Definitions

1. Define the following: the model of a Γ set.

Let $\Gamma \subseteq$ Form be a set of formulas. An interpretation ϱ is a model of the set of formulas Γ, if $|A|_{\varrho}=1$ for all $A \in \Gamma$.
2. Define the following: the model of a formula.

A model of a formula A is the model of the singleton $\{A\}$.
3. Define the following: the satisfiable a set of formulas.

The set of formulas $\Gamma \subseteq$ Form is satisfiable if it has a model. (If there is an interpretation in which all members of the set Γ are ture.)
4. Define the following: the satisfiable formula

A formula $A \in F$ orm is satisfiable, if the singleton $\{A\}$ is satisfiable.
5. Define the following: unsatisfiable set

The set $\Gamma \subseteq$ Form is unsatisfiable if it is not satisfiable.
6. Define the following: unsatisfiable formula

A formula $A \in$ Form is unsatisfiable if the singleton $\{A\}$ is unsatisfiable.
7. Define the following: logical consequence

A formula A is the logical consequence of the set of formulas Γ if the set $\Gamma \bigcup\{\neg A\}$ is unsatifiable. (Notation: $\Gamma \models A$)
8. Define the following: valid formula.

The formula A is valid if $\emptyset \models A$. (Notation: $\models A$)
9. Define the following: logical equivalence

The formulas A and B are logically equivalent if $A \models B$ and $B \models A$. (Notation: $A \Leftrightarrow B$)

Practical exercises

10. Prove the equivalence: $p \supset q \Leftrightarrow \neg p \vee q$.

p	q	p	\supset	q	$\neg p$	\vee	q
0	0		1		1	1	
0	1		1		1	1	
1	0		0		0	0	
1	1		1	0	1		

11. Prove the equivalence: $p \supset q \Leftrightarrow \neg q \supset p$.

p	q	p	\supset	q	$\neg q$	\supset	p
0	0		1	1	0		
0	1		1	0	1		
1	0		0	1	1		
1	1		1	0	1		

12. Prove the equivalence: $\neg(p \wedge q) \Leftrightarrow \neg p \vee q$.

$p q$	\neg	$(p \wedge q)$	$\neg p$	\vee	q	
0	0	1	0	1	1	
0	1	1	0	1	1	
1	0	1	0	0	0	
1	1	0	1	0	1	

13. Prove the equivalence: $\neg(p \vee q) \Leftrightarrow \neg p \wedge q$.

$p q$	\neg	$(p \vee q)$	$\neg p$	\wedge	q
00	1	0	1	0	
0	1	0	1	1	1
1	0	0	1	0	0
1	1	0	1	0	0

14. Are the following formula valid: $p \supset q \supset \neg p \vee q$?

p	q	p	\supset	$q \supset$	$\neg p \vee q$	
0	0		1	1	1	1
0	1		1	1	1	1

15. Are the following formula valid: $p \supset q \supset \neg q \supset p$?

p	q	p	\supset	$q \supset$	$\neg p \supset q$	
0	0		1	1	1	0
0	1		1	1	1	1

16. Are the following formula valid: $\neg(p \wedge q) \supset \neg p \vee q$?

$p q$	$\neg(p \wedge q)$	\supset	$\neg p \vee q$			
0	0	1	0	1	1	1
0	1	1	0	1	1	1

17. Are the following formula valid: $\neg(p \vee q) \supset \neg p \wedge q$?

		q	$\neg(p \vee q)$	\supset	$\neg p \wedge q$		
0	0	1	0	0	1	0	
0	1	0	1	1	1	1	It is not valid.
1	0	0	1	1	0	0	
1	1	0	1	1	0	0	

18. Is q the logical consequence of $\neg q \supset p$ and $q \vee \neg p$?
19. $\neg q \supset p, q \vee \neg p \models q$ if and only if $\{\neg q \supset p, q \vee \neg p, \neg q\}$ unsatisfiable,
20. $\{\neg q \supset p, q \vee \neg p, \neg q\}$ satisfiable if
$|\neg q \supset p|_{\varrho}=1$ and $|q \vee \neg p|_{\varrho}=1$ and $|\neg q|_{\varrho}=1$,
21. if $|\neg q|_{\varrho}=1$, then $|q|_{\varrho}=0$,
22. if $|q \vee \neg p|_{\varrho}=1$ but $|q|_{\varrho}=0$, then $|\neg p|_{\varrho}=1$,
23. if $|\neg p|_{\varrho}=1$, then $|p|_{\varrho}=0$,
24. if $|\neg q|_{\varrho}=1$ and $|p|_{\varrho}=0$, then $|\neg p \supset q|_{\varrho}=0$,
25. but $|\neg p \supset q|_{\varrho}=1$ and $|\neg p \supset q|_{\varrho}=0$ is a contradiction!

The logical consequence holds.
19. Is q the logical consequence of $q \vee \neg p$ and $\neg q \supset \neg p$?

1. $q \vee \neg p, \neg q \supset \neg p \vDash q$ if and only if $\{q \vee \neg p, \neg q \supset \neg p, \neg q\}$ unsatisfiable,
2. $\{q \vee \neg p, \neg q \supset \neg p, \neg q\}$ satisfiable if
$|q \vee \neg p|_{\varrho}=1$ and $|\neg q \supset \neg p|_{\varrho}=1$ and $|\neg q|_{\varrho}=1$,
3. if $|\neg q|_{\varrho}=1$, then $|q|_{\varrho}=0$,
4. if $|q \vee \neg p|_{\varrho}=1$ but $|q|_{\varrho}=0$, then $|\neg p|_{\varrho}=1$,
5. if $|\neg p|_{\varrho}=1$, then $|p|_{\varrho}=0$,
6. if $|q|_{\varrho}=0$ and $|p|_{\varrho}=0$, then
$|q \vee \neg p|_{\varrho}=1$ and $|\neg q \supset \neg p|_{\varrho}=1$ and $|\neg q|_{\varrho}=1$, so the set is satisfiable!

The logical consequence not holds.
20. What is the DNF and CNF of $\neg(q \supset p) \wedge r$

- $\neg(q \supset p) \wedge r \quad \Leftrightarrow$
- $\neg(\neg q \vee p) \wedge r \quad \Leftrightarrow$
- $\neg \neg q \wedge \neg p \wedge r \quad \Leftrightarrow$
- $\mathrm{DNF}+\mathrm{CNF}: q \wedge \neg p \wedge r$

21. What is the DNF and CNF of $(q \equiv p) \wedge r$

- $(q \equiv p) \wedge r \quad \Leftrightarrow$
- $(q \supset p) \wedge(p \supset q) \wedge r \Leftrightarrow$
- CNF: $(\neg q \vee p) \wedge(\neg p \vee q) \wedge r \quad \Leftrightarrow$
- DNF: $(\neg q \wedge \neg p \wedge r) \vee(p \wedge q \wedge r)$

