$\begin{array}{c} \text{Basic concepts of} \\ SET \ THEORY \end{array}$

Logic in computer science

Seminar: INGK401-K5; INHK401; INJK401-K4
University of Debrecen, Faculty of Informatics
kadek.tamas@inf.unideb.hu

Kádek Tamás, University of Debrecen 2012.

BASIC CONCEPTS OF SET THEORY

A **set** is a collection of objects which are called the members or elements of that set. We can say that a member of a set is in the set (or belongs to the set), and the other object are not in the set.

We can define a set:

- by listing all its members: Let H_1 be a set of students: $H_1 = \{Joe, Peter, Amy\}$ Let H_2 be a set of octal digits: $H_2 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ or $H_2 = \{0, 1, \dots, 7\}$
- or with relevant properties:
 Let H₃ be a set of students in the room:
 H₃ = {h|where h is a student in the room}
- we denote the empty set with the following symbol: \oslash

BASIC CONCEPTS OF SET THEORY

Notations:

- $h \in H$ denotes that h belongs to H (or h is a member of H) $5 \in \{0, 1, 2, 3, 4, 5, 6, 7\}$
- $h \notin H$ denotes that h does not belong to H (or h is not a member of H) $Thomas \notin \{Joe, Peter, Amy\}$

BASIC CONCEPTS OF SET THEORY

- A set H₁ is a subset of a set H₂ if and only if, every element of H₁ is also an element of H₂. Such a relation between sets is denoted by H₁ ⊆ H₂.
- When $H_1 \subseteq H_2$ and $H_2 \subseteq H_1$ then, H_1 and H_2 has the same members. Notation: $H_1 = H_2$.
- Two sets are said to be disjoint if they have no element in common.
- The set of all subsets of a set H is called the **power set** of H and denoted as $\mathcal{P}(H)$ Example: $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$

BASIC OPERATIONS

Basic operations over $\mathcal{P}(U)$: Let H_1 and H_2 be sets form $\mathcal{P}(U)$!

- union: $H_1 \cup H_2 \rightleftharpoons \{h | h \in H_1 \text{ or } h \in H_2\}.$
- intersection: $H_1 \cap H_2 \rightleftharpoons \{h | h \in H_1 \text{ and } h \in H_2\}.$
- difference: $H_1 \setminus H_2 \rightleftharpoons \{h | h \in H_1 \text{ and } h \notin H_2\}$
- complement: $\overline{H_1} \rightleftharpoons \{h | h \in U \text{ and } h \notin H_1\}$
- Cartesian product (or product set): Let H_1, H_2, \ldots, H_n (n > 0) be nonempty sets: $H_1 \times H_2 \times \ldots \times H_n \rightleftharpoons$ $\{(h_1, h_2, \ldots, h_n) | h_1 \in H_1 \text{ and } h_2 \in H_2 \text{ and } \ldots \text{ and } h_n \in H_n)\}$

BINARY RELATIONS

With a binary relation, we will define relations between elements of two sets. When $(h_1, h_2) \in R$ (h_1 is related to h_2) then we use the notation: h_1Rh_2 . The $R \subseteq H \times H$ is a binary relation on H. A binary relation is

- a reflexive relation, if hRh for all $h \in H$,
- an anti-reflexive relation, if there is no $h \in H$ where hRh,
- a symmetric relation, if (for all $h_1, h_2 \in H$) when h_1Rh_2 then h_2Rh_1 ,
- an anti-symmetric relation, if there is no $h_1,h_2 \in H$ where h_1Rh_2 and $h_2Rh_1,$
- a transitive relation, if (for all $h_1, h_2, h_3 \in H$) when h_1Rh_2 and h_2Rh_3 then h_1Rh_3

DOMAIN AND RANGE

Let R be a binary relation on H! $(R \subseteq H \times H)$

• The domain of R (denoted by Dom(R)) is the following set:

 $\{h_1|(h_1,h_2)\in R \text{ for some } h_2\}$

• The range of R (denoted by $\operatorname{Rng}(R)$) is the following set:

 ${h_2|(h_1, h_2) \in R \text{ for some } h_1}$

FUNCTIONS

Let R be a binary relation on H! $(R \subseteq H \times H)$

• R is called injective (left unique) relation if, for all $x \in H$ and $y \in H$:

xRz and $yRz \implies x = y$

- R is called surjective if, for all $y \in H$ there exists an $x \in H$ where xRy. It's also called right total because Rng(R) = H.
- R is called bijective when, it is both injective and surjective.
- R is called functional (right unique) or partial function if, for all $x, y, z \in H$:

$$xRy$$
 and $xRz \implies y=z$

• R is called function if, it is functional and Dom(R) = H. In other words: a function is functional and left total relation.