
Academic Editor: Carlo Blundo

Received: 17 September 2025

Revised: 26 October 2025

Accepted: 29 October 2025

Published: 31 October 2025

Citation: Ahmad, H.; Hannusch, C. A

Scalable Symmetric Cryptographic

Scheme Based on Latin Square,

Permutations, and Reed-Muller Codes

for Resilient Encryption. Cryptography

2025, 9, 70. https://doi.org/10.3390/

cryptography9040070

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Scalable Symmetric Cryptographic Scheme Based on
Latin Square, Permutations, and Reed-Muller Codes
for Resilient Encryption
Hussain Ahmad * and Carolin Hannusch

Department of Computer Science, Faculty of Informatics, University of Debrecen, 4028 Debrecen, Hungary;
hannusch.carolin@inf.unideb.hu
* Correspondence: hussain.ahmad@inf.unideb.hu

Abstract

Symmetric cryptography is essential for secure communication as it ensures confidentiality
by using shared secret keys. This paper proposes a novel substitution-permutation network
(SPN) that integrates Latin squares, permutations, and Reed-Muller (RM) codes to achieve
robust security and resilience. As an adaptive design using binary representation with
base-n Latin square mappings for non-linear substitutions, it supports any n (Codeword
length and Latin square order), k (RM code dimension), d (RM code minimum distance)
parameters aligned with the Latin square and RM(n, k, d) codes. The scheme employs
2 log2 n-round transformations using log2 n permutations ρz, where in the additional log2 n
rounds, row and column pairs are swapped for each pair of rounds, with key-dependent
πz permutations for round outputs and fixed ρz permutations for codeword shuffling,
ensuring strong diffusion. The scheme leverages dynamic Latin square substitutions
for confusion and a vast key space, with permutations ensuring strong diffusion and
RM(n, k, d) codes correcting transmission errors and enhancing robustness against fault-
based attacks. Precomputed components optimize deployment efficiency. The paper
presents mathematical foundations, security primitives, and experimental results, including
avalanche effect analysis, demonstrating flexibility and balancing enhanced security with
computational and storage overhead.

Keywords: symmetric cryptography; substitution-permutation network; Latin square;
permutation; Reed-Muller code; error correction

1. Introduction
Symmetric cryptography, especially block ciphers, plays a fundamental role in secure

communication by ensuring confidentiality through the use of shared secret keys. Block
ciphers encrypt fixed-size blocks of plaintext into ciphertext using a series of iterative
transformations. They are highly valued for their efficiency and security [1]. Traditional
block ciphers are strong but often do not include built-in error correction, which limits
their effectiveness in various environments. As a result, modern systems encounter chal-
lenges like transmission errors in noisy channels, fault-based attacks that exploit hardware
vulnerabilities, and the need for adaptable, scalable designs that strike a balance between
security and resource constraints [2]. This aspect has gained importance in addressing
these attacks [3–5].

Recent studies have employed Latin squares for cryptographic substitutions, utiliz-
ing their nonlinear properties and combinatorial diversity. The Zefreh and Abdali Latin

Cryptography 2025, 9, 70 https://doi.org/10.3390/cryptography9040070

https://doi.org/10.3390/cryptography9040070
https://doi.org/10.3390/cryptography9040070
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0001-6959-8352
https://orcid.org/0000-0002-0098-7293
https://doi.org/10.3390/cryptography9040070
https://www.mdpi.com/article/10.3390/cryptography9040070?type=check_update&version=1

Cryptography 2025, 9, 70 2 of 28

Square Image Encryption (LSIE) scheme uses Latin square S-boxes with chaotic systems
for fast and noise-resilient image encryption [6]. Walid El-Shafai, et al. developed a
compression-encryption scheme using Latin squares for IoT multimedia security, achieving
low computational overhead to guarantee security and high speed without compromising
the complexity [7]. The Latin square image cipher (LSIC) of Wu et al. uses Latin square
whitening, Latin square S-box, and Latin square P-box for confusion and diffusion [8]. A
hybrid model was presented by Nada Ali et al. that uses the Latin square matrix (LSM)
and subtractive random number generator (SRNG) algorithms to generate random keys
that raise the degree of diffusion and strengthen the cipher key’s defense against various
attacks [9]. These schemes, often designed for image coding, lack general applicability
and resistance to noise or bit-flipping attacks, challenges addressed in our scheme through
Reed-Muller codes.

Error-correcting codes (ECCs) play a vital role in ensuring data integrity and improving
the reliability and security of cryptographic systems [10]. Repka et al. discussed the use of
ECCs in secure protocols and their effectiveness in mitigating fault attacks [10]. Alabady’s
low complexity product code (LCPC) offers an efficient method of error correction that is
particularly suitable for Internet of Things (IoT), which often have limited resources [11].
Boneh et al. highlighted the importance of ECCs in eliminating computational errors,
which is crucial for protecting against fault attacks in block ciphers [12]. Carlet investigated
the use of RM codes in Boolean functions to enhance resistance against fault attacks [13].
Therefore, integrating ECCs with cryptographic systems is highly recommended to prevent
errors, as even a single-bit change in an encrypted message can cause significant damage
in the decrypted output [14].

We propose a novel block cipher based on an SPN that integrates Latin squares, per-
mutations, and Reed-Muller codes to deliver robust security and resilience in noisy and
adversarial environments. Our adaptive design supports any parameters n, k, d and utilizes
binary representation along with base-n Latin square mappings. The cipher incorporates
Latin square S-boxes to enhance confusion, applies diffusion permutations, and employs
RM codes, which add an extra layer of security, enable error correction, and provide resis-
tance to fault attacks. It features a scalable key space and parameter flexibility, optimizing
the balance between security and resource usage. The scheme operates over 2 log2 n rounds.
This framework is versatile for symmetric cryptography, supporting independent encoding
and decoding processes that allow for parallelization in multi-core or distributed systems.
Precomputed components are included to ensure deployment efficiency across various
applications. The paper concludes with an evaluation of both security and performance.

The structure of our paper is organized as follows: Section 2 introduces a background
for primitives. Section 3 describes the cryptographic system. Section 4 presents experi-
mental results. Section 5 evaluates security properties. Section 6 discusses limitations and
outlines future directions.

2. Background
2.1. Latin Squares

Let n (order) be a non-negative integer. A Latin square L = (li,j)1≤i,j≤n of order n is an
n× n array with entries li,j ∈ {0, . . . , n− 1}, such that each element of the set {0, . . . , n− 1},
is contained exactly once in each row and in each column.

A key defined over key space K = {0, . . . , n− 1} is used and distributed uniformly
over the message space M = {0, . . . , n− 1} [15].

A Latin square of order n (on the symbol set 1, 2, . . . , n or on the symbol set
0, 1, . . . , n− 1) is reduced or in standard form if in the first row and column the symbols
occur in natural order as shown in Table 1.

Cryptography 2025, 9, 70 3 of 28

Table 1. A reduced Latin square of order 3 [16].

1 2 3
2 3 1
3 1 2

A cipher is defined over the message space and the key space, and the function

y = Ck(m) = lk,m (1)

describes the encryption of a plaintext m ∈ M under a key k ∈ K [17].

2.1.1. Relation Between Cayley Tables, Quasigroups, and Latin Squares

A Cayley table [18,19], which resembles an addition or multiplication table in square
form, represents the structure of a finite group [20], by arranging all possible products of all
of the group’s components. An order-n Latin square, with each row (or column) encoding a
permutation of the group’s components, is what an unbordered Cayley table of an order-n
group essentially is, according to a Cayley discovery [18,19,21].

Theorem 1. If (G,
⊕
) is a finite group of order n and LG is the unbordered Cayley table of G, then

LG is a Latin square of order n.

Definition 1. A set G equipped with a binary operation ∗ is said to be a quasigroup if the following
conditions are satisfied:

• G is closed under the operation: qi ∗ qj ∈ G, ∀qi, qj ∈ G.
• The Latin square property holds: ∀qi, qj ∈ G, ∃!x, y ∈ G, qi ∗ x = qj and y ∗ qi = qj.

G is said to be a finite quasigroup if it contains a finite number of elements.

Theorem 2. If G = (G, ∗) is a finite quasigroup and LG is the unbordered Cayley table of G, then
LG is a Latin square.

From Definition 1 and Theorem 2, we guarantee that every element of G appears ex-
actly once in each row and once in each column of the Cayley table of G. It is an elementary
property of all groups and the defining property of all quasigroups. In Section 3.2.4, we
will illustrate how to construct a Latin square by creating a quasi-group from a finite group
using permutations.

2.1.2. Conjugacy Class

Each cell of a Latin square can be represented by a triple (row, column, symbol). One
method to represent L is to conceive of a set of ordered triples instead of a Latin square [22].
If L = li,j is a Latin square of order n, the corresponding n2 triples are:

TL = {(ri, cj, li,j) : 0 ≤ i, j ≤ n− 1} (2)

The entry that appears at a particular position inside a triple is referred to as a coordinate.
A Latin square’s isotopism L is a permutation of L that permutes its symbols, rows,

and columns. Another Latin square that is stated to be isotopic to L is the result [23].
The operation of permuting the coordinates themselves is referred to as conjugacy or

parastrophy. For two Latin squares L1 and L2, we say that L2 is conjugate equivalent of L1

where they are in the same conjugacy class [23].
Every conjugate may be identified by the permutation used to generate it. Since

we have three coordinates, for each Latin square, it has at most six distinct conjugates,
including the Latin square itself [16].

Cryptography 2025, 9, 70 4 of 28

We require the conjugate of a Latin square to decrypt the ciphertext c produced by
Latin square L = (ri, cj, li,j) using key k and plaintext m, which we can construct as follows:

• L(12) = (cj, ri, li,j), where the row and column numbers of the Latin square are
switched (transpose).

• L(13) = (li,j, cj, ri), where the entries and row numbers of the Latin square are switched.
• L(23) = (ri, li,j, cj), where the entries and column numbers of the Latin square are

switched [22,24].

We will use a Latin square L as a substitution square for encryption, and apply L(23)

as the substitution square for decryption in our scheme.
Latin squares are used in many modern applications, such as experimental design in

statistics [25], programming language compiler testing [26], telecommunications [27], and
cryptography [7,28–30].

Latin squares are important in cryptography because they can be used to construct
efficient and secure cryptographic algorithms. They have been used in cryptography for
various purposes [31], including as a way to generate cryptographic keys [7], and as a
tool for designing symmetric cryptosystems [32]. In addition to these applications, Latin
squares have also been used in other areas of cryptography, for example, in the design of
cryptographic hash functions [33,34], in the analysis of cryptographic protocols [35], and in
cryptographic key management systems [36].

2.2. Permutation Groups

Let Ω be an arbitrary non-empty set of non-negative integers. A permutation is a one-to-
one map of Ω to itself. The set of all permutations on Ω forms a group under the composition of
permutations (that is, the composition of permutations is associative, the identity permutation
is the unit element, and for each permutation there exists an inverse element).

The group of all permutations on a set with n elements is called the symmetric group,
which is usually denoted by Sn. Every permutation group is a subgroup of the symmetric group
for some positive integer n [37]. Let Ω = {1, 2, . . . , n}, then a permutation ρ on Ω is defined by:(

1 2 3 · · · n
ρ(1) ρ(2) ρ(3) · · · ρ(n)

)
(3)

Example 1. A particular permutation of the set {1, 2, 3, 4, 5} can be written as:(
1 2 3 4 5
2 5 4 3 1

)

This means ρ(1) = 2, ρ(2) = 5, ρ(3) = 4, ρ(4) = 3, and ρ(5) = 1.

The composition of permutations involves combining two or more permutations to
create a new permutation. For example, if we have two permutations, f and g, we denote
their composition as f g. To compute the composition f g, we first apply permutation g to
the elements and then apply permutation f to the resulting set of elements.

Example 2. Let f = (123), g = (231). We first apply g to the set of elements: g(1) = 2,
g(2) = 3, g(3) = 1. Then, we apply f to the resulting set of elements: f (g(1)) = 3, f (g(2)) = 1,
f (g(3)) = 2. Therefore, f g = (132).

The most common applications of symmetric groups in cryptography occur during the key
generation phase [38]. Permutations play a vital role in this process by enhancing randomness
through the shuffling of bits or bytes within the key. This ensures that each bit position in

Cryptography 2025, 9, 70 5 of 28

the key is influenced by all parts of the original key. Additionally, permutations contribute
to security by introducing confusion and diffusion, making it more difficult for attackers to
compromise the generated keys. They are employed to mix, distribute, and derive key material
in a manner that ensures cryptographic keys meet the necessary security standards.

Moreover, permutations play a crucial role in both the encryption and decryption
processes as part of the multi-step approach used in symmetric encryption algorithms,
such as the Advanced Encryption Standard (AES) [39]. These permutations contribute to
two essential properties of cryptographic algorithms: confusion and diffusion.

Confusion ensures that the relationship between the ciphertext and the key is complex
and non-linear, making it difficult for an attacker to infer the key. On the other hand,
diffusion ensures that a change in a single bit of the plaintext affects many bits of the
ciphertext. By rearranging the data in a controlled manner, permutations help achieve both
confusion and diffusion. This sensitivity to input changes enhances the overall security of
the encryption process.

Permutations are often combined with other operations, such as substitution (like the
S-box in AES) and bitwise operations (such as XOR), to create a mixing effect that further
strengthens the security and cryptographic robustness of the algorithm.

2.3. Error-Correcting Codes

Error-correcting codes are used in digital communication systems to detect and correct
errors that may happen during data transmission. These codes introduce redundancy into
the data, allowing for the detection and correction of errors even if some of the transmitted
information becomes corrupted.

One crucial parameter of an error-correcting code is its minimum distance, which
is defined as the smallest number of bit or symbol changes needed to convert one valid
codeword into another. This minimum distance directly influences the code’s ability to
detect and correct errors. Specifically, a code with a minimum distance d can detect up to
(d− 1) errors and can correct up to ⌊ d−1

2 ⌋ errors [40].
Error-correcting codes are a vital component of cryptography, as they help ensure that

data transmitted between two parties remains accurate and secure [10]. In the realm of
cryptography, these codes are commonly employed to protect messages or data from cor-
ruption or alteration during transmission or storage. They are essential for maintaining the
reliability, integrity, and security of encrypted communications in cryptographic systems.
By detecting and correcting errors, error-correcting codes help preserve the confidentiality
and authenticity of encrypted data [10].

3. The Proposed Cryptographic Scheme
In this section, we present our proposed scheme, which encompasses the process of

secret key generation and the method for generating security parameters. Next, we will
explain the structure of the encoding/encryption and decoding/decryption algorithms
used in this scheme. Lastly, we will illustrate how to generate a Latin square.

3.1. Scheme Description

Our encryption scheme operates on a message M and a key K, each of length
α = log2 n · k (α ≥ n) bits, where n denotes both the order of the Latin square L and
the codeword length of the Reed–Muller code, and k represents its dimension. The scheme
employs a multi-round encryption process consisting of 2 log2 n rounds, which seamlessly
integrates multiple parallel encoding operations. Both communicating parties precompute
all key-related components to enable efficient real-world deployment. The scheme utilizes
two types of permutations: πz, which act on α-bit blocks during the Latin square transfor-

Cryptography 2025, 9, 70 6 of 28

mations, and ρz, which are n-bit permutations used in the generation of πz and applied to
the RM codewords. All indexing conventions (for permutations, rounds, and arrays) begin
at zero. The process proceeds as follows:

1. Multi-Round Latin Square Encryption: We divide M and K into k segments, each
of length log2 n bits. Using L, we perform 2 log2 n rounds. For each pair of rounds,
the first uses the original row and column subsets, and the second swaps them.
This process includes converting the message and the key to n-base, mapping the
message with the Latin square using the generated scheduled keys, and permuting
the intermediate messages using πz permutations for each round.

2. Portioning: We split Y into log2 n portions, each of length k bits.
3. Reed-Muller Encoding: Each portion is independently encoded using the RM code,

transforming it into an n-bit codeword.
4. Permutations and Error Addition: Each codeword is permuted using the correspond-

ing n-bit permutation ρz and modified by adding a generated error vector ez.
5. Final Ciphertext: The modified codewords are concatenated to form the ciphertext C,

of length n · log2 n bits.

The decryption process reverses the encryption steps by utilizing the conjugate Latin
square L(23) together with the inverse permutations π−1

z for the rounds and ρ−1
z for the

codewords. It employs RM decoding, which can correct up to t errors per segment. By
executing log2 n RM encodings in parallel within a single encryption cycle, the proposed
scheme enhances computational efficiency while preserving interdependence through the
Latin square transformations and the associated permutations. Furthermore, the scheme is
flexible and can be adapted to different parameter settings of n and k.

3.2. Proposed Scheme

Let L be a Latin square of order n, and denote its row permutations by σ0, . . . , σn−1 and its
column permutations by τ0, . . . , τn−1, respectively. In our cryptographic scheme, we employ the
generator matrix of an RM code. For comprehensive details on RM codes, the reader is referred
to [14,41]. Let RM(n, k, d) denote an RM code of length n = 2m, dimension k, and minimum
distance d, which can correct up to t errors and possesses a generator matrix G.

3.2.1. Key Generation

The key generation process is formalized in (Algorithm 1), which produces the se-
cret key and parameters for the cryptographic scheme. It relies on subroutines for key
scheduling (Algorithm 2) and permutation extension (Algorithm 3). The process involves
generating a random key, computing round-specific permutations, deriving key schedules,
and extending permutations for transformations. The secret key consists of the generator
matrix G, the binary key K, the Latin square L, and subsets {Irz , Icz}z=0,...,log2 n−1.

The key generation process proceeds as follows:

1. Key Initialization:

• Generate a random binary key K of length α = k · log2 n.
• Convert K to a sequence of k base-n digits, Kdigits = {k0, k1, . . . , kk−1}, where

each ki is a log2 n-bit digit.

2. Permutation Setup: For z = 0, . . . , log2 n − 1, select random subsets Irz , Icz ⊆
{0, . . . , n − 1} to define permutations for the first log2 n rounds. For each round
z = 0, . . . , 2 log2 n− 1:

• Compute the round index k = ⌊z/2⌋.
• If z is even, compute the permutation ρz = ∏i∈Irk

σi ∏j∈Ick
τj, where σi and τj are

permutations derived from the row L[i] and column L[:, j] of the Latin square L.

Cryptography 2025, 9, 70 7 of 28

• If z is odd, compute ρz = ∏j∈Ick
τj ∏i∈Irk

σi, swapping the order of row and
column permutations.

3. Key Schedule Computation: Compute the key schedule D(z)
digits for each round

z = 0, . . . , 2 log2 n− 1 using Algorithm 2:

• For z = 0: Set D(0)
digits = Kdigits.

• For z = 1: Compute D(1)
digits = {L[ki][k(i+1) mod k] | i = 0, . . . , k− 1}.

• For z = 2, . . . , 2 log2 n− 1: Compute D(z)
digits = {L[d

(z−1)
i][d(z−2)

i] | i = 0, . . . , k− 1},

where d(z−1)
i and d(z−2)

i are digits from the previous two rounds.

4. Permutation Extension: Extend each permutation ρz to an α-bit permutation πz using
Algorithm 3. This approach is inspired by key-dependent permutation techniques [42,43],
but incorporates modifications to enhance security and adaptability:

• For each index i = 0, . . . , n− 1, compute:

vi =
(

ρz[i] + di mod k · (i2 + 1) + z · (i + 1)
)

mod α,

where di mod k is the corresponding key digit from D(z)
digits.

• If α > n, compute additional values for i = 0, . . . , α− n− 1:

vn+i = (di mod k · (z + i + 1) · (i + 2)) mod α.

• Form tuples (vj, dj mod k, j) for j = 0, . . . , α− 1. Sort them by vj, then dj mod k,

and finally by
(

j + ∑k−1
i=0 di + z

)
mod α. Use the sorted indices j to construct

the permutation.
• Apply a circular shift to the permutation by

(
∑k−1

i=0 di + z
)

mod α.

5. Precomputations: Compute the conjugate Latin square L(23) = (ri, li,j, cj).

The resulting secret key is (G, K, L, {Irz , Icz}z=0,...,log2 n−1), with key schedules

{D(z)
digits}z=0,...,2 log2 n−1 and permutations {ρz, πz}z=0,...,2 log2 n−1.

Algorithm 1 Key and Parameters Setup Algorithm

Require: Latin square L of order n, RM(n, k, d) generator matrix G, parameters n, k,
α = k log2 n

Ensure: Secret key (G, K, L, {Irz , Icz}z=0,...,log2 n−1), key schedules {D(z)
digits}z=0,...,2 log2 n−1,

permutations {ρz, πz}z=0,...,2 log2 n−1
1: K ← RandomBinary(α)
2: Kdigits ← ConvertToBaseN(K, n)
3: for z = 0 to 2 log2 n− 1 do
4: k← ⌊z/2⌋
5: if z < log2 n then
6: Choose random subsets Irk , Ick ⊆ {0, . . . , n− 1}
7: if z mod 2 = 0 then
8: ρz ← ∏i∈Irk

σi ∏j∈Ick
τj

9: else
10: ρz ← ∏j∈Ick

τj ∏i∈Irk
σi

11: D(z)
digits ← KEYSCHEDULE(L, Kdigits, z)

12: πz ← EXTENDPERMUTATION(ρz, D(z)
digits, z, α, k, n)

13: return (G, K, L, {Irz , Icz}z=0,...,log2 n−1), {D
(z)
digits}z=0,...,2 log2 n−1, {ρz, πz}z=0,...,2 log2 n−1

Cryptography 2025, 9, 70 8 of 28

Algorithm 2 Key Schedule Subroutine

1: procedure KEYSCHEDULE(L, Kdigits, z)
2: if z = 0 then
3: return Kdigits
4: else if z = 1 then
5: return {L[ki][k(i+1) mod k] | i = 0, . . . , k− 1}
6: else
7: D(z−1) ← KEYSCHEDULE(L, Kdigits, z− 1)
8: D(z−2) ← KEYSCHEDULE(L, Kdigits, z− 2)

9: return {L[d(z−1)
i][d(z−2)

i] | i = 0, . . . , k− 1}

Algorithm 3 Permutation Extension Subroutine

1: procedure EXTENDPERMUTATION(ρz, D(z)
digits, z, α, k, n)

2: for i = 0 to n− 1 do
3: vi ← (ρz[i] + di mod k · (i2 + 1) + z · (i + 1)) mod α

4: for i = 0 to α− n− 1 do
5: vn+i ← (di mod k · (z + i + 1) · (i + 2)) mod α

6: Sort tuples (vj, dj mod k, j) for j = 0, . . . , α − 1 by vj, dj mod k,
(

j + ∑k−1
i=0 di + z

)
mod α

7: Initialize permutation as empty list
8: for j = 0 to α− 1 do
9: Append j to permutation

10: Apply circular shift by
(

∑k−1
i=0 di + z

)
mod α

11: return resulting permutation

3.2.2. Encryption

The encryption process, formalized in Algorithm 4, transforms a message M into
a ciphertext C using the secret key (G, K, L, {Irz , Icz}z=0,...,log2 n−1), permutations {πz, ρz},
and key schedules {D(z)

digits}. It relies on subroutines for multi-round mapping (Algorithm 5)
and RM encoding (Algorithm 6). The process involves converting the message and key
to base-n digits, applying multi-round transformations with Latin square lookups and
permutations, encoding with an RM code, and adding error vectors.

1. The encryption process proceeds as follows:

• Message and Key Conversion: Convert the input message M of length
α = k log2 n and the key K into base-n digits, where n is the order of the
Latin square L. This yields k digits for each: Mdigits = {m0, . . . , mk−1} and
Kdigits = {k0, . . . , kk−1}, with each digit in {0, . . . , n− 1}. This conversion en-
sures uniform digit distribution [44].

• Multi-Round Mapping: Perform 2 log2 n rounds of mapping using Algorithm 5
to produce an intermediate output Y:

– For round z = 0:

* Compute y′(0)i = L[ki][mi] for i = 0, . . . , k− 1.

* Convert {y′(0)0 , . . . , y′(0)k−1} to an α-bit binary vector, apply the per-

mutation π0 to obtain y(0)binary, and convert back to base-n digits

{y(0)0 , . . . , y(0)k−1}.

– For rounds z = 1, . . . , 2 log2 n− 1:

Cryptography 2025, 9, 70 9 of 28

* Compute y′(z)i = L[d(z)i][y(z−1)
i] for i = 0, . . . , k− 1, where d(z)i is from

D(z)
digits.

* Convert {y′(z)0 , . . . , y′(z)k−1} to an α-bit binary vector, and apply πz to

obtain y(z)binary.

– For z < 2 log2 n− 1, convert y(z)binary back to base-n digits {y(z)0 , . . . , y(z)k−1}.

– Output Y = y(2 log2 n−1)
0 ∥ · · · ∥y(2 log2 n−1)

k−1 , an α-bit binary vector.

• Splitting the Intermediate Output: Divide Y into log2 n portions {Y0, . . . , Ylog2 n−1},
each of length k bits.

• RM Encoding and Permutation: For each portion Yi, i = 0, . . . , log2 n− 1, apply
Algorithm 6:

– Compute c′i = Yi · G, where G is the generator matrix of the RM(n, k, d)
code, producing an n-bit vector.

– Apply the n-bit permutation ρi to c′i, resulting in ci = (Yi · G)ρi .

• Error Vector Addition: For each i = 0, . . . , log2 n− 1, generate an error vector
ei ∈ {0, 1}n with weight at most t. Compute the encrypted portion:

Ci = ci + ei = (Yi · G)ρi + ei.

• Ciphertext Construction: Concatenate the encrypted portions to form the ciphertext:

C = C0∥C1∥ · · · ∥Clog2 n−1,

where length(C) = n · log2 n.

The resulting ciphertext C has length n · log2 n.

Algorithm 4 Encryption Algorithm

Require: Message M of length α, secret key (G, K, L, {Irz , Icz}z=0,...,log2 n−1), permutations

{πz, ρz}, key digits {D(z)
digits}

Ensure: Ciphertext C of length log2 n× n

1: Y ← MULTIROUNDMAPPING(M, K, L, {D(z)
digits}, {πz}, n, k, α)

2: {Y0, . . . , Ylog2 n−1} ← Split(Y, log2 n, k)
3: for i = 0 to log2 n− 1 do
4: ci ← RMENCODE(Yi, G, ρi)
5: ei ← GenerateErrorVector(n, t)
6: Ci ← ci + ei

7: C ← C0∥ · · · ∥Clog2 n−1
8: return C

Cryptography 2025, 9, 70 10 of 28

Algorithm 5 Multi-Round Mapping Subroutine

1: procedure MULTIROUNDMAPPING(M, K, L, {D(z)
digits}, {πz}, n, k, α)

2: Mdigits ← ConvertToBaseN(M, n)
3: Kdigits ← ConvertToBaseN(K, n)
4: for z = 0 to 2 log2 n− 1 do
5: if z = 0 then
6: for i = 0 to k− 1 do
7: y′(0)i ← L[ki][mi]

8: else
9: for i = 0 to k− 1 do

10: y′(z)i ← L[d(z)i][y(z−1)
i]

11: y′(z)binary ← ConvertToBinary(y′(z)0 , . . . , y′(z)k−1, α)

12: y(z)binary ← ApplyPermutation(y′(z)binary, πz)

13: if z ̸= 2 log2 n− 1 then

14: y(z)0 , . . . , y(z)k−1 ← ConvertToBaseN(y(z)binary, n)

15: return y(2 log2 n−1)
0 ∥ · · · ∥y(2 log2 n−1)

k−1

Algorithm 6 RM Encoding Subroutine

1: procedure RMENCODE(Yi, G, ρi)
2: ci ← Yi · G
3: ci ← ApplyPermutation(ci, ρi)
4: return ci

3.2.3. Decryption

The decryption process, formalized in Algorithm 7, recovers the original message M
from the ciphertext C using the secret key (G, K, L, {Irz , Icz}z=0,...,log2 n−1), inverse permuta-

tions {π−1
z , ρ−1

z }, key schedules {D(z)
digits}, and a conjugate Latin square L(23).

It relies on subroutines for multi-round mapping (Algorithm 8) and RM decoding
(Algorithm 9).

The process involves splitting the ciphertext, decoding RM codewords, correcting
errors, and reversing the multi-round mapping to retrieve the message.

1. The decryption process proceeds as follows:

• Ciphertext Splitting: Divide the ciphertext C of length log2 n · n into log2 n
portions {C0, . . . , Clog2 n−1}, where each Ci is an n-bit vector representing an
encoded, permuted, and error-corrupted portion of the intermediate message.

• RM Decoding: For each portion Ci, i = 0, . . . , log2 n− 1, apply Algorithm 9:

– Compute the inversely permuted vector ri = ApplyPermutation(Ci, ρ−1
i),

where Ci = (Yi · G)ρi + ei, Yi is a k-bit portion of the intermediate message,
G is the RM generator matrix, and ei is an error vector with weight at most t.

– Decode ri using the RM(n, k, d) decoding algorithm to correct up to
t = ⌊(d− 1)/2⌋ errors, yielding the k-bit portion Yi.

• Reconstructing Intermediate Message: Concatenate the decoded portions to
form the intermediate message:

Y = Y0∥Y1∥ · · · ∥Ylog2 n−1,

where Y is an α = k log2 n-bit binary vector.
• Inverse Multi-Round Mapping: Apply Algorithm 8 to reverse the 2 log2 n

rounds of mapping:

Cryptography 2025, 9, 70 11 of 28

– Initialize y(2 log2 n)
binary = Y.

– For rounds z = 2 log2 n− 1 down to 0:

* If z ̸= 2 log2 n− 1, convert {y(z+1)
0 , . . . , y(z+1)

k−1 } to an α-bit binary vector

y(z+1)
binary.

* Apply the inverse permutation π−1
z to y(z+1)

binary to obtain y′(z)binary.

* Convert y′(z)binary to base-n digits {y′(z)0 , . . . , y′(z)k−1}.

* For i = 0, . . . , k− 1, compute y(z)i = L(23)[y′(z)i][d(z)i], where L(23) is the

conjugate Latin square, and d(z)i is from the key schedule D(z)
digits.

* For z = 0, use d(0)i = ki from Kdigits.

– Output M = ConvertToBinary(y(0)0 , . . . , y(0)k−1, α), the original α-bit message.

The resulting message M has length α = k log2 n.

Algorithm 7 Decryption Algorithm

Require: Ciphertext C of length log2 n× n, secret key (G, K, L, {Irz , Icz}z=0,...,log2 n−1), per-

mutations {π−1
z , ρ−1

z }, key digits {D(z)
digits}, conjugate L(23)

Ensure: Message M of length α
1: {C0, . . . , Clog2 n−1} ← Split(C, log2 n, n)
2: for i = 0 to log2 n− 1 do
3: Yi ← RMDECODE(Ci, G, ρ−1

i)

4: Y ← Y0∥ · · · ∥Ylog2 n−1

5: M← INVERSEMULTIROUNDMAPPING(Y, K, L(23), {D(z)
digits}, {π

−1
z }, n, k, α)

6: return M

Algorithm 8 Inverse Multi-Round Mapping Subroutine

1: procedure INVERSEMULTIROUNDMAPPING(Y, K, L(23), {D(z)
digits}, {π

−1
z }, n, k, α)

2: y(2 log2 n)
binary ← Y

3: for z = 2 log2 n− 1 downto 0 do
4: if z ̸= 2 log2 n− 1 then

5: y(z+1)
binary ← ConvertToBinary(y(z+1)

0 , . . . , y(z+1)
k−1 , α)

6: y′(z)binary ← ApplyPermutation(y(z+1)
binary, π−1

z)

7: y′(z)0 , . . . , y′(z)k−1 ← ConvertToBaseN(y′(z)binary, n)
8: for i = 0 to k− 1 do
9: y(z)i ← L(23)[y′(z)i][d(z)i]

10: return ConvertToBinary(y(0)0 , . . . , y(0)k−1, α)

Algorithm 9 RM Decoding Subroutine

1: procedure RMDECODE(Ci, G, ρ−1
i)

2: ri ← ApplyPermutation(Ci, ρ−1
i)

3: Yi ← RMDecode(ri, G)
4: return Yi

3.2.4. Generation of Latin Squares

There are numerous ways to generate Latin squares in the literature which aim to
rapidly generate in an efficient and clear way the entire set of Latin squares of order n or a
proper set of Latin squares of order n for practical use [31]. These methods rely on several

Cryptography 2025, 9, 70 12 of 28

concepts such as simple product of quasigroups, generation using linear mapping, and
generation using keyed permutation, etc. [45]. Since we want to generate a single Latin
square for both sides, we will use a simple method to achieve that by means of a non-linear
mapping [45].

Both parties to the connection produce two random permutations, f and g, and each
permutation is then stored in a one-dimensional array with a size equal to the permutation.
To generate the (i, j)-th element of the Latin square, add the i-th element of the first
permutation to the j-th element of the second permutation. Then, apply the modulus
operation with respect to the size of the Latin square to be generated to the addition of the
i-th element of the first permutation and the j-th element of the second permutation.

Example 3. Let A = Zn = {0, 1, . . . , n− 1} and let the group operation be addition modulo n.
Then, we can create a quasigroup (Q,+) from (Zn,+) by supposing f (x) and g(x) (Table 2) and
defining h(x, y) = (f (x) + g(y)) mod n.

To generate a Latin square of order 4, first, we will generate two random permutations f and g
and then apply h(x, y) = (f (x) + g(y)) mod 4 for x and y ranging from 0 to 3.

Table 2. Defining two permutations f and g.

x 0 1 2 3
f(x) 1 3 0 2
g(x) 2 3 1 0

Then, the quasigroup (Q,+) created from f and g by supposing h(x, y) = (f (x) + g(y))
mod n is shown in Table 3.

Table 3. The quasigroup (Q,+) created from two permutations f and g.

+ 0 1 2 3
0 3 0 2 1
1 1 2 0 3
2 2 3 1 0
3 0 1 3 2

The main advantage of using this method is that (Q,+) is not associative because
h(0, h(2, 3)) = h(0, 0) = 3 and h(h(0, 2), 3) = h(2, 3) = 0, and not commutative because
h(2, 3) = 0 and h(3, 2) = 3. Because there are no inverses or identity elements, the rows are
independent, meaning that no one can guess the entire Latin square by figuring out any
one row [45].

4. Experimental Results
To validate the proposed symmetric cryptographic scheme, we conducted a numeric

experiment using a Latin square of order n = 8 and the Reed-Muller code RM(8, 4, 4), with
log2 n = 3, resulting in 2 log2 n = 6 rounds. The goal is to demonstrate secure encryption
using 2 log2 n rounds of Latin square transformations with row-column swapping in the
additional log2 n rounds and α-bit permutations πz, and reliable message recovery leverag-
ing the error-correcting properties of RM(8, 4, 4) despite transmission errors. This section
details the environment, setup, processes, and results.

4.1. Experimental Environment

The experiment was performed on:

Cryptography 2025, 9, 70 13 of 28

• System Model: HP ProBook 450 15.6-inch G10 Notebook PC (HP Inc., Palo Alto,
CA, USA);

• Processor: 13th Gen Intel(R) Core(TM) i5-1335U (12 CPUs), up to 1.3 GHz;
• Memory: 16,384 MB RAM (16 GB).

Execution times were measured on this hardware, implemented in Python 3.12,
and reflect performance under these conditions. Variations in system specifications may
affect timings.

The experiment used a CipherSystem class in Python, handling Latin square map-
pings, permutation generation, Reed-Muller encoding/decoding, and error correction. Key
functions include multi_round_mapping, inverse_multi_round_mapping, rm_encode,
and rm_decode. Source code is available in the Supplementary Material.

4.2. Experimental Setup

The experiment uses:

• Parameters: n = 8, log2 8 = 3, k = 4, α = 12 bits.
• Latin Square L:

L =



2 4 7 0 6 1 5 3
3 2 4 7 0 6 1 5
5 3 2 4 7 0 6 1
1 5 3 2 4 7 0 6
6 1 5 3 2 4 7 0
0 6 1 5 3 2 4 7
7 0 6 1 5 3 2 4
4 7 0 6 1 5 3 2


• Generator Matrix G: For RM(8, 4, 4):

G =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


• Message: M = 101100110010 ([5, 4, 6, 2]).
• Key: K = 011010110000 ([3, 2, 6, 0]).
• Subsets: For z = 0, 1, 2:

– Ir0 = {0, 1, 3, 4, 7}, Ic0 = {2, 3, 5}
– Ir1 = {1, 2, 5, 6, 7}, Ic1 = {0, 2, 4, 6}
– Ir2 = {2, 3, 4}, Ic2 = {1, 5}

• Error Vectors:

e0 = [0, 0, 0, 0, 1, 0, 0, 0], e1 = [0, 0, 0, 0, 0, 0, 0, 1], e2 = [0, 0, 0, 1, 0, 0, 0, 0]

4.3. Key Generation

• Select a 12-bit key K = 011010110000.
• Compute 8-bit permutations ρz, where for even z = 0, 2, 4, ρz = ∏i∈Irk

σi ∏j∈Ick
τj,

and for odd z = 1, 3, 5, ρz = ∏j∈Ick
τj ∏i∈Irk

σi, with k = ⌊z/2⌋, and σi, τj are row and
column permutations of L:

– ρ0 = [6, 2, 5, 0, 4, 1, 3, 7] (from Ir0 = {0, 1, 3, 4, 7}, Ic0 = {2, 3, 5})
– ρ1 = [7, 6, 5, 0, 4, 1, 3, 2] (from swapped Ic0 , Ir0)
– ρ2 = [0, 4, 6, 5, 7, 3, 1, 2] (from Ir1 = {1, 2, 5, 6, 7}, Ic1 = {0, 2, 4, 6})

Cryptography 2025, 9, 70 14 of 28

– ρ3 = [4, 2, 1, 5, 6, 0, 7, 3] (from swapped Ic1 , Ir1)
– ρ4 = [4, 0, 5, 3, 2, 1, 7, 6] (from Ir2 = {2, 3, 4}, Ic2 = {1, 5})
– ρ5 = [2, 6, 5, 7, 4, 1, 3, 0] (from swapped Ic2 , Ir2)

• Extend ρz to 12-bit round permutations πz, using a key-dependent transformation
with non-linear operations:

– π0 = [0, 2, 3, 4, 5, 6, 7, 11, 1, 8, 9, 10]
– π1 = [0, 1, 3, 5, 8, 9, 10, 2, 4, 6, 7, 11]
– π2 = [0, 2, 4, 6, 9, 10, 11, 1, 5, 3, 7, 8]
– π3 = [0, 1, 4, 5, 6, 7, 8, 10, 11, 2, 3, 9]
– π4 = [2, 6, 7, 8, 10, 11, 5, 0, 1, 3, 4, 9]
– π5 = [0, 3, 7, 9, 11, 2, 5, 6, 1, 4, 8, 10]

• Compute key schedule:

– Round 0: D(0)
digits = Kdigits = [3, 2, 6, 0].

– Round 1: D(1)
digits = [L[ki][k(i+1) mod 4] | i = 0, . . . , 3] = [3, 6, 7, 0].

– Round 2: D(2)
digits = [L[d(1)i][d(0)i] | i = 0, . . . , 3] = [2, 6, 3, 2].

– Round 3: D(3)
digits = [L[d(2)i][d(1)i] | i = 0, . . . , 3] = [4, 2, 6, 5].

– Round 4: D(4)
digits = [L[d(3)i][d(2)i] | i = 0, . . . , 3] = [5, 6, 1, 1].

– Round 5: D(5)
digits = [L[d(4)i][d(3)i] | i = 0, . . . , 3] = [3, 6, 1, 6].

Secret key: (G, K, L, {Irz , Icz}z=0,1,2).

4.4. Encryption Process

For M = 101100110010:

1. Base-8 Conversion:
M = [5, 4, 6, 2], K = [3, 2, 6, 0]

2. Round 0 Encryption:

• D(0)
digits = [3, 2, 6, 0].

• y′(0)i = L[ki][mi]:

y′(0)0 = L[3][5] = 7, y′(0)1 = L[2][4] = 7, y′(0)2 = L[6][6] = 2, y′(0)3 = L[0][2] = 7

• y′(0) = [7, 7, 2, 7]→ 111111010111.
• Apply π0 = [0, 2, 3, 4, 5, 6, 7, 11, 1, 8, 9, 10]: 111110111011.
• Base-8: y(0) = [7, 6, 7, 3].

3. Round 1 Encryption:

• D(1)
digits = [3, 6, 7, 0].

• y′(1)i = L[d(1)i][y(0)i]:

y′(1)0 = L[3][7] = 6, y′(1)1 = L[6][6] = 2, y′(1)2 = L[7][7] = 2, y′(1)3 = L[0][3] = 0

• y′(1) = [6, 2, 2, 0]→ 110010010000.
• Apply π1 = [0, 1, 3, 5, 8, 9, 10, 2, 4, 6, 7, 11]: 110000001010.
• Base-8: y(1) = [6, 0, 1, 2].

4. Round 2 Encryption:

• D(2)
digits = [2, 6, 3, 2].

• y′(2)i = L[d(2)i][y(1)i]:

Cryptography 2025, 9, 70 15 of 28

y′(2)0 = L[2][6] = 6, y′(2)1 = L[6][0] = 7, y′(2)2 = L[3][1] = 5, y′(2)3 = L[2][2] = 2

• y′(2) = [6, 7, 5, 2]→ 110111101010.
• Apply π2 = [0, 2, 4, 6, 9, 10, 11, 1, 5, 3, 7, 8]: 101101101011.
• Base-8: y(2) = [5, 5, 3, 5].

5. Round 3 Encryption:

• D(3)
digits = [4, 2, 6, 5].

• y′(3)i = L[d(3)i][y(2)i]:

y′(3)0 = L[4][5] = 4, y′(3)1 = L[2][5] = 0, y′(3)2 = L[6][3] = 1, y′(3)3 = L[5][5] = 2

• y′(3) = [4, 0, 1, 2]→ 100000001010.
• Apply π3 = [0, 1, 4, 5, 6, 7, 8, 10, 11, 2, 3, 9]: 100000110000.
• Base-8: y(3) = [4, 0, 6, 0].

6. Round 4 Encryption:

• D(4)
digits = [5, 6, 1, 1].

• y′(4)i = L[d(4)i][y(3)i]:

y′(4)0 = L[5][4] = 3, y′(4)1 = L[6][0] = 7, y′(4)2 = L[1][6] = 1, y′(4)3 = L[1][0] = 3

• y′(4) = [3, 7, 1, 3]→ 011111001011.
• Apply π4 = [2, 6, 7, 8, 10, 11, 5, 0, 1, 3, 4, 9]: 100111110110.
• Base-8: y(4) = [4, 7, 5, 6].

7. Round 5 Encryption:

• D(5)
digits = [3, 6, 1, 6].

• y′(5)i = L[d(5)i][y(4)i]:

y′(5)0 = L[3][4] = 4, y′(5)1 = L[6][7] = 4, y′(5)2 = L[1][5] = 6, y′(5)3 = L[6][6] = 2

• y′(5) = [4, 4, 6, 2]→ 100100110010.
• Apply π5 = [0, 3, 7, 9, 11, 2, 5, 6, 1, 4, 8, 10]: 111000010001.
• Base-8: y(5) = [7, 0, 2, 1].

8. Divide into Portions: Y = 111000010001→ Y0 = 1110, Y1 = 0001, Y2 = 0001.
9. Encode with G:

c0 = [1, 1, 0, 0, 0, 0, 1, 1], c1 = [0, 1, 0, 1, 0, 1, 0, 1], c2 = [0, 1, 0, 1, 0, 1, 0, 1]

10. Apply Permutations:

cρ0
0 = [1, 0, 0, 1, 0, 1, 0, 1], cρ1

1 = [1, 0, 1, 0, 0, 1, 1, 0], cρ2
2 = [0, 0, 0, 1, 1, 1, 1, 0]

11. Add Errors:

C0 = [1, 0, 0, 1, 1, 1, 0, 1], C1 = [1, 0, 1, 0, 0, 1, 1, 1], C2 = [0, 0, 0, 0, 1, 1, 1, 0]

12. Ciphertext: C = 100111011010011100001110.

Cryptography 2025, 9, 70 16 of 28

4.5. Decryption Process

For C = 100111011010011100001110:

1. Reconstruct Permutations: Using the secret key (G, K, L, {Irz , Icz}z=0,1,2), compute
the 12-bit round permutations πz, their inverses π−1

z , and the 8-bit codeword permu-
tations ρz, their inverses ρ−1

z :

• ρ0 = [6, 2, 5, 0, 4, 1, 3, 7], ρ−1
0 = [3, 5, 1, 6, 4, 2, 0, 7]

• ρ1 = [7, 6, 5, 0, 4, 1, 3, 2], ρ−1
1 = [3, 5, 7, 6, 4, 2, 1, 0]

• ρ2 = [0, 4, 6, 5, 7, 3, 1, 2], ρ−1
2 = [0, 6, 7, 5, 1, 3, 2, 4]

• ρ3 = [4, 2, 1, 5, 6, 0, 7, 3], ρ−1
3 = [5, 2, 1, 7, 0, 3, 4, 6]

• ρ4 = [4, 0, 5, 3, 2, 1, 7, 6], ρ−1
4 = [1, 5, 4, 3, 0, 2, 7, 6]

• ρ5 = [2, 6, 5, 7, 4, 1, 3, 0], ρ−1
5 = [7, 5, 0, 6, 4, 2, 1, 3]

• π0 = [0, 2, 3, 4, 5, 6, 7, 11, 1, 8, 9, 10], π−1
0 = [0, 8, 1, 2, 3, 4, 5, 6, 9, 10, 11, 7]

• π1 = [0, 1, 3, 5, 8, 9, 10, 2, 4, 6, 7, 11], π−1
1 = [0, 1, 7, 2, 8, 3, 9, 10, 4, 5, 6, 11]

• π2 = [0, 2, 4, 6, 9, 10, 11, 1, 5, 3, 7, 8], π−1
2 = [0, 7, 1, 9, 2, 8, 3, 10, 11, 4, 5, 6]

• π3 = [0, 1, 4, 5, 6, 7, 8, 10, 11, 2, 3, 9], π−1
3 = [0, 1, 9, 10, 2, 3, 4, 5, 6, 11, 7, 8]

• π4 = [2, 6, 7, 8, 10, 11, 5, 0, 1, 3, 4, 9], π−1
4 = [7, 8, 0, 9, 10, 6, 1, 2, 3, 11, 4, 5]

• π5 = [0, 3, 7, 9, 11, 2, 5, 6, 1, 4, 8, 10], π−1
5 = [0, 8, 5, 1, 9, 6, 7, 2, 10, 3, 11, 4]

2. Split Ciphertext: Divide into C0, C1, C2, each 8 bits:

C0 = [1, 0, 0, 1, 1, 1, 0, 1], C1 = [1, 0, 1, 0, 0, 1, 1, 1], C2 = [0, 0, 0, 0, 1, 1, 1, 0]

3. Apply Inverse Permutations and Decode:

• r0 = C
ρ−1

0
0 = [1, 1, 0, 0, 1, 0, 1, 1]→ Y0 = [1, 1, 1, 0].

• r1 = C
ρ−1

1
1 = [0, 1, 1, 1, 0, 1, 0, 1]→ Y1 = [0, 0, 0, 1].

• r2 = Cρ−1
2

2 = [0, 1, 0, 1, 0, 0, 0, 1]→ Y2 = [0, 0, 0, 1].

4. Reconstruct Y: Y = 111000010001.
5. Round 5 Decryption:

• Apply π−1
5 : 111000010001→ 100100110010→ [4, 4, 6, 2].

• Inverse mapping: y(5)i = L(23)[y′(5)i][d(5)i]:

y(5)0 = L(23)[4][3] = 4, y(5)1 = L(23)[4][6] = 7

y(5)2 = L(23)[6][1] = 5, y(5)3 = L(23)[2][6] = 6

• y(5) = [4, 7, 5, 6].

6. Round 4 Decryption:

• y(5)binary = 100111110110.

• Apply π−1
4 : 011111001011→ [3, 7, 1, 3].

• Inverse mapping: y(4)i = L(23)[y′(4)i][d(4)i]:

y(4)0 = L(23)[3][5] = 4, y(4)1 = L(23)[7][6] = 0

y(4)2 = L(23)[1][1] = 6, y(4)3 = L(23)[3][1] = 0

• y(4) = [4, 0, 6, 0].

7. Round 3 Decryption:

• y(4)binary = 100000110000.

Cryptography 2025, 9, 70 17 of 28

• Apply π−1
3 : 100000001010→ [4, 0, 1, 2].

• Inverse mapping: y(3)i = L(23)[y′(3)i][d(3)i]:

y(3)0 = L(23)[4][4] = 5, y(3)1 = L(23)[0][2] = 5

y(3)2 = L(23)[1][6] = 3, y(3)3 = L(23)[2][5] = 5

• y(3) = [5, 5, 3, 5].

8. Round 2 Decryption:

• y(3)binary = 101101101011.

• Apply π−1
2 : 110111101010→ [6, 7, 5, 2].

• Inverse mapping: y(2)i = L(23)[y′(2)i][d(2)i]:

y(2)0 = L(23)[6][2] = 6, y(2)1 = L(23)[7][6] = 0

y(2)2 = L(23)[5][3] = 1, y(2)3 = L(23)[2][2] = 2

• y(2) = [6, 0, 1, 2].

9. Round 1 Decryption:

• y(2)binary = 110000001010.

• Apply π−1
1 : 110010010000→ [6, 2, 2, 0].

• Inverse mapping: y(1)i = L(23)[y′(1)i][d(1)i]:

y(1)0 = L(23)[6][3] = 7, y(1)1 = L(23)[2][6] = 6

y(1)2 = L(23)[2][7] = 7, y(1)3 = L(23)[0][0] = 3

• y(1) = [7, 6, 7, 3].

10. Round 0 Decryption:

• y(1)binary = 111110111011.

• Apply π−1
0 : 111111010111→ [7, 7, 2, 7].

• Inverse mapping: y(0)i = L(23)[y′(0)i][d(0)i]:

y(0)0 = L(23)[7][3] = 5, y(0)1 = L(23)[7][2] = 4

y(0)2 = L(23)[2][6] = 6, y(0)3 = L(23)[7][0] = 2

• y(0) = [5, 4, 6, 2]→ 101100110010.

4.6. Results

• Original Message: M = 101100110010;
• Ciphertext: C = 100111011010011100001110;
• Decrypted Message: 101100110010, and it matches the original;
• Outcome: Successfully encrypted and decrypted, correcting single-bit errors using

RM(8, 4, 4).

Cryptography 2025, 9, 70 18 of 28

4.7. Avalanche Effect and Differential Analysis

To evaluate the diffusion properties and resistance against differential cryptanalysis for
practical parameter sets, we conducted avalanche effect and differential pattern consistency
tests. These tests align with configurations used in the performance analysis:

• RM(16, 15, 2): n = 16, k = 15, d = 2 (Input: 60-bit, Output: 64-bit)
• RM(32, 16, 8): n = 32, k = 16, d = 8 (Input: 80-bit, Output: 160-bit)
• RM(32, 26, 4): n = 32, k = 26, d = 4 (Input: 130-bit, Output: 160-bit)

For each configuration, 100 random messages were used, and every possible single
input bit flip was performed using our implementation.

4.7.1. Avalanche Effect Analysis

The avalanche effect measures how a single input bit flip impacts the output bits.
Ideally, approximately 50% of the output bits should change. We measured the average
Hamming Distance (HD) between the original and modified ciphertexts for each input
bit flip, as well as the distribution of these changes across the log2 n output portions
corresponding to the RM codewords. The results are summarized in Table 4.

The results demonstrate consistently strong diffusion properties across all tested
parameter sets incorporating different RM(n, k, d) codes.

• Overall Avalanche: The average change across all input bits is remarkably close to
the ideal 50% for all configurations (RM(16, 15, 2), RM(32, 16, 8), and RM(32, 26, 4)).
This indicates excellent overall diffusion regardless of the specific code parameters.

• Consistency: The range between the minimum and maximum average avalanche per-
centages observed for individual input bit flips remains reasonably tight across all sets,
suggesting good uniformity in diffusion behavior across different input bit positions.

• Distribution: The analysis of flip distribution across the log2 n output sections shows
near-perfect uniformity for all configurations. The average percentage of flips landing
in each section consistently matches the ideal (100/ log2 n%), indicating that the diffu-
sion mechanism effectively spreads changes evenly throughout the entire ciphertext
block, irrespective of the specific RM(n, k, d) used.

• SAC: The Strict Avalanche Criterion is met in 14–24% of individual flips. While not
approaching 100%, the excellent average avalanche and uniform distribution are more
indicative of strong practical diffusion.

Table 4. Avalanche Effect Summary for Different Parameter Sets (Avg. over 100 messages).

Metric RM(16, 15, 2) RM(32, 16, 8) RM(32, 26, 4)
(In: 60b, Out: 64b) (In: 80b, Out: 160b) (In: 130b, Out: 160b)

Overall Avg. Avalanche 49.75% 50.00% 50.06%
(Ideal: 50%) (Avg. HD: 31.84) (Avg. HD: 80.00) (Avg. HD: 80.10)

Min Avg. Avalanche 42.81% 45.75% 47.13%
(per input bit) (Bit 21) (Bit 71) (Bit 67)

Max Avg. Avalanche 53.44% 52.75% 54.12%
(per input bit) (Bit 0, 36) (Bit 31, 36) (Bit 27)

SAC Met (%) * 21.17% 23.62% 14.15%
(127/600 flips) (189/800 flips) (184/1300 flips)

Output Sections (log2 n) 4 5 5
Ideal Flip Distr. (%) 25.0% 20.0% 20.0%
Observed Avg. Distr. (%) [24.9, 25.2, 24.8, 25.1] [20.1, 20.0, 20.0, 19.8, 20.0] [19.9, 20.1, 20.1, 20.0, 19.9]

* SAC: Strict Avalanche Criterion (% of flips with exactly 50% output change).

Cryptography 2025, 9, 70 19 of 28

4.7.2. Differential Pattern Consistency Analysis

We tested for consistent input/output differential characteristics by flipping each
input bit for 100 random messages and observing the resulting output XOR patterns (∆C).

For all three parameter sets tested (RM(16, 15, 2); RM(32, 16, 8); and RM(32, 26, 4)),
the results were optimal:

Found common differential patterns for 0 / α input bit flips across 100 messages.

This indicates that for every single input bit flip tested, the specific pattern of output
bit changes varied depending on the message being encrypted. No consistent input/output
differential characteristic was detected in these empirical tests for any configuration. This
provides strong evidence suggesting resistance against simple first-order differential attacks
across different scales and configurations of the cipher.

4.7.3. Implications

These comprehensive results, obtained using practical parameters and NumPy op-
timizations, significantly strengthen the security claims. The cipher consistently ex-
hibits excellent average diffusion, near-perfect distribution of changes across the out-
put block, and empirical resistance to consistent differential patterns across different
RM(n, k, d) configurations. This suggests the core design principles—including 2 log2 n
SPN rounds with row/column swapping, key-dependent permutations, and the overlap-
ping structure—effectively provide robust confusion and diffusion properties that scale
well with the chosen parameters.

4.8. Performance and Comparison

To quantify the computational overhead and scalability of our scheme, we conducted
a comprehensive performance analysis. This analysis addresses the reviewer’s request by
benchmarking our scheme against its own “SPN-only” baseline (with RM codes removed),
the Advanced Encryption Standard (AES-128), and the lightweight cipher PRESENT-128.

We benchmarked two parameter sets for our scheme on the hardware specified in
Section 4.1. The results, averaged over 100 runs, are presented in Table 5. We measured
three metrics for our scheme:

• SPN-Only (Baseline): The core SPN operation, representing the performance without
the error-correction layer.

• Full Scheme (Single Node): The total time for the entire serial process, including the
SPN and all RM encoding/decoding operations.

• Full Scheme (Parallel Est.): The theoretical time in a distributed environment, calcu-
lated as the SPN time plus the time of the slowest parallel RM-encoding/decoding
node observed during the runs.

Overhead of RM Codes: The “SPN-Only” baseline clearly quantifies the cost of the
resilience feature. For the 130-bit scheme, adding RM codes introduces a substantial 9.5×
overhead for encryption (1.383 ms vs 0.146 ms) and a very significant 69.2× overhead
for decryption (10.859 ms vs 0.157 ms). This stark difference underscores that the RM
decoding, likely the majority-logic algorithm used, is the primary performance bottleneck,
representing the explicit trade-off for error correction and fault-attack resilience absent in
AES and PRESENT.

Comparison to PRESENT: The SPN baseline demonstrates excellent performance.
Both the 60-bit (0.094 ms) and 130-bit (0.146 ms) baseline encryptions are faster than
PRESENT encryption (0.233 ms), showcasing the efficiency of the core SPN structure when
implemented with NumPy.

Cryptography 2025, 9, 70 20 of 28

Parallelization Advantage: The “Parallel Est.” results confirm the critical importance
of the distributed design. For the 130-bit scheme, parallelization dramatically reduces the
decryption time from 10.859 ms to 2.412 ms, achieving a 77.8% speedup. For the 60-bit
scheme, the decryption speedup is 70.2% (from 2.048 ms to 0.610 ms). Even encryption
benefits significantly, with the 130-bit parallel estimate (0.409 ms) being 70.4% faster than
the single-node full scheme. This proves that the parallel architecture effectively mitigates
the RM processing overhead, particularly for decryption, making the scheme viable for
multi-core or distributed systems.

Comparison to AES: AES remains orders of magnitude faster due to optimized
libraries and hardware support, serving as a performance ceiling. Our scheme focuses on
resilience, a feature AES lacks natively.

Table 5. Comprehensive Performance Comparison (Average time in ms).

Cipher/Scheme Block Size/Key Size (bits) Encryption (ms) Decryption (ms)

Proposed RM(32, 26, 4) * 130/130
SPN-Only (Baseline) 0.146 0.157
Full Scheme (Single Node) 1.383 10.859
Full Scheme (Parallel Est.) 0.409 2.412

Proposed RM(16, 15, 2) * 60/60
SPN-Only (Baseline) 0.094 0.105
Full Scheme (Single Node) 0.432 2.048
Full Scheme (Parallel Est.) 0.177 0.610

Standard Ciphers
PRESENT-128 64/128 0.233 0.224
AES-128 (ECB) 128/128 0.008 0.002
AES-128 (CBC) 128/128 0.003 0.002
AES-128 (CTR) 128/128 0.003 0.002

* Benchmarks for the proposed scheme are from a Python prototype using NumPy 2.3. Standard cipher results
may reflect library optimizations or hardware acceleration.

5. Security Analysis
The proposed cryptographic scheme achieves robust security by integrating Latin

square transformations, permutations, and Reed-Muller (RM) codes. This section analyzes
the scheme’s security primitives using general parameters: Latin square order n = 2m,
RM code length n, dimension k, minimum distance d, and error-correcting capability
t = ⌊(d − 1)/2⌋. The total message/key length is α = k · log2 n. We evaluate the key
space, resistance to common cryptanalytic attacks, and the impact of parameter variation,
supported by the empirical results presented in Section 4.

5.1. Key Space and Components

The security of the proposed cryptographic scheme relies on the size and complexity
of its secret key, which directly influences the final ciphertext C. The secret key consists
of the binary key K, the Latin square L, the generator matrix G of the Reed-Muller code
RM(r, m), and distinct subsets {Irz , Icz}z=0,...,log2 n−1 used to generate permutations ρz. The
ciphertext C is produced through multi-round Latin square transformations over 2 log2 n
rounds with row-column swapping, πz permutations derived from ρz and the key schedule,
RM encoding with G, application of ρz, and potential addition of ez. Each key component
contributes to the key space, making brute-force attacks computationally infeasible. Below,
we analyze each component’s contribution to the key space.

- Binary Key K: The key K is a binary string of length α = k · log2 n, where n = 2m,
k = ∑r

i=0 (
m
i), and m = log2 n. The key space for K is 2α. For the tested parameters:

Cryptography 2025, 9, 70 21 of 28

RM(16, 15, 2) gives α = 15 · 4 = 60, RM(32, 16, 8) gives α = 16 · 5 = 80, and RM(32, 26, 4)
gives α = 26 · 5 = 130. The key space ranges from 260 to 2130 for these examples. K
is converted to base-n digits, used in the first round and to derive the key schedule.
The key schedule (D(z)

digits) depends deterministically on K and L, ensuring non-linear
transformations across rounds and enhancing K’s diffusion.

- Latin Square L: The number of Latin squares of order n, denoted L(n), grows
factorially with n. For large values of n, the exact number of Latin squares L(n) is not
known, but there are bounds on the number of Latin squares L(n). One such bound is:
L(n) ≥ (n!)2n/nn2

[46]. This bound implies that the number of Latin squares of order n
grows very rapidly as n increases. The number of Latin squares is known for n ≤ 11 [47].
This lower bound assures that against the development of hardware, n can always be
chosen in a way such that it is computationally infeasible to find the Latin square L. For
n = 16, log2 L(16) ≈ 379 bits, or L(16) ≈ 2379. For n = 32, log2 L(32) ≈ 2407 bits, or
L(32) ≈ 22407. The Latin square L is used for substitution in each of the 2 log2 n rounds,
mapping message digits to new values based on key digits, and its conjugate L(23) is used
for decryption. The vast number of possible Latin squares ensures that guessing L is
impractical, even if an attacker knows the scheme’s structure. Since L directly affects the
intermediate value Y and, through the key schedule, the permutations πz, it significantly
contributes to the randomness of C.

- Generator Matrix G: The RM code RM(r, m) has a generator matrix G of size k× n,
where n = 2m, k = ∑r

i=0 (
m
i), and the minimum distance d = 2m−r. For n = 8, m = 3, and

r = 1, k = 4, the specific G used in the experiment is fixed. In general, the choice of G for
RM(r, m) can vary by selecting different bases for the code’s k-dimensional vector space.
The number of distinct generator matrices is the number of ordered bases, which is:

k−1

∏
i=0

(2k − 2i)

For n = 16, m = 4, r = 1, k = 5, this is approximately 225, and for n = 32, m = 5,
r = 1, k = 6, approximately 235. We assume a fixed G, but including it as a variable key
component would increase the key space by these factors. G affects C by encoding portions
of Y into codewords, ensuring error correction and adding a security layer [14,48].

- Subsets for Permutations: For each of the first log2 n rounds, a distinct pair of
subsets (Irz , Icz) ⊆ {0, . . . , n − 1} is chosen to generate the permutation ρz for rounds
z = 0, 2, . . . , 2 log2 n − 2, and swapped for rounds z = 1, 3, . . . , 2 log2 n − 1, which is
extended to the α-bit permutation πz using key-dependent transformations. The number of
possible subsets for each Irz and Icz is 2n, so each pair contributes 2n × 2n = 22n possibilities.
With log2 n subset pairs (used across 2 log2 n rounds with swapping), the total contribution
from subsets is (22n)log2 n = 22n log2 n. For n = 16, log2 16 = 4, so 22×16×4 = 2128. For
n = 32, log2 32 = 5, so 22×32×5 = 2320. Each ρz is computed as ρz = ∏i∈Irk

σi ∏j∈Ick
τj for

even z, and ρz = ∏j∈Ick
τj ∏i∈Irk

σi for odd z, where k = ⌊z/2⌋, and σi and τj are row and
column permutations of L. These permutations affect C by permuting RM codewords
and, through πz, shuffling intermediate values during the 2 log2 n round transformations,
significantly increasing the key space.

- Combined Key Space: The total key space is the product of independent components,
adjusted for dependencies. The secret key is (G, K, L, {Irz , Icz}z=0,...,log2 n−1). Assuming a
fixed G, the size of the key space is:

|K| × |L| ×
log2 n−1

∏
z=0

|Irz × Icz | = 2α × L(n)× 22n log2 n

Cryptography 2025, 9, 70 22 of 28

For n = 16, this is approximately 220 × 2379 × 2128 = 2527. For n = 32, it is 230 × 22407 ×
2320 = 22757. These values far exceed recommended key sizes for symmetric ciphers [1,2].
Dependencies, such as the key schedule deriving D(z)

digits from K and L over 2 log2 n rounds
with swapping, may slightly reduce the effective key space, but the factorial growth of L(n)
and the exponential contribution of subsets dominate, ensuring robustness.

- Impact on Ciphertext C: The key components collectively determine C. The key
K and Latin square L govern the multi-round transformations over 2 log2 n rounds with
row-column swapping, producing Y. The subsets {Irz , Icz} generate ρz, which, with K,
derives πz, affecting Y, and directly permutes RM codewords. The matrix G encodes Y’s
portions. An attacker attempting to guess C without the key faces the full key space, as
each component is essential for decryption. Even partial knowledge (e.g., G) leaves an
infeasible number of possibilities for K, L, and {Irz , Icz}.

5.2. Resistance to Linear Cryptanalysis

Linear cryptanalysis seeks linear relationships between plaintext, ciphertext, and key
bits to approximate the cipher’s behavior. The scheme’s non-linear Latin squares, scram-
bling permutations, and increased 2 log2 n rounds with row-column switching provide
strong resistance.

Each Latin square substitution introduces a bias of approximately 1
n in any linear

approximation. Over 2m rounds (where m = log2 n), the total bias becomes:(
1
n

)2m

with required data D ≈ bias−2: - For n = 16, m = 4, 2m = 8, the bias is
(

1
16

)8
= 2−32,

requiring 264 known plaintext-ciphertext pairs to exploit, a significant computational

burden. For n = 32, m = 5, 2m = 10, the bias is
(

1
32

)10
= 2−50, needing 2100 pairs,

rendering the attack infeasible.
Although RM codes are linear, the permutations ρz with swapping disrupt linear

patterns by shuffling bits unpredictably, ensuring that linear cryptanalysis is ineffective for
practical n.

5.3. Resistance to Differential Cryptanalysis

Differential cryptanalysis exploits non-random propagation of differences through the
cipher. The strength against this relies on the non-linearity of L, the diffusion properties
of πz, and the number of rounds. The maximum differential probability (DP) of the Latin
square substitution is expected to be low (e.g., ≈2/n for random S-boxes). Over 2 log2 n
rounds, the probability of a differential characteristic drops exponentially. Furthermore, the
empirical tests presented in Section 4.7.2 show excellent avalanche characteristics (average
close to 50% change) and, crucially, found no evidence of consistent input/output differen-
tial patterns for any tested parameter set (RM(16, 15, 2), RM(32, 16, 8), RM(32, 26, 4)). This
suggests strong resistance against first-order differential attacks for these configurations.

5.4. Resistance to Algebraic Attacks

Algebraic attacks model the cipher as a system of multivariate polynomial equations
over a finite field (GF(2)) to solve for the secret key. The scheme’s resistance relies on its
vast key space and high algebraic complexity across the 2 log2 n rounds.

1. Vast Key Space Complexity. The full secret key includes the binary key K (length α),
the Latin square L (order n), the generator matrix G of RM(r, m), and the permutation

Cryptography 2025, 9, 70 23 of 28

subsets {Iz
r , Iz

c }. The combined size of the key components (excluding G for a fixed
RM code) grows as:

α + log2 L(n) + 2n log2 n.

This metric results in hundreds to thousands of bits (e.g., 527 bits for n = 16 and
2757 bits for n = 32), making exhaustively solving the system infeasible due to the
massive number of variables.

2. High Structural Degree. The core algebraic strength stems from the composition of
highly complex, non-linear round functions:

• Non-linear Substitution: Each round’s Latin square lookup, y′i = L[ki][xi], is in-
herently non-linear, causing the overall polynomial degree to grow exponentially
with the number of rounds.

• hlKey-Dependent Permutations: The α-bit round permutations πz are derived
through non-linear functions of ρz and the round key digits. These mix all state
bits and prevent the isolation or linearization of individual S-box equations.

• Tangled Constraints: The final stage involves linear encoding by G and permuta-
tion by ρz of the intermediate state Y. This adds tangled linear constraints that
cannot be separated from the prior non-linear SPN equations, complicating the
inversion process.

Together with the vast key space and the effect of 2 log2 n rounds, these design features
ensure that deriving and solving a unified algebraic system for the key remains beyond
current computational resources.

5.5. Resistance to Fault Attacks

Fault attacks inject errors to gain information. The integrated RM codes provide
inherent resilience. The ciphertext consists of log2 n independently encoded portions using
RM(n, k, d) with error-correcting capability t. Based on the tested parameters:

• For RM(16, 15, 2): n = 16, k = 15, d = 2 =⇒ t = ⌊(2− 1)/2⌋ = 0. Each of the
log2 16 = 4 portions can detect 1 bit-fault but corrects 0. An injected fault leads to a
decoding failure (detectable error).

• For RM(32, 16, 8): n = 32, k = 16, d = 8 =⇒ t = ⌊(8− 1)/2⌋ = 3. Each of the
log2 32 = 5 portions corrects up to 3 bit-faults. More faults cause decoding failure.

• For RM(32, 26, 4): n = 32, k = 26, d = 4 =⇒ t = ⌊(4− 1)/2⌋ = 1. Each of the
log2 32 = 5 portions corrects up to 1 bit-fault. More faults cause decoding failure.

In all cases, faults up to t are corrected silently. Faults exceeding t result in a decoding
failure (producing an incorrect, likely all-zero or garbage, block segment) rather than reveal-
ing intermediate state information related to the key. This inherent detection/correction
mechanism significantly hinders fault attacks aiming to extract secrets through differential
fault analysis.

5.6. Resistance to Chosen-Ciphertext Attacks

Chosen-Ciphertext Attacks (CCAs) involve an adversary querying a decryption oracle
with chosen ciphertexts to gain information about a target ciphertext or the secret key. The
proposed scheme’s architecture provides resistance through the combined action of the
Reed-Muller codes and the core SPN structure.

• RM Codes as a Malleability Barrier: A key feature against CCA is the integrated
RM codes. When an adversary submits a modified ciphertext Ci to the oracle, the RM
decoding behavior acts as a crucial barrier:

Cryptography 2025, 9, 70 24 of 28

– If modifications constitute less than t = ⌊(d− 1)/2⌋ errors, the decoder corrects
them, returning the original intermediate segment Yi. The adversary gains no
information from the modification.

– If modifications exceed t errors, the decoder fails, producing an invalid out-
put (e.g., all zeros or garbage). This prevents the adversary from observing a
meaningful plaintext related to their manipulated ciphertext.

This mechanism directly prevents attacks relying on ciphertext malleability, as pre-
dictable plaintext changes cannot be induced from controlled ciphertext alterations.

• Core SPN Security: The fundamental cryptographic strength against CCA resides in
the complex, multi-round SPN. Operating over 2 log2 n rounds, it employs:

– Non-linear Latin square substitutions (L).
– Key-dependent α-bit permutations (πz) derived from a non-linear process.

– Unique round keys (D(z)
digits) from a non-linear key schedule.

– Round structure variations via row-column swapping.

These components ensure that the relationship between the intermediate state Y
(the SPN output before RM encoding) and the final plaintext M is computationally
infeasible to invert without the secret key. Even if an adversary could somehow bypass
the RM layer, recovering M or key information from Y remains intractable.

• Codeword Permutation Obscurity: The application of the secret n-bit permutations
ρz to the RM codewords further obscures the link between the SPN output Y and the
transmitted ciphertext C, adding another layer of difficulty for the adversary analyzing
oracle responses.

In concert, the RM layer’s ability to detect or correct modifications, combined with
the cryptographic strength and complexity of the multi-round SPN, renders the scheme
resistant to Chosen-Ciphertext Attacks.

5.7. Security Enhancement via Overlapping Portions

The scheme enhances diffusion by splitting the α-bit intermediate state Y (output of
the SPN) into log2 n overlapping k-bit portions Y(i) for RM encoding. Since Y is formed by
concatenating k base-n digits (each log2 n bits wide) after 2 log2 n rounds of substitution
and permutation, a single input bit flip in M typically affects multiple digits in the final
SPN state. When this state Y is re-segmented into k-bit chunks Y(i), the changes are
distributed across the inputs to multiple independent RM encoders. This redistribution
effect is supported by the experimental results in Table 4, which demonstrate a near-uniform
distribution of output bit changes across all RM portions following a single input bit flip.
This mechanism ensures that local changes are rapidly spread across the entire ciphertext
block, complementing the round function’s diffusion.

5.8. Parameter Flexibility and Limitations

The proposed cryptographic scheme offers flexible adaptation to diverse applications.
By varying the Latin square order n, the number of key/message segments k, and the RM
code’s minimum distance d, the scheme balances security, error correction, and efficiency.
The independent encoding of log2 n k-bit portions supports parallelization, enhancing
performance in multi-core systems.

Storage Overhead. Parameter growth escalates resource demands. The primary
storage cost comes from precomputed components required for efficient operation. To
accurately quantify the memory requirement per device, we empirically measured the total
process memory increment (Resident Set Size, RSS) during the sequential initialization

Cryptography 2025, 9, 70 25 of 28

of two identical cipher instances (Alice and Bob) using the psutil module. The total
measured increment was then divided by two to estimate the footprint for a single user.

As shown, the measured practical storage requirements range from an estimated 6.0
KiB up to 238.0 KiB for the largest tested configuration (RM(32, 26, 4)). This footprint,
dominated by the allocation of permutation tables and the RM decoding structure, could
be challenging for highly constrained IoT devices (often under 20 KiB RAM).

Computational Overhead and Mitigation. Computationally, the SPN complexity
is approximately O(log2 n · α log α), dominated by permutation generation. Reed-Muller
encoding/decoding complexity typically scales with n, often as O(n log n) or O(log2 n).
The RM decoding latency, identified in the performance analysis (Table 5), is the most
significant cost but is mitigated by parallelization.

Mitigation in Distributed Systems. The memory footprint represents a fixed, one-time
investment per device. When the scheme is utilized in a distributed or cloud environment,
this cost is less restrictive because the large, precomputed structures (Latin squares and
permutation tables) are loaded only once, and the investment is justified by the parallel
processing benefits and high throughput achieved by processing multiple log2 n portions
concurrently.

The scheme’s flexibility with n, k, and d supports different applications, with ro-
bust key spaces and error correction. However, the calculated storage and computa-
tional overheads highlight the need for careful parameter selection and potential op-
timizations like partial precomputation or hardware acceleration for deployment in
resource-constrained environments.

6. Conclusions
This paper presents a novel symmetric block cipher based on an SPN that integrates

Latin squares, permutations, and Reed-Muller (RM) codes to provide robust security and
resilience. The scheme processes a message and key of length α = k · log2 n bits over
2 log2 n rounds, featuring row-column swapping for enhanced diffusion. The intermediate
state is split into log2 n portions, each encoded using RM(n, k, d), permuted by ρz, yielding
a ciphertext of length log2 n · n bits. The design supports parallel processing for efficiency.

The scheme offers a large key space, ensuring resistance to brute-force attacks. The
RM code corrects up to t = ⌊(d − 1)/2⌋ errors per portion (or detects errors if t = 0),
enhancing resilience against channel noise and fault attacks (Section 5). Experimental
results (Section 4.7) demonstrate excellent diffusion properties, with average avalanche
effects near 50% and uniform distribution of changes across output blocks for tested
parameters (RM(16, 15, 2), RM(32, 16, 8), RM(32, 26, 4)). Empirical tests also showed no
consistent differential patterns, suggesting resistance to first-order differential attacks. The
multi-round SPN structure, overlapping portions, and key-dependent elements contribute
to resistance against linear, algebraic, and chosen-ciphertext attacks (Section 5).

Limitations primarily involve resource usage. While empirical differential tests were
positive for the tested parameters and messages, the theoretical possibility of weak keys or
higher-order characteristics warrants further study. Significant measured storage demands,
ranging from approximately 6.0 KiB to 238.0 KiB per user for the practical parameter sets
tested (Table 6), pose a challenge for highly memory-constrained devices. Computational
complexity, particularly the O(n log2 n) scaling and observed latency of RM decoding, im-
pacts low-power devices, though parallelization provides substantial mitigation (Table 5).

Cryptography 2025, 9, 70 26 of 28

Table 6. Measured Memory Footprint for Precomputed Components (Single User Estimate).

Parameter Set Total Bits (α)/Code Estimated Single User Footprint (KiB)

RM(32, 26, 4) 130/RM(3, 5) 238.0 KiB
RM(32, 16, 8) 80/RM(2, 5) 20.0 KiB
RM(16, 15, 2) 60/RM(3, 4) 6.0 KiB
RM(8, 4, 4) 12/RM(1, 3) <1.0 KiB

The single-user footprint is estimated by dividing the total process memory increment (RSS) during sequential
initialization (Alice + Bob) by two.

Future research should focus on optimizing storage, potentially through dynamic
Latin square generation or partial precomputation. Deeper cryptanalysis, including formal
proofs and simulations against side-channel attacks, is needed. Investigating the use of
other error-correcting codes, such as Reed-Solomon codes, to handle different error models
(e.g., burst errors) could broaden applicability. Exploring secret sharing for key/component
distribution and hardware acceleration for permutations and RM decoding could further
enhance security and performance.

In conclusion, the proposed scheme offers a flexible, resilient framework for symmet-
ric cryptography. It balances a vast key space and error correction with computational
and storage overheads. The demonstrated diffusion properties and potential for par-
allelization make it a promising candidate for diverse applications, particularly where
resilience is paramount, with future optimizations poised to improve practicality for
resource-constrained environments.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/doi/s1.

Author Contributions: Conceptualization, H.A. and C.H.; methodology, H.A. and C.H.; software,
H.A.; validation, H.A. and C.H.; formal analysis, H.A.; investigation, H.A.; resources, H.A.; data
curation, H.A.; writing—original draft preparation, H.A.; writing—review and editing, C.H.; visual-
ization, H.A.; supervision, C.H.; project administration, C.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The code and data are in the process of being prepared for open-
source publication.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Daemen, J.; Rijmen, V. The Design of Rijndael: AES—The Advanced Encryption Standard; Springer: Berlin, Germany, 2020.
2. Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.; Seurin, Y.; Vikkelsoe, C. PRESENT: An

ultra-lightweight block cipher. In Cryptographic Hardware and Embedded Systems—CHES 2007; Springer: Berlin, Germany, 2007;
pp. 450–466.

3. Prouff, E.; Renault, G.; Rivain, M.; O’Flynn, C.; Mukhopadhyay, C.; Saha, D. Fault Attacks on Symmetric Cryptography.
In Embedded Cryptography 1; Prouff, E., Renault, G., Rivain, M., O’Flynn, C., Eds.; Wiley: Hoboken, NJ, USA, 2025; pp. 209–230.

4. Baksi, A.; Bhasin, S.; Breier, J.; Jap, D.; Saha, D. A survey on fault attacks on symmetric key cryptosystems. ACM Comput. Surv.
2022, 55, 86.

5. Challa, R.; Gunta, V. Towards the construction of reed-muller code based symmetric key FHE. Ing. Syst. Inf. 2021, 26, 585–590.
6. Zarei Zefreh, E.; Abdali, M. LSIE: A fast and secure Latin square-based image encryption scheme. Multimed. Tools Appl. 2024, 23,

7939–7979.
7. El-Shafai, W.; Mesrega, A.K.; Ahmed, H.E.H.; El-Bahnasawy, N.A.; Abd El-Samie, F.E. An efficient multimedia compression-

encryption scheme using latin squares for securing Internet-of-things networks. J. Inf. Secur. Appl. 2022, 63, 103039.
8. Wu, Y.; Zhou, Y.; Noonan, J.P.; Agaian, S. Design of image cipher using latin squares. Inf. Sci. 2014, 264, 317–339.

https://www.mdpi.com/article/doi/s1

Cryptography 2025, 9, 70 27 of 28

9. Ali, N.H.M.; Hoobi, M.M.; Saffo, D.F. Development of Robust and Efficient Symmetric Random Keys Model Based on the Latin
Square Matrix. Mesopotamian J. Cybersecur. 2024, 4, 203–215.

10. Repka, M.; Cayrel, P.L. Cryptography based on error correcting codes: A survey. In Multidisciplinary Perspectives in Cryptology and
Information Security; IGI Global: Hershey, PA, USA, 2014; pp. 133–156.

11. Alabady, S.A.; Salleh, M.F.M.; Al-Turjman, F. LCPC error correction code for IoT applications. Sustain. Cities Soc. 2018, 42, 663–673.
12. Boneh, D.; DeMillo, R.A.; Lipton, R.J. On the importance of eliminating errors in cryptographic computations. J. Cryptol. 2001, 14,

101–119.
13. Carlet, C. Boolean functions for cryptography and error correcting codes. In Boolean Models and Methods in Mathematics, Computer

Science, and Engineering; Cambridge University Press: Cambridge, UK, 2010; pp. 257–397.
14. MacWilliams, F.J.; Sloane, N.J.A. The Theory of Error-Correcting Codes; Elsevier: Amsterdam, The Netherlands, 1977.
15. Vaudenay, S. A Classical Introduction to Cryptography: Applications for Communications Security, 1st ed.; Springer: New York, NY,

USA, 2005; p. 336.
16. Colbourn, C.J.; Dinitz, J.H. Handbook of Combinatorial Designs, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2006;

pp. 135–151.
17. Thomas, B.; Yi, L.; Vaudenay, S.; Junod, P.; Monnerat, J. A Classical Introduction to Cryptography Exercise Book, 1st ed.; Springer:

New York, NY, USA, 2007; p. 254.
18. Cayley, A. Desiderata and suggestions: No. 1. The theory of groups. Am. J. Math. 1878, 1, 50–52.
19. Cayley, A. Desiderata and suggestions: No. 2. The theory of groups: Graphical representation. Am. J. Math. 1878, 1, 174—176.
20. Humphreys, J.F. A Course in Group Theory, 1st ed.; Oxford University Press: Oxford, UK, 1996; p. 296.
21. Cayley, A. On Latin squares. In Messenger of Math; Glaisher, J.W.L., Ed.; Macmillan and Co.: London, UK, 1890; pp. 135–137.
22. Cameron, P.J. Notes on Cryptography. University of London 2003. Available online: https://cameroncounts.wordpress.com/

wp-content/uploads/2013/11/crypt.pdf (accessed on 17 October 2025).
23. Keedwell, A.D.; Dénes, J. Elementary properties. In Latin Squares and Their Applications, 2nd ed.; North-Holland: Boston, MA,

USA, 2015; pp. 1–36. https://doi.org/10.1016/B978-0-444-63555-6.50001-5.
24. Singh, B.; Athithan, G.; Pillai, R. On extensions of the one-time-pad. AIP Conf. Proc. 2021, 298. Available online: https:

//eprint.iacr.org/2021/298 (accessed on 19 October 2025).
25. Zhang, J.; Zhu, Y.; Abdelraheem, A.; Elkins-Arce, H.D.; Dever, J.; Wheeler, T.; Isakeit, T.; Hake, K.; Wedegaertner, T. Use of a Latin

square design to assess experimental errors in field evaluation of cotton for resistance to Fusarium wilt race 4. Crop Sci. 2022,
62, 575–591.

26. Chen, J.; Patra, J.; Pradel, M.; Xiong, Y.; Zhang, H.; Hao, D.; Zhang, L. A survey of compiler testing. ACM Comput. Surv. 2020,
53, 4.

27. Luo, Y.; Lutsenko, V.I.; Shulga, S.N. New method for designing non-equidistant plane antenna arrays with full coverage of spatial
frequencies based on Latin squares and their triangular matrix. Telecommun. Radio Eng. 2021, 80, 15–28.

28. Zolfaghari, B.; Bibak, K. Combinatorial cryptography and Latin squares. In Perfect Secrecy in IoT: A Hybrid Combinatorial-Boolean
Approach; Springer: Cham, Switzerland, 2022; pp. 37–55.

29. Chauhan, D.; Gupta, I.; Verma, R. Quasigroups and their applications in cryptography. Cryptologia 2021, 45, 227–265.
30. Mohammed, S.D.; Hasan, T.M. Cryptosystems using an improving hiding technique based on Latin square and magic square.

Indones. J. Electr. Eng. Comput. Sci. 2020, 20, 510–520.
31. Schmidt, N.O. Latin Squares and Their Applications in Cryptography. Master’s Thesis, Boise State University, Boise, ID, USA,

September 2016.
32. Hua, Z.; Li, J.; Chen, Y.; Yi, S. Design and application of an S-box using complete Latin square. Nonlinear Dyn. 2021, 104, 807–825.
33. Kumar, U.; Venkaiah, V.C. A new modified MD5-224 bits hash function and an efficient message authentication code based on

quasigroups. In Cyber Security, Privacy and Networking: Proceedings of ICSPN 2021; Springer Nature Singapore: Singapore, 2022;
pp. 1–12.

34. Ahmad, H.; Hannusch, C. A new keyed hash function based on Latin squares and error-correcting codes to authenticate users in
smart home environments. In Proceedings of the Codes, Cryptology and Information Security, Rabat, Morocco, 29–31 May 2023;
pp. 129–135.

35. Wu, W.; Wang, Q. Cryptanalysis and improvement of an image encryption algorithm based on chaotic and Latin square. Nonlinear
Dyn. 2023, 111, 3831–3850.

36. Shen, J.; Zhang, T.; Jiang, Y.; Zhou, T.; Miao, T. A novel key agreement protocol applying Latin square for cloud data sharing.
IEEE Trans. Sustain. Comput. 2022, 8, 639–651.

37. Dixon, J. D.; Mortimer, B. Permutation Groups, 1st ed.; Springer: New York, NY, USA, 1996.
38. Doliskani, J.N.; Malekian, E.; Zakerolhosseini, A. A cryptosystem based on the symmetric group Sn. Int. J. Comput. Sci. Netw.

Secur. 2008, 8, 226–234.

https://cameroncounts.wordpress.com/wp-content/uploads/2013/11/crypt.pdf
https://cameroncounts.wordpress.com/wp-content/uploads/2013/11/crypt.pdf
https://doi.org/10.1016/B978-0-444-63555-6.50001-5
https://eprint.iacr.org/2021/298
https://eprint.iacr.org/2021/298

Cryptography 2025, 9, 70 28 of 28

39. Stinson, D.R.; Paterson, M.B. Block ciphers and stream ciphers. In Cryptography: Theory and Practice, 4th ed.; Chapman and
Hall/CRC: Boca Raton, FL, USA, 2019; pp. 83–136.

40. Roth, R. Introduction to Coding Theory, 1st ed.; Cambridge University Press: Cambridge, UK, 2006; p. 580.
41. Abbe, E.; Shpilka, A.; Ye, M. Reed–Muller codes: Theory and algorithms. IEEE Trans. Inf. Theory 2021, 67, 3251–3277.
42. Kuppusamy, A.; Pitchai, Iyer, S.; Krithivasan, K. Two-key dependent permutation for use in symmetric cryptographic system.

Math. Probl. Eng. 2014, 2014, 795292.
43. Scharinger, J. An excellent permutation operator for cryptographic applications. In Proceedings of the Computer Aided Systems

Theory—EUROCAST 2005, Las Palmas de Gran Canaria, Spain, 7–11 February 2005; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany; Volume 3643, pp. 317–326.

44. Chou, Y.C.; Lin, C.H.; Li, P.C.; Li, Y.C. A (2,3) threshold secret sharing scheme using Sudoku. In Proceedings of the 6th International
Conference on Intelligent Information Hiding and Multimedia Signal Processing, Darmstadt, Germany, 15–17 October 2010;
pp. 43–46.

45. Pal, S.K.; Kapoor, S.; Arora, A.; Chaudhary, R.; Khurana, J. Design of strong cryptographic schemes based on Latin squares.
J. Discret. Math. Sci. Cryptogr. 2010, 13, 233–256.

46. Van Lint, J.H.; Wilson, R.M. A Course in Combinatorics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2001.
47. Sequence A002860 in the On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/A002860 (accessed on

27 May 2025).
48. Huffman, W.C.; Pless, V. Fundamentals of Error-Correcting Codes, 1st ed.; Cambridge University Press: Cambridge, UK, 2003.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://oeis.org/A002860

	Introduction
	Background
	Latin Squares
	Relation Between Cayley Tables, Quasigroups, and Latin Squares
	Conjugacy Class

	Permutation Groups
	Error-Correcting Codes

	The Proposed Cryptographic Scheme
	Scheme Description
	Proposed Scheme
	Key Generation
	Encryption
	Decryption
	Generation of Latin Squares

	Experimental Results
	Experimental Environment
	Experimental Setup
	Key Generation
	Encryption Process
	Decryption Process
	Results
	Avalanche Effect and Differential Analysis
	Avalanche Effect Analysis
	Differential Pattern Consistency Analysis
	Implications

	Performance and Comparison

	Security Analysis
	Key Space and Components
	Resistance to Linear Cryptanalysis
	Resistance to Differential Cryptanalysis
	Resistance to Algebraic Attacks
	Resistance to Fault Attacks
	Resistance to Chosen-Ciphertext Attacks
	Security Enhancement via Overlapping Portions
	Parameter Flexibility and Limitations

	Conclusions
	References

