
Patterns

Jeszenszky, Péter
University of Debrecen, Faculty of Informatics

jeszenszky.peter@inf.unideb.hu

Kocsis, Gergely (English version)
University of Debrecen, Faculty of Informatics

kocsis.gergely@inf.unideb.hu

Last modified: 06.04.2017

mailto:jeszenszky.peter@inf.unideb.hu
mailto:kocsis.gergely@inf.unideb.hu

2

Based on the material by Kollár Lajos

3

Patterns
● The concept is from Christopher Alexander (1936–) from

the field of building architecture.

• Some software engineers also started to use the concepts

• Become widely known in SE (Software Engineering) by
the book written by the „Gang of Four” (GoF):

 – Erich Gamma

 – Richard Helm

 – Ralph Johnson

 – John Vlissides

4

What is a pattern? (1)

• „Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core solution to that problem, in such a
way that you can use the solution a million times over,
without ever doing it the same way twice”

– Christopher Alexander. A Pattern Language: Towns,
Buildings, Construction. Oxford University Press.
1977.

5

● Christopher Alexander:

“Each pattern is a three-part rule, which
expresses a relation between a certain context, a
problem, and a solution”

● The Timeless Way of Building. Oxford
University Press. 1979.

What is a pattern? (2)

6

● Martin Fowler:

„A pattern is an idea that has been useful in
one practical context and will probably be
useful in others.”

● Analysis Patterns: Reusable Object
Models. Addison-Wesley, 1996.

What is a pattern? (3)

7

● Scott W. Ambler:

A pattern is a description of a general
solution to a common problem or issue
from which a detailed solution to a specific
problem may be determined.

● http://www.ambysoft.com/books/processPatterns.html

What is a pattern? (4)

http://www.ambysoft.com/books/processPatterns.html

8

Parts of patterns

● Context:
– In which situations the problem occurs

● Problem:
– A problem that emerges repeatedly in a given context.
– Force: A point of view that has to be counted in during the solution of the problem.

● E.g. constraints and desired properties of the solution
● Forces analyse the problem from different points of view. They may complete each other or

may contradict each other
– Example of contradicting forces: scalability of the system and minimizing the code length

● Solution:
– How to solve a repeating problem? How to offset the appearing forces?
– A solution provides only a scheme and not a detailed plan.
– It is a “Mental building block”

9

Pattern Catalogues and Pattern Languages
(1)

● Pattern Catalogue/Pattern Collection
– A group of patterns

– A collection can be heterogeneous or it can focus
on a specific field, problem or abstraction level.

– It may be structured or not structured.

– The description of the patterns are usually
independent.

– Example: the GoF catalogue

10

● Pattern Language: A pattern collection of
related patterns that define a systematic
process for the solution of software engineering
problems
– E.g.: user interface design patterns

Pattern Catalogues and Pattern Languages
(2)

11

● The description of patterns is always done
using a given template (pattern template).
– The different catalogues and languages may use

different templates in practice.

Pattern Catalogues and Pattern Languages
(3)

12

Pattern types

„Patterns can exist at all scales.” ─ C. Alexander
● Architectural patterns/styles
● Design patterns
● Programming idioms/Implementation patterns
● Process patterns
● Analysis patterns
● Testing patterns
● Process patterns
● User interface desidn patterns
● Antipatterns

13

Architectural patterns (1)

Architectural patterns/styles

• They contain best practices and pre-defined
subsystems for the basic structure of a
software structure.

• E.g.: MVC architecture

14

Architectural patterns (2)

● Martin Fowler. Patterns of Enterprise
Application Architecture. Addison-Wesley, 2002.

● Frank Buschmann et al. Pattern-Oriented
Software Architecture Vol. 1–5. Wiley, 1996,
2000, 2004, 2007.

15

Example of an architectural pattern:
MVC (1)

Name: Model–View–Contrroller (MVC)
Context: interactive applications with a flexible human-machine interface
Problem: frequent change requests for user interfaces

●The same information is to be displayed differently (e.g., bar chart, pie chart)
●Presentation and behavior of the application should immediately reflect data

manipulation
●User Interfaces that can be changed dinamically (even in run-time) are needed
●Support of various look-and-feel standards are needed
●Porting an application should not affect the core functionalities

Solution:
●model encapsulates data and functionality and is independent from the input

behavior and the representation of the output;
●view displays information;
●controller receives and transforms the input to service requests (towards model

and view).

16

● The separation of the model from the view makes it
possible to to have more views for the same model
– The same data can be presented in different ways

● The separation of the view from the control
component is less important
– This makes possible the use of more controllers for the

same view
● Classical problem: an editable and a non-editable version of the

same view by the use of two different controllers

– In practice there is often only one control/view

Example of an architectural pattern:
MVC (2)

17

● The model is an object representing some
information of the domain that encapsulates data
– It has application-specific processing procedures that

are called by the controllers in the name of the user

– Provides functions to enable the access of data that are
used by views

– Registers the dependent objects (views and controllers)
and inform them about changes in the data

Example of an architectural pattern:
MVC (3)

18

Example of an architectural pattern:
MVC (4)

19

Model

ViewController
Notify

Get changed
data

Update

Update

User
input

Example of an architectural pattern:
MVC (5)

20

Architectural styles (1)

An architectural style defines a family of
software systems in terms of their structural
organization. An architectural style expresses
components and the relationships between
them, with the constraints of their application,
and the associated composition and design
rules for their construction. [POSA1]
– E.g.: client-server, layered, REST –

Representational State Transfer, …

21

Architectural styles (2)

● Architectural styles are very similar to
architectural patterns, however they differ at
many points
– Patterns give solutions for given repeatedly

appearing problems from the actual viewpoint of the
context

– Styles provide design methods independent of the
actual context

22

Design patterns (1)

● Design patterns are middle-scale patterns.
They are less comprehensive than architectural
patterns

● The use of them does not affect the overall
structure off the system, but they highly affect
the structure of the subsystem

● They are independent of programming
languages and paradigms

23

Design patterns (2)

● Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-
Wesley, 1994.
– GoF – Gang of Four

24

Design patterns (3)

● GoF:
– Design patterns are descriptions of cooperating

objects that solve a given design problem in a given
context in a customized form.

25

Design patterns (4)

● Language specific further reading:
– C#:

● Steven John Metsker. Design Patterns in C#. Addison-Wesley, 2004.
● .NET Design Patterns in C# http://www.dofactory.com/net/design-patterns

– C++:
● Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied. Addison-

Wesley, 2001.
● Alexander Shvets. Design Patterns Explained Simply. 2014.

https://sourcemaking.com/design-patterns-ebook

– Java:
● Alexander Shvets. Design Patterns Explained Simply. 2014.

https://sourcemaking.com/design-patterns-ebook
● Ilkka Seppälä. Design patterns implemented in Java. http://java-design-patterns.com/

https://github.com/iluwatar/java-design-patterns

– Python:
● Bruce Eckel et al. Python 3 Patterns, Recipes and Idioms.

http://python-3-patterns-idioms-test.readthedocs.io/

http://www.dofactory.com/net/design-patterns
https://sourcemaking.com/design-patterns-ebook
https://sourcemaking.com/design-patterns-ebook
http://java-design-patterns.com/
https://github.com/iluwatar/java-design-patterns
http://python-3-patterns-idioms-test.readthedocs.io/

26

Design patterns (5)

● Design patterns grouped by their goals (GoF):
– Creational Patterns

– Structural Patterns

– Behavioral patterns

27

Design patterns (6)

● GoF defines 23 design patterns but since the
publicattion of the book of them many new
patterns have born
– E.g.: abstract document, monad, repositor,

multition, twin, ...

● New category: Concurrency Patterns
– E.g.: active object, guarded suspension, thread

pool, …

28

Design patterns (7)

● Pattern template (GoF):
– Name and Classification:

– Intent:

– Also Known As:

– Motivation:

– Applicability:

– Structure:

– Participants:

– Collaborations:

– Consequences:

– Implementation:

– Sample Code:

– Known Uses:

– Related Patterns:

29

Design pattern sample: Singleton (1)

● Intent: Let only one instance of a class to be exist and
provide a global access point for it.

● Motivation: In some cases it is important to have at most
one instance of them

● Applicability: The patterns can be used in the following
cases:
– We need exactly on e instance of the class and that instance has

to be reachable for the clients through well-known access points
– This one instance has to be extensible by subclasses and the

clients have to be able to use the extended instance without
modification of their code

30

● Structure:

Singleton
-instance: Singleton
-Singleton()
+getInstance(): Singleton

Design pattern sample: Singleton (2)

31

● Java implementation (1): greedy initilaization,
thread safe

public class Singleton {

 private static Singleton instance = new Singleton();

 private Singleton() {
 } // private constructor!

 public static Singleton getInstance() {
 return instance;
 }

}

Design pattern sample: Singleton (3)

32

● Java implementation (2): lazy initialization,
thread safe

public class Singleton {

 private static Singleton instance;

 private Singleton() {
 } // private constructor!

 public static synchronized Singleton getInstance() {
 if (instance == null) {
 instance = new Singleton();
 }
 return instance;
 }

}

Design pattern sample: Singleton (4)

33

● Java implementation (3): lazy initialization,
thread safe (without explicit synchronization)

public class Singleton {

 private static class Holder {
 private static Singleton instance = new Singleton();
 }

 private Singleton() {
 } // private constructor!

 public static Singleton getInstance() {
 return Holder.instance;
 }

}

Design pattern sample: Singleton (5)

34

● Java implementation (4): enum (J2SE 5.0–)

public enum Singleton {

 INSTANCE;

}

Design pattern sample: Singleton (6)

35

● Java implementation (5): lazy initialization, non
thread safe (double-checked locking)

public class Singleton {

 private static Singleton instance;

 private Singleton() {
 }

 public static Singleton getInstance() {
 if (instance == null) {
 synchronized (Singleton.class) {
 if (instance == null) {
 instance = new Singleton();
 }
 }
 }
 return instance;
 }

}

Design pattern sample: Singleton (7)

36

● Java implementation (6):
– About thread safety see:

● Brian Goetz, Tim Peierls, Joshua Bloch, Joseph
Bowbeer, David Holmes, Doug Lea. Java Concurrency in
Practice. Addison-Wesley, 2006. http://jcip.net/

– A The Java Memory Model – Chapter 16. Section 16.2

Design pattern sample: Singleton (8)

http://jcip.net/

37

Programming idioms,
implementation patterns (1)

● An idiom is a low-level programming language
specific pattern.

● It describes how to implement components and
some spects of the relations between them with the
tools of the given language.

● They include existing programming experience.

38

Programming idioms,
implementation patterns (2)

● Kent Beck. Implementation Patterns. Addison-
Wesley, 2008.

● Robert C. Martin. Clean Code: A Handbook of
Agile Software Craftsmanship. Prentice Hall,
2008.

39

Programming idioms,
implementation patterns (3)

● Programming language specific further reading:
– C#:

● Bill Wagner. Effective C#: 50 Specific Ways to Improve Your C#. Third Edition. Addison-Wesley, 2016.
● Bill Wagner. More Effective C#: 50 Specific Ways to Improve Your C#. Addison-Wesley, 2008.

– C++:
● Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs. Third Edition.

Addison-Wesley, 2008.
● Scott Meyers. Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and C++14.

O'Reilly Media, 2014.

– Java:
● Joshua Bloch. Effective Java. Second Edition. Addison-Wesley, 2008.

– Python:
● Brett Slatkin. Effective Python: 59 Specific Ways to Write Better Python. Addison-Wesley, 2015.

http://www.effectivepython.com/
● Luciano Ramalho. Fluent Python. O'Reilly Media, 2015. https://github.com/fluentpython

http://www.effectivepython.com/
https://github.com/fluentpython

40

Programming idioms,
implementation patterns (4)

Example: Whenever overriding equals, hashCode
should also be overridden!:

public final class Pet implements Cloneable {
 private String name;
 private int age;

 public Pet(String name, int age) {
 if (age < 0)
 throw new IllegalArgumentException();
 this.name = name;
 this.age = age;
 }

 @Override
 public boolean equals(Object o) {
 if (o == this)
 return true;
 if (! (o instanceof Pet))
 return false;
 Pet that = (Pet) o;
 return (name == that.name || (name != null && name.equals(that.name)))

&& age == that.age;
 }

// Error: there are no hashCode() and clone() methods!
}

41

Programming idioms,
implementation patterns (5)

● Example (2):
Set<Pet> s = new HashSet<Pet>();
Pet p = new Pet("Tardar Sauce", 4);
s.add(p);

System.out.println(s.contains(p));

System.out.println(s.contains(new Pet("Tardar Sauce", 4)));

System.out.println(s.contains(p.clone()));

Output:
true
false
false

42

Programming idioms,
implementation patterns (6)

● Example (3):
public final class Pet implements Cloneable {

 // ...

 @Override
 public int hashCode() {
 int result = 17;
 result = 31 * result + age;
 result = 31 * result + (name == null ? 0 : name.hashCode());
 return result;
 }

 @Override
 public Pet clone() {
 try {
 return (Pet) super.clone();
 } catch (CloneNotSupportedException e) {
 throw new AssertionError();
 }
 }

}

43

Process patterns (1)

● Scott W. Ambler. Process Patterns: Building
Large-Scale Systems Using Object Technology.
Cambridge University Press, 1998.

● Scott W. Ambler. More Process Patterns:
Delivering Large-Scale Systems Using Object
Technology. Cambridge University, 1999.

44

Process patterns (2)

● Process: A sequence of activities that provides one or
more outputs from one or more inputs

● Process pattern: A collection of general methods,
operations and/or tasks that are used for object-oriented
software development
– By applying them in a structured way the process of an

organization can be defined
● Since they do not describe how exactly the task is to be done, they

are reusable building blocks customizable for the needs of the given
organization

– Form of them: task, stage and phase process pattern

45

Process patterns (3)

● Task Process Pattern: Describes the needed steps of doing a
task in details
– Example: Technical review

● Stage Process Pattern: A higher level process pattern that
usually builds up from more task process patterns. Describes
those steps that are to be done interactively in a project stage
– Example: Program

● Phase Process Pattern: Describes interactions between stage
process patterns of a project phase. The execution of phase
process pattern is sequential.
– Example: Creation

46

Process patterns (4)

● Example of task process pattern: Technical
Review

Prepare
for

Review

Indicate
Readiness
for Review

Perform
Cursory

Inspection

Organize
Review

Hold
Review

Act on
Review
Results

47

Process patterns (5)

● Example of stage process pattern: Program

Reuse Existing
Code and

Components

Optimize
Code

"Build" the
Software

Integrate and
Package

Prepare
Integration

Plan

Prepare Code
for Inspections

Synchronize
Source Code
with Models

Understand
Models

Write
Source Code

Document
Source Code

Packaged
Application,
Source Code

Models,
Project

Infrastructure

48

Analysis patterns (1)

● They follow the conceptual structure of business
processes

● They are groups of concepts representing often used
constructions in business modeling

● What are they used for?​
– They offer design patterns and solutions for frequent problems in

order to make it easier to a design model from the analysis
model.​

– They help to get abstract analysis models as soon as possible.
These models describe the most important specifications of the
exyct problem.

49

Analysis patterns (2)

● Martin Fowler. Analysis Patterns: Reusable
Object Models. Addison-Wesley, 1996.

● tagged by: analysis patterns
https://martinfowler.com/tags/analysis%20patte
rns.html

https://martinfowler.com/tags/analysis%20patterns.html
https://martinfowler.com/tags/analysis%20patterns.html

50

Analysis patterns (3)

● Example of analysis patterns: domain
https://martinfowler.com/eaaDev/Range.html
– Describes a value domain.

x : Range<Integer>
start = -10
end = 10

Range<T>
start: <T>
end: <T>
includes(<T>)

«instanceOf»

https://martinfowler.com/eaaDev/Range.html

51

Analysis patterns (4)

● Example of analysis patterns: quantity
https://www.martinfowler.com/eaaDev/quantity.h
tml
– Represents a numeric value with a quantity unit

g21: Quantity
amount = 21
units = gramm

Quantity
amount: Number
units: Unit
+, -, *, /, =, <, >

«instanceOf»

https://www.martinfowler.com/eaaDev/quantity.html
https://www.martinfowler.com/eaaDev/quantity.html

52

Testing patterns (1)

● Gerard Meszaros. xUnit Test Patterns:
Refactoring Test Code. Addison-Wesley, 2007.
http://xunitpatterns.com/

http://xunitpatterns.com/

53

Testing patterns (2)

● Testcase Class per Class (page 617.):
– How to organize our test methods to testcase classes?

● Put all the test methods testing a given class to one testcase
class

– When to use?
● If there are not so many test methods or we have just started

to add the test cases to the test system.
● As the number of tests increases and the test fixtures

requirements are getting more clear the class can be cut to
more classes. (see: Testcase Class per Fixture, Testcase
Class per Feature).

54

Testing patterns (3)

● Source: Testcase Class per Class
http://xunitpatterns.com/Testcase%20Class%2
0per%20Class.html

http://xunitpatterns.com/Testcase%20Class%20per%20Class.html
http://xunitpatterns.com/Testcase%20Class%20per%20Class.html

55

User interface design patterns (1)

● Reusable solutions for often appearing UI
design problems
– Applied for desktop, web, and mobile interfaces

56

User interface design patterns (2)

● Jenifer Tidwell. Designing Interfaces: Patterns
for Effective Interaction Design. Second Edition.
O'Reilly Media, 2010.
http://designinginterfaces.com/

● Christian Crumlish, Erin Malone. Designing
Social Interfaces: Principles, Patterns, and
Practices for Improving the User Experience.
Second Edition. O'Reilly Media, 2015.
http://www.designingsocialinterfaces.com/

http://designinginterfaces.com/
http://www.designingsocialinterfaces.com/

57

User interface design patterns (3)

● Further design pattern catalogues:
– Martijn van Welie. Interaction Design Pattern Library.

http://www.welie.com/patterns/

– Anders Toxboe. UI-Patterns.com. http://ui-patterns.com/

– The Endeca User Interface Design Pattern Library
http://www.oracle.com/webfolder/ux/applications/uxd/end
eca/content/library/en/home.html

– USPTO UI Design Library
https://uspto.github.io/designpatterns/

– …

http://www.welie.com/patterns/
http://ui-patterns.com/
http://www.oracle.com/webfolder/ux/applications/uxd/endeca/content/library/en/home.html
http://www.oracle.com/webfolder/ux/applications/uxd/endeca/content/library/en/home.html
https://uspto.github.io/designpatterns/

58

User interface design patterns (4)

● Pattern template (Tidwell):
– What:

– Use when:

– Why:

– How:

– Examples:

59

User interface design patterns (5)

● Mély háttér (Tidwell, 499. oldal):

– What: Place an image or gradient into the page’s background that visually recedes
behind the foreground elements.

– Use when: Your page layout has strong visual elements (such as text blocks, groups
of controls, or windows), and it isn’t very dense or busy. You want the page to look
distinctive and attractive; you may have a visual branding strategy in mind. You’d like
to use something more interesting than flat white or gray for the page background

– Why: Backgrounds that have soft focus, color gradients, and other distance cues
appear to recede behind the more sharply defined content in front of them. The
content thus seems to “float” in front of the background. This pseudo-3D look results
in a strong figure/ground effect—it attracts the viewer’s eye to the content. Fancy
explanations aside, it just looks good.

– How: Use a background that has one or more of these characteristics: Soft focus,
Color gradients, Depth cues, No strong focal points

– Examples: https://www.mozilla.org/hu/firefox/new/

https://www.mozilla.org/hu/firefox/new/

60

Antipatterns (1)

● General solutions of a given problem that
provide expressly negative consequences

● They can appear at any level

61

Antipatterns (2)

● William H. Brown, Raphael C. Malveau, Hays W.
McCormick III, Thomas J. Mowbray. AntiPatterns:
Refactoring Software, Architectures, and Projects
in Crisis. John Wiley & Sons, 1998.

● https://sourcemaking.com/antipatterns
● Phillip A. Laplante, Colin J. Neill, Joanna F.

DeFranco. AntiPatterns: Managing Software
Organizations and People. 2nd Edition.
Auerbach, 2011.

https://sourcemaking.com/antipatterns

62

Antipatterns (3)

● The three categories based on the viewpoint:
– Software development antipatterns

– Software architectural antipatterns

– Software project management antipatterns

63

Software development antipatterns
(1)

● The Blob: The procedural design leads to an object
that holds most of the responsibilities while other
objects only store data or execute simple processes

● Continuous Obsolescence: Technology is ever
changing and it is hard for the developers to stay up
to date with the current versions and find the proper
combinations of software versions that can cooperate.

● Lava Flow: Dead code and forgotten design
informations freeze into the dynamic plan

64

Software development antipatterns
(2)

● Functional Decomposition: Experienced programmers of
procedural languages develop object oriented applications.
The resulting code looks similar to sources of procedural
languages (FORTRAN, C, PASCAL). It can be very complex
since these exxperienced programmers usually find really
clever ways of the replication of the old tools in OO
architecture.

● Poltergeist: Classes with too restricted roles. They frequently
start processes for other objects.

● Boat Anchor: A part of the program or the hardware that has
no useful role in the project.

65

Software development antipatterns
(3)

● Golden Hammer: The use of a well-known
technology or concept for all problems

● Dead End: The modification of a reusable
component if the component is not maintained
and supported later by the provider of the
technology

● Spaghetti Code: ad hoc program structure
makes it harder to extend or optimize the code

66

Software development antipatterns
(4)

● Input Kludge: Ad hoc algorithms to manage the input of
the program

● Walking through a Minefield: Use of the newest
technologies is dangerous since they may be full of errors

● Cut−and−Paste Programming: Reuse of code through
copy-paste implies serious maintenance problems

● Mushroom Management: The isolation of developers. As
a result they have only second-hand information about the
specifications (through engineers, managers, analysts.

67

Software architectural antipatterns (1)

● Autogenerated Stovepipe: This pattern appears at the
time of migrating an existing software system on a shared
infrastructure. The problem is when the interfaces are
copied without redesign.

● Stovepipe Enterprise: Separately designed systems
reduce the interoperability and reuse and also may
increase costs

● Stovepipe System: Integration of subsystems is done in
an ad hoc way using more integration strategies and
mechanisms. The same as stovepipe enterprise for one
system.

68

● Cover Your Assets: In case of document-
driven software processes the authors often
pose useless specifications and requirements
to avoid responsibilities.

● Vendor Lock-In: Depending on an architecture
of a given producer too much

● Wolf Ticket: A product that poses its free
property without any forced activities

Software architectural antipatterns (2)

69

● Implicit architecture: There is no architectural plan
since the developers pose that based on their previous
experience they can solve the problem without it

● Design by Committee: A plen by a committee is often
too complex and has no coherent structure

● Swiss Army Knife: A too complex class with which the
designer tries to solve all the possible uses. This is hard
to understand by other programmers.

● Reinvent the Wheel: The lack of reuse of technologies
in different software projects

Software architectural antipatterns (3)

70

Software development antipatterns
(4)

● Input Kludge: Ad hoc algorithms to manage the input of
the program

● Walking through a Minefield: Use of the newest
technologies is dangerous since they may be full of errors

● Cut−and−Paste Programming: Reuse of code through
copy-paste implies serious maintenance problems

● Mushroom Management: The isolation of developers. As
a result they have only second-hand information about the
specifications (through engineers, managers, analysts.

71

Antipattern template (1)

● AntiPattern Name:
– The name of the antipattern

● Also Known As:
– Other known names

● Most Frequent Scale:
– On which level of the software development process this antipattern appears. The

following keywords may be used here: idiom, micro-architecture, framework,
application, system, entzerprise, global/industry

● Refactored Solution Name:
– Identifies the refactored solution name

● Refactored Solution Type:
– Marks the type of activity needed as the solution of the antipattern. The following

keywords may be used here: software, technology, process, role

72

Antipattern template (2)

● Root Causes:
– Shows the root causes of the antipattern. Keywords may be here: Sloth (lazyness), Apathy

(lack of the mod for being creative), Pride (not being open to learn the right solution), Haste
(trying to solve sg. too fast), Avarice (not willing to spend the required resources), Ignorance
(not knowing the right solution)

● Unbalanced Forces:
– Keywords specifying those factors that were not counted in or were user too many times in

the pattern. Possible choices may be: managing functionality, managing performance,
managing complexity, handling changes, managing IT resources, managing technology
transfer

● Anecdotal Evidence:
– Optional part describing known anecdotes related to the antipattern

● Background:
– Optional. It contains more example places where the antipattern appears and more

interesting general information

● General Form:
– A general description of the antipattern. Often contains figures. It is not an example but a

general version.

73

Antipattern template (3)

● Symptoms and Consequences:
– The symptoms and the consequences of the antipattern

● Typical Causes:
– A list of the exact tipical casuses of the problem.

● Known Exceptions:
– Describes those exceptional cases when the antipattern is not harmful

● Refactored Solution:
– The detailed step-by-step solution described at the general form

● Variations:
– Optional part. Lists the possible other variations of the antipatern.

74

Antipattern template (4)

● Applicability to Other Viewpoints and Scales:
– How the antipattern afftects the other viewpoints: control,

architectual, development. It also describes how relevant the
antipattern is from the point of other levels.

● Example:
– This part shows an example use of the solution for the

antipattern.

● Related Solutions:
– Design patterns and antipatterns that are closely related to

the antipattern. The differences are also detailed here.

75

Software development antipattern:
The Blob (1)

● AntiPattern Name: The Blob
● Also Known As: Winnebago, The God Class
● Most Frequent Scale: application
● Refactored Solution Name: Refactoring of Responsibilities
● Refactored Solution Type: software
● Root Causes: Sloth, Haste
● Unbalanced Forces: Management of Functionality,

Performance, Complexity
● Anecdotal Evidence: "This is the class that is really the heart of

our architecture."

76

Software development antipattern:
The Blob (2)

● Background: The Blob (1958)
http://www.imdb.com/title/tt0051418/

● General Form:
– The Blob is found in designs where one class monopolizes the

processing, and other classes primarily encapsulate data.
– This AntiPattern is characterized by a class diagram composed of

a single complex controller class surrounded by simple data
classes.

– In general, the Blob is a procedural design even though it may be
represented using object notations and implemented in object-
oriented languages.

– Frequently a result of iterative development where proof-of-
concept code evolves over time into a prototype, and eventually, a
production system.

http://www.imdb.com/title/tt0051418/

77

Software development antipattern:
The Blob (3)

● Symptoms and Consequences:
– Single class with a large number of attributes, operations, or both. A class with

60 or more attributes and operations usually indicates the presence of the Blob

– A collection of unrelated attributes and operations encapsulated in a single
class.

– The Blob Class is typically too complex for reuse and testing.
– The Blob Class may be expensive to load into memory, using excessive

resources, even for simple operations

● Typical Causes:
– The lack of OO architecture

– The lack of any architecture

– Lack of architecture enforcement.

– Too limited intervention. In iterative projects, developers tend to add little pieces
of functionality to existing working classes, rather than add new classes.

– Specified disaster.(wrong requirement specification).

78

Software development antipattern:
The Blob (4)

● Known Exceptions: Acceptable when wrapping
legacy systems, when encapsulating a previous
system for compatibility reasons

● Refactored Solution: The solution involves code
refactoring
– Identify or categorize related attributes and operations
– Look for "natural homes" for these contract-based

collections of functionality and then migrate them there
– Remove redundant associations

79

Software development antipattern:
The Blob (5)

● Variations:
– Behavioral form: An object that contains a centralized

process that interacts with most other parts of the system
(„central brain class”).

– Data form: A class that holds attributes that are used by
most of the other objects of the system („global data class”).

● Applicability to Other Viewpoints and Scales: Both
architectural and managerial viewpoints play key roles
in the initial prevention of the Blob AntiPattern.

● Example:

80

Software development antipattern:
Spaghetti Code (1)

● AntiPattern Name: Spaghetti Code
● Most Applicable Scale: Application
● Refactored Solution Name: Software Refactoring, Code Cleanup
● Refactored Solution Type: Software
● Root Causes: Ignorance, Sloth
● Unbalanced Forces: Management of Complexity, Change
● Anecdotal Evidence: "Ugh! What a mess!" "You do realize that the

language supports more than one function, right?" "It's easier to
rewrite this code than to attempt to modify it." "Software engineers
don't write spaghetti code." "The quality of your software structure is
an investment for future modification and extension."

81

Software development antipattern:
Spaghetti Code (2)

● Background: The classic and most famous
AntiPattern; it has existed in one form or another
since the invention of programming languages.

● General Form:
– Spaghetti Code appears as a program or system that

contains very little software structure.
– If developed using an object-oriented language, the

software may include a small number of objects that
contain methods with very large implementations.

82

Software development antipattern:
Spaghetti Code (3)

● Symptoms And Consequences:
– Methods are very process-oriented; frequently, in fact, objects are

named as processes.

– The flow of execution is dictated by object implementation, not by
the clients of the objects.

– Minimal relationships exist between objects.
– Many object methods have no parameters, and utilize class or

global variables for processing.
– Code is difficult to reuse, and when it is, it is often through cloning.

– Benefits of object orientation are lost.

– Follow-on maintenance efforts contribute to the problem.

– The effort involved in maintaining an existing code base is greater
than the cost of developing a new solution

83

Software development antipattern:
Spaghetti Code (4)

● Typical Causes:
– Inexperience with object-oriented design technologies

– No mentoring in place; ineffective code reviews

– No design prior to implementation

– Frequently the result of developers working in isolation.

● Known Exceptions:
– Reasonably acceptable when the interfaces are coherent

and only the implementation is spaghetti.

● Refactored Solution: Software refactoring.

84

Software development antipattern:
Spaghetti Code (5)

● Example:
● Related Solutions: Analysis Paralysis, Lava

Flow

85

Software architecture antipattern:
Vendor Lock−In (1)

● AntiPattern Name: Vendor Lock−In
● Also Known As: Product-Dependent Architecture,

Bondage and Submission, Connector Conspiracy
● Most Frequent Scale: System
● Refactored Solution Name: Isolation Layer
● Refactored Solution Type: Software
● Root Causes: Sloth, Apathy, Pride/Ignorance
● Unbalanced Forces: Management of Technology

Transfer, Management of Change

86

Software architecture antipattern:
Vendor Lock−In (2)

● Anecdotal Evidence: We have often encountered
software projects that claim their architecture is
based upon a particular vendor or product line.
Other anecdotal evidence occurs around the time of
product upgrades and new application installations:
– "When I try to read the new data files into the old version

of the application, it crashes my system."

– "The old software acts like it has a virus, but it's probably
just the new application data."

● General Form: A software project adopts a product
technology and becomes completely dependent
upon the vendor's implementation.

87

Software architecture antipattern:
Vendor Lock−In (3)

● Symptoms And Consequences:
– Commercial product upgrades drive the application software maintenance

cycle

– Promised product features are delayed or never delivered.
– The product varies significantly from the advertised open systems standard.
– If a product upgrade is missed entirely, a product repurchase and

reintegration is often necessary.

● Typical Causes:
– The product varies from published open system standards because there is

no effective conformance process for the standard
– The product is selected based entirely upon marketing and sales information,

– There is no technical approach for isolating application software from direct
dependency upon the product.

– The complexity and generality of the product technology greatly exceeds that
of the application needs

88

Software architecture antipattern:
Vendor Lock−In (4)

● Known Exceptions: Acceptable when a single
vendor's code makes up the majority of code
needed in an application.

● Refactored Solution: The refactioned solution is
called isolation layer. An isolation layer separates
software packages and technology. It can be used
to provide software portability from underlying
middleware and platform-specific interfaces.

● Example:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

