
Date and time handling in Java

Jeszenszky, Péter
University of Debrecen, Faculty of Informatics

jeszenszky.peter@inf.unideb.hu

Kocsis, Gergely (English version)
University of Debrecen, Faculty of Informatics

kocsis.gergely@inf.unideb.hu

Last modified: 09.03.2017

mailto:jeszenszky.peter@inf.unideb.hu
mailto:kocsis.gergely@inf.unideb.hu

2

History

● JDK 1.0 (1996): a java.lang.System.currentTimeMillis()
method and the java.util.Date class

● JDK 1.1 (1997):

– The java.util.Calendar, java.util.GregorianCalendar,
java.util.TimeZone and java.util.SimpleTimeZone classes

– Formatting, elementing: the java.text.DateFormat and the
java.text.SimpleDateFormat classes

– JDBC: the java.sql.Date, java.sql.Time and the
java.sql.Timestamp classes

● Java SE 5 (2004): javax.xml.datatype package

● Java SE 8 (2014): JSR 310: Date and Time API (the java.time
package and its subpackages)

3

java.util.Date (1)

● Represents a point of time with millisecond accuracy
https://docs.oracle.com/javase/8/docs/api/java/util/Date.html

● Problems:

– The name is misleading

– Most constructors are deprecated

– Indexing of months starts from 0

– Uses local time zone

– Mutability
● Whenever an object is to be returned it its better to return only a copy in

order not to let the object be changed through the reference

– The class does not provide methods to manipulate objects (e.g.
to get the date that is one day after a given date)

https://docs.oracle.com/javase/8/docs/api/java/util/Date.html

4

java.util.Date (2)

● Example use:
Date date = new Date(1848 - 1900, 3 - 1, 15);
System.out.println(date); // Wed Mar 15 00:00:00 CET 1848
System.out.println(date.getTimezoneOffset()); // -60

DateFormat format = new SimpleDateFormat("yyy MMMM dd.", new Locale("HU"));
System.out.println(format.format(date)); // 1848 march 15.

date = format.parse("2016 március 1.");
System.out.println(date); // Tue Mar 01 00:00:00 CET 2016

date = new Date();
System.out.println(date); // Mon Feb 29 16:52:51 CET 2016

date.setTime(0);
System.out.println(date); // Thu Jan 01 01:00:00 CET 1970

5

JDBC data types (1)

● Data types matching to SQL data types

– java.sql.Date: represents SQL DATE
https://docs.oracle.com/javase/8/docs/api/java/sql/Date.html

– java.sql.Time: represents SQL TIME
https://docs.oracle.com/javase/8/docs/api/java/sql/Time.html

– java.sql.Timestamp: represents SQL TIMESTAMP
https://docs.oracle.com/javase/8/docs/api/java/sql/Timestamp.html

● Nanosecond accuracy

● All three extends the java.util.Date class

● None of them stores the time zone

https://docs.oracle.com/javase/8/docs/api/java/sql/Date.html
https://docs.oracle.com/javase/8/docs/api/java/sql/Time.html
https://docs.oracle.com/javase/8/docs/api/java/sql/Timestamp.html

6

JDBC data types (2)

● Example use:
Date date = Date.valueOf("1848-03-15");
System.out.println(date); // 1848-03-15

Time time = Time.valueOf("17:49:03");
System.out.println(time); // 17:49:03

Timestamp timestamp = new Timestamp(System.currentTimeMillis());
System.out.println(timestamp); // 2016-02-29 17:51:13.886

7

java.util.Calendar (1)

● Represents a point of time with millisecond accuracy
https://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html

– Provides access to year, month, day etc. fields

– Stores time zone

– Provides methods to manipulate objects
● Example: add(...), roll(...)

● Abstract class, the only one exact class version is
java.util.GregorianCalendar

– Supports Gregorian and Julian calendar

https://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html

8

java.util.Calendar (2)

● Still a problem:
– Misleading name

– Indexing months starts from 0

– Mutability

9

java.util.Calendar (3)

● Example use:
Calendar cal = new GregorianCalendar(1848, 2, 15);
System.out.println(cal);
// java.util.GregorianCalendar[time=?,areFieldsSet=false,
// areAllFieldsSet=false, ...,YEAR=1848,MONTH=2,WEEK_OF_YEAR=?,
// WEEK_OF_MONTH=?,DAY_OF_MONTH=15, ...]

int year = cal.get(Calendar.YEAR); // 1848
int month = cal.get(Calendar.MONTH); // 2 -> March
int dayOfMonth = cal.get(Calendar.DAY_OF_MONTH);// 15
int dayOfWeek = cal.get(Calendar.DAY_OF_WEEK); // 4 -> Wdnesday
int dayOfYear = cal.get(Calendar.DAY_OF_YEAR); // 75

TimeZone tz = cal.getTimeZone();
System.out.println(tz.getDisplayName()); // Central European Time
System.out.println(tz.getID()); // Europe/Budapest

DateFormat format = SimpleDateFormat.getDateInstance(
DateFormat.FULL, Locale.GERMAN);

Date date = cal.getTime();
System.out.println(format.format(date)); // Mittwoch, 15. März 1848

10

java.util.Calendar (4)

● Example use:

Date date = cal.getTime();
System.out.println(format.format(date)); // Mittwoch, 15. März 1848

cal.add(Calendar.DAY_OF_MONTH, 16);
date = cal.getTime();
System.out.println(format.format(date)); // Freitag, 31. März 1848

cal.roll(Calendar.MONTH, -1);
date = cal.getTime();
System.out.println(format.format(date)); // Dienstag, 29. Februar 1848

11

java.util.Calendar (5)

● Example use:
Calendar now = Calendar.getInstance();
System.out.println(now.getClass().getName());
// java.util.GregorianCalendar

DateFormat format = SimpleDateFormat.getDateTimeInstance(
DateFormat.FULL, DateFormat.FULL, new Locale("hu"));

Date date = now.getTime();
System.out.println(format.format(date));
// 2016. február 29. 20:03:05 CET

format.setTimeZone(TimeZone.getTimeZone("PST"));
System.out.println(format.format(date));
// 2016. február 29. 11:03:05 PST

12

java.util.Calendar (6)

● What is wrong with mutability?

public static long countDays(Calendar start, Calendar end) {
long count = 0;
while (start.before(end)) {

start.add(Calendar.DAY_OF_MONTH, 1);
++count;

}
return count;

}

Calendar then = new GregorianCalendar(1848, 2, 15);
Calendar now = Calendar.getInstance();
System.out.println(countDays(then, now)); // 61668
System.out.println(countDays(then, now)); // What is the output?

13

java.util.Calendar (6)

● What is wrong with mutability?

public static long countDays(Calendar start, Calendar end) {
long count = 0;
while (start.before(end)) {

start.add(Calendar.DAY_OF_MONTH, 1);
++count;

}
return count;

}

Calendar then = new GregorianCalendar(1848, 2, 15);
Calendar now = Calendar.getInstance();
System.out.println(countDays(then, now)); // 61668
System.out.println(countDays(then, now)); // 0

14

java.util.Calendar (7)

● The correct use:

public static long countDays(Calendar start, Calendar end) {
long count = 0;
start = (Calendar) start.clone();
while (start.before(end)) {

start.add(Calendar.DAY_OF_MONTH, 1);
++count;

}
return count;

}

Calendar then = new GregorianCalendar(1848, 2, 15);
Calendar now = Calendar.getInstance();
System.out.println(countDays(then, now)); // 61668
System.out.println(countDays(then, now)); // 61668

15

W3C XML Schema (1)

● Paul V. Biron, Ashok Malhotra (ed). XML Schema Part 2: Datatypes Second
Edition. W3C Recommendation. 28 October 2004.
https://www.w3.org/TR/xmlschema-2/

– Definition of standard data types for date and time handling

● Anders Berglund, Mary Fernández, Ashok Malhotra, Jonathan Marsh, Marton
Nagy, Norman Walsh (ed). XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C
Recommendation. 23 January 2007.
https://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/

– Two more data types: xsd:dayTimeDuration, xsd:yearMonthDuration

https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/

16

W3C XML Schema (2)

● Representation of values of data types by
character sequences (literals) and the definition
of the syntax

17

W3C XML Schema (3)

● Bulit-in data types for handling date and time:

– xsd:date: representing calendar dates
● Literals: 1848-03-15, 2004-10-28+13:00, 2016-02-29Z

– xsd:time: Representing points of time repeating every day
● Lierals: 12:15:00 (no time zone), 23:05:30Z (world time),
00:45:00+01:00 (Central European time)

– xsd:dateTime: data type representing time points
● Literals: 1969-07-16T13:32:00Z

– xsd:duration: Data type representing time intervals
● Literals: P1Y2DT5H30M (1 year, 2 days, 5 hours and 30 minutes),
P120Y6M (120 years and 6 months), PT9.58S (9,58 seconds)

18

W3C XML Schema (4)

● Bulit-in data types for handling date and time:

– xsd:gDay: Data type representing monthly repeating days of the Gregorian calendar

● Literals: ---05 (the 5th day of the month)

– xsd:gMonth: Data type representing the 12 months of the Gregorian Calendar

● Literals: --03 (March)

– xsd:gYear: Data type representing the years of the Gregorian Calendar

● Literals: -0753, 0476, 1984

– xsd:gMonthDay: Data type representing yearly repeating dates of the Gregorian Calendar

● Literals: --05-25 (25 May)

– xsd:gYearMonth: Data type representing the months of years of the Gregorian Calendar

● Literals: 1848-03 (March 1848)

19

W3C XML Schema (5)

● Java support: javax.xml.datatype
package
https://docs.oracle.com/javase/8/docs/api/javax/xml/datatype/package-summary.html
– From J2SE 5 (2004)

● Example use:

DatatypeFactory factory = DatatypeFactory.newInstance();

Duration duration = factory.newDuration(true, 1, 0, 2, 5, 30, 30);
System.out.println(duration); // P1Y0M2DT5H30M30S

XMLGregorianCalendar date = factory.newXMLGregorianCalendarDate(1848, 3,
15, DatatypeConstants.FIELD_UNDEFINED);

System.out.println(date); // 1848-03-15

date.add(duration);
System.out.println(date); // 1849-03-17

https://docs.oracle.com/javase/8/docs/api/javax/xml/datatype/package-summary.html

20

Joda-Time

● Java library for handling date and time
http://www.joda.org/joda-time/
– License: Apache License v2

● De-facto standard before Java SE 8 in industry
● The java.time package of Java SE 8

made it unnecessary

http://www.joda.org/joda-time/

21

JSR 130

● JSR 310: Date and Time API (Final Release). 4
March 2014. https://jcp.org/en/jsr/detail?id=310
– Packages: java.time, java.time.chrono,
java.time.format, java.time.temporal,
java.time.zone

● Java SE 8
● See more:

– The JavaTM Tutorials – Trail: Date Time
https://docs.oracle.com/javase/tutorial/datetime/

https://jcp.org/en/jsr/detail?id=310
https://docs.oracle.com/javase/tutorial/datetime/

22

The basic standard

● ISO 8601:2004: Data elements and interchange
formats – Information interchange –
Representation of dates and times
http://www.iso.org/iso/home/standards/iso8601.htm

http://www.iso.org/iso/home/standards/iso8601.htm

23

Planning goals

● Clearness:

– Well defined deterministically working API

● Immutable classes:

– An object cannot be changed after creation

● Fluent API:

– The goal is good readability by the use of method chaining

● Extensibility:

– Personalized calendar systems are possible to be implemented

24

Properties

● More date and time handling classes for different purposes

● Nanosecond accuracy

● All classes support the instantiation and formatting of objects
from strings

● I18n and L10n support (internationalization):

– The use of Unicode Common Locale Data Repository (CLDR)
http://cldr.unicode.org/

● Time zones:

– The use of IANA Time Zone Database

http://www.iana.org/time-zones

http://cldr.unicode.org/
http://www.iana.org/time-zones

25

Packages

● java.time:

– Core API that contains classes to handle dates, times, periods, time zones
etc...

● java.time.chrono:

– API to handlee different calendar sysems

● java.time.format:

– API to format date and time and to create objects from strings

● java.time.temporal:

– Extended API mostly for those who develop program packages

● java.time.zone:

– Time zone handling

26

Naming convention of methods
Prefix Type Meaning

from Static object factory Create object by converting the parameters

of Static object factory Create object by using the parameters

parse Static object factory Create object from String

at Entity level Combine an object with another one
e.g.: Date.atTime(Time)

format Entity level Method to format the object

get Entity level Method to get a given value

is Entity level Method to test thee logical value of a attribute of an object

minus Entity level Subtract a given quantity from the object

plus Entity level Add a given quantity to the object

to Entity level Convert an object to another (different) object

with Entity level Returns a copy of the object where one element is
changed. This is the immutable version of setter methods.

27
Source: https://docs.oracle.com/javase/tutorial/datetime/iso/overview.html

Date and Time classes

https://docs.oracle.com/javase/tutorial/datetime/iso/overview.html

28

Example of basic use of the API

LocalDate date = LocalDate.now();
System.out.println(date); // 2017-03-09

date = LocalDate.of(1848, 3, 15);
System.out.println(date); // 1848-03-15

date = LocalDate.of(1848, Month.MARCH, 15);
System.out.println(date); // 1848-03-15

LocalTime time = LocalTime.of(14, 52, 26);
System.out.println(time); // 14:52:26

LocalDateTime dateTime = date.atTime(time);
System.out.println(dateTime); // 1848-03-15T14:52:26

ZonedDateTime zonedDateTime = dateTime.atZone(ZoneId.of("CET"));
System.out.println(zonedDateTime);
// 1848-03-15T14:52:26+01:00[CET]

29

Rich and clean API

● Example:

LocalDate today = LocalDate.now();
System.out.println(today); // 2017-03-09
System.out.println(today.getEra()); // CE
System.out.println(today.getYear()); // 2017
System.out.println(today.getMonth()); // MARCH
System.out.println(today.getMonthValue()); // 3
System.out.println(today.getDayOfMonth()); // 9
System.out.println(today.getDayOfWeek()); // TUESDAY
System.out.println(today.lengthOfMonth()); // 31
System.out.println(today.getDayOfYear()); // 61
System.out.println(today.isLeapYear()); // true

LocalDate date = Year.of(1848).atMonth(Month.MARCH).atDay(15);
System.out.println(date); // 1848-03-15

30

Fluent API

● Example:
LocalDate today = LocalDate.now();
LocalDate yesterday = today.minusDays(1);
LocalDate tomorrow = today.plusDays(1);
LocalDate nextWeek = today.plusWeeks(1);
LocalDate nextYear = today.plusYears(1);

LocalTime time = LocalTime.now().plusHours(1).plusMinutes(45);

31

Solution of the exercise
shown before

public static long countDays(LocalDate start, LocalDate end) {
return start.until(end, ChronoUnit.DAYS);

}

LocalDate then = LocalDate.of(1848, Month.MARCH, 15);
System.out.println(then); // 1848-03-15

LocalDate now = LocalDate.now(); // 2017-03-09
System.out.println(now);

System.out.println(countDays(then, now)); // 61347

● It can be solved by one method call:

32

Parts of dates

● Partial dates can be handled by the MonthDay,
Year and YearMonth classes

● Example:

MonthDay monthDay = MonthDay.of(Month.JUNE, 22);
System.out.println(monthDay); // --06-22
LocalDate date = monthDay.atYear(1975);
System.out.println(date); // 1975-06-22

LocalDate dateOfBirth = LocalDate.of(1809, 1, 19);
MonthDay birthday = MonthDay.from(dateOfBirth);
System.out.println(birthday); // --01-19

33

Periods and Durations (1)

● java.time.Period:

– Representing a time period in years, months, and
days

● java.time.Duration:

– Representing a duration in seconds and
nanoseconds.

34

Periods and Durations (2)

● Példa a használatukra:
LocalDate dateOfBirth = LocalDate.of(2012, Month.APRIL, 4);
LocalDate today = LocalDate.now();
System.out.println(today);// 2017-01-15

Period age = dateOfBirth.until(today);
System.out.println(age); // P4Y9M11D
System.out.println(age.getYears()); // 4
System.out.println(age.getMonths()); // 9
System.out.println(age.getDays()); // 11
System.out.println(age.isNegative()); // false

Instant t1 = Instant.now();
System.out.println(t1); // 2017-01-15T10:23:18.678Z

Duration duration = Duration.ofMinutes(50).plusSeconds(48);
System.out.println(duration); // PT50M48S

Instant t2 = t1.plus(duration);
System.out.println(t2); // 2017-01-15T11:14:06.678Z

35

Changing date and time (1)

● The withXXX(...) methods are used to
modify dates and times:

LocalDate date = LocalDate.now();
System.out.println(date); // 2017-03-09

date = date.withMonth(6);
System.out.println(date); // 2017-06-09

date = date.withDayOfMonth(22);
System.out.println(date); // 2017-06-22

date = date.withYear(1975);
System.out.println(date); // 1975-06-22

36

Changing date and time (2)

● java.time.temporal.TemporalAdjuster
is a functional innterface to change date and
time. It can be used by the use of
with(TemporalAdjuster) method of the
date and time classes.
– Built-in implementations are in the
java.time.temporal.TemporalAdjusters
class

37

Changing date and time (3)

● Example:
LocalDate date = LocalDate.of(1848, Month.MARCH, 15);
System.out.println(date); // 1848-03-15

System.out.println(date
.with(TemporalAdjusters.lastDayOfMonth()));

// 1848-03-31

System.out.println(date
.with(TemporalAdjusters.firstDayOfNextMonth()));

// 1848-04-01

System.out.println(date
.with(TemporalAdjusters.firstInMonth(DayOfWeek.SUNDAY)));

// 1848-03-05

System.out.println(date
.with(TemporalAdjusters.nextOrSame(DayOfWeek.WEDNESDAY)));

// 1848-03-15

38

Queries (1)

● The java.time.temporal.TemporalQuery
is a functional interface to get information.

● It can be used by the
query(TemporalQuery) method of date and
time classes.
– Built-in implementations are in the
java.time.temporal.TemporalQueries class

● Example:

LocalTime now = LocalTime.now();
System.out.println(now.query(TemporalQueries.precision()));
// Nanos

39

Queries (2)

● Example (1):
public static Boolean isClassBreak(TemporalAccessor temporal) {

int hour = temporal.get(ChronoField.HOUR_OF_DAY);
int minute = temporal.get(ChronoField.MINUTE_OF_HOUR);
if (hour < 8 || hour > 18) return false;
return (hour % 2 == 1) && (minute >= 40 && minute < 60);

}

LocalTime time = LocalTime.of(14, 15);
System.out.println(time.query(QueryExample::isClassBreak));
// false

time = LocalTime.of(15, 42);
System.out.println(time.query(QueryExample::isClassBreak));
// true

40

Queries (3)

● Example (2):

Stream.of("08:45", "09:40", "09:59", "10:00", "11:50",
"17:45", "19:30")

.map(LocalTime::parse)

.map(QueryExample::isClassBreak)

.forEach(System.out::println);
// false
// true
// true
// false
// true
// true
// false

41

Formatting and parsing

● Example:
LocalDate date = LocalDate.parse("04 Feb 2016",
 DateTimeFormatter.ofPattern("dd MMM yyyy")

.withLocale(Locale.ENGLISH));
System.out.println(date); // 2016-02-04

DateTimeFormatter formatter = new DateTimeFormatterBuilder()
.appendValue(ChronoField.DAY_OF_MONTH, 2)
.appendLiteral(' ')
.appendText(ChronoField.MONTH_OF_YEAR, TextStyle.SHORT)
.appendLiteral(' ')
.appendValue(ChronoField.YEAR).toFormatter(Locale.ENGLISH);

date = LocalDate.parse("04 Feb 2016", formatter);
System.out.println(date); // 2016-02-04

System.out.println(LocalDate.now().format(formatter)); // 01 Mar 2016

42

Dates b.C.

● Example use:
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("y G",

Locale.ENGLISH);

Year year = Year.parse("753 BC", formatter);// Funding of Rome
System.out.println(year); // -752
System.out.println(formatter.format(year)); // 753 BC

43

Instant

● A class representing a given point of time
– Can be applied e.g. to register timestamps in

applications

● Example use:

Instant now = Instant.now();
System.out.println(now); // 2017-03-09T14:10:31.646Z

LocalDateTime dateTime =
LocalDateTime.from(now); // java.time.DateTimeException

LocalDateTime dateTime = LocalDateTime.ofInstant(now,
ZoneId.systemDefault());

System.out.println(dateTime); // 2016-03-02T15:10:31.646

44

Clock (1)

● Provides access to the actual instant, time, date
ina given time zone
– See the now(Clock) methods of date and time

classes. It uses the Clock given as a parameter
when creating the object.

– This is useful for testing purposes.

45

Clock (2)

● Example use:
Clock clock1 = Clock.systemDefaultZone();
Clock clock2 = Clock.systemUTC();
Clock clock3 = Clock.system(ZoneId.of("Asia/Vladivostok"));

System.out.println(clock1); // SystemClock[Europe/Budapest]
System.out.println(clock2); // SystemClock[Z]
System.out.println(clock3); // SystemClock[Asia/Vladivostok]

System.out.println(LocalTime.now(clock1)); // 14:01:26.204
System.out.println(LocalTime.now(clock2)); // 13:01:26.209
System.out.println(LocalTime.now(clock3)); // 23:01:26.209

46

Clock (3)

● Example use: stop the time (Useful for testing.)

Instant instant = Instant.parse("2016-03-01T00:00:00Z");
Clock clock = Clock.fixed(instant, ZoneId.of("UTC"));

System.out.println(ZonedDateTime.now(clock));
// 2016-03-01T00:00Z[UTC]

Thread.sleep(5000); // 5 second delay

System.out.println(ZonedDateTime.now(clock));
// 2016-03-01T00:00Z[UTC]

Instant now = Instant.now(clock);
System.out.println(now.equals(instant)); // true

47

Example

● If an air plane departures at 01.04 11:45 (local
time) from New York to Tokyo and the travel
time is 14 hours 10 minutes, when will it arrive
to Tokyo (local time)?

ZonedDateTime departure = LocalDate.of(2016, Month.APRIL, 1)
.atTime(11, 45)
.atZone(ZoneId.of("America/New_York"));

System.out.println(departure);
// 2016-04-01T11:45-04:00[America/New_York]

Duration duration = Duration.ofHours(14).plusMinutes(10);
System.out.println(duration);
// PT14H10M

ZonedDateTime arrival =
departure.withZoneSameInstant(ZoneId.of("Asia/Tokyo"))

.plus(duration);
System.out.println(arrival);
// 2016-04-02T14:55+09:00[Asia/Tokyo]

48

Example

● What days of a year are on 13. Friday?

public static List<LocalDate> fridayThe13th(int year) {
return IntStream.range(1, 13)

.mapToObj(i -> LocalDate.of(year, i, 13))

.filter(d -> d.getDayOfWeek().equals(DayOfWeek.FRIDAY))

.collect(Collectors.toList());
}

System.out.println(fridayThe13th(2015));
// [2015-02-13, 2015-03-13, 2015-11-13]

System.out.println(fridayThe13th(2016));
// [2016-05-13]

49

Example (1)

● What day will be the next 13. Friday after a
given day?
– Naive solution for LocalDate objects

– Generalized solution: as an implementation of
TemporalAdjuster

50

Example (2)

● Naive solution for LocalDate objects:
public static LocalDate nextFriday13th(LocalDate date) {

int dayOfMonth = date.getDayOfMonth();
if (dayOfMonth != 13) {

if (dayOfMonth > 13)
date = date.plusMonths(1);

date = date.withDayOfMonth(13);
}
while (date.getDayOfWeek() != DayOfWeek.FRIDAY)

date = date.plusMonths(1);
return date;

}

LocalDate date = LocalDate.of(2016, Month.MARCH, 1);
System.out.println(nextFriday13th(date)); // 2017-10-15

51

Example (3)

● Generalized solution:
public class NextFriday13th implements TemporalAdjuster {

public Temporal adjustInto(Temporal temporal) {
int dayOfMonth = temporal.get(ChronoField.DAY_OF_MONTH);
if (dayOfMonth != 13) {

if (dayOfMonth > 13)
temporal = temporal.plus(1, ChronoUnit.MONTHS);

temporal = temporal.with(ChronoField.DAY_OF_MONTH, 13);
}
while (temporal.get(ChronoField.DAY_OF_WEEK) != 5)

temporal = temporal.plus(1, ChronoUnit.MONTHS);
return temporal;

}

}

52

Example (4)

● Generalized solution (continue): by using the
TemporalAdjuster we can modify
LocalDate, LocalDateTime,
ZonedDateTime and OffsetDateTime
objects as well

LocalDate date = LocalDate.of(2016, Month.MARCH, 1);
System.out.println(date.with(new NextFriday13th()));
// 2016-05-13

LocalDateTime dateTime = date.atStartOfDay();
System.out.println(dateTime.with(new NextFriday13th()));
// 2016-05-13T00:00

53

Further reading

● java.time (Java Platform SE 8)
https://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html

● The JavaTM Tutorials – Trail: Date Time
https://docs.oracle.com/javase/tutorial/datetime/

https://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html
https://docs.oracle.com/javase/tutorial/datetime/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

