PART II.

Predicate logic

FIRST ORDER LOGIC

Logic in computer science
Seminar: INGK401-K5; INHK401; INJK401-K4
University of Debrecen, Faculty of Informatics
kadek.tamas@inf.unideb.hu

Logic in Computer Science (lecture)

Alphabets

- Logical symbols:
- logical connectives $\neg, \wedge, \vee, \supset$,
- quantifiers: \forall, \exists,
- individuum variables: x, y, z, \ldots (lowercase english letters).
- Separator symbols: circle brackets and the comma.
- Non-logical symbols: $L=\langle S r t, \operatorname{Pr}, F n, C n s t\rangle$ where
- Srt is a nonempty set of sorts (or types),
- Pr is a set of predicate symbols,
- Fn is a set of function symbols.
- Cnst is a set of constant symbols.

Logic in Computer Science (lecture)

Signature

Each individuum variable belongs to a type.
The signature is a triple of function $\left\langle\nu_{1}, \nu_{2}, \nu_{3}\right\rangle$ where

- ν_{1} assigns a list of type to each $P \in P r$,
- ν_{2} assigns a list of type to each $f \in F n$,
- ν_{3} assigns a type to each $c \in C n s t$.

Logic in Computer Science (lecture)

π type terms

1. x, if x is a π type variable,
2. c, if $c \in$ Cnst and $\nu_{3}(c)=(\pi)$,
3. $f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, if $f \in F n$ and $\nu_{2}(f)=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}, \pi\right)$ and $t_{1}, t_{2}, \ldots, t_{n}$ are $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$ type terms,
4. A string of symbols is a term if and only if it can be obtained by starting with variables (1) or constants (2) repeatedly applying the inductive steps (3), and it must terminates after a finite number of steps.

Logic in Computer Science (lecture)

Formulas

- $P\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is an atomic formula, if $P \in \operatorname{Pr}$ and $\nu_{1}(P)=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ and $t_{1}, t_{2}, \ldots, t_{n}$ are $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$ type terms,
- $\neg A$, if A is an arbitrary formula,
- $(A \circ B)$, if A and B are an arbitrary formulas and $\circ \in\{\wedge, \vee, \supset\}$,
- $\exists x A$, if A is an arbitrary formula and x is a variable,
- $\forall x A$, if A is an arbitrary formula and x is a variable,
- A string of symbols is a formula if and only if it can be obtained by starting with atomic formulas, repeatedly applying the inductive steps, and it must terminates after a finite number of steps.

Logic in Computer Science (lecture)

Syntactical properties

Immediate subterms:

1. A constant or a variable has no immediate subterm.
2. The immediate subterms of $f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ are the $t_{1}, t_{2}, \ldots, t_{n}$ terms.

Let T be a term. The set of subterms of T is the

- smallest set
- that contains T,
- and contains, with each member, the immediate subterms of that member.

Logic in Computer Science (lecture)

Syntactical properties

The functional degree of a T term is $\tilde{d}(T)$:

1. $\tilde{d}(T)=0$, if T is a variable or a constatnt, otherwise
2. $\tilde{d}\left(f\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right)=\tilde{d}\left(t_{1}\right)+\tilde{d}\left(t_{2}\right)+\ldots+\tilde{d}\left(t_{n}\right)+1$.

Syntactical properties

Immediate subformulas:

1. An atomic formula has no immediate subformulas.
2. The only immediate subformula of $\neg A$ is A.
3. The immediate subformulas of $(A \circ B)$ are A and B, where $\circ \in\{\wedge, \vee, \supset\}$.
4. The immediate subformulas of $Q x A$ is A, where $Q \in\{\forall, \exists\}$ and x is a variable.

Let A be a formula. The set of subformulas of A is the

- smallest set
- that contains A,
- and contains, with each member, the immediate subformulas of that member.

Syntactical properties

The logical degree of an A formula is $d(A)$:

1. $d(A)=0$, if A is an atomic formula,
2. $d(\neg A)=d(A)+1$, where A is an arbitrary formula,
3. $d(A \circ B)=d(A)+d(B)+1$, where A and B are arbitrary formulas, and $\circ \in\{\wedge, \vee, \supset\}$.
4. $d(Q x A)=d(A)+1$, where A is an arbitrary formula, x is a variable, and $Q \in\{\forall, \exists\}$.

Syntactical properties

The free-variable occurrences in a formula:

1. If A is an atomic formula, then all the variable occurrences in A are freevariable occurrences.
2. The free-variable occurrences in $\neg A$ are free-variable occurrences in A.
3. The free-variable occurrences in $(A \circ B)$ are the free-variable occurrences in A and the free-variable occurrences in B, where $\circ \in\{\wedge, \vee, \supset\}$.
4. The free-variable occurrences in $\forall x A$ and $\exists x A$ are free-variable occurrences in A, except for occurrences of x.

A variable occurrence is called bound if it is not free.
A closed formula (sentence) is a formula with no free-variable occurrences.

Logic in Computer Science (lecture)

Bound variable renaming, clean formula

$\left[A_{y}^{x}\right]$ denotes, that we replace each free occurrence of the x variable in the A formula with an y variable, where x and y are in the same type.

Regular bound variable renaming

If y has no free occurrences in the A formula, and there is no occurrences of x within the scope of a quantifier bounding y, then the following renamings are regular:

$$
\begin{aligned}
\forall x A & \Rightarrow \forall y\left[A_{y}^{x}\right] \\
\exists x A & \Rightarrow \exists y\left[A_{y}^{x}\right]
\end{aligned}
$$

A formula called clean, if

- a variable has just free or just bound occurrences, not both, and
- each different quantifier bounds different variable.

Logic in Computer Science (lecture)

Semantics

Let $L=\langle S r t, \operatorname{Pr}, F n, C n s t\rangle$ be a first-order language. The interpretation of L is an ordered 4-tuple of functions:

$$
I=\left\langle I_{S r t}, I_{P r}, I_{F n}, I_{C n s t}\right\rangle
$$

- The $I_{S r t}$ function assigns a non empty set to each $\pi \in S r t$ sort.

$$
I_{S r t}(\pi)=D_{\pi} \quad \text { where } \quad D_{\pi} \neq \varnothing
$$

- the $I_{P r}$ function assigns a P^{I} logical function to each $P \in P r$ prediacte symbol. If $\nu_{1}(P)=\left(\pi_{1}, \pi_{2}, \ldots \pi_{n}\right)$ then

$$
P^{I}: D_{\pi_{1}} \times D_{\pi_{2}} \times \ldots \times D_{\pi_{n}} \rightarrow\{\text { true }, \text { false }\}
$$

Logic in Computer Science (lecture)

- The $I_{F n}$ function assigns an f^{I} mathematical function to each $f \in F n$ function symbol. If $\nu_{2}(f)=\left(\pi_{1}, \pi_{2}, \ldots \pi_{n}, \pi\right)$ then

$$
f^{I}: D_{\pi_{1}} \times D_{\pi_{2}} \times \ldots \times D_{\pi_{n}} \rightarrow D_{\pi} .
$$

- the $I_{C n s t}$ function assigns a c^{I} object to each $c \in$ Cnst costatnt symbol. If $\nu_{3}(c)=(\pi)$ then $c^{I} \in D_{\pi}$.

A varible substitution is a κ function which assigns an object to each variable. If the type of the x variable is π, then $\kappa(x) \in D_{\pi}$.

A κ^{\prime} variable substitution called x variant of the κ variable substitution, if $\kappa(y)=$ $\kappa^{\prime}(y)$ is true for all y variable different than x.

Logic in Computer Science (lecture)

Term valuation

We denote the term valuation of a t term by a given I interpretation and κ variable substitution as $|t|^{I, \kappa}$. It is defined as a recursive function:

- $|x|^{I, \kappa}=\kappa(x)$ where x is a variable,
- $|c|^{I, \kappa}=I_{C n s t}(c)$ where $c \in$ Cnst,
- $\left|f\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right|^{I, \kappa}=f^{I}\left(\left|t_{1}\right|^{I, \kappa},\left|t_{2}\right|^{I, \kappa}, \ldots,\left|t_{n}\right|^{I, \kappa}\right)$ where $I_{F n}(f)=f^{I}$.

Logic in Computer Science (lecture)

Formula valuation

We denote the formula valuation of an F formula by a given I interpretation and κ variable substitution as $|F|^{I, \kappa}$. It is defined as a recursive function:

- $\left|P\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right|^{I, \kappa}=P^{I}\left(\left|t_{1}\right|^{I, \kappa},\left|t_{2}\right|^{I, \kappa}, \ldots,\left|t_{n}\right|^{I, \kappa}\right)$ if $I_{P r}(P)=P^{I}$
- $|\neg A|^{I, \kappa}=\stackrel{\bullet}{\neg}|A|^{I, \kappa}$
- $|(A \supset B)|^{I, \kappa}=|A|^{I, \kappa} \dot{\supset}|B|^{I, \kappa}$
- $|(A \wedge B)|^{I, \kappa}=|A|^{I, \kappa} \stackrel{\bullet}{\wedge}|B|^{I, \kappa}$
- $|(A \vee B)|^{I, \kappa}=|A|^{I, \kappa} \dot{\vee}|B|^{I, \kappa}$
- $|\exists x A|^{I, \kappa}= \begin{cases}\text { true } & \text { if }|A|^{I, \kappa^{\prime}}=\text { true for at least one } \kappa^{\prime} x \text {-variant of } \kappa \\ \text { false } & \text { otherwise }\end{cases}$
- $|\forall x A|^{I, \kappa}= \begin{cases}\text { true } & \text { if }|A|^{I, \kappa^{\prime}}=\text { true for all } \kappa^{\prime} x \text {-variant of } \kappa \\ \text { false } & \text { otherwise }\end{cases}$

Semantical properties

An A formula of the L first order language is called first-order tautology, when $|A|^{\mathcal{I}, \kappa}=$ true for all possible \mathcal{I} interpretation of the L language and all possible κ variable substiturion of the \mathcal{I} interpretation. We shortly denote this by $\vDash A$.

An A formula of the L first order language is called first-order contradiction, when $|A|^{\mathcal{I}, \kappa}=$ false for all possible \mathcal{I} interpretation of the L language and all possible κ variable substiturion of the \mathcal{I} interpretation. We shortly denote this by $\vDash A$.

Let A and B formulas of the same L first order language. A and B are logically equivalent, if

$$
|A|^{I, \kappa}=|B|^{I, \kappa}
$$

for all possible \mathcal{I} interpretation of the L language and all possible κ variable substiturion of the \mathcal{I} interpretation.

Logic in Computer Science (lecture)

First order consequence

Let $A_{1}, A_{2}, \ldots, A_{n}(n \geqslant 1)$ and B formulas of the same L first order language. We say that B is a first-order consequence of $A_{1}, A_{2}, \ldots, A_{n}$, if B is true in every interpretation for every valuation, where every formula of $A_{1}, A_{2}, \ldots, A_{n}$ is true. We denote this as $A_{1}, A_{2}, \ldots, A_{n} \models B$.

$$
\left.\begin{array}{ll}
A_{1}, A_{2}, \ldots, A_{n} \models B & \text { if and only if }
\end{array} \quad \vDash A_{1}, A_{2}, \ldots, A_{n} \supset B\right)
$$

Logic in Computer Science (lecture)

Prenex form

A formula is in a prenex form, if it is in the form of

$$
Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} A \quad(n \geqslant 0)
$$

where $Q_{i} \in\{\exists, \forall\}$ and x_{i} is a variable and A is a formula without quantifiers.

- It is a prenex conjunctive normal form (PCNF), if A is a conjunctive normal form,
- it is a prenex disjunctive normal form (PDNF), if A is a disjunctive normal form.

Logic in Computer Science (lecture)

Algorithm to create prenex forms

1. Clean the formula,
2. use the following rules:

$$
\begin{gathered}
\neg \forall x A \sim \exists x \neg A \\
\forall x A \vee B \sim \forall x(A \vee B) \\
\forall x A \wedge B \sim \forall x(A \wedge B) \\
\exists x A \vee B \sim \exists x(A \vee B) \\
\exists x A \wedge B \sim \exists x(A \wedge B) \\
\forall x A \supset B \sim \exists x(A \supset B) \\
\exists x A \supset B \sim \forall x(A \supset B)
\end{gathered}
$$

$$
\neg \exists x A \sim \forall x \neg A
$$

$$
A \vee \forall x B \sim \forall x(A \vee B)
$$

$$
A \wedge \forall x B \sim \forall x(A \wedge B)
$$

$$
A \vee \exists x B \sim \exists x(A \vee B)
$$

$$
A \wedge \exists x B \sim \exists x(A \wedge B)
$$

$$
A \supset \forall x B \sim \forall x(A \supset B)
$$

$$
A \supset \exists x B \sim \exists x(A \supset B)
$$

