
Torch: Software Package For The Search Of Linear
Binary Codes

Carolin Hannusch
Department of Computer Science

Faculty of Informatics
University of Debrecen

Kassai út 26
H-4028 Debrecen, Hungary

hannusch.carolin@inf.unideb.hu

Sándor Roland Major
Department of Information Technology

Faculty of Informatics
University of Debrecen

Kassai út 26
H-4028 Debrecen, Hungary
major.sandor@inf.unideb.hu

Abstract—We describe a software package created by the
authors that can be used to search for linear binary codes with
almost arbitrary conditions. The package is easily extensible and
reconfigurable to suit the specific needs of the search. The main
function can be used to search for currently unknown linear
codes, or to quickly generate examples of known codes.

Index Terms—binary codes, search algorithms, self-dual codes

I. INTRODUCTION AND MOTIVATION

The search of linear binary codes is as old as Coding Theory
is itself [11]. For a given codelength n, the question what
(n, k, d)-codes exist, where k denotes the dimension and d the
minimum distance, cannot be answered in general. For some
reason, within Coding Theory self-orthogonal and self-dual
codes enjoy special attention. Binary self-orthogonal codes are
called to be of Type II if all codewords have weight divisible
by 4, and to be of Type I if it has also codewords of weight
not divisible by 4.

It is well-known that Type II codes exist only for codelength
divisible by 8. Type I codes exist for all even codelengths.
Further, we know [9] that if C is a self-dual code, then its
minimum distance d ≤ 4b n

24c + 4, if n 6≡ 22 mod 24 and
d ≤ 4b n

24c+6, if n ≡ 22 mod 24. If C is a Type I code and
n ≡ 0 mod 24, then d ≤ 4b n

24c+2. If C is an (n, k, d) code,
where d reaches its upper bound, then C is called extremal. If
d does not reach the upper bound, but there does not exist a
code with the same length and dimension which would have
higher minimum distance, then C is called optimal.

For several natural numbers n, there are still open research
questions, the most regarding extremal and optimal self-dual
codes, e.g. the existence of a self-dual (72, 36, 16) Type II
code [5] or the existence of a self-dual (56, 28, 12) Type I
code [6]. The search of these codes have aimed that a lot of
codes were found ([8], [7]), but the original questions are
still not answered. We also use the notation of neighbouring
codes, which was introduced in [1]. Nowadays, code-based
cryptography is gaining more and more importance, as it is
also called post-quantum cryptography [10]. Our intention
was to invent a code searching software, which can create

different generator matrices for similar binary codes fast, so
those matrices can be used in cryptographic schemes.

II. THE SOFTWARE

The software implementation described in this paper is
used for research purposes to find linear codes with specific
conditions. The goal is to provide a search algorithm that can
be extended or configured in a flexible, reusable way, such that
new research results can be quickly and easily incorporated.
The package is named Torch.

In the following sections, we describe the technical require-
ments of the software, the high-level structure and interface,
and some practical results are presented.

A. Dependencies

The package is written in Python 3.x, and uses the following
software:
• Sagemath 9.x (https://www.sagemath.org/) is used for

most basic linear code operations, and to provide an
interface to other software packages

• the GAP Guava package (https://www.gap-
system.org/Packages/guava.html) is used for some
specific operations, such as minimum distance calculation

• Magma (http://magma.maths.usyd.edu.au/magma/) is
used for operations where the provided function is more
efficient than the Sagemath implementation

B. Modules, options, configurations

The top-level function of Torch is named get codes(). This
function can be provided with a large number of parameters
and options. A custom dependency injection framework is
used to configure the search algorithm using the information
given to the search function. The implementation contains
a number of modules for each task in the search. The
relationships between these modules are described in .json
configuration files. Each config file describes one commonly
used way of assembling the objects needed to start the search.
Multiple configurations can be combined.

The default configuration defines a depth-first search. When
searching for an (n,k,d) code, the starting node is a generator

matrix for an (n,1,d’) code, d′ ≥ d. The search tries to append
this matrix one row at a time, such that at a depth of K’, the
current node will be a generator matrix for an (n,k’,d”) code,
d′ ≥ d′′ ≥ d. When a depth of k is reached, the matrix is
returned as a solution and the search continues.

To carry out the search, the software needs to generate
candidate vectors that could be appended to the current matrix.
Each time a new candidate vector is found, a list of conditions
are checked, which are specific to the type of linear code
being searched. If all conditions are fulfilled, a new node
in the search is created where the parent node’s matrix has
been appended by the candidate vector. The efficiency of the
search greatly depends on how fast the candidate vectors can
be created, and how many branches of the search tree can be
pruned by the list of conditions.

To ensure that the default search is exhaustive, the condi-
tions included are such that at least one linear code should be
returned from each permutation equivalence class.

The following modules are important for instantiating the
default search algorithm:
• weights: Generates the permitted Hamming weight values

for the codewords of a given code. This module is used
in multiple other modules to determine possible weights.

• mu table: Let a and b be two codewords, and let µ(a, b)
be the number of coordinates i where both ai and bi
have a value of 1. For any a and b, w(a + b) =
w(a)+w(b)−2µ(a, b). For any pair of codeword weights,
the possible µ values for codewords with those weights
can be precomputed before the search begins. This infor-
mation is computed and stored by the mu table module,
and used when generating candidate vectors.

• starters: Generates the possible root nodes of the search.
yielding (n,1,d’) matrices. The number of possible start-
ing matrices depend on the permitted Hamming weights
as determined by the weights and mu table modules.

• solutions: Given an (n,k’,d’) generator matrix G, the
solutions module creates the possible candidate vectors
that can be appended to G. The most commonly used
implementation for this module generates these vectors
using a recursive algorithm to distribute a number of 1
values among the vector’s coordinates. The vectors are
generated sorted in ascending or descending order of
Hamming weight. The algorithm is recursive to avoid
generating the same prefixes for vectors multiple times.
The algorithm also checks a number of conditions during
the intermediate steps of generating a vector, in order to
abandon incorrect prefixes.

Another implementation of this module, used in searches
for self-orthogonal codes, uses the dual code of G to find
possible vectors.
The search algorithm can dynamically switch between
implementations during the search when it detects that
another implementation would be more efficient. By
default, the decision to switch is based on the size of
the dual code.

• children: Given a node containing an (n,k’,d’) genera-
tor matrix, the children module generates the possible
(n,k’+1,d”), d ≤ d′′ ≤ d′, matrices that can be created
by appending the input matrix with one new vector. This
module uses the solutions module to find the possible
candidate vectors. The children module is also configured
with a list of conditions that must be fulfilled in order
to accept an appended matrix as a new node. These
conditions depend on the specific properties of the code
being searched for. New conditions can be easily created
by extending an abstract base class named AbstractCheck
and adding the new class to the appropriate configuration
file. Adding new conditions like this is the main way of
incorporating new research results in the search in order
to speed up the algorithm.

• descendants: Given a node containing an (n,k’,d’) gener-
ator matrix G, this module generates the possible (n,k,d)
matrices that can be created by appending G with k− k′
new vectors. This module uses the children module for
the intermediate steps of the search. The default search
is done by calling the descendants module using the root
nodes returned by the starters module as inputs. The most
basic implementation of this module builds a tree from
the nodes created by the other modules.
Another implementation creates a graph from the nodes
to avoid generating a matrix that is just a permutation of
vectors of a previous matrix.
Like the solutions module, the descendants module can
also switch between implementations during the search
when certain conditions are met.

• saver: Saves the returned linear code objects. The object
is serialized to a file using the python package pickle. A
function to deserialize the objects is also provided. Using
this module is optional.

• logger: Logs the activity of the search algorithm. The
default implementation writes the log to console. Using
this module is optional.

For testing and experimental purposes, the modules can
also be instantiated independently of the search algorithm,
using the dependency injection framework. This framework
also handles choosing between multiple implementations for
a module during build time, using the parameters given to the
search function.

The basic parameters given to the search algorithm are
the (n,k,d) and type properties of the linear code. The type
parameter can be type=None, which adds no other conditions
to the code, type=1 when searching for a simply even self-
orthogonal code, or type=2 when searching for a doubly even
self-orthogonal code.

The algorithm also accepts a large number of optional
parameters. The most commonly used ones are the following:
• verbose: Default value is True. If set to False, this option

turns of the logger module.
• ascending: Default value is False. Determines if the

vectors in the generator matrix should be generated in

ascending or descending order of Hamming weight.
• save: Determines the path of the save folder where the

serialized linear code objects will be stored. If set to
None, it turns off the saver module.

• config: Determines the configuration file to be used in
the search. This parameter is a list of filenames when
combining multiple configurations together. If multiple
files in the list contain information regarding the same
module, the file later in the list overwrites the settings
from files earlier in the list.

• standard: Default value is True. Determines if the gen-
erator matrices created by the algorithm should be in
standard form or not.

• wsorted: Default value is True. Determines if the rows
of the generator matrices created should be sorted by
Hamming weight.

• ordered: Default value is True. Determines if the gen-
erator matrices should use a special ordered form to
reduce the number of codes created that are permutation
equivalent to each other.

Most modules also have optional parameters specific only to
them, to further fine-tune their functions. These parameters
can also be given to the search algorithm, so the dependency
injection framework can add them to the modules during build
time.

The package includes a number of other available configu-
rations used for more specific code searches. These searches
are often used in experiments to test new research results.
These configurations modify the default configuration de-
scribed previously, by adding new conditions for pruning the
search tree, or new implementations to certain modules. These
configurations include:

• wlimits: Used for searches where the Hamming weight
of the rows of the generator matrix being searched
for is limited. Two optional parameters are introduced:
min line weight is used to set the lower weight limit of
the rows in the generator matrix, and max line weight is
used to set the upper limit. A common application of this
configuration is searching for generator matrices with a
minimum total weight, or searching for matrices where
all rows have equal weight.

• alternating: Using the default configuration, matrices are
generated such that the Hamming weights of the rows
are sorted in descending order. Using the alternating
configuration, the matrices will alternate between high
weight and low weight for each row. This configuration
is used for experimental purposes. In some search cases
it is observed that using this construction yields linear
codes faster than the default settings.

• no all one: This configuration is used to create generator
matrices such that the linear code does not contain the
codeword where every coordinate’s value is 1. Since
self-dual codes always contain the all-1 codeword, this
configuration cannot be used to create such codes. The
most common use case of this configuration is creating

codes that will be used as building blocks for other, larger
codes.

• morningstar: This configuration is used to create gener-
ator matrices such that the linear code always contains
the all-1 codeword. It uses modified implementations of
the starters and descendants modules, making sure that
at each step, the sum of all rows of the generator matrix
is the all-1 codeword. This configuration cannot be used
together with the no all one configuration. The most
common use case is searching for self-dual codes, or self-
orthogonal codes that can be later appended using other
methods.

• neighbor: This configuration is based on a research
result regarding self-dual codes. The typical use case is
searching for Type I self-dual codes. Let C be an (n,k,d)
Type I self-dual linear code, where n is divisible by 8.
Let Cmax be the maximal doubly-even subcode of C.
The dimension of Cmax is k-1. The dual code of this
subcode is C⊥max, and its dimension is k+1. Thus, the
number of codewords in C⊥max is 2k+1. It can be shown
that the number of singly even codewords in C⊥max is
2k−1 and the number of doubly even codewords in C⊥max

is 2k+1 − 2k−1. The configuration uses this result as a
condition to prune the search tree.

• perm equiv: The conditions in the default configuration
are such that a search typically finds multiple linear
codes that are permutation equivalent to each other. This
configuration checks to make sure that only codes that are
not equivalent are yielded. The current implementation
compares nodes to previosly found ones, making this
configuration very memory-intensive when searching for
large codes. This configuration is used when the goal of
the search is to confirm the existence of a code, and not
to generate a large number of examples.

III. PROOF OF CONCEPT

In [13], page 98, the question arose when is the first
codelength n, such that a Type I code is better than the best
known Type II code. No such code is known up to now. Our
searching software is doing an exhaustive search for each case.
From here it follows, that for given (n, k, d) there may be
permutation equivalent codes among all found codes, but there
does not exist a code which is not equivalent to at least one
of the found codes. By using our software we could easily
compute the following facts, which are known results ([4],
[12]):

1) There exist (16, 8, 4) Type I and Type II codes. (In the
case of Type II, this is a Reed-Muller code.)

2) There is no (16, 8, 6) Type I code.
3) There exists at least one (24, 12, 8) Type II code.

(Known as Golay-code.)
4) There is no (24, 12, 8) Type I code.
5) There is at least one (24, 12, 6) Type I code.
6) There is at least one (32, 16, 6) Type I code.
7) There is no (32, 16, 10) Type I code. ((32, 16, 8) Type

II is a Reed-Muller code.)

8) There is at least one (40, 20, 6) Type I code.
From here it follows, that if there exists such an (n, k, d)

Type I code, which is better than the best (n, k, d) Type II
code, then n ≥ 40. Further, we conjecture that n ≥ 56 if such
a code would exist, but exhaustive search was not finished for
those cases.

Furthermore, in [2] a possible construction for a self-dual
(72, 36, 16) code is given, which uses a (56, 21, 16) Type II
code. By computing with our software, we could find seven
non-equivalent (56, 20, 16) Type II codes, but no (56, 21, 16)-
code.

Additionally, we found an extremal (32, 16, 8) Type I code,
whose existence was known before [3].

Some results of our computations, especially the generator
matrices of the found codes mentioned before are available at

https://arato.inf.unideb.hu/hannusch.carolin/gm.txt

and some screenshots of the nonexistence of the codes
mentioned before are available at

https://arato.inf.unideb.hu/hannusch.carolin/kepernyokepek.jpg

A strength of the software is to compute many different
generator matrices for given (n, k, d) values in short time. The
codes generated may be permutation equivalent and they may
be not equivalent. This fact makes the Code Search Software
attractive for the use in code-based cryptographic schemes.

In the following Table I we give some results of our
computations, using different configurations of the Torch Code
Searching Software. All computations were done on a normal-
household laptop with Intel Core i7-7700HQ CPU (2.80GHz).
Our results can be regarded as a proof of concept. For future
research, we plan to use HPC supercomputer in order to use
the Torch Code Searching Software in parallel computations
and to fasten the searching procedure.

TABLE I
COMPUTATIONAL RESULTS

(n,k,d) Type using default perm equiv
configuration configuration

(16,8,4) Type I 43 codes 1 code
in 13.9 sec in 9.3 sec

(16,8,4) Type II 27 codes 2 codes
in 7.5 sec in 4.9 sec

(24,12,8) Type II not ending 1 code
1000 codes in 73.4 sec
in 673 sec

(24,12,6) Type I not ending 1 code
1000 codes in 2642 sec
in 2524 sec

(32,8,6) Type I not ending not ending
1000 codes 11 codes
in 35.3 sec in 5 hours

REFERENCES

[1] Brualdi, R. A., Pless, V. S. (1991). Weight enumerators of self-dual
codes. IEEE transactions on information theory, 37(4), 1222-1225.

[2] Bouyuklieva, S. (2008). Self-Dual Codes with Some Applications to
Cryptography. NATO Advanced Research Workshop, 6-9 October 2008,
Veliko Tarnovo

[3] Bouyuklieva, S., Willems, W. (2012) IEEE Trans. Inf. Theory 58, No.
6, 3856–3860

[4] Conway, J. H., Pless, V. (1980). On the enumeration of self-dual codes.
Journal of Combinatorial Theory, Series A, 28(1), 26-53.

[5] Conway, J. H., Sloane, N. J. (1990). A new upper bound on the minimal
distance of self-dual codes. IEEE Transactions on Information Theory,
36(6), 1319-1333.

[6] Dougherty, S. T., Kim, J. L., Solé, P. (2015). Open problems in coding
theory. Contemp. Math, 634, 79-99.

[7] Gulliver, T. A., Harada, M. (2008). On doubly circulant doubly even
self-dual [72, 36, 12] codes and their neighbors. Australasian Journal of
Combinatorics, 40, 137.

[8] Harada, M., Saito, K. (2018). Singly even self-dual codes constructed
from Hadamard matrices of order 28. Australas. J. Combin, 70(2), 288-
296.

[9] Joyner, D., Kim, J. L. (2011). Selected unsolved problems in coding
theory. Birkhäuser.

[10] Overbeck, R., Sendrier, N. (2009). Code-based cryptography. In Post-
quantum cryptography (pp. 95-145). Springer, Berlin, Heidelberg.

[11] Pless, V., Brualdi, R. A., Huffman, W. C. (1998). Handbook of coding
theory. Elsevier Science Inc..

[12] Pless, V., Sloane, N. J. (1975). On the classification and enumeration
of self-dual codes. Journal of Combinatorial Theory, Series A, 18(3),
313-335.

[13] Rains, E. M., Sloane, N. J. A. (1998). Self-dual codes, Handbook of
coding theory, Vol. I, II.

