Date and time handling in Java

Jeszenszky, Péter
University of Debrecen, Faculty of Informatics
jeszenszky.peter@inf.unideb.hu

Kocsis, Gergely (English version)

University of Debrecen, Faculty of Informatics
kocsis.gergely@inf.unideb.hu

Last modified: 09.03.2017

mailto:jeszenszky.peter@inf.unideb.hu
mailto:kocsis.gergely@inf.unideb.hu

History

« JDK 1.0 (1996): a java.lang.System.currentTimeMillis()
method and the java.util.Date class
« JDK 1.1 (1997):

- The java.util.Calendar, java.util.GregorianCalendar,
java.util.TimeZone and java.util.SimpleTimeZone classes

- Formatting, elementing: the java.text.DateFormat and the
java.text.SimpleDateFormat classes

- JDBC: the java.sqgl.Date, java.sqgl.Time and the
java.sql.Timestamp classes

. Java SE 5 (2004): javax.xml.datatype package

. Java SE 8 (2014): JSR 310: Date and Time API (the java. time
package and its subpackages)

java.util.Date (1)

« Represents a point of time with millisecond accuracy
https://docs.oracle.com/javase/8/docs/api/java/util/Date.html

 Problems:

- The name is misleading

- Most constructors are deprecated
- Indexing of months starts from O
- Uses local time zone

- Mutability

« Whenever an object is to be returned it its better to return only a copy in
order not to let the object be changed through the reference

- The class does not provide methods to manipulate objects (e.g.
to get the date that is one day after a given date)

https://docs.oracle.com/javase/8/docs/api/java/util/Date.html

java.util.Date (2)

 Example use:

Date date = new Date(1848 - 1900, 3 - 1, 15);
System.out.println(date); // Wed Mar 15 00:00:00 CET 1848
System.out.println(date.getTimezoneOffset()); // -60

DateFormat format = new SimpleDateFormat("yyy MMMM dd.", new Locale("HU"));
System.out.println(format.format(date)); // 1848 march 15,

date = format.parse("2016 marcius 1.");
System.out.println(date); // Tue Mar 01 00:00:00 CET 2016

date = new Date();
System.out.println(date); // Mon Feb 29 16:52:51 CET 2016

date.setTime(0);
System.out.println(date); // Thu Jan 01 01:00:00 CET 1970

JDBC data types (1)

- Data types matching to SQL data types

- java.sql.Date: represents SQL DATE
https://docs.oracle.com/javase/8/docs/api/java/sgl/Date.html

- Java.sqgl.Time: represents SQL TIME
https://docs.oracle.com/javase/8/docs/api/java/sgl/Time.html

- Java.sgl.Timestamp: represents SQL TIMESTAMP
https://docs.oracle.com/javase/8/docs/api/java/sgl/Timestamp.html

« Nanosecond accuracy
« All three extends the java.util.Date class

« None of them stores the time zone

https://docs.oracle.com/javase/8/docs/api/java/sql/Date.html
https://docs.oracle.com/javase/8/docs/api/java/sql/Time.html
https://docs.oracle.com/javase/8/docs/api/java/sql/Timestamp.html

JDBC data types (2)

 Example use:

Date date = Date.valueOf('"1848-03-15");
System.out.println(date); // 1848-03-15

Time time = Time.valueOf("17:49:03");
System.out.println(time); // 17:49:03

Timestamp timestamp = new Timestamp(System.currentTimeMillis());
System.out.println(timestamp); // 2016-02-29 17:51:13.886

java.util.Calendar (1)

« Represents a point of time with millisecond accuracy
https://docs.oracle.com/javase/8/docs/api/java/util/Calendar.

- Provides access to year, month, day etc. fields
- Stores time zone

- Provides methods to manipulate objects
« Example:add(...),roll(...)

o Abstract class, the only one exact class version Is
java.util.GregorianCalendar

- Supports Gregorian and Julian calendar

https://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html

java.util.Calendar (2)

 Still a problem:

- Misleading name
- Indexing months starts from O
- Mutability

java.util.Calendar (3)

Example use:

Calendar cal = new GregorianCalendar (1848, 2, 15);
System.out.println(cal);

// java.util.GregorianCalendar[time=?,areFieldsSet=false,

// areAllFieldsSet=false, , YEAR=1848, MONTH=2, WEEK_OF_YEAR="?,
// WEEK_OF_MONTH=?, DAY_OF_MONTH=15,]

int year = cal.get(Calendar.YEAR);

int month = cal.get(Calendar.MONTH);

int dayOfMonth = cal.get(Calendar.DAY_OF_MONTH);
int dayOfwWeek = cal.get(Calendar.DAY_OF_WEEK);

int dayOfYear = cal.get(Calendar.DAY_OF_YEAR);

TimeZone tz = cal.getTimeZone();
System.out.println(tz.getDisplayName()); // Central European Time
System.out.println(tz.getID()); // Europe/Budapest

DateFormat format = SimpleDateFormat.getDateInstance(
DateFormat.FULL, Locale.GERMAN);

Date date = cal.getTime();
System.out.println(format.format(date)); // Mittwoch, 15. Marz 1848

java.util.Calendar (4)

 Example use:

Date date = cal.getTime();
System.out.println(format.format(date)); // Mittwoch, 15. Marz 1848

cal.add(Calendar.DAY_OF_MONTH, 16);
date = cal.getTime();
System.out.println(format.format(date)); // Freitag, 31. Marz 1848

cal.roll(Calendar.MONTH, -1);
date = cal.getTime();
System.out.println(format.format(date)); // Dienstag, 29. Februar 1848

10

java.util.Calendar (5)

 Example use:

Calendar now = Calendar.getInstance();
System.out.println(now.getClass().getName());
// java.util.GregorianCalendar

DateFormat format = SimpleDateFormat.getDateTimeInstance(
DateFormat.FULL, DateFormat.FULL, new Locale("hu"));

Date date = now.getTime(),
System.out.println(format.format(date)),
// 2016. februar 29. 20:03:05 CET

format.setTimeZone(TimeZone.getTimeZone("PST"));
System.out.println(format.format(date)),
// 2016. februar 29. 11:03:05 PST

11

java.util.Calendar (6)

* What Iis wrong with mutability?

public static long countDays(Calendar start, Calendar end) {
long count = 0;
while (start.before(end)) {
start.add(Calendar.DAY_OF_MONTH, 1);
++count;

}

return count;

}

Calendar then = new GregorianCalendar (1848, 2, 15);
Calendar now = Calendar.getInstance();
System.out.println(countDays(then, now)); // 61668

System.out.println(countDays(then, now)); // What 1s the output?

12

java.util.Calendar (6)

* What Iis wrong with mutability?

public static long countDays(Calendar start, Calendar end) {
long count = 0;
while (start.before(end)) {
start.add(Calendar.DAY_OF_MONTH, 1);
++count;

}

return count;

}

Calendar then = new GregorianCalendar (1848, 2, 15);
Calendar now = Calendar.getInstance();
System.out.println(countDays(then, now)); // 61668
System.out.println(countDays(then, now)); // ©

13

java.util.Calendar (7)

e The correct use:

}

public static long countDays(Calendar start, Calendar end) {

long count = 0;

start = (Calendar) start.clone();

while (start.before(end)) {
start.add(Calendar.DAY_OF_MONTH, 1);
++count;

}

return count;

Calendar then = new GregorianCalendar (1848, 2, 15);
Calendar now = Calendar.getInstance();

System.out.println(countDays(then, now)); // 61668
System.out.println(countDays(then, now)); // 61668

14

W3C XML Schema (1)

« Paul V. Biron, Ashok Malhotra (ed). XML Schema Part 2: Datatypes Second
Edition. W3C Recommendation. 28 October 2004.
https://www.w3.org/TR/xmlschema-2/

— Definition of standard data types for date and time handling

. Anders Berglund, Mary Fernandez, Ashok Malhotra, Jonathan Marsh, Marton
Nagy, Norman Walsh (ed). XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C
Recommendation. 23 January 2007.
https://www.w3.0rg/TR/2007/REC-xpath-datamodel-20070123/

_ Two more data types: xsd:dayTimeDuration, xsd:yearMonthDuration

15

https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/

W3C XML Schema (2)

 Representation of values of data types by
character sequences (literals) and the definition
of the syntax

16

W3C XML Schema (3)

« Bulit-in data types for handling date and time:

xsd:date: representing calendar dates
. Literals: 1848-03-15, 2004-10-28+13:00, 2016-02-29Z
xsd: time: Representing points of time repeating every day

o Lierals: 12:15:00 (no time zone), 23:05:30Z (world time),
00:45:00+01:00 (Central European time)

xsd:dateTime: data type representing time points
. Literals: 1969-07-16T13:32:00Z
xsd:duration: Data type representing time intervals

o Literals: P1Y2DT5H30M (1 year, 2 days, 5 hours and 30 minutes),
P120Y6M (120 years and 6 months), PT9.58S (9,58 seconds)

17

W3C XML Schema (4)

« Bulit-in data types for handling date and time:

_ xsd:gDay: Data type representing monthly repeating days of the Gregorian calendar
. Literals: - - -05 (the 5" day of the month)
_ xsd:gMonth: Data type representing the 12 months of the Gregorian Calendar
. Literals: - -03 (March)
_ xsd:gYear: Data type representing the years of the Gregorian Calendar
o Literals: -0753, 0476, 1984
_ xsd:gMonthDay: Data type representing yearly repeating dates of the Gregorian Calendar
. Literals: - -05-25 (25 May)
_ xsd:gYearMonth: Data type representing the months of years of the Gregorian Calendar
. Literals: 1848-03 (March 1848)

18

W3C XML Schema (5)

e Java support: Jjavax.xml.datatype
package
https://docs.oracle.com/javase/8/docs/api/javax/xm

- From J2SE 5 (2004)
 Example use:

DatatypeFactory factory = DatatypeFactory.newInstance();

Duration duration = factory.newDuration(true, 1, 0, 2, 5, 30, 30);
System.out.println(duration); // P1YOM2DT5H30M30S

XMLGregorianCalendar date = factory.newXMLGregorianCalendarDate(1848, 3,
15, DatatypeConstants.FIELD_UNDEFINED);
System.out.println(date); // 1848-03-15

date.add(duration); 19
System.out.println(date); // 1849-03-17

https://docs.oracle.com/javase/8/docs/api/javax/xml/datatype/package-summary.html

Joda-Time

e Java library for handling date and time
http://www.joda.org/joda-time/

- License: Apache License v2
* De-facto standard before Java SE 8 in industry

« The java.time package of Java SE 8
made It unnecessary

20

http://www.joda.org/joda-time/

JSR 130

 JSR 310: Date and Time API (Final Release). 4
March 2014. https://jcp.org/en/jsr/detail?1d=310

- Packages: java.time, java.time.chrono,

java.time.format, java.time. temporal,
java.time.zone

e Java SE 8

e See more:

- The Java™ Tutorials — Trail: Date Time
https://docs.oracle.com/javase/tutorial/datetime/

21

https://jcp.org/en/jsr/detail?id=310
https://docs.oracle.com/javase/tutorial/datetime/

The basic standard

* |ISO 8601:2004: Data elements and interchange

formats — Information interchange —

Representation of dates and times
http://www.iso.org/iso/home/standards/iso8601.htnr

22

http://www.iso.org/iso/home/standards/iso8601.htm

Planning goals

Clearness:

- Well defined deterministically working API

Immutable classes:

- An object cannot be changed after creation

Fluent API:

- The goal is good readability by the use of method chaining
Extensibility:

- Personalized calendar systems are possible to be implemented

23

Properties

« More date and time handling classes for different purposes
« Nanosecond accuracy

 All classes support the instantiation and formatting of objects
from strings

e 118n and L10n support (internationalization):

- The use of Unicode Common Locale Data Repository (CLDR)
http://cldr.unicode.org/

e Time zones:

- The use of IANA Time Zone Database
http://www.lana.org/time-zones

24

http://cldr.unicode.org/
http://www.iana.org/time-zones

Packages

java. time:

- Core API that contains classes to handle dates, times, periods, time zones
etc...

java.time.chrono:

- API to handlee different calendar sysems
java.time.format:

- API to format date and time and to create objects from strings
java.time.temporal:

- Extended API mostly for those who develop program packages
java.time.zone:

- Time zone handling

25

Naming convention of methods

Date and Time classes

Class or . Zone Zone .
Year |Month |Day |Hours||Minutes||Seconds* toString Output
Enum Offset 1D

Instant - 2013-08-20T15:16:26.355Z
LocalDate v v v 2013-08-20
LocalDateTime v v v v v W 2013-08-20T08:16:26.937
ZonedDateTime v v - v - - v - 2013-08-21T00:16:26.941+09: 00 [Asia/Tokyo]
LocalTime v v v 08:16:26.943
MonthDay v v --B8-20
Year v 2013
YearMonth v v 2013-08
Month v AUGUST
OffsetDateTime W v - v - - v 2013-08-20TA8:16:26.954-07:00
0ffsetTime v - . W 08:16:26.957-07;00
Duration aia aia aia v PT20H (20 hours)
Period v v ||V wras =+ |p1gD (10 days)

*Seconds are captured to nanosecond precision.

**This class does not store this information, but has methods to provide time in these units.

Source: https://docs.oracle.com/javase/tutorial/datetime/iso/overview.html

27

https://docs.oracle.com/javase/tutorial/datetime/iso/overview.html

Example of basic use of the AP

LocalDate date = LocalDate.now();
System.out.println(date); // 2017-03-09

date = LocalDate.of (1848, 3, 15);
System.out.println(date); // 1848-03-15

date = LocalDate.of (1848, Month.MARCH, 15);
System.out.println(date); // 1848-03-15

LocalTime time = LocalTime.of (14, 52, 26);
System.out.println(time),; // 14:52:26

LocalDateTime dateTime = date.atTime(time);
System.out.println(dateTime); // 1848-03-15T14:52:26

ZonedDateTime zonedDateTime = dateTime.atZone(ZonelId.of("CET"));
System.out.println(zonedDateTime);
// 1848-03-15T14:52:26+01:00[CET]

Rich and clean API

* Example:
LocalDate today = LocalDate.now();
System.out.println(today); // 2017-03-09
System.out.println(today.getEra()); // CE
System.out.println(today.getYear()); // 2017
System.out.println(today.getMonth()); // MARCH

System.out.println(today.getMonthvalue()); // 3
System.out.println(today.getDayOfMonth()); // 9
System.out.println(today.getDayOfwWeek()); // TUESDAY
System.out.println(today.lengthOfMonth()); // 31
System.out.println(today.getDayOfYear()); // 61
System.out.println(today.islLeapYear()); // true

LocalDate date = Year.of(1848).atMonth(Month.MARCH).atDay(15);
System.out.println(date); // 1848-03-15

Fluent API

* Example:
LocalDate today = LocalDate.now();
LocalDate yesterday = today.minusDays(1);
LocalDate tomorrow = today.plusDays(1);
LocalDate nextWeek = today.plusWeeks(1);
LocalDate nextYear = today.plusYears(1l);
LocalTime time = LocalTime.now().plusHours(1l).plusMinutes(45);

30

Solution of the exercise
shown before

* |t can be solved by one method call:

public static long countDays(LocalDate start, LocalDate end) {
return start.until(end, ChronoUnit.DAYS);
)

LocalDate then = LocalDate.of (1848, Month.MARCH, 15);
System.out.println(then); // 1848-03-15

LocalDate now = LocalDate.now(); // 2017-03-09
System.out.println(now);

System.out.println(countDays(then, now)); // 61347

31

Parts of dates

« Partial dates can be handled by the MonthDay,
Year and YearMonth classes

 Example:

MonthDay monthDay = MonthDay.of(Month.JUNE, 22);
System.out.println(monthDay); // --06-22
LocalDate date = monthDay.atYear(1975);
System.out.println(date); // 1975-06-22

LocalDate dateOfBirth = LocalDate.of (1809, 1, 19);
MonthDay birthday = MonthDay.from(dateOfBirth);
System.out.println(birthday); // --01-19

32

Periods and Durations (1)

e Java.time.Period:

- Representing a time period in years, months, and
days

e Java.time.Duration:

- Representing a duration in seconds and
nanoseconds.

33

Periods and Durations (2)

Példa a hasznalatukra:

LocalDate dateOfBirth = LocalDate.of (2012, Month.APRIL, 4);
LocalDate today = LocalDate.now();
System.out.println(today); // 2017-01-15

Period age = dateOfBirth.until(today);

System.out.println(age); // P4Y9M11D
System.out.println(age.getYears()); // 4
System.out.println(age.getMonths()); // 9
System.out.println(age.getDays()); // 11

System.out.println(age.isNegative()); // false

Instant tl1 = Instant.now();
System.out.println(tl); // 2017-01-15T10:23:18.678Z

Duration duration = Duration.ofMinutes(50).plusSeconds(48);
System.out.println(duration); // PT50M48S

Instant t2 = til.plus(duration);
System.out.println(t2); // 2017-01-15T11:14:06.678Z

34

Changing date and time (1)

e The withXXX(...) methods are used to
modify dates and times:

LocalDate date = LocalDate.now();
System.out.println(date); // 2017-03-09

date = date.withMonth(6);
System.out.println(date); // 2017-06-09

date = date.withDayOfMonth(22);
System.out.println(date); // 2017-06-22

date = date.withYear(1975);
System.out.println(date); // 1975-06-22

35

Changing date and time (2)

e« Java.time.temporal.TemporalAdjuster
IS a functional innterface to change date and

time. It can be used by the use of
with(TemporalAdjuster) method of the

date and time classes.

- Bulilt-in implementations are in the
java.time.temporal.TemporalAdjusters

class

36

Changing date and time (3)

* Example:

LocalDate date = LocalDate.of (1848, Month.MARCH, 15);
System.out.println(date); // 1848-03-15

System.out.println(date
.with(TemporalAdjusters.lastDayOfMonth()));
// 1848-03-31

System.out.println(date
.with(TemporalAdjusters.firstDayOfNextMonth()));
// 1848-04-01

System.out.println(date
.with(TemporalAdjusters.firstInMonth(DayOfWeek.SUNDAY))),
// 1848-03-05

System.out.println(date
.with(TemporalAdjusters.nextOrSame(DayOfWeek.WEDNESDAY))),
// 1848-03-15

37

Queries (1)

« The Java.time.temporal.TemporalQuery

IS a functional interface to get information.
* |t can be used by the

guery(TemporalQuery) method of date and

time classes.

- Bullt-in implementations are in the

java.time.temporal.TemporalQueries class

* Example:

LocalTime now = LocalTime.now();

System.out.println(now.query(TemporalQueries.precision()));
// Nanos

38

Queries (2)

 Example (1):

public static Boolean isClassBreak(TemporalAccessor temporal) {

int hour = temporal.get(ChronoField.HOUR_OF_DAY);

int minute = temporal.get(ChronoField.MINUTE_OF_HOUR);
if (hour < 8 || hour > 18) return false;

return (hour % 2 == 1) && (minute >= 40 && minute < 60);

}

LocalTime time = LocalTime.of (14, 15);
System.out.println(time.query(QueryExample: :isClassBreak));
// false

time = LocalTime.of (15, 42);
System.out.println(time.query(QueryExample::isClassBreak));
// true

39

Queries (3)

 Example (2):

//
//
//
//
//
//
//

Stream.of ("08:45", "09:40", "09:59", "10:00",

"17:45", "19:30")
.map(LocalTime: :parse)
.map(QueryExample::isClassBreak)
.forEach(System.out: :println);
false
true
true
false
true
true
false

"11:50",

40

Formatting and parsing

* Example:

LocalDate date = LocalDate.parse("04 Feb 2016",
DateTimeFormatter.ofPattern("dd MMM yyyy")
.withLocale(Locale.ENGLISH));
System.out.println(date); // 2016-02-04

DateTimeFormatter formatter = new DateTimeFormatterBuilder ()
.appendvValue(ChronoField.DAY_OF_MONTH, 2)
.appendLiteral(' ')
.appendText(ChronoField.MONTH_OF_YEAR, TextStyle.SHORT)
.appendLiteral(' ')
.appendValue(ChronoField.YEAR).toFormatter(Locale.ENGLISH);

date = LocalDate.parse("04 Feb 2016", formatter);
System.out.println(date); // 2016-02-04

System.out.println(LocalDate.now().format(formatter)); // 01 Mar 2016

41

Dates b.C.

 Example use:

DateTimeFormatter formatter = DateTimeFormatter.ofPattern("y G",
Locale.ENGLISH);

Year year = Year.parse("753 BC", formatter);
System.out.println(year); // -752
System.out.println(formatter.format(year)); // 753 BC

42

Instant

* A class representing a given point of time

- Can be applied e.g. to register timestamps Iin
applications

e Example use:

Instant now = Instant.now();
System.out.println(now); // 2017-03-09T14:10:31.646Z

J : I : 3
tocadBateFime—From{now—

LocalDateTime dateTime = LocalDateTime.ofInstant(now,

Zoneld.systemDefault());
System.out.println(dateTime); // 2016-03-02T15:10:31.646

43

Clock (1)

 Provides access to the actual instant, time, date
Ina given time zone

- See the now(Clock) methods of date and time

classes. It uses the Clock given as a parameter
when creating the object.

- This Is useful for testing purposes.

44

Clock (2)

 Example use:

System.
System.
System.

System.
System.
System.

Clock clock1
Clock clock?2
Clock clocks3

out.
out.
.println(clock3d); // SystemClock[Asia/Vladivostok]

out

out.
out.
out.

Clock.systemDefaultzZone();
Clock.systemUTC();
Clock.system(ZoneId.of("Asia/Vladivostok"));

println(clockl); // SystemClock[Europe/Budapest]
println(clock2); // SystemClock[Z]

println(LocalTime.now(clockl));, // 14:01:26.204
println(LocalTime.now(clock2)); // 13:01:26.209
println(LocalTime.now(clock3d)); // 23:01:26.209

45

Clock (3)

 Example use: stop the time (Useful for testing.)

Instant instant = Instant.parse('"2016-03-01T00:00:00Z");
Clock clock = Clock.fixed(instant, ZoneId.of("UTC"));

System.out.println(ZonedDateTime.now(clock));
// 2016-03-01T00:00Z[UTC]

Thread.sleep(5000);

System.out.println(ZonedDateTime.now(clock));
// 2016-03-01T00:00Z[UTC]

Instant now = Instant.now(clock);
System.out.println(now.equals(instant)); // true

46

Example

 |f an air plane departures at 01.04 11:45 (local
time) from New York to Tokyo and the travel
time is 14 hours 10 minutes, when will it arrive
to Tokyo (local time)?

ZonedDateTime departure = LocalDate.of (2016, Month.APRIL, 1)
.atTime (11, 45)
.atzone(zZoneId.of ("America/New_York"));
System.out.println(departure);
// 2016-04-01T11:45-04:00[America/New_York]

Duration duration = Duration.ofHours(14).plusMinutes(10);
System.out.println(duration);
// PT14H1OM

ZonedDateTime arrival =

departure.withzZoneSameInstant(ZoneId.of("Asia/Tokyo"))
.plus(duration);

System.out.println(arrival);

// 2016-04-02T14:55+09:00[Asia/Tokyo]

Example

 What days of a year are on 13. Friday?

public static List<LocalDate> fridayThel3th(int year) {
return IntStream.range(1, 13)
.mapToObj(i -> LocalDate.of(year, i, 13))
.filter(d -> d.getDayOfWeek().equals(DayOfWeek.FRIDAY))
.collect(Collectors.toList());

}

System.out.println(fridayThel3th(2015));
// [2015-02-13, 2015-03-13, 2015-11-13]

System.out.println(fridayThel3th(2016)),
// [2016-05-13]

48

Example (1)

 What day will be the next 13. Friday after a
given day?

- Nalve solution for LocalDate objects

- Generalized solution: as an implementation of
TemporalAdjuster

49

Example (2)

« Naive solution for LocalDate objects:

public static LocalDate nextFridayl3th(LocalDate date) {

int dayOfMonth = date.getDayOfMonth();
if (dayOfMonth !'= 13) {

if (dayOfMonth > 13)

date = date.plusMonths(1);

date = date.withDayOfMonth(13);
¥
while (date.getDayOfWeek() !'= DayOfWeek.FRIDAY)

date = date.plusMonths(1);
return date;

¥

LocalDate date = LocalDate.of (2016, Month.MARCH, 1);
System.out.println(nextFridayl3th(date)); // 2017-10-15

Example (3)

e Generalized solution:

public class NextFridayl3th implements TemporalAdjuster {

public Temporal adjustInto(Temporal temporal) {

int dayOfMonth = temporal.get(ChronoField.DAY_OF_MONTH);

if (dayOfMonth != 13) {
if (dayOfMonth > 13)
temporal = temporal.plus(1l, ChronoUnit.MONTHS),
temporal = temporal.with(ChronoField.DAY_OF_MONTH,
¥
while (temporal.get(ChronoField.DAY_OF_WEEK) != 5)

temporal = temporal.plus(1, ChronoUnit.MONTHS);
return temporal;

13);

51

Example (4)

* Generalized solution (continue): by using the
TemporalAdjuster we can modify

LocalDate, LocalDateTime,
ZonedDateTime and OffsetDateTime
objects as well

LocalDate date = LocalDate.of (2016, Month.MARCH, 1);
System.out.println(date.with(new NextFridayl3th()));
// 2016-05-13

LocalDateTime dateTime = date.atStartOfDay();
System.out.println(dateTime.with(new NextFridayl3th())),
// 2016-05-13T00:00

52

Further reading

« java. time (Java Platform SE 8)

https://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html

 The Java™ Tutorials — Tralil: Date Time
https://docs.oracle.com/javase/tutorial/datetime/

53

https://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html
https://docs.oracle.com/javase/tutorial/datetime/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

