Logic in Computer Science (lecture)

PART II.

PREDICATE LOGIC

FIRST ORDER LOGIC

Logic in computer science

Seminar: INGK401-K5; INHK401; INJK401-K4
University of Debrecen, Faculty of Informatics
kadek.tamas@inf.unideb.hu

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

Alphabets

e Logical symbols:

— logical connectives —, A, v, D,
— quantifiers: V, 3,

— individuum variables: z,y, z, ... (lowercase english letters).

e Separator symbols: circle brackets and the comma.

e Non-logical symbols: L = (Srt, Pr, Fn,Cnst) where

— Srt is a nonempty set of sorts (or types),

— Pris a set of predicate symbols,

F'n is a set of function symbols.

Cnst is a set of constant symbols.

Kadek Tamas,

University of Debrecen 2012.

Logic in Computer Science (lecture)

Signature

Each individuum variable belongs to a type.

The signature is a triple of function (11, 9, v3) where
e 1y assigns a list of type to each P € Pr,
e 15 assigns a list of type to each f € Fn,

e 3 assigns a type to each c € Cnst.

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

T type terms

1. x, if x is a 7 type variable,
2. ¢, if ce Cnst and v3(c) = (7),

: f(t17t27"'7tn)' IffEFTl and V2(f) = (7T1a7727"'77r77,;ﬂ-)
and ty,ts,...,t, are w, s, ..., T, type terms,

w

N

. A string of symbols is a term if and only if it can be obtained by starting
with variables (1) or constants (2) repeatedly applying the inductive steps
(3), and it must terminates after a finite number of steps.

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

Formulas
e P(t1,ta,...,t,)isan atomic formula, if P € Prand vy (P) = (w1, m2,...,Tn)
and ty,ts,...,t, are wy,ms, ..., T, type terms,

e —A, if Ais an arbitrary formula,

e (Ao B), if A and B are an arbitrary formulas and o € {A, v, D},
e dxA, if Ais an arbitrary formula and x is a variable,

e VA, if Ais an arbitrary formula and z is a variable,

e A string of symbols is a formula if and only if it can be obtained by starting
with atomic formulas, repeatedly applying the inductive steps, and it must
terminates after a finite number of steps.

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

Syntactical properties

Immediate subterms:
1. A constant or a variable has no immediate subterm.

2. The immediate subterms of f(t1,to,...,t,) are the ¢y, to, ..., t, terms.

Let T be a term. The set of subterms of T is the
e smallest set
e that contains T,

e and contains, with each member, the immediate subterms of that member.

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

Syntactical properties

The functional degree of a T' term is d(T):
1. (Z(T) = 0, if T is a variable or a constatnt, otherwise

2. d(f(t1,ta, ... tn)) = d(ty) +d(t2) + ... +d(t,) + 1.

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

Syntactical properties

Immediate subformulas:
1. An atomic formula has no immediate subformulas.
2. The only immediate subformula of —A is A.
3. The immediate subformulas of (4o B) are A and B, where o € {A, v, D}.

4. The immediate subformulas of QzA is A, where @Q € {V,3} and x is a
variable.

Let A be a formula. The set of subformulas of A is the
e smallest set
e that contains A,

e and contains, with each member, the immediate subformulas of that mem-
ber.

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

Syntactical properties

The logical degree of an A formula is d(A):

1.
2.
3.

d(A) =0, if Ais an atomic formula,
d(—A) =d(A) + 1, where A is an arbitrary formula,

d(Ao B) =d(A) +d(B) + 1, where A and B are arbitrary formulas, and
o€ {n,v,D}.

d(QzA) = d(A) + 1, where A is an arbitrary formula, z is a variable, and
Qe {v,3}.

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

Syntactical properties

The free-variable occurrences in a formula:

1. If A is an atomic formula, then all the variable occurrences in A are free-
variable occurrences.

2. The free-variable occurrences in —A are free-variable occurrences in A.

3. The free-variable occurrences in (A o B) are the free-variable occurrences
in A and the free-variable occurrences in B, where o € {A, v, D}.

4. The free-variable occurrences in Yz A and 3z A are free-variable occurrences
in A, except for occurrences of x.

A variable occurrence is called bound if it is not free.

A closed formula (sentence) is a formula with no free-variable occurrences.

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

Bound variable renaming, clean formula

[A;] denotes, that we replace each free occurrence of the x variable in the A
formula with an y variable, where z and y are in the same type.

Regular bound variable renaming
If y has no free occurrences in the A formula, and there is no occurrences of x
within the scope of a quantifier bounding y, then the following renamings are

regular:
VA =Vy [A;]

dJzA =3y [AZ]
A formula called clean, if

e a variable has just free or just bound occurrences, not both, and

e cach different quantifier bounds different variable.

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

Semantics

Let L = (Srt, Pr, Fn,Cnst) be a first-order language. The interpretation of L
is an ordered 4-tuple of functions:

I= <ISrt7 IP’I’7 IFn-, ICnst>
e The Ig,; function assigns a non empty set to each w € Srt sort.

Isyi(m) = D, where D, # &

e the Ip, function assigns a P! logical function to each P € Pr prediacte
symbol. If v1(P) = (m,m2,...7,) then

P! D; X Dy, % ... x Dy — {true, false}.

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

e The Ip, function assigns an f! mathematical function to each f € Fn
function symbol. If vo(f) = (w1, 72, ... 7,) then

fl Dy x Dypy x...x Dy — Dy.

e the I, function assigns a ¢! object to each ¢ € Cnst costatnt symbol.
If v3(c) = () then ¢! € D,.

A varible substitution is a x function which assigns an object to each variable.
If the type of the x variable is 7, then k(z) € D,.

A &/ variable substitution called x variant of the k variable substitution, if k(y) =
K'(y) is true for all y variable different than z.

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

Term valuation

We denote the term valuation of a ¢ term by a given I interpretation and
variable substitution as |t|/". It is defined as a recursive function:

o |z|"" = Kk(x) where x is a variable,
= Ionst(c) where c € Cnst,

o [f(tr,ta, s tn)" = FI(t)"" 2] "

L5y where I'pn(f) = f7.

yeeos|tn

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

Formula valuation

We denote the formula valuation of an F' formula by a given I interpretation
and & variable substitution as |F|/%. It is defined as a recursive function:

o [Pt tay... tn)|"" =PIt 7"t ™" L [t ") i Ipp(P) = PT
° ‘*A I,k :; |A|1,K
o (A2 B)["" = |A"" S |B|""
o [(An B[= |A[l= X B
o [(Av B[R = |All< Bl
Ik true if |A\I"‘, = true for at least one ' z-variant of k
o |AzA|H" = .
false otherwise
1w true if |A|"F = true for all &’ z-variant of k
o |VzA|l"r = .
false otherwise

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

Semantical properties

An A formula of the L first order language is called first-order tautology, when
|A|F* = true for all possible Z interpretation of the L language and all possible
k variable substiturion of the 7 interpretation. We shortly denote this by = A.

An A formula of the L first order language is called first-order contradiction,
when |A|Z* = false for all possible Z interpretation of the L language and all
possible « variable substiturion of the Z interpretation. We shortly denote this by
= A

Let A and B formulas of the same L first order language. A and B are logically
equivalent, if
] =B

for all possible Z interpretation of the L language and all possible x variable
substiturion of the Z interpretation.

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

First order consequence

Let Ay, As,..., A, (n = 1) and B formulas of the same L first order language.
We say that B is a first-order consequence of A, As,..., A,, if B is true in
every interpretation for every valuation, where every formula of A1, As,..., A, is
true. We denote this as Ay, As,..., A, = B.

Al,AQ,...,AnFB ifandonlyif)=A1,A2,...,AHDB

Ay, Ay, ... Ay =B ifandonly if =S Ay, As,...,A, A —B

Kadek Tamas, University of Debrecen 2012.

Logic in Computer Science (lecture)

Prenex form

A formula is in a prenex form, if it is in the form of
Q1I1Q2$2 s QnmnA (n = O)
where Q; € {3,V} and x; is a variable and A is a formula without quantifiers.

e It is a prenex conjunctive normal form (PCNF), if A is a conjunctive normal

form,
e it is a prenex disjunctive normal form (PDNF), if A is a disjunctive normal

form.

2012.

Kadek Tamas, University of Debrecen

Logic in Computer Science (lecture)

Algorithm to create prenex forms

1. Clean the formula,

2. use the following rules:

—VzA ~ Jx—A —JdzA ~ Vz—A

VeA v B ~Va(A v B) AvVazB ~Vxz(Av B)

VA A B ~VYx(A A B) A AYxB ~Vx(A A B)

JzAv B ~3z(Av B) Av 3zB ~3z(Av B)

JzA A B ~3x(A A B) A A3TzB ~3z(A A B)
((

(

VoA > B ~3J2(A>B
dxA> B ~Vx(ADB

A>VaB ~VYz(A > B)

)
) A > 3zB ~ 3z(A > B)

Kadek Tamas, University of Debrecen 2012.

