Date and time handling in Java

Jeszenszky, Péter
University of Debrecen, Faculty of Informatics
jeszenszky.peter@inf.unideb.hu

Kocsis, Gergely (English version)

University of Debrecen, Faculty of Informatics
kocsis.gergely@inf.unideb.hu

Last modified: 09.03.2017


mailto:jeszenszky.peter@inf.unideb.hu
mailto:kocsis.gergely@inf.unideb.hu

History

« JDK 1.0 (1996): a java.lang.System.currentTimeMillis()
method and the java.util.Date class
« JDK 1.1 (1997):

- The java.util.Calendar, java.util.GregorianCalendar,
java.util.TimeZone and java.util.SimpleTimeZone classes

- Formatting, elementing: the java.text.DateFormat and the
java.text.SimpleDateFormat classes

- JDBC: the java.sqgl.Date, java.sqgl.Time and the
java.sql.Timestamp classes

. Java SE 5 (2004): javax.xml.datatype package

. Java SE 8 (2014): JSR 310: Date and Time API (the java. time
package and its subpackages)



java.util.Date (1)

« Represents a point of time with millisecond accuracy
https://docs.oracle.com/javase/8/docs/api/java/util/Date.html

 Problems:

- The name is misleading

- Most constructors are deprecated
- Indexing of months starts from O
- Uses local time zone

- Mutability

« Whenever an object is to be returned it its better to return only a copy in
order not to let the object be changed through the reference

- The class does not provide methods to manipulate objects (e.g.
to get the date that is one day after a given date)


https://docs.oracle.com/javase/8/docs/api/java/util/Date.html

java.util.Date (2)

 Example use:

Date date = new Date(1848 - 1900, 3 - 1, 15);
System.out.println(date); // Wed Mar 15 00:00:00 CET 1848
System.out.println(date.getTimezoneOffset()); // -60

DateFormat format = new SimpleDateFormat("yyy MMMM dd.", new Locale("HU"));
System.out.println(format.format(date)); // 1848 march 15,

date = format.parse("2016 marcius 1.");
System.out.println(date); // Tue Mar 01 00:00:00 CET 2016

date = new Date();
System.out.println(date); // Mon Feb 29 16:52:51 CET 2016

date.setTime(0);
System.out.println(date); // Thu Jan 01 01:00:00 CET 1970




JDBC data types (1)

- Data types matching to SQL data types

- java.sql.Date: represents SQL DATE
https://docs.oracle.com/javase/8/docs/api/java/sgl/Date.html

- Java.sqgl.Time: represents SQL TIME
https://docs.oracle.com/javase/8/docs/api/java/sgl/Time.html

- Java.sgl.Timestamp: represents SQL TIMESTAMP
https://docs.oracle.com/javase/8/docs/api/java/sgl/Timestamp.html

« Nanosecond accuracy
« All three extends the java.util.Date class

« None of them stores the time zone


https://docs.oracle.com/javase/8/docs/api/java/sql/Date.html
https://docs.oracle.com/javase/8/docs/api/java/sql/Time.html
https://docs.oracle.com/javase/8/docs/api/java/sql/Timestamp.html

JDBC data types (2)

 Example use:

Date date = Date.valueOf('"1848-03-15");
System.out.println(date); // 1848-03-15

Time time = Time.valueOf("17:49:03");
System.out.println(time); // 17:49:03

Timestamp timestamp = new Timestamp(System.currentTimeMillis());
System.out.println(timestamp); // 2016-02-29 17:51:13.886




java.util.Calendar (1)

« Represents a point of time with millisecond accuracy
https://docs.oracle.com/javase/8/docs/api/java/util/Calendar.

- Provides access to year, month, day etc. fields
- Stores time zone

- Provides methods to manipulate objects
« Example:add(...),roll(...)

o Abstract class, the only one exact class version Is
java.util.GregorianCalendar

- Supports Gregorian and Julian calendar


https://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html

java.util.Calendar (2)

 Still a problem:

- Misleading name
- Indexing months starts from O
- Mutability



java.util.Calendar (3)

Example use:

Calendar cal = new GregorianCalendar (1848, 2, 15);
System.out.println(cal);

// java.util.GregorianCalendar[time=?,areFieldsSet=false,

// areAllFieldsSet=false, , YEAR=1848, MONTH=2, WEEK_OF_YEAR="?,
// WEEK_OF_MONTH=?, DAY_OF_MONTH=15, ]

int year = cal.get(Calendar.YEAR);

int month = cal.get(Calendar.MONTH);

int dayOfMonth = cal.get(Calendar.DAY_OF_MONTH);
int dayOfwWeek = cal.get(Calendar.DAY_OF_WEEK);

int dayOfYear = cal.get(Calendar.DAY_OF_YEAR);

TimeZone tz = cal.getTimeZone();
System.out.println(tz.getDisplayName()); // Central European Time
System.out.println(tz.getID()); // Europe/Budapest

DateFormat format = SimpleDateFormat.getDateInstance(
DateFormat.FULL, Locale.GERMAN);

Date date = cal.getTime();
System.out.println(format.format(date)); // Mittwoch, 15. Marz 1848




java.util.Calendar (4)

 Example use:

Date date = cal.getTime();
System.out.println(format.format(date)); // Mittwoch, 15. Marz 1848

cal.add(Calendar.DAY_OF_MONTH, 16);
date = cal.getTime();
System.out.println(format.format(date)); // Freitag, 31. Marz 1848

cal.roll(Calendar.MONTH, -1);
date = cal.getTime();
System.out.println(format.format(date)); // Dienstag, 29. Februar 1848
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java.util.Calendar (5)

 Example use:

Calendar now = Calendar.getInstance();
System.out.println(now.getClass().getName());
// java.util.GregorianCalendar

DateFormat format = SimpleDateFormat.getDateTimeInstance(
DateFormat.FULL, DateFormat.FULL, new Locale("hu"));

Date date = now.getTime(),
System.out.println(format.format(date)),
// 2016. februar 29. 20:03:05 CET

format.setTimeZone(TimeZone.getTimeZone("PST"));
System.out.println(format.format(date)),
// 2016. februar 29. 11:03:05 PST
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java.util.Calendar (6)

* What Iis wrong with mutability?

public static long countDays(Calendar start, Calendar end) {
long count = 0;
while (start.before(end)) {
start.add(Calendar.DAY_OF_MONTH, 1);
++count;

}

return count;

}

Calendar then = new GregorianCalendar (1848, 2, 15);
Calendar now = Calendar.getInstance();
System.out.println(countDays(then, now)); // 61668

System.out.println(countDays(then, now)); // What 1s the output?
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java.util.Calendar (6)

* What Iis wrong with mutability?

public static long countDays(Calendar start, Calendar end) {
long count = 0;
while (start.before(end)) {
start.add(Calendar.DAY_OF_MONTH, 1);
++count;

}

return count;

}

Calendar then = new GregorianCalendar (1848, 2, 15);
Calendar now = Calendar.getInstance();
System.out.println(countDays(then, now)); // 61668
System.out.println(countDays(then, now)); // ©
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java.util.Calendar (7)

e The correct use:

}

public static long countDays(Calendar start, Calendar end) {

long count = 0;

start = (Calendar) start.clone();

while (start.before(end)) {
start.add(Calendar.DAY_OF_MONTH, 1);
++count;

}

return count;

Calendar then = new GregorianCalendar (1848, 2, 15);
Calendar now = Calendar.getInstance();

System.out.println(countDays(then, now)); // 61668
System.out.println(countDays(then, now)); // 61668
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W3C XML Schema (1)

« Paul V. Biron, Ashok Malhotra (ed). XML Schema Part 2: Datatypes Second
Edition. W3C Recommendation. 28 October 2004.
https://www.w3.org/TR/xmlschema-2/

— Definition of standard data types for date and time handling

. Anders Berglund, Mary Fernandez, Ashok Malhotra, Jonathan Marsh, Marton
Nagy, Norman Walsh (ed). XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C
Recommendation. 23 January 2007.
https://www.w3.0rg/TR/2007/REC-xpath-datamodel-20070123/

_ Two more data types: xsd:dayTimeDuration, xsd:yearMonthDuration

15


https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/

W3C XML Schema (2)

 Representation of values of data types by
character sequences (literals) and the definition
of the syntax
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W3C XML Schema (3)

« Bulit-in data types for handling date and time:

xsd:date: representing calendar dates
. Literals: 1848-03-15, 2004-10-28+13:00, 2016-02-29Z
xsd: time: Representing points of time repeating every day

o Lierals: 12:15:00 (no time zone), 23:05:30Z (world time),
00:45:00+01:00 (Central European time)

xsd:dateTime: data type representing time points
. Literals: 1969-07-16T13:32:00Z
xsd:duration: Data type representing time intervals

o Literals: P1Y2DT5H30M (1 year, 2 days, 5 hours and 30 minutes),
P120Y6M (120 years and 6 months), PT9.58S (9,58 seconds)
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W3C XML Schema (4)

« Bulit-in data types for handling date and time:

_ xsd:gDay: Data type representing monthly repeating days of the Gregorian calendar
. Literals: - - -05 (the 5" day of the month)
_ xsd:gMonth: Data type representing the 12 months of the Gregorian Calendar
. Literals: - -03 (March)
_ xsd:gYear: Data type representing the years of the Gregorian Calendar
o Literals: -0753, 0476, 1984
_ xsd:gMonthDay: Data type representing yearly repeating dates of the Gregorian Calendar
. Literals: - -05-25 (25 May)
_ xsd:gYearMonth: Data type representing the months of years of the Gregorian Calendar
. Literals: 1848-03 (March 1848)
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W3C XML Schema (5)

e Java support: Jjavax.xml.datatype
package
https://docs.oracle.com/javase/8/docs/api/javax/xm

- From J2SE 5 (2004)
 Example use:

DatatypeFactory factory = DatatypeFactory.newInstance();

Duration duration = factory.newDuration(true, 1, 0, 2, 5, 30, 30);
System.out.println(duration); // P1YOM2DT5H30M30S

XMLGregorianCalendar date = factory.newXMLGregorianCalendarDate(1848, 3,
15, DatatypeConstants.FIELD_UNDEFINED);
System.out.println(date); // 1848-03-15

date.add(duration); 19
System.out.println(date); // 1849-03-17



https://docs.oracle.com/javase/8/docs/api/javax/xml/datatype/package-summary.html

Joda-Time

e Java library for handling date and time
http://www.joda.org/joda-time/

- License: Apache License v2
* De-facto standard before Java SE 8 in industry

« The java.time package of Java SE 8
made It unnecessary

20


http://www.joda.org/joda-time/

JSR 130

 JSR 310: Date and Time API (Final Release). 4
March 2014. https://jcp.org/en/jsr/detail?1d=310

- Packages: java.time, java.time.chrono,

java.time.format, java.time. temporal,
java.time.zone

e Java SE 8

e See more:

- The Java™ Tutorials — Trail: Date Time
https://docs.oracle.com/javase/tutorial/datetime/

21


https://jcp.org/en/jsr/detail?id=310
https://docs.oracle.com/javase/tutorial/datetime/

The basic standard

* |ISO 8601:2004: Data elements and interchange

formats — Information interchange —

Representation of dates and times
http://www.iso.org/iso/home/standards/iso8601.htnr

22


http://www.iso.org/iso/home/standards/iso8601.htm

Planning goals

Clearness:

- Well defined deterministically working API

Immutable classes:

- An object cannot be changed after creation

Fluent API:

- The goal is good readability by the use of method chaining
Extensibility:

- Personalized calendar systems are possible to be implemented

23



Properties

« More date and time handling classes for different purposes
« Nanosecond accuracy

 All classes support the instantiation and formatting of objects
from strings

e 118n and L10n support (internationalization):

- The use of Unicode Common Locale Data Repository (CLDR)
http://cldr.unicode.org/

e Time zones:

- The use of IANA Time Zone Database
http://www.lana.org/time-zones

24


http://cldr.unicode.org/
http://www.iana.org/time-zones

Packages

java. time:

- Core API that contains classes to handle dates, times, periods, time zones
etc...

java.time.chrono:

- API to handlee different calendar sysems
java.time.format:

- API to format date and time and to create objects from strings
java.time.temporal:

- Extended API mostly for those who develop program packages
java.time.zone:

- Time zone handling

25



Naming convention of methods




Date and Time classes

Class or . Zone Zone .
Year |Month |Day |Hours||Minutes||Seconds* toString Output
Enum Offset 1D

Instant - 2013-08-20T15:16:26.355Z
LocalDate v v v 2013-08-20
LocalDateTime v v v v v W 2013-08-20T08:16:26.937
ZonedDateTime v v - v - - v - 2013-08-21T00:16:26.941+09: 00 [Asia/Tokyo]
LocalTime v v v 08:16:26.943
MonthDay v v --B8-20
Year v 2013
YearMonth v v 2013-08
Month v AUGUST
OffsetDateTime W v - v - - v 2013-08-20TA8:16:26.954-07:00
0ffsetTime v - . W 08:16:26.957-07;00
Duration aia aia aia v PT20H (20 hours)
Period v v ||V wras =+ |p1gD (10 days)

*Seconds are captured to nanosecond precision.

**This class does not store this information, but has methods to provide time in these units.

Source: https://docs.oracle.com/javase/tutorial/datetime/iso/overview.html
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https://docs.oracle.com/javase/tutorial/datetime/iso/overview.html

Example of basic use of the AP

LocalDate date = LocalDate.now();
System.out.println(date); // 2017-03-09

date = LocalDate.of (1848, 3, 15);
System.out.println(date); // 1848-03-15

date = LocalDate.of (1848, Month.MARCH, 15);
System.out.println(date); // 1848-03-15

LocalTime time = LocalTime.of (14, 52, 26);
System.out.println(time),; // 14:52:26

LocalDateTime dateTime = date.atTime(time);
System.out.println(dateTime); // 1848-03-15T14:52:26

ZonedDateTime zonedDateTime = dateTime.atZone(ZonelId.of("CET"));
System.out.println(zonedDateTime);
// 1848-03-15T14:52:26+01:00[CET]




Rich and clean API

* Example:
LocalDate today = LocalDate.now();
System.out.println(today); // 2017-03-09
System.out.println(today.getEra()); // CE
System.out.println(today.getYear()); // 2017
System.out.println(today.getMonth()); // MARCH

System.out.println(today.getMonthvalue()); // 3
System.out.println(today.getDayOfMonth()); // 9
System.out.println(today.getDayOfwWeek()); // TUESDAY
System.out.println(today.lengthOfMonth()); // 31
System.out.println(today.getDayOfYear()); // 61
System.out.println(today.islLeapYear()); // true

LocalDate date = Year.of(1848).atMonth(Month.MARCH).atDay(15);
System.out.println(date); // 1848-03-15




Fluent API

* Example:
LocalDate today = LocalDate.now();
LocalDate yesterday = today.minusDays(1);
LocalDate tomorrow = today.plusDays(1);
LocalDate nextWeek = today.plusWeeks(1);
LocalDate nextYear = today.plusYears(1l);
LocalTime time = LocalTime.now().plusHours(1l).plusMinutes(45);

30



Solution of the exercise
shown before

* |t can be solved by one method call:

public static long countDays(LocalDate start, LocalDate end) {
return start.until(end, ChronoUnit.DAYS);
)

LocalDate then = LocalDate.of (1848, Month.MARCH, 15);
System.out.println(then); // 1848-03-15

LocalDate now = LocalDate.now(); // 2017-03-09
System.out.println(now);

System.out.println(countDays(then, now)); // 61347
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Parts of dates

« Partial dates can be handled by the MonthDay,
Year and YearMonth classes

 Example:

MonthDay monthDay = MonthDay.of(Month.JUNE, 22);
System.out.println(monthDay); // --06-22
LocalDate date = monthDay.atYear(1975);
System.out.println(date); // 1975-06-22

LocalDate dateOfBirth = LocalDate.of (1809, 1, 19);
MonthDay birthday = MonthDay.from(dateOfBirth);
System.out.println(birthday); // --01-19

32



Periods and Durations (1)

e Java.time.Period:

- Representing a time period in years, months, and
days

e Java.time.Duration:

- Representing a duration in seconds and
nanoseconds.
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Periods and Durations (2)

Példa a hasznalatukra:

LocalDate dateOfBirth = LocalDate.of (2012, Month.APRIL, 4);
LocalDate today = LocalDate.now();
System.out.println(today); // 2017-01-15

Period age = dateOfBirth.until(today);

System.out.println(age); // P4Y9M11D
System.out.println(age.getYears()); // 4
System.out.println(age.getMonths()); // 9
System.out.println(age.getDays()); // 11

System.out.println(age.isNegative()); // false

Instant tl1 = Instant.now();
System.out.println(tl); // 2017-01-15T10:23:18.678Z

Duration duration = Duration.ofMinutes(50).plusSeconds(48);
System.out.println(duration); // PT50M48S

Instant t2 = til.plus(duration);
System.out.println(t2); // 2017-01-15T11:14:06.678Z
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Changing date and time (1)

e The withXXX(...) methods are used to
modify dates and times:

LocalDate date = LocalDate.now();
System.out.println(date); // 2017-03-09

date = date.withMonth(6);
System.out.println(date); // 2017-06-09

date = date.withDayOfMonth(22);
System.out.println(date); // 2017-06-22

date = date.withYear(1975);
System.out.println(date); // 1975-06-22
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Changing date and time (2)

e« Java.time.temporal.TemporalAdjuster
IS a functional innterface to change date and

time. It can be used by the use of
with(TemporalAdjuster ) method of the

date and time classes.

- Bulilt-in implementations are in the
java.time.temporal.TemporalAdjusters

class
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Changing date and time (3)

* Example:

LocalDate date = LocalDate.of (1848, Month.MARCH, 15);
System.out.println(date); // 1848-03-15

System.out.println(date
.with(TemporalAdjusters.lastDayOfMonth()));
// 1848-03-31

System.out.println(date
.with(TemporalAdjusters.firstDayOfNextMonth()));
// 1848-04-01

System.out.println(date
.with(TemporalAdjusters.firstInMonth(DayOfWeek.SUNDAY))),
// 1848-03-05

System.out.println(date
.with(TemporalAdjusters.nextOrSame(DayOfWeek.WEDNESDAY))),
// 1848-03-15
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Queries (1)

« The Java.time.temporal.TemporalQuery

IS a functional interface to get information.
* |t can be used by the

guery(TemporalQuery) method of date and

time classes.

- Bullt-in implementations are in the

java.time.temporal.TemporalQueries class

* Example:

LocalTime now = LocalTime.now();

System.out.println(now.query(TemporalQueries.precision()));
// Nanos
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Queries (2)

 Example (1):

public static Boolean isClassBreak(TemporalAccessor temporal) {

int hour = temporal.get(ChronoField.HOUR_OF_DAY);

int minute = temporal.get(ChronoField.MINUTE_OF_HOUR);
if (hour < 8 || hour > 18) return false;

return (hour % 2 == 1) && (minute >= 40 && minute < 60);

}

LocalTime time = LocalTime.of (14, 15);
System.out.println(time.query(QueryExample: :isClassBreak));
// false

time = LocalTime.of (15, 42);
System.out.println(time.query(QueryExample::isClassBreak));
// true
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Queries (3)

 Example (2):

//
//
//
//
//
//
//

Stream.of ("08:45", "09:40", "09:59", "10:00",

"17:45", "19:30")
.map(LocalTime: :parse)
.map(QueryExample::isClassBreak)
.forEach(System.out: :println);
false
true
true
false
true
true
false

"11:50",

40



Formatting and parsing

* Example:

LocalDate date = LocalDate.parse("04 Feb 2016",
DateTimeFormatter.ofPattern("dd MMM yyyy")
.withLocale(Locale.ENGLISH));
System.out.println(date); // 2016-02-04

DateTimeFormatter formatter = new DateTimeFormatterBuilder ()
.appendvValue(ChronoField.DAY_OF_MONTH, 2)
.appendLiteral(' ')
.appendText(ChronoField.MONTH_OF_YEAR, TextStyle.SHORT)
.appendLiteral(' ')
.appendValue(ChronoField.YEAR).toFormatter(Locale.ENGLISH);

date = LocalDate.parse("04 Feb 2016", formatter);
System.out.println(date); // 2016-02-04

System.out.println(LocalDate.now().format(formatter)); // 01 Mar 2016
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Dates b.C.

 Example use:

DateTimeFormatter formatter = DateTimeFormatter.ofPattern("y G",
Locale.ENGLISH);

Year year = Year.parse("753 BC", formatter);
System.out.println(year); // -752
System.out.println(formatter.format(year)); // 753 BC

42



Instant

* A class representing a given point of time

- Can be applied e.g. to register timestamps Iin
applications

e Example use:

Instant now = Instant.now();
System.out.println(now); // 2017-03-09T14:10:31.646Z

J : I : 3
tocadBateFime—From{now—

LocalDateTime dateTime = LocalDateTime.ofInstant(now,

Zoneld.systemDefault());
System.out.println(dateTime); // 2016-03-02T15:10:31.646
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Clock (1)

 Provides access to the actual instant, time, date
Ina given time zone

- See the now(Clock) methods of date and time

classes. It uses the Clock given as a parameter
when creating the object.

- This Is useful for testing purposes.

44



Clock (2)

 Example use:

System.
System.
System.

System.
System.
System.

Clock clock1
Clock clock?2
Clock clocks3

out.
out.
.println(clock3d); // SystemClock[Asia/Vladivostok]

out

out.
out.
out.

Clock.systemDefaultzZone();
Clock.systemUTC();
Clock.system(ZoneId.of("Asia/Vladivostok"));

println(clockl); // SystemClock[Europe/Budapest]
println(clock2); // SystemClock[Z]

println(LocalTime.now(clockl));, // 14:01:26.204
println(LocalTime.now(clock2)); // 13:01:26.209
println(LocalTime.now(clock3d)); // 23:01:26.209
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Clock (3)

 Example use: stop the time (Useful for testing.)

Instant instant = Instant.parse('"2016-03-01T00:00:00Z");
Clock clock = Clock.fixed(instant, ZoneId.of("UTC"));

System.out.println(ZonedDateTime.now(clock));
// 2016-03-01T00:00Z[UTC]

Thread.sleep(5000);

System.out.println(ZonedDateTime.now(clock));
// 2016-03-01T00:00Z[UTC]

Instant now = Instant.now(clock);
System.out.println(now.equals(instant)); // true
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Example

 |f an air plane departures at 01.04 11:45 (local
time) from New York to Tokyo and the travel
time is 14 hours 10 minutes, when will it arrive
to Tokyo (local time)?

ZonedDateTime departure = LocalDate.of (2016, Month.APRIL, 1)
.atTime (11, 45)
.atzone(zZoneId.of ("America/New_York"));
System.out.println(departure);
// 2016-04-01T11:45-04:00[America/New_York]

Duration duration = Duration.ofHours(14).plusMinutes(10);
System.out.println(duration);
// PT14H1OM

ZonedDateTime arrival =

departure.withzZoneSameInstant(ZoneId.of("Asia/Tokyo"))
.plus(duration);

System.out.println(arrival);

// 2016-04-02T14:55+09:00[Asia/Tokyo]




Example

 What days of a year are on 13. Friday?

public static List<LocalDate> fridayThel3th(int year) {
return IntStream.range(1, 13)
.mapToObj(i -> LocalDate.of(year, i, 13))
.filter(d -> d.getDayOfWeek().equals(DayOfWeek.FRIDAY))
.collect(Collectors.toList());

}

System.out.println(fridayThel3th(2015));
// [2015-02-13, 2015-03-13, 2015-11-13]

System.out.println(fridayThel3th(2016)),
// [2016-05-13]
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Example (1)

 What day will be the next 13. Friday after a
given day?

- Nalve solution for LocalDate objects

- Generalized solution: as an implementation of
TemporalAdjuster
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Example (2)

« Naive solution for LocalDate objects:

public static LocalDate nextFridayl3th(LocalDate date) {

int dayOfMonth = date.getDayOfMonth();
if (dayOfMonth !'= 13) {

if (dayOfMonth > 13)

date = date.plusMonths(1);

date = date.withDayOfMonth(13);
¥
while (date.getDayOfWeek() !'= DayOfWeek.FRIDAY)

date = date.plusMonths(1);
return date;

¥

LocalDate date = LocalDate.of (2016, Month.MARCH, 1);
System.out.println(nextFridayl3th(date)); // 2017-10-15




Example (3)

e Generalized solution:

public class NextFridayl3th implements TemporalAdjuster {

public Temporal adjustInto(Temporal temporal) {

int dayOfMonth = temporal.get(ChronoField.DAY_OF_MONTH);

if (dayOfMonth != 13) {
if (dayOfMonth > 13)
temporal = temporal.plus(1l, ChronoUnit.MONTHS),
temporal = temporal.with(ChronoField.DAY_OF_MONTH,
¥
while (temporal.get(ChronoField.DAY_OF_WEEK) != 5)

temporal = temporal.plus(1, ChronoUnit.MONTHS);
return temporal;

13);
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Example (4)

* Generalized solution (continue): by using the
TemporalAdjuster we can modify

LocalDate, LocalDateTime,
ZonedDateTime and OffsetDateTime
objects as well

LocalDate date = LocalDate.of (2016, Month.MARCH, 1);
System.out.println(date.with(new NextFridayl3th()));
// 2016-05-13

LocalDateTime dateTime = date.atStartOfDay();
System.out.println(dateTime.with(new NextFridayl3th())),
// 2016-05-13T00:00
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Further reading

« java. time (Java Platform SE 8)

https://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html

 The Java™ Tutorials — Tralil: Date Time
https://docs.oracle.com/javase/tutorial/datetime/

53


https://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html
https://docs.oracle.com/javase/tutorial/datetime/
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