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1. Introduction and notation

Reed-Muller codes were introduced as binary functions in [9]. Later the Generalized Reed-Muller (GRM) codes were
defined over an arbitrary finite field by Kasami, Lin and Peterson in [6]. We will denote a cyclic group of p elements by C,
and C" is the direct product of m copies of Cp. The radical of K[C}'] is denoted by Jp m. It turned out that the powers of J,
coincide with the GRM-codes (see [1] for p = 2 and [2] for arbitrary p). Landrock and Manz [7] showed that GRM-codes are
ideals in modular group algebras. In the current paper, we give some new classes of monomial codes which are ideals in
modular group algebras but differ from the GRM-codes. If p > 2, then some of our codes have better parameters than the
GRM-codes. All of the introduced codes have a visible basis, i.e. their minimum distance can be obtained by the minimum
distance of such a basis.

This paper is organized as follows. In this section we summarize the algebraic concepts and introduce our notations.
In Section 2 we construct monomial codes which have at least one visible basis and in Section 3 we determine the
automorphism groups of some of the codes given previously for p = 2.

Throughout the paper p will denote a prime number and K = GF(p) denotes the Galois-field of p elements. Further let G
be an elementary abelian p-group of order p™ for some positive integer m. Thus the group algebra K[G] is modular.

Letn = p™and gy, £, ..., g, be a basis of K[G]. The elements of K[G] are the formal sums

n
Z o;gi, where o; € K.
i=1
We use the usual operations in K[G] (see [ 1] for more details).
The Jacobson radical of K[G] is the kernel of the augmentation map Y | ,aig; —> Y .. It is obvious that this map is an
algebra homomorphism. We will refer to the Jacobson radical shortly as radical. Since K[G] is local, its radical is unique.
Between K[G] and K" there exists a map

¢ : K[G] - K"
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such that

n
¢ (Zaigi) = (o, 2, ..., 0p) =:C.
i=1

It can be easily verified that this map is an isomorphism, thus K[G] and K™ are isomorphic as vector spaces. The ambient
space of the linear codes we consider in this paper is ¢(K[G]). The Hamming weight of codes in J, ,, can be obtained from
the basis formed by the elements of G i.e. the Hamming weight is the number of nonzero «;’s in c.
Given a basis g;,, &, - - - &n» (1 < i < p™, 1 < j < m) of the elementary abelian p-group G, we can consider the algebra
isomorphism
w:KIGl = K[x1, ..., xn]l/(X] = 1,..., X0 — 1), withg;, — x;.

Applying .« we may write any element g; € G as
& =8, 8; & =X .., 0<¢q <p,
thus we obtain
KIGI = K[x1, X2, ..., xm /() — 1,20 — 1, ..., %0 — 1), (1.1)

where K[x1, X2, . . ., X,] denotes the algebra of polynomials in m variables with coefficients in K.
The following set of monomial functions

m m
{n(xi— 1)%, where0 < a; <p— 1and Zai > 1}

i=1 i=1

forms a linear basis of the radical J, ;, due to (1.1) (see [5] for more details).
Now we define X; := x; — 1, wherei = 1, ..., m. Then we have

KIG] = K[X1, X2, ..., Xml/ (XY, X5, ..., XP). (1.2)

Fork € {0, ..., m(p — 1)} the kth power of the radical J, , is defined as

Jll)c.m:<1—[(xi)ai | Zai Zk,OSaf Sp—l>. (13)

i=1 i—1
It is well-known that J¥, = GRM(m(p — 1) — k, m).

One can choose coset representations of ]I’,‘ m I’,‘f;f of the form:

m m
:HX'_‘]i'whereOSa,'Sp—land Zai:k}' (1.4)
i=1

i=1

2. Monomial codes with visible bases

Definition 1 ([3]). Let C be an ideal of K[G] and a subspace of ], »,. We say that C is a monomial code if it can be generated
by some monomials of the form

X{1X% ... X, where0 <g;<p—1,andi=1,...,m.
Definition 2. Let C be a linear code of length n over K = GF(p), i.e. we consider C as a subspace of the vector space K". We

say that C has a visible basis if at least one member of the basis has the same Hamming weight as C has. Further C will be
denoted as an [n, k, d]-code, where n is the code length, k is its dimension and d is its minimum (Hamming) weight.

It is known (Prop. 1.8 in [3]) that for p = 2 every monomial code has a visible basis.

Remark 1. This definition of codes with visible bases is different from the definition of visible codes by Ward in [11]. He
defined a set V to be visible, if each subspace generated by a non-empty subset of V has the same weight as the generator
set, i.e. the weight of at least one member of the basis equals the weight of the generated code. Obviously, if a code is visible
in the sense of Ward, then it also has a visible basis.

We construct monomial codes with at least one visible basis. The next theorem is a special case of Corollary 3.3 in [8].
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Theorem 1. Let p be an arbitrary prime. Then the principal ideal

m
C=<xf1x§2...x,;m |O§ai§p—1,Zaizl,i=1,2,...,m>

i=1

determines a cyclic code. The set

m
ki
B=!fo lai<k<p-1

i=1
is a visible basis of C.
We have C C Jpmand Cisa[p™,(p —a1) - (p — a2) - - - - - (p — am), d]-code, where d = ]‘[f’;](ai + 1).

Proof. Let Cy denote the ideal (Xjaj) = {(x; — 1)%) in the ring K[xj]/(x;7 — 1)for 1 < j < m. Then C is a tensor product
C=C, ®C, ® - ® Cy, (Cor. 3.3in [8]), where Cy, = (Xjaj) (1 <j < m)isacyclic code. Each code Cy; has a visible basis,
which is the set

X' g <k<p-1)
with minimal distance a; 4 1. By the theorem of Ward [11], the tensor product C is visible. Thus, it has a visible basis. O

Remark 2. The codes defined in Theorem 1 coincide with the GRM-codes only in the one-dimensional case, since
Cé]"@k:m(p—l)andC:ﬂTXf' |a,-=p—1‘v’i>.

The class of maximal monomial codes I; in the group algebra K[G] was defined by Drensky and Lakatos in [3] as

m m
1d=<l_[X,-ui | H(ai+1)2d,OSaiSP—1>-
i=1 i=1
The minimum distance of I isd = min{]_[?;(a,' + 1)}. Thus I, has a visible basis.
For p > 2 some of the maximal monomial codes are better than the GRM-codes with the same minimum distance. For
example if d = 5, then dim(Iy) = dim (GRM) + (%) + (5) +m(m — 1).

Theorem 2. Let Gy, x be a monomial code generated by the set

m
By = [H(Xi)"i | ]_[ai >k, where0 <a; <p, 0 <k<(p— l)m}.

i=1

Then By,  is a visible basis of Cp .

Proof.

The proof is similar to the proof of Lemma 1.9 in [ 1]. We use induction on the numbers of direct factors in the elementary
abelian group G.

For m = 1 the statement follows from Theorem 1.1 in [1]. Suppose that the statement is true for m = i and we prove it
for the casem =i+ 1.

Let
X= D Aapans = D (g — 1), (2.1)
aqyeeny am
where Aq,, a4, € K. If each A =0org =0 forallj € {1,..., m}, then Theorem 2 holds. Thus we may assume, that x
contains terms with Aoy #0 and a; # O for somej € {1, ..., m}. Let (xy — 1) be the lowest power of the element (x,; — 1)

in X.
Then we have

X = (Xm — V"L, + Ly1(Xm — 1) + Lo (Xm — 12 4 - Lo (xm — 1)), (22)

where 0 < t < min(p — 1, ﬁ), Lie K[Hl,Ip <j <Inp+t, H=(x1) X (X2) X --- X (xp_1). Since L, is an element of the
radical of K[H], we can write it in the form

L= D Viddma & = e = D £ 0, (1< ji < p— 1), (23)

J1sd2seesdm—1
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Then we have
m—1 k
Hji > i where 0 < k < (p— 1)™
i=1 m

for each term in the equation of the right hand side of (2.3). By the induction hypothesis there exists a basis element
(1 — 1% . (Xm—q — 1)"—11in Cmq,li such that
dn = wt((x; — D7 (x2 — 1)2 ... (xp—1 — 1)"™1) < wi(L,),
where wt(y) denotes the Hamming weight of the codeword y € Gy, . Express L;,, in the monomial basis of K[H], i.e.
Ly, = Z Wiy g, oim 1 X7 ---X;ff:}.
i1,eerim—1
Thus for the element x in (2.2) we have

1
X=0n =" Y i i G = DA ul (= 1)

cnim—1
i1.09seerim_1

K =0 = Y i XX
122 eorim—1
where I3, ;, € K[H,;] and Hy, = (xp,). By Theorem 1.1 of Berman [ 1], there exists an element (x,,, — 1)" such thatr > I,
and

rooimet

wt((Xm — 1)m I}
It follows that

wEX) = dpwt(xm — 1) = wt ((Xn — 1'% = D = D2 (g — D),

Gigsim_1) = WEX — 1)

while
m—1 k
)>r— > k.
rg(a,)_rlm >k

This completes the proof. O

Remark 3. Let P;}"~" denotes the number of permutations on m elements with ry, . . ., r; repetitions. If k = I; - - - I,, then
dim(Cni)= Y Pa"
li=p-1
Iy -lm>k

3. Automorphism groups in the binary case

In this section we will consider the codes C defined in Theorem 1 for p = 2. We will determine their automorphism
groups by using a combinatorial method which was introduced in [10]. Let Gc denote a generator matrix of C and S, the
symmetric group on n elements. It is well-known that if the length of C is n, then Aut(C) < S,,.

Theorem 3. Let p = 2 and m be an arbitrary positive integer. Let C be the code defined in Theorem 1 and
C= X1 Xo),

where 1 <t < m. Then C is a [2™, A, d]-code, where A = 2™~ and d = 2. Then the automorphism group of C can be written
as the semidirect product

Aut(C) = S} x S;.
Proof. Since C is an ideal in GF(2)[G], we can use the identity
Xi(xi — 1) = (% — xi — 1) + (% — 1) = XX + Xi.
We use the basis B of the code C, which was also introduced in Theorem 1:

B={X:Xs... Xe,X1Xo ... XXer1, XaXa . .. XXea2 - XX o XXz Xeta - - Xm—2Xm—1Xm} -
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Let xq, ..., Xy be a basis of the elementary abelian 2-group G. We construct a generator matrix G¢ according to the basis
B in lexicographical order, which means that for b;, ¢; € {0, 1} and 1 < i < m we have

m m
b1, b2 b 3C15C2 Cm -1 i1
XXX < XX X = E b;2 <E G2 .
j=1 j=1

Keeping in mind that X; = x; — 1, we can write G¢ as the following binary matrix.

1 1 1 1 1 0 0 0 0 0 0 0 0 0 o 0 ... 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 o 0 ... 0
1 1 1 1 1 0 0 1 1 0 0 0 0 0 0o 0 ... 0
1 1 1 1 1 1 1 1 1 0 0 0 0 0 o o0 ... 0
1 1 1 1 1 0 0 0 0 1 1 0 0 0 o o0 ... 0
Ge=|1 1 1 1 1 1 1 0 0 1 1 0 0 0 o o0 ... 0
1 1 1 1 1 0 0 1 1 1 1 0 0 0 0o 0 ... 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 o o0 ... 0
1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1
d d d d d d d

That means G¢ is of the form (2 g) for some binary matrix A of size 2™ =1 x 2™~1, Thus G is the tensor product of

(} ?) and A.

We can see that in G¢ there is one row of weight d = 2¢, there are m — t rows of weight 21, (
2t+2 etc. Finally we have one row with weight 2™, Thus G¢ has 2™~ rows.

Each row of G¢ can be divided into d-tuples of 1-s and 0-s. The coordinates of each of the d-tuples can be permuted by S4
and it is easy to verify that the number of d-tuples in one row is A = 2™, Furthermore, the d-tuples can be permuted as
d-tuples by all elements of ;.

m—t

>f) rows with weight

Now we will show that Sg is normal in Aut(C). Letg € Sj and o € Aut(C) be arbitrary. Then o = (o4, ..., 03, 0,,), where
01,...,05 € Sgand o, € Sy, furtherg = (g1, ...,8.), where gy, ..., g € Sq4. We have
o7 'go = (07 'gi01, ..., 0, g0 )",
which means that aflg,-af € Sq and o, acts on the elements of {aflglcr], RN a;lgxak} as permutation. Thus o ~'go € Sg.

We also show that S;, is in general not normal in Aut(C). Let h € S, and we take again o € Aut(C) as previously. Further
we will denote the d-tuples by a4, ...a;. Then

o the = (0'1_1(110'1, c.. ,o{la,\o,\)"“,

which means that o, permutes the ai‘la,-ai. Since ai_1aioi # a; in general, this element cannot always be expressed as a
permutationofay, ..., a,.Since Sg and S, are both subgroups of Aut(C), we have that the group Aut(C) is an outer semidirect
product of S} and S;.

We still have to show that there are no other automorphisms of C. Let us suppose that there exists ¢ ¢ Sg x S;, which is
an automorphism of C. That means v does not only act on the coordinates of the d-tuples or on the set of d-tuples (which has
cardinality A). Thus v cuts apart at least one of the d-tuples. Thus, if G is the generator matrix of C, then the code generated
by G? is not identical to the code C, although they are permutation equivalent. This completes the proof. O

Definition 3. Let C be a monomial code in K[G] and ¢y, ¢; € C be two codewords. We say that c; is orthogonal to c; if their
inner product is zero. The dual code of C is denoted by C* and it is the code containing all codewords which are orthogonal
to all codewords of C. We say that C is self-orthogonal if C € C* and C is self-dual if C = C*.

Corollary 4. Let p = 2 and C be a [2™, 2%, d]-code defined in Theorem 1, where 0 < k < m. Then C is always self-orthogonal
and it is self-dual if and only if k = m — 1.

Proof.

It is obvious by the construction of the generator matrix G¢ in the proof of Theorem 3 that the difference of two arbitrary
codewords has even weight. Thus all codewords are orthogonal to each other. In the example of page 4 in [4] it is shown
thatif k = m — 1, then C is self-dual and it is a direct sum of [2, 1, 2]-codes. Further, the dimension of C implies self-duality
ifandonlyifk=m—1. O
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