
Assertions



Assertion

• A command using which we can check our
assumptions about the program
– E.g. a method measuring the speed of a particle requires

that the calculated speed should be lower than the speed
of light

• Since J2SE 1.4
• Contains a logical expression

– Which has to be (should be) true at some point of the code
• If it isn’t true, an error occurs

• One of the quickest and most efficient ways to find
and repair errors
– And it also increases maintainability



assert command

• It has two forms:

– assert expression;

• When it is executed, the logical expression is evaluated, 
and if it is false, an AssertionError is raised (without any
additional information)

– assert expression1 : expression2;

• Logical expression1 is evaluated, if it is false, an 
AssertionError is raised, the constructor of which receives
the value of expression2 as a parameter
– Which can be any non-void value!



When to use?

• Inner invariants

• Control structure invariants

• Pre- and postconditions, class invariants



Inner invariant

if (i % 3 == 0) {

... 

} 

else 

if (i % 3 == 1) {

... 

} 

else { 

// Here (i % 3 == 2)

... 

}

if (i % 3 == 0) {

... 

} 

else 

if (i % 3 == 1) {

... 

} 

else { 

assert i % 3 == 2 : i

... 

}



Inner invariant in a switch

switch (color) { 

case Color.SPADES: 

... 

break; 

case Color.HEARTS: 

... 

break; 

case Color.DIAMONDS: 

... 

break; 

case Color.CLUBS: 

... 

} 

switch (color) { 

case Color.SPADES: ... 

break; 

case Color.HEARTS: ... 

break; 

case Color.DIAMONDS: 
... 

break; 

case Color.CLUBS: ... 

break;

default:

assert false : 
color;

} 



Control structure invariant

void foo() { 

for (...) { 

if (...) 

return; 

} 

// This point can

never be reached

}

void foo() { 

for (...) { 

if (...) 

return; 

} 

assert false;

}



Preconditions

• For nonpublic methods

– Do not use for public methods! (see later)

private void setRefreshInterval(int interval) { 

// Check whether the parameter value is correct

assert interval > 0 && 

interval <= 1000/MAX_REFRESH_RATE : interval; 

... 

// Set refresh interval

} 



Postconditions

//Returns value this-1 mod m

public BigInteger modInverse(BigInteger m) { 

if (m.signum <= 0) 

throw new ArithmeticException("Modulus not positive: " 

+ m); 

... 

// Doing the calculation

assert this.multiply(result).mod(m).equals(ONE) : this;

return result; 

} 



Class invariants

• Special inner invariants that are true to all instances of a given class
at a given point of time
– Except for when the instance is being shifted from a consistent state to

another consistent state

• For describing connections between attributes

• Have to be true before/after the execution of every method
// True if tree is balanced

private boolean balanced() { ... }

All public methods and constructors contain before the return
statement:

assert balanced();



When not to use?

• Checking arguments of public methods
– This has to be done if assertions are enabled or disabled as well
– An appropriate runtime exception has to be thrown

• E.g. IllegalArgumentException, IndexOutOfBoundsException, 
NullPointerException

• For activities that are necessary for the normal operation
of the application, e.g.
assert names.remove(null); instead of this
boolean nullsRemoved = names.remove(null); 

assert nullsRemoved;

• Expressions in assertions have to be free of side-effects!
– Except for only a state from another assertion is modified



Requiring Assertions to be enabled

static { 

boolean assertsEnabled = false; 

assert assertsEnabled = true; 

// Deliberate side-effect!!!

if (!assertsEnabled) 

throw new 

RuntimeException("Asserts must be 

enabled!!!"); 

} 


