
JUnit

• A unit test framework for Java

– Authors: Erich Gamma, Kent Beck

• Objective:

– “If tests are simple to create and execute, then

programmers will be more inclined to create and

execute tests.”

Introduction

• What do we need to do automated testing?

– Test script

– Actions to send to system under test (SUT).

– Responses expected from SUT.

– How to determine whether a test was successful or
not?

– Test execution system

– Mechanism to read test scripts, and connect test case
to SUT.

– Keeps track of test results.

Test case verdicts

• A verdict is the declared result of executing a single test.

• Pass: the test case achieved its intended purpose, and the software

under test performed as expected.

• Fail: the test case achieved its intended purpose, but the software

under test did not perform as expected.

• Error: the test case did not achieve its intended purpose.

– Potential reasons:

– An unexpected event occurred during the test case.

– The test case could not be set up properly

A note on JUnit versions...

• The current version is 4.3.1, available from Mar. 2007

– To use JUnit 4.x, you must use Java version 5 or 6

• JUnit 4, introduced April 2006, is a significant (i.e. not compatible)
change from prior versions.

• JUnit 4 is used in this presentation.

• Much of the JUnit documentation and examples currently available are
for JUnit 3, which is slightly different.

– JUnit 3 can be used with earlier versions of Java (such as 1.4.2).

– The junit.org web site shows JUnit version 4 unless you ask for the
old version.

– Eclipse (3.2) gives the option of using JUnit 3.8 or JUnit 4.1,
which are both packaged within Eclipse.

What is a JUnit Test?

• A test “script” is just a collection of Java methods.

– General idea is to create a few Java objects, do something
interesting with them, and then determine if the objects have the
correct properties.

• What is added? Assertions.

– A package of methods that checks for various properties:

– “equality” of objects

– identical object references

– null / non-null object references

– The assertions are used to determine the test case verdict.

When is JUnit appropriate?

• As the name implies…

– for unit testing of small amounts of code

• On its own, it is not intended for complex testing, system testing, etc.

• In the test-driven development methodology, a JUnit test should be
written first (before any code), and executed.

– Then, implementation code should be written that would be the
minimum code required to get the test to pass – and no extra
functionality.

– Once the code is written, re-execute the test and it should pass.

– Every time new code is added, re-execute all tests again to be sure
nothing gets broken.

A JUnit 4 Test Case

/** Test of setName() method, of class Value */

@Test

public void createAndSetName()

{

Value v1 = new Value();

v1.setName("Y");

String expected = "Y";

String actual = v1.getName();

Assert.assertEquals(expected, actual);

}

A JUnit 4 Test Case

/** Test of setName() method, of class Value */

@Test

public void createAndSetName()

{

Value v1 = new Value();

v1.setName("Y");

String expected = "Y";

String actual = v1.getName();

Assert.assertEquals(expected, actual);

}

Identifies this Java method

as a test case, for the test runner

A JUnit 4 Test Case

/** Test of setName() method, of class Value */

@Test

public void createAndSetName()

{

Value v1 = new Value();

v1.setName("Y");

String expected = "Y";

String actual = v1.getName();

Assert.assertEquals(expected, actual);

}

Objective:

confirm that setName

saves the specified name in

the Value object

A JUnit 4 Test Case

/** Test of setName() method, of class Value */

@Test

public void createAndSetName()

{

Value v1 = new Value();

v1.setName("Y");

String expected = "Y"

String actual = v1.getName();

Assert.assertEquals(expected, actual);

}

Check to see that the

Value object really

did store the name

A JUnit 4 Test Case

/** Test of setName() method, of class Value */

@Test

public void createAndSetName()

{

Value v1 = new Value();

v1.setName("Y");

String expected = "Y";

String actual = v1.getName();

Assert.assertEquals(expected, actual);

}

We want expected and

actual to be equal.

If they aren’t, then

the test case should fail.

Assertions

• Assertions are defined in the JUnit class Assert

– If an assertion is true, the method continues executing.

– If any assertion is false, the method stops executing at
that point, and the result for the test case will be fail.

– If any other exception is thrown during the method, the
result for the test case will be error.

– If no assertions were violated for the entire method, the
test case will pass.

• All assertion methods are static methods

Assertion methods (1)

• Boolean conditions are true or false

assertTrue(condition)

assertFalse(condition)

• Objects are null or non-null

assertNull(object)

assertNotNull(object)

• Objects are identical (i.e. two references to the same object), or not
identical.

assertSame(expected, actual)

– true if: expected == actual

assertNotSame(expected, actual)

Assertion methods (2)

• “Equality” of objects:

assertEquals(expected, actual)

– valid if: expected.equals(actual)

• “Equality” of arrays:

assertArrayEquals(expected, actual)

– arrays must have same length

– for each valid value for i, check as appropriate:

assertEquals(expected[i],actual[i])

or

assertArrayEquals(expected[i],actual[i])

• There is also an unconditional failure assertion fail() that always

results in a fail verdict.

Assertion method parameters

• In any assertion method with two parameters, the first parameter is the

expected value, and the second parameter should be the actual value.

– This does not affect the comparison, but this ordering is assumed

for creating the failure message to the user.

• Any assertion method can have an additional String parameter as the

first parameter. The string will be included in the failure message if

the assertion fails.

– Examples:

fail(message)

assertEquals(message, expected, actual)

Equality assertions

• assertEquals(a,b) relies on the equals() method of the class under
test.

– The effect is to evaluate a.equals(b).

– It is up to the class under test to determine a suitable equality
relation. JUnit uses whatever is available.

– Any class under test that does not override the equals() method
from class Object will get the default equals() behaviour – that is,
object identity.

• If a and b are of a primitive type such as int, boolean, etc., then the
following is done for assertEquals(a,b) :

– a and b are converted to their equivalent object type (Integer,
Boolean, etc.), and then a.equals(b) is evaluated.

Floating point assertions

• When comparing floating point types (double or float), there is an

additional required parameter delta.

• The assertion evaluates

Math.abs(expected – actual) <= delta

to avoid problems with round-off errors with floating point

comparisons.

• Example:

assertEquals(aDouble, anotherDouble, 0.0001)

Organization of JUnit tests

• Each method represents a single test case that can

independently have a verdict (pass, error, fail).

• Normally, all the tests for one Java class are grouped

together into a separate class.

– Naming convention:

– Class to be tested: Value

– Class containing tests: ValueTest

Running JUnit Tests (1)

• The JUnit framework does not provide a graphical test

runner. Instead, it provides an API that can be used by

IDEs to run test cases and a textual runner than can be used

from a command line.

• Eclipse and Netbeans each provide a graphical test runner

that is integrated into their respective environments.

Running JUnit tests (2)

• With the runner provided by JUnit:

– When a class is selected for execution, all the test case methods in

the class will be run.

– The order in which the methods in the class are called (i.e. the

order of test case execution) is

not predictable.

• Test runners provided by IDEs may allow the user to select particular

methods, or to set the order of execution.

• It is good practice to write tests with are independent of execution

order, and that are without dependencies on the state any previous

test(s).

Test fixtures

• A test fixture is the context in which a test case runs.

• Typically, test fixtures include:

– Objects or resources that are available for use by any

test case.

– Activities required to make these objects available

and/or resource allocation and de-allocation: “setup”

and “teardown”.

Setup and Teardown

• For a collection of tests for a particular class, there are often some

repeated tasks that must be done prior to each test case.

– Examples: create some “interesting” objects to work with, open a

network connection, etc.

• Likewise, at the end of each test case, there may be repeated tasks to

clean up after test execution.

– Ensures resources are released, test system is in known state for

next test case, etc.

– Since a test case failure ends execution of a test method at that

point, code to clean up cannot be at the end of the method.

Setup and Teardown

• Setup:

– Use the @Before annotation on a method containing code to run

before each test case.

• Teardown (regardless of the verdict):

– Use the @After annotation on a method containing code to run

after each test case.

– These methods will run even if exceptions are thrown in the test

case or an assertion fails.

• It is allowed to have any number of these annotations.

– All methods annotated with @Before will be run before each test

case, but they may be run in any order.

Example: Using a file as a text fixture

public class OutputTest
{

private File output;

@Before public void createOutputFile()
{

output = new File(...);
}

@After public void deleteOutputFile()
{

output.delete();
}

@Test public void test1WithFile()
{

// code for test case objective
}

@Test public void test2WithFile()
{

// code for test case objective
}

}

Method execution order

1. createOutputFile()

2. test1WithFile()

3. deleteOutputFile()

4. createOutputFile()

5. test2WithFile()

6. deleteOutputFile()

• Assumption: test1WithFile runs before test2WithFile–

which is not guaranteed.

Once-only setup

• It is also possible to run a method once only for the entire test class,

before any of the tests are executed, and prior to any @Before

method(s).

• Useful for starting servers, opening communications, etc. that are time-

consuming to close and re-open for each test.

• Indicate with @BeforeClass annotation (can only be used on one

method, which must be static):

@BeforeClass public static void anyNameHere()

{

// class setup code here

}

Once-only tear down

• A corresponding once-only cleanup method is also available. It is run

after all test case methods in the class have been executed, and after

any @After methods

• Useful for stopping servers, closing communication links, etc.

• Indicate with @AfterClass annotation (can only be used on one

method, which must be static):

@AfterClass public static void anyNameHere()

{

// class cleanup code here

}

Exception testing (1)

• Add parameter to @Test annotation, indicating that a particular class
of exception is expected to occur during the test.

@Test(expected=ExceptedTypeOfException.class)
public void testException()
{

exceptionCausingMethod();
}

• If no exception is thrown, or an unexpected exception occurs, the test
will fail.

– That is, reaching the end of the method with no exception will
cause a test case failure.

• Testing contents of the exception message, or limiting the scope of
where the exception is expected requires using the approach on the
next slide.

Exception testing (2)

• Catch exception, and use fail() if not thrown

public void testException()
{

try
{

exceptionCausingMethod();

// If this point is reached, the expected
// exception was not thrown.

fail("Exception should have occurred");
}
catch (ExceptedTypeOfException exc)
{

String expected = "A suitable error message";
String actual = exc.getMessage();
Assert.assertEquals(expected, actual);

}
}

JUnit 3

• At this point, migration is still underway from JUnit 3 to JUnit 4

– Eclipse 3.2 has both

– The Eclipse test and performance tools platform does not yet

work with JUnit 4.

– Netbeans 5.5 has only JUnit 3.

• Within the JUnit archive, the following packages are used so that the

two versions can co-exist.

– JUnit 3: junit.framework.*

– JUnit 4: org.junit.*

Topics for another day...

• Differences between JUnit 3 and JUnit 4

• More on test runners

• Parameterized tests

• Tests with timeouts

• Test suites

