
1 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

PART II.

Predicate logic
first order logic

Logic in computer science

Seminar: INGK401-K5; INHK401; INJK401-K4
University of Debrecen, Faculty of Informatics
kadek.tamas@inf.unideb.hu

2 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Alphabets

• Logical symbols:

– logical connectives , ^, _, Ą,

– quantifiers: @, D,

– individuum variables: x, y, z, . . . (lowercase english letters).

• Separator symbols: circle brackets and the comma.

• Non-logical symbols: L “ 〈Srt, Pr, Fn,Cnst〉 where

– Srt is a nonempty set of sorts (or types),

– Pr is a set of predicate symbols,

– Fn is a set of function symbols.

– Cnst is a set of constant symbols.

3 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Signature

Each individuum variable belongs to a type.
The signature is a triple of function 〈ν1, ν2, ν3〉 where

• ν1 assigns a list of type to each P P Pr,

• ν2 assigns a list of type to each f P Fn,

• ν3 assigns a type to each c P Cnst.

4 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

π type terms

1. x, if x is a π type variable,

2. c, if c P Cnst and ν3pcq “ pπq,

3. fpt1, t2, . . . , tnq, if f P Fn and ν2pfq “ pπ1, π2, . . . , πn, πq
and t1, t2, . . . , tn are π1, π2, . . . , πn type terms,

4. A string of symbols is a term if and only if it can be obtained by starting
with variables (1) or constants (2) repeatedly applying the inductive steps
(3), and it must terminates after a finite number of steps.

5 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Formulas

• P pt1, t2, . . . , tnq is an atomic formula, if P P Pr and ν1pP q “ pπ1, π2, . . . , πnq
and t1, t2, . . . , tn are π1, π2, . . . , πn type terms,

• A, if A is an arbitrary formula,

• pA ˝Bq, if A and B are an arbitrary formulas and ˝ P t^,_,Ąu,

• DxA, if A is an arbitrary formula and x is a variable,

• @xA, if A is an arbitrary formula and x is a variable,

• A string of symbols is a formula if and only if it can be obtained by starting
with atomic formulas, repeatedly applying the inductive steps, and it must
terminates after a finite number of steps.

6 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Syntactical properties

Immediate subterms:

1. A constant or a variable has no immediate subterm.

2. The immediate subterms of fpt1, t2, . . . , tnq are the t1, t2, . . ., tn terms.

Let T be a term. The set of subterms of T is the

• smallest set

• that contains T ,

• and contains, with each member, the immediate subterms of that member.

7 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Syntactical properties

The functional degree of a T term is d̃pT q:

1. d̃pT q “ 0, if T is a variable or a constatnt, otherwise

2. d̃pfpt1, t2, . . . , tnqq “ d̃pt1q ` d̃pt2q ` . . .` d̃ptnq ` 1.

8 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Syntactical properties

Immediate subformulas:

1. An atomic formula has no immediate subformulas.

2. The only immediate subformula of A is A.

3. The immediate subformulas of pA ˝Bq are A and B, where ˝ P t^,_,Ąu.

4. The immediate subformulas of QxA is A, where Q P t@, Du and x is a
variable.

Let A be a formula. The set of subformulas of A is the

• smallest set

• that contains A,

• and contains, with each member, the immediate subformulas of that mem-
ber.

9 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Syntactical properties

The logical degree of an A formula is dpAq:

1. dpAq “ 0, if A is an atomic formula,

2. dp Aq “ dpAq ` 1, where A is an arbitrary formula,

3. dpA ˝ Bq “ dpAq ` dpBq ` 1, where A and B are arbitrary formulas, and
˝ P t^,_,Ąu.

4. dpQxAq “ dpAq ` 1, where A is an arbitrary formula, x is a variable, and
Q P t@, Du.

10 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Syntactical properties

The free-variable occurrences in a formula:

1. If A is an atomic formula, then all the variable occurrences in A are free-
variable occurrences.

2. The free-variable occurrences in A are free-variable occurrences in A.

3. The free-variable occurrences in pA ˝ Bq are the free-variable occurrences
in A and the free-variable occurrences in B, where ˝ P t^,_,Ąu.

4. The free-variable occurrences in @xA and DxA are free-variable occurrences
in A, except for occurrences of x.

A variable occurrence is called bound if it is not free.

A closed formula (sentence) is a formula with no free-variable occurrences.

11 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Bound variable renaming, clean formula
“

Axy
‰

denotes, that we replace each free occurrence of the x variable in the A
formula with an y variable, where x and y are in the same type.

Regular bound variable renaming
If y has no free occurrences in the A formula, and there is no occurrences of x
within the scope of a quantifier bounding y, then the following renamings are
regular:

@xA ñ @y
“

Axy
‰

DxA ñ Dy
“

Axy
‰

A formula called clean, if

• a variable has just free or just bound occurrences, not both, and

• each different quantifier bounds different variable.

12 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Semantics

Let L “ 〈Srt, Pr, Fn,Cnst〉 be a first-order language. The interpretation of L
is an ordered 4-tuple of functions:

I “ 〈ISrt, IPr, IFn, ICnst〉

• The ISrt function assigns a non empty set to each π P Srt sort.

ISrtpπq “ Dπ where Dπ ‰ H

• the IPr function assigns a P I logical function to each P P Pr prediacte
symbol. If ν1pP q “ pπ1, π2, . . . πnq then

P I : Dπ1
ˆDπ2

ˆ . . .ˆDπn
Ñ ttrue, falseu.

13 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

• The IFn function assigns an f I mathematical function to each f P Fn
function symbol. If ν2pfq “ pπ1, π2, . . . πn, πq then

f I : Dπ1
ˆDπ2

ˆ . . .ˆDπn
Ñ Dπ.

• the ICnst function assigns a cI object to each c P Cnst costatnt symbol.
If ν3pcq “ pπq then cI P Dπ.

A varible substitution is a κ function which assigns an object to each variable.
If the type of the x variable is π, then κpxq P Dπ.

A κ1 variable substitution called x variant of the κ variable substitution, if κpyq “
κ1pyq is true for all y variable different than x.

14 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Term valuation

We denote the term valuation of a t term by a given I interpretation and κ
variable substitution as |t|I,κ. It is defined as a recursive function:

• |x|I,κ “ κpxq where x is a variable,

• |c|I,κ “ ICnstpcq where c P Cnst,

• |fpt1, t2, . . . , tnq|I,κ “ f Ip|t1|
I,κ

, |t2|
I,κ

, . . . , |tn|
I,κ
q where IFnpfq “ f I .

15 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Formula valuation

We denote the formula valuation of an F formula by a given I interpretation
and κ variable substitution as |F |I,κ. It is defined as a recursive function:

• |P pt1, t2, . . . , tnq|I,κ “ P Ip|t1|
I,κ

, |t2|
I,κ

, . . . , |tn|
I,κ
q if IPrpP q “ P I

• | A|I,κ “ ‚
 |A|I,κ

• |pA Ą Bq|I,κ “ |A|I,κ
‚
Ą |B|I,κ

• |pA^Bq|I,κ “ |A|I,κ ‚
^ |B|I,κ

• |pA_Bq|I,κ “ |A|I,κ ‚
_ |B|I,κ

• |DxA|I,κ “
"

true if |A|I,κ
1

“ true for at least one κ1 x-variant of κ
false otherwise

• |@xA|I,κ “
"

true if |A|I,κ
1

“ true for all κ1 x-variant of κ
false otherwise

16 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Semantical properties

An A formula of the L first order language is called first-order tautology, when
|A|I,κ “ true for all possible I interpretation of the L language and all possible
κ variable substiturion of the I interpretation. We shortly denote this by (A.

An A formula of the L first order language is called first-order contradiction,
when |A|I,κ “ false for all possible I interpretation of the L language and all
possible κ variable substiturion of the I interpretation. We shortly denote this by
(A.

Let A and B formulas of the same L first order language. A and B are logically
equivalent, if

|A|I,κ “ |B|I,κ

for all possible I interpretation of the L language and all possible κ variable
substiturion of the I interpretation.

17 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

First order consequence

Let A1, A2, . . . , An pn ě 1q and B formulas of the same L first order language.
We say that B is a first-order consequence of A1, A2, . . . , An, if B is true in
every interpretation for every valuation, where every formula of A1, A2, . . . , An is
true. We denote this as A1, A2, . . . , An (B.

A1, A2, . . . , An (B if and only if (A1, A2, . . . , An Ą B

A1, A2, . . . , An (B if and only if) A1, A2, . . . , An ^ B

18 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Prenex form

A formula is in a prenex form, if it is in the form of

Q1x1Q2x2 . . . QnxnA pn ě 0q

where Qi P tD,@u and xi is a variable and A is a formula without quantifiers.

• It is a prenex conjunctive normal form (PCNF), if A is a conjunctive normal
form,

• it is a prenex disjunctive normal form (PDNF), if A is a disjunctive normal
form.

19 / 19

Logic in Computer Science (lecture)

Kádek Tamás, University of Debrecen 2012.

Algorithm to create prenex forms

1. Clean the formula,

2. use the following rules:

 @xA „ Dx A

@xA_B „ @xpA_Bq

@xA^B „ @xpA^Bq

DxA_B „ DxpA_Bq

DxA^B „ DxpA^Bq

@xA Ą B „ DxpA Ą Bq

DxA Ą B „ @xpA Ą Bq

 DxA „ @x A

A_ @xB „ @xpA_Bq

A^ @xB „ @xpA^Bq

A_ DxB „ DxpA_Bq

A^ DxB „ DxpA^Bq

A Ą @xB „ @xpA Ą Bq

A Ą DxB „ DxpA Ą Bq

