
Results Math (2020) 75:148
c© 2020 The Author(s)
1422-6383/20/040001-25
published online September 20, 2020

https://doi.org/10.1007/s00025-020-01273-6 Results in Mathematics

Steiner Loops of Affine Type
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Abstract. Steiner loops of affine type are associated to arbitrary Steiner
triple systems. They behave to elementary abelian 3-groups as arbitrary
Steiner Triple Systems behave to affine geometries over GF(3). We inves-
tigate algebraic and geometric properties of these loops often in connec-
tion to configurations. Steiner loops of affine type, as extensions of normal
subloops by factor loops, are studied. We prove that the multiplication
group of every Steiner loop of affine type with n elements is contained in
the alternating group An and we give conditions for those loops having
An as their multiplication groups (and hence for the loops being simple).
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In this paper we want to describe Steiner triple systems by means of a standard
tool in algebra, that is, the reduction to simple objects via a composition series,
the corresponding extension theory, and the (possible) classification of these
simple objects. Although the literature on Steiner triple systems is huge and
authoritative, and the idea of associating a loop to a Steiner triple system
can often be found there, this approach has not yet been examined in depth.
We succeeded in the first two aims. As for a possible classification of simple
Steiner triple systems, the situation is more delicate, first of all because the
multiplication group of a simple loop is, in general, only a primitive group,
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secondly because our conjectured question, whether a simple Steiner loop of
affine type with n elements is a section of the alternating group on n letters
over the stabilizer of one letter, remains open, even in the case where its
multiplication group is simple. However, to the best of our knowledge, this has
always been the case.

The paper is organized as follows. We give the definition of a Steiner loop
of affine type and we prove the basic results in Sects. 1 and 2. In order to make
the paper self-contained for a broader audience, in the Introduction we give
also the basic definitions of Steiner triple systems and of loops, and the role
played by the group of left (or right) multiplications. Before switching over to
the reduction to simple Steiner loops of affine type, we investigate in Sect. 3,
which turns therefore to be more technical, the connection between the most
common configurations in Steiner triple systems and loop properties, such
as the inverse property, additionally we study Veblen points and Hall points
(which are defined in the present paper). In Sect. 4 extensions of Steiner loops
by normal subloops are investigated, and in Sect. 5 those Steiner loops of affine
type are considered, which have the alternating group as multiplication group.
These loops are simple.

1. Introduction

A quasigroup is a set L of elements endowed with a binary operation (◦)
which does not need to be associative, and which is such that the equations
a ◦ x = b and y ◦ a = b determine unique solutions x = a\b and y = b/a, thus
its multiplication table is a latin square, and a loop is a quasigroup which has
a neutral element Ω (see [28] and [11] for a general reference).

As pointed out first by R. Baer in [5], Th. 1.1., Corollary 1.2, loops can be
described as homogeneous spaces of their multiplication group GL , generated
by the left (resp. right) translations λa : x �→ a ◦ x (resp. ρa : y �→ y ◦ a): if
π : GL −→ L , g �→ gΩ is the orbit map, then the stabilizer H of Ω in GL is
a subgroup containing no non-trivial normal subgroup of GL .
The section σ : L → GL , x �→ λx, of π is such that: (i) σ(L ) is a transversal
of H in GL , (ii) σ(Ω) = id ∈ GL , (iii) σ(L ) generates GL , and iv) for every
x, y ∈ L there exists precisely one λz ∈ σ(L ) such that λz(x) = y (cf. also
[25], Sect. 1.2).

The operation xH ∗yH = σ
(
xy(Ω)

)
H makes the quotient GL /H a loop,

isomorphic to L via the mapping L −→ GL /H, g �→ λgH, because

g ◦ h �→ λg◦hH = σ
(
g ◦ h)H = σ

(
gh(Ω)

)
H = σ

(
λgλh(Ω)

)
H = λgH ∗ λhH

(cf. [25], Proposition 1.5, [32] Proposition 1).
If L1(◦) and L2(∗) are loops, a triple of bijections (α, β, γ) : L1 −→ L2

such that α(x) ∗ β(y) = γ(x ◦ y) is called an isotopism. As the only basic
property for a loop is that its left and right multiplications λa : x �→ a ◦ x and
ρa : x �→ x ◦ a are bijections, loop theory is often developed up to isotopisms,
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instead of isomorphisms (which, in particular, turn out to be isotopisms where
α = β = γ).

Kernels N of homomorphisms turn out to be defined by the relations

x ◦ N = N ◦ x, x ◦ (N ◦ y) = (x ◦ N) ◦ y, x ◦ (y ◦ N) = (x ◦ y) ◦ N

for any x, y ∈ L , which define normal subloops, and which, in the case of a
commutative loop L (+) reduce to the only

x + (y + N) = (x + y) + N (1)

(cf. [29], p. 1189). A normal subloop N determines a partition of the loop
L in cosets (notice that this is not necessary for arbitrary subloops), thus
|L | = |N | · |L /N |. If a loop L has only its trivial normal subloops {Ω} and L,
then it is called simple. In the case where L is a simple loop, the multiplication
group of L turns out to be primitive (see [1], Th. 8, p. 516).

A Steiner triple system is a pair (S ,T ), where T is a family of triples of
elements of S such that any two elements of S are contained exactly in one
triple of the family T . Steiner triple systems exist if and only if n is equivalent
to 1 or 3 modulo 6. We will use the abbreviation STS or STS(n) for a Steiner
triple system, or for a Steiner triple system on n elements, respectively. Since
the mid-twentieth century, a large literature has been devoted to Steiner triple
systems (a fundamental monograph on the subject is [12]). Basic examples
of STS’s include the point-line geometry of any projective space over GF(2)
or the one of any affine space over GF(3), which for n = 7 and n = 9 are
the only STS(n) (for our convenience, we take the occasion to recall that the
unique STS(7) is usually called the Fano plane). If any two distinct intersecting
triples are such that the minimal Steiner triple subsystem containing them is
the STS(9), then the STS is called a Hall triple system (HTS). An isomorphism
f : S1 −→ S2 of Steiner triple systems (S1,T1) and (S2,T2) is a bijective
map which moves the triples of T1 onto triples of T2.

In the present paper, we study a family of commutative loops of exponent
3 associated to STS’s, which are defined by the following operation:

Definition 1. Let S be a Steiner triple system, and let Ω ∈ S be fixed. For
each x ∈ S , define its opposite −x as the third point μ(x) in the triple
{x,Ω, μ(x)} through x and Ω, define the addition x + Ω = x, x + x = −x,
and, for any y �= x ∈ S \ {Ω},

x + y = −z,

where z is the third point in the triple through x, y.

With the above defined operation, the Steiner triple system S turns into
a loop LS , that we will call Steiner loop of affine type with identity Ω, where
the triples {x, y, z} of (S ,T ) are characterized by the property that

x + y + z = Ω.
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We stress the fact that for any triple in T the associative property holds. The
Steiner loop of affine type associated to a STS is a group exactly in the case
where the STS is an affine geometry AG(d, 3) of the affine lines over the Galois
field GF(3).

Remark 1. Note that, if L1 and L2 are the commutative Steiner loops of
affine type associated to the same STS by fixing two different elements Ω1

and Ω2, and if we denote the opposite maps by μ1 and μ2, according to the
triples {x,Ω1, μ1(x)} and {x,Ω2, μ2(x)} in T , then the map γ : L1 −→ L2,
γ(x) = μ2(μ1(x)) induces an isotopism (id, id, γ) : L1 −→ L2.
If S is a HTS, then any two Steiner loops of affine type associated to S by
fixing two different identities Ω1 and Ω2, are even isomorphic (see Remark 2),
but if S is not a HTS, then this is in general not true: the two Steiner loops
of affine type with identity 1 and 2, defined by the following addition tables

+ 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 3 1 5 4 7 6
3 3 1 2 6 7 4 5
4 4 5 6 7 2 3 1
5 5 4 7 2 6 1 3
6 6 7 4 3 1 5 2
7 7 6 5 1 3 2 4

+ 1 2 3 4 5 6 7
1 3 1 2 5 4 7 6
2 1 2 3 4 5 6 7
3 2 3 1 7 6 5 4
4 5 4 7 6 1 2 3
5 4 5 6 1 7 3 2
6 7 6 5 2 3 4 1
7 6 7 4 3 2 1 5

can be shown, after tedious computations, to be non-isomorphic, still isotopic
and defining the same STS(7).

Remark 2. (i) In Definition 1 we denoted with −b the third element in the
triple containing b and Ω, so that −b + b = Ω. Since, usually, a − b denotes
in Loop theory the solution of the equation x + b = a, and since this turns
to be identically equal to a + (−b) (if and) only if the Steiner loop of affine
type has the inverse property (cf. Theorem 5) we have to stress that, to avoid
ambiguity, we will always write −b + a or, when this is not possible, we will
write a + (−b). We thank the referee for suggesting this more exact notation.

(ii) The addition + given above in Definition 1 is the same as the second
addition ◦ given by Chein in [11], II.9.9 Example, p. 86. In this paper, Chein
gives two different additions, which turn to coincide precisely in the case where
the STS is a Hall triple system, as we remark here. For Hall triple systems,
however, this other addition ∗ was already given in the 1960’s by M. Hall and
R. H. Bruck, who put, in fact, x∗y = z, where z is the third point in the triple
through the two elements lying, respectively, in the triple through Ω and x
and in the triple through Ω and y, that is, in our notation (see Proposition 3),

x ∗ y = −(
(−x) + (−y)

)
.

For a Hall triple system S , the Steiner loop of affine type LS turns out to be a
commutative Moufang loop of exponent 3 [20] (see also [16]), i.e. the sequence
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of incidence systems AG(n, 3)’s, HTS’s, STS’s corresponds to the sequence of
loops: elementary abelian 3-groups, commutative Moufang loops of exponent
3, Steiner loops of affine type.

Since isotopic commutative Moufang loops are isomorphic [7], any two
Steiner loops of affine type associated to a HTS by fixing two different identities
Ω1 and Ω2, are isomorphic.

Whereas the loops of affine type associated to Hall triple systems fulfill
Moufang’s identity

x +
(
x + (y + z)

)
= (x + y) + (x + z),

general Steiner loops of affine type only fulfill

y + y = x +
(
(x + y) + (x + y)

)
,

which is obtained by the former when one takes z = y (cf. [3]).

Remark 3. To any STS one can associate another commutative loop. In fact,
already in 1958, Bruck remarked that a commutative totally symmetric loop,
that is, such that x ◦ (x ◦ y) = y is essentially an algebraic version of a Steiner
triple system, where the triples are exactly the sets {x, y, x◦y}, and the identity
Ω is an extra point, not in the STS [7]. These other loops have been studied,
among the others, in [29] and in [30]. Also in such totally symmetric loop, the
triples {x, y, z} of (S ,T ) are characterized by the property that, however we
associate the product, the equality

x ◦ y ◦ z = Ω

holds (and in fact we came to the present paper after a series [9], [10], [14],
[15], concerned with this characterization of blocks in a design). Such Steiner
loop associated to a STS is a group exactly in the case where the triples of the
STS are the projective lines of a projective geometry PG(d, 2) over the Galois
field GF(2).

For any a, b ∈ S the solution x ∈ S of the equation a + x = b is
x = −(−b + a). As stressed in Remark 2 (i), we will see in Sect. 3 that
−(−b + a) = −a + b if and only if a, −b and Ω form a mitre centered in Ω.

As remarked already in II.9.9 Example in [11], p. 86, our definition yields
a commutative loop LS of exponent 3 fulfilling the weak inverse property
(introduced in [27]), that is, such that for any 3-sets {x, y, z} of LS with
x + y + z = Ω the associative property holds. Conversely, it is easy to see
that, if LS is a commutative loop fulfilling the weak inverse property such
that 3x = Ω, then LS gives the structure of a Steiner triple system SL .
Obviously, S = SLS

and L = LSL
.

Since the left translation map from LS to LS , λa : x �→ a+x, coincides,
for all a ∈ LS , with the right translation map ρa : x �→ x + a, the group
generated by all left translations of LS coincides with the group generated by
all right translations of LS and we denote it by Mult(LS ).
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Finally, for a Steiner loop LS of affine type, and for any z ∈ LS , we
will use the following map

ιz = ρ−z ◦ ρz = λ−z ◦ λz. (2)

2. General Facts

In this section we settle the basic correspondences between Steiner triple sys-
tems and their associated Steiner loops of affine type.

Theorem 1. Let S be a Steiner triple system and LS the corresponding Steiner
loop of affine type with identity Ω ∈ S .
(i) LR is a subloop of LS if and only if R is a Steiner triple subsystem of

S containing Ω.
(ii) If LR is a normal subloop of LS , then each coset x + LR corresponds

to a Steiner triple subsystem of S .
(iii) If LR is a normal subloop of LS , then the quotient loop Q yields a

Steiner triple system SQ .

Proof. (i) R is a subsystem of S containing Ω if and only if LR is closed
under the operation of LS , hence the assertion follows.

(ii) If LR is a normal subloop of LS , then LS /LR is such that, for any
x ∈ LS ,

(x + LR ) + (x + LR ) + (x + LR ) = LR ,

hence, for any ω1, ω2 ∈ LR the third element in the triple through x+ω1

and x+ω2 belongs to x+LR , that is, x+LR is a Steiner triple subsystem
of S .

(iii) This follows from the fact that Q is a commutative loop of exponent 3
with the weak inverse property. �

Remark 4. It must be noticed that, in the case where LR is a normal subloop
of LS , the corresponding cosets are not necessarily isomorphic Steiner triple
subsystems. This will be manifest in the case 4.3 described in Sect. 4, where
LR is an affine hyperplane.

Theorem 2. Let (S ,T ) be a Steiner triple system and LS be the correspond-
ing Steiner loop of affine type with identity Ω. The automorphisms of S fixing
Ω are exactly the automorphisms of LS .

Proof. Let {x, y, z} be a triple of T . If f ∈ Aut(LS ), then clearly f(Ω) = Ω
and from

f
( − (x + y)

)
= −(

f(x) + f(y)
)

it follows that f maps {x, y, z} onto {f(x), f(y), f(z)}, that is, f ∈ Aut(S ).
Conversely, if f ∈ Aut(S ) is such that f(Ω) = Ω, then the element f(x +
y) = f(−z) is in the triple through f(z) and f(Ω) = Ω, hence it is −f(z) =
f(x) + f(y). �
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Theorem 3. Let S be a Steiner triple system with n points, and let LS be
the associated Steiner loop of affine type with identity Ω ∈ S . Then each
translation of LS is even and has the form

λx = (Ω, x,−x)τ1 . . . τr

where each τi is an even permutation of the form

τi = (v1, v2, . . . , vti)(−vti , . . . ,−v2,−v1).

Proof. Each λx can be written as

λx = (Ω, x,−x)σx,

where σx is a permutation without any fixed point on the set LS \{Ω, x,−x}
for each x ∈ LS \{Ω}. As σx has no fixed point it does not contain any 1-cycle.
If σx contains the j-cycle (v1, v2, v3, ..., vj), then the STS has the following
blocks: {x, v1,−v2}, {−v2, Ω, v2}, {x, v2,−v3}, {−v3, Ω, v3}, . . . , {x, vj ,−v1},
{−v1, Ω, v1}, since x+v1 = v2, x+v2 = v3, . . . , x+vj = v1. Using these blocks
the permutation σx has also the j-cycle (−v2,−v1,−vj ,−vj−1, . . . ,−v3). So
each j-cycle (v1, v2, v3, ..., vj) of σx appears in σx together with j-cycle (−vj , ...,
−v3,−v2,−v1). Since in σx every j-cycle appears with such a disjoint j-cycle,
it is an even permutation. Then also every λx = (Ω, x,−x)σx is an even
permutation. �

Remark 5. For our convenience, we remark that Mult(LS ) is contained in An,
and the stabilizer StabMult(LS )(Ω) is contained in An−1.

3. Computing within a Steiner Loop of Affine Type

Steiner triple systems are often studied through their configurations, which
are given subsets of triples. Starting from two triples {z, a1, a2} and {z, b1, b2}
through one point z, two cases are possible: either the third point c1 in the
triple through a1 and b1 coincides with the third point c2 in the triple through
a2 and b2 (Pasch configuration C16), or not (configuration C14). In the latter
case, one can distinguish further the case where the triple containing the two
points c1 and c2 contains also z (the mitre configuration centered in z) and
the case where it does not (configuration CA).

The Pasch configuration (that is, the 4-triples configuration on the left-
hand side in Fig. 1) and the mitre centered at the point Ω (that is, the 5-triples
configuration on the right-hand side in Fig. 1), which are those appearing in the
projective geometry PG(d, 2) and in the affine geometry AG(d, 3), respectively,
are the two most commonly studied configurations.

According to the well-known axioms by Veblen and Young [31] (see [12],
p. 147), a point x is called a Veblen point, if any two triples through x determine
a Pasch configuration (hence a Fano plane). Similarly, in 3.2 we call a point z
a Hall point, if any two triples through z determine a mitre centered at z.
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Figure 1. On the left-hand side there is a Pasch configura-
tion. On the right-hand side there is a mitre centered in Ω

A celebrated result states that any point in a Steiner triple system S is
a Veblen point if, and only if, S is a projective geometry PG(d, 2) (see [12],
Th. 8.15, p. 147). More recently, it was proved in [22] that any point in S is
a Hall point if, and only if, S is a HTS.

In fact, as we show in the present section, the following intermediate
properties hold:
(1.i) Ω, x and y define a Pasch configuration if, and only if, x + y = (−x) +

(−y). Moreover, in this case ιx �= id,
(1.ii) Ω is a Veblen point if, and only if, for all y �= x it holds x + y =

(−x) + (−y) and ιx(±y) = ∓y.
(2.i) {−x,Ω, x} and {−y,Ω, y} define a mitre centered at Ω if, and only if,

−(x + y) = (−x) + (−y) and ιx(y) = y,
(2.ii) Ω is a Hall point if, and only if LS has the inverse property (equivalently,

−(x + y) = (−x) + (−y), or ιx(y) = y for all x and y in S ).
Thus the map ιx, defined in (2), plays a role in distinguishing the case

where Ω is contained in a Pasch configuration (see Proposition 1) from the
case where Ω is a Hall point (see Proposition 5).

3.1. Veblen Points in Steiner Loops of Affine Type

We begin by pointing out the role played by the map ιx when Ω is contained
in a Pasch configuration:

Proposition 1. A Steiner triple system contains the Pasch configuration
{x,Ω,−x}, {y,Ω,−y}, {x, y,−(x + y)}, {−x,−y,−(x + y)} if and only if
x + y = (−x) + (−y). Moreover, ιx(−(x + y)) = x + y.

Proof. The first assertion is just an algebraic description of Fig. 1. As for
the second one, it is sufficient to note that, with the notations in Fig. 1,
ιx(−(x + y)) = x + y. �

Proposition 2. Let LS be a Steiner loop of affine type with identity element
Ω. The Pasch configuration {x, y,−(x + y)}, {−x,−y,−(x + y)}, {x,Ω,−x},
{y,Ω,−y} is contained in a Fano plane if and only if λ2

x(y) = y and ιx(y) =
−y.
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Figure 2. The Veblen point x

Proof. We use the notations of Fig. 1 in order to make the proof descriptive.
Let w be the third point in the triple determined by x,−y.
If the Pasch configuration is contained in a Fano plane, then, together with
{x,−y, w}, also {−x, y, w} is a triple, and {−w,−x,−y} and {x, y,−w} are
triples, as well. Thus

λ2
x(y) = x + (x + y) = x + w = y

and

ιx(y) = −x + (y + x) = −x + w = −y.

For the other direction, under the assumption that λ2
x(y) = y and ιx(y) = −y,

we have to show that {x + y, x,−y} and {x + y,−x, y} are blocks. We have

Ω = −y + y = ιx(y) + y =
( − x + (y + x)

)
+ y

and

Ω = −y + y = −y + λ2
x(y) = −y +

(
x + (x + y)

)
,

and the assertion follows. �

As mentioned above, for Steiner triple systems, the concept of Veblen
point reduces to the following (see [12], p. 147):

Definition 2. Let x be a point in a Steiner triple system S . If for any y, p1, p2,
p3, p4 ∈ S such that y �= x and together with {x, p1, p3}, {x, p2, p4}, {y, p1, p2},
also {y, p3, p4} is a triple of S , then x is called a Veblen point. Alternatively,
the point x is called a Veblen point, if any two triples through x determine a
Fano plane (Fig. 2).

The following theorem will be used in Theorem 12 to prove that the
multiplication group of a simple Steiner loop of affine type, corresponding to
a STS(n) containing a Veblen point, is the alternating group on n letters.
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Theorem 4. Let S be a STS(n) containing a Veblen point v. Then n ≡ 3
(mod 4) and it holds
(i) v is the identity element Ω of LS if and only if, for any x �= Ω,

λx = (Ω, x,−x)(p1, q1)(−q1,−p1) · · ·
(
pn−3

4
, qn−3

4

)(
−qn−3

4
,−pn−3

4

)
.

Moreover, λ−x = (Ω,−x, x)(p1,−q1)(q1,−p1) · · · (pn−3
4

,−qn−3
4

)
(qn−3

4
,−pn−3

4
), whereas λpi

interchanges x with qi, and −x with −qi.
(ii) If v �= Ω, then
⎧
⎨

⎩

λv = (Ω, v,−v)(p1, q1)(−q1,−p1) · · ·
(
pn−3

4
, qn−3

4

) (
−qn−3

4
,−pn−3

4

)

λ−v = (Ω,−v, v)(p1,−q1)(q1,−p1) · · ·
(
pn−3

4
,−qn−3

4

) (
qn−3

4
,−pn−3

4

)
.

Proof. (i) If Ω is a Veblen point, then any two triples through Ω generate
a Fano plane and this yields the assertions in (i). Conversely, if λx and λ−x

have the form as in (i), then qi = x + pi = (−x) + (−pi), that is, the triples
{−qi, x, pi} and {−qi,−x,−pi} form a Pasch configuration.

(ii) If v �= Ω is a Veblen point, then the assertions about λv and λ−v are
a reformulation of Fig. 2 with y = Ω, because the assumption is equivalent to
saying that, if the block through v and pi contains −qi, then the block through
v and −pi contains qi. �

Remark 6. In the case where

λx = (Ω, x,−x)(p1, q1)(−q1,−p1) · · ·
(
pn−3

4
, qn−3

4

)(
−qn−3

4
,−pn−3

4

)
,

the assumption that

λ−x = (Ω,−x, x)(p1,−q1)(q1,−p1) · · ·
(
pn−3

4
,−qn−3

4

) (
qn−3

4
,−pn−3

4

)

is equivalent to the assumption that ιx fixes the points x, −x, and Ω, and
interchanges y and −y, for any y �= x.

3.2. Hall Points in Steiner Loops of Affine Type

In this section we consider the mitre configuration within the frame of Steiner
loops of affine type. The following straightforward proposition has already
been mentioned in the above Remark 2, where we wrote that for HTS’s the
two definitions given by Chein coincide with the one given by Hall and Bruck.

Proposition 3. Let LS be a Steiner loop of affine type with identity Ω. The
points x, y and Ω form a mitre centered in Ω if and only if −(x + y) =
(−x) + (−y). Moreover, ιx(y) = y.

Proof. This is again an algebraic description of Fig. 1. �

Now we want to give the following definition, that runs parallel to that
of Veblen point.
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Figure 3. The Hall point z

Definition 3. Let z be a point in a Steiner triple system S . If for any point
u,w, p1, p2, p3, p4 ∈ S such that u �= z together with the triples {z, p1, p3},
{z, p2, p4}, {u, p1, p2} and {w, p3, p4}, also {u,w, z} is a triple of S , then z is
called a Hall point. Alternatively, the point z is called a Hall point, if any two
triples through z determine a mitre centered at z (Fig. 3).

Recall that a loop (L , ∗) fulfills the inverse property if there exists a
bijective map ·−1 : L −→ L such that a−1 ∗ (a ∗ b) = (b ∗ a) ∗ a−1 = b, for all
a, b ∈ L . The following theorem demonstrates a connection between IP loops
and mitre configurations.

Theorem 5. Let LS be a Steiner loop of affine type with identity Ω. The
following are equivalent:

(i) ιx = id for any x ∈ S ,
(ii) LS has the inverse property,
(iii) Ω is a Hall point.

Proof. If ιx = id for any x ∈ S , then y = ιx(y) = −x + (x + y), which is
precisely the right inverse property of LS .

If LS has the inverse property, that is, y = −x + (x + y) for all x �= y in
S , but this means that the third point in the triple through −x and x + y is
−y, which proves the assertion.

Finally, if Ω is a Hall point, then ιx = id for any x ∈ S by Proposition 3.
�

Corollary 1. If S is a Hall triple system, then x �→ −x is an automorphism
of LS , hence LS has the inverse property.

Proof. The assertion follows from the fact that, in a HTS, every point is a Hall
point (cf. [22]), and we can apply Proposition 3 and Theorem 5. �
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Theorem 6. If S is a Hall triple system and LR is the associated Steiner loop
of affine type with identity Ω, then, for any x �= Ω, it holds

λx = (Ω, x,−x)(a1, b1, c1)(−c1,−b1,−a1) · · · (at, bt, ct)(−ct,−bt,−at).

Proof. If R ≤ S is a Steiner triple subsystem of order 9 containing the
triple T0 = {−x,Ω, x}, then LR is the elementary abelian group of cardi-
nality 9 and the triples are exactly the 3-subsets of elements summing up to
zero. In particular, the two parallel triples to T0 = {−x,Ω, x} are λy(T0) and
λ−y(T0), for a chosen y ∈ R \ T0. Thus the restriction of λx to R is simply
λx = (Ω, x,−x)(y, y + x,−x + y)(−y,−y + x, (−y) + (−x)). The claim follows
inductively. �
Remark 7. Note that, by Theorem 3, the condition on λx in Theorem 6 is
equivalent to saying that λx has order three.

Remark 8. By a well known theorem, proved first by B. Fisher, thereafter by
many others (see [18], cf. also Theorem 8 in the present paper), the order
of any Hall triple system is n = 3k, hence the number 2t + 1 of 3-cycles in
Theorem 6 is obtained for t = 3k−1−1

2 .

Theorem 7. Let S be a STS and let LS be the corresponding Steiner loop of
affine type with identity element Ω. Each left translation λx is an automor-
phism of S if and only if S is a Hall triple system.

Proof. Let S be a HTS, let x �= Ω be in S , and let {a, b, c} be a triple. If
x /∈ {a, b, c}, then the translation λx maps the triple {a, b, c} onto the triple
parallel to it and not containing x in the plane through x and {a, b, c}. If
x ∈ {a, b, c} and Ω /∈ {a, b, c}, then the translation λx maps the triple {a, b, c}
onto the triple parallel to it and not containing Ω in the plane through Ω and
{a, b, c}. Finally, if {a, b, c} = {−x,Ω, x}, then the translation λx maps the
triple {a, b, c} onto itself.

Conversely, assume that each left translation λx is an automorphism of
the STS S . Let {a, b, c} be a triple and x an element not contained in it. We
have to prove that {a, b, c} and x generate a STS(9).

First, we note that, together with each triple {y1, y2, y3}, also {−y1,−y2,
−y3} is a triple, because when we apply λ−y1 to the triple {−y2, Ω, y2}, we
obtain that {(−y1) + (−y2),−y1,−y1 + y2} is a triple, that is,

−y1 +
(
(−y1) + (−y2)

)
= −(−y1 + y2).

On the other hand, we have that

−(−y1 + y2) = −y1 + y3,

because if we apply λ−y1 to {y1, y2, y3}, we get the triple {Ω,−y1 + y2,−y1 +
y3}, thus

−y1 +
(
(−y1) + (−y2)

)
= −y1 + y3,

which means that (−y1) + (−y2) = y3, that is {−y1,−y2,−y3} is a triple.
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Second, together with {a, b, c} and {a + x, b + x, c + x}, also {−(a +
x),−(b + x),−(c + x)} is a triple.

Finally, let T1 = {−(a + x), c,m} and T2 = {−(c + x), a, n} be triples,
and apply λx to T2 to produce the triple T3 = {a + x, n + x,−(x + c) + x}.
From the triple T4 = {c, x,−(c + x)} we derive that −(c + x) + x = −c, thus
T3 = {a + x, n + x,−c}. Comparing now the triples T3 = {a + x, n + x,−c}
and T1 = {−(a+x), c,m}, we find that n+x = −m, because of the argument
that the opposite of a triple is also a triple. This proves that {a, b, c} and x
are contained in a STS(9). �
Corollary 2. Let S be a Hall triple system and LS the corresponding Steiner
loop of affine type with identity element Ω. The map f is an automorphism of
S if and only if f(z) = f0(z) + f(Ω), with an automorphism f0 of LS .

Proof. Let f be an automorphism of S and let f0(z) = −f(Ω) + f(z), that
is,
{f(z),−f(Ω), −f0(z)} is a triple. Note that, since S is a HTS, this can be
written also as f(z) = f0(z) + f(Ω).

The assertion that f0 is an automorphism of LS follows because the map
f0 = λ−f(Ω) ◦ f is (again) an automorphism of S , such that f0(Ω) = Ω and
we can apply Theorem 2.

Conversely, for any automorphism f0 of LS , and for any given ω ∈ S ,
the map f(z) = f0(z)+ω is an automorphism of S simply because f = λω◦f0,
and we apply Theorems 2 and 7. �
Remark 9. According to the original paper [19] of M. Hall, HTS’s can also
be defined as STS’s such that to any point z0 one can associate an involu-
tory automorphism f which leaves z0 fixed, that is, the map f(x) = y, where
{x, z0, y} is a triple (hence, in the loop LS , f(x) = (−x) + (−z0)). The au-
tomorphism f0 of LS associated to the involution f is therefore equal to
f0(x) = −f(Ω) +

(
(−x) + (−z0)

)
.

4. Extensions of Steiner Loops of Affine Type

In this section we reduce the structure of Steiner loops of affine type to con-
secutive extensions of simple ones. As one can expect, by considering that the
number of STS’s with n elements increases as

(
n/e2 + o(n)

)n2/6 (see [21]),
this construction is very flexible, compared with the corresponding extension
theory for commutative groups.

Theorem 8. Any Steiner loop LS of affine type has a subnormal series

Ω � LS1 � · · · � LSt
= LS ,

where the factors LSi+1/LSi
are simple Steiner loops of affine type. If LS

corresponds to a HTS, then there exists such a series where the factors have
order 3.
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Proof. The first result is standard. The second one follows from the fact that
the commutative Moufang loop of exponent 3 corresponding to a HTS always
contains a proper normal subloop, namely the associative center Z(LS ) =
{z : ∀x, y ∈ LS , (x + y) + z = x + (y + z)} (see [6]), thus we can make a
recursive argument on Z(LS ) and LS /Z(LS ). �

Extensions of normal (sub-)loops N by (quotient) loops Q are much more
relaxed than in the case of groups (cf. [2] and [8,24]), simply because for Steiner
loops of affine type the associativity holds only for elements x, y and z such that
x + y + z = Ω (where possibly x = y = z). We illustrate this in Example 4.1,
after giving the following definition, where we brief these conditions for a
Steiner loop of affine type to be such an extension (for our convenience, here
we will denote the identity elements by 0).

Definition 4. Let N and Q be Steiner loops of affine type of order n and m,
and identity elements 0′ and 0̄, respectively, and let Q(N) be the set of n × n
latin squares with coefficients in the set N .

An operator Φ : Q × Q −→ Q(N), which maps the pair (x̄, ȳ) to a latin
square Φx̄,ȳ : N×N −→ N , is called a Steiner operator if it fulfills the following
conditions:

(i) the latin square Φ0̄,0̄ is the (symmetric) table of addition of N ;
(ii) Φȳ,x̄(y′, x′) = Φx̄,ȳ(x′, y′), that is, Φȳ,x̄ is the transpose of Φx̄,ȳ;
(iii) Φx̄,0̄(x′, 0′) = x′

(iv) Φx̄,x̄(x′, x′) = −x′;
(v) Φx̄,−x̄(x′,−x′) = 0′;
(vi) Φȳ,z̄(y′, z′) = −x′ ⇐⇒ Φx̄,z̄(x′, z′) = −y′ (hence also ⇐⇒ Φx̄,ȳ(x′, y′) =

−z′),
for all (x̄, x′), (ȳ, y′) ∈ Q × N , for all z′ ∈ N , and for x̄ + ȳ + z̄ = 0̄.

Remark 10. We want to stress the fact that the conditions in the above defi-
nition are weak.

– This is manifest for conditions (i) and (ii).
– For x̄ = 0̄, conditions (iii), (iv) and (v) hold, simply because Φ0̄,0̄ is the

table of addition of a commutative loop of exponent 3.
– For x̄ �= 0̄, once arbitrary latin squares Φx̄,x̄ and Φ−x̄,−x̄ are rearranged

in such a way to fulfill condition iv), which will determine the same main
diagonal of these latin squares, condition v) determines only the places
of the element 0′ in each row of the otherwise arbitrary latin square
Φx̄,−x̄. On the contrary, once the latin squares Φx̄,x̄, Φ−x̄,−x̄, and Φx̄,−x̄

are chosen, conditions iv) and v) determine now the whole latin squares
Φx̄,0̄ and Φ0̄,−x̄, as we show in Example 4.1, working on the table

Φx̄,x̄ Φx̄,0̄ Φx̄,−x̄

Φ0̄,x̄ Φ0̄,0̄ Φ0̄,−x̄

Φ−x̄,x̄ Φ−x̄,0̄ Φ−x̄,−x̄

. (3)
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– Finally, we note that condition (vi) simply means that, as soon as z̄ is
such that x̄ + ȳ + z̄ = 0̄, the latin squares Φx̄,z̄ and Φȳ,z̄ are thoroughly
determined by the arbitrarily chosen latin square Φx̄,ȳ, as shown again
in Example 4.1, by working on the table

Φx̄,ȳ Φx̄,z̄

Φȳ,z̄
.

Theorem 9. Let N , resp. Q, be a Steiner loop of affine type with identity 0′,
resp. 0̄, of order n, resp. m, and let Φ : Q×Q −→ Q(N) be a Steiner operator.

If we define on L = Q × N the addition

(x̄, x′) + (ȳ, y′) = (x̄ + ȳ, x′ ⊕ y′),

where we denote, with abuse of notation, x′ ⊕ y′ = Φx̄,ȳ(x′, y′), then L is a
Steiner loop of affine type of order v = nm, with identity (0̄, 0′), such that the
opposite of the element (x̄, x′) ∈ L is −(x̄, x′) = (−x̄,−x′). The subloop N̂
containing all the elements (0̄, x′), x′ ∈ N , is a normal subloop, isomorphic to
N , and such that L /N̂ is isomorphic to Q.

Conversely, any Steiner loop L of affine type, having a normal subloop N
and a quotient loop Q = L /N , is isomorphic, for some given Steiner operator
Φ, to the above one.

Proof. Let L be defined as above. By Definition 4, condition (ii), the addition
is commutative; by condition (iii), the element (0̄, 0′) is the identity, and, by
condition v), −(x̄, x′) = (−x̄,−x′). Conditions iv) and v) yield 3(x̄, x′) =
(0̄, 0′). The weak inverse property

(x̄, x′) +
(
(ȳ, y′) + (z̄, z′)

)
= (0̄, 0′) whenever

(
(x̄, x′) + (ȳ, y′)

)
+ (z̄, z′) = (0̄, 0′)

is equivalent to saying that, for x̄ + ȳ + z̄ = 0̄,

Φx̄,−x̄(x′, Φȳ,z̄(y′, z′)) = 0′ ⇐⇒ Φ−z̄,z̄(Φx̄,ȳ(x′, y′), z′) = 0′,

which, together with condition v), yields condition (vi).
If (ā, a′) and (b̄, b′) are two given elements in L , then the equation

(ā, a′) + (x̄, x′) = (b̄, b′)

has a unique solution (x̄, x′), where x̄ = −(−b̄ + ā) ∈ Q and x′ is the unique
element in N such that Φā,−(−b̄+ā)(a′, x′) = b′. Thus L is a commutative loop
of exponent 3 with the weak inverse property, that is, a Steiner loop of affine
type with identity Ω = (0̄, 0′). The subloop

N̂ = {(0̄, x′) : x′ ∈ N}
is isomorphic to N and is normal, because both

(
(ā, a′) + (b̄, b′)

)
+ N̂ and

(ā, a′) +
(
(b̄, b′) + N̂

)
coincide with

{(ā + b̄, x′) : x′ ∈ N}.
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Conversely, for any Steiner loop L of affine type, having a normal subloop
N and a quotient loop Q = L /N , let σ : Q −→ L be a section such that
σ(N) = 0 and σ(−x + N) = −σ(x + N), and let ·′ : L −→ N be such that
x = σ(x + N) + x′. If x and y are in L , then

Φx+N,y+N (x′, y′) = (x + y)′

defines a latin square on N , and the map Φ : (x + N, y + N) �→ Φx+N,y+N is a
Steiner operator: indeed, condition (i) holds, because σ(N) = 0; condition (ii)
holds because L is commutative; condition (iii) holds, again because σ(N) =
0; condition iv) holds, because σ(−x + N) = −σ(x + N); condition (v) holds
because L has exponent 3; and condition (vi) holds because L has the weak
inverse property. �

Remark 11. The same table (3) that we considered in Remark 10, shows that
the set

M =
{

(ā, b′) : ā ∈ {x̄, 0̄,−x̄}, b′ ∈ N
}

is closed under the loop operation, thus, by Theorem 1 (i), SM gives us in turn
a STS subsystem of SL with |M | = 3 · |N |, a fact which will also be stated in
Corollary 3. An example is given in table (4) in the following Example 4.1.

Finally, we want to give an example and to examine some special exten-
sions.

4.1. Example

We sketch the construction of the addition table of a Steiner loop L of affine
type with 21 elements as an extension of a normal subloop N with 3 elements
with a Steiner quotient loop Q of affine type with 7 elements, for which we fix
the following addition tables:

N :

+ −1 0 1
−1 1 −1 0
0 −1 0 1
1 0 1 −1

Q :

+ z̄ ȳ x̄ Ω −x̄ −ȳ −z̄
z̄ −z̄ x̄ ȳ z̄ −ȳ −x̄ Ω
ȳ x̄ −ȳ z̄ ȳ −z̄ Ω −x̄
x̄ ȳ z̄ −x̄ x̄ Ω −z̄ −ȳ
Ω z̄ ȳ x̄ Ω −x̄ −ȳ −z̄
−x̄ −ȳ −z̄ Ω −x̄ x̄ z̄ ȳ
−ȳ −x̄ Ω −z̄ −ȳ z̄ ȳ x̄
−z̄ Ω −x̄ −ȳ −z̄ ȳ x̄ z̄

.
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The elements of L will be represented by pairs (x̄, x′) in Q × N and the
addition table of L will be given in 3 × 3 block matrices Φī,j̄

L :

Φz̄,z̄ Φz̄,ȳ Φz̄,x̄ Φz̄,Ω Φz̄,−x̄ Φz̄,−ȳ Φz̄,−z̄

Φȳ,z̄ Φȳ,ȳ Φȳ,x̄ Φȳ,Ω Φȳ,−x̄ Φȳ,−ȳ Φȳ,−z̄

Φx̄,z̄ Φx̄,ȳ Φx̄,x̄ Φx̄,Ω Φx̄,−x̄ Φx̄,−ȳ Φx̄,−z̄

ΦΩ,z̄ ΦΩ,ȳ ΦΩ,x̄ ΦΩ,Ω ΦΩ,−x̄ ΦΩ,−ȳ ΦΩ,−z̄

Φ−x̄,z̄ Φ−x̄,ȳ Φ−x̄,x̄ Φ−x̄,Ω Φ−x̄,−x̄ Φ−x̄,−ȳ Φ−x̄,−z̄

Φ−ȳ,z̄ Φ−ȳ,ȳ Φ−ȳ,x̄ Φ−ȳ,Ω Φ−ȳ,−x̄ Φ−ȳ,−ȳ Φ−ȳ,−z̄

Φ−z̄,z̄ Φ−z̄,ȳ Φ−z̄,x̄ Φ−z̄,Ω Φ−z̄,−x̄ Φ−z̄,−ȳ Φ−z̄,−z̄

according to the addition table of Q, starting from the central block ΦΩ,Ω

which, by Definition 4 (i), is the addition table of N , represented here as the
set {(Ω, x′) : x′ ∈ N}:

ΦΩ,Ω :

+ (Ω,−1) (Ω, 0) (Ω, 1)
(Ω,−1) (Ω, 1) (Ω,−1) (Ω, 0)
(Ω, 0) (Ω,−1) (Ω, 0) (Ω, 1)
(Ω, 1) (Ω, 0) (Ω, 1) (Ω,−1)

.

This latin square corresponds to the single triple {(Ω,−1), (Ω, 0), (Ω, 1)} of
the Steiner triple system SL with 21 elements and 70 triples.

By condition iv), which is equivalent to saying that the opposite of the
element (z̄, z′) ∈ L is −(z̄, z′) = (−z̄,−z′), the main diagonals for Φz̄,z̄, Φȳ,ȳ

and Φx̄,x̄ are uniquely determined. In this small case, where N contains only
three elements, this determines in fact the whole latin square, which will be
the same for Φz̄,z̄, Φȳ,ȳ and Φx̄,x̄. Moreover, this determines, as well, the places
of the element (Ω, 0) in each row of the tables Φz̄,−z̄, Φx̄,−x̄ and Φȳ,−ȳ, and
this leaves us with only two choices for Φz̄,−z̄, which differ to the extent that
we can switch 1 and −1. For Φz̄,−z̄, we choose, for instance, the following:

Φz̄,z̄ Φz̄,−z̄

Φ−z̄,z̄ Φ−z̄,−z̄
:

+ (z̄, −1) (z̄, 0) (z̄, 1) (−z̄, −1) (−z̄, 0) (−z̄, 1)
(z̄, −1) (−z̄, 1) (−z̄, −1) (−z̄, 0) (Ω, 1) (Ω, −1) (Ω, 0)
(z̄, 0) (−z̄, −1) (−z̄, 0) (−z̄, 1) (Ω, −1) (Ω, 0) (Ω, 1)
(z̄, 1) (−z̄, 0) (−z̄, 1) (−z̄, −1) (Ω, 0) (Ω, 1) (Ω, −1)

(−z̄, −1) (Ω, 1) (Ω, −1) (Ω, 0) (z̄, 1) (z̄, −1) (z̄, 0)
(−z̄, 0) (Ω, −1) (Ω, 0) (Ω, 1) (z̄, −1) (z̄, 0) (z̄, 1)
(−z̄, 1) (Ω, 0) (Ω, 1) (Ω, −1) (z̄, 0) (z̄, 1) (z̄, −1)

.

The previous table corresponds to 11 triples of SL , namely, one corresponding
to Φz̄,z̄, one to Φ−z̄,−z̄ and 9 to Φz̄,−z̄ (one triple for each entry, for instance,
{(z̄,−1), (−z̄,−1), (Ω,−1)} is a triple).

This determines uniquely the latin squares Φz̄,Ω and Φ−z̄,Ω , according to
the table

Φz̄,z̄ Φz̄,Ω Φz̄,−z̄

ΦΩ,z̄ ΦΩ,Ω ΦΩ,−z̄

Φ−z̄,z̄ Φ−z̄,Ω Φ−z̄,−z̄

,



148 Page 18 of 25 G. Falcone et al. Results Math

which in particular is the following:
+ (z̄, −1) (z̄, 0) (z̄, 1) (Ω, −1) (Ω, 0) (Ω, 1) (−z̄, −1) (−z̄, 0) (−z̄, 1)

(z̄, −1) (−z̄, 1) (−z̄, −1) (−z̄, 0) (z̄, 1) (z̄, −1) (z̄, 0) (Ω, 1) (Ω, −1) (Ω, 0)

(z̄, 0) (−z̄, −1) (−z̄, 0) (−z̄, 1) (z̄, −1) (z̄, 0) (z̄, 1) (Ω, −1) (Ω, 0) (Ω, 1)

(z̄, 1) (−z̄, 0) (−z̄, 1) (−z̄, −1) (z̄, 0) (z̄, 1) (z̄, −1) (Ω, 0) (Ω, 1) (Ω, −1)

(Ω, −1) (z̄, 1) (z̄, −1) (z̄, 0) (Ω, 1) (Ω, −1) (Ω, 0) (−z̄, 1) (−z̄, −1) (−z̄, 0)

(Ω, 0) (z̄, −1) (z̄, 0) (z̄, 1) (Ω, −1) (Ω, 0) (Ω, 1) (−z̄, −1) (−z̄, 0) (−z̄, 1)

(Ω, 1) (z̄, 0) (z̄, 1) (z̄, −1) (Ω, 0) (Ω, 1) (Ω, −1) (−z̄, 0) (−z̄, 1) (−z̄, −1)

(−z̄, −1) (Ω, 1) (Ω, −1) (Ω, 0) (−z̄, 1) (−z̄, −1) (−z̄, 0) (z̄, 1) (z̄, −1) (z̄, 0)

(−z̄, 0) (Ω, −1) (Ω, 0) (Ω, 1) (−z̄, −1) (−z̄, 0) (−z̄, 1) (z̄, −1) (z̄, 0) (z̄, 1)

(−z̄, 1) (Ω, 0) (Ω, 1) (Ω, −1) (−z̄, 0) (−z̄, 1) (−z̄, −1) (z̄, 0) (z̄, 1) (z̄, −1)

.

(4)
In the previous table, the reader can find an example to what we stated in
Remark 11: since the set

Mz̄ = {(−z̄,−1), (−z̄, 0), (−z̄, 1), (Ω, 0), (Ω, 1), (Ω,−1), (z̄,−1), (z̄, 0), (z̄, 1)}
is closed under the loop operation, by Theorem 1 (i) SMz̄

will give us in turn
a STS subsystem of SL with 9 elements. Note that Mz̄ cannot be normal,
because Q is simple.

The reader can produce in the same way the addition tables correspond-
ing to the cosets ȳ + N and −ȳ + N , and to the cosets x̄ + N and −x̄ + N ,
which give in turn analogous subloops Mȳ and Mx̄, as well. For instance, the
switch −1 ↔ 1 in both the addition tables Φx̄,x̄ and Φ−x̄,−x̄, respectively Φȳ,ȳ

and Φ−ȳ,−ȳ yields the following:

Φx̄,x̄ Φx̄,−x̄

Φ−x̄,x̄ Φ−x̄,−x̄
:

+ (x̄, −1) (x̄, 0) (x̄, 1) (−x̄, −1) (−x̄, 0) (−x̄, 1)

(x̄, −1) (−x̄, 1) (−x̄, −1) (−x̄, 0) (Ω, −1) (Ω, 1) (Ω, 0)
(x̄, 0) (−x̄, −1) (−x̄, 0) (−x̄, 1) (Ω, 1) (Ω, 0) (Ω, −1)
(x̄, 1) (−x̄, 0) (−x̄, 1) (−x̄, −1) (Ω, 0) (Ω, −1) (Ω, 1)

(−x̄, −1) (Ω, −1) (Ω, 1) (Ω, 0) (x̄, 1) (x̄, −1) (x̄, 0)
(−x̄, 0) (Ω, 1) (Ω, 0) (Ω, −1) (x̄, −1) (x̄, 0) (x̄, 1)
(−x̄, 1) (Ω, 0) (Ω, −1) (Ω, 1) (x̄, 0) (x̄, 1) (x̄, −1)

,

respectively

Φȳ,ȳ Φȳ,−ȳ

Φ−ȳ,ȳ Φ−ȳ,−ȳ
:

+ (ȳ, −1) (ȳ, 0) (ȳ, 1) (−ȳ, −1) (−ȳ, 0) (−ȳ, 1)

(ȳ, −1) (−ȳ, 1) (−ȳ, −1) (−ȳ, 0) (Ω, −1) (Ω, 1) (Ω, 0)
(ȳ, 0) (−ȳ, −1) (−ȳ, 0) (−ȳ, 1) (Ω, 1) (Ω, 0) (Ω, −1)
(ȳ, 1) (−ȳ, 0) (−ȳ, 1) (−ȳ, −1) (Ω, 0) (Ω, −1) (Ω, 1)

(−ȳ, −1) (Ω, −1) (Ω, 1) (Ω, 0) (ȳ, 1) (ȳ, −1) (ȳ, 0)
(−ȳ, 0) (Ω, 1) (Ω, 0) (Ω, −1) (ȳ, −1) (ȳ, 0) (ȳ, 1)
(−ȳ, 1) (Ω, 0) (Ω, −1) (Ω, 1) (ȳ, 0) (ȳ, 1) (ȳ, −1)

.

Note that, up to now, we have determined 34 triples of SL .
Now we can freely choose a latin square on N = {−1, 0, 1} for Φz̄,ȳ, for

instance:

Φz̄,ȳ :

+ (ȳ,−1) (ȳ, 0) (ȳ, 1)
(z̄,−1) (x̄, 1) (x̄,−1) (x̄, 0)
(z̄, 0) (x̄, 0) (x̄, 1) (x̄,−1)
(z̄, 1) (x̄,−1) (x̄, 0) (x̄, 1)

, (5)
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(note that the latin square chosen here does not correspond to a group, nor
a loop, because it is not symmetric). Again, each of the 9 entries of this latin
square will correspond to a triple of SL , for instance {(z̄,−1), (ȳ,−1), (−x̄,−1)}.
Thus, this choice of Φz̄,ȳ determines uniquely the corresponding latin squares
Φz̄,−x̄ and Φȳ,−x̄, according to Definition 4 (vi), that is, we have simply to
re-write the 9 triples given in (5), in the following two latin squares:

Φz̄,−x̄ :

+ (−x̄,−1) (−x̄, 0) (−x̄, 1)
(z̄,−1) (−ȳ, 1) (−ȳ,−1) (−ȳ, 0)
(z̄, 0) (−ȳ, 0) (−ȳ, 1) (−ȳ,−1)
(z̄, 1) (−ȳ,−1) (−ȳ, 0) (−ȳ, 1)

,

Φȳ,−x̄ :

+ (−x̄,−1) (−x̄, 0) (−x̄, 1)
(ȳ,−1) (−z̄, 1) (−z̄, 0) (−z̄,−1)
(ȳ, 0) (−z̄, 0) (−z̄,−1) (−z̄, 1)
(ȳ, 1) (−z̄,−1) (−z̄, 1) (−z̄, 0)

.

Similarly, the reader can freely choose a latin square on N = {−1, 0, 1} for
Φz̄,−ȳ, Φȳ,−z̄, Φ−ȳ,−z̄ and, using Definition 4 (vi), re-write the latin squares
Φ−ȳ,x̄, Φz̄,x̄, Φ−z̄,x̄, Φȳ,x̄, Φ−z̄,−x̄, Φ−ȳ,−x̄. Note that, once we have chosen the
four latin squares Φz̄,ȳ, Φz̄,−ȳ, Φȳ,−z̄, Φ−ȳ,−z̄, we obtain the remaining 36 of
the 70 triples STS(21). The remaining latin squares Φ-s are already determined
by Definition 4 (ii), that is, by the fact that the addition table of the loop L
is symmetric.

4.2. Schreier Extensions

A particular class of loop extensions is introduced in [26], and called Schreier
extension of the normal subgroup N by the loop K, by taking a group N , a
loop K, and a map T : K → Aut(N) from K into the automorphism group
of N with T (1) = Id, and a function f : K × K → N with the property that
f(1, τ) = f(τ, 1) = 1. The multiplication is defined on K × N by

(τ, t) ◦ (σ, s) = (τσ, f(τ, σ)tT (σ)s).

According to Proposition 3.2. (iii) in [26], if N is central, then T is trivial.
Let now S be a Steiner triple system and let LS be the corresponding

Steiner loop of affine type and assume that LS is the Schreier extension of
the normal subgroup N by a Steiner loop LK of affine type corresponding
to a STS K . Since a Steiner loop N of affine type is a group precisely if
the corresponding STS is AG(n, 3), the subloop N is the elementary abelian
3-group of order 3n.

Since the Steiner loop of affine type LS is abelian, the normal subgroup
N is central (hence the map T is trivial), LS is realized on LK ×N by the
multiplication

(κ1, n1) ◦ (κ2, n2) =
(
κ1 + κ2, n1 + n2 + f(κ1, κ2)

)
, (6)
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where f : LK × LK → N is a function with the property f(κ1, κ2) =
f(κ2, κ1) for all κ1, κ2 ∈ LK satisfying f(Ω, κ2) = f(κ1, Ω) = 0. Note that
here Φκ1,κ2(n1, n2) = n1 + n2 + f(κ1, κ2). Note that the smallest proper HTS
has to be the Schreier extension of AG(2, 3) by AG(2, 3).

4.3. Affine Hyperplanes

Now we show that the opposite case to that of the Example 4.1, that is, the
case where the quotient loop Q is a group of order 3, occurs when the normal
subloop N is an affine hyperplane, as defined in [13], p. 253:

An affine hyperplane of S is a subsystem S0, such that for any x /∈ S0

the set S1 of triples through x which do not intersect S0 turns out to be a
second subsystem. If this is the case, the set S−1 = S \ {S0 ∪S1} is a third
subsystem. In other words, S0 is an affine hyperplane of S if, and only if, S
is the union of three pairwise disjoint subsystems

S = S−1 ∪ S0 ∪ S1,

of the same cardinality w = n
3 , hence it is necessary that n ≡ 3 (mod 6) and

w ≡ 1, 3 (mod 6).

Theorem 10. S0 is an affine hyperplane of S containing Ω, if and only if
LS0 is a normal subloop of index 3 in LS .

Proof. If S0 is an affine hyperplane, then S is the union S = S−1 ∪S0 ∪S1

of three pairwise disjoint subsystems of the same cardinality. Since LS is a
commutative loop, in order to prove that S0 is normal, it is sufficient to show
that (a + b) + S0 = a + (b + S0) for any a, b ∈ S .

1) If x ∈ S0, then −x ∈ S0, as well, because S0 is a subsystem containing
Ω. If x ∈ Si, then −x ∈ S−i, for i �= 0. This follows from the definition of
affine hyperplane, because {x,Ω,−x} is a triple.

2) Let both x and y belong to Si, thus x + y = −z where {x, y, z} ⊂ Si

is a triple. Hence x + y belongs to S−i, that is x + Si = S−i.
3) If x ∈ Si and y ∈ Sj with i �= j, then the third element z in the triple

{x, y, z} belongs to the subsystem Sk with i �= k �= j, that is, x + Sj = S−k.
It follows that (a+ b)+S0 = a+(b+S0) for any a, b ∈ S , that is, LS0

is normal.
Conversely, if N is a normal subloop of index 3 in LS , then LS consists

of three left cosets N , x + N , −x + N , where x ∈ LS \ N , and SN is a
subsystem of S containing Ω. The Steiner triple system SL consists of the
following points:

(i) the points of SN , which form the trivial coset N
(ii) the third points of the triples through x and the points a ∈ SN , which

form the coset −x + N ,
(iii) the third points of the triples through −x and the points a ∈ SN , which

form the coset x + N .
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This proves that SN is an affine hyperplane of S containing Ω, because the
cosets of a normal subloop are subsystems according to Theorem 1 (ii). �
Corollary 3. If LS is simple, then S does not contain an affine hyperplane.

If LS is not simple, and N is a proper normal subloop of LS , then
N is an affine hyperplane of the subloop M generated by N and x, for any
x ∈ L \ N .

Proof. The first assertion is trivial, and the second follows from the fact that
M turns out to be the union of N , x + N and −x + N . �
4.4. Quasidirect Sums

Given two STS’s R and T , we can build in a standard way an STS S , that we
call the quasidirect sum of R by T , in the following way: let R −→ Top(T ),
x̄ �→ ψx̄, be a map from R to the group of isotopisms of T

{(x̄, x′), (ȳ, y′), (z̄, z′)} is a triple, if and only if, {x̄, ȳ, z̄} is a triple of R, and
{

ψx̄(x′), ψȳ(y′), ψz̄(z′)
}

is a triple of T .

Here Φx̄,ȳ(x′, y′) = −ψ−1
−(x̄+ȳ)

(
−(

ψx̄(x′)+ψȳ(y′)
))

. In the case where ψx̄ = id
for all x̄ ∈ R, we obtain the direct sum of R and T .

By Theorem 9, our investigation is confined to simple Steiner loops of
affine type.

5. Simple Steiner Loops of Affine Type

In this final part of the paper we describe the situation in the case when S
is a simple STS, that is, the case where LS is a simple loop. We recall that
in this case, the group Mult(LS ) is primitive. Moreover, we recall that this
group plays a fundamental role, since that the orbit-map Mult(LS ) −→ LS

defined by

λx �→ x = Ωλx

is a loop homomorphism whose kernel is the stabilizer of Ω.
Write σx = λx(Ω, x,−x)−1 and denote by Σ the group generated by the set
{σx : x ∈ LS } of permutations, thus each σx fixes exactly the three elements
Ω, x and −x, hence Σ is contained in the stabilizer of Ω. By Theorem 3, the
group Mult(LS ) is contained in the alternating group An, thus Σ is contained
in a subgroup isomorphic to the alternating group An−1.
In [30] it is proved that if the order of any product of two different translations
of an STS of size n > 3 is odd, then the multiplication group Mult(L ) of the
corresponding totally symmetric Steiner loop L given in Remark 3 of order
n + 1 contains the alternating group of order n + 1. For a simple Steiner loop
of affine type of order n to obtain that the multiplication group Mult(LS )
contains the group An it is enough to prove that the group Mult(LS ) contains
one of the permutations σx, with x ∈ LS .
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Theorem 11. Let S be a simple Steiner triple system with n > 3 points and
LS the corresponding Steiner loop of affine type.
(i) The group Mult(LS ) of LS is isomorphic to An, if and only if Mult(LS )

contains one of the permutations σx.
(ii) If the order of one of the permutations σx is not divisible by 3, then the

group Mult(LS ) of LS is An.

Proof. If one has σx ∈ Mult(LS ), then the permutation σ−1
x λx = (Ω, x,−x)

is a 3-cycle in the primitive subgroup Mult(LS ) of An. By Jordan’s theorem
on permutations (see also Exercise 5.6.2 in [4]), Mult(LS ) = An. This proves
assertion (i).
(ii) If the order of the permutation σx is 3k + 2 for some x ∈ LS , then one
has σx = λ3k+3

x . If the order of the permutation σx is 3k +1 for some x ∈ LS ,
then one has σx = λ

3(2k+1)
x . Hence σx ∈ Mult(LS ) and we are done by part

(i). �

Remark 12. If n = 9, then the group Mult(LS ) is the elementary abelian
3-group with two generators, and σx is the product of two 3-cycles (see The-
orem 6). In this case, a direct computation shows that the group Σ is the
alternating group A8.

Consider now the Steiner loop LS of affine type corresponding to the
Steiner triple system on 13 points S2 defined in 2.2 in [23], p. 153, with Ω = 13.
With the left translations

λ5 = (Ω, 5, 7)(3, 6, 10)(9, 11, 12)(1, 8)(2, 4)

and

λ−5 = (Ω, 7, 5)(2, 10, 11)(6, 9, 8)(1, 3)(4, 12)

one has

σ5 = (3, 6, 10)(9, 11, 12)(1, 8)(2, 4) = λ−5λ
−2
5 λ−1

−5λ
−1
5 (λ−1

5 λ−5)2λ−5λ5λ
2
−5

and therefore σ5 ∈ 〈λ5, λ−5〉 ∼= C3 × A10.
It remains an open problem whether any permutation σx of a simple

Steiner loop of affine type can be written as a product of the only permutations
λx and λ−x.

Theorem 12. If S is a simple Steiner triple system of order n containing a
Veblen point, then Mult(LS ) = An, and LS = An/An−1.

Proof. The claim follows from Jordan’s theorem on the symmetric group Sn,
because, by Theorem 4, λ2

x is a 3-cycle in the primitive group Mult(LS ). �

Corollary 4. If R ≤ S is a Steiner triple subsystem of order 7, then the
subloop LR of LS has the alternating group A7 as its multiplication group.

Proposition 4. Let S be a Steiner triple system of order n = 13. Then the
group Mult(LS ) is the alternating group A13.



Vol. 75 (2020) Steiner Loops of Affine Type Page 23 of 25 148

Proof. We denote by S1 and S2 the two non-isomorphic STS(13) as they are
defined in [23], p. 152-153. Taking the left translation λ1 = (0, 1, 4)(2, 7, 3, 10, 6)
(5, 8, 11, 9, 12)
∈ S1 and the left translation λ2 = (0, 1, 4)(2, 12, 5, 10, 6)(3, 8, 11, 9, 7) ∈ S2, in
both cases, the fifth power of such an element is a 3-cycle. Since Mult(LS )
is a primitive subgroup of A13, then Mult(LS ) = A13 by Jordan’s theorem.
�

Proposition 5. Let S be a Steiner triple system of prime power cardinality
n �= qa−1

q−1 , for any prime power q. If Mult(LS ) is simple, then the group
Mult(LS ) is the alternating group An.

Proof. This follows from a celebrated theorem by Guralnik ([17], Thm. 1). �

Remark 13. The condition on n in Proposition 5 is fulfilled for instance, if

n ∈ {19, 25, 37, 43, 49, 61, 67, 73}.
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