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a b s t r a c t

Let p be a prime number and K be the finite field of p elements, i.e. K = GF (p). Further let
G be an elementary abelian p-group of order pm. Then the group algebra K [G] is modular.
We consider K [G] as an ambient space and the ideals of K [G] as linear codes. A basis of
a linear space is called visible, if there exists a member of the basis with the minimum
(Hamming) weight of the space. The group algebra approach enables us to find some linear
codes with a visible basis in the Jacobson radical of K [G]. These codes can be generated
by ‘‘monomials’’ (Drensky & Lakatos, 1989). For p > 2, some of our monomial codes have
better parameters than the Generalized Reed–Muller codes. In the last part of the paper we
determine the automorphism groups of some of the introduced codes.

© 2016 Published by Elsevier B.V.

1. Introduction and notation

Reed–Muller codes were introduced as binary functions in [9]. Later the Generalized Reed–Muller (GRM) codes were
defined over an arbitrary finite field by Kasami, Lin and Peterson in [6]. We will denote a cyclic group of p elements by Cp
and Cm

p is the direct product of m copies of Cp. The radical of K [Cm
p ] is denoted by Jp,m. It turned out that the powers of Jp,m

coincide with the GRM-codes (see [1] for p = 2 and [2] for arbitrary p). Landrock and Manz [7] showed that GRM-codes are
ideals in modular group algebras. In the current paper, we give some new classes of monomial codes which are ideals in
modular group algebras but differ from the GRM-codes. If p > 2, then some of our codes have better parameters than the
GRM-codes. All of the introduced codes have a visible basis, i.e. their minimum distance can be obtained by the minimum
distance of such a basis.

This paper is organized as follows. In this section we summarize the algebraic concepts and introduce our notations.
In Section 2 we construct monomial codes which have at least one visible basis and in Section 3 we determine the
automorphism groups of some of the codes given previously for p = 2.

Throughout the paper p will denote a prime number and K = GF (p) denotes the Galois-field of p elements. Further let G
be an elementary abelian p-group of order pm for some positive integerm. Thus the group algebra K [G] is modular.

Let n = pm and g1, g2, . . . , gn be a basis of K [G]. The elements of K [G] are the formal sums
n∑

i=1

αigi, where αi ∈ K .

We use the usual operations in K [G] (see [1] for more details).
The Jacobson radical of K [G] is the kernel of the augmentation map

∑n
i=1αigi ↦→

∑n
i=1αi. It is obvious that this map is an

algebra homomorphism. We will refer to the Jacobson radical shortly as radical. Since K [G] is local, its radical is unique.
Between K [G] and K n there exists a map

ϕ : K [G] → K n
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such that

ϕ

(
n∑

i=1

αigi

)
= (α1, α2, . . . , αn) =: c.

It can be easily verified that this map is an isomorphism, thus K [G] and K n are isomorphic as vector spaces. The ambient
space of the linear codes we consider in this paper is ϕ(K [G]). The Hamming weight of codes in Jp,m can be obtained from
the basis formed by the elements of G i.e. the Hamming weight is the number of nonzero αi’s in c.

Given a basis gi1 , gi2 , . . . , gim , (1 ≤ ij ≤ pm, 1 ≤ j ≤ m) of the elementary abelian p-group G, we can consider the algebra
isomorphism

µ : K [G] → K [x1, . . . , xm]/⟨xp1 − 1, . . . , xpm − 1⟩, with gij ↦→ xj.

Applying µwe may write any element gi ∈ G as

gi = ga1
i1
ga2
i2
. . . gam

im = xa11 xa22 . . . x
am
m , 0 ≤ aj < p,

thus we obtain

K [G] ∼= K [x1, x2, . . . , xm]/⟨xp1 − 1, xp2 − 1, . . . , xpm − 1⟩, (1.1)

where K [x1, x2, . . . , xm] denotes the algebra of polynomials inm variables with coefficients in K .
The following set of monomial functions{

m∏
i=1

(xi − 1)ai , where 0 ≤ ai ≤ p − 1 and
m∑
i=1

ai ≥ 1

}
forms a linear basis of the radical Jp,m due to (1.1) (see [5] for more details).

Now we define Xi := xi − 1, where i = 1, . . . ,m. Then we have

K [G] ∼= K [X1, X2, . . . , Xm]/⟨Xp
1 , X

p
2 , . . . , X

p
m⟩. (1.2)

For k ∈ {0, . . . ,m(p − 1)} the kth power of the radical Jp,m is defined as

Jkp,m =

⟨
m∏
i=1

(Xi)ai |

m∑
i=1

ai ≥ k, 0 ≤ ai ≤ p − 1

⟩
. (1.3)

It is well-known that Jkp,m = GRM(m(p − 1) − k,m).
One can choose coset representations of Jkp,m/J

k+1
p,m of the form:{

m∏
i=1

Xai
i , where 0 ≤ ai ≤ p − 1 and

m∑
i=1

ai = k

}
. (1.4)

2. Monomial codes with visible bases

Definition 1 ([3]). Let C be an ideal of K [G] and a subspace of Jp,m. We say that C is a monomial code if it can be generated
by some monomials of the form

Xa1
1 Xa2

2 . . . Xam
m , where 0 ≤ ai ≤ p − 1, and i = 1, . . . ,m.

Definition 2. Let C be a linear code of length n over K = GF (p), i.e. we consider C as a subspace of the vector space K n. We
say that C has a visible basis if at least one member of the basis has the same Hamming weight as C has. Further C will be
denoted as an [n, k, d]-code, where n is the code length, k is its dimension and d is its minimum (Hamming) weight.

It is known (Prop. 1.8 in [3]) that for p = 2 every monomial code has a visible basis.

Remark 1. This definition of codes with visible bases is different from the definition of visible codes by Ward in [11]. He
defined a set V to be visible, if each subspace generated by a non-empty subset of V has the same weight as the generator
set, i.e. the weight of at least one member of the basis equals the weight of the generated code. Obviously, if a code is visible
in the sense of Ward, then it also has a visible basis.

We construct monomial codes with at least one visible basis. The next theorem is a special case of Corollary 3.3 in [8].



C. Hannusch / Discrete Mathematics 340 (2017) 957–962 959

Theorem 1. Let p be an arbitrary prime. Then the principal ideal

C =

⟨
Xa1
1 Xa2

2 . . . Xam
m | 0 ≤ ai ≤ p − 1 ,

m∑
i=1

ai ≥ 1 , i = 1, 2, . . . ,m

⟩
determines a cyclic code. The set

B =

{
m∏
i=1

Xki
i | ai ≤ ki ≤ p − 1

}
is a visible basis of C.

We have C ⊆ Jp,m and C is a [pm, (p − a1) · (p − a2) · · · · · (p − am), d]-code, where d =
∏m

i=1(ai + 1).

Proof. Let Cxj denote the ideal ⟨X
aj
j ⟩ = ⟨(xj − 1)aj⟩ in the ring K [xj]/(x

p
j − 1) for 1 ≤ j ≤ m. Then C is a tensor product

C ∼= CX1 ⊗ CX2 ⊗ · · · ⊗ CXm (Cor. 3.3 in [8]), where CXj = ⟨X
aj
j ⟩ (1 ≤ j ≤ m) is a cyclic code. Each code CXj has a visible basis,

which is the set

{X
kj
j | aj ≤ ki ≤ p − 1}

with minimal distance aj + 1. By the theorem of Ward [11], the tensor product C is visible. Thus, it has a visible basis. □

Remark 2. The codes defined in Theorem 1 coincide with the GRM-codes only in the one-dimensional case, since

C ∼= Jk ⇔ k = m(p − 1) and C =

⟨∏
Xai
i | ai = p − 1 ∀i

⟩
.

The class ofmaximal monomial codes Id in the group algebra K [G] was defined by Drensky and Lakatos in [3] as

Id =

⟨
m∏
i=1

Xai
i |

m∏
i=1

(ai + 1) ≥ d, 0 ≤ ai ≤ p − 1

⟩
.

The minimum distance of Id is d = min{
∏m

i=1(ai + 1)}. Thus Id has a visible basis.
For p > 2 some of the maximal monomial codes are better than the GRM-codes with the same minimum distance. For

example if d = 5, then dim(Id) = dim (GRM) +
(m
2

)
+
(m
3

)
+ m(m − 1).

Theorem 2. Let Cm,k be a monomial code generated by the set

Bm,k =

{∏
(Xi)ai |

m∏
i=1

ai ≥ k, where 0 ≤ ai < p, 0 < k ≤ (p − 1)m
}
.

Then Bm,k is a visible basis of Cm,k.

Proof.
The proof is similar to the proof of Lemma 1.9 in [1]. We use induction on the numbers of direct factors in the elementary

abelian group G.
For m = 1 the statement follows from Theorem 1.1 in [1]. Suppose that the statement is true for m = i and we prove it

for the casem = i + 1.
Let

x =

∑
a1,...,am

λa1,...,am (x1 − 1)a1 · · · (xm − 1)am , (2.1)

where λa1,...,am ∈ K . If each λaj = 0 or aj = 0 for all j ∈ {1, . . . ,m}, then Theorem 2 holds. Thus we may assume, that x
contains terms with λaj ̸= 0 and aj ̸= 0 for some j ∈ {1, . . . ,m}. Let (xm − 1)lm be the lowest power of the element (xm − 1)
in x.

Then we have

x = (xm − 1)lm (Llm + Llm+1(xm − 1) + Llm+2(xm − 1)2 + · · · Llm+t (xm − 1)t ), (2.2)

where 0 ≤ t ≤ min(p − 1, k
lm
), Lj ∈ K [H], lm ≤ j ≤ lm + t, H = ⟨x1⟩ × ⟨x2⟩ × · · · × ⟨xm−1⟩. Since Llm is an element of the

radical of K [H], we can write it in the form

Llm =

∑
j1,j2,...,jm−1

γj1,j2,...,jm−1 (x1 − 1)j1 . . . (xm−1 − 1)jm−1 ̸= 0 , (1 ≤ ji ≤ p − 1). (2.3)
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Then we have
m−1∏
i=1

ji ≥
k
lm
, where 0 < k ≤ (p − 1)m

for each term in the equation of the right hand side of (2.3). By the induction hypothesis there exists a basis element
(x1 − 1)a1 . . . (xm−1 − 1)am−1 in Cm−1, k

lm
such that

dm = wt((x1 − 1)a1 (x2 − 1)a2 . . . (xm−1 − 1)am−1 ) ≤ wt(Lim ),

where wt(y) denotes the Hamming weight of the codeword y ∈ Cm,k. Express Llm in the monomial basis of K [H], i.e.

Llm =

∑
i1,...im−1

µi1,i2,...,im−1x
i1
1 . . . x

im−1
m−1.

Thus for the element x in (2.2) we have

x = (xm − 1)lm

⎛⎝ ∑
i1,i2,...,im−1

µi1,i2,...,im−1 + µ
(1)
i1,i2,...,im−1

(xm − 1) + · · · + µ
(t)
i1,i2,...,im−1

(xm − 1)t

⎞⎠ ·

· xi11 . . . x
im−1
m−1 = (xm − 1)lm

∑
i1,i2,...,im−1

Γi1,i2,...,im−1x
i1
1 . . . x

im−1
m−1,

where Γi1,i2,...,im−1 ∈ K [Hm] and Hm = ⟨xm⟩. By Theorem 1.1 of Berman [1], there exists an element (xm −1)r such that r ≥ lm
and

wt((xm − 1)lmΓi1,i2,...,im−1 ) ≥ wt(xm − 1)r .

It follows that

wt(x) ≥ dmwt(xm − 1)r = wt
(
(xm − 1)r (x1 − 1)a1 (x2 − 1)a2 . . . (xm−1 − 1)am−1

)
,

while

r
m−1∏
i=1

(ai) ≥ r
k
lm

≥ k.

This completes the proof. □

Remark 3. Let P r1,...,ri
m denotes the number of permutations onm elements with r1, . . . , ri repetitions. If k = l1 · · · lm, then

dim(Cm,k) =

∑
li≤p−1
l1 ···lm≥k

P r1,...,ri
m .

3. Automorphism groups in the binary case

In this section we will consider the codes C defined in Theorem 1 for p = 2. We will determine their automorphism
groups by using a combinatorial method which was introduced in [10]. Let GC denote a generator matrix of C and Sn the
symmetric group on n elements. It is well-known that if the length of C is n, then Aut(C) ≤ Sn.

Theorem 3. Let p = 2 and m be an arbitrary positive integer. Let C be the code defined in Theorem 1 and

C = ⟨X1 · · · Xt⟩,

where 1 ≤ t ≤ m. Then C is a [2m, λ, d]-code, where λ = 2m−t and d = 2t . Then the automorphism group of C can be written
as the semidirect product

Aut(C) = Sλd ⋊ Sλ.

Proof. Since C is an ideal in GF (2)[G], we can use the identity

xj(xi − 1) = (xj − 1)(xi − 1) + (xi − 1) = XjXi + Xi.

We use the basis B of the code C , which was also introduced in Theorem 1:

B = {X1X2 . . . Xt , X1X2 . . . XtXt+1, X1X2 . . . XtXt+2, . . . , X1X2 . . . XtXt+1Xt+2 . . . Xm−2Xm−1Xm} .
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Let x1, . . . , xm be a basis of the elementary abelian 2-group G. We construct a generator matrix GC according to the basis
B in lexicographical order, which means that for bi, ci ∈ {0, 1} and 1 ≤ i ≤ m we have

xb11 xb22 . . . x
bm
m < xc11 xc22 . . . x

cm
m ⇐⇒

m∑
j=1

bj2j−1 <

m∑
j=1

cj2j−1.

Keeping in mind that Xi = xi − 1, we can write GC as the following binary matrix.

GC =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 . . . 1 0 . . . 0 0 . . . 0 . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0 . . . 0
1 1 1 1 . . . 1 1 . . . 1 0 . . . 0 . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0 . . . 0
1 1 1 1 . . . 1 0 . . . 0 1 . . . 1 . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0 . . . 0
1 1 1 1 . . . 1 1 . . . 1 1 . . . 1 . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.

1 1 1 1 . . . 1 0 . . . 0 0 . . . 0 . . . 1 . . . 1 . . . 0 . . . 0 0 . . . 0 0 . . . 0
1 1 1 1 . . . 1 1 . . . 1 0 . . . 0 . . . 1 . . . 1 . . . 0 . . . 0 0 . . . 0 0 . . . 0
1 1 1 1 . . . 1 0 . . . 0 1 . . . 1 . . . 1 . . . 1 . . . 0 . . . 0 0 . . . 0 0 . . . 0
1 1 1 1 . . . 1 1 . . . 1 1 . . . 1 . . . 1 . . . 1 . . . 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.

1 1 1 1 . . . 1 1 . . . 1 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 0 . . . 0 1 . . . 1
1 1 1 1 . . . 1  

d

1 . . . 1  
d

1 . . . 1  
d

. . . 1 . . . 1  
d

. . . 1 . . . 1  
d

1 . . . 1  
d

1 . . . 1  
d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
That means GC is of the form

(
A 0
A A

)
for some binary matrix A of size 2m−t−1

× 2m−1. Thus GC is the tensor product of(
1 0
1 1

)
and A.

We can see that in GC there is one row of weight d = 2t , there are m − t rows of weight 2t+1,
(m−t

2

)
rows with weight

2t+2, etc. Finally we have one row with weight 2m. Thus GC has 2m−t rows.
Each row of GC can be divided into d-tuples of 1-s and 0-s. The coordinates of each of the d-tuples can be permuted by Sd

and it is easy to verify that the number of d-tuples in one row is λ = 2m−t . Furthermore, the d-tuples can be permuted as
d-tuples by all elements of Sλ.

Nowwe will show that Sλd is normal in Aut(C). Let g ∈ Sλd and σ ∈ Aut(C) be arbitrary. Then σ = (σ1, . . . , σλ, σµ), where
σ1, . . . , σλ ∈ Sd and σµ ∈ Sλ, further g = (g1, . . . , gλ), where g1, . . . , gλ ∈ Sd. We have

σ−1gσ = (σ−1
1 g1σ1, . . . , σ−1

λ gλσλ)σµ ,

which means that σ−1
i giσi ∈ Sd and σµ acts on the elements of {σ−1

1 g1σ1, . . . , σ−1
λ gλσλ} as permutation. Thus σ−1gσ ∈ Sλd .

We also show that Sλ is in general not normal in Aut(C). Let h ∈ Sλ and we take again σ ∈ Aut(C) as previously. Further
we will denote the d-tuples by a1, . . . aλ. Then

σ−1hσ = (σ−1
1 a1σ1, . . . , σ−1

λ aλσλ)σµ ,

which means that σµ permutes the σ−1
i aiσi. Since σ−1

i aiσi ̸= ai in general, this element cannot always be expressed as a
permutation of a1, . . . , aλ. Since Sλd and Sλ are both subgroups of Aut(C), we have that the group Aut(C) is an outer semidirect
product of Sλd and Sλ.

We still have to show that there are no other automorphisms of C . Let us suppose that there existsψ ̸∈ Sλd ⋊ Sλ, which is
an automorphism of C . Thatmeansψ does not only act on the coordinates of the d-tuples or on the set of d-tuples (which has
cardinality λ). Thusψ cuts apart at least one of the d-tuples. Thus, if GC is the generator matrix of C , then the code generated
by GψC is not identical to the code C, although they are permutation equivalent. This completes the proof. □

Definition 3. Let C be a monomial code in K [G] and c1, c2 ∈ C be two codewords. We say that c1 is orthogonal to c2 if their
inner product is zero. The dual code of C is denoted by C⊥ and it is the code containing all codewords which are orthogonal
to all codewords of C . We say that C is self-orthogonal if C ⊆ C⊥ and C is self-dual if C = C⊥.

Corollary 4. Let p = 2 and C be a [2m, 2k, d]-code defined in Theorem 1, where 0 ≤ k ≤ m. Then C is always self-orthogonal
and it is self-dual if and only if k = m − 1.

Proof.
It is obvious by the construction of the generator matrix GC in the proof of Theorem 3 that the difference of two arbitrary

codewords has even weight. Thus all codewords are orthogonal to each other. In the example of page 4 in [4] it is shown
that if k = m− 1, then C is self-dual and it is a direct sum of [2, 1, 2]-codes. Further, the dimension of C implies self-duality
if and only if k = m − 1. □
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