Running times of algorithms

Operation Running Time

Integer add/subtract 1
Integer multiply/divide 1
Float add/subtract 1
Float multiply/divide 1

fan

Trigonometric Functions (sine, cosine, ..)
Variable Declaration

Assignment Operation

Logical Operations (<2, >, <, =, ete) 1
Array Access 1
Array Length 1

fan
e

1D array allocation

3

2222200002 20
—

3
U

2D array allocation
Substring extraction (1) or &(n)

Strine concatenation (I

Consecutive statements

Let two independent consecutive statements are P; and Py, Let #1 be the cost of running P
and #; be the cost of running Py. The total cost of the program is the addition of cost of
individual statementi.e. t; + #;. In asymptotic notation the total time is @ (max(#, t;))(we

ignore the non significant term).

Example: Consider the following code.

int main() {
ff 1. some cede with running time n
ff 2. seme cede with running time no2
return 2;

U ST

Assume that statement 2 is independent of statement 1 and statement 1 executes first followed

by statement 2. The total running time is

&(max(n,n%)) =0 (n")

for loops

It is relatively easier to compute the running time of for loop than any other loops. All we
need to compute the running time is how many times the statement inside the loop body is

executed. Consider a simple for loopin C.

1 for (i =@; 1 ¢ 18; i) {
2 £/ body
3 i

The loop body is executed 10 times. If it takes v operations to run the body, the total number
of operations is 10 x 7 = 10m. In general, if the loop iterates » times and the running time
of the loop body are m, the total cost of the program is 7 # 1. Please note that we are
ignoring the time taken by expression+ < 10 and statement ¢ + +. If we include these, the

total ime becomes

l+2xn+mn=06(mn)

Nested for loops

Suppose there are p nested for loops. The p tor loops execute 721,75, ..., 7, times

respectively. The total cost of the entire program is

T K T2, ..., X7y % cost of the body of inmerm ost loop

Consider nested for loops as given in the code below

for (1 = @; 1 « nj i+) {
for (3 = 2; 3 < nj 3+4) {
S body that runs in linear time n

i

Wb Wk e

There are two for loops, each goes n times. So the total cost is

nxnxn=n" =8(n)

while loops

while loops are usually harder to analyze than for loops because there is no obvious a priori
way to know how many times we shall have to go round the loop. One way of analyzing while
loops is to find a variable that goes increasing or decreasing until the terminating condition is
met. Consider an example given below

while (i » @) {

/{ some computation of cost n
i=1/2

Bowon e

How many times the loop repeats? In every iteration, the value of i gets halved. If the initial
value of 1 is 16, after 4 iterations it becomes 1 and the loop terminates. The implies that the
loop repeats log, 4 times. In each iteration, it does the 7 work. Therefore the total cost is

E(nlog,).

Recursive calls

To calculate the cost of a recursive call, we first transform the recursive function to a
recurrence relation and then solve the recurrence relation to get the complexity. There are
many techniques to solve the recurrence relation. These techniques will be discussed in
details in the next article.

1 int fact{int n) {

2 if (n <= 2) {

3 return nj

4 H

s

H return n * fact(n - 1);
7 }

We can transform the code into a recurrence relation as follows.

Tn) = a ifm <2
B4+ T(n—1) otherwise

When n is 1 or 2, the factorial of n is # itself. We return the result in constant time a.
Otherwise, we calculate the factorial of » — 1 and multiply the result by +:. The multiplication
takes a constant time &. We use one of the techniques called back substitution to find the
complexity.
Tlr)=064+T(n—-1) -
=b+b+Tn—2)
=b+b+b+T(n—3)

=3b+T(n—3)
=kb+Tln—k)
=nb+T(0)
=nb+a

= 8(n) v

Example 1

1 int sum{int &, int b) {
2 int € = a + b;
3 return ¢
4

The sum funetion has two statements. The first statement (line 2) runs in constanttime i.e.
Theta(l) and second statement (line 3) also runs in constant time & (1). These two

statements are consecutive statements, so the total running time is € (1) + &(1) = &(1)

Example 2

1 int array_sum(int a, int n) {
2 int ij
3 int sum = @;
a for (1= 03 4 ¢ n; i+H) {
5 sum = sum + a[i]
6 ¥
7 return sum;
g ¥
Analysis

1. Line 2 is a variable declaration. The cost is &(1)

2. Line 3 is a variable declaration and assignment. The cost is €(2)

3. Line 4- 6 is a for loop that repeats » times. The body of the for loop requires &(1] to
run. The total cost is & (»).

4. Line 7is a return statement. The cost is €(1).

1, 2, 3, 4 are consecutive statements so the overall cost is & (7)

Example 3

1 int sum = 8;
2 for (1 = ©; 1 < n; i) {
3 for (3= 05§ < ni §i) {
4 For (k= 0; k < n; ket) {
5 if (L == 9 == Kk} {
[For (1 = @5 1 < n*n*n; L) {
7 sum = 1 + 9§+ k+1;
5 }
@ ¥
10 1
11 T
12 it
Analysis

1. Line 1is a variable declaration and initialization. The cost is ©(1)

2. Line 2 - 11 is a nested for loops. There are four for loops that repeat 7 imes. After the
third for loop in Line 4, there is a condition of i == j == k. This condition is true only 7
times. So the total cost of these loops is @(r*) + @(n!) = @(n?)

The overall cost is &(nt).

Running Time
Constant
Logarithmic
Linear

7 logn
Polynomial
Exponential

Factorial

Examples

1, 2,100, 300, ...

log, 5logm, ...
o+ 3, 2n 43, .

nlogn, 2nlogn +n, ..
Quadratie, Cubie, or higher order
ar gn, 2 4ont L

nl,n'+n,..

Asymptotic Notations

Example:
5n% +3n = ©(n?)

because there exist two constants ¢; and ¢, such that

c1-n2§5n2+3n§cQ~n2

Simplyfying:
3
<5+ . <o

We can choose ¢; = 5,¢, = 8.

Asymptotic Notations

Example:
32n+3 ?é O(3n)

because there does not exist a constant ¢ such that
32043 .30
Simplyfying:
320.33 < . 3"
3n.33< ¢
Since

lim 3" 3% = o,
n=00

there does not exist such a constant c.

Exercises

1. Check if the following statements are true!
1.1 4" +3n% 4200 = O(4")
1.2 21 = 0(2")
1.3 221 = O(2n)
1.4 (n+ k)™ = ©(n™), where k and m are constants
2. Rank the following functions by order of growth:
2
(n+1)!,n!,4", n-3",3"+n2, 3n2 n%+200,20n+500, 2’6", n3, 1

3. Find the complexity of the following function!

void function(int n){
int i, count =0;
for(i=1; i*i<=n; i++)
count+

