part I. PROPOSITIONAL LOGIC

ZERO ORDER LOGIC

Logic in computer science

Seminar: INGK401-K5; INHK401; INJK401-K4 University of Debrecen, Faculty of Informatics kadek.tamas@inf.unideb.hu

Statement

Statement:

- is a declarative sentence,
- with clear meaning.

Aristotle's basic rules:

- conflict-free: all of our statements have exactly one value (not able to be true and false in the same time),
- there is not third logical value (only true and false).

PART I. PROPOSITIONAL LOGIC (ZERO ORDER LOGIC)

Alphabet of the propositional logic:

- propositional letters: X, Y, Z, ...,
- logical symbols:
 - \neg negation sign,
 - $-\ \wedge\ \text{conjunction}$ sign,
 - $-~\vee$ disjunction sign,
 - \supset implication sign,
- delimeter symbols: normal brackets

PROPOSITIONAL FORMULAS

The inductive definition of the propositional formula:

- 1. A propositional letter is a formula. (These are atomic formulas.)
- 2. If A is a formula, then $\neg A$ is a formula too.
- 3. If A and B are formulas, then $(A \land B)$, $(A \lor B)$, $(A \supset B)$ are formulas.
- A string of symbols is a formula if and only if it can be obtained by starting with atomic formulas and repeatedly applying the inductive steps (2 and 3), and it must terminates after a finite number of steps.

We denote the set of propositional (or zero order) formulas as L_0 .

Syntactical properties

Immediate subformulas:

- 1. An atomic formula has no immediate subformulas.
- 2. The only immediate subformula of $\neg A$ is A.
- 3. The immediate subformulas of $(A \circ B)$, where $\circ \in \{\land, \lor, \supset\}$, are A and B.

Let A be a formula. The **set of subformulas** of A is the

- smallest set
- \bullet that contains A,
- and contains, with each member, the immediate subformulas of that member.

Syntactical properties

The **logical degree** of a formula: $d : \mathbf{L}_0 \rightarrow N_0$

- 1. d(A) = 0, if A is an atomic formula,
- 2. $d(\neg A) = d(A) + 1$, where A is an arbitrary formula,
- 3. $d(A \circ B) = d(A) + d(B) + 1$, where A and B are arbitrary formulas, and $\circ \in \{\land, \lor, \supset\}$.

Syntactical properties

The scope of a logical connective (logical symbol) in a formula A, is a subformula of A,

- which contains the logical symbol, and
- which has the smallest logical degree.

The **main logical connective** of a non atomic formula, is the logical connective in the formula, which scope is the whole formula itself.

ABBREVATIONS

The **precedence** of the logical connectives:

 $\{\neg\}, \{\land,\lor\}, \{\supset\}$

higher precedence \rightarrow lower precedence

- 1. The outmost parentheses can be omitted.
- 2. The parentheses can be omitted, if the logical symbol in the inner expression have higher precedence, than the outer logical symbol.

SEMANTICS

Logical operations					
a	b	$\stackrel{\bullet}{\neg} a$	$a \stackrel{ullet}{\wedge} b$	$a \stackrel{\bullet}{\scriptstyle \lor} b$	$a \stackrel{\bullet}{\supset} b$
true	true	false	true	true	true
true	false		false	true	false
false	true	true	false	true	true
false	false		false	false	true

An **interpretation** of a propositional (zero-order) logic language is a function that assigns to each propositional letter a unique truth value.

 $\mathcal{I}: Pr \rightarrow \{true, false\}$ (where Pr denotes the set of propositional letters)

TRUTH VALUATION OF FORMULAS

We denote the **truth valuation** of propositional formula A by a given interpretation \mathcal{I} as $|A|^{\mathcal{I}}$. It is defined as a recursive function:

- $\bullet \ |A|^{\mathcal{I}} = \mathcal{I}(A) \text{ if } A \text{ is an atomic formula,}$
- $|\neg A|^{\mathcal{I}} = \stackrel{\bullet}{\neg} |A|^{\mathcal{I}}$ where A is an arbitrary formula,
- $|(A \land B)|^{\mathcal{I}} = |A|^{\mathcal{I}} \stackrel{\bullet}{\land} |B|^{\mathcal{I}}$ where A and B are arbitrary formulas,
- $|(A \lor B)|^{\mathcal{I}} = |A|^{\mathcal{I}} \stackrel{\bullet}{\lor} |B|^{\mathcal{I}}$ where A and B are arbitrary formulas,
- $|(A \supset B)|^{\mathcal{I}} = |A|^{\mathcal{I}} \stackrel{\bullet}{\supset} |B|^{\mathcal{I}}$ where A and B are arbitrary formulas.

SEMANTICAL PROPERTIES

An \mathcal{I} interpretaion is called the **model** of an A formula, if $|A|^{\mathcal{I}} = true$. We shortly denote this by $\mathcal{I} \models A$. Otherwise we will use $\mathcal{I} \not\models A$ when \mathcal{I} is not a model of A.

An A formula is called **tautology**, when $\mathcal{I} \models A$ satisfied for all possible \mathcal{I} interpretation. (In this case, the A formula is true for all possible interpretations) We shortly denote this by $\models A$.

An A formula is called **contradiction**, when A has no model. (In this case, the A formula is false for all possible interpretations.) We shortly denote this by $\exists A$.

SEMANTICAL PROPERTIES

Let A and B formulas. We say that A and B are **logically equivalent**, when A and B have the same truth value for every possible interpretation. We shortly denote this by $A \sim_0 B$.

Let A_1, A_2, \ldots, A_n (where $n \ge 1$) and B formulas. We say that B is a **propositional consequence** of A_1, A_2, \ldots, A_n or B follows from A_1, A_2, \ldots, A_n , denoted $A_1, A_2, \ldots, A_n \models B$, if B is true in every interpretation, where every formula of A_1, A_2, \ldots, A_n is true.

A conclusion of some premises said to be correct, if and only if the conclusion is the logical consequence of the premises.

NORMAL FORMS

A **literal** is an atomic formula, or a negation of an atomic formula. An **elementary conjunction** is

- a literal, or
- a conjunction of a literal and an elementary conjunction.

 $(L_1 \wedge L_2 \wedge \ldots \wedge L_n \text{ where } n \ge 1 \text{ and } L_1, L_2, \ldots, L_n \text{ are literals})$

An elementary disjunction is

- a literal, or
- a disjunction of a literal and an elementary disjunction.

 $(L_1 \lor L_2 \lor \ldots \lor L_n \text{ where } n \ge 1 \text{ and } L_1, L_2, \ldots, L_n \text{ are literals})$

NORMAL FORMS

A conjunctive normal form is

- an elementary disjunction, or
- a conjunction of an elementary disjunction and a conjunctive normal form.

A disjunctive normal form is

- an elementary conjunction, or
- a disjunction of an elementary conjunction and a disjunctive normal form.

Algorithm to create normal forms

1. Until the formula contains implication, remove it using one of the following equivalences:

$$A \supset B \sim_0 \neg A \lor B$$
 and $\neg (A \supset B) \sim_0 A \land \neg B$

2. Until the formula contains nagation but not inside the literals, remove the negations using DeMorgan's laws and omitting the double negations:

$$\neg (A \lor B) \sim_0 \neg A \land \neg B$$
 and $\neg (A \land B) \sim_0 \neg A \lor \neg B$ and $\neg \neg A \sim_0 A$

3. If necessary, change the order of the conjunctions and disjunctions using the distributivity laws:

$$(A \lor B) \land C \sim_0 (A \land C) \lor (B \land C)$$
$$(A \land B) \lor C \sim_0 (A \lor C) \land (B \lor C)$$