Definitions

1. Define the classical zero-order language!

The classical zero-order language is an ordered triple

$$
L(0)=\langle L C ; \text { Con } ; \text { Form }\rangle
$$

where

1. $L C=\{\neg ; \supset ; \wedge ; \vee ; \equiv ;(;)\}$ (the set of logical constants).
2. Con $\neq \emptyset$; the countable set of non-logical constants (propositional parameters)
3. $L C \backslash C o n=\emptyset$;
4. The set of formulae i.e. the set Form is given by the following inductive definition:

- Con \subset Form
- If $A \in$ Form, then $\neg A \in$ Form.
- If $A ; B \in$ Form, then $(A \wedge B) \in \operatorname{Form},(A \vee B) \in$ Form, $(A \supset B) \in$ Form, $(A \equiv B) \in$ Form.

2. Define the direct subformula!

- If A is an atomic formula, then it has no direct subformula;
- $\neg A$ has exactly one direct subformula: A;
- direct subformulae of formulae $(A \wedge B),(A \vee B),(A \supset B),(A \equiv B)$ are formulae A and B, respectively.

3. Define the set of subformulae!

The set of subformulae of formula A - denoting: $S F(A)$ - is given by the following inductive definition:

1. $A \in S F(A)$
(i.e. the formula A is a subformula of itself);
2. if $A^{\prime} \in S F(A)$ and B is a direct subformula of A^{\prime}, then $B \in S F(A)$
(i.e., if A^{\prime} is a subformula of A, then all direct subformulae of A^{\prime} are subformulae of A).
3. Define the construction tree!

The contruction tree of a formula A is a finite ordered tree whose nodes are formulae,

- the root of the tree is the formula A,
- the node with formula $\neg B$ has one child: the node with the formula B,
- the node with formulae $(B \vee C),(B \wedge C),(B \supset C),(B \equiv C)$ has two children: the nodes with B, and C the leaves of the tree are atomic formulae.

Practical part

5. Construction tree of $p \wedge q \supset \neg p \equiv \neg q$.

6. Logical degree of $p \wedge q \supset \neg p \equiv \neg q$.

5
7. Direct subformulae of $p \wedge q \supset \neg p \equiv \neg q$.
$p \wedge q \supset \neg p$, and $\neg q$
8. Set of subformulae for $p \wedge q \supset \neg p \equiv \neg q$.

$$
\{p \wedge q \supset \neg p \equiv \neg q, p \wedge q \supset \neg p, \neg q, p \wedge q, \neg p, q, p\}
$$

9. Logical degree, direct subformulae, and set of subformulae for
10. $p \wedge(q \supset \neg p) \equiv \neg q$.
11. $p \wedge q \supset(\neg p \equiv \neg q)$.
12. $\neg p \wedge q \vee \neg q$.
13. $\neg(p \wedge q \vee \neg q)$.
14. $p \supset \neg q \wedge \neg p$.
15. $(p \supset \neg q) \wedge \neg p$.
16. $p \supset \neg q \equiv \neg p$.
17. $p \supset \neg(q \equiv \neg p)$.
18. $\neg p \wedge \neg(q \vee \neg p)$.
19. $\neg p \vee \neg(q \wedge \neg p)$.
