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Preface

This workbook is mainly inteded to address students of Informatics Sciences. We give some
mathematical background for the understanding of encryption and decryption. For more detailed
algebraic knowledge one should consider literature about Group Theory and Ring Theory.

In the current workbook we give some examples and also provide exercises. Solutions of the
exercises are given in the last chapter.

This work was supported by the construction EFOP-3.4.3-16-2016-00021. The project was
supported by the European Union, co-financed by the European Social Fund.
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Chapter 1

Linear Congruences

1.1 Introduction and Notation

Definition 1.1. Let x and y be two integers. Then we say that x divides y if there exists an
integer z, such that y = x · z, where · denotes the usual multiplication.
Notation: x | y

Definition 1.2. Let x,y and z be arbitrary integers, i.e. x,y,z ∈ Z. If z | x− y, then we say that x
is congruent to y modulo z.
Notation: x≡ y mod z

Corollary 1.3.
x | y⇔ y≡ 0 mod x

Example 1.4. •

• 17≡ 3 mod 14

• 5 | 20, thus 20≡ 0 mod 5

• 26≡ 0 mod 13, thus 13 | 26

• 123≡ 1 mod 2

• 123≡ 23 mod 100

1.2 Fast computation of powers

In this section we will see a first example for the use of congruences. The following method can
be used in order to compute large powers fast.
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The steps of the algorithm

Let us assume we want to compute nk, where n and k are positive integers.

1. Write the power k as the sum of powers of 2 :

k = 2k1 +2k2 + . . .+2kt

2. Take the square of n and repeat this step according to the property

n2r+1
= n2r·2 = (n2r

)2

3. We get the final result by
nk = n2k1 ·n2k2 · . . . ·n2kt

Example 1.5. We want to compute 3123 mod 51.
First, we write

123 = 26 +25 +24 +23 +21 +20.

After that we compute
320 ≡ 3 mod 51

321 ≡ 9 mod 51

322 ≡ 9 ·9≡ 30 mod 51

323 ≡ 30 ·30≡ 33 mod 51

324 ≡ 33 ·33≡ 18 mod 51

325 ≡ 18 ·18≡ 18 mod 51

326 ≡ 18 ·18≡ 18 mod 51

Finally, we have

3123 ≡ 326 ·325 ·324 ·323 ·321 ·320 ≡ 18 ·18 ·18 ·33 ·9 ·3≡ 24 mod 51.

Exercise 1.6. Compute the following powers!

• 675 mod 78

• 823 mod 100

• 11123 mod 45

• 749 mod 10
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1.3 The Chinese Remainder Theorem

Definition 1.7. Let m and n be two positive integers. We say that g is the greatest common

divisor of m and n if g is the largest possible number with g|m and g|n.
Notation: g = gcd(m,n)

Definition 1.8. Let m and n be two positive integers. If gcd(m,n) = 1, then m and n are called
relatively prime.

Theorem 1.9 (Chinese remainder theorem). Let m1, . . . ,mk be positive integers, pairwise rela-
tively prime. Then the system of linear congruences

x≡ a1 mod m1

x≡ a2 mod m2
...

x≡ ak mod mk

is solvable for any a1,a2, . . . ,ak integers and the solution is one residue class modulo m1 ·m2 ·
. . . ·mk.

Method to solve such a system of linear congruences:

Let M = m1 ·m2 · . . . ·mk. Then compute Mi =
M
mi

for i = 1,2, . . . ,k. Let yi be the solution of
yi ·Mi ≡ 1 mod mi for i = 1,2, . . . ,k. Finally,

x≡∑ai · yi ·Mi mod M.

Example 1.10.
x≡ 1 mod 2

x≡ 2 mod 3

x≡ 4 mod 7

Then M = 2 ·3 ·7 = 42 and M1 =
42
2 = 21, M2 =

42
3 = 14, M3 =

42
7 = 6.

21y1 ≡ 1 mod 2⇒ y1 ≡ 1 mod 2⇒ y1 = 1

14y2 ≡ 1 mod 3⇒ 2y2 ≡ 1 mod 3⇒ y2 = 5

6y3 ≡ 1 mod 7⇒ y3 = 6

Finally,

x≡ 1 ·1 ·21+2 ·5 ·14+4 ·6 ·6 mod 42≡ 21+140+144 mod 42≡ 11 mod 42.

Thus x = 11 is fulfilling all three congruences.

Exercise 1.11. Solve the following system of linear congruences!

x≡ 2 mod 3

x≡ 2 mod 8

x≡ 4 mod 11
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Chapter 2

Greatest common divisor

2.1 Euclidean algorithm

Given arbitrary integers a and b 6= 0 there exist unique numbers q and r such that

a = b ·q+ r,

and 0≤ r <| b | .

Proposition 2.1. Any two integers have a greatest common divisor.

Proof. Euclidean algorithm:

We divide one number by the second number with remainder. Then we divide the second num-
ber by the remainder getting another remainder, etc. We continue dividing the divisor by the
remainder until we get remainder 0. The last non-zero remainder will be the greatest common
divisor of the two numbers.

Example 2.2. Let a = 155 and b = 25. Then we have

155 = 25 ·6+5

25 = 5 ·5+0.

Thus gcd(155,25) = 5.

Example 2.3. Let a = 141 and b = 17.

k 0 1 2 3 4 5
rk 141 17 5 2 1 0
qk 8 3 2 2

Thus gcd(a,b) = 1, so a and b are relatively prime.

Exercise 2.4. Compute the greatest common divisor of a and b in the following cases!
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• a = 45, b = 211

• a = 1491, b = 23

• a = 595, b = 867

2.2 Extended Euclidean algorithm

Theorem 2.5. Let a and b be two integers. Their greatest common divisor gcd(a,b) can be
written in the form of

gcd(a,b) = ax+by

for suitable integers x and y.

Proof. Extended Euclidean algorithm:

By definition x0 = 1,x1 = 0,y0 = 0,y1 = 1 we will use the following recursive formulae

xk+1 = xk ·qk + xk−1

and
yk+1 = yk ·qk + yk−1.

Further, let n be the largest number such that the remainder is non-zero. Thus n = max{k | rk 6=
0}. Finally,

x = (−1)n · xn

and
y = (−1)n+1 · yn.

k 0 1 2 3 4 5
rk 141 17 5 2 1 0
qk 8 3 2 2
xk 1 0 1 3 7
yk 0 1 8 25 58

Thus x = (−1)4 ·7 and y = (−1)5 ·58 and gcd(a,b) = ax+by, which means

1 = 7 ·141−58 ·17.

Exercise 2.6. Write gcd(a,b) as sum of ax and by in the following cases!

• a = 258, b = 8

• a = 143, b = 7

• a = 5, b = 56
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Chapter 3

Prime tests

3.1 Fermat test

We know by the main theorem of Number Theory that any positive integer can be written as
the product of prime numbers. Furthermore, the prime factors of a number n are unique, which
means they can only differ in order and can only be extended by the factor 1. If the prime
factors differ from the number itself, then we call it composite number. Prime numbers play
an important role in Number Theory and Cryptography. We can regard them as the building
elements of all numbers.

The Fermat test is a probability test using Fermat’s little theorem.

Theorem 3.1. If gcd(a, p) = 1, then ap−1 ≡ 1 mod p.

Algorithm:

• Choose a.

• Compute ap−1 mod p.

• If ap−1 6≡ 1 mod p, then p is a composite number.

Example 3.2. Test if 341 is a prime number!

First, we use base 2 :

2340 ≡ 1 mod 341.

Now, we use base 3 :

320 ≡ 3 mod 341

321 ≡ 9 mod 341

322 ≡ 81 mod 341

323 ≡ 82 mod 341
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324 ≡ 245 mod 341

325 ≡ 9 mod 341

326 ≡ 81 mod 341

327 ≡ 82 mod 341

328 ≡ 245 mod 341

Since
3340 ≡ 328 ·326 ·324 ·322 ≡ 56 mod 341,

we get that 341 is not prime number.

Exercise 3.3. •

• Compute the Fermat test for 181 and base 5 and 7!

• Compute the Fermat test for 129 and base 2 and 5!

3.2 Miller-Rabin test

This prime test works for odd numbers greater than 1.

Algorithm:

• Compute the values S and d :

S = max{r | 2r divides (n−1)}

d =
(n−1)

2s

Theorem 3.4. If n is prime and gcd(a,n) = 1, then

1. ad ≡ 1 mod n or

2. ∃r ∈ {0, . . . ,S−1} such that ad·2r ≡−1 mod n.

Example 3.5. We want to check if 567 is a prime numbers by the Miller-Rabin test. First,

566 = 2 ·283.

Thus S = 1 and d = 283. If 567 is prime and gcd(a,567) = 1, then either a283 ≡ 1 mod 567 or
∃r ∈ {0, . . . ,S−1} such that a283·2 ≡−1 mod 567. Since S = 1, we have that r = 0 is the only
possible value in the second case. Thus if 567 is prime, then either

a283 ≡ 1 mod 567

or
a283 ≡−1 mod 567.
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We compute the Miller-Rabin test for bases 5 and 7!

7283 : 5283 :
720 ≡ 7 mod 567 520 ≡ 5 mod 567
721 ≡ 49 mod 567 521 ≡ 25 mod 567
722 ≡ 133 mod 567 522 ≡ 58 mod 567
723 ≡ 112 mod 567 523 ≡ 529 mod 567
724 ≡ 70 mod 567 524 ≡ 310 mod 567
725 ≡ 364 mod 567 525 ≡ 277 mod 567
726 ≡ 385 mod 567 526 ≡ 184 mod 567
727 ≡ 238 mod 567 527 ≡ 403 mod 567
728 ≡ 511 mod 567 528 ≡ 247 mod 567

Then we have
7283 ≡ 511 ·70 ·112 ·49 ·7≡ 511 mod 567

and
5283 ≡ 247 ·310 ·529 ·25 ·5≡ 320 mod 567.

Thus the result of the Miller-Rabin test is that n = 567 is a composite number.

Exercise 3.6. Check by the help of the Miller-Rabin test if n is a prime number!

• n = 197, base 7 and 11

• n = 243, base 12 and 14

• n = 397, base 2 and 3
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Chapter 4

RSA algorithm

4.1 Introduction

The RSA algorithm was invented by Rivest, Shamir and Adleman in 1976. It is still today the
most widely used cryptographic system in the world.

The RSA algorithm is an asymmetric cryptosystem, which means it consists of a public key and
a private key. Encryption is possible by the knowledge of the public key. Decryption is only
possible by the knowledge of the private key, so the private key has to be kept secret.

Definition 4.1. Let n be a positive integer. We define ϕ(n) as the number of integer k in the
range 1≤ k ≤ n, such that gcd(k,n) = 1. This function ϕ is called the Euler’s phi-function.

Remark 4.2. If n is a prime number, then ϕ(n) = n−1.

Remark 4.3. If p and q are prime numbers, then ϕ(pq) = (p−1)(q−1).

4.2 Encryption

1. Choose two arbitrary large prime numbers p and q.

2. Compute n = p ·q.

3. Choose a small odd number e, which is relatively prime to ϕ(n).

4. Search for a number d, for which d · e≡ 1 mod ϕ(n).

Public Key: the pair (e,n)

The set of messages is Zn = {0,1, . . . ,n−1}.

Encrypting message m :
Enc(m) = me mod n
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4.3 Decryption

Private Key: the pair (d,n)

Decrypting message y = me mod n :

Dec(y) = yd mod n

since (me)d ≡ m mod n.

4.4 Decryption by using Chinese Remainder Theorem and Euclidean
Algorithm

Let c be the encrypted message and d the secret exponent. Further we know the two prime
numbers p and q. Then using the Chinese remainder theorem we have

c1 ≡ cd mod (p−1) mod p

c2 ≡ cd mod (q−1) mod q

Further M = p · q. Then M1 = q and M2 = p. We know that gcd(p,q) = 1. Now we use the
extended Euclidean algorithm in order to find solutions x and y for the equation

1 = x ·q+ y · p.

Finally, the decrypted message m can be computed:

m = c1 · x ·M1 + c2 · y ·M2.

Example 4.4. Given p = 5, q = 11 primes, c = 18 encrypted message, e = 7 encrypting expo-
nent, d = 23 decrypting exponent we compute

c1 ≡ 1823 mod 4 ≡ 183 ≡ 2 mod 5

c2 ≡ 1823 mod 10 ≡ 183 ≡ 2 mod 11

Then M1 = 11,M2 = 5,M = 55. We need to solve 1 = 11x+5y.

k 0 1 2
rk 11 5 1 0
qk − 2 5
xk 1 0 1
yk 0 1 2

Thus x = 1 and y =−2. Now the can compute the original message

m = 2 ·1 ·11+2 · (−2) ·5≡ 2 mod 55.
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Exercise 4.5. Generate a public and a private key for RSA cryptographic system with the follow-
ing two prime numbers: 463 ad 547 and the encrypting exponent is one of 12,47,76,93 fulfilling
the conditions!

Exercise 4.6. Decrypt RSA-encrypted 85 by Chinese Remainder Theorem and knowing the two
primes 7 and 13 and the decrypting exponent 47!

Exercise* 4.7. Prove that we can compute a message knowing the public information, if the
message is encrypted by RSA with the pairs (n,e) and (n, f ), where e and f are relatively prime!

4.5 Some more background from Mathematics

Does there always exist d, such that d · e≡ 1 mod ϕ(n)?

The answer to this question is yes, and the reason for that lies in the structure of Zn.

Recall, that Zn = {0,1,2, . . . ,n− 1} is the set of residue classes modulo n. This set has the
algebraic structure of a ring under the operations of addition and multiplication, i.e.

• addition is commutative, associative, and has a neutral element

• multiplication is distributive: a(b+ c) = ab+ac and (a+b)c = ac+bc

• there exists a multiplicative neutral element: 1 ·a = a ·1 = a

If n is a prime number, then Zn is not only a ring, but it is also a field. That means there exists
an inverse element for each number due to multiplication, i.e. a ·a−1 = a−1 ·a = 1. If n is not a
prime, then such inverse does not exist for all nonzero elements.

Example 4.8. Consider Z4 = {0,1,2,3} under classical addition and multiplication. Then
3 ·3 = 9≡ 1 mod 4, thus the inverse of 3 is 3 itself. But 3 ·2 = 6≡ 2 mod 4. and 2 ·2 = 4≡ 0
mod 4. Thus 2 has no inverse in Z4.
Consider now Z5 = {0,1,2,3,4}. Then we have 2 · 3 ≡ 1 mod 5 and 4 · 4 ≡ 1 mod 5. Thus
every element of Z5 has a multiplicative inverse.

The elements which have multiplicative inverse in Zn are exactly those elements, which are
relatively prime to n. The set of these elements if called the multiplicative group of Zn.
The multiplicative group has ϕ(n) elements. Therefore we choose e as relatively prime to ϕ(n).
So there always exist d such that d · e≡ 1 mod ϕ(n).
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Chapter 5

The problem of discrete logarithm

5.1 Discrete logarithm and primitive roots

Let p be a prime number and let us denote the multiplicative group of Zp by Z?
p. Then Z?

p =
{1,2, . . . , p− 1}. Let a be an arbitrary element in this multiplicative group. The order of a is
the smallest number k such that ak ≡ 1 mod p. If this order is equal to ϕ(p), then a is called a
primitive root of Zp.

Remark 5.1. A primitive root generates the whole multiplicative group.

Example 5.2. 2 is a primitive root of Z?
5, since

21 ≡ 2 mod 5, 22 ≡ 4 mod 5, 23 ≡ 3 mod 5, 24 ≡ 1 mod 5.

Thus the order of 2 is 4 and 4 = ϕ(5).

If a is a primitive root of Zp, then any element of Zp can be written as the power of a. That
means A ∈ Zp⇒ A≡ ak mod p for suitable integer k.

Let us now assume that we know A, p and a. We want to compute the exponent k. For large prime
numbers p this is a difficult problem and no algorithm is known to compute k in polynomial time.
This problem is called the discrete logarithm problem.

5.2 Diffie-Hellmann key exchange

We assume that Alice and Bob want to use a symmetric crptographic system in order to send
messages. They can share a secret key by the Diffie-Hellmann key exchange:

Algorithm:

1. Choose a large prime number p. This will be public.

2. Choose a primitive root a of Z?
p. This will also be public.

3. Alice chooses s ∈ {2, . . . , p−1} randomly. This is kept in secret.
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4. Bob chooses t ∈ {2, . . . , p−1} randomly. This is kept in secret.

5. Alice computes as mod p and sends it to Bob.

6. Bob computes at mod p and sends it to Alice.

7. Alice computes (at)s mod p, which is the symmetric key.

8. Bob computes (as)t mod p, which is the symmetric key.

Exercise 5.3. Compute a protocol of Diffie-Hellmann key exchange, if the public prime is 149
and primitive root is 21. If necessary, give further parameters.

Exercise 5.4. Given the public prime 47 and primitive root 11. Further s = 12 and t = 23.
Compute the protocol of a Diffie-Hellmann key exchange.
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Chapter 6

Solutions

Exercise 1.6:

• 60

• 12

• 26

• 7

Exercise 1.11: 26

Exercise 2.4:

• 1

• 1

• 17

Exercise 2.6:

• 2 = 258−32 ·8

• 1 =−2 ·143+41 ·7

• 1 =−11 ·5+56

Exercise 3.3:

• 5180 ≡ 1 mod 181 and 7180 ≡ 1 mod 181, thus 181 can be prime (indeed, it is).

• 2128 ≡ 4 mod 129 and 5128 ≡ 25 mod 129, thus 129 cannot be prime.

Exercise 3.6:

• 7149 ≡−1 mod 197 and 1149·2 ≡−1 mod 197, thus 197 can be prime (indeed, it is).
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• 12121 ≡ 0 mod 243 and 14121 ≡ 32 mod 243, thus 243 cannot be prime.

• 299·2 ≡−1 mod 397 and 399 ≡−1 mod 397, thus 397 can be prime (indeed, it is).

Exercise 4.5: Public key (47,253261), Private key (166379,253261)

Exercise 4.6: 15

Exercise 5.3:

• Alice chooses 3, computes 213 mod 149 and sends 23 to Bob

• Bob chooses 2, computes 212 mod 149 and sends 143 to Alice

• Alice computes 1433 = 82 mod 149

• Bob computes 232 = 82 mod 149

• Now they can use the private key 82.

Exercise 5.4:

• Alice sends 1112 = 6 mod 47 to Bob

• Bob sends 1123 = 46 mod 47 to Alice

• Alice computes 112312
mod 47

• Bob computes 111223
mod 47

• Now they can use the private key 1.
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