Set, multiset and array

Set

- collection of distinct and well defined objects
- no repeated objects
- not necessarily objects of the same type
- without any particular order
- usually denoted by capital letter: A, B

Set

- collection of distinct and well defined objects
- no repeated objects
- not necessarily objects of the same type
- without any particular order
- usually denoted by capital letter: A, B

Examples:

1. $A=\{1,2,3\}$
2. $B=\{$ apple,-4, moon $\}$
3. $C=\mathbb{N}$

- Let A be a set and a an object. If A contains a, then we write $a \in A$.
- If A does not contain a, then we write $a \notin A$.
- Let A be a set and a an object. If A contains a, then we write $a \in A$.
- If A does not contain a, then we write $a \notin A$.

Example: $A=\{2,4,6,8\}$

- $2 \in A$
- $3 \notin A$

Operations

- union: $A \cup B$ contains all elements which are either element in A or in B
- intersection: $A \cap B$ contains all elements which are element in A and B
- difference: $A \backslash B$ contains all elements of A, which are not element in B

Operations

- union: $A \cup B$ contains all elements which are either element in A or in B
- intersection: $A \cap B$ contains all elements which are element in A and B
- difference: $A \backslash B$ contains all elements of A, which are not element in B

Venn diagram

Exercises

1. $A=\{-1,0,3,5\}, B=\{1,2,3,4,7,12\}$. Determine $A \backslash B$!
2. $A=\{p \mid p$ prime and $p \leq 10\}, B=\{n \mid n$ is even $\}$. Find $A \cup B, A \cap B!$
3. Verify that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$!

Multiset

- Repition of elements is possible
- Example: $A=\{1,1,1,2,3,3,4,5,7,7\}$
- Characterstic function:

	1	2	3	4	5	7
A	3	1	2	1	1	2

Exercise

1. $A=\{1,1,2,4,6,8,8,8\}, B=\{2,2,2,4,4,4,5,5,5,9\}$
2. $A=\{1,5,4,7\}, B=\{0,2,4,8,7\}$

Fill out the characteristic function of the following multisets:

	1	2	4	5	6	8	9
A							
B							
$A \cup B$							
$A \cap B$							
$A \backslash B$							

Array - matrix

- k rows and n columns: $k \times n$ matrix
- diagonal matrix: nonzero elements only for $a_{i, i}$
- lower triangular matrix: nonzero elements only under the diagonal
- upper triangular matrix: nonzero elements only above the diagonal
- symmetric matrix: columns = rows

Exercise - Row major order representation

Matrix M is given in V vector as below: $V=$
$[6,76,20,20,51,88,84,47,74,46,53,22,41,88,44,1,4,95,12,55$,
90, 11, 91, 62, 62, 33, 93, 88]

1. Compute the value of $M[1,1]-M[2,4]$ if M is row major order represented, which has 7 rows and 4 columns!
2. Compute $M[1,2]+M[7,1] \bmod 5$!

Column major order representation

Vector represents elements in first column, then second column, and so on.

Column major order representation

Vector represents elements in first column, then second column, and so on.

Compute the exercise again, but now M is column major order represented. What is the difference?

Sparse matrix

- Most elements are 0
- 3 row representation: row index, column index, element (for nonzero elements)

Sparse matrix

- Most elements are 0
- 3 row representation: row index, column index, element (for nonzero elements)

$$
A=\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 3 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 5 & 0 & 0
\end{array}\right)
$$

ROW: $(1,1,2,3)$
COLUMN: $(3,6,1,4)$
VALUE: $(1,3,-1,5)$

Exercises

$V=[1,7,6,5,3,8,7,2,3,4,-4,-6,3,2,-9,1]$
Compute $M[2,2]+M[3,2]$ if M is a ... matrix represented by V

1. upper triangular matrix
2. lower triangular matrix
3. symmetric 4×4 matrix

Give the sparse matrix defined by ROW: $(1,5,5,5,6,7)$
COLUMN: $(2,3,4,5,6,1)$
VALUE: (-1,-1,4,7,-2,3)

