameter, parameter list

● Parameter list:
– parameter [, parameter]*

● Parameter:
– [direction] name : type [[ cardinality ]]

[= default] [{ property [, property]* }]
● direction: in (default), out, inout, return
● property: nonunique, ordered, seq/sequence, 
unique,  unordered



  58

Operation

● Notation:
– [^] [visibility] name ([parameter list])

[: type] [[ cardinality ]]
[{ property [, property]* }]

● ^ means that the operation is inherited (UML 2.5).
● Property: nonunique, ordered, query, redefines name, 

seq/sequence, unique, unordered, constraint
– query: means that the operation does not change the state of 

the system



  59

Example class

Person
-title: String[0..1]
-name: String
-birthDate: Date
-/age: int {age >= 0}
+Person(title: String, name: String, birthDate: Date)
+Person(name: String, birthDate: Date)
+getTitle(): String {query}
+setTitle(title: String)
+getName(): String {query}
+setName(name: String)
+getBirthDate(): Date {query}
+setBirthDate(birthDate: Date)
+getAge(): int {query}



  60

Static attributes and operations

● Static attributes and operations are showed 
underlined
– Example:

Singleton
-instance: Singleton
-Singleton()
+getInstance(): Singleton



  61

Abstract class (1)

● Notation:
– Mark the name of the class by italic letters and/or 

add the annotation {abstract} before or after

– UML 2.5 does not mention abstract operations



  62

Abstract class (2)

● Example:

Shape
-x: int
-y: int
#Shape(x: int, y: int)
+getX(): int
+getY(): int
+moveTo(newX: int, newY: int)
+getArea(): double
+draw()



  63

Association (1)

● Describes a semantic relation that may be 
present between instances of classifiers
– It marks that there may be relations between 

instances of the associated types or implement 
them.

● They have at least two ends
– Two-end association: binary association.



  64

Association (2)

● Notation:
– Any association can be noted by a diamond that is 

connected by a continuous line to the classifier that 
is the type of the association. A more than two end 
association can be noted just in this way.

– A binary association is usually noted by a 
continuous line connecting two classifiers (or one)



  65

Association (3)

● An association can be named (the name is 
written on the line but not too close to any 
ends).
– A triangle may be added to the name of a binary 

association showing the reading direction of it. This 
is just for documentation purposes.



  66

Association (4)

● Example:

Teaching

Subject

StudentLecturer

PetPerson
Owns ►



  67

Association (5)

● Association end: a connecting point of the line marking 
the association and the icon of a classifier at the end
– Close to the end off the line the followings may be put 

optionally:
● Name (often called as „role”)
● Multiplicity (if not given, we have no constraints about it)
● Modifier (see properties)
● Visibility

– > means that the end is navigable, while ´ means that it is not 
navigable



  68

Association (6)

● Example:

Teaching

Subject

StudentLecturer

0..*
subject

0..*
student

0..1
lecturer

PetPerson
Owns ►owner

0..1
pet
0..*



  69

Association (7)

● At the connection point of the line and the 
classifier a little filled circle can be placed 
(hereafter „dot”).
– „dot” shows that the model has a property whose 

type is represented by the classifier. This property is 
a part of the classifier at the other end of the 
association. In this case usual the attribute is left out 
from the „attributes” part of the classifier.

– If there is no „dot” that means that the end is a mart 
of the association itself.

PublisherBook
1*



  70

Association (8)

● Navigability means that the instances of the 
association can be reached in runtime from the 
instances at the other ends of the association
– Association ends of classes are always navigable 

while association ends of associations may or may 
not be navigable



  71

Association (9)

● Both ends are navigable
● No ends are navigable
● Navigability is not defined  
● One end is navigable the 

other is not
● One end is navigable the 

other is not (In a diagram 
that does not uses crosses 
and uses > only at one 
way associations)

JI

HG

E F

D D

BA



  72

Association class (1)

● A model element that is a class and an 
association at the same time. Defines attributes 
for the association.

● Notation:
– A class symbol connected to an association symbol  

(diamond or continuous line) by a dashed line. 

– The symbol and the class marks the same model 
element. Their names have to match.



  73

Association class (2)

Employment

Employment
jobTitle
startDate
endDate
salary

CompanyPerson

Employment
jobTitle
startDate
endDate
salary

CompanyPerson

*
employer

*
employee

Employment
*
employee

*
employer



  74

Qualified association (1)

● The qualifier is a (set of) property(es) of an 
association end.

● Notation:
– Marked by a small box at the end of the association

– One or more qualifiers may be given. Their notation 
is the same as for attributes but they do not have 
starting values.

qualifier



  75

Qualified association (2)

● The qualifier splits the set of instances 
connected to the qualified instance to distinct 
partitions. 
– All partitions are marked by a qualifier value that is 

a vector  holding a value for all qualifier attributes

– Multiplicities at the end of the association show the 
number of instances in the partitions. E.g. 0..1 
means that there is at most one instance per 
qualifier value



  76

Qualified association (3)

● Example:
– The diagram shows that for a given bank one 

account number can identify 0 or 1 person
● The qualifier is the accountNo attribute, the qualified 

instance is the Bank. The qualifier is for the not 
mentioned Bank type attribute of the Person

PersonBank accountNo
* 0..1



  77

Qualified association (4)

● Example:

OrderItem
product
quantity

Order

OrderItem
quantity

Order

1

*

product

1

0..1



  78

Aggregation (1)

● Types of binary association:
– Shared aggregation: One part object can belong to more than 

one aggregated objects. The parts and the aggregated object 
can exist without each other

– Composite aggregation, composition: A more strict version of 
the aggregation. A part object can belong at most one 
composite object. At the time of deleting the composite object 
all the part objects are also deleted.

● Only one end of an association can be marked as 
aggregation or composition

● Notation:

Whole Part

PartWhole



  79

Aggregation (2)

● Example shared aggregation:

PointPolygon
1..* 3..*

{ordered}



  80

Composite connection (3)

● Example composite connection:

PanelHeader

Window

Slider

HeaderSlider Panel

Window

1

1
+body

1

2
+scrollbar

1
+window

1
+title

1

1
+body

1

2
+scrollbar

1

1
+title



  81

Generalization (1)
● Generalization describes a 

generalization/specialization connection between 
classifiers. It connects a more special classifier to a 
more general classifier.
– The general classifier is called the parent classifier. 

– The special classifier inherits given properties of the 
general classifier

– An instance of a classifier is an instance of all the 
generalizations of it. 

● Notation:

Specialized class

General class



  82

Generalization (2)

● Example:

Circle

Ellipse

Shape

Polygon

RectangleCircleRectangle

Polygon Ellipse

Shape



  83

Generalization set (1)

● A tool of grouping generalizations
– Their aim is to describe orthogonal dimensions off 

the generalization



  84

Generalization set (2)

GS1 GS1 GS2
GS2

GS1 GS2GS1 GS1 GS2



  85

Generalization set (3)

Woman EmployeeMan

Person

Man

Employee

Person

Woman

EmployeeManWoman

Person

EmployeeManWoman

Person

gender employment
status

gender employment
status

gender employment
status

gender gender     employment
     status



  86

Generalization set (4)

Person

EmployeeManWoman

{complete, disjoint}
        {incomplete}



  87

● An interface is a classifier defining public properties 
providing a coherent service as a result. An interface 
can be illustrated as a contract that has to be fulfilled 
by all the realizing classifiers..

● Interfaces can't be instantiated. Classifiers implement 
or realize the specifications of the interface meaning 
that they provide a public connection surface 
matching to the specification of the interface.

● Notation:

Interface (1)

Realizing class«interface»
Interface

Realizing class

Interface



  88

Interface (2)

● Example:

Circle
-x: int
-y: int
-radius: int
-/area: double
+Circle(x: int, y: int, radius: int)
+getArea(): double
+draw()

«interface»
Shape

+getArea(): double
+draw()



  89

Instance specification (1)

● Instance specifications are possible or already 
existing instances of classifiers in the modeled 
system.

● An instance specification can describe an instance at 
a given time-instance.

● An instance specification is a model element that is 
not the same as the modeled instance.
– It may partially describe the properties of an instance. In 

the model there may be more than one instances fulfilling 
requirements of the specification.



  90

Instance specification (2)

● Notation:

deikAddr : Address
streetName = "Kassai út"
streetNumber = "26"
city = "Debrecen"
postalCode = 4028
country = "Hungary"

[object_name] : [class_name]

[object_name] : [class_name]
attribute = value
...



  91

Object Diagram

Category

E.3 : Category
name = "Software creation and management"

E.3.6.1 : Category
name = "Programming teams"

E.3.6.2 : Category
name = "Open source model"

E.3.6 : Category
name = "Collaboration in software development"

0..1
parent

0..*
child

parent

child

parent

child

parent

child



  92

Free software

● Modelio (operating system: Linux, Mac OS X, Windows; 
license: GNU GPL v3) https://www.modelio.org/ 

● Papyrus (platform: Eclipse; license: Eclipse Public License 
v1.0) http://www.eclipse.org/papyrus/

● PlantUML (platform: Java; license: GNU GPL v3) 
http://plantuml.com/

● UMLet (platform: Java; license: GNU GPL v3) 
http://www.umlet.com/
– Eclipse plugin: 

http://marketplace.eclipse.org/content/umlet-uml-tool-fast-uml-diagram
s

– Web service: UMLetino http://www.umlet.com/umletino/

https://www.modelio.org/
http://www.eclipse.org/papyrus/
http://plantuml.com/
http://www.umlet.com/
http://marketplace.eclipse.org/content/umlet-uml-tool-fast-uml-diagrams
http://marketplace.eclipse.org/content/umlet-uml-tool-fast-uml-diagrams
http://www.umlet.com/umletino/


  93

Closed software

● Altova UModel (OS: Windows) 
https://www.altova.com/umodel.html

● Microsoft Visio (OS: Windows) http://visio.microsoft.com/
● Sparx Systems Enterprise Architect (OS: Windows) 

http://www.sparxsystems.com/ 
● StarUML (OS: Linux, Mac OS X, Windows) http://staruml.io/ 
● Visual Paradigm (OS: Linux, Mac OS X, Windows) 

https://www.visual-paradigm.com/
– Visual Paradigm Community Edition 

https://www.visual-paradigm.com/download/community.jsp 

https://www.altova.com/umodel.html
http://visio.microsoft.com/
http://www.sparxsystems.com/
http://staruml.io/
https://www.visual-paradigm.com/
https://www.visual-paradigm.com/download/community.jsp


  94

PlantUML (1)

● Free and open source software for the creation of UML diagrams 
http://plantuml.com/
– Programming language: Java

– License: GNU GPL v3 

● Supported diagrams: class diagram, object-diagram, sequence-diagram, 
use-case diagram, …

● Provides a simple language to define diagrams
● Some diagrams are provided by using:

– Graphviz (platform: Linux, Mac OS X, Windows; programming language: C; 
license: Eclipse Public License 1.0) http://www.graphviz.org/

● Used and integrated by a lot of development tools.
– See: Tools using the PlantUML language http://plantuml.com/running

http://plantuml.com/
http://www.graphviz.org/
http://plantuml.com/running


  95

PlantUML (2)

● Support:
– Atom (platform: Linux, OS X, Windows; license: MIT 

License) https://atom.io/ 
● PlantUML Viewer 

https://atom.io/packages/plantuml-viewer 
● PlantUML language package 

https://atom.io/packages/language-plantuml

– PlantText https://www.planttext.com/ 

https://atom.io/
https://atom.io/packages/plantuml-viewer
https://atom.io/packages/language-plantuml
https://www.planttext.com/


  96

PlantUML (3)

● Support:
– Eclipse: Integration with Eclipse 

http://plantuml.sourceforge.net/updatesite/

– NetBeans: PlantUML-NB – Netbeans Plugin for 
PlantUML 
http://plugins.netbeans.org/plugin/49069/plantuml  
https://sourceforge.net/projects/plantumlnb/ 

– Apache Maven: UML Reverse Mapper 
https://github.com/markusmo3/uml-reverse-mapper

http://plantuml.sourceforge.net/updatesite/
http://plugins.netbeans.org/plugin/49069/plantuml
https://sourceforge.net/projects/plantumlnb/
https://github.com/markusmo3/uml-reverse-mapper


  97

Further reading

● Martin  Fowler. UML Distilled – A Brief Guide to 
the Standard Object Modeling Language. Third 
Edition. Addison-Wesley, 2003.

● Robert A. Maksimchuk, Eric J. Naiburg. UML 
for Mere Mortals. Addison-Wesley, 2004.

● Russ Miles, Kim Hamilton. Learning UML 2.0. 
O'Reilly Media, 2006.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97

