Hálózati architektúrák és Protokollok PTI – 3

Kocsis Gergely 2019.02.25.

- mára kevéssé jellemző
- jellemző topológia: sín

Fizikai réteg

Kábelek

TP kábelek RJ45 csatlakozó

Egyenes kötés: $A \rightarrow A$ Keresztkötés: $A \rightarrow B$

Fizikai réteg

Kábelek

Száloptika

24db optikai szál

Fizikai jellemzők:

- 2-125 µm magátmérő
- Üveg vagy műanyag fényvezető
- Védőbevonat: műanyag, eltérő optikai tulajdonságokkal
- Külső PVC védőburkolat a kopás, szennyeződés és mechanikai hatások ellen

Fajtái:

- Többmódusú
- Egymódusú
- Lépcsős

Adatkapcsolati réteg

10BASE-2 (Thin) Ethernet

Fizikai topológia: busz Logikai topológia: busz Közeghozzáférés: CSMA/CD

Tulajdonságok:

- Osztott átviteli közeg
- Koaxiális kábelezés
- Ütközés a közös átviteli csatornán
- Alacsony hibatűrés

Adatkapcsolati réteg

10BASE-T Ethernet

Fizikai topológia: csillag Logikai topológia: busz Közeghozzáférés: CSMA/CD

Tulajdonságok:

- Csavart érpáras kábelezés (TP)
- Dedikált kábelezés minden végpont számára
- Nagyobb hibatűrés
- Központi hálózati elem: HUB vagy switch

A hálózat működése HUB és switch esetén Ütközési tartomány meghatározása A kapcsolt hálózat előnyei

Adatkapcsolati réteg

Név	Sávszélesség	Átviteli közeg	Szabvány	Max. szegmenshossz
10BASE-2	10 Mbit/s	koaxiális	802.3 (8)	185 m
10BASE-5	10 Mbit/s	koaxiális	802.3 (10)	500 m
10BASE-T	10 Mbit/s	csavart érpár (Cat3, Cat5)	802.3 (14)	100 m
10BASE-F(L)	10 Mbit/s	optikai	802.3 (15, 18)	2000 m
100BASE-TX	100 Mbit/s	csavart érpár (Cat5)	802.3 (24)	100 m
100BASE-FX	100 Mbit/s	optikai (MM)	802.3 (24)	2000 m
100BASE-SX	100 Mbit/s	optikai (MM)	TIA	
1000BASE-T	1 Gbit/s	csavart érpár (Cat 5e, Cat6)	802.3ab (40)	100 m
1000BASE-SX	1 Gbit/s	optikai (MM)	802.3z	550 m
1000BASE-LX	1 Gbit/s	optikai (MM/SM)	802.3z (38)	550 m / 2000 m
1000BASE-LX10	1 Gbit/s	optikai (SM)	802.3	10 km
10GBASE-T	10 Gbit/s	csavart érpár (Cat6a, Cat7)	802.3an	100 m
10GBASE-SR	10 Gbit/s	optikai (MM)	802.3ae	300 m
10GBASE-LX4	10 Gbit/s	optikai (MM/SM)	802.3ae	300 m / 10 km
10GBASE-LR	10 Gbit/s	optikai (SM)	802.3ae	10 km

MAC

Egyedi eszközazonosító, kiosztását az IEEE felügyeli

Formája:

xx:xx:xx:xx:xx: – ahol x hexa számjegy

Azonos gyártótól származó eszközök fizikai címének első három bájtja azonos

ARP (Address Resolution Protocol) IP cím alapján MAC cím megadása alhálón belül

Minden csomópontnak ven egy ARP táblája, ha ebben nincs a keresett cím Körüzenet az alhálón az FF:FF:FF:FF:FF:FF címre. Az üzenetre az a csomópont válaszol, akinek az IP-je megegyezik a keresettel.

Más alhálóba történő kommunikáció esetén mindig a következő csomópont címét keressük ki

Adatkapcsolati réteg – feladatok

Feladat:

Az alábbi karaktersorozatok közül melyek lehetnek fizikai címek? A lehetséges fizikai címek közül melyek tartoznak azonos gyártóhoz?

F1:19:63:DC:95:24 D9:14:FF:34:A5:BB F1:19:53:BA:5C:11 F1:19:63:34:A5:BB F1:19:63:H5:54:C4 D9:14:FF:DC:95:24 A1:19:55:CD:0F

Feladat:

Hogyan kérdeznéd le linux rendszeren géped ARP tábláját?

\$arp

címét?

Hogyan kérdeznéd le a tiéddel egy alhálózatban lévő gép MAC **\$ping ip_cím** → (Így a gép fizikai címe bekerül az ARP táblába) **\$arp**

Knoppix alapok

Virtuális gép létrehozása VirtualBox-ban (hálózatelérés: bridge módban)

- Rendszerindítás DVD-ről vagy ISO állományból
- Billentyűzetkiosztás beállítása
 - Rendszerindításkor (boot prompt)
 - Parancssorból (setxkbmap)
- Parancsablak (terminal window), root shell (su)
- Automatikus IP konfiguráció ellenőrzése (ifconfig)
- System log elérése (Alt+F12)

Knoppix első lépések

Parancssori manuál:

\$ man {parancsnév}

PI. \$ man ifconfig

Hálózati beállításokat kizárólag rendszergazdai jogosultsággal módosíthatunk!

Rendszergazdai jogosultsági szint (root shell) terminálablakban: \$ SU -

Billentyűzetkiosztás átváltása terminálablakban:

\$ setxkbmap {hu|us}
PL \$ setxkbmap hu

Ethernet kapcsolat ellenőrzése

ARP

- arp tábla lekérdezése #apr [-a]
- Statikus bejegyzés létrehozása az arp táblában #arp -s IP MAC pl: #arp -s 172.22.206.2 12:ab:e1:la:ba:ba
- Statikus bejegyzés törlése #arp -d IP pl: arp -d 172.22.206.2

Ethernet kapcsolat ellenőrzése

ARP feladat

Nézzük meg, hogy alhálózaton belüli kapcsolatfelvétel után (pl ping) hogyan változik meg gépünk arp táblája.

Mi történik, ha egy alhálón kívüli csomópontot pingelünk?

Mi történik, ha kihúzzuk, majd visszadgjuk a hálózati kábelt?