Definitions

1. Define the classical zero-order language!

The classical zero-order language is an ordered triple

 $L(0) = \langle LC; Con; Form \rangle$

where

- 1. $LC = \{\neg; \supset; \land; \lor; \equiv; (;)\}$ (the set of logical constants).
- 2. $Con \neq \emptyset$; the countable set of non-logical constants (propositional parameters)
- 3. $LC \setminus Con = \emptyset;$
- 4. The set of formulae i.e. the set Form is given by the following inductive definition:
 - $Con \subset Form$
 - If $A \in Form$, then $\neg A \in Form$.
 - If $A; B \in Form$, then $(A \land B) \in Form$, $(A \lor B) \in Form$, $(A \supset B) \in Form$, $(A \equiv B) \in Form$.
- 2. Define the direct subformula!
 - If A is an atomic formula, then it has no direct subformula;
 - $\neg A$ has exactly one direct subformula: A;
 - direct subformulae of formulae $(A \land B)$, $(A \lor B)$, $(A \supseteq B)$, $(A \equiv B)$ are formulae A and B, respectively.

3. Define the set of subformulae!

The set of subformulae of formula A – denoting: SF(A) – is given by the following inductive definition:

- 1. $A \in SF(A)$
 - (i.e. the formula A is a subformula of itself);
- 2. if $A' \in SF(A)$ and B is a direct subformula of A', then $B \in SF(A)$
- (i.e., if A' is a subformula of A, then all direct subformulae of A' are subformulae of A).

4. Define the construction tree!

The contruction tree of a formula A is a finite ordered tree whose nodes are formulae,

- the root of the tree is the formula A,
- the node with formula $\neg B$ has one child: the node with the formula B,
- the node with formulae $(B \vee C)$, $(B \wedge C)$, $(B \supset C)$, $(B \equiv C)$ has two children: the nodes with B, and C the leaves of the tree are atomic formulae.

Practical part

5. Construction tree of $p \wedge q \supset \neg p \equiv \neg q$.

6. Logical degree of $p \wedge q \supset \neg p \equiv \neg q$.

 $\mathbf{5}$

7. Direct subformulae of $p \wedge q \supset \neg p \equiv \neg q$.

 $p \wedge q \supset \neg p$, and $\neg q$

8. Set of subformulae for $p \land q \supset \neg p \equiv \neg q$.

 $\{p \wedge q \supset \neg p \equiv \neg q, p \wedge q \supset \neg p, \neg q, p \wedge q, \neg p, q, p\}$

9. Logical degree, direct subformulae, and set of subformulae for

1.
$$p \land (q \supset \neg p) \equiv \neg q$$
.
2. $p \land q \supset (\neg p \equiv \neg q)$.
3. $\neg p \land q \lor \neg q$.
4. $\neg (p \land q \lor \neg q)$.
5. $p \supset \neg q \land \neg p$.
6. $(p \supset \neg q) \land \neg p$.
7. $p \supset \neg q \equiv \neg p$.
8. $p \supset \neg (q \equiv \neg p)$.
9. $\neg p \land \neg (q \lor \neg p)$.

10.
$$\neg p \lor \neg (q \land \neg p)$$
.