Definitions

1. Define the following: the model of a Γ set.

Let $\Gamma \subseteq Form$ be a set of formulas. An interpretation ρ is a model of the set of formulas Γ , if $|A|_{\rho} = 1$ for all $A \in \Gamma$.

2. Define the following: the model of a formula.

A model of a formula A is the model of the singleton $\{A\}$.

3. Define the following: the satisfiable a set of formulas.

The set of formulas $\Gamma \subseteq Form$ is satisfiable if it has a model. (If there is an interpretation in which all members of the set Γ are ture.)

4. Define the following: the satisfiable formula

A formula $A \in Form$ is satisfiable, if the singleton $\{A\}$ is satisfiable.

5. Define the following: unsatisfiable set

The set $\Gamma \subseteq Form$ is unsatisfiable if it is not satisfiable.

6. Define the following: unsatisfiable formula

A formula $A \in Form$ is unsatisfiable if the singleton $\{A\}$ is unsatisfiable.

7. Define the following: logical consequence

A formula A is the logical consequence of the set of formulas Γ if the set $\Gamma \bigcup \{\neg A\}$ is unsatifiable. (Notation: $\Gamma \models A$)

8. Define the following: valid formula.

The formula A is valid if $\emptyset \models A$. (Notation: $\models A$)

9. Define the following: logical equivalence

The formulas A and B are logically equivalent if $A \models B$ and $B \models A$. (Notation: $A \Leftrightarrow B$)

Practical exercises

10. Prove the equivalence: $p \supset q \Leftrightarrow \neg p \lor q$.

p q p	$ \supset$	$ q \neg p $	\vee	q	
0 0	1	1	1		
$0 \ 1$	1	1	1		They are equal.
$1 \ 0$	0	0	0		
11	1	0	1		

11. Prove the equivalence: $p \supset q \Leftrightarrow \neg q \supset p$.

p q	$p \mid \Xi$	q	$\neg q$	\supset	p	
0 0	1		1	0		
$0 \ 1$	1		0	1		They are not equal.
1 0	(1	1		
11	1		0	1		

12. Prove the equivalence: $\neg(p \land q) \Leftrightarrow \neg p \lor q$.

$p \ q$	_	$(p \land q)$	$\neg p$	\vee	q	
0 0	1	0	1	1		
$0 \ 1$	1	0	1	1		They are not equal.
$1 \ 0$	1	0	0	0		
11	0	1	0	1		

13. Prove the equivalence: $\neg(p \lor q) \Leftrightarrow \neg p \land q$.

p q		$(p \lor q)$	$\neg p$	\wedge	q	
0 0	1	0	1	0		-
$0 \ 1$	0	1	1	1		They are not equal.
$1 \ 0$	0	1	0	0		
11	0	1	0	0		

14. Are the following formula valid: $p \supset q \supset \neg p \lor q$?

$p \; q$	p	\supset	$q \supset \neg p$	$\lor q$	
0 0		1	11	1	
$0 \ 1$		1	11	1	It is valid.
1 0		1	$1 \ 0$	0	
11		1	$1 \ 0$	1	

15. Are the following formula valid: $p \supset q \supset \neg q \supset p$?

p q	p	\supset	$q \supset \neg p$	$\supset q$	
0 0		1	1 1	0	
$0 \ 1$		1	11	1	It is valid.
$1 \ 0$		1	$1 \ 0$	1	
11		1	$1 \ 0$	1	

16. Are the following formula valid: $\neg(p \land q) \supset \neg p \lor q$?

p q	¬ ()	$p \wedge q$	\supset	$\neg j$	$p \lor q$	
0.0	1	0	1	1	1	-
$0 \ 1$	1	0	1	1	1	It is not valid.
1 0	1	0	0	0	0	
11	0	1	1	0	1	

17. Are the following formula valid: $\neg(p \lor q) \supset \neg p \land q$?

$p \ q$	□ (<u>1</u>	$p \lor q)$	\supset	$\neg 1$	$p \wedge q$	
0 0	1	0	0	1	0	-
$0 \ 1$	0	1	1	1	1	It is not valid.
1 0	0	1	1	0	0	
11	0	1	1	0	0	

18. Is q the logical consequence of $\neg q \supset p$ and $q \lor \neg p$?

- 1. $\neg q \supset p, q \lor \neg p \models q$ if and only if $\{\neg q \supset p, q \lor \neg p, \neg q\}$ unsatisfiable,
- 2. $\{\neg q \supset p, q \lor \neg p, \neg q\}$ satisfiable if $|\neg q \supset p|_{\varrho} = 1$ and $|q \lor \neg p|_{\varrho} = 1$ and $|\neg q|_{\varrho} = 1$,
- 3. if $|\neg q|_{\varrho} = 1$, then $|q|_{\varrho} = 0$,
- 4. if $|q \vee \neg p|_{\varrho} = 1$ but $|q|_{\varrho} = 0$, then $|\neg p|_{\varrho} = 1$,
- 5. if $|\neg p|_{\varrho} = 1$, then $|p|_{\varrho} = 0$,
- 6. if $|\neg q|_{\varrho} = 1$ and $|p|_{\varrho} = 0$, then $|\neg p \supset q|_{\varrho} = 0$,
- 7. but $|\neg p \supset q|_{\varrho} = 1$ and $|\neg p \supset q|_{\varrho} = 0$ is a contradiction!

The logical consequence holds.

19. Is q the logical consequence of $q \lor \neg p$ and $\neg q \supset \neg p$?

- 1. $q \lor \neg p, \neg q \supset \neg p \models q$ if and only if $\{q \lor \neg p, \neg q \supset \neg p, \neg q\}$ unsatisfiable,
- 2. $\{q \lor \neg p, \neg q \supset \neg p, \neg q\}$ satisfiable if $|q \lor \neg p|_{\varrho} = 1$ and $|\neg q \supset \neg p|_{\varrho} = 1$ and $|\neg q|_{\varrho} = 1$,
- 3. if $|\neg q|_{\varrho} = 1$, then $|q|_{\varrho} = 0$,
- 4. if $|q \vee \neg p|_{\varrho} = 1$ but $|q|_{\varrho} = 0$, then $|\neg p|_{\varrho} = 1$,
- 5. if $|\neg p|_{\varrho} = 1$, then $|p|_{\varrho} = 0$,
- 6. if $|q|_{\varrho} = 0$ and $|p|_{\varrho} = 0$, then $|q \vee \neg p|_{\varrho} = 1$ and $|\neg q \supset \neg p|_{\varrho} = 1$ and $|\neg q|_{\varrho} = 1$, so the set is satisfiable!

The logical consequence not holds.

20. What is the DNF and CNF of $\neg(q \supset p) \land r$

- $\neg(q \supset p) \land r \quad \Leftrightarrow$
- $\neg(\neg q \lor p) \land r \quad \Leftrightarrow$
- $\neg \neg q \land \neg p \land r \quad \Leftrightarrow$
- DNF+CNF: $q \land \neg p \land r$

21. What is the DNF and CNF of $(q \equiv p) \wedge r$

- $\bullet \ (q \equiv p) \wedge r \quad \Leftrightarrow \quad$
- $\bullet \ (q \supset p) \land (p \supset q) \land r \quad \Leftrightarrow \quad$
- CNF: $(\neg q \lor p) \land (\neg p \lor q) \land r \quad \Leftrightarrow$
- DNF: $(\neg q \land \neg p \land r) \lor (p \land q \land r)$