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Praise for Advanced Programming in the UNIX® Environment,
Second Edition

“Stephen Rago’s update is a long overdue benefit to the community of professionals
using the versatile family of UNIX and UNIX-like operating environments. It removes
obsolescence and includes newer developments. It also thoroughly updates the context
of all topics, examples, and applications to recent releases of popular implementations
of UNIX and UNIX-like environments. And yet, it does all this while retaining the style
and taste of the original classic.”

—Mukesh Kacker, cofounder and former CTO of Pronto Networks, Inc.

“One of the essential classics of UNIX programming.”

—Eric S. Raymond, author of The Art of UNIX Programming

“This is the definitive reference book for any serious or professional UNIX systems
programmer. Rago has updated and extended the classic Stevens text while keeping
true to the original. The APIs are illuminated by clear examples of their use. He also
mentions many of the pitfalls to look out for when programming across different UNIX
system implementations and points out how to avoid these pitfalls using relevant
standards such as POSIX 1003.1, 2004 edition, and the Single UNIX Specification,
Version 3.”

—Andrew Josey, Director, Certification, The Open Group, and
Chair of the POSIX 1003.1 Working Group

“Advanced Programming in the UNIX" Environment, Second Edition, is an essential
reference for anyone writing programs for a UNIX system. It’s the first book I turn to
when I want to understand or re-learn any of the various system interfaces. Stephen
Rago has successfully revised this book to incorporate newer operating systems such as
GNU/Linux and Apple’s OS X while keeping true to the first edition in terms of both
readability and usefulness. It will always have a place right next to my computer.”

—Dr. Benjamin Kuperman, Swarthmore College
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Praise for the First Edition

“Advanced Programming in the UNIX" Environment is a must-have for any serious C
programmer who works under UNIX. Its depth, thoroughness, and clarity of explana-
tion are unmatched.”

—UniForum Monthly

“Numerous readers recommended Advanced Programming in the UNIX® Environment by
W. Richard Stevens (Addison-Wesley), and I'm glad they did; I hadn’t even heard of this
book, and it’s been out since 1992. I just got my hands on a copy, and the first few
chapters have been fascinating.”

—Open Systems Today

“A much more readable and detailed treatment of [UNIX internals] can be found in
Advanced Programming in the UNIX® Environment by W. Richard Stevens (Addison-
Wesley). This book includes lots of realistic examples, and I find it quite helpful when I
have systems programming tasks to do.”

—RS/Magazine
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Foreword to the Second Edition

At some point during nearly every interview I give, as well as in question periods after
talks, I get asked some variant of the same question: “Did you expect Unix to last for so
long?” And of course the answer is always the same: No, we didn’t quite anticipate
what has happened. Even the observation that the system, in some form, has been
around for well more than half the lifetime of the commercial computing industry is
now dated.

The course of developments has been turbulent and complicated. Computer
technology has changed greatly since the early 1970s, most notably in universal
networking, ubiquitous graphics, and readily available personal computing, but the
system has somehow managed to accommodate all of these phenomena. The
commercial environment, although today dominated on the desktop by Microsoft and
Intel, has in some ways moved from single-supplier to multiple sources and, in recent
years, to increasing reliance on public standards and on freely available source.

Fortunately, Unix, considered as a phenomenon and not just a brand, has been able
to move with and even lead this wave. AT&T in the 1970s and 1980s was protective of
the actual Unix source code, but encouraged standardization efforts based on the
system’s interfaces and languages. For example, the SVID—the System V Interface
Definition—was published by AT&T, and it became the basis for the POSIX work and
its follow-ons. As it happened, Unix was able to adapt rather gracefully to a networked
environment and, perhaps less elegantly, but still adequately, to a graphical one. And as
it also happened, the basic Unix kernel interface and many of its characteristic user-level
tools were incorporated into the technological foundations of the open-source
movement.

It is important that papers and writings about the Unix system were always
encouraged, even while the software of the system itself was proprietary, for example
Maurice Bach’s book, The Design of the Unix Operating System. In fact, I would claim that

xix
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Foreword to the Second Edition

a central reason for the system’s longevity has been that it has attracted remarkably
talented writers to explain its beauties and mysteries. Brian Kernighan is one of these;
Rich Stevens is certainly another. The first edition of this book, along with his series of
books about networking, are rightfully regarded as remarkably well-crafted works of
exposition, and became hugely popular.

However, the first edition of this book was published before Linux and the several
open-source renditions of the Unix interface that stemmed from the Berkeley CSRG
became widespread, and also at a time when many people’s networking consisted of a
serial modem. Steve Rago has carefully updated this book to account for the technology
changes, as well as developments in various ISO and IEEE standards since its first
publication. Thus his examples are fresh, and freshly tested.

It’s a most worthy second edition of a classic.

Murray Hill, New Jersey Dennis Ritchie
March 2005
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Preface

Introduction

It's been almost eight years since I first updated Advanced Programming in the UNIX
Environment, and already so much has changed.

Before the second edition was published, The Open Group created a 2004
edition of the Single UNIX Specification, folding in the changes from two sets of
corrigenda. In 2008, The Open Group created a new version of the Single UNIX
Specification, updating the base definitions, adding new interfaces, and
removing obsolete ones. This was called the 2008 version of POSIX.1, which
included version 7 of the Base Specification and was published in 2009. In 2010,
this was bundled with an updated curses interface and reissued as version 4 of
the Single UNIX Specification.

Versions 10.5, 10.6, and 10.8 of the Mac OS X operating system, running on Intel
processors, have been certified to be UNIX® systems by The Open Group.

Apple Computer discontinued development of Mac OS X for the PowerPC
platform. From Release 10.6 (Snow Leopard) onward, new operating system
versions are released for the x86 platform only.

The Solaris operating system was released in open source form to try to compete
with the popularity of the open source model followed by FreeBSD, Linux, and
Mac OS X. After Oracle Corporation bought Sun Microsystems in 2010, it
discontinued the development of OpenSolaris. Instead, the Solaris community
formed the Illumos project to continue open source development based on
OpenSolaris. For more information, see http://www.illumos.org.

xxi
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Preface

¢ In 2011, the C standard was updated, but because systems haven’t caught up yet
with the changes, we still refer to the 1999 version in this text.

Most notably, the platforms used in the second edition have become out-of-date. In this
book, the third edition, I cover the following platforms:

1. FreeBSD 8.0, a descendant of the 4.4BSD release from the Computer Systems
Research Group at the University of California at Berkeley, running on a 32-bit
Intel Pentium processor.

2. Linux 3.2.0 (the Ubuntu 12.04 distribution), a free UNIX-like operating system,
running on a 64-bit Intel Core i5 processor.

3. Apple Mac OS X, version 10.6.8 (Darwin 10.8.0) on a 64-bit Intel Core 2 Duo
processor. (Darwin is based on FreeBSD and Mach.) I chose to switch to an
Intel platform instead of continuing with one based on the PowerPC, because
the latest versions of Mac OS X are no longer being ported to the PowerPC
platform. The drawback to this choice is that the processors covered are now
slanted in favor of Intel. When discussing issues of heterogeneity, it is helpful to
have processors with different characteristics, such as byte ordering and integer
size.

4. Solaris 10, a derivative of System V Release 4 from Sun Microsystems (now
Oracle), running on a 64-bit UltraSPARC Ili processor.

Changes from the Second Edition

One of the biggest changes to the Single UNIX Specification in POSIX.1-2008 is the
demotion of the STREAMS-related interfaces to obsolescent status. This is the first step
before these interfaces are removed entirely in a future version of the standard. Because
of this, I have reluctantly removed the STREAMS content from this edition of the book.
This is an unfortunate change, because the STREAMS interfaces provided a nice
contrast to the socket interfaces, and in many ways were more flexible. Admittedly, I
am not entirely unbiased when it comes to the STREAMS mechanism, but there is no
debating the reduced role it is playing in current systems:

e Linux doesn’t include STREAMS in its base system, although packages (LiS and
OpenSS7) are available to add this functionality.

¢ Although Solaris 10 includes STREAMS, Solaris 11 uses a socket implementation
that is not built on top of STREAMS.

* Mac OS X doesn’t include support for STREAMS.

¢ FreeBSD doesn’t include support for STREAMS (and never did).
So with the removal of the STREAMS-related material, an opportunity exists to replace
it with new topics, such as POSIX asynchronous 1/0O.

In the second edition, the Linux version covered was based on the 2.4 version of the
source. In this edition, I have updated the version of Linux to 3.2. One of the largest

www.it-ebooks.info


http://www.it-ebooks.info/

Preface xxiii

area of differences between these two versions is the threads subsystem. Between Linux
2.4 and Linux 2.6, the threads implementation was changed to the Native POSIX Thread
Library (NPTL). NPTL makes threads on Linux behave more like threads on the other
systems.

In total, this edition includes more than 70 new interfaces, including interfaces to
handle asynchronous 1/0O, spin locks, barriers, and POSIX semaphores. Most obsolete
interfaces are removed, except for a few ubiquitous ones.
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Introduction

Rich Stevens and I first met through an e-mail exchange when I reported a
typographical error in his first book, UNIX Network Programming. He used to kid me
about being the person to send him his first errata notice for the book. Until his death in
1999, we exchanged e-mail irregularly, usually when one of us had a question we
thought the other might be able to answer. We met for dinner at USENIX conferences
and when Rich was teaching in the area.

Rich Stevens was a friend who always conducted himself as a gentleman. When I
wrote UNIX System V Network Programming in 1993, I intended it to be a System V
version of Rich’s UNIX Network Programming. As was his nature, Rich gladly reviewed
chapters for me, and treated me not as a competitor, but as a colleague. We often talked
about collaborating on a STREAMS version of his TCP/IP Illustrated book. Had events
been different, we might have actually done it, but since Rich is no longer with us,
revising Advanced Programming in the UNIX Environment is the closest I'll ever get to
writing a book with him.

When the editors at Addison-Wesley told me that they wanted to update Rich’s
book, I thought that there wouldn’t be too much to change. Even after 13 years, Rich’s
work still holds up well. But the UNIX industry is vastly different today from what it
was when the book was first published.

® The System V variants are slowly being replaced by Linux. The major system
vendors that ship their hardware with their own versions of the UNIX System
have either made Linux ports available or announced support for Linux. Solaris
is perhaps the last descendant of UNIX System V Release 4 with any appreciable
market share.
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e After 4.4BSD was released, the Computing Science Research Group (CSRG) from
the University of California at Berkeley decided to put an end to its
development of the UNIX operating system, but several different groups of
volunteers still maintain publicly available versions.

* The introduction of Linux, supported by thousands of volunteers, has made it
possible for anyone with a computer to run an operating system similar to the
UNIX System, with freely available source code for the newest hardware
devices. The success of Linux is something of a curiosity, given that several free
BSD alternatives are readily available.

¢ Continuing its trend as an innovative company, Apple Computer abandoned its
old Mac operating system and replaced it with one based on Mach and FreeBSD.

Thus, I've tried to update the information presented in this book to reflect these four
platforms.

After Rich wrote Advanced Programming in the UNIX Environment in 1992, I got rid of
most of my UNIX programmer’s manuals. To this day, the two books I keep closest to
my desk are a dictionary and a copy of Advanced Programming in the UNIX Environment.
I hope you find this revision equally useful.

Changes from the First Edition

Rich’s work holds up well. I've tried not to change his original vision for this book, but
a lot has happened in 13 years. This is especially true with the standards that affect the
UNIX programming interface.

Throughout the book, I've updated interfaces that have changed from the ongoing
efforts in standards organizations. This is most noticeable in Chapter 2, since its
primary topic is standards. The 2001 version of the POSIX.1 standard, which we use in
this revision, is much more comprehensive than the 1990 version on which the first
edition of this book was based. The 1990 ISO C standard was updated in 1999, and
some changes affect the interfaces in the POSIX.1 standard.

A lot more interfaces are now covered by the POSIX.1 specification. The base
specifications of the Single UNIX Specification (published by The Open Group, formerly
X/Open) have been merged with POSIX.1. POSIX.1 now includes several 1003.1
standards and draft standards that were formerly published separately.

Accordingly, I've added chapters to cover some new topics. Threads and
multithreaded programming are important concepts because they present a cleaner way
for programmers to deal with concurrency and asynchrony.

The socket interface is now part of POSIX.1. It provides a single interface to
interprocess communication (IPC), regardless of the location of the process, and is a
natural extension of the IPC chapters.

I've omitted most of the real-time interfaces that appear in POSIX.1. These are best
treated in a text devoted to real-time programming. One such book appears in the
bibliography.

I've updated the case studies in the last chapters to cover more relevant real-world
examples. For example, few systems these days are connected to a PostScript printer

www.it-ebooks.info


http://www.it-ebooks.info/

Preface to the Second Edition Xxvii

via a serial or parallel port. Most PostScript printers today are accessed via a network,
so I've changed the case study that deals with PostScript printer communication to take
this into account.

The chapter on modem communication is less relevant these days. So that the
original material is not lost, however, it is available on the book’s Web site in two
formats: PostScript (http://www.apuebook.com/lostchapter/modem.ps) and
PDF (http://www.apuebook.com/lostchapter/modem. pdf).

The source code for the examples shown in this book is also available at
www . apuebook.com. Most of the examples have been run on four platforms:

1. FreeBSD 5.2.1, a derivative of the 4.4BSD release from the Computer Systems
Research Group at the University of California at Berkeley, running on an Intel
Pentium processor

2. Linux 2.4.22 (the Mandrake 9.2 distribution), a free UNIX-like operating system,
running on Intel Pentium processors

3. Solaris 9, a derivative of System V Release 4 from Sun Microsystems, running on
a 64-bit UltraSPARC Ili processor

4. Darwin 7.4.0, an operating environment based on FreeBSD and Mach,
supported by Apple Mac OS X, version 10.3, on a PowerPC processor
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Introduction

This book describes the programming interface to the Unix system—the system call
interface and many of the functions provided in the standard C library. It is intended
for anyone writing programs that run under Unix.

Like most operating systems, Unix provides numerous services to the programs
that are running—open a file, read a file, start a new program, allocate a region of
memory, get the current time-of-day, and so on. This has been termed the system call
interface. Additionally, the standard C library provides numerous functions that are
used by almost every C program (format a variable’s value for output, compare two
strings, etc.).

The system call interface and the library routines have traditionally been described
in Sections 2 and 3 of the Unix Programmer’s Manual. This book is not a duplication of
these sections. Examples and rationale are missing from the Unix Programmer’s Manual,
and that’s what this book provides.

Unix Standards

The proliferation of different versions of Unix during the 1980s has been tempered by
the various international standards that were started during the late 1980s. These
include the ANSI standard for the C programming language, the IEEE POSIX family
(still being developed), and the X/Open portability guide.

This book also describes these standards. But instead of just describing the
standards by themselves, we describe them in relation to popular implementations of
the standards—System V Release 4 and the forthcoming 4.4BSD. This provides a real-
world description, which is often lacking from the standard itself and from books that
describe only the standard.

XXix
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Organization of the Book

This book is divided into six parts:

1. An overview and introduction to basic Unix programming concepts and
terminology (Chapter 1), with a discussion of the various Unix standardization
efforts and different Unix implementations (Chapter 2).

2. I/O—unbuffered I/O (Chapter 3), properties of files and directories
(Chapter 4), the standard I/0O library (Chapter 5), and the standard system data
files (Chapter 6).

3. Processes—the environment of a Unix process (Chapter 7), process control
(Chapter 8), the relationships between different processes (Chapter 9), and
signals (Chapter 10).

4. More I/O—terminal I/O (Chapter 11), advanced I/O (Chapter 12), and daemon
processes (Chapter 13).

IPC—Interprocess communication (Chapters 14 and 15).

Examples—a database library (Chapter 16), communicating with a PostScript
printer (Chapter 17), a modem dialing program (Chapter 18), and using pseudo
terminals (Chapter 19).

A reading familiarity with C would be beneficial as would some experience using
Unix. No prior programming experience with Unix is assumed. This text is intended
for programmers familiar with Unix and programmers familiar with some other
operating system who wish to learn the details of the services provided by most Unix
systems.

Examples in the Text

This book contains many examples—approximately 10,000 lines of source code. All the
examples are in the C programming language. Furthermore, these examples are in
ANSI C. You should have a copy of the Unix Programmer’s Manual for your system
handy while reading this book, since reference is made to it for some of the more
esoteric and implementation-dependent features.

Almost every function and system call is demonstrated with a small, complete
program. This lets us see the arguments and return values and is often easier to
comprehend than the use of the function in a much larger program. But since some of
the small programs are contrived examples, a few bigger examples are also included
(Chapters 16, 17, 18, and 19). These larger examples demonstrate the programming
techniques in larger, real-world examples.

All the examples have been included in the text directly from their source files. A
machine-readable copy of all the examples is available via anonymous FIP from the
Internet host £tp.uu.net in the file published/books/stevens.advprog.tar.?Z.
Obtaining the source code allows you to modify the programs from this text and
experiment with them on your system.
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Systems Used to Test the Examples

Unfortunately all operating systems are moving targets. Unix is no exception. The
following diagram shows the recent evolution of the various versions of System V and

4.xBSD.
4.3+BSD
4.3BSD 4.3BSD Tahoe 4.3BSD Reno 4.4BSD ?
l l BSD Net 1 l BSD Net 2 l
| | | | | | | |
‘ 1986 ‘ 1987 ‘ 1988 4 ‘ 1989 4 ‘ 1990 4 ‘ 1991 ‘ 1992 ‘
| | * |
SVR3.0 SVR3.1 SVR3.2 | | SVR4 |
| | |
XPG3 ANSIC POSIX.1

4.xBSD are the various systems from the Computer Systems Research Group at the
University of California at Berkeley. This group also distributes the BSD Net 1 and BSD
Net 2 releases—publicly available source code from the 4.xBSD systems. SVRx refers to
System V Release x from AT&T. XPG3 is the X/Open Portability Guide, Issue 3, and
ANSI C is the ANSI standard for the C programming language. POSIX.1 is the IEEE
and ISO standard for the interface to a Unix-like system. We’ll have more to say about
these different standards and the various versions of Unix in Sections 2.2 and 2.3.

In this text we use the term 4.3+BSD to refer to the Unix system from
Berkeley that is somewhere between the BSD Net 2 release and 4.4BSD.

At the time of this writing, 4.4BSD was not released, so the system could not be called 4.4BSD.
Nevertheless a simple name was needed to refer to this system and 4.3+BSD is used
throughout the text.

Most of the examples in this text have been run on four different versions of Unix:

1. Unix System V/386 Release 4.0 Version 2.0 (“vanilla SVR4”) from U.H. Corp.
(UHC), on an Intel 80386 processor.

2. 4.3+BSD at the Computer Systems Research Group, Computer Science Division,
University of California at Berkeley, on a Hewlett Packard workstation.

3. BSD/386 (a derivative of the BSD Net 2 release) from Berkeley Software Design,
Inc., on an Intel 80386 processor. This system is almost identical to what we call
4.3+BSD.

4. SunOS 4.1.1 and 4.1.2 (systems with a strong Berkeley heritage but many
System V features) from Sun Microsystems, on a SPARCstation SLC.

Numerous timing tests are provided in the text and the systems used for the test are
identified.
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1.1

1.2

UNIX System Overview

Introduction

All operating systems provide services for programs they run. Typical services include
executing a new program, opening a file, reading a file, allocating a region of memory,
getting the current time of day, and so on. The focus of this text is to describe the
services provided by various versions of the UNIX operating system.

Describing the UNIX System in a strictly linear fashion, without any forward
references to terms that haven’t been described yet, is nearly impossible (and would
probably be boring). This chapter provides a whirlwind tour of the UNIX System from
a programmer’s perspective. We'll give some brief descriptions and examples of terms
and concepts that appear throughout the text. We describe these features in much more
detail in later chapters. This chapter also provides an introduction to and overview of
the services provided by the UNIX System for programmers new to this environment.

UNIX Architecture

In a strict sense, an operating system can be defined as the software that controls the
hardware resources of the computer and provides an environment under which
programs can run. Generally, we call this software the kernel, since it is relatively small
and resides at the core of the environment. Figure 1.1 shows a diagram of the UNIX
System architecture.

The interface to the kernel is a layer of software called the system calls (the shaded
portion in Figure 1.1). Libraries of common functions are built on top of the system call
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applications

system calls

kernel

library routines

Figure 1.1 Architecture of the UNIX operating system

interface, but applications are free to use both. (We talk more about system calls and
library functions in Section 1.11.) The shell is a special application that provides an
interface for running other applications.

In a broad sense, an operating system consists of the kernel and all the other
software that makes a computer useful and gives the computer its personality. This
other software includes system utilities, applications, shells, libraries of common
functions, and so on.

For example, Linux is the kernel used by the GNU operating system. Some people
refer to this combination as the GNU/Linux operating system, but it is more commonly
referred to as simply Linux. Although this usage may not be correct in a strict sense, it
is understandable, given the dual meaning of the phrase operating system. (It also has
the advantage of being more succinct.)

Logging In

Login Name

When we log in to a UNIX system, we enter our login name, followed by our password.
The system then looks up our login name in its password file, usually the file
/etc/passwd. If we look at our entry in the password file, we see that it's composed
of seven colon-separated fields: the login name, encrypted password, numeric user ID
(205), numeric group ID (105), a comment field, home directory (/home/sar), and shell
program (/bin/ksh).

sar:x:205:105:Stephen Rago:/home/sar:/bin/ksh

All contemporary systems have moved the encrypted password to a different file.
In Chapter 6, we'll look at these files and some functions to access them.
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Shells

Once we log in, some system information messages are typically displayed, and then
we can type commands to the shell program. (Some systems start a window
management program when you log in, but you generally end up with a shell running
in one of the windows.) A shell is a command-line interpreter that reads user input and
executes commands. The user input to a shell is normally from the terminal (an
interactive shell) or sometimes from a file (called a shell script). The common shells in
use are summarized in Figure 1.2.

Name Path FreeBSD 8.0 | Linux3.2.0 | Mac OSX10.6.8 | Solaris 10
Bourne shell /bin/sh o . copy of bash .
Bourne-again shell | /bin/bash optional . . .

C shell /bin/csh link to tcsh optional link to tcsh J
Korn shell /bin/ksh optional optional . .
TENEX C shell /bin/tcsh . optional . .

Figure 1.2 Common shells used on UNIX systems

The system knows which shell to execute for us based on the final field in our entry in
the password file.

The Bourne shell, developed by Steve Bourne at Bell Labs, has been in use since
Version 7 and is provided with almost every UNIX system in existence. The
control-flow constructs of the Bourne shell are reminiscent of Algol 68.

The C shell, developed by Bill Joy at Berkeley, is provided with all the BSD releases.
Additionally, the C shell was provided by AT&T with System V/386 Release 3.2 and
was also included in System V Release 4 (SVR4). (We'll have more to say about these
different versions of the UNIX System in the next chapter.) The C shell was built on the
6th Edition shell, not the Bourne shell. Its control flow looks more like the C language,
and it supports additional features that weren’t provided by the Bourne shell: job
control, a history mechanism, and command-line editing.

The Korn shell is considered a successor to the Bourne shell and was first provided
with SVR4. The Korn shell, developed by David Korn at Bell Labs, runs on most UNIX
systems, but before SVR4 was usually an extra-cost add-on, so it is not as widespread as
the other two shells. It is upward compatible with the Bourne shell and includes those
features that made the C shell popular: job control, command-line editing, and so on.

The Bourne-again shell is the GNU shell provided with all Linux systems. It was
designed to be POSIX conformant, while still remaining compatible with the Bourne
shell. It supports features from both the C shell and the Korn shell.

The TENEX C shell is an enhanced version of the C shell. It borrows several
features, such as command completion, from the TENEX operating system (developed
in 1972 at Bolt Beranek and Newman). The TENEX C shell adds many features to the C
shell and is often used as a replacement for the C shell.

The shell was standardized in the POSIX 1003.2 standard. The specification was
based on features from the Korn shell and Bourne shell.
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The default shell used by different Linux distributions varies. Some distributions use the
Bourne-again shell. Others use the BSD replacement for the Bourne shell, called dash (Debian
Almquist shell, originally written by Kenneth Almquist and later ported to Linux). The
default user shell in FreeBSD is derived from the Almquist shell. The default shell in
Mac OS X is the Bourne-again shell. Solaris, having its heritage in both BSD and System V,
provides all the shells shown in Figure 1.2. Free ports of the shells are available on the
Internet.

Throughout the text, we will use parenthetical notes such as this to describe historical notes
and to compare different implementations of the UNIX System. Often the reason for a
particular implementation technique becomes clear when the historical reasons are described.

Throughout this text, we’ll show interactive shell examples to execute a program
that we’ve developed. These examples use features common to the Bourne shell, the
Korn shell, and the Bourne-again shell.

14 Files and Directories

File System

The UNIX file system is a hierarchical arrangement of directories and files. Everything
starts in the directory called root, whose name is the single character /.

A directory is a file that contains directory entries. Logically, we can think of each
directory entry as containing a filename along with a structure of information
describing the attributes of the file. The attributes of a file are such things as the type of
file (regular file, directory), the size of the file, the owner of the file, permissions for the
file (whether other users may access this file), and when the file was last modified. The
stat and fstat functions return a structure of information containing all the
attributes of a file. In Chapter 4, we'll examine all the attributes of a file in great detail.

We make a distinction between the logical view of a directory entry and the way it is actually
stored on disk. Most implementations of UNIX file systems don’t store attributes in the
directory entries themselves, because of the difficulty of keeping them in synch when a file has
multiple hard links. This will become clear when we discuss hard links in Chapter 4.

Filename

The names in a directory are called filenames. The only two characters that cannot
appear in a filename are the slash character (/) and the null character. The slash
separates the filenames that form a pathname (described next) and the null character
terminates a pathname. Nevertheless, it’s good practice to restrict the characters in a
filename to a subset of the normal printing characters. (If we use some of the shell’s
special characters in the filename, we have to use the shell’s quoting mechanism to
reference the filename, and this can get complicated.) Indeed, for portability, POSIX.1
recommends restricting filenames to consist of the following characters: letters (a-z,
A-7), numbers (0-9), period (.), dash (-), and underscore (_).

Two filenames are automatically created whenever a new directory is created: .
(called dot) and . . (called dot-dot). Dot refers to the current directory, and dot-dot refers
to the parent directory. In the root directory, dot-dot is the same as dot.
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The Research UNIX System and some older UNIX System V file systems restricted a filename
to 14 characters. BSD versions extended this limit to 255 characters. Today, almost all
commercial UNIX file systems support at least 255-character filenames.

Pathname

A sequence of one or more filenames, separated by slashes and optionally starting with
a slash, forms a pathname. A pathname that begins with a slash is called an absolute
pathname; otherwise, it’s called a relative pathname. Relative pathnames refer to files
relative to the current directory. The name for the root of the file system (/) is a
special-case absolute pathname that has no filename component.

Example

Listing the names of all the files in a directory is not difficult. Figure 1.3 shows a
bare-bones implementation of the 1s(1) command.

#include "apue.h"
#include <dirent.h>

int
main(int argc, char *argv[])
{

DIR *dp;

struct dirent *dirp;

if (argc != 2)
err quit("usage: ls directory name");

if ((dp = opendir(argv[l])) == NULL)
err sys("can’'t open %s", argv[l]);
while ((dirp = readdir(dp)) != NULL)

printf("%s\n", dirp->d_name);

closedir(dp);
exit(0);

Figure 1.3 List all the files in a directory

The notation 1s(1) is the normal way to reference a particular entry in the UNIX
system manuals. It refers to the entry for 1s in Section 1. The sections are normally
numbered 1 through 8, and all the entries within each section are arranged
alphabetically. Throughout this text, we assume that you have a copy of the manuals
for your UNIX system.

Historically, UNIX systems lumped all eight sections together into what was called the UNIX
Programmer’s Manual. As the page count increased, the trend changed to distributing the
sections among separate manuals: one for users, one for programmers, and one for system
administrators, for example.
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Some UNIX systems further divide the manual pages within a given section, using an
uppercase letter. For example, all the standard input/output (I/O) functions in AT&T [1990e]
are indicated as being in Section 3S, as in fopen(3S). Other systems have replaced the
numeric sections with alphabetic ones, such as C for commands.

Today, most manuals are distributed in electronic form. If your manuals are online,
the way to see the manual pages for the 1s command would be something like

man 1 1s

or

man -sl 1s

Figure 1.3 is a program that just prints the name of every file in a directory, and
nothing else. If the source file is named myls.c, we compile it into the default a.out
executable file by running

cc myls.c

Historically, cc(1) is the C compiler. On systems with the GNU C compilation system, the C
compiler is gecc(1). Here, cc is usually linked to gcc.

Some sample output is

$ ./a.out /dev

cdrom
stderr
stdout
stdin
fd
sda4
sda3
sda2
sdal
sda
tty2
ttyl
console
tty
zero
null
many mote lines that aren’t shown
mem
$ ./a.out /etc/ssl/private
can’t open /etc/ssl/private: Permission denied
$ ./a.out /dev/tty
can’'t open /dev/tty: Not a directory

Throughout this text, we’ll show commands that we run and the resulting output in this
fashion: Characters that we type are shown in this font, whereas output from
programs is shown like this. If we need to add comments to this output, we’ll show
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the comments in italics. The dollar sign that precedes our input is the prompt that is
printed by the shell. We’ll always show the shell prompt as a dollar sign.

Note that the directory listing is not in alphabetical order. The 1s command sorts
the names before printing them.

There are many details to consider in this 20-line program.

e First, we include a header of our own: apue.h. We include this header in almost
every program in this text. This header includes some standard system headers and
defines numerous constants and function prototypes that we use throughout the
examples in the text. A listing of this header is in Appendix B.

* Next, we include a system header, dirent.h, to pick up the function prototypes for
opendir and readdir, in addition to the definition of the dirent structure. On
some systems, the definitions are split into multiple header files. For example, in the
Ubuntu 12.04 Linux distribution, /usr/include/dirent.h declares the function
prototypes and includes bits/dirent.h, which defines the dirent structure (and
is actually stored in /usr/include/x86_64-linux-gnu/bits).

® The declaration of the main function uses the style supported by the ISO C
standard. (We’ll have more to say about the ISO C standard in the next chapter.)

*  We take an argument from the command line, argv[ 1], as the name of the directory
to list. In Chapter 7, we’ll look at how the main function is called and how the
command-line arguments and environment variables are accessible to the program.

* Because the actual format of directory entries varies from one UNIX system to
another, we use the functions opendir, readdir, and closedir to manipulate the
directory.

* The opendir function returns a pointer to a DIR structure, and we pass this pointer
to the readdir function. We don’t care what’s in the DIR structure. We then call
readdir in a loop, to read each directory entry. The readdir function returns a
pointer to a dirent structure or, when it’s finished with the directory, a null pointer.
All we examine in the dirent structure is the name of each directory entry
(d_name). Using this name, we could then call the stat function (Section 4.2) to
determine all the attributes of the file.

*  We call two functions of our own to handle the errors: err _sys and err_quit. We
can see from the preceding output that the err_sys function prints an informative
message describing what type of error was encountered (“Permission denied” or
“Not a directory”). These two error functions are shown and described in
Appendix B. We also talk more about error handling in Section 1.7.

e When the program is done, it calls the function exit with an argument of 0. The
function exit terminates a program. By convention, an argument of 0 means OK,
and an argument between 1 and 255 means that an error occurred. In Section 8.5, we
show how any program, such as a shell or a program that we write, can obtain the
exit status of a program that it executes. O
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Working Directory

Every process has a working directory, sometimes called the current working directory.
This is the directory from which all relative pathnames are interpreted. A process can
change its working directory with the chdir function.

For example, the relative pathname doc/memo/ joe refers to the file or directory
joe, in the directory memo, in the directory doc, which must be a directory within the
working directory. From looking just at this pathname, we know that both doc and
memo have to be directories, but we can’t tell whether joe is a file or a directory. The
pathname /usr/1lib/1lint is an absolute pathname that refers to the file or directory
lint in the directory 1ib, in the directory usr, which is in the root directory.

Home Directory

When we log in, the working directory is set to our home directory. Our home directory
is obtained from our entry in the password file (Section 1.3).

1.5 Input and Output

File Descriptors

File descriptors are normally small non-negative integers that the kernel uses to identify
the files accessed by a process. Whenever it opens an existing file or creates a new file,
the kernel returns a file descriptor that we use when we want to read or write the file.

Standard Input, Standard Output, and Standard Error

By convention, all shells open three descriptors whenever a new program is run:
standard input, standard output, and standard error. If nothing special is done, as in
the simple command

1s

then all three are connected to the terminal. Most shells provide a way to redirect any
or all of these three descriptors to any file. For example,

ls > file.list

executes the 1s command with its standard output redirected to the file named
file.list.

Unbuffered I/0

Unbuffered I/0 is provided by the functions open, read, write, 1seek, and close.
These functions all work with file descriptors.

Example

If we're willing to read from the standard input and write to the standard output, then
the program in Figure 1.4 copies any regular file on a UNIX system.
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#include "apue.h"

#define BUFFSIZE 4096
int
main(void)
{
int n;

char buf [BUFFSIZE];

while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0)
if (write(STDOUT_FILENO, buf, n) != n)
err_sys("write error");
if (n < 0)
err sys("read error");

exit(0);

Figure 1.4 Copy standard input to standard output

The <unistd.h> header, included by apue.h, and the two constants STDIN_FILENO
and STDOUT_ FILENO are part of the POSIX standard (about which we’ll have a lot
more to say in the next chapter). This header contains function prototypes for many of
the UNIX system services, such as the read and write functions that we call.

The constants STDIN FILENO and STDOUT FILENO are defined in <unistd.h>
and specify the file descriptors for standard input and standard output. These values
are 0 and 1, respectively, as required by POSIX.1, but we’ll use the names for readability.

In Section 3.9, we’ll examine the BUFFSIZE constant in detail, seeing how various
values affect the efficiency of the program. Regardless of the value of this constant,
however, this program still copies any regular file.

The read function returns the number of bytes that are read, and this value is used
as the number of bytes to write. When the end of the input file is encountered, read
returns 0 and the program stops. If a read error occurs, read returns -1. Most of the
system functions return -1 when an error occurs.

If we compile the program into the standard name (a.out) and execute it as

./a.out > data

standard input is the terminal, standard output is redirected to the file data, and
standard error is also the terminal. If this output file doesn’t exist, the shell creates it by
default. The program copies lines that we type to the standard output until we type the
end-of-file character (usually Control-D).

If we run

./a.out < infile > outfile

then the file named infile will be copied to the file named outfile. ]

In Chapter 3, we describe the unbuffered I/O functions in more detail.
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Standard I/0

The standard I/O functions provide a buffered interface to the unbuffered 1/0
functions. Using standard 1/O relieves us from having to choose optimal buffer sizes,
such as the BUFFSIZE constant in Figure 1.4. The standard I/O functions also simplify
dealing with lines of input (a common occurrence in UNIX applications). The fgets
function, for example, reads an entire line. The read function, in contrast, reads a
specified number of bytes. As we shall see in Section 5.4, the standard I/O library
provides functions that let us control the style of buffering used by the library.

The most common standard I/O function is printf. In programs that call
printf, we'll always include <stdio.h>—normally by including apue.h—as this
header contains the function prototypes for all the standard I/O functions.

Example

1.6

The program in Figure 1.5, which we’ll examine in more detail in Section 5.8, is like the
previous program that called read and write. This program copies standard input to
standard output and can copy any regular file.

#include "apue.h"

int
main(void)
{
int c;
while ((c = getc(stdin)) != EOF)
if (putc(c, stdout) == EOF)

err sys("output error");

if (ferror(stdin))
err_sys("input error");

exit(0);

Figure 1.5 Copy standard input to standard output, using standard I/O

The function getc reads one character at a time, and this character is written by putc.
After the last byte of input has been read, getc returns the constant EOF (defined in
<stdio.h>). The standard I/O constants stdin and stdout are also defined in the
<stdio.h> header and refer to the standard input and standard output. o

Programs and Processes

Program

A program is an executable file residing on disk in a directory. A program is read into
memory and is executed by the kernel as a result of one of the seven exec functions.
We'll cover these functions in Section 8.10.
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Processes and Process ID

An executing instance of a program is called a process, a term used on almost every page
of this text. Some operating systems use the term task to refer to a program that is being
executed.

The UNIX System guarantees that every process has a unique numeric identifier
called the process ID. The process ID is always a non-negative integer.

Example

The program in Figure 1.6 prints its process ID.

#include "apue.h"

int

main(void)

{
printf("hello world from process ID %1d\n", (long)getpid());
exit(0);

Figure 1.6 Print the process ID

If we compile this program into the file a.out and execute it, we have

$ ./a.out
hello world from process ID 851
$ ./a.out

hello world from process ID 854

When this program runs, it calls the function getpid to obtain its process ID. As we
shall see later, getpid returns a pid_t data type. We don’t know its size; all we know
is that the standards guarantee that it will fit in a long integer. Because we have to tell
printf the size of each argument to be printed, we have to cast the value to the largest
data type that it might use (in this case, a long integer). Although most process IDs will
fitin an int, using a long promotes portability. ]

Process Control

There are three primary functions for process control: fork, exec, and waitpid. (The
exec function has seven variants, but we often refer to them collectively as simply the
exec function.)

Example

The process control features of the UNIX System are demonstrated using a simple
program (Figure 1.7) that reads commands from standard input and executes the
commands. This is a bare-bones implementation of a shell-like program.
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#include "apue.h"
#include <sys/wait.h>

int

main(void)

{

char buf [MAXLINE]; /* from apue.h */
pid_t pid;
int status;

printf("%% "); /* print prompt (printf requires %% to print %) */
while (fgets(buf, MAXLINE, stdin) != NULL) {

}

if (buf[strlen(buf) - 1] == '\n’)
buf[strlen(buf) - 1] = 0; /* replace newline with null */

if ((pid = fork()) < 0) {
err sys("fork error");

} else if (pid == 0) { /* child */
execlp(buf, buf, (char *)0);
err ret("couldn’t execute: %s", buf);
exit(127);

}

/* parent */

if ((pid = waitpid(pid, &status, 0)) < 0)
err sys("waitpid error");

printf("%% ");

exit(0);

Figure 1.7 Read commands from standard input and execute them

There are several features to consider in this 30-line program.

We use the standard I/O function fgets to read one line at a time from the
standard input. When we type the end-of-file character (which is often
Control-D) as the first character of a line, fgets returns a null pointer, the loop
stops, and the process terminates. In Chapter 18, we describe all the special
terminal characters—end of file, backspace one character, erase entire line, and
so on—and how to change them.

Because each line returned by fgets is terminated with a newline character,
followed by a null byte, we use the standard C function strlen to calculate the
length of the string, and then replace the newline with a null byte. We do this
because the execlp function wants a null-terminated argument, not a
newline-terminated argument.

We call fork to create a new process, which is a copy of the caller. We say that
the caller is the parent and that the newly created process is the child. Then
fork returns the non-negative process ID of the new child process to the parent,
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and returns 0 to the child. Because fork creates a new process, we say that it is
called once—by the parent—but returns twice—in the parent and in the child.

In the child, we call execlp to execute the command that was read from the
standard input. This replaces the child process with the new program file. The
combination of fork followed by exec is called spawning a new process on
some operating systems. In the UNIX System, the two parts are separated into
individual functions. We’ll say a lot more about these functions in Chapter 8.

Because the child calls execlp to execute the new program file, the parent
wants to wait for the child to terminate. This is done by calling waitpid,
specifying which process to wait for: the pid argument, which is the process ID
of the child. The waitpid function also returns the termination status of the
child—the status variable—but in this simple program, we don’t do anything
with this value. We could examine it to determine how the child terminated.

The most fundamental limitation of this program is that we can’t pass
arguments to the command we execute. We can’t, for example, specify the name
of a directory to list. We can execute 1s only on the working directory. To allow
arguments would require that we parse the input line, separating the arguments
by some convention, probably spaces or tabs, and then pass each argument as a
separate parameter to the execlp function. Nevertheless, this program is still a
useful demonstration of the UNIX System’s process control functions.

If we run this program, we get the following results. Note that our program has a
different prompt—the percent sign—to distinguish it from the shell’s prompt.

$

./a.out

% date

Sat Jan 21 19:42:07 EST 2012

% who

sar console Jan 1 14:59
sar ttys000 Jan 1 14:59
sar ttys001 Jan 15 15:28
% pwd

/home/sar/bk/apue/3e

% 1s

Makefile

a.out

shelll.c

%
$

“D type the end-of-file character

the regular shell prompt
|

The notation "D is used to indicate a control character. Control characters are special
characters formed by holding down the control key—often labeled Control or Ctrl—on
your keyboard and then pressing another key at the same time. Control-D, or "D, is the
default end-of-file character. We'll see many more control characters when we discuss
terminal I/O in Chapter 18.
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Threads and Thread IDs

1.7

Usually, a process has only one thread of control—one set of machine instructions
executing at a time. Some problems are easier to solve when more than one thread of
control can operate on different parts of the problem. Additionally, multiple threads of
control can exploit the parallelism possible on multiprocessor systems.

All threads within a process share the same address space, file descriptors, stacks,
and process-related attributes. Each thread executes on its own stack, although any
thread can access the stacks of other threads in the same process. Because they can
access the same memory, the threads need to synchronize access to shared data among
themselves to avoid inconsistencies.

Like processes, threads are identified by IDs. Thread IDs, however, are local to a
process. A thread ID from one process has no meaning in another process. We use
thread IDs to refer to specific threads as we manipulate the threads within a process.

Functions to control threads parallel those used to control processes. Because
threads were added to the UNIX System long after the process model was established,
however, the thread model and the process model have some complicated interactions,
as we shall see in Chapter 12.

Error Handling

When an error occurs in one of the UNIX System functions, a negative value is often
returned, and the integer errno is usually set to a value that tells why. For example,
the open function returns either a non-negative file descriptor if all is OK or -1 if an
error occurs. An error from open has about 15 possible errno values, such as file
doesn’t exist, permission problem, and so on. Some functions use a convention other
than returning a negative value. For example, most functions that return a pointer to an
object return a null pointer to indicate an error.

The file <errno.h> defines the symbol errno and constants for each value that
errno can assume. Each of these constants begins with the character E. Also, the first
page of Section 2 of the UNIX system manuals, named intro(2), usually lists all these
error constants. For example, if errno is equal to the constant EACCES, this indicates a
permission problem, such as insufficient permission to open the requested file.

On Linux, the error constants are listed in the errno(3) manual page.

POSIX and ISO C define errno as a symbol expanding into a modifiable lvalue of
type integer. This can be either an integer that contains the error number or a function
that returns a pointer to the error number. The historical definition is

extern int errno;

But in an environment that supports threads, the process address space is shared among
multiple threads, and each thread needs its own local copy of errno to prevent one
thread from interfering with another. Linux, for example, supports multithreaded
access to errno by defining it as
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extern int *__errno_location(void);
#define errno (*_ _errno location())

There are two rules to be aware of with respect to errno. First, its value is never
cleared by a routine if an error does not occur. Therefore, we should examine its value
only when the return value from a function indicates that an error occurred. Second,
the value of errno is never set to 0 by any of the functions, and none of the constants
defined in <errno.h> has a value of 0.

Two functions are defined by the C standard to help with printing error messages.

#include <string.h>

char *strerror(int errnum);

Returns: pointer to message string

This function maps errnum, which is typically the errno value, into an error message
string and returns a pointer to the string.

The perror function produces an error message on the standard error, based on
the current value of errno, and returns.

#include <stdio.h>

void perror(const char *msg);

It outputs the string pointed to by msg, followed by a colon and a space, followed by the
error message corresponding to the value of errno, followed by a newline.

Example

Figure 1.8 shows the use of these two error functions.

#include "apue.h"
#include <errno.h>

int
main(int argc, char *argv[])
{
fprintf(stderr, "EACCES: %s\n", strerror(EACCES));
errno = ENOENT;
perror(argv[0]);
exit(0);

Figure 1.8 Demonstrate strerror and perror

If this program is compiled into the file a.out, we have

$ ./a.out
EACCES: Permission denied
./a.out: No such file or directory
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Note that we pass the name of the program—argv[ 0], whose value is ./a.out—as
the argument to perror. This is a standard convention in the UNIX System. By doing
this, if the program is executed as part of a pipeline, as in

progl < inputfile | prog2 | prog3 > outputfile
we are able to tell which of the three programs generated a particular error message. O
Instead of calling either strerror or perror directly, the examples in this text use

the error functions shown in Appendix B. These functions let us use the variable
argument list facility of ISO C to handle error conditions with a single C statement.

Error Recovery

1.8

User ID

The errors defined in <errno.h> can be divided into two categories: fatal and nonfatal.
A fatal error has no recovery action. The best we can do is print an error message on the
user’s screen or to a log file, and then exit. Nonfatal errors, on the other hand, can
sometimes be dealt with more robustly. Most nonfatal errors are temporary, such as a
resource shortage, and might not occur when there is less activity on the system.

Resource-related nonfatal errors include EAGAIN, ENFILE, ENOBUFS, ENOLCK,
ENOSPC, ENOULDBLOCK, and sometimes ENOMEM. EBUSY can be treated as nonfatal
when it indicates that a shared resource is in use. Sometimes, EINTR can be treated as a
nonfatal error when it interrupts a slow system call (more on this in Section 10.5).

The typical recovery action for a resource-related nonfatal error is to delay and retry
later. This technique can be applied in other circumstances. For example, if an error
indicates that a network connection is no longer functioning, it might be possible for the
application to delay a short time and then reestablish the connection. Some applications
use an exponential backoff algorithm, waiting a longer period of time in each
subsequent iteration.

Ultimately, it is up to the application developer to determine the cases where an
application can recover from an error. If a reasonable recovery strategy can be used, we
can improve the robustness of our application by avoiding an abnormal exit.

User Identification

The user ID from our entry in the password file is a numeric value that identifies us to
the system. This user ID is assigned by the system administrator when our login name
is assigned, and we cannot change it. The user ID is normally assigned to be unique for
every user. We'll see how the kernel uses the user ID to check whether we have the
appropriate permissions to perform certain operations.

We call the user whose user ID is 0 either root or the superuser. The entry in the
password file normally has a login name of root, and we refer to the special privileges
of this user as superuser privileges. As we’ll see in Chapter 4, if a process has superuser
privileges, most file permission checks are bypassed. Some operating system functions
are restricted to the superuser. The superuser has free rein over the system.
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Client versions of Mac OS X ship with the superuser account disabled; server versions ship
with the account already enabled. Instructions are available on Apple’s Web site describing
how to enable it. See http://support.apple.com/kb/HT1528.

Group ID

Our entry in the password file also specifies our numeric group ID. This, too, is assigned
by the system administrator when our login name is assigned. Typically, the password
file contains multiple entries that specify the same group ID. Groups are normally used
to collect users together into projects or departments. This allows the sharing of
resources, such as files, among members of the same group. We’ll see in Section 4.5 that
we can set the permissions on a file so that all members of a group can access the file,
whereas others outside the group cannot.

There is also a group file that maps group names into numeric group IDs. The
group file is usually /etc/group.

The use of numeric user IDs and numeric group IDs for permissions is historical.
With every file on disk, the file system stores both the user ID and the group ID of a
file’s owner. Storing both of these values requires only four bytes, assuming that each is
stored as a two-byte integer. If the full ASCII login name and group name were used
instead, additional disk space would be required. In addition, comparing strings
during permission checks is more expensive than comparing integers.

Users, however, work better with names than with numbers, so the password file
maintains the mapping between login names and user IDs, and the group file provides
the mapping between group names and group IDs. The 1s -1 command, for example,
prints the login name of the owner of a file, using the password file to map the numeric
user ID into the corresponding login name.

Early UNIX systems used 16-bit integers to represent user and group IDs. Contemporary
UNIX systems use 32-bit integers.

Example

The program in Figure 1.9 prints the user ID and the group ID.

#include "apue.h"

int

main(void)

{
printf("uid = %d, gid = %d\n", getuid(), getgid());
exit(0);

Figure 1.9 Print user ID and group ID

We call the functions getuid and getgid to return the user ID and the group ID.
Running the program yields

$ ./a.out
uid = 205, gid = 105
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Supplementary Group IDs

1.9

In addition to the group ID specified in the password file for a login name, most
versions of the UNIX System allow a user to belong to other groups. This practice
started with 4.2BSD, which allowed a user to belong to up to 16 additional groups.
These supplementary group IDs are obtained at login time by reading the file
/etc/group and finding the first 16 entries that list the user as a member. As we shall
see in the next chapter, POSIX requires that a system support at least 8 supplementary
groups per process, but most systems support at least 16.

Signals

Signals are a technique used to notify a process that some condition has occurred. For
example, if a process divides by zero, the signal whose name is SIGFPE (floating-point
exception) is sent to the process. The process has three choices for dealing with the
signal.

1. Ignore the signal. This option isn’t recommended for signals that denote a
hardware exception, such as dividing by zero or referencing memory outside
the address space of the process, as the results are undefined.

2. Let the default action occur. For a divide-by-zero condition, the default is to
terminate the process.

3. Provide a function that is called when the signal occurs (this is called “catching”
the signal). By providing a function of our own, we’ll know when the signal
occurs and we can handle it as we wish.

Many conditions generate signals. Two terminal keys, called the interrupt key—
often the DELETE key or Control-C—and the quit key—often Control-backslash—are
used to interrupt the currently running process. Another way to generate a signal is by
calling the kill function. We can call this function from a process to send a signal to
another process. Naturally, there are limitations: we have to be the owner of the other
process (or the superuser) to be able to send it a signal.

Example

Recall the bare-bones shell example (Figure 1.7). If we invoke this program and press
the interrupt key, the process terminates because the default action for this signal,
named SIGINT, is to terminate the process. The process hasn’t told the kernel to do
anything other than the default with this signal, so the process terminates.

To catch this signal, the program needs to call the signal function, specifying the
name of the function to call when the SIGINT signal is generated. The function is
named sig_ int; when it’s called, it just prints a message and a new prompt. Adding
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11 lines to the program in Figure 1.7 gives us the version in Figure 1.10. (The 11 new
lines are indicated with a plus sign at the beginning of the line.)

#include "apue.h"
#include <sys/wait.h>

+ static void sig _int(int); /* our signal-catching function */
+
int
main(void)
{
char buf [MAXLINE]; /* from apue.h */
pid t pid;
int status;
+ if (signal(SIGINT, sig_int) == SIG_ERR)
+ err sys("signal error");
+
printf("%% "); /* print prompt (printf requires %% to print %) */
while (fgets(buf, MAXLINE, stdin) != NULL) {
if (buf[strlen(buf) - 1] == ’'\n")
buf[strlen(buf) - 1] = 0; /* replace newline with null */
if ((pid = fork()) < 0) {
err sys("fork error");
} else if (pid == 0) { /* child */
execlp(buf, buf, (char *)0);
err_ret("couldn’t execute: %s", buf);
exit(127);
}
/* parent */
if ((pid = waitpid(pid, &status, 0)) < 0)
err sys("waitpid error");
printf("%% ");
}
exit(0);
}
+
+ void
+ sig_int(int signo)
+ A
+ printf("interrupt\n%% ");
+}
Figure 1.10 Read commands from standard input and execute them
In Chapter 10, we’ll take a long look at signals, as most nontrivial applications deal
with them. a
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1.10 Time Values

Historically, UNIX systems have maintained two different time values:

1. Calendar time. This value counts the number of seconds since the Epoch:
00:00:00 January 1, 1970, Coordinated Universal Time (UTC). (Older manuals
refer to UTC as Greenwich Mean Time.) These time values are used to record
the time when a file was last modified, for example.

The primitive system data type time_t holds these time values.

2. Process time. This is also called CPU time and measures the central processor
resources used by a process. Process time is measured in clock ticks, which
have historically been 50, 60, or 100 ticks per second.

The primitive system data type clock_t holds these time values. (We'll show
how to obtain the number of clock ticks per second with the sysconf function
in Section 2.5.4.)

When we measure the execution time of a process, as in Section 3.9, we'll see that
the UNIX System maintains three values for a process:

¢ (Clock time
e User CPU time
¢ System CPU time

The clock time, sometimes called wall clock time, is the amount of time the process takes
to run, and its value depends on the number of other processes being run on the system.
Whenever we report the clock time, the measurements are made with no other activities
on the system.

The user CPU time is the CPU time attributed to user instructions. The system CPU
time is the CPU time attributed to the kernel when it executes on behalf of the process.
For example, whenever a process executes a system service, such as read or write, the
time spent within the kernel performing that system service is charged to the process.
The sum of user CPU time and system CPU time is often called the CPU time.

It is easy to measure the clock time, user time, and system time of any process:
simply execute the time(1) command, with the argument to the time command being
the command we want to measure. For example:

$ cd /usr/include
$ time -p grep _POSIX_SOURCE */*.h > /dev/null

real Om0.81s
user OmO0.1l1ls
sys 0m0.07s

The output format from the time command depends on the shell being used, because
some shells don’t run /usr/bin/time, but instead have a separate built-in function to
measure the time it takes commands to run.

In Section 8.17, we'll see how to obtain these three times from a running process.
The general topic of times and dates is covered in Section 6.10.
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1.1

System Calls and Library Functions

All operating systems provide service points through which programs request services
from the kernel. All implementations of the UNIX System provide a well-defined,
limited number of entry points directly into the kernel called system calls (recall
Figure 1.1). Version 7 of the Research UNIX System provided about 50 system calls,
4.4BSD provided about 110, and SVR4 had around 120. The exact number of system
calls varies depending on the operating system version. More recent systems have seen
incredible growth in the number of supported system calls. Linux 3.2.0 has 380 system
calls and FreeBSD 8.0 has over 450.

The system call interface has always been documented in Section 2 of the UNIX
Programmer’s Manual. Its definition is in the C language, no matter which
implementation technique is actually used on any given system to invoke a system call.
This differs from many older operating systems, which traditionally defined the kernel
entry points in the assembly language of the machine.

The technique used on UNIX systems is for each system call to have a function of
the same name in the standard C library. The user process calls this function, using the
standard C calling sequence. This function then invokes the appropriate kernel service,
using whatever technique is required on the system. For example, the function may put
one or more of the C arguments into general registers and then execute some machine
instruction that generates a software interrupt in the kernel. For our purposes, we can
consider the system calls to be C functions.

Section 3 of the UNIX Programmer’s Manual defines the general-purpose library
functions available to programmers. These functions aren’t entry points into the kernel,
although they may invoke one or more of the kernel’s system calls. For example, the
printf function may use the write system call to output a string, but the strcpy
(copy a string) and atoi (convert ASCII to integer) functions don’t involve the kernel at
all.

From an implementor’s point of view, the distinction between a system call and a
library function is fundamental. From a user’s perspective, however, the difference is
not as critical. From our perspective in this text, both system calls and library functions
appear as normal C functions. Both exist to provide services for application programs.
We should realize, however, that we can replace the library functions, if desired,
whereas the system calls usually cannot be replaced.

Consider the memory allocation function malloc as an example. There are many
ways to do memory allocation and its associated garbage collection (best fit, first fit, and
so on). No single technique is optimal for all programs. The UNIX system call that
handles memory allocation, sbrk(2), is not a general-purpose memory manager. It
increases or decreases the address space of the process by a specified number of bytes.
How that space is managed is up to the process. The memory allocation function,
malloc(3), implements one particular type of allocation. If we don’t like its operation,
we can define our own malloc function, which will probably use the sbrk system call.
In fact, numerous software packages implement their own memory allocation
algorithms with the sbrk system call. Figure 1.11 shows the relationship between the
application, the malloc function, and the sbrk system call.
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kernel

Figure 1.11 Separation of malloc function and sbrk system call

Here we have a clean separation of duties: the system call in the kernel allocates an
additional chunk of space on behalf of the process. The malloc library function
manages this space from user level.

Another example to illustrate the difference between a system call and a library
function is the interface the UNIX System provides to determine the current time and
date. Some operating systems provide one system call to return the time and another to
return the date. Any special handling, such as the switch to or from daylight saving
time, is handled by the kernel or requires human intervention. The UNIX System, in
contrast, provides a single system call that returns the number of seconds since the
Epoch: midnight, January 1, 1970, Coordinated Universal Time. Any interpretation of
this value, such as converting it to a human-readable time and date using the local time
zone, is left to the user process. The standard C library provides routines to handle
most cases. These library routines handle such details as the various algorithms for
daylight saving time.

An application can either make a system call or call a library routine. Also realize
that many library routines invoke a system call. This is shown in Figure 1.12.

Another difference between system calls and library functions is that system calls
usually provide a minimal interface, whereas library functions often provide more
elaborate functionality. We’ve seen this already in the difference between the sbrk
system call and the malloc library function. We’ll see this difference again later, when
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1.12
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Figure 1.12 Difference between C library functions and system calls

we compare the unbuffered I/O functions (Chapter 3) and the standard 1/O functions
(Chapter 5).

The process control system calls (fork, exec, and waitpid) are usually invoked
by the user’s application code directly. (Recall the bare-bones shell in Figure 1.7.) But
some library routines exist to simplify certain common cases: the system and popen
library routines, for example. In Section 8.13, we’ll show an implementation of the
system function that invokes the basic process control system calls. We'll enhance this
example in Section 10.18 to handle signals correctly.

To define the interface to the UNIX System that most programmers use, we have to
describe both the system calls and some of the library functions. If we described only
the sbrk system call, for example, we would skip the more programmer-friendly
malloc library function that many applications use. In this text, we’ll use the term
function to refer to both system calls and library functions, except when the distinction is
necessary.

Summary

This chapter has provided a short tour of the UNIX System. We’ve described some of
the fundamental terms that we’ll encounter over and over again. We’ve seen numerous
small examples of UNIX programs to give us a feel for what the remainder of the text
talks about.
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The next chapter is about standardization of the UNIX System and the effect of

work in this area on current systems. Standards, particularly the ISO C standard and
the POSIX.1 standard, will affect the rest of the text.

Exercises

1.1  Verify on your system that the directories dot and dot-dot are not the same, except in the
root directory.

1.2  In the output from the program in Figure 1.6, what happened to the processes with process
IDs 852 and 853?

1.3  In Section 1.7, the argument to perror is defined with the ISO C attribute const, whereas
the integer argument to strerror isn’t defined with this attribute. Why?

1.4  If the calendar time is stored as a signed 32-bit integer, in which year will it overflow? How
can we extend the overflow point? Are these strategies compatible with existing
applications?

1.5 If the process time is stored as a signed 32-bit integer, and if the system counts 100 ticks per

second, after how many days will the value overflow?
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2.1

2.2

UNIX Standardization and
Implementations

Introduction

Much work has gone into standardizing the UNIX programming environment and the
C programming language. Although applications have always been quite portable
across different versions of the UNIX operating system, the proliferation of versions and
differences during the 1980s led many large users, such as the U.S. government, to call
for standardization.

In this chapter we first look at the various standardization efforts that have been
under way over the past two and a half decades. We then discuss the effects of these
UNIX programming standards on the operating system implementations that are
described in this book. An important part of all the standardization efforts is the
specification of various limits that each implementation must define, so we look at these
limits and the various ways to determine their values.

UNIX Standardization

221 1SO C

In late 1989, ANSI Standard X3.159-1989 for the C programming language was
approved. This standard was also adopted as International Standard ISO/IEC
9899:1990. ANSI is the American National Standards Institute, the U.S. member in the
International Organization for Standardization (ISO). IEC stands for the International
Electrotechnical Commission.

25
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The C standard is now maintained and developed by the ISO/IEC international
standardization working group for the C programming language, known as ISO/IEC
JTC1/5C22/WG14, or WG14 for short. The intent of the ISO C standard is to provide
portability of conforming C programs to a wide variety of operating systems, not only
the UNIX System. This standard defines not only the syntax and semantics of the
programming language but also a standard library [Chapter 7 of ISO 1999; Plauger
1992; Appendix B of Kernighan and Ritchie 1988]. This library is important because all
contemporary UNIX systems, such as the ones described in this book, provide the
library routines that are specified in the C standard.

In 1999, the ISO C standard was updated and approved as ISO/IEC 9899:1999,
largely to improve support for applications that perform numerical processing. The
changes don’t affect the POSIX interfaces described in this book, except for the addition
of the restrict keyword to some of the function prototypes. This keyword is used to
tell the compiler which pointer references can be optimized, by indicating that the object
to which the pointer refers is accessed in the function only via that pointer.

Since 1999, three technical corrigenda have been published to correct errors in the
ISO C standard—one in 2001, one in 2004, and one in 2007. As with most standards,
there is a delay between the standard’s approval and the modification of software to
conform to it. As each vendor’s compilation systems evolve, they add more support for
the latest version of the ISO C standard.

A summary of the current level of conformance of gcc to the 1999 version of the ISO C
standard is available at http://gcc.gnu.org/c99status.html. Although the C
standard was updated in 2011, we deal only with the 1999 version in this text, because the
other standards haven’t yet caught up with the relevant changes.

The ISO C library can be divided into 24 areas, based on the headers defined by the
standard (see Figure 2.1). The POSIX.1 standard includes these headers, as well as
others. As Figure 2.1 shows, all of these headers are supported by the four
implementations (FreeBSD 8.0, Linux 3.2.0, Mac OS X 10.6.8, and Solaris 10) that are
described later in this chapter.

The ISO C headers depend on which version of the C compiler is used with the operating
system. FreeBSD 8.0 ships with version 4.2.1 of gcc, Solaris 10 ships with version 3.4.3 of gcc
(in addition to its own C compiler in Sun Studio), Ubuntu 12.04 (Linux 3.2.0) ships with
version 4.6.3 of gcc, and Mac OS X 10.6.8 ships with both versions 4.0.1 and 4.2.1 of gcc.

2.2.2 |IEEE POSIX

POSIX is a family of standards initially developed by the IEEE (Institute of Electrical
and Electronics Engineers). POSIX stands for Portable Operating System Interface. It
originally referred only to the IEEE Standard 1003.1-1988—the operating system
interface—but was later extended to include many of the standards and draft standards
with the 1003 designation, including the shell and utilities (1003.2).

Of specific interest to this book is the 1003.1 operating system interface standard,
whose goal is to promote the portability of applications among various UNIX System
environments. This standard defines the services that an operating system must
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Head FreeBSD Linux Mac OS X Solaris D inti
cader 80 320 1068 10 escription

<assert.h>
<complex.h>

verify program assertion
complex arithmetic support

<ctype.h> character classification and mapping support
<errno.h> error codes (Section 1.7)

<fenv.h> floating-point environment

<float.h> floating-point constants and characteristics

<inttypes.h>
<iso646.h>
<limits.h>
<locale.h>
<math.h>
<setjmp.h>
<signal.h>

integer type format conversion

macros for assignment, relational, and unary operators
implementation constants (Section 2.5)

locale categories and related definitions

mathematical function and type declarations and constants
nonlocal goto (Section 7.10)

signals (Chapter 10)

<stdarg.h> variable argument lists

<stdbool.h> Boolean type and values

<stddef.h> standard definitions

<stdint.h> integer types

<stdio.h> standard I/0O library (Chapter 5)

<stdlib.h> utility functions

<string.h> string operations

<tgmath.h> type-generic math macros

<time.h> time and date (Section 6.10)

<wchar.h> extended multibyte and wide character support
<wctype.h> wide character classification and mapping support

Figure 2.1 Headers defined by the ISO C standard

provide if it is to be “POSIX compliant,” and has been adopted by most computer
vendors. Although the 1003.1 standard is based on the UNIX operating system, the
standard is not restricted to UNIX and UNIX-like systems. Indeed, some vendors
supplying proprietary operating systems claim that these systems have been made
POSIX compliant, while still leaving all their proprietary features in place.

Because the 1003.1 standard specifies an interface and not an implementation, no
distinction is made between system calls and library functions. All the routines in the
standard are called functions.

Standards are continually evolving, and the 1003.1 standard is no exception. The
1988 version, IEEE Standard 1003.1-1988, was modified and submitted to the
International Organization for Standardization. No new interfaces or features were
added, but the text was revised. The resulting document was published as IEEE
Standard 1003.1-1990 [IEEE 1990]. This is also International Standard ISO/IEC
9945-1:1990. This standard was commonly referred to as POSIX.1, a term which we’ll
use in this text to refer to the different versions of the standard.

The IEEE 1003.1 working group continued to make changes to the standard. In
1996, a revised version of the IEEE 1003.1 standard was published. It included the
1003.1-1990 standard, the 1003.1b-1993 real-time extensions standard, and the interfaces
for multithreaded programming, called pthreads for POSIX threads. This version of the
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standard was also published as International Standard ISO/IEC 9945-1:1996. More real-
time interfaces were added in 1999 with the publication of IEEE Standard 1003.1d-1999.
A year later, IEEE Standard 1003.1j-2000 was published, including even more real-time
interfaces, and IEEE Standard 1003.1g-2000 was published, adding event-tracing
extensions to the standard.

The 2001 version of 1003.1 departed from the prior versions in that it combined
several 1003.1 amendments, the 1003.2 standard, and portions of the Single UNIX
Specification (SUS), Version 2 (more on this later). The resulting standard, IEEE
Standard 1003.1-2001, included the following other standards:

e [SO/IEC 9945-1 (IEEE Standard 1003.1-1996), which includes
¢ [EEE Standard 1003.1-1990
¢ [EEE Standard 1003.1b-1993 (real-time extensions)
¢ IEEE Standard 1003.1c-1995 (pthreads)
¢ IEEE Standard 1003.1i-1995 (real-time technical corrigenda)
IEEE P1003.1a draft standard (system interface amendment)
IEEE Standard 1003.1d-1999 (advanced real-time extensions)
IEEE Standard 1003.1j-2000 (more advanced real-time extensions)
IEEE Standard 1003.1g-2000 (tracing)
Parts of IEEE Standard 1003.1g-2000 (protocol-independent interfaces)
ISO/IEC 9945-2 (IEEE Standard 1003.2-1993)
IEEE P1003.2b draft standard (shell and utilities amendment)
IEEE Standard 1003.2d-1994 (batch extensions)
The Base Specifications of the Single UNIX Specification, version 2, which include
¢ System Interface Definitions, Issue 5
e Commands and Utilities, Issue 5
* System Interfaces and Headers, Issue 5
* Open Group Technical Standard, Networking Services, Issue 5.2
¢ ISO/IEC 9899:1999, Programming Languages—C

In 2004, the POSIX.1 specification was updated with technical corrections; more
comprehensive changes were made in 2008 and released as Issue 7 of the Base
Specifications. ISO approved this version at the end of 2008 and published it in 2009 as
International Standard ISO/IEC 9945:2009. It is based on several other standards:

¢ [EEE Standard 1003.1, 2004 Edition
* Open Group Technical Standard, 2006, Extended API Set, Parts 1—-4
¢ ISO/IEC 9899:1999, including corrigenda

Figure 2.2, Figure 2.3, and Figure 2.4 summarize the required and optional headers
as specified by POSIX.1. Because POSIX.1 includes the ISO C standard library
functions, it also requires the headers listed in Figure 2.1. All four figures summarize
which headers are included in the implementations discussed in this book.

In this text we describe the 2008 edition of POSIX.1. Its interfaces are divided into
required ones and optional ones. The optional interfaces are further divided into 40
sections, based on functionality. The sections containing nonobsolete programming
interfaces are summarized in Figure 2.5 with their respective option codes. Option
codes are two- to three-character abbreviations that identify the interfaces that belong to
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Header FreeBSD Linux Mac OS X Solaris Description
8.0 320 10.6.8 10

<aio.h> . . . . asynchronous I/O
<cpio.h> . o . . cpio archive values
<dirent.h> o o o * |directory entries (Section 4.22)
<dlfcn.h> . . . * |dynamic linking
<fcntl.h> o o o e [file control (Section 3.14)
<fnmatch.h> o . o ¢ |filename-matching types
<glob.h> . . o ¢ |pathname pattern-matching and generation
<grp.h> . . . e |group file (Section 6.4)
<iconv.h> J . . * |codeset conversion utility
<langinfo.h> . 4 . . language information constants
<monetary.h> . . . . monetary types and functions
<netdb.h> J o . * |network database operations
<nl_types.h> N 4 4 4 message catalogs
<poll.h> . . 3 e |poll function (Section 14.4.2)
<pthread.h> . . . e |threads (Chapters 11 and 12)
<pwd.h> . . . e |password file (Section 6.2)
<regex.h> . . . ® [regular expressions
<sched.h> . . . * |execution scheduling
<semaphore.h> . . 4 4 semaphores
<strings.h> . . . ® |string operations
<tar.h> . J 3 e |tar archive values
<termios.h> . . . e |terminal I/O (Chapter 18)
<unistd.h> U J o e [symbolic constants
<wordexp.h> . . . e |word-expansion definitions
<arpa/inet.h> . . 3 ¢ |Internet definitions (Chapter 16)
<net/if.h> . . . . socket local interfaces (Chapter 16)
<netinet/in.h> . . . * |Internet address family (Section 16.3)
<netinet/tcp.h> . o . e | Transmission Control Protocol definitions
<sys/mman.h> o . . * |memory management declarations
<sys/select.h> . . . . select function (Section 14.4.1)
<sys/socket.h> . . . *  [sockets interface (Chapter 16)
<sys/stat.h> . . 3 o [file status (Chapter 4)
<sys/statvfs.h> . o . ¢ [file system information
<sys/times.h> . . . . process times (Section 8.17)
<sys/types.h> . . . . primitive system data types (Section 2.8)
<sys/un.h> . . . e |UNIX domain socket definitions (Section 17.2)
<sys/utsname.h> . . . . system name (Section 6.9)
<sys/wait.h> 3 3 . ®  |process control (Section 8.6)

Figure 2.2 Required headers defined by the POSIX standard

each functional area and highlight text describing aspects of the standard that depend
on the support of a particular option. Many options deal with real-time extensions.
POSIX.1 does not include the notion of a superuser. Instead, certain operations
require “appropriate privileges,” although POSIX.1 leaves the definition of this term up
to the implementation. UNIX systems that conform to the Department of Defense’s
security guidelines have many levels of security. In this text, however, we use the
traditional terminology and refer to operations that require superuser privilege.

www.it-ebooks.info


http://www.it-ebooks.info/

30

UNIX Standardization and Implementations Chapter 2

Header FreeBSD Linux Mac OS X Solaris Description
8.0 320 10.6.8 10

<fmtmsg.h> . . . * |message display structures
<ftw.h> o . . e |file tree walking (Section 4.22)
<libgen.h> . o o * | pathname management functions
<ndbm.h> . . * |database operations
<search.h> . . . * |search tables
<syslog.h> . . . * |system error logging (Section 13.4)
<utmpx.h> o . ® |user accounting database
<sys/ipc.h> . . . e |IPC (Section 15.6)
<sys/msg.h> . . . * | XSImessage queues (Section 15.7)
<sys/resource.h> . . . . resource operations (Section 7.11)
<sys/sem.h> . o . e | XSI semaphores (Section 15.8)
<sys/shm.h> . . . ® | XSI shared memory (Section 15.9)
<sys/time.h> . . . * |time types
<sys/uio.h> 3 . . e |vector I/O operations (Section 14.6)

Figure 2.3 XSI option headers defined by the POSIX standard

After more than twenty years of work, the standards are mature and stable. The
POSIX.1 standard is maintained by an open working group known as the Austin Group
(http://www.opengroup.org/austin). To ensure that they are still relevant, the
standards need to be either updated or reaffirmed every so often.

2.2.3 The Single UNIX Specification

The Single UNIX Specification, a superset of the POSIX.1 standard, specifies additional
interfaces that extend the functionality provided by the POSIX.1 specification. POSIX.1
is equivalent to the Base Specifications portion of the Single UNIX Specification.

The X/Open System Interfaces (XSI) option in POSIX.1 describes optional interfaces
and defines which optional portions of POSIX.1 must be supported for an
implementation to be deemed XSI conforming. These include file synchronization,
thread stack address and size attributes, thread process-shared synchronization, and the
_XOPEN_UNIX symbolic constant (marked “SUS mandatory” in Figure 2.5). Only XSI-
conforming implementations can be called UNIX systems.

The Open Group owns the UNIX trademark and uses the Single UNIX Specification to define
the interfaces an implementation must support to call itself a UNIX system. Vendors must file
conformance statements, pass test suites to verify conformance, and license the right to use the

UNIX trademark.
Head FreeBSD Linux Mac OS X Solaris D inti
eader 8.0 320  10.68 10 escription
<mqueue.h> . . * |message queues
<spawn.h> . . . * |real-time spawn interface

Figure 2.4 Optional headers defined by the POSIX standard
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Code SUS Symbolic constant Description
mandatory
ADV _POSIX_ADVISORY_INFO advisory information (real-time)
CPT _POSIX_ CPUTIME process CPU time clocks (real-time)
FSC _POSIX_FSYNC file synchronization
1P6 _POSIX_IPV6 IPv6 interfaces
ML _POSIX_MEMLOCK process memory locking (real-time)
MLR _POSIX_MEMLOCK_RANGE memory range locking (real-time)
MON _POSIX_ MONOTONIC_ CLOCK monotonic clock (real-time)
MSG _POSIX_MESSAGE_PASSING message passing (real-time)
MX __STDC_IEC_559__ IEC 60559 floating-point option
PIO _POSIX_PRIORITIZED_IO prioritized input and output
PS _POSIX_PRIORITY_ SCHEDULING process scheduling (real-time)
RPI _POSIX_THREAD ROBUST_ PRIO_INHERIT |robust mutex priority inheritance (real-time)
RPP _POSIX_THREAD ROBUST_PRIO_PROTECT |robust mutex priority protection (real-time)
RS _POSIX_RAW_SOCKETS raw sockets
SHM _POSIX_SHARED MEMORY_ OBJECTS shared memory objects (real-time)
SIO _POSIX_SYNCHRONIZED_IO synchronized input and output (real-time)
SPN _POSIX_ SPAWN spawn (real-time)
SS _POSIX_SPORADIC_SERVER process sporadic server (real-time)
TCT _POSIX_ THREAD CPUTIME thread CPU time clocks (real-time)
TPI _POSIX THREAD PRIO_INHERIT nonrobust mutex priority inheritance (real-time)
TPP _POSIX_THREAD PRIO_PROTECT nonrobust mutex priority protection (real-time)
TPS _POSIX_THREAD PRIORITY_ SCHEDULING thread execution scheduling (real-time)
TSA _POSIX_THREAD ATTR_ STACKADDR thread stack address attribute
TSH _POSIX_THREAD PROCESS_SHARED thread process-shared synchronization
TSP _POSIX_THREAD_SPORADIC_SERVER thread sporadic server (real-time)
TSS _POSIX_THREAD ATTR STACKSIZE thread stack size address
TYM _POSIX_TYPED MEMORY_ OBJECTS typed memory objects (real-time)
X8I _XOPEN_UNIX X/Open interfaces

Figure 2.5 POSIX.1 optional interface groups and codes

Several of the interfaces that are optional for XSI-conforming systems are divided
into option groups based on common functionality, as follows:

Encryption: denoted by the _XOPEN_CRYPT symbolic constant
Real-time: denoted by the _ XOPEN_REALTIME symbolic constant

Advanced real-time

Real-time threads: denoted by _ XOPEN_REALTIME THREADS

Advanced real-time threads

The Single UNIX Specification is a publication of The Open Group, which was
formed in 1996 as a merger of X/Open and the Open Software Foundation (OSF), both
industry consortia. X/Open used to publish the X/Open Portability Guide, which
adopted specific standards and filled in the gaps where functionality was missing. The
goal of these guides was to improve application portability beyond what was possible
by merely conforming to published standards.
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The first version of the Single UNIX Specification was published by X/Open in
1994. It was also known as “Spec 1170,” because it contained roughly 1,170 interfaces.
It grew out of the Common Open Software Environment (COSE) initiative, whose goal
was to improve application portability across all implementations of the UNIX
operating system. The COSE group—Sun, IBM, HP, Novell/USL, and OSF—went
further than endorsing standards by including interfaces used by common commercial
applications. The resulting 1,170 interfaces were selected from these applications, and
also included the X/Open Common Application Environment (CAE), Issue 4 (known as
“XPG4” as a historical reference to its predecessor, the X/Open Portability Guide), the
System V Interface Definition (SVID), Edition 3, Level 1 interfaces, and the OSF
Application Environment Specification (AES) Full Use interfaces.

The second version of the Single UNIX Specification was published by The Open
Group in 1997. The new version added support for threads, real-time interfaces, 64-bit
processing, large files, and enhanced multibyte character processing.

The third version of the Single UNIX Specification (SUSv3) was published by The
Open Group in 2001. The Base Specifications of SUSv3 are the same as IEEE Standard
1003.1-2001 and are divided into four sections: Base Definitions, System Interfaces, Shell
and Ultilities, and Rationale. SUSv3 also includes X/Open Curses Issue 4, Version 2, but
this specification is not part of POSIX.1.

In 2002, ISO approved the IEEE Standard 1003.1-2001 as International Standard
ISO/IEC 9945:2002. The Open Group updated the 1003.1 standard again in 2003 to
include technical corrections, and ISO approved this as International Standard ISO/IEC
9945:2003. In April 2004, The Open Group published the Single UNIX Specification,
Version 3, 2004 Edition. It merged more technical corrections into the main text of the
standard.

In 2008, the Single UNIX Specification was updated, including corrections and new
interfaces, removing obsolete interfaces, and marking other interfaces as being
obsolescent in preparation for future removal. Additionally, some previously optional
interfaces were promoted to nonoptional status, including asynchronous 1/0, barriers,
clock selection, memory-mapped files, memory protection, reader—writer locks, real-
time signals, POSIX semaphores, spin locks, thread-safe functions, threads, timeouts,
and timers. The resulting standard is known as Issue 7 of the Base Specifications, and is
the same as POSIX.1-2008. The Open Group bundled this version with an updated
X/Open Curses specification and released them as version 4 of the Single UNIX
Specification in 2010. We’ll refer to this as SUSv4.

2.2.4 FIPS

FIPS stands for Federal Information Processing Standard. It was published by the U.S.
government, which used it for the procurement of computer systems. FIPS 151-1 (April
1989) was based on the IEEE Standard 1003.1-1988 and a draft of the ANSI C standard.
This was followed by FIPS 151-2 (May 1993), which was based on the IEEE Standard
1003.1-1990. FIPS 151-2 required some features that POSIX.1 listed as optional. All
these options were included as mandatory in POSIX.1-2001.
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2.3

The effect of the POSIX.1 FIPS was to require any vendor that wished to sell
POSIX.1-compliant computer systems to the U.S. government to support some of the
optional features of POSIX.1. The POSIX.1 FIPS has since been withdrawn, so we won't
consider it further in this text.

UNIX System Implementations

The previous section described ISO C, IEEE POSIX, and the Single UNIX
Specification—three standards originally created by independent organizations.
Standards, however, are interface specifications. How do these standards relate to the
real world? These standards are taken by vendors and turned into actual
implementations. In this book, we are interested in both these standards and their
implementation.

Section 1.1 of McKusick et al. [1996] gives a detailed history (and a nice picture) of
the UNIX System family tree. Everything starts from the Sixth Edition (1976) and
Seventh Edition (1979) of the UNIX Time-Sharing System on the PDP-11 (usually called
Version 6 and Version 7, respectively). These were the first releases widely distributed
outside of Bell Laboratories. Three branches of the tree evolved.

1. One at AT&T that led to System III and System V, the so-called commercial
versions of the UNIX System.

2. One at the University of California at Berkeley that led to the 4.xBSD
implementations.

3. The research version of the UNIX System, developed at the Computing Science
Research Center of AT&T Bell Laboratories, that led to the UNIX Time-Sharing
System 8th Edition, 9th Edition, and ended with the 10th Edition in 1990.

2.3.1 UNIX System V Release 4

UNIX System V Release 4 (SVR4) was a product of AT&T’s UNIX System Laboratories
(USL, formerly AT&T’s UNIX Software Operation). SVR4 merged functionality from
AT&T UNIX System V Release 3.2 (SVR3.2), the SunOS operating system from Sun
Microsystems, the 4.3BSD release from the University of California, and the Xenix
system from Microsoft into one coherent operating system. (Xenix was originally
developed from Version 7, with many features later taken from System V.) The SVR4
source code was released in late 1989, with the first end-user copies becoming available
during 1990. SVR4 conformed to both the POSIX 1003.1 standard and the X/Open
Portability Guide, Issue 3 (XPG3).

AT&T also published the System V Interface Definition (SVID) [AT&T 1989].
Issue 3 of the SVID specified the functionality that an operating system must offer to
qualify as a conforming implementation of UNIX System V Release 4. As with POSIX.1,
the SVID specified an interface, not an implementation. No distinction was made in the
SVID between system calls and library functions. The reference manual for an actual
implementation of SVR4 must be consulted to see this distinction [AT&T 1990e].

www.it-ebooks.info


http://www.it-ebooks.info/

34 UNIX Standardization and Implementations Chapter 2

2.3.2 4.4BSD

The Berkeley Software Distribution (BSD) releases were produced and distributed by
the Computer Systems Research Group (CSRG) at the University of California at
Berkeley; 4.2BSD was released in 1983 and 4.3BSD in 1986. Both of these releases ran on
the VAX minicomputer. The next release, 4.3BSD Tahoe in 1988, also ran on a particular
minicomputer called the Tahoe. (The book by Leffler et al. [1989] describes the 4.3BSD
Tahoe release.) This was followed in 1990 with the 4.3BSD Reno release; 4.3BSD Reno
supported many of the POSIX.1 features.

The original BSD systems contained proprietary AT&T source code and were
covered by AT&T licenses. To obtain the source code to the BSD system you had to
have a UNIX source license from AT&T. This changed as more and more of the AT&T
source code was replaced over the years with non-AT&T source code and as many of
the new features added to the Berkeley system were derived from non-AT&T sources.

In 1989, Berkeley identified much of the non-AT&T source code in the 4.3BSD Tahoe
release and made it publicly available as the BSD Networking Software, Release 1.0.
Release 2.0 of the BSD Networking Software followed in 1991, which was derived from
the 4.3BSD Reno release. The intent was that most, if not all, of the 4.4BSD system
would be free of AT&T license restrictions, thus making the source code available to all.

4.4BSD-Lite was intended to be the final release from the CSRG. Its introduction
was delayed, however, because of legal battles with USL. Once the legal differences
were resolved, 4.4BSD-Lite was released in 1994, fully unencumbered, so no UNIX
source license was needed to receive it. The CSRG followed this with a bug-fix release
in 1995. This release, 4.4BSD-Lite, release 2, was the final version of BSD from the
CSRG. (This version of BSD is described in the book by McKusick et al. [1996].)

The UNIX system development done at Berkeley started with PDP-11s, then moved
to the VAX minicomputer, and then to other so-called workstations. During the early
1990s, support was provided to Berkeley for the popular 80386-based personal
computers, leading to what is called 386BSD. This support was provided by Bill Jolitz
and was documented in a series of monthly articles in Dr. Dobb’s Journal throughout
1991. Much of this code appeared in the BSD Networking Software, Release 2.0.

2.3.3 FreeBSD

FreeBSD is based on the 4.4BSD-Lite operating system. The FreeBSD project was
formed to carry on the BSD line after the Computing Science Research Group at the
University of California at Berkeley decided to end its work on the BSD versions of the
UNIX operating system, and the 386BSD project seemed to be neglected for too long.

All software produced by the FreeBSD project is freely available in both binary and
source forms. The FreeBSD 8.0 operating system was one of the four operating systems
used to test the examples in this book.

Several other BSD-based free operating systems are available. The NetBSD project
(http://www.netbsd.org) is similar to the FreeBSD project, but emphasizes portability
between hardware platforms. The OpenBSD project (http://www.openbsd.org) is similar
to FreeBSD but places a greater emphasis on security.
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2.3.4 Linux

Linux is an operating system that provides a rich programming environment similar to
that of a UNIX System; it is freely available under the GNU Public License. The
popularity of Linux is somewhat of a phenomenon in the computer industry. Linux is
distinguished by often being the first operating system to support new hardware.

Linux was created in 1991 by Linus Torvalds as a replacement for MINIX. A
grass-roots effort then sprang up, whereby many developers across the world
volunteered their time to use and enhance it.

The Ubuntu 12.04 distribution of Linux was one of the operating systems used to
test the examples in this book. That distribution uses the 3.2.0 version of the Linux
operating system kernel.

2.3.5 Mac OS X

Mac OS X is based on entirely different technology than prior versions. The core
operating system is called “Darwin,” and is based on a combination of the Mach kernel
(Accetta et al. [1986]), the FreeBSD operating system, and an object-oriented framework
for drivers and other kernel extensions. As of version 10.5, the Intel port of Mac OS X
has been certified to be a UNIX system. (For more information on UNIX certification,
see http://www.opengroup.org/certification/idx/unix.html.)

Mac OS X version 10.6.8 (Darwin 10.8.0) was used as one of the operating systems
to test the examples in this book.

2.3.6 Solaris

Solaris is the version of the UNIX System developed by Sun Microsystems (now
Oracle). Solaris is based on System V Release 4, but includes more than fifteen years of
enhancements from the engineers at Sun Microsystems. It is arguably the only
commercially successful SVR4 descendant, and is formally certified to be a UNIX
system.

In 2005, Sun Microsystems released most of the Solaris operating system source
code to the public as part of the OpenSolaris open source operating system in an
attempt to build an external developer community around Solaris.

The Solaris 10 UNIX system was one of the operating systems used to test the
examples in this book.

2.3.7 Other UNIX Systems
Other versions of the UNIX system that have been certified in the past include

e AIX, IBM’s version of the UNIX System

e HP-UX, Hewlett-Packard'’s version of the UNIX System

¢ [RIX, the UNIX System version shipped by Silicon Graphics

¢ UnixWare, the UNIX System descended from SVR4 sold by SCO
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2.5

Relationship of Standards and Implementations

The standards that we’ve mentioned define a subset of any actual system. The focus of
this book is on four real systems: FreeBSD 8.0, Linux 3.2.0, Mac OS X 10.6.8, and Solaris
10. Although only Mac OS X and Solaris can call themselves UNIX systems, all four
provide a similar programming environment. Because all four are POSIX compliant to
varying degrees, we will also concentrate on the features required by the POSIX.1
standard, noting any differences between POSIX and the actual implementations of
these four systems. Those features and routines that are specific to only a particular
implementation are clearly marked. We’ll also note any features that are required on
UNIX systems but are optional on other POSIX-conforming systems.

Be aware that the implementations provide backward compatibility for features in
earlier releases, such as SVR3.2 and 4.3BSD. For example, Solaris supports both the
POSIX.1 specification for nonblocking I/O (0_NONBLOCK) and the traditional System V
method (O_NDELAY). In this text, we’ll use only the POSIX.1 feature, although we’ll
mention the nonstandard feature that it replaces. Similarly, both SVR3.2 and 4.3BSD
provided reliable signals in a way that differs from the POSIX.1 standard. In Chapter 10
we describe only the POSIX.1 signal mechanism.

Limits

The implementations define many magic numbers and constants. Many of these have
been hard coded into programs or were determined using ad hoc techniques. With the
various standardization efforts that we’ve described, more portable methods are now
provided to determine these magic numbers and implementation-defined limits, greatly
improving the portability of software written for the UNIX environment.

Two types of limits are needed:

1. Compile-time limits (e.g., what’s the largest value of a short integer?)
2. Runtime limits (e.g., how many bytes in a filename?)

Compile-time limits can be defined in headers that any program can include at compile
time. But runtime limits require the process to call a function to obtain the limit’s value.

Additionally, some limits can be fixed on a given implementation—and could
therefore be defined statically in a header—yet vary on another implementation and
would require a runtime function call. An example of this type of limit is the maximum
number of bytes in a filename. Before SVR4, System V historically allowed only 14
bytes in a filename, whereas BSD-derived systems increased this number to 255. Most
UNIX System implementations these days support multiple file system types, and each
type has its own limit. This is the case of a runtime limit that depends on where in the
file system the file in question is located. A filename in the root file system, for example,
could have a 14-byte limit, whereas a filename in another file system could have a
255-byte limit.

To solve these problems, three types of limits are provided:

1. Compile-time limits (headers)
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2. Runtime limits not associated with a file or directory (the sysconf function)

3. Runtime limits that are associated with a file or a directory (the pathconf and
fpathconf functions)

To further confuse things, if a particular runtime limit does not vary on a given system,
it can be defined statically in a header. If it is not defined in a header, however, the
application must call one of the three conf functions (which we describe shortly) to

determine its value at runtime.

Name Description accle\iltr;)rﬁeuxrlr;lue Typical value
CHAR_BIT bits in a char 8 8
CHAR_MAX max value of char (see later) 127
CHAR_MIN min value of char (see later) -128
SCHAR_MAX max value of signed char 127 127
SCHAR MIN min value of signed char -127 -128
UCHAR_MAX max value of unsigned char 255 255
INT MAX max value of int 32,767 2,147 483,647
INT MIN min value of int -32,767 -2,147,483,648
UINT MAX max value of unsigned int 65,535 4,294,967,295
SHRT MAX max value of short 32,767 32,767
SHRT_MIN min value of short -32,767 -32,768
USHRT_ MAX max value of unsigned short 65,535 65,535
LONG_MAX max value of long 2,147 483,647 2,147 483,647
LONG_MIN min value of long -2,147 483,647 -2,147,483,648
ULONG_MAX max value of unsigned long 4,294,967,295 4,294,967,295
LLONG_MAX max value of long long 9,223,372,036,854,775,807 9,223,372,036,854,775,807
LLONG_MIN min value of long long -9,223,372,036,854,775,807 | -9,223,372,036,854,775,808
ULLONG_MAX | max value of unsigned 18,446,744,073,709,551,615 | 18,446,744,073,709,551,615

long long
MB_LEN_MAX | max number of bytes in a 1 6
multibyte character constant
Figure 2.6 Sizes of integral values from <limits.h>
2.5.1 ISO C Limits

All of the compile-time limits defined by ISO C are defined in the file <limits.h> (see
Figure 2.6). These constants don’t change in a given system. The third column in
Figure 2.6 shows the minimum acceptable values from the ISO C standard. This allows
for a system with 16-bit integers using one’s-complement arithmetic. The fourth
column shows the values from a Linux system with 32-bit integers using two’s-
complement arithmetic. Note that none of the unsigned data types has a minimum
value, as this value must be 0 for an unsigned data type. On a 64-bit system, the values
for long integer maximums match the maximum values for long long integers.

One difference that we will encounter is whether a system provides signed or
unsigned character values. From the fourth column in Figure 2.6, we see that this
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particular system uses signed characters. We see that CHAR_MIN equals SCHAR MIN
and that CHAR_MAX equals SCHAR MAX. If the system uses unsigned characters, we
would have CHAR_MIN equal to 0 and CHAR_MAX equal to UCHAR _MAX.

The floating-point data types in the header <float.h> have a similar set of
definitions. Anyone doing serious floating-point work should examine this file.

Although the ISO C standard specifies minimum acceptable values for integral data
types, POSIX.1 makes extensions to the C standard. To conform to POSIX.1, an
implementation must support a minimum value of 2,147,483,647 for INT_ MAX,
-2,147 483,647 for INT MIN, and 4,294,967,295 for UINT MAX. Because POSIX.1
requires implementations to support an 8-bit char, CHAR_BIT must be §, SCHAR MIN
must be —128, SCHAR_MAX must be 127, and UCHAR MAX must be 255.

Another ISO C constant that we’ll encounter is FOPEN_MAX, the minimum number
of standard I/0O streams that the implementation guarantees can be open at once. This
constant is found in the <stdio.h> header, and its minimum value is 8. The POSIX.1
value STREAM MAY, if defined, must have the same value as FOPEN_MAX.

ISO C also defines the constant TMP_MAX in <stdio.h>. It is the maximum
number of unique filenames generated by the tmpnam function. We’ll have more to say
about this constant in Section 5.13.

Although ISO C defines the constant FILENAME MAX, we avoid using it, because
POSIX.1 provides better alternatives (NAME_MAX and PATH_MAX). We'll see these
constants shortly.

Figure 2.7 shows the values of FILENAME_MAX, FOPEN_MAX, and TMP_MAX on the
four platforms we discuss in this book.

Limit FreeBSD Linux Mac OS X Solaris
8.0 3.2.0 10.6.8 10
FOPEN_MAX 20 16 20 20
TMP_MAX 308,915,776 238,328 308,915,776 17,576
FILENAME MAX 1024 4096 1024 1024

Figure 2.7 ISO limits on various platforms

2.5.2 POSIX Limits

POSIX.1 defines numerous constants that deal with implementation limits of the
operating system. Unfortunately, this is one of the more confusing aspects of POSIX.1.
Although POSIX.1 defines numerous limits and constants, we’ll concern ourselves with
only the ones that affect the base POSIX.1 interfaces. These limits and constants are
divided into the following seven categories:

1. Numerical limits: LONG_BIT, SSIZE_MAX, and WORD_BIT
2. Minimum values: the 25 constants in Figure 2.8

3. Maximum value: POSIX CLOCKRES MIN
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4. Runtime increasable values: CHARCLASS NAME MAX, COLL_WEIGHTS_ MAX,
LINE MAX, NGROUPS_ MAX, and RE_DUP_ MAX

5. Runtime invariant values, possibly indeterminate: the 17 constants in Figure 2.9
(plus an additional four constants introduced in Section 12.2 and three constants
introduced in Section 14.5)

6. Other invariant values: NL ARGMAX, NL MSGMAX, NL SETMAX, and
NL TEXTMAX
7. Pathname variable values: FILESIZEBITS, LINK MAX, MAX CANON,
MAX INPUT, NAME MAX, PATH MAX, PIPE BUF, and SYMLINK MAX
Name Description: minimum acceptable value for maximum ... Value
_POSIX_ ARG _MAX length of arguments to exec functions 4,096
_POSIX_CHILD_MAX number of child processes at a time per real user ID 25
_POSIX_DELAYTIMER_MAX | number of timer expiration overruns 32
_POSIX_HOST NAME MAX length of a host name as returned by gethostname 255
_POSIX_LINK_MAX number of links to a file 8
_POSIX_LOGIN_NAME_MAX | length of a login name 9
_POSIX_MAX CANON number of bytes on a terminal’s canonical input queue 255
_POSIX_MAX_INPUT space available on a terminal’s input queue 255
_POSIX_NAME_MAX number of bytes in a filename, not including the terminating null 14
_POSIX_NGROUPS_MAX number of simultaneous supplementary group IDs per process 8
_POSIX_OPEN_MAX maximum number of open files per process 20
_POSIX_PATH MAX number of bytes in a pathname, including the terminating null 256
_POSIX_PIPE_BUF number of bytes that can be written atomically to a pipe 512
_POSIX_RE_DUP_MAX number of repeated occurrences of a basic regular expression 255
permitted by the regexec and regcomp functions when
using the interval notation \ {m, n\}
_POSIX_RTSIG_MAX number of real-time signal numbers reserved for applications 8
_POSIX_SEM_NSEMS_MAX number of semaphores a process can have in use at one time 256
_POSIX_SEM VALUE_ MAX value a semaphore can hold 32,767
_POSIX_SIGQUEUE_MAX number of queued signals a process can send and have pending 32
_POSIX_SSIZE MAX value that can be stored in ssize_t object 32,767
_POSIX_STREAM MAX number of standard I/O streams a process can have open at once 8
_POSIX_SYMLINK_MAX number of bytes in a symbolic link 255
_POSIX_SYMLOOP_MAX number of symbolic links that can be traversed during pathname 8
resolution
_POSIX_TIMER_MAX number of timers per process 32
_POSIX_TTY NAME MAX length of a terminal device name, including the terminating null 9
_POSIX_TZNAME_ MAX number of bytes for the name of a time zone 6

Figure 2.8 POSIX.1 minimum values from <limits.h>

Of these limits and constants, some may be defined in <l1imits.h>, and others may or
may not be defined, depending on certain conditions. We describe the limits and
constants that may or may not be defined in Section 2.5.4, when we describe the
sysconf, pathconf, and fpathconf functions. The 25 minimum values are shown
in Figure 2.8.
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These minimum values do not change from one system to another. They specify the
most restrictive values for these features. A conforming POSIX.1 implementation must
provide values that are at least this large. This is why they are called minimumes,
although their names all contain MAX. Also, to ensure portability, a strictly conforming
application must not require a larger value. We describe what each of these constants
refers to as we proceed through the text.

A strictly conforming POSIX application is different from an application that is merely POSIX
conforming. A POSIX-conforming application uses only interfaces defined in IEEE Standard
1003.1-2008. A strictly conforming POSIX application must meet further restrictions, such as
not relying on any undefined behavior, not using any obsolescent interfaces, and not requiring
values of constants larger than the minimums shown in Figure 2.8.

Name Description Minimum acceptable value
ARG_MAX maximum length of arguments to exec _POSIX_ARG_MAX
functions
ATEXIT MAX maximum number of functions that can be 32
registered with the atexit function
CHILD_ MAX maximum number of child processes per real _POSIX_CHILD_MAX
user ID
DELAYTIMER MAX | maximum number of timer expiration overruns | _POSIX DELAYTIMER MAX
HOST NAME_MAX maximum length of a host name as returned by | _POSIX_ HOST_ NAME_MAX
gethostname
LOGIN_NAME_MAX | maximum length of a login name _POSIX_LOGIN_NAME_MAX
OPEN_MAX one more than the maximum value assigned to | _POSIX_OPEN_MAX
a newly created file descriptor
PAGESIZE system memory page size, in bytes 1
RTSIG_MAX maximum number of real-time signals reserved | _POSIX_ RTSIG_MAX

for application use
SEM_NSEMS_MAX maximum number of semaphores a process can | _POSIX_SEM NSEMS_MAX

use

SEM_VALUE_MAX maximum value of a semaphore _POSIX_SEM VALUE_MAX

SIGQUEUE_MAX maximum number of signals that can be _POSIX_SIGQUEUE_MAX
queued for a process

STREAM MAX maximum number of standard I/O streams a _POSIX_STREAM MAX
process can have open at once

SYMLOOP_MAX number of symbolic links that can be traversed _POSIX_SYMLOOP_MAX
during pathname resolution

TIMER_MAX maximum number of timers per process _POSIX_ TIMER_MAX

TTY_ NAME_ MAX length of a terminal device name, including the | _POSIX_TTY NAME MAX
terminating null

TZNAME_MAX number of bytes for the name of a time zone _POSIX_TZNAME_MAX

Figure 2.9 POSIX.1 runtime invariant values from <limits.h>

Unfortunately, some of these invariant minimum values are too small to be of
practical use. For example, most UNIX systems today provide far more than 20 open
files per process. Also, the minimum limit of 256 for _POSIX_ PATH_MAX is too small.
Pathnames can exceed this limit. This means that we can’t use the two constants
_POSIX_OPEN_MAX and _POSIX_PATH_MAX as array sizes at compile time.
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Each of the 25 invariant minimum values in Figure 2.8 has an associated
implementation value whose name is formed by removing the POSIX prefix from the
name in Figure 2.8. The names without the leading POSIX_ were intended to be the
actual values that a given implementation supports. (These 25 implementation values
are from items 1, 4, 5, and 7 from our list earlier in this section: 2 of the runtime
increasable values, 15 of the runtime invariant values, and 7 of the pathname variable
values, along with SSIZE_MAX from the numeric values.) The problem is that not all of
the 25 implementation values are guaranteed to be defined in the <1imits.h> header.

For example, a particular value may not be included in the header if its actual value
for a given process depends on the amount of memory on the system. If the values are
not defined in the header, we can’t use them as array bounds at compile time. To
determine the actual implementation value at runtime, POSIX.1 decided to provide
three functions for us to call—sysconf, pathconf, and fpathconf. There is still a
problem, however, because some of the values are defined by POSIX.1 as being possibly
“indeterminate” (logically infinite). This means that the value has no practical upper
bound. On Solaris, for example, the number of functions you can register with atexit
to be run when a process ends is limited only by the amount of memory on the system.
Thus ATEXIT_ MAX is considered indeterminate on Solaris. We'll return to this problem
of indeterminate runtime limits in Section 2.5.5.

2.5.3 XSI Limits

The XSI option also defines constants representing implementation limits. They
include:

1. Minimum values: the five constants in Figure 2.10

2. Runtime invariant values, possibly indeterminate: IOV_MAX and PAGE_SIZE
The minimum values are listed in Figure 2.10. The last two illustrate the situation in
which the POSIX.1 minimums were too small—presumably to allow for embedded

POSIX.1 implementations—so symbols with larger minimum values were added for
XSI-conforming systems.

Name Description Minimum Typical value
acceptable value
NL_LANGMAX maximum number of bytes in LANG 14 14
environment variable
NZERO default process priority 20 20
_XOPEN_IOV_MAX |maximum number of iovec structures that 16 16
can be used with readv or writev
_XOPEN_NAME_MAX |number of bytes in a filename 255 255
_XOPEN_PATH_MAX [number of bytes in a pathname 1,024 1,024

Figure 2.10 XSI minimum values from <limits.h>
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2.5.4 sysconf, pathconf, and fpathconf Functions

We've listed various minimum values that an implementation must support, but how
do we find out the limits that a particular system actually supports? As we mentioned
earlier, some of these limits might be available at compile time; others must be
determined at runtime. We’ve also mentioned that some limits don’t change in a given
system, whereas others can change because they are associated with a file or directory.
The runtime limits are obtained by calling one of the following three functions.

#include <unistd.h>
long sysconf (int name);
long pathconf(const char *pathname, int name);

long fpathconf(int fd, int name);

All three return: corresponding value if OK, -1 on error (see later)

The difference between the last two functions is that one takes a pathname as its
argument and the other takes a file descriptor argument.

Figure 2.11 lists the name arguments that sysconf uses to identify system limits.
Constants beginning with _SC_ are used as arguments to sysconf to identify the
runtime limit. Figure 2.12 lists the name arguments that are used by pathconf and
fpathconf to identify system limits. Constants beginning with _PC_ are used as
arguments to pathconf and fpathconf to identify the runtime limit.

We need to look in more detail at the different return values from these three
functions.

1. All three functions return -1 and set errno to EINVAL if the name isn’t one of
the appropriate constants. The third column in Figures 2.11 and 2.12 lists the
limit constants we’ll deal with throughout the rest of this book.

2. Some names can return either the value of the variable (a return value = 0) or an
indication that the value is indeterminate. An indeterminate value is indicated
by returning -1 and not changing the value of errno.

3. The value returned for _SC_CLK_TCK is the number of clock ticks per second,
for use with the return values from the times function (Section 8.17).

Some restrictions apply to the pathconf pathname argument and the fpathconf
fd argument. If any of these restrictions isn’t met, the results are undefined.

1. The referenced file for PC_MAX CANON and _PC_MAX INPUT must be a
terminal file.

2. The referenced file for PC_LINK_MAX and PC_TIMESTAMP RESOLUTION can
be either a file or a directory. If the referenced file is a directory, the return value
applies to the directory itself, not to the filename entries within the directory.

3. The referenced file for _PC_FILESIZEBITS and _PC NAME MAX must be a
directory. The return value applies to filenames within the directory.
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Name of limit

Description

name argument

ARG MAX
ATEXIT MAX
CHILD_MAX

clock ticks/second
COLL_WEIGHTS MAX

DELAYTIMER MAX
HOST NAME MAX
I0OV_MAX
LINE_MAX
LOGIN_NAME MAX
NGROUPS_MAX
OPEN_MAX
PAGESIZE

PAGE_SIZE
RE_DUP_MAX

RTSIG_MAX
SEM_NSEMS_MAX

SEM_VALUE_MAX
SIGQUEUE_MAX

STREAM MAX

SYMLOOP_MAX

TIMER MAX
TTY NAME MAX

TZNAME_MAX

maximum length, in bytes, of arguments to the exec
functions

maximum number of functions that can be
registered with the atexit function

maximum number of processes per real user ID

number of clock ticks per second

maximum number of weights that can be assigned
to an entry of the LC_COLLATE order keyword
in the locale definition file

maximum number of timer expiration overruns

maximum length of a host name as returned by
gethostname

maximum number of iovec structures that can be
used with readv or writev

maximum length of a utility’s input line

maximum length of a login name

maximum number of simultaneous supplementary
process group IDs per process

one more than the maximum value assigned to a
newly created file descriptor

system memory page size, in bytes

system memory page size, in bytes

number of repeated occurrences of a basic regular
expression permitted by the regexec and
regcomp functions when using the interval
notation \ {m,n\}

maximum number of real-time signals reserved for
application use

maximum number of semaphores a process can use
at one time

maximum value of a semaphore

maximum number of signals that can be queued for
a process

maximum number of standard I/O streams per
process at any given time; if defined, it must
have the same value as FOPEN_MAX

number of symbolic links that can be traversed
during pathname resolution

maximum number of timers per process

length of a terminal device name, including the
terminating null

maximum number of bytes for a time zone name

_SC_ARG_MAX
_SC_ATEXIT MAX
_SC_CHILD MAX

_SC_CLK_TCK
_SC_COLL_WEIGHTS MAX

_SC_DELAYTIMER MAX
_SC_HOST_NAME_MAX
_SC_IOV_MAX
_SC_LINE_ MAX
_SC_LOGIN NAME_ MAX
_SC_NGROUPS_MAX
_SC_OPEN_MAX
_SC_PAGESIZE

_SC_PAGE_SIZE
_SC_RE_DUP_MAX

_SC_RTSIG_MAX
_SC_SEM_NSEMS_MAX

_SC_SEM_VALUE_MAX
_SC_SIGQUEUE_MAX

_SC_STREAM MAX

_SC_SYMLOOP_MAX

_SC_TIMER MAX
_SC_TTY NAME MAX

_SC_TZNAME_MAX

Figure 2.11 Limits and name arguments to sysconf

4. The referenced file for _PC_PATH_MAX must be a directory. The value returned
is the maximum length of a relative pathname when the specified directory is
the working directory. (Unfortunately, this isn’t the real maximum length of an
absolute pathname, which is what we want to know. We'll return to this
problem in Section 2.5.5.)
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Name of limit Description name argument

FILESIZEBITS minimum number of bits needed to _PC_FILESIZEBITS
represent, as a signed integer value, the
maximum size of a regular file allowed
in the specified directory

LINK_MAX maximum value of a file’s link count _PC_LINK_MAX

MAX_CANON maximum number of bytes on a terminal’s | _PC_MAX_CANON
canonical input queue

MAX_INPUT number of bytes for which space is available | _PC_MAX_INPUT
on terminal’s input queue

NAME_MAX maximum number of bytes in a filename _PC_NAME_MAX
(does not include a null at end)

PATH_MAX maximum number of bytes in a relative _PC_PATH_MAX
pathname, including the terminating
null

PIPE_BUF maximum number of bytes that can be _PC_PIPE_ BUF
written atomically to a pipe

_POSIX_ TIMESTAMP_RESOLUTION |resolution in nanoseconds for file _PC_TIMESTAMP_RESOLUTION
timestamps

SYMLINK_MAX number of bytes in a symbolic link _PC_SYMLINK_MAX

Figure 2.12 Limits and name arguments to pathconf and fpathconf

5. The referenced file for _PC_PIPE_BUF must be a pipe, FIFO, or directory. In the
first two cases (pipe or FIFO), the return value is the limit for the referenced
pipe or FIFO. For the other case (a directory), the return value is the limit for
any FIFO created in that directory.

6. The referenced file for _PC_SYMLINK MAX must be a directory. The value
returned is the maximum length of the string that a symbolic link in that
directory can contain.

Example

The awk(1) program shown in Figure 2.13 builds a C program that prints the value of
each pathconf and sysconf symbol.

#1/usr/bin/awk -f
BEGIN {
printf("#include \

"apue.h\"\n")

printf ("#include <errno.h>\n")
printf("#include <limits.h>\n")

printf("\n")

printf("static void pr_sysconf(char *, int);\n")
printf("static void pr pathconf(char *, char *, int);\n")

printf("\n")
printf("int\n")

printf("main(int argc, char *argv[])\n")
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printf("{\n")
printf("\tif (argc != 2)\n")
printf("\t\terr quit(\"usage: a.out <dirname>\");\n\n")
FS="\t+"
while (getline <"sysconf.sym" > 0) {
printf("#ifdef %s\n", $1)
printf("\tprintf(\"%s defined to be %%1d\\n\", (long)%s+0);\n",
$1, $1)
printf("#else\n")
printf("\tprintf(\"no symbol for %s\\n\");\n", $1)
printf("#endif\n")
printf ("#ifdef %s\n", $2)
printf("\tpr_sysconf(\"%s =\", %s);\n", $1, $2)
printf("#else\n")
printf("\tprintf(\"no symbol for %s\\n\");\n", $2)
printf("#endif\n")
}
close("sysconf.sym")
while (getline <"pathconf.sym" > 0) {
printf("#ifdef %s\n", $1)
printf("\tprintf(\"%s defined to be %%1d\\n\", (long)%s+0);\n",
$1, $1)
printf("#else\n")
printf("\tprintf(\"no symbol for %s\\n\");\n", $1)
printf("#endif\n")
printf("#ifdef %s\n", $2)
printf("\tpr_pathconf(\"%s =\", argv[l], %s);\n", $1, $2)
printf("#else\n")
printf("\tprintf(\"no symbol for %s\\n\");\n", $2)
printf("#endif\n")

}
close("pathconf.sym")
exit

}

END {

printf("\texit(0);\n")

printf("}\n\n")

printf("static void\n")

printf("pr_ sysconf(char *mesg, int name)\n")
printf("{\n")

printf("\tlong wval;\n\n")

printf("\tfputs(mesg, stdout);\n")

printf("\terrno = 0;\n")

printf("\tif ((val = sysconf(name)) < 0) {\n")
printf("\t\tif (errno != 0) {\n")

printf("\t\t\tif (errno == EINVAL)\n")
printf("\t\t\t\tfputs(\" (not supported)\\n\", stdout);\n")
printf("\t\t\telse\n")
printf("\t\t\t\terr_sys(\"sysconf error\");\n")
printf("\t\t} else {\n")

printf("\t\t\tfputs(\" (no limit)\\n\", stdout);\n")
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printf("\t\t}\n")

printf("\t} else {\n")

printf("\t\tprintf(\" %%1d\\n\", val);\n")
printf("\t}\n")

printf("}\n\n")

printf("static void\n")

printf("pr pathconf(char *mesg, char *path, int name)\n")
printf("{\n")

printf("\tlong wval;\n")

printf("\n")

printf("\tfputs(mesg, stdout);\n")

printf("\terrno = 0;\n")

printf("\tif ((val = pathconf(path, name)) < 0) {\n")
printf("\t\tif (errno != 0) {\n")

printf("\t\t\tif (errno == EINVAL)\n")
printf("\t\t\t\tfputs(\" (not supported)\\n\", stdout);\n")
printf("\t\t\telse\n")

printf("\t\t\t\terr_ sys(\"pathconf error, path = %%s\", path);\n")
printf("\t\t} else {\n")

printf("\t\t\tfputs(\" (no limit)\\n\", stdout);\n")
printf("\t\t}\n")

printf("\t} else {\n")

printf("\t\tprintf(\" %%1d\\n\", val);\n")
printf("\t}\n")

printf("}\n")

Figure 2.13 Build C program to print all supported configuration limits

The awk program reads two input files—pathconf.sym and sysconf . sym—that
contain lists of the limit name and symbol, separated by tabs. All symbols are not
defined on every platform, so the awk program surrounds each call to pathconf and
sysconf with the necessary #ifdef statements.

For example, the awk program transforms a line in the input file that looks like

NAME_MAX _PC_NAME_MAX
into the following C code:

#ifdef NAME MAX

printf("NAME MAX is defined to be %d\n", NAME MAX+0);
#else

printf("no symbol for NAME MAX\n");
#endif
#ifdef _PC_NAME MAX

pr_pathconf ("NAME MAX =", argv[l], _PC_NAME MAX);
#else

printf("no symbol for _PC_NAME MAX\n");
#endif

The program in Figure 2.14, generated by the awk program, prints all these limits,
handling the case in which a limit is not defined.
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#include "apue.h"
#include <errno.h>
#include <limits.h>

static void pr_sysconf(char *, int);
static void pr_pathconf(char *, char *, int);
int
main(int argc, char *argv[])
{
if (argc != 2)
err quit("usage: a.out <dirname>");

#ifdef ARG _MAX
printf("ARG_MAX defined to be %1d\n", (long)ARG_MAX+0);
#else
printf("no symbol for ARG MAX\n");
#endif
#ifdef SC_ARG MAX
pr_sysconf ("ARG_MAX =", _SC_ARG_MAX);

#else
printf("no symbol for _SC ARG _MAX\n");
#endif
/* similar processing for all the rest of the sysconf symbols... */

#ifdef MAX_ CANON
printf("MAX CANON defined to be %1d\n", (long)MAX CANON+0);
#else
printf("no symbol for MAX CANON\n");
#endif
#ifdef PC_MAX CANON
pr_pathconf ("MAX CANON =", argv[1l], _PC_MAX CANON);

#else
printf("no symbol for PC MAX CANON\n");

#endif

/* similar processing for all the rest of the pathconf symbols... */
exit(0);

}

static void
pr_ sysconf(char *mesg, int name)

{

long val;

fputs(mesg, stdout);
errno = 0;
if ((val = sysconf(name)) < 0) {

if (errno != 0) {
if (errno == EINVAL)
fputs(" (not supported)\n", stdout);
else
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}

err_sys("sysconf error");
} else {
fputs(" (no limit)\n", stdout);
}
} else {
printf(" %1d\n", val);
}

static void
pr pathconf(char *mesg, char *path, int name)

{

long val;

fputs(mesg, stdout);

errno = 0;
if ((val = pathconf(path, name)) < 0) {
if (errno != 0) {
if (errno == EINVAL)
fputs(" (not supported)\n", stdout);
else
err sys("pathconf error, path = %s", path);
} else {
fputs(" (no limit)\n", stdout);
}
} else {

printf(" %1d\n", val);
}

Figure 2.14 Print all possible sysconf and pathconf values

Figure 2.15 summarizes the results from Figure 2.14 for the four systems we discuss in
this book. The entry “no symbol” means that the system doesn’'t provide a
corresponding _SC or _PC symbol to query the value of the constant. Thus the limit is
undefined in this case. In contrast, the entry “unsupported” means that the symbol is
defined by the system but unrecognized by the sysconf or pathconf functions. The
entry “no limit” means that the system defines no limit for the constant, but this doesn’t
mean that the limit is infinite; it just means that the limit is indeterminite.

Beware that some limits are reported incorrectly. For example, on Linux, SYMLOOP_MAX is
reportedly unlimited, but an examination of the source code reveals that there is actually a
hard-coded limit of 40 for the number of consecutive symbolic links traversed in the absence of

aloop (see the follow_link function in £s/namei.c).

Another potential source of inaccuracy in Linux is that the pathconf and fpathconf
functions are implemented in the C library. The configuration limits returned by these
functions depend on the underlying file system type, so if your file system is unknown to the

C library, the functions return an educated guess.
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Solaris 10
Limit FreeBSD Linux Mac OS X UFS PCFS
80 320 1068 file system | file system
ARG_MAX 262,144 2,097,152 262,144 2,096,640 2,096,640
ATEXIT MAX 32|2,147,483,647 | 2,147,483,647 no limit no limit
CHARCLASS_NAME_MAX| no symbol 2,048 14 14 14
CHILD_MAX 1,760 47,211 266 8,021 8,021
clock ticks/second 128 100 100 100 100
COLL_WEIGHTS_MAX 0 255 2 10 10
FILESIZEBITS 64 64 64 41|unsupported
HOST NAME_ MAX 255 64 255 255 255
IOV_MAX 1,024 1,024 1024 16 16
LINE_MAX 2,048 2,048 2,048 2,048 2,048
LINK_MAX 32,767 65,000 32,767 32,767 1
LOGIN_NAME_MAX 17 256 255 9 9
MAX_CANON 255 255 1,024 256 256
MAX_INPUT 255 255 1,024 512 512
NAME_MAX 255 255 255 255 8
NGROUPS_MAX 1,023 65,536 16 16 16
OPEN_MAX 3,520 1,024 256 256 256
PAGESIZE 4,096 4,096 4,096 8,192 8,192
PAGE_SIZE 4,096 4,096 4,096 8,192 8,192
PATH_MAX 1,024 4,096 1,024 1,024 1,024
PIPE_BUF 512 4,096 512 5,120 5,120
RE_DUP_MAX 255 32,767 255 255 255
STREAM_ MAX 3,520 16 20 256 256
SYMLINK_MAX 1,024 no limit 255 1,024 1,024
SYMLOOP_MAX 32 no limit 32 20 20
TTY_ NAME_MAX 255 32 255 128 128
TZNAME MAX 255 6 255 no limit no limit

Figure 2.15 Examples of configuration limits

2.5.5 Indeterminate Runtime Limits

We mentioned that some of the limits can be indeterminate. The problem we encounter
is that if these limits aren’t defined in the <limits.h> header, we can’t use them at
compile time. But they might not be defined at runtime if their value is indeterminate!
Let’s look at two specific cases: allocating storage for a pathname and determining the
number of file descriptors.

Pathnames

Many programs need to allocate storage for a pathname. Typically, the storage has been
allocated at compile time, and various magic numbers—few of which are the correct
value—have been used by different programs as the array size: 256, 512, 1024, or the
standard I/O constant BUFSIZ. The 4.3BSD constant MAXPATHLEN in the header
<sys/param.h> is the correct value, but many 4.3BSD applications didn’t use it.
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POSIX.1 tries to help with the PATH_MAX value, but if this value is indeterminate,
we're still out of luck. Figure 2.16 shows a function that we’ll use throughout this text
to allocate storage dynamically for a pathname.

If the constant PATH MAX is defined in <1imits.h>, then we're all set. If it’s not,
then we need to call pathconf. The value returned by pathconf is the maximum size
of a relative pathname when the first argument is the working directory, so we specify
the root as the first argument and add 1 to the result. If pathconf indicates that
PATH_MAX is indeterminate, we have to punt and just guess a value.

Versions of POSIX.1 prior to 2001 were unclear as to whether PATH_MAX included a
null byte at the end of the pathname. If the operating system implementation conforms
to one of these prior versions and doesn’t conform to any version of the Single UNIX
Specification (which does require the terminating null byte to be included), we need to
add 1 to the amount of memory we allocate for a pathname, just to be on the safe side.

The correct way to handle the case of an indeterminate result depends on how the
allocated space is being used. If we are allocating space for a call to getcwd, for
example—to return the absolute pathname of the current working directory; see
Section 4.23—and if the allocated space is too small, an error is returned and errno is
set to ERANGE. We could then increase the allocated space by calling realloc (see
Section 7.8 and Exercise 4.16) and try again. We could keep doing this until the call to
getcwd succeeded.

#include "apue.h"
#include <errno.h>
#include <limits.h>

#ifdef PATH MAX

static long pathmax = PATH_MAX;
#else

static long pathmax = 0;

#endif

static long posix version = 0;
static long xsi version = 0;

/* If PATH MAX is indeterminate, no guarantee this is adequate */
#define PATH MAX GUESS 1024

char *
path _alloc(size_t *sizep) /* also return allocated size, if nonnull */
{

char *ptr;

size t size;

if (posix_version == 0)
posix version = sysconf(_ SC_VERSION);

if (xsi_version == 0)
xsi version = sysconf(_ SC_XOPEN_VERSION);

if (pathmax == 0) { /* first time through */
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errno = 0;
if ((pathmax = pathconf("/", _PC_PATH MAX)) < 0) {

if (errno == 0)
pathmax = PATH MAX GUESS; /* it's indeterminate */
else
err_sys("pathconf error for _PC_PATH MAX");
} else {
pathmax++; /* add one since it’'s relative to root */
}
}
/*

* Before POSIX.1-2001, we aren’t guaranteed that PATH_MAX includes
* the terminating null byte. Same goes for XPG3.
*/
if ((posix_version < 200112L) && (xsi_version < 4))
size = pathmax + 1;
else
size = pathmax;

if ((ptr = malloc(size)) == NULL)
err sys("malloc error for pathname");

if (sizep != NULL)
*sizep = size;
return(ptr);

Figure 2.16 Dynamically allocate space for a pathname

Maximum Number of Open Files

A common sequence of code in a daemon process—a process that runs in the
background, not connected to a terminal—is one that closes all open files. Some
programs have the following code sequence, assuming the constant NOFILE was
defined in the <sys/param.h> header:

#include <sys/param.h>

for (i = 0; i < NOFILE; i++)
close(i);

Other programs use the constant _NFILE that some versions of <stdio.h> provide as
the upper limit. Some hard code the upper limit as 20. However, none of these
approaches is portable.

We would hope to use the POSIX.1 value OPEN_MAX to determine this value
portably, but if the value is indeterminate, we still have a problem. If we wrote the
following code and if OPEN_MAX was indeterminate, the loop would never execute,
since sysconf would return -1:

www.it-ebooks.info


http://www.it-ebooks.info/

52 UNIX Standardization and Implementations Chapter 2

#include <unistd.h>

for (i = 0; i < sysconf(_ SC OPEN_MAX); i++)
close(i);

Our best option in this case is just to close all descriptors up to some arbitrary
limit—say, 256. We show this technique in Figure 2.17. As with our pathname
example, this strategy is not guaranteed to work for all cases, but it’s the best we can do
without using a more exotic approach.

#include "apue.h"
#include <errno.h>
#include <limits.h>

#ifdef OPEN_MAX
static long openmax = OPEN MAX;

#else
static long openmax = 0;
#endif
/*
* If OPEN_MAX is indeterminate, this might be inadequate.
*/
#define OPEN_MAX_GUESS 256
long
open_max(void)
{
if (openmax == 0) { /* first time through */
errno = 0;
if ((openmax = sysconf(_ SC_OPEN MAX)) < 0) {
if (errno == 0)
openmax = OPEN_MAX GUESS; /* it’'s indeterminate */
else
err sys("sysconf error for _SC_OPEN MAX");
}
}

return(openmax) ;

Figure 2.17 Determine the number of file descriptors

We might be tempted to call close until we get an error return, but the error return
from close (EBADF) doesn’t distinguish between an invalid descriptor and a descriptor
that wasn’t open. If we tried this technique and descriptor 9 was not open but
descriptor 10 was, we would stop on 9 and never close 10. The dup function
(Section 3.12) does return a specific error when OPEN_MAX is exceeded, but duplicating
a descriptor a couple of hundred times is an extreme way to determine this value.

Some implementations will return LONG_MAX for limit values that are effectively
unlimited. Such is the case with the Linux limit for ATEXIT MAX (see Figure 2.15). This
isn’t a good idea, because it can cause programs to behave badly.
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2.6

For example, we can use the ulimit command built into the Bourne-again shell to
change the maximum number of files our processes can have open at one time. This
generally requires special (superuser) privileges if the limit is to be effectively
unlimited. But once set to infinite, sysconf will report LONG_MAX as the limit for
OPEN_MAX. A program that relies on this value as the upper bound of file descriptors to
close, as shown in Figure 2.17, will waste a lot of time trying to close 2,147,483,647 file
descriptors, most of which aren’t even in use.

Systems that support the XSI option in the Single UNIX Specification will provide
the getrlimit(2) function (Section 7.11). It can be used to return the maximum
number of descriptors that a process can have open. With it, we can detect that there is
no configured upper bound to the number of open files our processes can open, so we
can avoid this problem.

The OPEN_MAX value is called runtime invariant by POSIX, meaning that its value should not
change during the lifetime of a process. But on systems that support the XSI option, we can
call the setrlimit(2) function (Section 7.11) to change this value for a running process. (This
value can also be changed from the C shell with the 1imit command, and from the Bourne,
Bourne-again, Debian Almquist, and Korn shells with the ulimit command.) If our system
supports this functionality, we could change the function in Figure 2.17 to call sysconf every
time it is called, not just the first time.

Options

We saw the list of POSIX.1 options in Figure 2.5 and discussed XSI option groups in
Section 2.2.3. If we are to write portable applications that depend on any of these
optionally supported features, we need a portable way to determine whether an
implementation supports a given option.

Just as with limits (Section 2.5), POSIX.1 defines three ways to do this.

1. Compile-time options are defined in <unistd.h>.

2. Runtime options that are not associated with a file or a directory are identified
with the sysconf function.

3. Runtime options that are associated with a file or a directory are discovered by
calling either the pathconf or the fpathconf function.

The options include the symbols listed in the third column of Figure 2.5, as well as
the symbols listed in Figures 2.19 and 2.18. If the symbolic constant is not defined, we
must use sysconf, pathconf, or fpathconf to determine whether the option is
supported. In this case, the name argument to the function is formed by replacing the
_POSIX at the beginning of the symbol with _SC or _PC. For constants that begin with
_XOPEN, the name argument is formed by prepending the string with _SC or _PC. For
example, if the constant _POSIX RAW SOCKETS is undefined, we can call sysconf
with the name argument set to _SC_RAW_SOCKETS to determine whether the platform
supports the raw sockets option. If the constant XOPEN_UNIX is undefined, we can
call sysconf with the name argument set to _SC_XOPEN_UNIX to determine whether
the platform supports the XSI option interfaces.
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For each option, we have three possibilities for a platform’s support status.

1.

If the symbolic constant is either undefined or defined to have the value -1, then
the corresponding option is unsupported by the platform at compile time. It is
possible to run an old application on a newer system where the option is
supported, so a runtime check might indicate the option is supported even
though the option wasn’t supported at the time the application was compiled.

If the symbolic constant is defined to be greater than zero, then the
corresponding option is supported.

If the symbolic constant is defined to be equal to zero, then we must call
sysconf, pathconf, or fpathconf to determine whether the option is
supported.

The symbolic constants used with pathconf and fpathconf are summarized in
Figure 2.18. Figure 2.19 summarizes the nonobsolete options and their symbolic
constants that can be used with sysconf, in addition to those listed in Figure 2.5. Note
that we omit options associated with utility commands.

As with the system limits, there are several points to note regarding how options
are treated by sysconf, pathconf, and fpathcont.

1.

The value returned for _SC_VERSION indicates the four-digit year and
two-digit month of the standard. This value can be 198808L, 199009L, 199506L,
or some other value for a later version of the standard. The value associated
with Version 3 of the Single UNIX Specification is 200112L (the 2001 edition of
POSIX.1). The value associated with Version 4 of the Single UNIX Specification
(the 2008 edition of POSIX.1) is 200809L.

The value returned for SC_XOPEN_VERSION indicates the version of the XSI
that the system supports. The value associated with Version 3 of the Single
UNIX Specification is 600. The value associated with Version 4 of the Single
UNIX Specification (the 2008 edition of POSIX.1) is 700.

The values _SC_JOB_CONTROL, _SC_SAVED_IDS, and _PC_VDISABLE no
longer represent optional features. Although XPG4 and prior versions of the
Single UNIX Specification required that these features be supported, Version 3
of the Single UNIX Specification is the earliest version where these features are
no longer optional in POSIX.1. These symbols are retained for backward
compatibility.

Platforms conforming to POSIX.1-2008 are also required to support the
following options:

e _POSIX_ASYNCHRONOUS IO
e POSIX BARRIERS

e POSIX CLOCK SELECTION
e POSIX MAPPED FILES

e POSIX MEMORY PROTECTION
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e POSIX READER WRITER LOCKS
e POSIX REALTIME SIGNALS
¢ POSIX SEMAPHORES
e POSIX_ SPIN LOCKS
e POSIX THREAD SAFE FUNCTIONS
e POSIX THREADS
e POSIX TIMEOUTS
e POSIX TIMERS
These constants are defined to have the value 200809L. Their corresponding
_SC symbols are also retained for backward compatibility.

5. _PC_CHOWN_RESTRICTED and _PC_NO_TRUNC return -1 without changing
errno if the feature is not supported for the specified pathname or fd. On all
POSIX-conforming systems, the return value will be greater than zero
(indicating that the feature is supported).

6. The referenced file for PC_CHOWN_RESTRICTED must be either a file or a
directory. If it is a directory, the return value indicates whether this option
applies to files within that directory.

7. The referenced file for _PC_NO_TRUNC and _PC_2 SYMLINKS must be a
directory.

For PC_NO_TRUNC, the return value applies to filenames within the directory.
The referenced file for PC_VDISABLE must be a terminal file.
10. For _PC_ASYNC_IO, PC PRIO_IO, and _PC_SYNC IO, the referenced file
must not be a directory.
Name of option Indicates ... name argument
_POSIX_CHOWN_RESTRICTED |whether use of chown is restricted _PC_CHOWN_RESTRICTED
_POSIX_NO_ TRUNC whether filenames longer than NAME_MAX | _PC_NO_TRUNC
generate an error

_POSIX_VDISABLE if defined, terminal special characters can be | _PC_VDISABLE
disabled with this value

_POSIX_ASYNC_IO whether asynchronous I/0 can be used with | _PC_ASYNC_TIO
the associated file

_POSIX_PRIO IO whether prioritized I/O can be used with _PC_PRIO IO
the associated file

_POSIX_SYNC_IO whether synchronized I/O can be used with | _PC_SYNC_IO
the associated file

_POSIX2_SYMLINKS whether symbolic links are supported in the | _PC_2_SYMLINKS
directory

Figure 2.18 Options and name arguments to pathconf and fpathconf
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Name of option

Indicates ...

name argument

_POSIX ASYNCHRONOUS IO

_POSIX_ BARRIERS

_POSIX_CLOCK_SELECTION

_POSIX_JOB_CONTROL

_POSIX MAPPED FILES

_POSIX MEMORY_PROTECTION

_POSIX READER WRITER LOCKS

_POSIX_ REALTIME_SIGNALS

_POSIX_SAVED IDS

_POSIX_SEMAPHORES

_POSIX_SHELL

_POSIX SPIN LOCKS

_POSIX THREAD SAFE_FUNCTIONS

_POSIX THREADS

_POSIX_ TIMEOUTS

_POSIX_TIMERS

_POSIX VERSION
_XOPEN_CRYPT

_XOPEN_REALTIME

_XOPEN_REALTIME_ THREADS

_XOPEN_SHM

_XOPEN_VERSION

whether the implementation supports
POSIX asynchronous 1/0

whether the implementation supports
barriers

whether the implementation supports
clock selection

whether the implementation supports
job control

whether the implementation supports
memory-mapped files

whether the implementation supports
memory protection

whether the implementation supports
reader—writer locks

whether the implementation supports
real-time signals

whether the implementation supports
the saved set-user-ID and the
saved set-group-ID

whether the implementation supports
POSIX semaphores

whether the implementation supports
the POSIX shell

whether the implementation supports
spin locks

whether the implementation supports
thread-safe functions

whether the implementation supports
threads

whether the implementation supports
timeout-based variants of
selected functions

whether the implementation supports
timers

the POSIX.1 version

whether the implementation supports
the XSI encryption option group

whether the implementation supports
the XSI real-time option group

whether the implementation supports
the XSI real-time threads option
group

whether the implementation supports
the XSI shared memory option
group

the XSI version

_SC_ASYNCHRONOUS_IO

_SC_BARRIERS

_SC_CLOCK_SELECTION

_SC_JOB_CONTROL

_SC_MAPPED FILES

_SC_MEMORY_ PROTECTION

_SC_READER_WRITER LOCKS

_SC_REALTIME_SIGNALS

_SC_SAVED_IDS

_SC_SEMAPHORES

_SC_SHELL

_SC_SPIN LOCKS

_SC_THREAD_SAFE_FUNCTIONS

_SC_THREADS

_SC_TIMEOUTS

_SC_TIMERS

_SC_VERSION
_SC_XOPEN_CRYPT

_SC_XOPEN_REALTIME

_SC_XOPEN_REALTIME_ THREADS

_SC_XOPEN_SHM

_SC_XOPEN_VERSION

Figure 2.19 Options and name arguments to sysconf
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2.7

Figure 2.20 shows several configuration options and their corresponding values on
the four sample systems we discuss in this text. An entry is “unsupported” if the
system defines the symbolic constant but it has a value of -1, or if it has a value of 0 but
the corresponding sysconf or pathconf call returned -1. It is interesting to see that
some system implementations haven’t yet caught up to the latest version of the Single
UNIX Specification.

Solaris 10
Limit FreeBSD Linux Mac OS X UFS PCES
80 320 1068 file system | file system
_POSIX CHOWN_ RESTRICTED 1 1 200112 1 1
_POSIX_JOB_CONTROL 1 1 200112 1 1
_POSIX_NO_TRUNC 1 1 200112 1 |unsupported
_POSIX_SAVED IDS unsupported 1 200112 1 1
_POSIX_THREADS 200112 200809 200112 200112 200112
_POSIX VDISABLE 255 0 255 0 0
_POSIX_VERSION 200112 200809 200112 200112 200112
_XOPEN_UNIX unsupported 1 1 1 1
_XOPEN_VERSION unsupported 700 600 600 600

Figure 2.20 Examples of configuration options

Note that pathconf returns a value of -1 for PC_NO_TRUNC when used with a
file from a PCEFS file system on Solaris. The PCFS file system supports the DOS format
(for floppy disks), and DOS filenames are silently truncated to the 8.3 format limit that
the DOS file system requires.

Feature Test Macros

The headers define numerous POSIX.1 and XSI symbols, as we’ve described. Even so,
most implementations can add their own definitions to these headers, in addition to the
POSIX.1 and XSI definitions. If we want to compile a program so that it depends only
on the POSIX definitions and doesn’'t conflict with any implementation-defined
constants, we need to define the constant  POSIX C SOURCE. All the POSIX.1 headers
use this constant to exclude any implementation-defined definitions when
_POSIX C_SOURCE is defined.

Older versions of the POSIX.1 standard defined the _POSIX_ SOURCE constant. This was
superseded by the _POSIX C_SOURCE constant in the 2001 version of POSIX.1.

The constants _POSIX C SOURCE and _XOPEN_SOURCE are called feature test
macros. All feature test macros begin with an underscore. When used, they are typically
defined in the cc command, as in

cc -D _POSIX C_SOURCE=200809L file.c
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2.8

2.9

This causes the feature test macro to be defined before any header files are included by
the C program. If we want to use only the POSIX.1 definitions, we can also set the first
line of a source file to

#define POSIX C SOURCE 200809L

To enable the XSI option of Version 4 of the Single UNIX Specification, we need to
define the constant _XOPEN_SOURCE to be 700. Besides enabling the XSI option, this
has the same effect as defining POSIX C_SOURCE to be 200809L as far as POSIX.1
functionality is concerned.

The Single UNIX Specification defines the c99 utility as the interface to the C
compilation environment. With it we can compile a file as follows:

c99 -D XOPEN_SOURCE=700 file.c -o file

To enable the 1999 ISO C extensions in the gcc C compiler, we use the -std=c99
option, as in

gcc -D_XOPEN_SOURCE=700 -std=c99 file.c -o file

Primitive System Data Types

Historically, certain C data types have been associated with certain UNIX system
variables. For example, major and minor device numbers have historically been stored
in a 16-bit short integer, with 8 bits for the major device number and 8 bits for the minor
device number. But many larger systems need more than 256 values for these device
numbers, so a different technique is needed. (Indeed, the 32-bit version of Solaris uses
32 bits for the device number: 14 bits for the major and 18 bits for the minor.)

The header <sys/types.h> defines some implementation-dependent data types,
called the primitive system data types. More of these data types are defined in other
headers as well. These data types are defined in the headers with the C typedef
facility. Most end in _t. Figure 2.21 lists many of the primitive system data types that
we’ll encounter in this text.

By defining these data types this way, we do not build into our programs
implementation details that can change from one system to another. We describe what
each of these data types is used for when we encounter them later in the text.

Differences Between Standards

All in all, these various standards fit together nicely. Our main concern is any
differences between the ISO C standard and POSIX.1, since the Base Specifications of
the Single UNIX Specification and POSIX.1 are one and the same. Conflicts are
unintended, but if they should arise, POSIX.1 defers to the ISO C standard. However,
there are some differences.

ISO C defines the function clock to return the amount of CPU time used by a
process. The value returned is a clock_t value, but ISO C doesn’t specify its units. To
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Type Description
clock t counter of clock ticks (process time) (Section 1.10)
comp_t compressed clock ticks (not defined by POSIX.1; see Section 8.14)
dev_t device numbers (major and minor) (Section 4.24)
fd_set file descriptor sets (Section 14.4.1)
fpos_t file position (Section 5.10)
gid_t numeric group IDs
ino_t i-node numbers (Section 4.14)
mode_t file type, file creation mode (Section 4.5)
nlink_t link counts for directory entries (Section 4.14)
off t file sizes and offsets (signed) (1seek, Section 3.6)
pid_t process IDs and process group IDs (signed) (Sections 8.2 and 9.4)
pthread_t thread IDs (Section 11.3)
ptrdiff t result of subtracting two pointers (signed)
rlim t resource limits (Section 7.11)
sig_atomic_t | data type that can be accessed atomically (Section 10.15)
sigset_t signal set (Section 10.11)
size_t sizes of objects (such as strings) (unsigned) (Section 3.7)
ssize t functions that return a count of bytes (signed) (read, write, Section 3.7)
time_t counter of seconds of calendar time (Section 1.10)
uid_t numeric user IDs
wchar_t can represent all distinct character codes

Figure 2.21 Some common primitive system data types

convert this value to seconds, we divide it by CLOCKS_PER_SEC, which is defined in
the <time.h> header. POSIX.1 defines the function times that returns both the CPU
time (for the caller and all its terminated children) and the clock time. All these time
values are clock t values. The sysconf function is used to obtain the number of
clock ticks per second for use with the return values from the times function. What we
have is the same data type (clock_t) used to hold measurements of time defined with
different units by ISO C and POSIX.1. The difference can be seen in Solaris, where
clock returns microseconds (hence CLOCKS PER SEC is 1 million), whereas sysconf
returns the value 100 for clock ticks per second. Thus we must take care when using
variables of type clock_t so that we don’t mix variables with different units.

Another area of potential conflict is when the ISO C standard specifies a function,
but doesn’t specify it as strongly as POSIX.1 does. This is the case for functions that
require a different implementation in a POSIX environment (with multiple processes)
than in an ISO C environment (where very little can be assumed about the host
operating system). Nevertheless, POSIX-compliant systems implement the ISO C
function for compatibility. The signal function is an example. If we unknowingly use
the signal function provided by Solaris (hoping to write portable code that can be run
in ISO C environments and under older UNIX systems), it will provide semantics
different from the POSIX.1 sigaction function. We’ll have more to say about the
signal function in Chapter 10.
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2.10

Summary

Much has happened with the standardization of the UNIX programming environment
over the past two and a half decades. We’ve described the dominant standards—ISO C,
POSIX, and the Single UNIX Specification—and their effect on the four platforms that
we’ll examine in this text—FreeBSD, Linux, Mac OS X, and Solaris. These standards try
to define certain parameters that can change with each implementation, but we’ve seen
that these limits are imperfect. We’ll encounter many of these limits and magic
constants as we proceed through the text.

The bibliography specifies how to obtain copies of the standards discussed in this
chapter.

Exercises

21 We mentioned in Section 2.8 that some of the primitive system data types are defined in
more than one header. For example, in FreeBSD 8.0, size_t is defined in 29 different
headers. Because all 29 headers could be included in a program and because ISO C does
not allow multiple typedefs for the same name, how must the headers be written?

2.2 Examine your system’s headers and list the actual data types used to implement the
primitive system data types.

2.3 Update the program in Figure 2.17 to avoid the needless processing that occurs when
sysconf returns LONG_MAX as the limit for OPEN_MAX.
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3.2

File 1/0

Introduction

We'll start our discussion of the UNIX System by describing the functions available for
file I/O—open a file, read a file, write a file, and so on. Most file I/O on a UNIX system
can be performed using only five functions: open, read, write, lseek, and close.
We then examine the effect of various buffer sizes on the read and write functions.

The functions described in this chapter are often referred to as unbuffered 1/O, in
contrast to the standard I/O routines, which we describe in Chapter 5. The term
unbuffered means that each read or write invokes a system call in the kernel. These
unbuffered I/O functions are not part of ISO C, but are part of POSIX.1 and the Single
UNIX Specification.

Whenever we describe the sharing of resources among multiple processes, the
concept of an atomic operation becomes important. We examine this concept with
regard to file I/O and the arguments to the open function. This leads to a discussion of
how files are shared among multiple processes and which kernel data structures are
involved. After describing these features, we describe the dup, fentl, sync, £sync,
and ioctl functions.

File Descriptors

To the kernel, all open files are referred to by file descriptors. A file descriptor is a
non-negative integer. When we open an existing file or create a new file, the kernel
returns a file descriptor to the process. When we want to read or write a file, we
identify the file with the file descriptor that was returned by open or creat as an
argument to either read or write.

61
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3.3

By convention, UNIX System shells associate file descriptor 0 with the standard
input of a process, file descriptor 1 with the standard output, and file descriptor 2 with
the standard error. This convention is used by the shells and many applications; it is
not a feature of the UNIX kernel. Nevertheless, many applications would break if these
associations weren't followed.

Although their values are standardized by POSIX.1, the magic numbers 0, 1, and 2
should be replaced in POSIX-compliant applications with the symbolic constants
STDIN_FILENO, STDOUT FILENO, and STDERR FILENO to improve readability.
These constants are defined in the <unistd.h> header.

File descriptors range from 0 through OPEN_MAX-1. (Recall Figure 2.11.) Early
historical implementations of the UNIX System had an upper limit of 19, allowing a
maximum of 20 open files per process, but many systems subsequently increased this
limit to 63.

With FreeBSD 8.0, Linux 3.2.0, Mac OS X 10.6.8, and Solaris 10, the limit is essentially infinite,
bounded by the amount of memory on the system, the size of an integer, and any hard and soft
limits configured by the system administrator.

open and openat Functions

A file is opened or created by calling either the open function or the openat function.

#include <fcntl.h>
int open(const char *path, int oflag, ... /* mode_t mode */ );
int openat(int fd, const char *path, int oflag, ... /* mode t mode */ );

Both return: file descriptor if OK, -1 on error

We show the last argument as . . ., which is the ISO C way to specify that the number
and types of the remaining arguments may vary. For these functions, the last argument
is used only when a new file is being created, as we describe later. We show this
argument as a comment in the prototype.

The path parameter is the name of the file to open or create. This function has a
multitude of options, which are specified by the oflag argument. This argument is
formed by ORing together one or more of the following constants from the <fcntl.h>
header:

O_RDONLY Open for reading only.
O_WRONLY Open for writing only.
O_RDWR Open for reading and writing.

Most implementations define O_RDONLY as 0, O_WRONLY as 1, and O_RDWR as 2, for
compatibility with older programs.

O_EXEC Open for execute only.
O_SEARCH Open for search only (applies to directories).

www.it-ebooks.info


http://www.it-ebooks.info/

Section 3.3

open and openat Functions 63

The purpose of the O_SEARCH constant is to evaluate search permissions at the time
a directory is opened. Further operations using the directory’s file descriptor will
not reevaluate permission to search the directory. None of the versions of the
operating systems covered in this book support O_SEARCH yet.

One and only one of the previous five constants must be specified. The following
constants are optional:

O_APPEND

0_CLOEXEC

O_CREAT

O_DIRECTORY
0_EXCL

O_NOCTTY

0_NOFOLLOW

0_NONBLOCK

0_SYNC

O_TRUNC

Append to the end of file on each write. We describe this option in
detail in Section 3.11.

Set the FD_CLOEXEC file descriptor flag. We discuss file descriptor
flags in Section 3.14.

Create the file if it doesn’t exist. This option requires a third argument
to the open function (a fourth argument to the openat function)—the
mode, which specifies the access permission bits of the new file. (When
we describe a file’s access permission bits in Section 4.5, we’ll see how
to specify the mode and how it can be modified by the umask value of a
process.)

Generate an error if path doesn’t refer to a directory.

Generate an error if O_CREAT is also specified and the file already
exists. This test for whether the file already exists and the creation of
the file if it doesn’t exist is an atomic operation. We describe atomic
operations in more detail in Section 3.11.

If path refers to a terminal device, do not allocate the device as the
controlling terminal for this process. We talk about controlling
terminals in Section 9.6.

Generate an error if path refers to a symbolic link. We discuss symbolic
links in Section 4.17.

If path refers to a FIFO, a block special file, or a character special file,
this option sets the nonblocking mode for both the opening of the file
and subsequent I/O. We describe this mode in Section 14.2.

In earlier releases of System V, the O_NDELAY (no delay) flag was introduced. This
option is similar to the O_NONBLOCK (nonblocking) option, but an ambiguity was
introduced in the return value from a read operation. The no-delay option causes a
read operation to return 0 if there is no data to be read from a pipe, FIFO, or device,
but this conflicts with a return value of 0, indicating an end of file. SVR4-based
systems still support the no-delay option, with the old semantics, but new
applications should use the nonblocking option instead.

Have each write wait for physical I/O to complete, including 1/0O
necessary to update file attributes modified as a result of the write.
We use this option in Section 3.14.

If the file exists and if it is successfully opened for either write-only or
read—write, truncate its length to 0.
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O_TTY_INIT When opening a terminal device that is not already open, set the
nonstandard termios parameters to values that result in behavior that
conforms to the Single UNIX Specification. We discuss the termios
structure when we discuss terminal I/O in Chapter 18.

The following two flags are also optional. They are part of the synchronized input and
output option of the Single UNIX Specification (and thus POSIX.1).

O_DSYNC Have each write wait for physical I/O to complete, but don’t wait for
file attributes to be updated if they don’t affect the ability to read the
data just written.

The 0_DSYNC and O_SYNC flags are similar, but subtly different. The O_DSYNC flag
affects a file’s attributes only when they need to be updated to reflect a change in the
file’s data (for example, update the file’s size to reflect more data). With the 0_SYNC
flag, data and attributes are always updated synchronously. When overwriting an
existing part of a file opened with the O_DSYNC flag, the file times wouldn’t be
updated synchronously. In contrast, if we had opened the file with the 0_SYNC flag,
every write to the file would update the file’s times before the write returns,
regardless of whether we were writing over existing bytes or appending to the file.

O_RSYNC Have each read operation on the file descriptor wait until any pending
writes for the same portion of the file are complete.

Solaris 10 supports all three synchronization flags. Historically, FreeBSD (and thus
Mac OS X) have used the 0_FSYNC flag, which has the same behavior as 0_SYNC.
Because the two flags are equivalent, they define the flags to have the same value.
FreeBSD 8.0 doesn’t support the O_DSYNC or O_RSYNC flags. Mac OS X doesn’t
support the O_RSYNC flag, but defines the O_DSYNC flag, treating it the same as the
0_SYNC flag. Linux 3.2.0 supports the O_DSYNC flag, but treats the O_RSYNC flag
the same as O_SYNC.

The file descriptor returned by open and openat is guaranteed to be the lowest-
numbered unused descriptor. This fact is used by some applications to open a new file
on standard input, standard output, or standard error. For example, an application
might close standard output—normally, file descriptor 1—and then open another file,
knowing that it will be opened on file descriptor 1. We’ll see a better way to guarantee
that a file is open on a given descriptor in Section 3.12, when we explore the dup2
function.

The fd parameter distinguishes the openat function from the open function. There
are three possibilities:

1. The path parameter specifies an absolute pathname. In this case, the fd parameter is
ignored and the openat function behaves like the open function.

2. The path parameter specifies a relative pathname and the fd parameter is a file
descriptor that specifies the starting location in the file system where the relative
pathname is to be evaluated. The fd parameter is obtained by opening the directory
where the relative pathname is to be evaluated.
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3. The path parameter specifies a relative pathname and the fd parameter has the
special value AT _FDCWD. In this case, the pathname is evaluated starting in the
current working directory and the openat function behaves like the open function.

The openat function is one of a class of functions added to the latest version of
POSIX.1 to address two problems. First, it gives threads a way to use relative
pathnames to open files in directories other than the current working directory. As
we’ll see in Chapter 11, all threads in the same process share the same current working
directory, so this makes it difficult for multiple threads in the same process to work in
different directories at the same time. Second, it provides a way to avoid time-of-check-
to-time-of-use (TOCTTOU) errors.

The basic idea behind TOCTTOU errors is that a program is vulnerable if it makes
two file-based function calls where the second call depends on the results of the first
call. Because the two calls are not atomic, the file can change between the two calls,
thereby invalidating the results of the first call, leading to a program error. TOCTTOU
errors in the file system namespace generally deal with attempts to subvert file system
permissions by tricking a privileged program into either reducing permissions on a
privileged file or modifying a privileged file to open up a security hole. Wei and Pu
[2005] discuss TOCTTOU weaknesses in the UNIX file system interface.

Filename and Pathname Truncation

What happens if NAME_MAX is 14 and we try to create a new file in the current directory
with a filename containing 15 characters? Traditionally, early releases of System V, such
as SVR2, allowed this to happen, silently truncating the filename beyond the 14th
character. BSD-derived systems, in contrast, returned an error status, with errno set to
ENAMETOOLONG. Silently truncating the filename presents a problem that affects more
than simply the creation of new files. If NAME_MAX is 14 and a file exists whose name is
exactly 14 characters, any function that accepts a pathname argument, such as open or
stat, has no way to determine what the original name of the file was, as the original
name might have been truncated.

With POSIX.1, the constant _POSIX_NO_TRUNC determines whether long filenames
and long components of pathnames are truncated or an error is returned. As we saw in
Chapter 2, this value can vary based on the type of the file system, and we can use
fpathconf or pathconf to query a directory to see which behavior is supported.

Whether an error is returned is largely historical. For example, SVR4-based systems do not
generate an error for the traditional System V file system, S5. For the BSD-style file system
(known as UFS), however, SVR4-based systems do generate an error. Figure 2.20 illustrates
another example: Solaris will return an error for UFS, but not for PCFS, the DOS-compatible
file system, as DOS silently truncates filenames that don't fit in an 8.3 format. BSD-derived
systems and Linux always return an error.

If POSIX NO TRUNC is in effect, errno is set to ENAMETOOLONG, and an error
status is returned if any filename component of the pathname exceeds NAME MAX.

Most modern file systems support a maximum of 255 characters for filenames. Because
filenames are usually shorter than this limit, this constraint tends to not present problems for
most applications.
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3.4 creat Function
A new file can also be created by calling the creat function.

#include <fcntl.h>

int creat(const char *path, mode_t mode);

Returns: file descriptor opened for write-only if OK, -1 on error
Note that this function is equivalent to
open(path, O WRONLY | O CREAT | O TRUNC, mode);
Historically, in early versions of the UNIX System, the second argument to open could be only
0, 1, or 2. There was no way to open a file that didn’t already exist. Therefore, a separate
system call, creat, was needed to create new files. With the O_CREAT and O_TRUNC options
now provided by open, a separate creat function is no longer needed.
We'll show how to specify mode in Section 4.5 when we describe a file’s access
permissions in detail.

One deficiency with creat is that the file is opened only for writing. Before the
new version of open was provided, if we were creating a temporary file that we wanted
to write and then read back, we had to call creat, close, and then open. A better
way is to use the open function, as in

open(path, O RDWR | O CREAT | O _TRUNC, mode);

3.5 close Function
An open file is closed by calling the close function.

#include <unistd.h>

int close(int fd);

Returns: 0 if OK, -1 on error
Closing a file also releases any record locks that the process may have on the file. We’ll
discuss this point further in Section 14.3.

When a process terminates, all of its open files are closed automatically by the
kernel. Many programs take advantage of this fact and don’t explicitly close open files.
See the program in Figure 1.4, for example.

3.6 1lseek Function

Every open file has an associated “current file offset,” normally a non-negative integer
that measures the number of bytes from the beginning of the file. (We describe some
exceptions to the “non-negative” qualifier later in this section.) Read and write
operations normally start at the current file offset and cause the offset to be incremented
by the number of bytes read or written. By default, this offset is initialized to 0 when a
file is opened, unless the 0_APPEND option is specified.
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An open file’s offset can be set explicitly by calling 1seek.

#include <unistd.h>
off t lseek(int fd, off_t offset, int whence);

Returns: new file offset if OK, -1 on error

The interpretation of the offset depends on the value of the whence argument.

» If whence is SEEK_SET, the file’s offset is set to offset bytes from the beginning of
the file.

o If whence is SEEK_CUR, the file’s offset is set to its current value plus the offset.
The offset can be positive or negative.

» If whence is SEEK_END, the file’s offset is set to the size of the file plus the offset.
The offset can be positive or negative.

Because a successful call to 1seek returns the new file offset, we can seek zero bytes
from the current position to determine the current offset:

off t currpos;
currpos = lseek(fd, 0, SEEK CUR);

This technique can also be used to determine if a file is capable of seeking. If the file
descriptor refers to a pipe, FIFO, or socket, 1seek sets errno to ESPIPE and returns -1.

The three symbolic constants—SEEK_SET, SEEK_CUR, and SEEK_END—were introduced
with System V. Prior to this, whence was specified as 0 (absolute), 1 (relative to the current
offset), or 2 (relative to the end of file). Much software still exists with these numbers hard
coded.

The character 1 in the name lseek means “long integer.” Before the introduction of the
off_t data type, the offset argument and the return value were long integers. lseek was
introduced with Version 7 when long integers were added to C. (Similar functionality was
provided in Version 6 by the functions seek and tell.)

Example

The program in Figure 3.1 tests its standard input to see whether it is capable of seeking.

#include "apue.h"

int
main(void)
{
if (lseek(STDIN_FILENO, 0, SEEK CUR) == -1)
printf ("cannot seek\n");
else
printf ("seek OK\n");
exit(0);
}

Figure 3.1 Test whether standard input is capable of seeking
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If we invoke this program interactively, we get

$ ./a.out < /etc/passwd

seek OK

$ cat < /etc/passwd | ./a.out
cannot seek

$ ./a.out < /var/spool/cron/FIFO

cannot seek
O

Normally, a file’s current offset must be a non-negative integer. It is possible,
however, that certain devices could allow negative offsets. But for regular files, the
offset must be non-negative. Because negative offsets are possible, we should be careful
to compare the return value from lseek as being equal to or not equal to -1, rather
than testing whether it is less than 0.

The /dev/kmem device on FreeBSD for the Intel x86 processor supports negative offsets.

Because the offset (off_t) is a signed data type (Figure 2.21), we lose a factor of 2 in the
maximum file size. If of£_t is a 32-bit integer, the maximum file size is 2%1 bytes.

lseek only records the current file offset within the kernel—it does not cause any
I/0 to take place. This offset is then used by the next read or write operation.

The file’s offset can be greater than the file’s current size, in which case the next
write to the file will extend the file. This is referred to as creating a hole in a file and is
allowed. Any bytes in a file that have not been written are read back as 0.

A hole in a file isn’t required to have storage backing it on disk. Depending on the
file system implementation, when you write after seeking past the end of a file, new
disk blocks might be allocated to store the data, but there is no need to allocate disk
blocks for the data between the old end of file and the location where you start writing.

Example

The program shown in Figure 3.2 creates a file with a hole in it.

#include "apue.h"
#include <fcntl.h>

char bufl[] = "abcdefghij";
char buf2[] = "ABCDEFGHIJ";
int
main(void)
{

int fd;

if ((fd = creat("file.hole", FILE MODE)) < 0)
err sys("creat error");

if (write(fd, bufl, 10) != 10)
err_sys("bufl write error");
/* offset now = 10 */
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if (lseek(fd, 16384, SEEK_SET) == -1)
err sys("lseek error");
/* offset now = 16384 */

if (write(fd, buf2, 10) != 10)
err sys("buf2 write error");
/* offset now = 16394 */

exit(0);

Figure 3.2 Create a file with a hole in it

Running this program gives us

$ ./a.out

$ 1s -1 file.hole check its size

-rw-r--r-- 1 sar 16394 Nov 25 01:01 file.hole

$ od -c file.hole let’s look at the actual contents

0000000 a b c d e £ g h i 3 \0o \0o \o \0o \0 \o
0000020 N0 \NO \NO N0 \NO \NO \O N0 N0 N0 \O N0 \0 \0 \0 \O

*

0040000 A B C D E F G H I J
0040012

We use the od(1) command to look at the contents of the file. The -c flag tells it to print
the contents as characters. We can see that the unwritten bytes in the middle are read
back as zero. The seven-digit number at the beginning of each line is the byte offset in
octal.

To prove that there is really a hole in the file, let’s compare the file we just created
with a file of the same size, but without holes:

$ 1s -1s file.hole file.nohole compare sizes
8 -rw-r--r-- 1 sar 16394 Nov 25 01:01 file.hole
20 -rw-r--r-- 1 sar 16394 Nov 25 01:03 file.nohole

Although both files are the same size, the file without holes consumes 20 disk blocks,
whereas the file with holes consumes only 8 blocks.

In this example, we call the write function (Section 3.8). We'll have more to say
about files with holes in Section 4.12. O

Because the offset address that lseek uses is represented by an off_t,
implementations are allowed to support whatever size is appropriate on their particular
platform. Most platforms today provide two sets of interfaces to manipulate file offsets:
one set that uses 32-bit file offsets and another set that uses 64-bit file offsets.

The Single UNIX Specification provides a way for applications to determine which
environments are supported through the sysconf function (Section 2.5.4). Figure 3.3
summarizes the sysconf constants that are defined.
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Name of option Description name argument
_POSIX_V7_ILP32_OFF32 |int, long, pointer,and off_t types |_SC_V7_ILP32_OFF32
are 32 bits.
_POSIX_V7_ILP32_OFFBIG|int, long, and pointer types are _SC_V7_ILP32_OFFBIG
32 bits; of £_t types are at least
64 bits.

_POSIX_V7_LP64_OFF64 int types are 32 bits; long, pointer, |_SC_V7_LP64_OFF64
and of£_t types are 64 bits.
_POSIX_V7_LP64_OFFBIG |int types are at least 32 bits; 1ong, _SC_V7_LP64_OFFBIG
pointer, and of £_t types are at
least 64 bits.

Figure 3.3 Data size options and name arguments to sysconf

The c99 compiler requires that we use the getconf(l) command to map the
desired data size model to the flags necessary to compile and link our programs.
Different flags and libraries might be needed, depending on the environments
supported by each platform.

Unfortunately, this is one area in which implementations haven’t caught up to the standards.
If your system does not match the latest version of the standard, the system might support the
option names from the previous version of the Single UNIX Specification:
_POSIX_V6_ILP32 OFF32, POSIX V6 ILP32 OFFBIG, POSIX V6 LP64 OFF64, and
_POSIX_V6_LP64_OFFBIG.

To get around this, applications can set the _FILE_OFFSET_BITS constant to 64 to enable
64-bit offsets. Doing so changes the definition of off_t to be a 64-bit signed integer. Setting
_FILE OFFSET BITS to 32 enables 32-bit file offsets. Be aware, however, that although all
four platforms discussed in this text support both 32-bit and 64-bit file offsets, setting
_FILE OFFSET_ BITS is not guaranteed to be portable and might not have the desired effect.

Figure 3.4 summarizes the size in bytes of the off_t data type for the platforms covered in
this book when an application doesn’t define _FILE_OFFSET_BITS, as well as the size when
an application defines _FILE_OFFSET_BITS to have a value of either 32 or 64.

Operating CPU _FILE OFFSET BITS value
system architecture Undefined 32 64
FreeBSD 8.0 x86 32-bit 8 8 8
Linux 3.2.0 x86 64-bit 8 8 8
Mac OS X 10.6.8 x86 64-bit 8 8 8
Solaris 10 SPARC 64-bit 8 4 8

Figure 3.4 Size in bytes of of f£_t for different platforms

Note that even though you might enable 64-bit file offsets, your ability to create a
file larger than 2 GB (2*'-1 bytes) depends on the underlying file system type.
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3.7

read Function

Data is read from an open file with the read function.

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t nbytes);

Returns: number of bytes read, 0 if end of file, -1 on error

If the read is successful, the number of bytes read is returned. If the end of file is
encountered, 0 is returned.

There are several cases in which the number of bytes actually read is less than the
amount requested:

When reading from a regular file, if the end of file is reached before the
requested number of bytes has been read. For example, if 30 bytes remain until
the end of file and we try to read 100 bytes, read returns 30. The next time we
call read, it will return 0 (end of file).

When reading from a terminal device. Normally, up to one line is read at a time.
(We'll see how to change this default in Chapter 18.)

When reading from a network. Buffering within the network may cause less
than the requested amount to be returned.

When reading from a pipe or FIFO. If the pipe contains fewer bytes than
requested, read will return only what is available.

When reading from a record-oriented device. Some record-oriented devices,
such as magnetic tape, can return up to a single record at a time.

When interrupted by a signal and a partial amount of data has already been
read. We discuss this further in Section 10.5.

The read operation starts at the file’s current offset. Before a successful return, the
offset is incremented by the number of bytes actually read.

POSIX.1 changed the prototype for this function in several ways. The classic
definition is

int read(int fd, char *buf, unsigned nbytes);

First, the second argument was changed from char * to void * to be consistent
with ISO C: the type void * is used for generic pointers.

Next, the return value was required to be a signed integer (ssize_t) to return a
positive byte count, 0 (for end of file), or -1 (for an error).

Finally, the third argument historically has been an unsigned integer, to allow a
16-bit implementation to read or write up to 65,534 bytes at a time. With the
1990 POSIX.1 standard, the primitive system data type ssize_t was introduced
to provide the signed return value, and the unsigned size_t was used for the
third argument. (Recall the SSIZE_MAX constant from Section 2.5.2.)
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3.8 write Function

Data is written to an open file with the write function.

#include <unistd.h>
ssize t write(int fd, const void *buf, size_t nbytes);

Returns: number of bytes written if OK, -1 on error

The return value is usually equal to the nbytes argument; otherwise, an error has
occurred. A common cause for a write error is either filling up a disk or exceeding the
file size limit for a given process (Section 7.11 and Exercise 10.11).

For a regular file, the write operation starts at the file’s current offset. If the
O_APPEND option was specified when the file was opened, the file’s offset is set to the
current end of file before each write operation. After a successful write, the file’s offset
is incremented by the number of bytes actually written.

3.9 /O Efficiency

The program in Figure 3.5 copies a file, using only the read and write functions.

#include "apue.h"

#define BUFFSIZE 4096
int
main(void)
{
int n;
char buf [BUFFSIZE];

while ((n = read(STDIN FILENO, buf, BUFFSIZE)) > 0)
if (write(STDOUT FILENO, buf, n) != n)
err sys("write error");

if (n < 0)
err sys("read error");

exit(0);

Figure 3.5 Copy standard input to standard output

The following caveats apply to this program.

¢ It reads from standard input and writes to standard output, assuming that these
have been set up by the shell before this program is executed. Indeed, all
normal UNIX system shells provide a way to open a file for reading on standard
input and to create (or rewrite) a file on standard output. This prevents the
program from having to open the input and output files, and allows the user to
take advantage of the shell’s I/O redirection facilities.
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* The program doesn’t close the input file or output file. Instead, the program
uses the feature of the UNIX kernel that closes all open file descriptors in a

process when that process terminates.

e This example works for both text files and binary files, since there is no

difference between the two to the UNIX kernel.

One question we haven’t answered, however, is how we chose the BUFFSIZE
value. Before answering that, let's run the program using different values for
BUFFSIZE. Figure 3.6 shows the results for reading a 516,581,760-byte file, using 20

different buffer sizes.

BUFFSIZE User CPU | System CPU | Clock time Number
(seconds) (seconds) (seconds) of loops
1 20.03 117.50 138.73 516,581,760
2 9.69 58.76 68.60 258,290,880
4 4.60 36.47 41.27 129,145,440
8 2.47 15.44 18.38 64,572,720
16 1.07 7.93 9.38 32,286,360
32 0.56 451 8.82 16,143,180
64 0.34 2.72 8.66 8,071,590
128 0.34 1.84 8.69 4,035,795
256 0.15 1.30 8.69 2,017,898
512 0.09 0.95 8.63 1,008,949
1,024 0.02 0.78 8.58 504,475
2,048 0.04 0.66 8.68 252,238
4,096 0.03 0.58 8.62 126,119
8,192 0.00 0.54 8.52 63,060
16,384 0.01 0.56 8.69 31,530
32,768 0.00 0.56 8.51 15,765
65,536 0.01 0.56 9.12 7,883
131,072 0.00 0.58 9.08 3,942
262,144 0.00 0.60 8.70 1,971
524,288 0.01 0.58 8.58 986

Figure 3.6 Timing results for reading with different buffer sizes on Linux

The file was read using the program shown in Figure 3.5, with standard output
redirected to /dev/null. The file system used for this test was the Linux ext4 file
(The st_blksize value, which we describe in
Section 4.12, is 4,096.) This accounts for the minimum in the system time occurring at
the few timing measurements starting around a BUFFSIZE of 4,096. Increasing the

system with 4,096-byte blocks.

buffer size beyond this limit has little positive effect.

Most file systems support some kind of read-ahead to improve performance. When
sequential reads are detected, the system tries to read in more data than an application
requests, assuming that the application will read it shortly. The effect of read-ahead can
be seen in Figure 3.6, where the elapsed time for buffer sizes as small as 32 bytes is as

good as the elapsed time for larger buffer sizes.
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We'll return to this timing example later in the text. In Section 3.14, we show the
effect of synchronous writes; in Section 5.8, we compare these unbuffered I/O times
with the standard I/O library.

Beware when trying to measure the performance of programs that read and write files. The
operating system will try to cache the file incore, so if you measure the performance of the
program repeatedly, the successive timings will likely be better than the first. This
improvement occurs because the first run causes the file to be entered into the system'’s cache,
and successive runs access the file from the system'’s cache instead of from the disk. (The term
incore means in main memory. Back in the day, a computer’s main memory was built out of
ferrite core. This is where the phrase “core dump” comes from: the main memory image of a
program stored in a file on disk for diagnosis.)

In the tests reported in Figure 3.6, each run with a different buffer size was made using a
different copy of the file so that the current run didn’t find the data in the cache from the
previous run. The files are large enough that they all don’t remain in the cache (the test system
was configured with 6 GB of RAM).

3.10 File Sharing

The UNIX System supports the sharing of open files among different processes. Before
describing the dup function, we need to describe this sharing. To do this, we’ll examine
the data structures used by the kernel for all I/O.

The following description is conceptual; it may or may not match a particular implementation.
Refer to Bach [1986] for a discussion of these structures in System V. McKusick et al. [1996]
describe these structures in 4.4BSD. McKusick and Neville-Neil [2005] cover FreeBSD 5.2. For
a similar discussion of Solaris, see McDougall and Mauro [2007]. The Linux 2.6 kernel
architecture is discussed in Bovet and Cesati [2006].

The kernel uses three data structures to represent an open file, and the relationships
among them determine the effect one process has on another with regard to file sharing.

1. Every process has an entry in the process table. Within each process table entry is a
table of open file descriptors, which we can think of as a vector, with one entry per
descriptor. Associated with each file descriptor are

(a) The file descriptor flags (close-on-exec; refer to Figure 3.7 and Section 3.14)

(b) A pointer to a file table entry

2. The kernel maintains a file table for all open files. Each file table entry contains

(a) The file status flags for the file, such as read, write, append, sync, and
nonblocking; more on these in Section 3.14

(b) The current file offset
(c) A pointer to the v-node table entry for the file

3. Each open file (or device) has a v-node structure that contains information about the
type of file and pointers to functions that operate on the file. For most files, the
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v-node also contains the i-node for the file. This information is read from disk when
the file is opened, so that all the pertinent information about the file is readily
available. For example, the i-node contains the owner of the file, the size of the file,
pointers to where the actual data blocks for the file are located on disk, and so on.
(We talk more about i-nodes in Section 4.14 when we describe the typical UNIX file
system in more detail.)

Linux has no v-node. Instead, a generic i-node structure is used. Although the
implementations differ, the v-node is conceptually the same as a generic i-node. Both point to
an i-node structure specific to the file system.

We're ignoring some implementation details that don’t affect our discussion. For
example, the table of open file descriptors can be stored in the user area (a separate per-
process structure that can be paged out) instead of the process table. Also, these tables
can be implemented in numerous ways—they need not be arrays; one alternate
implementation is a linked lists of structures. Regardless of the implementation details,
the general concepts remain the same.

Figure 3.7 shows a pictorial arrangement of these three tables for a single process
that has two different files open: one file is open on standard input (file descriptor 0),
and the other is open on standard output (file descriptor 1).

process table entry file table entry v-node table entry
file status flags v-node information
i file current file offset L™ 7 % data |
flags  pointer - i
£d0: v-node pointer —| i-node
fd 1:
fd 2: i-node information
file tableentry L _____ __ _ |
file status fl current file size
ile status flags | 0 F - — - -2 _
5 i vnode —
current file offset

v-node table entry

v-node pointer ———

v-node information

Figure 3.7 Kernel data structures for open files

The arrangement of these three tables has existed since the early versions of the UNIX
System [Thompson 1978]. This arrangement is critical to the way files are shared
among processes. We'll return to this figure in later chapters, when we describe
additional ways that files are shared.
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The v-node was invented to provide support for multiple file system types on a single
computer system. This work was done independently by Peter Weinberger (Bell Laboratories)
and Bill Joy (Sun Microsystems). Sun called this the Virtual File System and called the file
system-independent portion of the i-node the v-node [Kleiman 1986]. The v-node propagated
through various vendor implementations as support for Sun’s Network File System (NFS) was
added. The first release from Berkeley to provide v-nodes was the 4.3BSD Reno release, when
NFS was added.

In SVR4, the v-node replaced the file system-independent i-node of SVR3. Solaris is derived
from SVR4 and, therefore, uses v-nodes.

Instead of splitting the data structures into a v-node and an i-node, Linux uses a file
system—-independent i-node and a file system—-dependent i-node.

If two independent processes have the same file open, we could have the
arrangement shown in Figure 3.8.

process table entry

fd file
flags  pointer
fd 0:
fd 1:
fd 2: §
fd 3: file table entry
T
file status flags
current file offset
v-node pointer —|
\ v-node table entry
process table entry v-node information
file tableentry /L ___ _ __ _ _ |
i . — dat
ﬂ;fa%s pofi%'%er file status flags i v_cata
. - 1 d
ﬁj (1)1 current file offset rnode
: i-node informati
iE venode pointer— | imode iormatin
fd 4 current file size
i vnode —

Figure 3.8 Two independent processes with the same file open

We assume here that the first process has the file open on descriptor 3 and that the
second process has that same file open on descriptor 4. Each process that opens the file
gets its own file table entry, but only a single v-node table entry is required for a given
file. One reason each process gets its own file table entry is so that each process has its
own current offset for the file.

Given these data structures, we now need to be more specific about what happens
with certain operations that we’ve already described.
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3.11

¢ After each write is complete, the current file offset in the file table entry is
incremented by the number of bytes written. If this causes the current file offset
to exceed the current file size, the current file size in the i-node table entry is set
to the current file offset (for example, the file is extended).

* If a file is opened with the O_APPEND flag, a corresponding flag is set in the file
status flags of the file table entry. Each time a write is performed for a file with
this append flag set, the current file offset in the file table entry is first set to the
current file size from the i-node table entry. This forces every write to be
appended to the current end of file.

e If afile is positioned to its current end of file using 1seek, all that happens is the
current file offset in the file table entry is set to the current file size from the
i-node table entry. (Note that this is not the same as if the file was opened with
the O_APPEND flag, as we will see in Section 3.11.)

¢ The lseek function modifies only the current file offset in the file table entry.
No I/0 takes place.

It is possible for more than one file descriptor entry to point to the same file table
entry, as we'll see when we discuss the dup function in Section 3.12. This also happens
after a fork when the parent and the child share the same file table entry for each open
descriptor (Section 8.3).

Note the difference in scope between the file descriptor flags and the file status
flags. The former apply only to a single descriptor in a single process, whereas the latter
apply to all descriptors in any process that point to the given file table entry. When we
describe the fcntl function in Section 3.14, we’ll see how to fetch and modify both the
file descriptor flags and the file status flags.

Everything that we’ve described so far in this section works fine for multiple
processes that are reading the same file. Each process has its own file table entry with
its own current file offset. Unexpected results can arise, however, when multiple
processes write to the same file. To see how to avoid some surprises, we need to
understand the concept of atomic operations.

Atomic Operations

Appending to a File

Consider a single process that wants to append to the end of a file. Older versions of
the UNIX System didn’t support the O_APPEND option to open, so the program was
coded as follows:

if (lseek(fd, 0L, 2) < 0) /* position to EOF */
err sys("lseek error");
if (write(£fd, buf, 100) != 100) /* and write */

err sys("write error");
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This works fine for a single process, but problems arise if multiple processes use this
technique to append to the same file. (This scenario can arise if multiple instances of the
same program are appending messages to a log file, for example.)

Assume that two independent processes, A and B, are appending to the same file.
Each has opened the file but without the 0_APPEND flag. This gives us the same picture
as Figure 3.8. Each process has its own file table entry, but they share a single v-node
table entry. Assume that process A does the 1seek and that this sets the current offset
for the file for process A to byte offset 1,500 (the current end of file). Then the kernel
switches processes, and B continues running. Process B then does the 1seek, which
sets the current offset for the file for process B to byte offset 1,500 also (the current end
of file). Then B calls write, which increments B’s current file offset for the file to 1,600.
Because the file’s size has been extended, the kernel also updates the current file size in
the v-node to 1,600. Then the kernel switches processes and A resumes. When A calls
write, the data is written starting at the current file offset for A, which is byte offset
1,500. This overwrites the data that B wrote to the file.

The problem here is that our logical operation of “position to the end of file and
write” requires two separate function calls (as we’ve shown it). The solution is to have
the positioning to the current end of file and the write be an atomic operation with
regard to other processes. Any operation that requires more than one function call
cannot be atomic, as there is always the possibility that the kernel might temporarily
suspend the process between the two function calls (as we assumed previously).

The UNIX System provides an atomic way to do this operation if we set the
O_APPEND flag when a file is opened. As we described in the previous section, this
causes the kernel to position the file to its current end of file before each write. We no
longer have to call 1seek before each write.

pread and pwrite Functions

The Single UNIX Specification includes two functions that allow applications to seek
and perform I/O atomically: pread and pwrite.

#include <unistd.h>
ssize_t pread(int fd, void *buf, size_ t nbytes, off_t offset);
Returns: number of bytes read, 0 if end of file, -1 on error

ssize t pwrite(int fd, const void *buf, size_t nbytes, off_t offset);

Returns: number of bytes written if OK, -1 on error

Calling pread is equivalent to calling 1seek followed by a call to read, with the
following exceptions.

* There is no way to interrupt the two operations that occur when we call pread.

* The current file offset is not updated.
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Calling pwrite is equivalent to calling 1seek followed by a call to write, with similar
exceptions.

Creating a File

3.12

We saw another example of an atomic operation when we described the O_CREAT and
O_EXCL options for the open function. When both of these options are specified, the
open will fail if the file already exists. We also said that the check for the existence of
the file and the creation of the file was performed as an atomic operation. If we didn’t
have this atomic operation, we might try

if ((fd = open(path, O WRONLY)) < 0) {
if (errno == ENOENT) {
if ((fd = creat(path, mode)) < 0)
err sys("creat error");
} else {
err sys("open error");
}
}

The problem occurs if the file is created by another process between the open and the
creat. If the file is created by another process between these two function calls, and if
that other process writes something to the file, that data is erased when this creat is
executed. Combining the test for existence and the creation into a single atomic
operation avoids this problem.

In general, the term atomic operation refers to an operation that might be composed
of multiple steps. If the operation is performed atomically, either all the steps are
performed (on success) or none are performed (on failure). It must not be possible for
only a subset of the steps to be performed. We'll return to the topic of atomic operations
when we describe the 1ink function (Section 4.15) and record locking (Section 14.3).

dup and dup2 Functions

An existing file descriptor is duplicated by either of the following functions:

#include <unistd.h>
int dup(int fd);
int dup2(int fd, int fd2);

Both return: new file descriptor if OK, -1 on error

The new file descriptor returned by dup is guaranteed to be the lowest-numbered
available file descriptor. With dup2, we specify the value of the new descriptor with the
fd2 argument. If fd2 is already open, it is first closed. If fd equals fd2, then dup2 returns
fd2 without closing it. Otherwise, the FD_CLOEXEC file descriptor flag is cleared for fd2,
so that fd2 is left open if the process calls exec.
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The new file descriptor that is returned as the value of the functions shares the same
file table entry as the fd argument. We show this in Figure 3.9.

process table entry

fd file file table v-node table
flags  pointer N

£d 0: file status flags v-node information

ig % current file offset [ v data |

fd 3: v-node pointer —| i

Figure 3.9 Kernel data structures after dup (1)

In this figure, we assume that when it’s started, the process executes
newfd = dup(1l);

We assume that the next available descriptor is 3 (which it probably is, since 0, 1, and 2
are opened by the shell). Because both descriptors point to the same file table entry,
they share the same file status flags—read, write, append, and so on—and the same
current file offset.

Each descriptor has its own set of file descriptor flags. As we describe in
Section 3.14, the close-on-exec file descriptor flag for the new descriptor is always
cleared by the dup functions.

Another way to duplicate a descriptor is with the fcntl function, which we
describe in Section 3.14. Indeed, the call

dup(£d);
is equivalent to

fentl(fd, F_DUPFD, 0);
Similarly, the call

dup2(fd, £d2);
is equivalent to

close(£fd2);
fentl(£fd, F_DUPFD, £d2);

In this last case, the dup2 is not exactly the same as a close followed by an fcntl.
The differences are as follows:
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3.13

1. dup2 is an atomic operation, whereas the alternate form involves two function
calls. It is possible in the latter case to have a signal catcher called between the
close and the fcntl that could modify the file descriptors. (We describe
signals in Chapter 10.) The same problem could occur if a different thread
changes the file descriptors. (We describe threads in Chapter 11.)

2. There are some errno differences between dup2 and fcntl.

The dup2 system call originated with Version 7 and propagated through the BSD releases. The
fentl method for duplicating file descriptors appeared with System III and continued with
System V. SVR3.2 picked up the dup2 function, and 4.2BSD picked up the fcntl function and
the F_DUPFD functionality. POSIX.1 requires both dup2 and the F_DUPFD feature of fcntl.

sync, fsync, and fdatasync Functions

Traditional implementations of the UNIX System have a buffer cache or page cache in
the kernel through which most disk I/O passes. When we write data to a file, the data
is normally copied by the kernel into one of its buffers and queued for writing to disk at
some later time. This is called delayed write. (Chapter 3 of Bach [1986] discusses this
buffer cache in detail.)

The kernel eventually writes all the delayed-write blocks to disk, normally when it
needs to reuse the buffer for some other disk block. To ensure consistency of the file
system on disk with the contents of the buffer cache, the sync, £sync, and £datasync
functions are provided.

#include <unistd.h>
int fsync(int fd);
int fdatasync(int fd);

Returns: 0 if OK, -1 on error

void sync(void);

The sync function simply queues all the modified block buffers for writing and returns;
it does not wait for the disk writes to take place.

The function sync is normally called periodically (usually every 30 seconds) from a
system daemon, often called update. This guarantees regular flushing of the kernel’s
block buffers. The command sync(1) also calls the sync function.

The function £sync refers only to a single file, specified by the file descriptor fd,
and waits for the disk writes to complete before returning. This function is used when
an application, such as a database, needs to be sure that the modified blocks have been
written to the disk.

The fdatasync function is similar to £sync, but it affects only the data portions of
a file. With £sync, the file’s attributes are also updated synchronously.

All four of the platforms described in this book support sync and £sync. However, FreeBSD
8.0 does not support fdatasync.
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3.14 fcntl Function

The fcntl function can change the properties of a file that is already open.

#include <fcntl.h>

int fentl(int fd, int cmd, ... /* int arg */ );

Returns: depends on cmd if OK (see following), -1 on error

In the examples in this section, the third argument is always an integer, corresponding
to the comment in the function prototype just shown. When we describe record locking
in Section 14.3, however, the third argument becomes a pointer to a structure.

The fentl function is used for five different purposes.
Duplicate an existing descriptor (crnd = F_DUPFD or F_DUPFD_CLOEXEC)
Get/set file descriptor flags (crnd = F_GETFD or F_SETFD)
Get/set file status flags (cmd = F_GETFL or F_SETFL)
Get/set asynchronous I/O ownership (cmd = F_GETOWN or F_SETOWN)

AN

Get/set record locks (crmd = F_GETLK, F_SETLK, or F_ SETLKW)

We'll now describe the first 8 of these 11 cmd values. (We'll wait until Section 14.3 to
describe the last 3, which deal with record locking.) Refer to Figure 3.7, as we’ll discuss
both the file descriptor flags associated with each file descriptor in the process table
entry and the file status flags associated with each file table entry.

F_DUPFD Duplicate the file descriptor fd. The new file descriptor is
returned as the value of the function. It is the lowest-numbered
descriptor that is not already open, and that is greater than or
equal to the third argument (taken as an integer). The new
descriptor shares the same file table entry as fd. (Refer to
Figure 3.9.) But the new descriptor has its own set of file
descriptor flags, and its FD_CLOEXEC file descriptor flag is
cleared. (This means that the descriptor is left open across an
exec, which we discuss in Chapter 8.)

F_DUPFD_CLOEXEC Duplicate the file descriptor and set the FD_CLOEXEC file
descriptor flag associated with the new descriptor. Returns the
new file descriptor.

F_GETFD Return the file descriptor flags for fd as the value of the function.
Currently, only one file descriptor flag is defined: the
FD_CLOEXEC flag.

F_SETFD Set the file descriptor flags for fd. The new flag value is set from
the third argument (taken as an integer).
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Be aware that some existing programs that deal with the file descriptor flags don’t
use the constant FD_CLOEXEC. Instead, these programs set the flag to either 0 (don’t
close-on-exec, the default) or 1 (do close-on-exec).

F_GETFL  Return the file status flags for fd as the value of the function. We described
the file status flags when we described the open function. They are listed
in Figure 3.10.

File status flag Description

O_RDONLY open for reading only

O_WRONLY open for writing only

O_RDWR open for reading and writing

O_EXEC open for execute only

O_SEARCH open directory for searching only

O_APPEND append on each write

O_NONBLOCK | nonblocking mode

O_SYNC wait for writes to complete (data and attributes)
O_DSYNC wait for writes to complete (data only)

O_RSYNC synchronize reads and writes

O_FSYNC wait for writes to complete (FreeBSD and Mac OS X only)
O_ASYNC asynchronous I/0 (FreeBSD and Mac OS X only)

Figure 3.10 File status flags for fcntl

Unfortunately, the five access-mode flags—O_ RDONLY, O_WRONLY,
O_RDWR, O_EXEC, and O_SEARCH—are not separate bits that can be
tested. (As we mentioned earlier, the first three often have the values 0, 1,
and 2, respectively, for historical reasons. Also, these five values are
mutually exclusive; a file can have only one of them enabled.) Therefore,
we must first use the O ACCMODE mask to obtain the access-mode bits and
then compare the result against any of the five values.

F_SETFL  Set the file status flags to the value of the third argument (taken as an
integer). The only flags that can be changed are 0O_APPEND, O_NONBLOCK,
0_SYNC, 0 _DSYNC, 0 RSYNC, 0 FSYNC, and O ASYNC.

F_GETOWN Get the process ID or process group ID currently receiving the SIGIO and
SIGURG signals. We describe these asynchronous I/O signals in
Section 14.5.2.

F_SETOWN Set the process ID or process group ID to receive the SIGIO and SIGURG
signals. A positive arg specifies a process ID. A negative arg implies a
process group ID equal to the absolute value of arg.

The return value from fcntl depends on the command. All commands return -1
on an error or some other value if OK. The following four commands have special
return values: F_DUPFD, F_GETFD, F_GETFL, and F_GETOWN. The first command
returns the new file descriptor, the next two return the corresponding flags, and the
final command returns a positive process ID or a negative process group ID.
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Example

The program in Figure 3.11 takes a single command-line argument that specifies a file
descriptor and prints a description of selected file flags for that descriptor.

#include "apue.h"
#include <fcntl.h>

int

main(int argc, char *argv[])

{

#if

int val;

if (argc != 2)
err quit("usage: a.out <descriptor#>");

if ((val = fcntl(atoi(argv[l]), F_GETFL, 0)) < 0)
err sys("fcntl error for fd %d", atoi(argv([l]));

switch (val & O_ACCMODE) {

case O_RDONLY:
printf("read only");
break;

case O_WRONLY:
printf("write only");
break;

case O_RDWR:
printf("read write");
break;

default:
err dump("unknown access mode");

}

if (val & O APPEND)
printf(", append");
if (val & O_NONBLOCK)
printf(", nonblocking");
if (val & O_SYNC)
printf(", synchronous writes");

tdefined( POSIX C_SOURCE) && defined(O FSYNC) && (O_FSYNC != O_SYNC)

if (val & O_FSYNC)
printf(", synchronous writes");

#endif

putchar(’'\n’);
exit(0);

Figure 3.11 Print file flags for specified descriptor

Note that we use the feature test macro _POSIX C_SOURCE and conditionally compile
the file access flags that are not part of POSIX.1. The following script shows the
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operation of the program, when invoked from bash (the Bourne-again shell). Results
will vary, depending on which shell you use.

$ ./a.out 0 < /dev/tty
read only

$ ./a.out 1 > temp.foo
$ cat temp.foo

write only

$ ./a.out 2 2>>temp.foo
write only, append

$ ./a.out 5 5<>temp.foo
read write

The clause 5<>temp.foo opens the file temp.foo for reading and writing on file
descriptor 5. O

Example

When we modify either the file descriptor flags or the file status flags, we must be
careful to fetch the existing flag value, modify it as desired, and then set the new flag
value. We can’t simply issue an F_SETFD or an F_SETFL command, as this could turn
off flag bits that were previously set.

Figure 3.12 shows a function that sets one or more of the file status flags for a
descriptor.

#include "apue.h"
#include <fcntl.h>

void
set_fl(int fd, int flags) /* flags are file status flags to turn on */
{

int val;

if ((val = fcntl(fd, F_GETFL, 0)) < 0)
err sys("fcntl F_GETFL error");

val |= flags; /* turn on flags */

if (fentl(fd, F_SETFL, val) < 0)
err sys("fcntl F_SETFL error");

Figure 3.12 Turn on one or more of the file status flags for a descriptor

If we change the middle statement to
val &= ~“flags; /* turn flags off */

we have a function named clr_f£1, which we’ll use in some later examples. This
statement logically ANDs the one’s complement of £1ags with the current val.
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If we add the line
set f1(STDOUT FILENO, O SYNC);

to the beginning of the program shown in Figure 3.5, we'll turn on the synchronous-
write flag. This causes each write to wait for the data to be written to disk before
returning. Normally in the UNIX System, a write only queues the data for writing; the
actual disk write operation can take place sometime later. A database system is a likely
candidate for using O_SYNC, so that it knows on return from a write that the data is
actually on the disk, in case of an abnormal system failure.

We expect the 0_SYNC flag to increase the system and clock times when the
program runs. To test this, we can run the program in Figure 3.5, copying 492.6 MB of
data from one file on disk to another and compare this with a version that does the
same thing with the 0_SYNC flag set. The results from a Linux system using the ext4
file system are shown in Figure 3.13.

Operation User CPU | System CPU | Clock time
(seconds) (seconds) (seconds)
read time from Figure 3.6 for BUFFSIZE = 4,096 0.03 0.58 8.62
normal write to disk file 0.00 1.05 9.70
write to disk file with O_SYNC set 0.02 1.09 10.28
write to disk followed by fdatasync 0.02 1.14 17.93
write to disk followed by fsync 0.00 1.19 18.17
write to disk with O_SYNC set followed by fsync 0.02 1.15 17.88

Figure 3.13 Linux ext4 timing results using various synchronization mechanisms

The six rows in Figure 3.13 were all measured with a BUFFSIZE of 4,096 bytes. The
results in Figure 3.6 were measured while reading a disk file and writing to
/dev/null, so there was no disk output. The second row in Figure 3.13 corresponds to
reading a disk file and writing to another disk file. This is why the first and second
rows in Figure 3.13 are different. The system time increases when we write to a disk
file, because the kernel now copies the data from our process and queues the data for
writing by the disk driver. We expect the clock time to increase as well when we write
to a disk file.

When we enable synchronous writes, the system and clock times should increase
significantly. As the third row shows, the system time for writing synchronously is not
much more expensive than when we used delayed writes. This implies that the Linux
operating system is doing the same amount of work for delayed and synchronous
writes (which is unlikely), or else the O_SYNC flag isn’t having the desired effect. In this
case, the Linux operating system isn’t allowing us to set the 0O_SYNC flag using fcntl,
instead failing without returning an error (but it would have honored the flag if we
were able to specify it when the file was opened).

The clock time in the last three rows reflects the extra time needed to wait for all of
the writes to be committed to disk. After writing a file synchronously, we expect that a
call to £sync will have no effect. This case is supposed to be represented by the last
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row in Figure 3.13, but since the 0_SYNC flag isn’t having the intended effect, the last
row behaves the same way as the fifth row.

Figure 3.14 shows timing results for the same tests run on Mac OS X 10.6.8, which
uses the HFS file system. Note that the times match our expectations: synchronous
writes are far more expensive than delayed writes, and using £sync with synchronous
writes makes very little difference. Note also that adding a call to £sync at the end of
the delayed writes makes little measurable difference. It is likely that the operating
system flushed previously written data to disk as we were writing new data to the file,
so by the time that we called £sync, very little work was left to be done.

Operation User CPU | System CPU | Clock time
(seconds) (seconds) (seconds)
write to /dev/null 0.14 1.02 5.28
normal write to disk file 0.14 321 17.04
write to disk file with O_SYNC set 0.39 16.89 60.82
write to disk followed by fsync 0.13 3.07 17.10
write to disk with O_SYNC set followed by £sync 0.39 18.18 62.39

Figure 3.14 Mac OS X HFS timing results using various synchronization mechanisms

Compare fsync and fdatasync, both of which update a file’s contents when we
say so, with the 0_SYNC flag, which updates a file’s contents every time we write to the
file. The performance of each alternative will depend on many factors, including the
underlying operating system implementation, the speed of the disk drive, and the type
of the file system. O

With this example, we see the need for fcntl. Our program operates on a
descriptor (standard output), never knowing the name of the file that was opened on
that descriptor. We can’t set the O_SYNC flag when the file is opened, since the shell
opened the file. With fcntl, we can modify the properties of a descriptor, knowing
only the descriptor for the open file. We'll see another need for fcntl when we
describe nonblocking pipes (Section 15.2), since all we have with a pipe is a descriptor.

ioctl Function

The ioctl function has always been the catchall for I/O operations. Anything that
couldn’t be expressed using one of the other functions in this chapter usually ended up
being specified with an ioctl. Terminal I/O was the biggest user of this function.
(When we get to Chapter 18, we’ll see that POSIX.1 has replaced the terminal 1/O
operations with separate functions.)

#include <unistd.h> /* System V */
#include <sys/ioctl.h> /* BSD and Linux */

int ioctl(int fd, int request, ...);

Returns: -1 on error, something else if OK
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The ioctl function was included in the Single UNIX Specification only as an extension for
dealing with STREAMS devices [Rago 1993], but it was moved to obsolescent status in SUSv4.
UNIX System implementations use ioctl for many miscellaneous device operations. Some
implementations have even extended it for use with regular files.

The prototype that we show corresponds to POSIX.1. FreeBSD 8.0 and Mac OS X
10.6.8 declare the second argument as an unsigned long. This detail doesn’t matter,
since the second argument is always a #defined name from a header.

For the ISO C prototype, an ellipsis is used for the remaining arguments. Normally,
however, there is only one more argument, and it’s usually a pointer to a variable or a
structure.

In this prototype, we show only the headers required for the function itself.
Normally, additional device-specific headers are required. For example, the ioctl
commands for terminal I/O, beyond the basic operations specified by POSIX.1, all
require the <termios.h> header.

Each device driver can define its own set of ioctl commands. The system,
however, provides generic ioctl commands for different classes of devices. Examples
of some of the categories for these generic ioctl commands supported in FreeBSD are
summarized in Figure 3.15.

f
Category Cr?;lriltzzt Header Nfzzieiso

disk labels DIOXXX <sys/disklabel.h> 4
fileI/O FIOXXX <sys/filio.h> 14
mag tapeI/O | MTIOxxx | <sys/mtio.h> 11
socket I/O SIOxXxXX <sys/sockio.h> 73
terminal I/O TIOXXX <sys/ttycom.h> 43

Figure 3.15 Common FreeBSD ioctl operations

The mag tape operations allow us to write end-of-file marks on a tape, rewind a
tape, space forward over a specified number of files or records, and the like. None of
these operations is easily expressed in terms of the other functions in the chapter (read,
write, 1seek, and so on), so the easiest way to handle these devices has always been
to access their operations using ioctl.

We use the ioctl function in Section 18.12 to fetch and set the size of a terminal’s
window, and in Section 19.7 when we access the advanced features of pseudo terminals.

/dev/fd

Newer systems provide a directory named /dev/£d whose entries are files named 0, 1,
2, and so on. Opening the file /dev/£d/n is equivalent to duplicating descriptor #,
assuming that descriptor n is open.

The /dev/fd feature was developed by Tom Duff and appeared in the 8th Edition of the

Research UNIX System. It is supported by all of the systems described in this book: FreeBSD
8.0, Linux 3.2.0, Mac OS X 10.6.8, and Solaris 10. It is not part of POSIX.1.

www.it-ebooks.info


http://www.it-ebooks.info/

Section 3.16 /dev/fd 89

In the function call
fd = open("/dev/£fd/0", mode);

most systems ignore the specified mode, whereas others require that it be a subset of the
mode used when the referenced file (standard input, in this case) was originally opened.
Because the previous open is equivalent to

fd = dup(0);

the descriptors 0 and fd share the same file table entry (Figure 3.9). For example, if
descriptor 0 was opened read-only, we can only read on £d. Even if the system ignores
the open mode and the call

fd = open("/dev/£d/0", O _RDWR);
succeeds, we still can’t write to £d.

The Linux implementation of /dev/£d is an exception. It maps file descriptors into symbolic
links pointing to the underlying physical files. When you open /dev/£d/0, for example, you
are really opening the file associated with your standard input. Thus the mode of the new file
descriptor returned is unrelated to the mode of the /dev/£d file descriptor.

We can also call creat with a /dev/£fd pathname argument as well as specify
O_CREAT in a call to open. This allows a program that calls creat to still work if the
pathname argument is /dev/£d/1, for example.

Beware of doing this on Linux. Because the Linux implementation uses symbolic links to the
real files, using creat on a /dev/£d file will result in the underlying file being truncated.

Some systems provide the pathnames /dev/stdin, /dev/stdout, and
/dev/stderr. These pathnames are equivalent to /dev/£d/0, /dev/£d/1, and
/dev/£d/2, respectively.

The main use of the /dev/fd files is from the shell. It allows programs that use
pathname arguments to handle standard input and standard output in the same
manner as other pathnames. For example, the cat(1) program specifically looks for an
input filename of - and uses it to mean standard input. The command

filter file2 | cat filel - file3 | lpr

is an example. First, cat reads filel, then its standard input (the output of the
filter program on file2), and then file3. If /dev/£fd is supported, the special
handling of - can be removed from cat, and we can enter

filter file2 | cat filel /dev/£fd/0 file3 | lpr

The special meaning of - as a command-line argument to refer to the standard
input or the standard output is a kludge that has crept into many programs. There are
also problems if we specify - as the first file, as it looks like the start of another
command-line option. Using /dev/£d is a step toward uniformity and cleanliness.
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Summary

This chapter has described the basic I/O functions provided by the UNIX System.
These are often called the unbuffered I/O functions because each read or write
invokes a system call into the kernel. Using only read and write, we looked at the
effect of various I/0O sizes on the amount of time required to read a file. We also looked
at several ways to flush written data to disk and their effect on application performance.

Atomic operations were introduced when multiple processes append to the same
file and when multiple processes create the same file. We also looked at the data
structures used by the kernel to share information about open files. We’ll return to
these data structures later in the text.

We also described the ioctl and fcntl functions. We return to both of these
functions later in the book. In Chapter 14, we’ll use fcntl for record locking. In
Chapter 18 and Chapter 19, we'll use ioctl when we deal with terminal devices.

Exercises

3.1 When reading or writing a disk file, are the functions described in this chapter really
unbuffered? Explain.

3.2 Write your own dup2 function that behaves the same way as the dup2 function described
in Section 3.12, without calling the fcnt1 function. Be sure to handle errors correctly.

3.3 Assume that a process executes the following three function calls:

fdl = open(path, oflags);
fd2 dup(£fdl);
£d3 open(path, oflags);

Draw the resulting picture, similar to Figure 3.9. Which descriptors are affected by an
fcntl on £d1 with a command of F_SETFD? Which descriptors are affected by an fentl
on £d1 with a command of F_SETFL?

3.4 The following sequence of code has been observed in various programs:

dup2(fd, 0);

dup2(fd, 1);

dup2(fd, 2);

if (£d > 2)

close(fd);

To see why the if test is needed, assume that £d is 1 and draw a picture of what happens to
the three descriptor entries and the corresponding file table entry with each call to dup2.
Then assume that £d is 3 and draw the same picture.

3.5 The Bourne shell, Bourne-again shell, and Korn shell notation
digit1>&digit2
says to redirect descriptor digit1 to the same file as descriptor digit2. What is the difference

between the two commands shown below? (Hint: The shells process their command lines
from left to right.)

./a.out > outfile 2>&l
./a.out 2>&l1 > outfile
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3.6 If you open a file for read-write with the append flag, can you still read from anywhere in
the file using 1seek? Can you use lseek to replace existing data in the file? Write a
program to verify this.
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4.2

Files and Directories

Introduction

In the previous chapter we covered the basic functions that perform I/O. The
discussion centered on I/O for regular files—opening a file, and reading or writing a
file. We’ll now look at additional features of the file system and the properties of a file.
We'll start with the stat functions and go through each member of the stat structure,
looking at all the attributes of a file. In this process, we'll also describe each of the
functions that modify these attributes: change the owner, change the permissions, and
so on. We'll also look in more detail at the structure of a UNIX file system and symbolic
links. We finish this chapter with the functions that operate on directories, and we
develop a function that descends through a directory hierarchy.

stat, fstat, fstatat, and lstat Functions

The discussion in this chapter centers on the four stat functions and the information
they return.

#include <sys/stat.h>

int stat(const char *restrict pathname, struct stat *restrict buf);
int fstat(int fd, struct stat *buf);

int lstat(const char *restrict pathname, struct stat *restrict buf);

int fstatat(int fd, const char *restrict pathname,
struct stat *restrict buf, int flag);

All four return: 0 if OK, -1 on error

93
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Given a pathname, the stat function returns a structure of information about the
named file. The fstat function obtains information about the file that is already open
on the descriptor fd. The 1stat function is similar to stat, but when the named file is
a symbolic link, 1stat returns information about the symbolic link, not the file
referenced by the symbolic link. (We’ll need 1stat in Section 4.22 when we walk down
a directory hierarchy. We describe symbolic links in more detail in Section 4.17.)

The fstatat function provides a way to return the file statistics for a pathname
relative to an open directory represented by the fd argument. The flag argument
controls whether symbolic links are followed; when the AT SYMLINK_NOFOLLOW flag
is set, f£statat will not follow symbolic links, but rather returns information about the
link itself. Otherwise, the default is to follow symbolic links, returning information
about the file to which the symbolic link points. If the fd argument has the value
AT_FDCWD and the pathname argument is a relative pathname, then fstatat evaluates
the pathname argument relative to the current directory. If the pathname argument is an
absolute pathname, then the fd argument is ignored. In these two cases, fstatat
behaves like either stat or 1stat, depending on the value of flag.

The buf argument is a pointer to a structure that we must supply. The functions fill
in the structure. The definition of the structure can differ among implementations, but

it could look like

struct stat {
mode_t st_mode; /* file type & mode (permissions) */
ino_t st_ino; /* i-node number (serial number) */
dev_ t st _dev; /* device number (file system) */
dev_t st_rdev; /* device number for special files */
nlink t st _nlink; /* number of links */
uid_t st _uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
off t st_size; /* size in bytes, for regular files */
struct timespec st_atim; /* time of last access */
struct timespec st mtim; /* time of last modification */
struct timespec st ctim; /* time of last file status change */
blksize t st _blksize; /* best I/O block size */
blkent_t st_blocks; /* number of disk blocks allocated */

i

The st_rdev, st_blksize, and st_blocks fields are not required by POSIX.1. They are
defined as part of the XSI option in the Single UNIX Specification.

The timespec structure type defines time in terms of seconds and nanoseconds. It
includes at least the following fields:

time t tv_sec;
long tv_nsec;

Prior to the 2008 version of the standard, the time fields were named st _atime, st _mtime,
and st_ctime, and were of type time_t (expressed in seconds). The timespec structure
enables higher-resolution timestamps. The old names can be defined in terms of the tv_sec
members for compatibility. For example, st_atime can be defined as st_atim.tv_sec.
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Note that most members of the stat structure are specified by a primitive system
data type (see Section 2.8). We'll go through each member of this structure to examine
the attributes of a file.

The biggest user of the stat functions is probably the 1s -1 command, to learn all
the information about a file.

File Types

We've talked about two different types of files so far: regular files and directories. Most
files on a UNIX system are either regular files or directories, but there are additional
types of files. The types are

1.

Regular file. The most common type of file, which contains data of some form.
There is no distinction to the UNIX kernel whether this data is text or binary.
Any interpretation of the contents of a regular file is left to the application
processing the file.

One notable exception to this is with binary executable files. To execute a program, the
kernel must understand its format. All binary executable files conform to a format that
allows the kernel to identify where to load a program’s text and data.

Directory file. A file that contains the names of other files and pointers to
information on these files. Any process that has read permission for a directory
file can read the contents of the directory, but only the kernel can write directly
to a directory file. Processes must use the functions described in this chapter to
make changes to a directory.

Block special file. A type of file providing buffered 1/O access in fixed-size units
to devices such as disk drives.

Note that FreeBSD no longer supports block special files. All access to devices is through
the character special interface.

Character special file. A type of file providing unbuffered I/O access in
variable-sized units to devices. All devices on a system are either block special
files or character special files.

FIFO. A type of file used for communication between processes. It's sometimes
called a named pipe. We describe FIFOs in Section 15.5.

Socket. A type of file used for network communication between processes. A
socket can also be used for non-network communication between processes on a
single host. We use sockets for interprocess communication in Chapter 16.

Symbolic link. A type of file that points to another file. We talk more about
symbolic links in Section 4.17.

The type of a file is encoded in the st_mode member of the stat structure. We can
determine the file type with the macros shown in Figure 4.1. The argument to each of
these macros is the st_mode member from the stat structure.
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Macro

Type of file

S_ISREG()
S_ISDIR()
S_ISCHR()
S_ISBLK()
S_ISFIFO()
S_ISLNK()
S_ISSOCK()

regular file
directory file
character special file
block special file
pipe or FIFO
symbolic link
socket

Figure 4.1 File type macros in <sys/stat.h>

POSIX.1 allows implementations to represent interprocess communication (IPC)
objects, such as message queues and semaphores, as files. The macros shown in
Figure 4.2 allow us to determine the type of IPC object from the stat structure. Instead
of taking the st_mode member as an argument, these macros differ from those in
Figure 4.1 in that their argument is a pointer to the stat structure.

Macro

Type of object

S_TYPETISMQ( )
S_TYPEISSEM()
S_TYPEISSHM()

message queue
semaphore

shared memory object

Figure 4.2 IPC type macros in <sys/stat.h>

Message queues, semaphores, and shared
book represent these objects as files.

Example

The program in Figure 4.3 prints the type of file for each command-line argument.

memory objects are discussed in Chapter 15.
However, none of the various implementations of the UNIX System discussed in this

#include "apue.h"

int
main(int argc, char *argv[])
{

int i;

struct stat buf;

char *ptr;

for (i = 1; i < argc; i++) {

printf("%s: ", argv[i]);

if (lstat(argv[i], &buf) <
err ret("lstat error");
continue;

}

if (S_ISREG(buf.st_mode))
ptr = "regular";

0) {

else if (S_ISDIR(buf.st _mode))
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ptr = "directory";
else if (S_ISCHR(buf.st mode))
ptr = "character special”;
else if (S_ISBLK(buf.st mode))
ptr = "block special";

else if (S_ISFIFO(buf.st mode))
ptr = "fifo";

else if (S_ISLNK(buf.st _mode))
ptr = "symbolic 1link";

else if (S_ISSOCK(buf.st mode))

ptr = "socket";
else
ptr = "** unknown mode **";
printf("%s\n", ptr);
}
exit(0);

Figure 4.3 Print type of file for each command-line argument

Sample output from Figure 4.3 is
$ ./a.out /etc/passwd /etc /dev/log /dev/tty \
> /var/lib/oprofile/opd_pipe /dev/sr0 /dev/cdrom
/etc/passwd: regular
/etc: directory
/dev/log: socket
/dev/tty: character special
/var/lib/oprofile/opd_pipe: fifo
/dev/sr0: block special
/dev/cdrom: symbolic link

(Here, we have explicitly entered a backslash at the end of the first command line,
telling the shell that we want to continue entering the command on another line. The
shell then prompted us with its secondary prompt, >, on the next line.) We have
specifically used the 1stat function instead of the stat function to detect symbolic
links. If we used the stat function, we would never see symbolic links. ]

Historically, early versions of the UNIX System didn’t provide the S_ISxxx
macros. Instead, we had to logically AND the st_mode value with the mask S_IFMT
and then compare the result with the constants whose names are S_IFxxx. Most
systems define this mask and the related constants in the file <sys/stat.h>. If we
examine this file, we’ll find the S_ISDIR macro defined something like

#define S ISDIR(mode) (((mode) & S _IFMT) == S IFDIR)

We've said that regular files are predominant, but it is interesting to see what
percentage of the files on a given system are of each file type. Figure 4.4 shows the
counts and percentages for a Linux system that is used as a single-user workstation.
This data was obtained from the program shown in Section 4.22.
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File type Count | Percentage

regular file 415,803 79.77 %

directory 62,197 11.93

symbolic link 40,018 8.25

character special 155 0.03

block special 47 0.01

socket 45 0.01

FIFO 0 0.00

Figure 4.4 Counts and percentages of different file types

4.4 Set-User-ID and Set-Group-ID

Every process has six or more IDs associated with it. These are shown in Figure 4.5.

real user ID
real group ID

who we really are

effective user ID
effective group ID
supplementary group IDs

used for file access permission checks

saved set-user-ID
saved set-group-ID

saved by exec functions

Figure 4.5 User IDs and group IDs associated with each process

¢ The real user ID and real group ID identify who we really are. These two fields
are taken from our entry in the password file when we log in. Normally, these
values don’t change during a login session, although there are ways for a

superuser process to change them, which we describe in Section 8.11.

* The effective user ID, effective group ID, and supplementary group IDs
determine our file access permissions, as we describe in the next section. (We
defined supplementary group IDs in Section 1.8.)

® The saved set-user-ID and saved set-group-ID contain copies of the effective
user ID and the effective group ID, respectively, when a program is executed.
We describe the function of these two saved values when we describe the

setuid function in Section 8.11.

The saved IDs are required as of the 2001 version of POSIX.1. They were optional in older
versions of POSIX. An application can test for the constant _POSIX_SAVED_IDS at
compile time or can call sysconf with the _SC_SAVED_ IDS argument at runtime, to see
whether the implementation supports this feature.

Normally, the effective user ID equals the real user ID, and the effective group ID equals

the real group ID.

Every file has an owner and a group owner. The owner is specified by the st_uid

member of the stat structure; the group owner, by the st_gid member.
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4.5

When we execute a program file, the effective user ID of the process is usually the
real user ID, and the effective group ID is usually the real group ID. However, we can
also set a special flag in the file’s mode word (st_mode) that says, “When this file is
executed, set the effective user ID of the process to be the owner of the file (st_uid).”
Similarly, we can set another bit in the file’s mode word that causes the effective group
ID to be the group owner of the file (st_gid). These two bits in the file’s mode word
are called the set-user-ID bit and the set-group-ID bit.

For example, if the owner of the file is the superuser and if the file’s set-user-ID bit
is set, then while that program file is running as a process, it has superuser privileges.
This happens regardless of the real user ID of the process that executes the file. As an
example, the UNIX System program that allows anyone to change his or her password,
passwd(1), is a set-user-ID program. This is required so that the program can write the
new password to the password file, typically either /etc/passwd or /etc/shadow,
files that should be writable only by the superuser. Because a process that is running
set-user-ID to some other user usually assumes extra permissions, it must be written
carefully. We'll discuss these types of programs in more detail in Chapter 8.

Returning to the stat function, the set-user-ID bit and the set-group-ID bit are
contained in the file’s st _mode value. These two bits can be tested against the
constants S_ISUID and S_ISGID, respectively.

File Access Permissions

The st_mode value also encodes the access permission bits for the file. When we say
fil, we mean any of the file types that we described earlier. All the file
types—directories, character special files, and so on—have permissions. Many people
think of only regular files as having access permissions.

There are nine permission bits for each file, divided into three categories. They are
shown in Figure 4.6.

st_mode mask Meaning
S_IRUSR user-read
S_IWUSR user-write
S_IXUSR user-execute
S_IRGRP group-read
S_IWGRP group-write
S_IXGRP group-execute
S_IROTH other-read
S_IWOTH other-write
S_IXOTH other-execute

Figure 4.6 The nine file access permission bits, from <sys/stat.h>

The term user in the first three rows in Figure 4.6 refers to the owner of the file. The
chmod(1) command, which is typically used to modify these nine permission bits,
allows us to specify u for user (owner), g for group, and o for other. Some books refer
to these three as owner, group, and world; this is confusing, as the chmod command
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uses o to mean other, not owner. We'll use the terms user, group, and other, to be
consistent with the chmod command.

The three categories in Figure 4.6—read, write, and execute—are used in various

ways by different functions. We’ll summarize them here, and return to them when we
describe the actual functions.

The first rule is that whenever we want to open any type of file by name, we must
have execute permission in each directory mentioned in the name, including the
current directory, if it is implied. This is why the execute permission bit for a
directory is often called the search bit.

For example, to open the file /usr/include/stdio.h, we need execute
permission in the directory /, execute permission in the directory /usr, and execute
permission in the directory /usr/include. We then need appropriate permission
for the file itself, depending on how we’re trying to open it: read-only, read-write,
and so on.

If the current directory is /usr/include, then we need execute permission in the
current directory to open the file stdio.h. This is an example of the current
directory being implied, not specifically mentioned. It is identical to our opening the
file . /stdio.h.

Note that read permission for a directory and execute permission for a directory
mean different things. Read permission lets us read the directory, obtaining a list of
all the filenames in the directory. Execute permission lets us pass through the
directory when it is a component of a pathname that we are trying to access. (We
need to search the directory to look for a specific filename.)

Another example of an implicit directory reference is if the PATH environment
variable, described in Section 8.10, specifies a directory that does not have execute
permission enabled. In this case, the shell will never find executable files in that
directory.

The read permission for a file determines whether we can open an existing file for
reading: the O_RDONLY and O_RDWR flags for the open function.

The write permission for a file determines whether we can open an existing file for
writing: the O_WRONLY and O_RDWR flags for the open function.

We must have write permission for a file to specify the O_TRUNC flag in the open
function.

We cannot create a new file in a directory unless we have write permission and
execute permission in the directory.

To delete an existing file, we need write permission and execute permission in the
directory containing the file. We do not need read permission or write permission
for the file itself.

Execute permission for a file must be on if we want to execute the file using any of
the seven exec functions (Section 8.10). The file also has to be a regular file.
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4.6

The file access tests that the kernel performs each time a process opens, creates, or
deletes a file depend on the owners of the file (st_uid and st_gid), the effective IDs
of the process (effective user ID and effective group ID), and the supplementary group
IDs of the process, if supported. The two owner IDs are properties of the file, whereas
the two effective IDs and the supplementary group IDs are properties of the process.
The tests performed by the kernel are as follows:

1. If the effective user ID of the process is 0 (the superuser), access is allowed. This
gives the superuser free rein throughout the entire file system.

2. If the effective user ID of the process equals the owner ID of the file (i.e., the
process owns the file), access is allowed if the appropriate user access
permission bit is set. Otherwise, permission is denied. By appropriate access
permission bit, we mean that if the process is opening the file for reading, the
user-read bit must be on. If the process is opening the file for writing, the
user-write bit must be on. If the process is executing the file, the user-execute bit
must be on.

3. If the effective group ID of the process or one of the supplementary group IDs of
the process equals the group ID of the file, access is allowed if the appropriate
group access permission bit is set. Otherwise, permission is denied.

4. If the appropriate other access permission bit is set, access is allowed.
Otherwise, permission is denied.

These four steps are tried in sequence. Note that if the process owns the file
(step 2), access is granted or denied based only on the user access permissions; the
group permissions are never looked at. Similarly, if the process does not own the file
but belongs to an appropriate group, access is granted or denied based only on the
group access permissions; the other permissions are not looked at.

Ownership of New Files and Directories

When we described the creation of a new file in Chapter 3 using either open or creat,
we never said which values were assigned to the user ID and group ID of the new file.
We'll see how to create a new directory in Section 4.21 when we describe the mkdir
function. The rules for the ownership of a new directory are identical to the rules in this
section for the ownership of a new file.

The user ID of a new file is set to the effective user ID of the process. POSIX.1
allows an implementation to choose one of the following options to determine the
group ID of a new file:

1. The group ID of a new file can be the effective group ID of the process.

2. The group ID of a new file can be the group ID of the directory in which the file
is being created.
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4.7

FreeBSD 8.0 and Mac OS X 10.6.8 always copy the new file’s group ID from the directory.
Several Linux file systems allow the choice between the two options to be selected using a
mount(1) command option. The default behavior for Linux 3.2.0 and Solaris 10 is to determine
the group ID of a new file depending on whether the set-group-ID bit is set for the directory in
which the file is created. If this bit is set, the new file’s group ID is copied from the directory;
otherwise, the new file’s group ID is set to the effective group ID of the process.

Using the second option—inheriting the directory’s group ID—assures us that all
files and directories created in that directory will have the same group ID as the
directory. This group ownership of files and directories will then propagate down the
hierarchy from that point. This is used in the Linux directory /var/mail, for example.

As we mentioned earlier, this option for group ownership is the default for FreeBSD 8.0 and
Mac OS X 10.6.8, but an option for Linux and Solaris. Under Solaris 10, and by default under
Linux 3.2.0, we have to enable the set-group-ID bit, and the mkdir function has to propagate a
directory’s set-group-ID bit automatically for this to work. (This is described in Section 4.21.)

access and faccessat Functions

As we described earlier, when we open a file, the kernel performs its access tests based
on the effective user and group IDs. Sometimes, however, a process wants to test
accessibility based on the real user and group IDs. This is useful when a process is
running as someone else, using either the set-user-ID or the set-group-ID feature. Even
though a process might be set-user-ID to root, it might still want to verify that the real
user can access a given file. The access and faccessat functions base their tests on
the real user and group IDs. (Replace effective with real in the four steps at the end of
Section 4.5.)

#include <unistd.h>
int access(const char *pathname, int mode) ;

int faccessat(int fd, const char *pathname, int mode, int flag);

Both return: 0 if OK, -1 on error

The mode is either the value F_OK to test if a file exists, or the bitwise OR of any of the
flags shown in Figure 4.7.

mode Description

R_OK | test for read permission
W_OK | test for write permission
X_OK | test for execute permission

Figure 4.7 The mode flags for access function, from <unistd.h>

The faccessat function behaves like access when the pathname argument is
absolute or when the fd argument has the value AT_FDCWD and the pathname argument
is relative. Otherwise, faccessat evaluates the pathname relative to the open directory
referenced by the fd argument.
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The flag argument can be used to change the behavior of faccessat. If the
AT_EACCESS flag is set, the access checks are made using the effective user and group

IDs of the calling process instead of the real user and group IDs.

Example

Figure 4.8 shows the use of the access function.

#include "apue.h"
#include <fcntl.h>

int
main(int argc, char *argv([])
{
if (argc != 2)
err quit("usage: a.out <pathname>");
if (access(argv[l], R_OK) < 0)
err ret("access error for %s", argv[l]);
else
printf("read access OK\n");
if (open(argv[1l], O RDONLY) < 0)
err ret("open error for %s", argv[l]);
else
printf ("open for reading OK\n");
exit(0);

Figure 4.8 Example of access function

Here is a sample session with this program:
$ 1s -1 a.out

-rwxrwxr-x 1 sar 15945 Nov 30 12:10 a.out

$ ./a.out a.out
read access OK

open for reading OK
$ 1s -1 /etc/shadow

—rm——————— 1 root 1315 Jul 17 2002 /etc/shadow

$ ./a.out /etc/shadow
access error for /etc/shadow: Permission denied
open error for /etc/shadow: Permission denied

$ su become superuser
Password: enter superuser password
# chown root a.out change file's user ID to root
# chmod u+s a.out and turn on set-user-ID bit
# 1s -1 a.out check owner and SUID bit
-rwsrwxr-x 1 root 15945 Nov 30 12:10 a.out

# exit go back to normal user

$ ./a.out /etc/shadow
access error for /etc/shadow: Permission denied
open for reading OK
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4.8

In this example, the set-user-ID program can determine that the real user cannot
normally read the file, even though the open function will succeed. O

In the preceding example and in Chapter 8, we’ll sometimes switch to become the superuser to
demonstrate how something works. If you're on a multiuser system and do not have
superuser permission, you won't be able to duplicate these examples completely.

umask Function

Now that we’ve described the nine permission bits associated with every file, we can
describe the file mode creation mask that is associated with every process.

The umask function sets the file mode creation mask for the process and returns the
previous value. (This is one of the few functions that doesn’t have an error return.)

#include <sys/stat.h>

mode_t umask(mode_t cmask) ;

Returns: previous file mode creation mask

The cmask argument is formed as the bitwise OR of any of the nine constants from
Figure 4.6: S_TIRUSR, S_IWUSR, and so on.

The file mode creation mask is used whenever the process creates a new file or a
new directory. (Recall from Sections 3.3 and 3.4 our description of the open and creat
functions. Both accept a mode argument that specifies the new file’s access permission
bits.) We describe how to create a new directory in Section 4.21. Any bits that are on in
the file mode creation mask are turned off in the file’s mode.

Example

The program in Figure 4.9 creates two files: one with a umask of 0 and one with a
umask that disables all the group and other permission bits.

#include "apue.h"
#include <fcntl.h>
#define RWRWRW (S_IRUSR|S IWUSR|S_ IRGRP|S_IWGRP|S_ IROTH|S_ IWOTH)
int
main(void)
{
umask(0);
if (creat("foo", RWRWRW) < 0)
err sys("creat error for foo");
umask (S_IRGRP | S_IWGRP | S _IROTH | S_IWOTH);
if (creat("bar", RWRWRW) < 0)
err sys("creat error for bar");
exit(0);

Figure 4.9 Example of umask function
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If we run this program, we can see how the permission bits have been set.

$ umask first print the current file mode creation mask
002

$ ./a.out

$ 1s -1 foo bar

—IrW——————= 1 sar 0 Dec 7 21:20 bar

-rw-rw-rw- 1 sar 0 Dec 7 21:20 foo

$ umask see if the file mode creation mask changed
002

a

Most users of UNIX systems never deal with their umask value. It is usually set
once, on login, by the shell’s start-up file, and never changed. Nevertheless, when
writing programs that create new files, if we want to ensure that specific access
permission bits are enabled, we must modify the umask value while the process is
running. For example, if we want to ensure that anyone can read a file, we should set
the umask to 0. Otherwise, the umask value that is in effect when our process is
running can cause permission bits to be turned off.

In the preceding example, we use the shell’s umask command to print the file mode
creation mask both before we run the program and after it completes. This shows us
that changing the file mode creation mask of a process doesn’t affect the mask of its
parent (often a shell). All of the shells have a built-in umask command that we can use
to set or print the current file mode creation mask.

Users can set the umask value to control the default permissions on the files they
create. This value is expressed in octal, with one bit representing one permission to be
masked off, as shown in Figure 4.10. Permissions can be denied by setting the
corresponding bits. Some common umask values are 002 to prevent others from
writing your files, 022 to prevent group members and others from writing your files,
and 027 to prevent group members from writing your files and others from reading,
writing, or executing your files.

Mask bit Meaning

0400 user-read
0200 user-write
0100 user-execute
0040 group-read
0020 group-write
0010 group-execute
0004 other-read
0002 other-write
0001 other-execute

Figure 4.10 The umask file access permission bits

The Single UNIX Specification requires that the umask command support a
symbolic mode of operation. Unlike the octal format, the symbolic format specifies
which permissions are to be allowed (i.e., clear in the file creation mask) instead of
which ones are to be denied (i.e., set in the file creation mask). Compare both forms of
the command, shown below.
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$ umask first print the current file mode creation mask
002
$ umask -S print the symbolic form
U=rwx,g=rwx,o=rx
$ umask 027 change the file mode creation mask
$ umask -S print the symbolic form
U=rwx,g=rx, o=
49 chmod, fchmod, and fchmodat Functions

The chmod, fchmod, and fchmodat functions allow us to change the file access
permissions for an existing file.

#include <sys/stat.h>

int chmod(const char *pathname, mode_t mode) ;

int fchmod(int fd, mode_t mode);

int fchmodat(int fd, const char *pathname, mode_t mode, int flag);

All three return: 0 if OK, -1 on error

The chmod function operates on the specified file, whereas the fchmod function
operates on a file that has already been opened. The fchmodat function behaves like
chmod when the pathname argument is absolute or when the fd argument has the value
AT_FDCWD and the pathname argument is relative. Otherwise, fchmodat evaluates the
pathname relative to the open directory referenced by the fd argument. The flag
argument can be wused to change the behavior of fchmodat—when the
AT_SYMLINK_NOFOLLOW flag is set, fchmodat doesn’t follow symbolic links.

To change the permission bits of a file, the effective user ID of the process must be
equal to the owner ID of the file, or the process must have superuser permissions.

The mode is specified as the bitwise OR of the constants shown in Figure 4.11.

mode Description
S_ISUID set-user-ID on execution
S_ISGID set-group-ID on execution
S_ISVTX saved-text (sticky bit)
S_IRWXU read, write, and execute by user (owner)

S_IRUSR | read by user (owner)
S_IWUSR | write by user (owner)
S_IXUSR | execute by user (owner)

S_IRWXG read, write, and execute by group
S_IRGRP | read by group
S_IWGRP | write by group
S_IXGRP | execute by group

S_IRWXO read, write, and execute by other (world)
S_IROTH | read by other (world)
S_IWOTH | write by other (world)
S_IXOTH | execute by other (world)

Figure 4.11 The mode constants for chmod functions, from <sys/stat.h>
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Note that nine of the entries in Figure 4.11 are the nine file access permission bits from
Figure 4.6. We've added the two set-ID constants (S_ISUID and S_ISGID), the
saved-text constant (S_ISVTX), and the three combined constants (S_IRWXU, S_IRWXG,
and S_IRWXO).

The saved-text bit (S_ISVTX) is not part of POSIX.1. It is defined in the XSI option in the
Single UNIX Specification. We describe its purpose in the next section.

Example

Recall the final state of the files foo and bar when we ran the program in Figure 4.9 to
demonstrate the umask function:
$ 1ls -1 foo bar

—rW——————— 1 sar 0 Dec 7 21:20 bar
-rw-rw-rw- 1 sar 0 Dec 7 21:20 foo

The program shown in Figure 4.12 modifies the mode of these two files.

#include "apue.h"

int
main(void)
{
struct stat statbuf;
/* turn on set-group-ID and turn off group-execute */
if (stat("foo", &statbuf) < 0)
err_sys("stat error for foo");
if (chmod("foo", (statbuf.st mode & ~S_IXGRP) | S ISGID) < 0)
err sys("chmod error for foo");
/* set absolute mode to "rw-r--r--" */
if (chmod("bar", S IRUSR | S_IWUSR | S _IRGRP | S_IROTH) < 0)
err sys("chmod error for bar");
exit(0);
}

Figure 4.12 Example of chmod function

After running the program in Figure 4.12, we see that the final state of the two files is

$ 1s -1 foo bar
-rw-r--r-- 1 sar 0 Dec 7 21:20 bar
-rw-rwSrw- 1 sar 0 Dec 7 21:20 foo

In this example, we have set the permissions of the file bar to an absolute value,
regardless of the current permission bits. For the file foo, we set the permissions
relative to their current state. To do this, we first call stat to obtain the current
permissions and then modify them. We have explicitly turned on the set-group-ID bit
and turned off the group-execute bit. Note that the 1s command lists the group-execute
permission as S to signify that the set-group-ID bit is set without the group-execute bit
being set.
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On Solaris, the 1s command displays an 1 instead of an S to indicate that mandatory file and
record locking has been enabled for this file. This behavior applies only to regular files, but
we’ll discuss this more in Section 14.3.

Finally, note that the time and date listed by the 1s command did not change after
we ran the program in Figure 4.12. We'll see in Section 4.19 that the chmod function
updates only the time that the i-node was last changed. By default, the 1s -1 lists the
time when the contents of the file were last modified. O

The chmod functions automatically clear two of the permission bits under the
following conditions:

On systems, such as Solaris, that place special meaning on the sticky bit when
used with regular files, if we try to set the sticky bit (S_ISVTX) on a regular file
and do not have superuser privileges, the sticky bit in the mode is automatically
turned off. (We describe the sticky bit in the next section.) To prevent malicious
users from setting the sticky bit and adversely affecting system performance,
only the superuser can set the sticky bit of a regular file.

In FreeBSD 8.0 and Solaris 10, only the superuser can set the sticky bit on a regular file.
Linux 3.2.0 and Mac OS X 10.6.8 place no such restriction on the setting of the sticky bit,
because the bit has no meaning when applied to regular files on these systems. Although the
bit also has no meaning when applied to regular files on FreeBSD, everyone except the
superuser is prevented from setting it on a regular file.

The group ID of a newly created file might potentially be a group that the calling
process does not belong to. Recall from Section 4.6 that it’s possible for the
group ID of the new file to be the group ID of the parent directory. Specifically,
if the group ID of the new file does not equal either the effective group ID of the
process or one of the process’s supplementary group IDs and if the process does
not have superuser privileges, then the set-group-ID bit is automatically turned
off. This prevents a user from creating a set-group-ID file owned by a group that
the user doesn’t belong to.

FreeBSD 8.0 fails an attempt to set the set-group-ID in this case. The other systems silently
turn the bit off, but don’t fail the attempt to change the file access permissions.

FreeBSD 8.0, Linux 3.2.0, Mac OS X 10.6.8, and Solaris 10 add another security feature to try to
prevent misuse of some of the protection bits. If a process that does not have superuser
privileges writes to a file, the set-user-ID and set-group-ID bits are automatically turned off. If
malicious users find a set-group-ID or a set-user-ID file they can write to, even though they can
modify the file, they lose the special privileges of the file.

4.10 Sticky Bit

The S_ISVTX bit has an interesting history. On versions of the UNIX System that
predated demand paging, this bit was known as the sticky bit. If it was set for an
executable program file, then the first time the program was executed, a copy of the
program’s text was saved in the swap area when the process terminated. (The text
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portion of a program is the machine instructions.) The program would then load into
memory more quickly the next time it was executed, because the swap area was
handled as a contiguous file, as compared to the possibly random location of data
blocks in a normal UNIX file system. The sticky bit was often set for common
application programs, such as the text editor and the passes of the C compiler.
Naturally, there was a limit to the number of sticky files that could be contained in the
swap area before running out of swap space, but it was a useful technique. The name
sticky came about because the text portion of the file stuck around in the swap area until
the system was rebooted. Later versions of the UNIX System referred to this as the
saved-text bit; hence the constant S_ISVTX. With today’s newer UNIX systems, most of
which have a virtual memory system and a faster file system, the need for this
technique has disappeared.

On contemporary systems, the use of the sticky bit has been extended. The Single
UNIX Specification allows the sticky bit to be set for a directory. If the bit is set for a
directory, a file in the directory can be removed or renamed only if the user has write
permission for the directory and meets one of the following criteria:

e Owns the file
* Owns the directory
¢ Is the superuser

The directories /tmp and /var/tmp are typical candidates for the sticky bit—they are
directories in which any user can typically create files. The permissions for these two
directories are often read, write, and execute for everyone (user, group, and other). But
users should not be able to delete or rename files owned by others.

The saved-text bit is not part of POSIX.1. It is part of the XSI option defined in the Single
UNIX Specification, and is supported by FreeBSD 8.0, Linux 3.2.0, Mac OS X 10.6.8, and
Solaris 10.

Solaris 10 places special meaning on the sticky bit if it is set on a regular file. In this case, if
none of the execute bits is set, the operating system will not cache the contents of the file.

chown, fchown, fchownat, and lchown Functions

The chown functions allow us to change a file’s user ID and group ID, but if either of
the arguments owner or group is -1, the corresponding ID is left unchanged.

#include <unistd.h>
int chown(const char *pathname, uid_t owner, gid_t group);
int fchown(int fd, uid_t owner, gid_t group);

int fchownat(int fd, const char *pathname, uid_t owner, gid_t group,
int flag);

int lchown(const char *pathname, uid_t owner, gid_t group);

All four return: 0 if OK, -1 on error
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These four functions operate similarly unless the referenced file is a symbolic link. In
that case, lchown and fchownat (with the AT SYMLINK_NOFOLLOW flag set) change
the owners of the symbolic link itself, not the file pointed to by the symbolic link.

The fchown function changes the ownership of the open file referenced by the fd
argument. Since it operates on a file that is already open, it can’t be used to change the
ownership of a symbolic link.

The fchownat function behaves like either chown or lchown when the pathname
argument is absolute or when the fd argument has the value AT_FDCWD and the
pathname argument is relative. In these cases, fchownat acts like lchown if the
AT SYMLINK NOFOLLOW flag is set in the flag argument, or it acts like chown if
the AT SYMLINK NOFOLLOW flag is clear. When the fd argument is set to the file
descriptor of an open directory and the pathname argument is a relative pathname,
fchownat evaluates the pathname relative to the open directory.

Historically, BSD-based systems have enforced the restriction that only the
superuser can change the ownership of a file. This is to prevent users from giving away
their files to others, thereby defeating any disk space quota restrictions. System V,
however, has allowed all users to change the ownership of any files they own.

POSIX.1  allows either form of operation, depending on the value of
_POSIX CHOWN_RESTRICTED.

With Solaris 10, this functionality is a configuration option, whose default value is to enforce
the restriction. FreeBSD 8.0, Linux 3.2.0, and Mac OS X 10.6.8 always enforce the chown
restriction.

Recall from Section 2.6 that the _POSIX CHOWN_RESTRICTED constant can optionally
be defined in the header <unistd.h>, and can always be queried using either the
pathconf function or the fpathconf function. Also recall that this option can
depend on the referenced file; it can be enabled or disabled on a per file system basis.
We'll use the phrase “if _POSIX_ CHOWN_RESTRICTED is in effect,” to mean “if it
applies to the particular file that we're talking about,” regardless of whether this actual
constant is defined in the header.
If _POSIX_CHOWN_RESTRICTED is in effect for the specified file, then

1. Only a superuser process can change the user ID of the file.

2. A nonsuperuser process can change the group ID of the file if the process owns
the file (the effective user ID equals the user ID of the file), owner is specified as
-1 or equals the user ID of the file, and group equals either the effective group ID
of the process or one of the process’s supplementary group IDs.

This means that when _POSIX_CHOWN_RESTRICTED is in effect, you can’t change the
user ID of your files. You can change the group ID of files that you own, but only to
groups that you belong to.

If these functions are called by a process other than a superuser process, on
successful return, both the set-user-ID and the set-group-ID bits are cleared.
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File Size

The st_size member of the stat structure contains the size of the file in bytes. This
field is meaningful only for regular files, directories, and symbolic links.

FreeBSD 8.0, Mac OS X 10.6.8, and Solaris 10 also define the file size for a pipe as the number of
bytes that are available for reading from the pipe. We’ll discuss pipes in Section 15.2.

For a regular file, a file size of 0 is allowed. We'll get an end-of-file indication on the
first read of the file. For a directory, the file size is usually a multiple of a number, such
as 16 or 512. We talk about reading directories in Section 4.22.

For a symbolic link, the file size is the number of bytes in the filename. For
example, in the following case, the file size of 7 is the length of the pathname usr/1ib:

lrwxrwxrwx 1 root 7 Sep 25 07:14 1ib -> usr/lib

(Note that symbolic links do not contain the normal C null byte at the end of the name,
as the length is always specified by st_size.)

Most contemporary UNIX systems provide the fields st_blksize and
st_blocks. The first is the preferred block size for 1/O for the file, and the latter is the
actual number of 512-byte blocks that are allocated. Recall from Section 3.9 that we
encountered the minimum amount of time required to read a file when we used
st_blksize for the read operations. The standard I/O library, which we describe in
Chapter 5, also tries to read or write st_blksize bytes at a time, for efficiency.

Be aware that different versions of the UNIX System use units other than 512-byte blocks for
st_blocks. Use of this value is nonportable.

Holes in a File

In Section 3.6, we mentioned that a regular file can contain “holes.” We showed an
example of this in Figure 3.2. Holes are created by seeking past the current end of file
and writing some data. As an example, consider the following:

$ 1s -1 core
-rw-r--r-- 1 sar 8483248 Nov 18 12:18 core
$ du -s core
272 core

The size of the file core is slightly more than 8 MB, yet the du command reports that
the amount of disk space used by the file is 272 512-byte blocks (139,264 bytes).
Obviously, this file has many holes.

The du command on many BSD-derived systems reports the number of 1,024-byte blocks.
Solaris reports the number of 512-byte blocks. On Linux, the units reported depend on the
whether the POSIXLY_CORRECT environment is set. When it is set, the du command reports
1,024-byte block units; when it is not set, the command reports 512-byte block units.

As we mentioned in Section 3.6, the read function returns data bytes of 0 for any
byte positions that have not been written. If we execute the following command, we
can see that the normal I/O operations read up through the size of the file:
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$ wc -c core
8483248 core
The we(1) command with the -c option counts the number of characters (bytes) in the file.

If we make a copy of this file, using a utility such as cat(1), all these holes are
written out as actual data bytes of 0:

$ cat core > core.copy

$ 1s -1 core*

-rw-r--r-- 1 sar 8483248 Nov 18 12:18 core

-rw-rw-r-- 1 sar 8483248 Nov 18 12:27 core.copy

$ du -s core*

272 core

16592 core.copy
Here, the actual number of bytes used by the new file is 8,495,104 (512 x 16,592). The
difference between this size and the size reported by 1s is caused by the number of
blocks used by the file system to hold pointers to the actual data blocks.

Interested readers should refer to Section 4.2 of Bach [1986], Sections 7.2 and 7.3 of
McKusick et al. [1996] (or Sections 8.2 and 8.3 in McKusick and Neville-Neil [2005]),
Section 15.2 of McDougall and Mauro [2007], and Chapter 12 in Singh [2006] for
additional details on the physical layout of files.

4.13 File Truncation

Sometimes we would like to truncate a file by chopping off data at the end of the file.
Emptying a file, which we can do with the O_TRUNC flag to open, is a special case of
truncation.

#include <unistd.h>
int truncate(const char *pathname, off_t length);
int ftruncate(int fd, off_t length);

Both return: 0 if OK, -1 on error

These two functions truncate an existing file to length bytes. If the previous size of the
file was greater than length, the data beyond length is no longer accessible. Otherwise, if
the previous size was less than length, the file size will increase and the data between
the old end of file and the new end of file will read as 0 (i.e., a hole is probably created
in the file).

BSD releases prior to 4.4BSD could only make a file smaller with truncate.

Solaris also includes an extension to fcntl (F_FREESP) that allows us to free any part of a
file, not just a chunk at the end of the file.

We use ftruncate in the program shown in Figure 13.6 when we need to empty a
file after obtaining a lock on the file.
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4.14 File Systems

To appreciate the concept of links to a file, we need a conceptual understanding of the
structure of the UNIX file system. Understanding the difference between an i-node and
a directory entry that points to an i-node is also useful.

Various implementations of the UNIX file system are in use today. Solaris, for
example, supports several types of disk file systems: the traditional BSD-derived UNIX
file system (called UFS), a file system (called PCFS) to read and write DOS-formatted
diskettes, and a file system (called HSFS) to read CD file systems. We saw one
difference between file system types in Figure 2.20. UFS is based on the Berkeley fast
file system, which we describe in this section.

Each file system type has its own characteristic features—and some of these features can be
confusing. For example, most UNIX file systems support case-sensitive filenames. Thus, if
you create one file named file.txt and another named file.TXT, then two distinct files are
created. On Mac OS X, however, the HFS file system is case-preserving with case-insensitive
comparisons. Thus, if you create file.txt, when you try to create file.TXT, you will
overwrite file.txt. However, only the name used when the file was created is stored in the
file system (the case-preserving aspect). In fact, any permutation of uppercase and lowercase
letters in the sequence £, i, 1, e, ., t, %, t will match when searching for the file (the case-
insensitive comparison aspect). As a consequence, besides file.txt and file.TXT, we can
access the file with the names File.txt, fILE.tXt, and FiLe.TxT.

We can think of a disk drive being divided into one or more partitions. Each
partition can contain a file system, as shown in Figure 4.13. The i-nodes are fixed-length
entries that contain most of the information about a file.

disk drive partition partition partition
file system cylinder group 0 cylinder group 1 ce cylinder group n
boot block(s) -e— //////// \\\

super block -a—

block | & f-node I?IOCk i-nodes data blocks
info | map |bitmap

i-node | i-node . i-node

Figure 4.13 Disk drive, partitions, and a file system
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If we examine the i-node and data block portion of a cylinder group in more detail,

we could have the arrangement shown in Figure 4.14.

-4————————————  directory blocks and data blocks ——

data directory| data directory|
block block block block

i-node array

i-node|i-node

i-node ..
filename

number

i-node

filename
number

Figure 414 Cylinder group’s i-nodes and data blocks in more detail

Note the following points from Figure 4.14.

Two directory entries point to the same i-node entry. Every i-node has a link count
that contains the number of directory entries that point to it. Only when the link
count goes to 0 can the file be deleted (thereby releasing the data blocks associated
with the file). This is why the operation of “unlinking a file” does not always mean
“deleting the blocks associated with the file.” This is why the function that removes
a directory entry is called unlink, not delete. In the stat structure, the link count
is contained in the st_nlink member. Its primitive system data type is nlink_t.
These types of links are called hard links. Recall from Section 2.5.2 that the POSIX.1
constant LINK_MAX specifies the maximum value for a file’s link count.

The other type of link is called a symbolic link. With a symbolic link, the actual
contents of the file—the data blocks—store the name of the file that the symbolic
link points to. In the following example, the filename in the directory entry is the
three-character string 1ib and the 7 bytes of data in the file are usr/1ib:

lrwxrwxrwx 1 root 7 Sep 25 07:14 1lib -> usr/lib

The file type in the i-node would be S_IFLNK so that the system knows that this is a
symbolic link.

The i-node contains all the information about the file: the file type, the file’s access
permission bits, the size of the file, pointers to the file’s data blocks, and so on. Most
of the information in the stat structure is obtained from the i-node. Only two items
of interest are stored in the directory entry: the filename and the i-node number. The
other items—the length of the filename and the length of the directory record—are
not of interest to this discussion. The data type for the i-node number is ino_t.
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Because the i-node number in the directory entry points to an i-node in the same file
system, a directory entry can’t refer to an i-node in a different file system. This is

why the 1n(1) command (make a new directory entry that points to an existing file)
can’t cross file systems. We describe the 1ink function in the next section.

When renaming a file without changing file systems, the actual contents of the file
need not be moved—all that needs to be done is to add a new directory entry that
points to the existing i-node and then unlink the old directory entry. The link count
will remain the same. For example, to rename the file /usr/lib/foo to
/usr/foo, the contents of the file foo need not be moved if the directories

/usr/1ib and /usr are on the same file system. This is how the mv(1) command
usually operates.

We’ve talked about the concept of a link count for a regular file, but what about the

directory, as in

link count field for a directory? Assume that we make a new directory in the working

$ mkdir testdir

dot and dot-dot.

Figure 4.15 shows the result. Note that in this figure, we explicitly show the entries for

-

directory blocks and data blocks ————
. director director;
f-node array block block
/
/

\
i-node i-node

\
/ \
0 1267 2549

1267

i-node
Inumber|

2549 | testdir

Figure 4.15 Sample cylinder group after creating the directory testdir

The i-node whose number is 2549 has a type field of “directory” and a link count equal
to 2. Any leaf directory (a directory that does not contain any other directories) always
has a link count of 2. The value of 2 comes from the directory entry that names the
directory (testdir) and from the entry for dot in that directory. The i-node whose
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number is 1267 has a type field of “directory” and a link count that is greater than or
equal to 3. We know that this link count is greater than or equal to 3 because, at a
minimum, the i-node is pointed to from the directory entry that names it (which we
don’t show in Figure 4.15), from dot, and from dot-dot in the testdir directory. Note
that every subdirectory in a parent directory causes the parent directory’s link count to
be increased by 1.

This format is similar to the classic format of the UNIX file system, which is
described in detail in Chapter 4 of Bach [1986]. Refer to Chapter 7 of McKusick et
al. [1996] or Chapter 8 of McKusick and Neville-Neil [2005] for additional information
on the changes made with the Berkeley fast file system. See Chapter 15 of McDougall
and Mauro [2007] for details on UFS, the Solaris version of the Berkeley fast file system.
For information on the HFS file system format used in Mac OS X, see Chapter 12 of
Singh [2006].

link, linkat, unlink, unlinkat, and remove Functions
As we saw in the previous section, a file can have multiple directory entries pointing to

its i-node. We can use either the 1ink function or the 1inkat function to create a link
to an existing file.

#include <unistd.h>
int link(const char *existingpath, const char *newpath);

int linkat(int efd, const char *existingpath, int nfd, const char *newpath,
int flag);

Both return: 0 if OK, -1 on error

These functions create a new directory entry, newpath, that references the existing file
existingpath. If the newpath already exists, an error is returned. Only the last component
of the newpath is created. The rest of the path must already exist.

With the linkat function, the existing file is specified by both the efd and
existingpath arguments, and the new pathname is specified by both the nfd and newpath
arguments. By default, if either pathname is relative, it is evaluated relative to the
corresponding file descriptor. If either file descriptor is set to AT FDCWD, then the
corresponding pathname, if it is a relative pathname, is evaluated relative to the current
directory. If either pathname is absolute, then the corresponding file descriptor
argument is ignored.

When the existing file is a symbolic link, the flag argument controls whether the
linkat function creates a link to the symbolic link or to the file to which the symbolic
link points. If the AT SYMLINK FOLLOW flag is set in the flag argument, then a link is
created to the target of the symbolic link. If this flag is clear, then a link is created to the
symbolic link itself.

The creation of the new directory entry and the increment of the link count must be
an atomic operation. (Recall the discussion of atomic operations in Section 3.11.)
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Most implementations require that both pathnames be on the same file system,
although POSIX.1 allows an implementation to support linking across file systems. If
an implementation supports the creation of hard links to directories, it is restricted to
only the superuser. This constraint exists because such hard links can cause loops in the
file system, which most utilities that process the file system aren’t capable of handling.
(We show an example of a loop introduced by a symbolic link in Section 4.17.) Many
file system implementations disallow hard links to directories for this reason.

To remove an existing directory entry, we call the unlink function.

#include <unistd.h>
int unlink(const char *pathname);

int unlinkat(int fd, const char *pathname, int flag);

Both return: 0 if OK, -1 on error

These functions remove the directory entry and decrement the link count of the file
referenced by pathname. If there are other links to the file, the data in the file is still
accessible through the other links. The file is not changed if an error occurs.

As mentioned earlier, to unlink a file, we must have write permission and execute
permission in the directory containing the directory entry, as it is the directory entry
that we will be removing. Also, as mentioned in Section 4.10, if the sticky bit is set in
this directory we must have write permission for the directory and meet one of the
following criteria:

e Own the file
* Own the directory

e Have superuser privileges

Only when the link count reaches 0 can the contents of the file be deleted. One
other condition prevents the contents of a file from being deleted: as long as some
process has the file open, its contents will not be deleted. When a file is closed, the
kernel first checks the count of the number of processes that have the file open. If this
count has reached 0, the kernel then checks the link count; if it is 0, the file’s contents are
deleted.

If the pathname argument is a relative pathname, then the unlinkat function
evaluates the pathname relative to the directory represented by the fd file descriptor
argument. If the fd argument is set to the value AT FDCWD, then the pathname is
evaluated relative to the current working directory of the calling process. If the
pathname argument is an absolute pathname, then the fd argument is ignored.

The flag argument gives callers a way to change the default behavior of the
unlinkat function. When the AT_REMOVEDIR flag is set, then the unlinkat function
can be used to remove a directory, similar to using rmdir. If this flag is clear, then
unlinkat operates like unlink.
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Example

The program shown in Figure 4.16 opens a file and then unlinks it. The program then

goes to sleep for 15 seconds before terminating.

#include "apue.h"
#include <fcntl.h>

int
main(void)
{
if (open("tempfile", O RDWR) < 0)
err_sys("open error");
if (unlink("tempfile") < 0)
err sys("unlink error");
printf("file unlinked\n");
sleep(15);
printf("done\n");
exit(0);
}

Figure 4.16 Open a file and then unlink it

Running this program gives us

$ 1s -1 tempfile look at how big the file is

—rw-r--———-— 1 sar 413265408 Jan 21 07:14 tempfile

$ df /home check how much free space is available
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda4 11021440 1956332 9065108 18% /home

$ ./a.out & run the program in Figure 4.16 in the background
1364 the shell prints its process ID

$ file unlinked the file is unlinked

1s -1 tempfile see if the filename is still there

ls: tempfile: No such file or directory the directory entry is gone
$ df /home see if the space is available yet

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda4 11021440 1956332 9065108 18% /home

$ done the program is done, all open files are closed
df /home now the disk space should be available
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda4d 11021440 1552352 9469088 15% /home

now the 394.1 MB of disk space are available

a

This property of unlink is often used by a program to ensure that a temporary file
it creates won’t be left around in case the program crashes. The process creates a file
using either open or creat and then immediately calls unlink. The file is not deleted,
however, because it is still open. Only when the process either closes the file or

terminates, which causes the kernel to close all its open files, is the file deleted.

If pathname is a symbolic link, unlink removes the symbolic link, not the file
referenced by the link. There is no function to remove the file referenced by a symbolic

link given the name of the link.
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The superuser can call unlink with pathname specifying a directory if the file
system supports it, but the function rmdir should be used instead to unlink a directory.
We describe the rmdir function in Section 4.21.

We can also unlink a file or a directory with the remove function. For a file,
remove is identical to unlink. For a directory, remove is identical to rmdir.

#include <stdio.h>

int remove(const char *pathname) ;

Returns: 0 if OK, -1 on error

ISO C specifies the remove function to delete a file. The name was changed from the historical
UNIX name of unlink because most non-UNIX systems that implement the C standard didn’t
support the concept of links to a file at the time.

4.16 rename and renameat Functions

A file or a directory is renamed with either the rename or renameat function.

#include <stdio.h>
int rename(const char *oldname, const char *newname);

int renameat(int oldfd, const char *oldname, int newfd,
const char *newname) ;

Both return: 0 if OK, -1 on error

The rename function is defined by ISO C for files. (The C standard doesn’t deal with
directories.) POSIX.1 expanded the definition to include directories and symbolic links.

There are several conditions to describe for these functions, depending on whether
oldname refers to a file, a directory, or a symbolic link. We must also describe what
happens if newname already exists.

1. If oldname specifies a file that is not a directory, then we are renaming a file or a
symbolic link. In this case, if newname exists, it cannot refer to a directory. If
newname exists and is not a directory, it is removed, and oldname is renamed to
newname. We must have write permission for the directory containing oldname
and the directory containing newname, since we are changing both directories.

2. If oldname specifies a directory, then we are renaming a directory. If newname
exists, it must refer to a directory, and that directory must be empty. (When we
say that a directory is empty, we mean that the only entries in the directory are
dot and dot-dot.) If newname exists and is an empty directory, it is removed, and
oldname is renamed to newname. Additionally, when we’re renaming a directory,
newname cannot contain a path prefix that names oldname. For example, we
can’t rename /usr/foo to /usr/foo/testdir, because the old name
(/usr/foo)is a path prefix of the new name and cannot be removed.

www.it-ebooks.info


http://www.it-ebooks.info/

120

Files and Directories Chapter 4

4.17

3. If either oldname or newname refers to a symbolic link, then the link itself is
processed, not the file to which it resolves.

4. We can’t rename dot or dot-dot. More precisely, neither dot nor dot-dot can
appear as the last component of oldname or newname.

5. As a special case, if oldname and newname refer to the same file, the function
returns successfully without changing anything.

If newname already exists, we need permissions as if we were deleting it. Also, because
we’re removing the directory entry for oldname and possibly creating a directory entry
for newname, we need write permission and execute permission in the directory
containing oldname and in the directory containing newname.

The renameat function provides the same functionality as the rename function,
except when either oldname or newname refers to a relative pathname. If oldname
specifies a relative pathname, it is evaluated relative to the directory referenced by oldfd.
Similarly, newname is evaluated relative to the directory referenced by newfd if newname
specifies a relative pathname. Either the oldfd or newfd arguments (or both) can be set to
AT_FDCWD to evaluate the corresponding pathname relative to the current directory.

Symbolic Links

A symbolic link is an indirect pointer to a file, unlike the hard links described in the
previous section, which pointed directly to the i-node of the file. Symbolic links were
introduced to get around the limitations of hard links.

¢ Hard links normally require that the link and the file reside in the same file
system.

* Only the superuser can create a hard link to a directory (when supported by the
underlying file system).

There are no file system limitations on a symbolic link and what it points to, and anyone
can create a symbolic link to a directory. Symbolic links are typically used to “move” a
file or an entire directory hierarchy to another location on a system.

When using functions that refer to a file by name, we always need to know whether
the function follows a symbolic link. If the function follows a symbolic link, a
pathname argument to the function refers to the file pointed to by the symbolic link.
Otherwise, a pathname argument refers to the link itself, not the file pointed to by the
link. Figure 4.17 summarizes whether the functions described in this chapter follow a
symbolic link. The functions mkdir, mkfifo, mknod, and rmdir do not appear in this
figure, as they return an error when the pathname is a symbolic link. Also, the
functions that take a file descriptor argument, such as fstat and fchmod, are not
listed, as the function that returns the file descriptor (usually open) handles the
symbolic link. Historically, implementations have differed in whether chown follows
symbolic links. In all modern systems, however, chown does follow symbolic links.
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Symbolic links were introduced with 4.2BSD. Initially, chown didn’t follow symbolic links, but
this behavior was changed in 4.4BSD. System V included support for symbolic links in SVR4,
but diverged from the original BSD behavior by implementing chown to follow symbolic links.
In older versions of Linux (those before version 2.1.81), chown didn’t follow symbolic links.
From version 2.1.81 onward, chown follows symbolic links. With FreeBSD 8.0, Mac OS X
10.6.8, and Solaris 10, chown follows symbolic links. All of these platforms provide
implementations of 1chown to change the ownership of symbolic links themselves.

Does not follow

Function symbolic link

Follows
symbolic link

access
chdir
chmod
chown
creat
exec
lchown .
link
lstat .
open
opendir
pathconf
readlink .
remove .
rename .
stat
truncate
unlink .

Figure 4.17 Treatment of symbolic links by various functions

One exception to the behavior summarized in Figure 4.17 occurs when the open
function is called with both O _CREAT and O_EXCL set. In this case, if the pathname
refers to a symbolic link, open will fail with errno set to EEXIST. This behavior is
intended to close a security hole so that privileged processes can’t be fooled into writing

to the wrong files.

Example

It is possible to introduce loops into the file system by using symbolic links. Most
functions that look up a pathname return an errno of ELOOP when this occurs.

Consider the following commands:

$ mkdir foo make a new directory

$ touch foo/a create a 0-length file

$ 1n -s ../foo foo/testdir create a symbolic link

$ 1s -1 foo

total 0

—rwW-r—---- 1 sar 0 Jan 22 00:16 a
lrwxrwxrwx 1 sar 6 Jan 22 00:16 testdir ->
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This creates a directory foo that contains the file a and a symbolic link that points to
foo. We show this arrangement in Figure 4.18, drawing a directory as a circle and a file
as a square.

Figure 4.18 Symbolic link testdir that creates a loop

If we write a simple program that uses the standard function £tw(3) on Solaris to
descend through a file hierarchy, printing each pathname encountered, the output is

foo

foo/a

foo/testdir

foo/testdir/a

foo/testdir/testdir

foo/testdir/testdir/a

foo/testdir/testdir/testdir

foo/testdir/testdir/testdir/a

(many more lines until we encounter an ELOOP error)

In Section 4.22, we provide our own version of the ftw function that uses lstat
instead of stat, to prevent it from following symbolic links.

Note that on Linux, the ftw and nftw functions record all directories seen and avoid
processing a directory more than once, so they don’t display this behavior.

A loop of this form is easy to remove. We can unlink the file foo/testdir, as
unlink does not follow a symbolic link. But if we create a hard link that forms a loop
of this type, its removal is much more difficult. This is why the 1ink function will not
form a hard link to a directory unless the process has superuser privileges.

Indeed, Rich Stevens did this on his own system as an experiment while writing the original
version of this section. The file system got corrupted and the normal f£sck(1) utility couldn’t
fix things. The deprecated tools c1ri(8) and dcheck(8) were needed to repair the file system.

The need for hard links to directories has long since passed. With symbolic links and the
mkdir function, there is no longer any need for users to create hard links to directories.

When we open a file, if the pathname passed to open specifies a symbolic link,
open follows the link to the specified file. If the file pointed to by the symbolic link
doesn’t exist, open returns an error saying that it can’t open the file. This response can
confuse users who aren’t familiar with symbolic links. For example,
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$ 1n -s /no/such/file myfile create a symbolic link

$ 1ls myfile

myfile 1s says it’s there

$ cat myfile so we try to look at it

cat: myfile: No such file or directory

$ 1s -1 myfile try -1 option

lrwxrwxrwx 1 sar 13 Jan 22 00:26 myfile -> /no/such/file

The file myfile does exist, yet cat says there is no such file, because myfile is a
symbolic link and the file pointed to by the symbolic link doesn’t exist. The -1 option
to 1s gives us two hints: the first character is an 1, which means a symbolic link, and
the sequence -> also indicates a symbolic link. The 1s command has another option
(-F) that appends an at-sign (@) to filenames that are symbolic links, which can help us
spot symbolic links in a directory listing without the -1 option. O

Creating and Reading Symbolic Links

A symbolic link is created with either the symlink or symlinkat function.

#include <unistd.h>
int symlink(const char *actualpath, const char *sympath);

int symlinkat(const char *actualpath, int fd, const char *sympath);

Both return: 0 if OK, -1 on error

A new directory entry, sympath, is created that points to actualpath. It is not required
that actualpath exist when the symbolic link is created. (We saw this in the example at
the end of the previous section.) Also, actualpath and sympath need not reside in the
same file system.

The symlinkat function is similar to symlink, but the sympath argument is
evaluated relative to the directory referenced by the open file descriptor for that
directory (specified by the fd argument). If the sympath argument specifies an absolute
pathname or if the fd argument has the special value AT _FDCWD, then symlinkat
behaves the same way as symlink.

Because the open function follows a symbolic link, we need a way to open the link
itself and read the name in the link. The readlink and readlinkat functions do this.

#include <unistd.h>

ssize_t readlink(const char* restrict pathname, char *restrict buf,
size_ t bufsize);

ssize_t readlinkat(int fd, const char* restrict pathname,
char *restrict buf, size_t bufsize);

Both return: number of bytes read if OK, -1 on error
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These functions combine the actions of open, read, and close. If successful, they
return the number of bytes placed into buf. The contents of the symbolic link that are
returned in buf are not null terminated.

The readlinkat function behaves the same way as the readlink function when
the pathname argument specifies an absolute pathname or when the fd argument has the
special value AT_FDCWD. However, when the fd argument is a valid file descriptor of an
open directory and the pathname argument is a relative pathname, then readlinkat
evaluates the pathname relative to the open directory represented by fd.

File Times

In Section 4.2, we discussed how the 2008 version of the Single UNIX Specification
increased the resolution of the time fields in the stat structure from seconds to seconds
plus nanoseconds. The actual resolution stored with each file’s attributes depends on
the file system implementation. For file systems that store timestamps in second
granularity, the nanoseconds fields will be filled with zeros. For file systems that store
timestamps in a resolution higher than seconds, the partial seconds value will be
converted into nanoseconds and returned in the nanoseconds fields.

Three time fields are maintained for each file. Their purpose is summarized in
Figure 4.19.

Field Description Example 1s(1) option
st_atim | last-access time of file data read -u
st_mtim | last-modification time of file data | write default
st_ctim | last-change time of i-node status | chmod, chown -c

Figure 4.19 The three time values associated with each file

Note the difference between the modification time (st_mtim) and the changed-status
time (st_ctim). The modification time indicates when the contents of the file were last
modified. The changed-status time indicates when the i-node of the file was last
modified. In this chapter, we’ve described many operations that affect the i-node
without changing the actual contents of the file: changing the file access permissions,
changing the user ID, changing the number of links, and so on. Because all the
information in the i-node is stored separately from the actual contents of the file, we
need the changed-status time, in addition to the modification time.

Note that the system does not maintain the last-access time for an i-node. This is
why the functions access and stat, for example, don’t change any of the three times.

The access time is often used by system administrators to delete files that have not
been accessed for a certain amount of time. The classic example is the removal of files
named a.out or core that haven't been accessed in the past week. The find(1)
command is often used for this type of operation.

The modification time and the changed-status time can be used to archive only
those files that have had their contents modified or their i-node modified.
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The 1s command displays or sorts only on one of the three time values. By default,
when invoked with either the -1 or the -t option, it uses the modification time of a file.
The -u option causes the 1s command to use the access time, and the -c option causes
it to use the changed-status time.

Figure 4.20 summarizes the effects of the various functions that we’ve described on
these three times. Recall from Section 4.14 that a directory is simply a file containing
directory entries: filenames and associated i-node numbers. Adding, deleting, or
modifying these directory entries can affect the three times associated with that
directory. This is why Figure 4.20 contains one column for the three times associated
with the file or directory and another column for the three times associated with the
parent directory of the referenced file or directory. For example, creating a new file
affects the directory that contains the new file, and it affects the i-node for the new file.
Reading or writing a file, however, affects only the i-node of the file and has no effect on

the directory.
Parent directory
Function Referenced file of referenced file | Section Note
or directory or directory
a m c a m c
chmod, fchmod . 49
chown, fchown . 4.11
creat . . . . . 3.4 O_CREAT new file
creat . . 3.4 O_TRUNC existing file
exec . 8.10
lchown . 4.11
link . . . 4.15 parent of second argument
mkdir . . . . . 4.21
mkfifo . . . . . 155
open . . . . . 3.3 O_CREAT new file
open . . 33 O_TRUNC existing file
pipe . . . 15.2
read . 3.7
remove . . . 4.15 remove file = unlink
remove . . 4.15 remove directory = rmdir
rename . . . 4.16 for both arguments
rmdir . . 4.21
truncate, ftruncate . . 413
unlink . . . 4.15
utimes, utimensat, futimens . . . 4.20
write . . 3.8

Figure 4.20 Effect of various functions on the access, modification, and changed-status times

(The mkdir and rmdir functions are covered in Section 4.21. The utimes,
utimensat, and futimens functions are covered in the next section. The seven exec
functions are described in Section 8.10. We describe the mkfifo and pipe functions in
Chapter 15.)
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futimens, utimensat, and utimes Functions

Several functions are available to change the access time and the modification time of a
file. The futimens and utimensat functions provide nanosecond granularity for
specifying timestamps, using the timespec structure (the same structure used by the
stat family of functions; see Section 4.2).

#include <sys/stat.h>
int futimens(int fd, const struct timespec times[2]);

int utimensat(int fd, const char *path, const struct timespec times[2],

int flag);

Both return: 0 if OK, -1 on error

In both functions, the first element of the times array argument contains the access
time, and the second element contains the modification time. The two time values are
calendar times, which count seconds since the Epoch, as described in Section 1.10.
Partial seconds are expressed in nanoseconds.

Timestamps can be specified in one of four ways:

1.

The times argument is a null pointer. In this case, both timestamps are set to the
current time.

The times argument points to an array of two timespec structures. If either
tv_nsec field has the special value UTIME_NOW, the corresponding timestamp
is set to the current time. The corresponding tv_sec field is ignored.

The times argument points to an array of two timespec structures. If either
tv_nsec field has the special value UTIME_OMIT, then the corresponding
timestamp is unchanged. The corresponding tv_sec field is ignored.

The times argument points to an array of two timespec structures and the
tv_nsec field contains a value other than UTIME_NOW or UTIME_OMIT. In this
case, the corresponding timestamp is set to the value specified by the
corresponding tv_sec and tv_nsec fields.

The privileges required to execute these functions depend on the value of the times
argument.

If times is a null pointer or if either tv_nsec field is set to UTIME_NOW, either
the effective user ID of the process must equal the owner ID of the file, the
process must have write permission for the file, or the process must be a
superuser process.

If times is a non-null pointer and either tv_nsec field has a value other than
UTIME_NOW or UTIME_OMIT, the effective user ID of the process must equal the
owner ID of the file, or the process must be a superuser process. Merely having
write permission for the file is not adequate.
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e If times is a non-null pointer and both tv_nsec fields are set to UTIME_OMIT,
no permissions checks are performed.

With futimens, you need to open the file to change its times. The utimensat
function provides a way to change a file’s times using the file’s name. The pathname
argument is evaluated relative to the fd argument, which is either a file descriptor of an
open directory or the special value AT _FDCWD to force evaluation relative to the current
directory of the calling process. If pathname specifies an absolute pathname, then the fd
argument is ignored.

The flag argument to utimensat can be used to further modify the default
behavior. If the AT SYMLINK_NOFOLLOW flag is set, then the times of the symbolic link
itself are changed (if the pathname refers to a symbolic link). The default behavior is to
follow a symbolic link and modify the times of the file to which the link refers.

Both futimens and utimensat are included in POSIX.1. A third function,
utimes, is included in the Single UNIX Specification as part of the XSI option.

#include <sys/time.h>

int utimes(const char #*pathname, const struct timeval times[2]);

Returns: 0 if OK, -1 on error

The utimes function operates on a pathname. The times argument is a pointer to
an array of two timestamps—access time and modification time—but they are
expressed in seconds and microseconds:

struct timeval {
time t tv_sec; /* seconds */
long tv_usec; /* microseconds */

}i

Note that we are unable to specify a value for the changed-status time,
st_ctim—the time the i-node was last changed—as this field is automatically updated
when the utime function is called.

On some versions of the UNIX System, the touch(l) command uses one of these
functions. Also, the standard archive programs, tar(l) and cpio(l), optionally call
these functions to set a file’s times to the time values saved when the file was archived.

Example

The program shown in Figure 4.21 truncates files to zero length using the O_TRUNC
option of the open function, but does not change their access time or modification time.
To do this, the program first obtains the times with the stat function, truncates the file,
and then resets the times with the futimens function.

#include "apue.h"
#include <fcntl.h>

int
main(int argc, char *argv[])
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int i, fd;

struct stat

statbuf;

struct timespec times[2];

for (i = 1; i < argc; i++) {
if (stat(argv[i], &statbuf) < 0) { /* fetch current times */
err ret("%s: stat error", argv[i]);

continue;

}

if ((fd = open(argv[i], O RDWR | O_TRUNC)) < 0) { /* truncate */
err ret("%$s: open error", argv[i]);

continue;

}

times[0] = statbuf.st atim;
times[1l] = statbuf.st mtim;

if (futimens(fd, times) < 0)

err_ret("%s: futimens error", argv[i]);

close(fd);

}
exit(0);

/* reset times */

Figure 4.21 Example of futimens function

We can demonstrate the program in Figure 4.21 on Linux with the following commands:

$ 1s -1 changemod times

-rwxr-xr-x 1 sar 13792 Jan
-rwxr-xr-x 1 sar 13824 Jan
$ 1s -lu changemod times
-rwxr-xr-x 1 sar 13792 Jan
-rwxXr-xr-x 1 sar 13824 Jan
$ date

Fri Jan 27 20:53:46 EST 2012
$ ./a.out changemod times

$ 1s -1 changemod times

-rwxr-xr-x 1 sar 0 Jan
-rwxr-xr-x 1 sar 0 Jan
$ 1s -1lu changemod times

-rwxr-xr-x 1 sar 0 Jan
-rwxr-xr-x 1 sar 0 Jan
$ 1s -1lc changemod times

-rwxr-xr-x 1 sar 0 Jan
-rwxXr-xr-x 1 sar 0 Jan

look at sizes and last-modification times
22 01:26 changemod
22 01:26 times
look at last-access times
22 22:22 changemod
22 22:22 times
print today’s date

run the program in Figure 4.21
and check the results
22 01:26 changemod
22 01:26 times
check the last-access times also
22 22:22 changemod
22 22:22 times
and the changed-status times
27 20:53 changemod
27 20:53 times

As we would expect, the last-modification times and the last-access times have not
changed. The changed-status times, however, have changed to the time that the

program was run.
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4.21

mkdir, mkdirat, and rmdir Functions

Directories are created with the mkdir and mkdirat functions, and deleted with the
rmdir function.

#include <sys/stat.h>
int mkdir(const char *pathname, mode_t mode);
int mkdirat(int fd, const char *pathname, mode_ t mode) ;

Both return: 0 if OK, -1 on error

These functions create a new, empty directory. The entries for dot and dot-dot are
created automatically. The specified file access permissions, mode, are modified by the
file mode creation mask of the process.

A common mistake is to specify the same mode as for a file: read and write
permissions only. But for a directory, we normally want at least one of the execute bits
enabled, to allow access to filenames within the directory. (See Exercise 4.16.)

The user ID and group ID of the new directory are established according to the
rules we described in Section 4.6.

Solaris 10 and Linux 3.2.0 also have the new directory inherit the set-group-ID bit from the
parent directory. Files created in the new directory will then inherit the group ID of that
directory. With Linux, the file system implementation determines whether this behavior is
supported. For example, the ext2, ext3, and ext4 file systems allow this behavior to be
controlled by an option to the mount(1) command. With the Linux implementation of the UFS
file system, however, the behavior is not selectable; it inherits the set-group-ID bit to mimic the
historical BSD implementation, where the group ID of a directory is inherited from the parent
directory.

BSD-based implementations don’t propagate the set-group-ID bit; they simply inherit the
group ID as a matter of policy. Because FreeBSD 8.0 and Mac OS X 10.6.8 are based on 4.4BSD,
they do not require inheriting the set-group-ID bit. On these platforms, newly created files and
directories always inherit the group ID of the parent directory, regardless of whether the
set-group-ID bit is set.

Earlier versions of the UNIX System did not have the mkdir function; it was introduced with
4.2BSD and SVR3. In the earlier versions, a process had to call the mknod function to create a
new directory—but use of the mknod function was restricted to superuser processes. To
circumvent this constraint, the normal command that created a directory, mkdir(1), had to be
owned by root with the set-user-ID bit on. To create a directory from a process, the mkdir(1)
command had to be invoked with the system(3) function.

The mkdirat function is similar to the mkdir function. When the fd argument has
the special value AT FDCWD, or when the pathname argument specifies an absolute
pathname, mkdirat behaves exactly like mkdir. Otherwise, the fd argument is an
open directory from which relative pathnames will be evaluated.

An empty directory is deleted with the rmdir function. Recall that an empty
directory is one that contains entries only for dot and dot-dot.
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#include <unistd.h>

int rmdir(const char *pathname);

Returns: 0 if OK, -1 on error

If the link count of the directory becomes 0 with this call, and if no other process has the
directory open, then the space occupied by the directory is freed. If one or more
processes have the directory open when the link count reaches 0, the last link is
removed and the dot and dot-dot entries are removed before this function returns.
Additionally, no new files can be created in the directory. The directory is not freed,
however, until the last process closes it. (Even though some other process has the
directory open, it can’t be doing much in the directory, as the directory had to be empty
for the rmdir function to succeed.)

Reading Directories

Directories can be read by anyone who has access permission to read the directory. But
only the kernel can write to a directory, to preserve file system sanity. Recall from
Section 4.5 that the write permission bits and execute permission bits for a directory
determine if we can create new files in the directory and remove files from the
directory—they don’t specify if we can write to the directory itself.

The actual format of a directory depends on the UNIX System implementation and
the design of the file system. Earlier systems, such as Version 7, had a simple structure:
each directory entry was 16 bytes, with 14 bytes for the filename and 2 bytes for the
i-node number. When longer filenames were added to 4.2BSD, each entry became
variable length, which means that any program that reads a directory is now system
dependent. To simplify the process of reading a directory, a set of directory routines
were developed and are part of POSIX.1. Many implementations prevent applications
from using the read function to access the contents of directories, thereby further
isolating applications from the implementation-specific details of directory formats.

#include <dirent.h>
DIR *opendir(const char *pathname);
DIR *fdopendir(int fd);
Both return: pointer if OK, NULL on error
struct dirent *readdir(DIR *dp);
Returns: pointer if OK, NULL at end of directory or error
void rewinddir(DIR *dp);
int closedir(DIR *dp);
Returns: 0 if OK, -1 on error
long telldir(DIR *dp);

Returns: current location in directory associated with dp

void seekdir(DIR *dp, long loc);
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The fdopendir function first appeared in version 4 of the Single UNIX
Specification. It provides a way to convert an open file descriptor into a DIR structure
for use by the directory handling functions.

The telldir and seekdir functions are not part of the base POSIX.1 standard.
They are included in the XSI option in the Single UNIX Specification, so all conforming
UNIX System implementations are expected to provide them.

Recall our use of several of these functions in the program shown in Figure 1.3, our
bare-bones implementation of the 1s command.

The dirent structure defined in <dirent.h> is implementation dependent.
Implementations define the structure to contain at least the following two members:

ino_t d_ino; /* i-node number */
char d name[]; /* null-terminated filename */

The d_ino entry is not defined by POSIX.1, because it is an implementation feature, but it is
defined as part of the XSI option in POSIX.1. POSIX.1 defines only the d_name entry in this
structure.

Note that the size of the d_name entry isn’t specified, but it is guaranteed to hold at
least NAME_MAX characters, not including the terminating null byte (recall Figure 2.15.)
Since the filename is null terminated, however, it doesn’t matter how d_name is defined
in the header, because the array size doesn’t indicate the length of the filename.

The DIR structure is an internal structure used by these seven functions to maintain
information about the directory being read. The purpose of the DIR structure is similar
to that of the FILE structure maintained by the standard 1/O library, which we describe
in Chapter 5.

The pointer to a DIR structure returned by opendir and fdopendir is then used
with the other five functions. The opendir function initializes things so that the first
readdir returns the first entry in the directory. When the DIR structure is created by
fdopendir, the first entry returned by readdir depends on the file offset associated
with the file descriptor passed to £dopendir. Note that the ordering of entries within
the directory is implementation dependent and is usually not alphabetical.

Example

We'll use these directory routines to write a program that traverses a file hierarchy. The
goal is to produce a count of the various types of files shown in Figure 4.4. The
program shown in Figure 4.22 takes a single argument—the starting pathname—and
recursively descends the hierarchy from that point. Solaris provides a function, £tw(3),
that performs the actual traversal of the hierarchy, calling a user-defined function for
each file. The problem with this function is that it calls the stat function for each file,
which causes the program to follow symbolic links. For example, if we start at the root
and have a symbolic link named /1ib that points to /usr/1lib, all the files in the
directory /usr/lib are counted twice. To correct this problem, Solaris provides an
additional function, nftw(3), with an option that stops it from following symbolic links.
Although we could use nftw, we’ll write our own simple file walker to show the use of
the directory routines.
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In SUSv4, nftw is included as part of the XSI option. Implementations are included in
FreeBSD 8.0, Linux 3.2.0, Mac OS X 10.6.8, and Solaris 10. (In SUSv4, the ftw function has
been marked as obsolescent.) BSD-based systems have a different function, fts(3), that
provides similar functionality. It is available in FreeBSD 8.0, Linux 3.2.0, and Mac OS X 10.6.8.

#include "apue.h"
#include <dirent.h>
#include <limits.h>

/* function type that is called for each filename */
typedef int Myfunc(const char *, const struct stat *, int);

static Myfunc myfunc;
static int myftw(char *, Myfunc *);
static int dopath(Myfunc *);

static long nreg, ndir, nblk, nchr, nfifo, nslink, nsock, ntot;

int
main(int argc, char *argv([])
{

int ret;

if (argc != 2)
err quit("usage: ftw <starting-pathname>");

ret = myftw(argv[l], myfunc); /* does it all */

ntot = nreg + ndir + nblk + nchr + nfifo + nslink + nsock;
if (ntot == 0)

ntot = 1; /* avoid divide by 0; print 0 for all counts */
printf("regular files = %71d, %5.2f %%\n", nregq,
nreg*100.0/ntot);
printf("directories = %71d, %5.2f %%\n", ndir,

ndir*100.0/ntot);

printf("block special
nblk*100.0/ntot);

printf("char special
nchr*100.0/ntot);

printf ("FIFOs = %71d, %5.2f %%\n", nfifo,
nfifo*100.0/ntot);

printf("symbolic links = %71d, %5.2f %%\n", nslink,
nslink*100.0/ntot);

printf ("sockets = %71d, %5.2f %%\n", nsock,
nsock*100.0/ntot);

exit(ret);

$71d, %5.2f $%\n", nblk,

$71d, %5.2f %%\n", nchr,

}

/*
* Descend through the hierarchy, starting at "pathname".
* The caller’s func() is called for every file.

*/
#define FTW_F 1 /* file other than directory */
#define FTW D 2 /* directory */
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#define FTW_DNR 3 /* directory that can’t be read */
#define FTW NS 4 /* file that we can’t stat */
static char *fullpath; /* contains full pathname for every file */

static size t pathlen;

static int /* we return whatever func() returns */
myftw(char *pathname, Myfunc *func)
{
fullpath = path_alloc(&pathlen); /* malloc PATH MAX+1 bytes */
/* (Figure 2.16) */
if (pathlen <= strlen(pathname)) {
pathlen = strlen(pathname) * 2;
if ((fullpath = realloc(fullpath, pathlen)) == NULL)
err sys("realloc failed");
}
strcpy(fullpath, pathname);
return(dopath(func));
}
/*
* Descend through the hierarchy, starting at "fullpath".
* If "fullpath" is anything other than a directory, we lstat() it,
* call func(), and return. For a directory, we call ourself
* recursively for each name in the directory.
*/
static int /* we return whatever func() returns */

dopath (Myfunc* func)

{

struct stat statbuf;
struct dirent *dirp;
DIR *dp;

int ret, n;

if (lstat(fullpath, &statbuf) < 0) /* stat error */
return(func(fullpath, &statbuf, FTW _NS));

if (S_ISDIR(statbuf.st mode) == 0) /* not a directory */
return(func(fullpath, &statbuf, FIW_F));

/*
* Tt’s a directory. First call func() for the directory,
* then process each filename in the directory.
*/
if ((ret = func(fullpath, &statbuf, FTW D)) != 0)
return(ret);

n = strlen(fullpath);
if (n + NAME MAX + 2 > pathlen) { /* expand path buffer */
pathlen *= 2;
if ((fullpath = realloc(fullpath, pathlen)) == NULL)
err sys("realloc failed");

}
fullpath[n++] = '/';
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}

fullpath[n] = 0;

if ((dp = opendir(fullpath)) == NULL) /* can’'t read directory */
return(func(fullpath, &statbuf, FTW_DNR));
while ((dirp = readdir(dp)) != NULL) {
if (strcmp(dirp->d_name, ".") == 0 ||
strcmp (dirp->d _name, "..") == 0)
continue; /* ignore dot and dot-dot */
strcpy(&fullpath[n], dirp->d_name); /* append name after "/" */
if ((ret = dopath(func)) != 0) /* recursive */
break; /* time to leave */
}
fullpath[n-1] = 0; /* erase everything from slash onward */

if (closedir(dp) < 0)
err ret("can’'t close directory %s", fullpath);
return(ret);

static int
myfunc(const char *pathname, const struct stat *statptr, int type)

{

switch (type) {
case FTW F:
switch (statptr->st mode & S_IFMT) {

case S_IFREG: nreg++; break;
case S_IFBLK: nblk++; break;
case S_IFCHR: nchr++; break;
case S_IFIFO: nfifo++; break;
case S_IFLNK: nslink++; break;
case S _IFSOCK: nsock++; break;
case S_IFDIR: /* directories should have type = FTW D */
err_dump("for S_IFDIR for %s", pathname);
}
break;
case FTW D:
ndir++;
break;

case FTW_DNR:
err_ret("can’'t read directory %s", pathname);
break;
case FTW_NS:
err ret("stat error for %s", pathname);
break;
default:
err dump("unknown type %d for pathname %s", type, pathname);

}

return(0);

Figure 4.22 Recursively descend a directory hierarchy, counting file types
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To illustrate the ftw and nftw functions, we have provided more generality in this
program than needed. For example, the function myfunc always returns 0, even
though the function that calls it is prepared to handle a nonzero return. O

For additional information on descending through a file system and using this
technique in many standard UNIX System commands—find, 1s, tar, and so
on—refer to Fowler, Korn, and Vo [1989].

4.23 chdir, fchdir, and getcwd Functions
Every process has a current working directory. This directory is where the search for all
relative pathnames starts (i.e., with all pathnames that do not begin with a slash). When
a user logs in to a UNIX system, the current working directory normally starts at the
directory specified by the sixth field in the /etc/passwd file—the user’s home
directory. The current working directory is an attribute of a process; the home directory
is an attribute of a login name.
We can change the current working directory of the calling process by calling the
chdir or fchdir function.
#include <unistd.h>
int chdir(const char *pathname);
int fchdir(int fd);
Both return: 0 if OK, -1 on error
We can specify the new current working directory either as a pathname or through an
open file descriptor.
Example

Because it is an attribute of a process, the current working directory cannot affect
processes that invoke the process that executes the chdir. (We describe the
relationship between processes in more detail in Chapter 8.) As a result, the program in
Figure 4.23 doesn’t do what we might expect.

#include "apue.h"

int

main(void)

{
if (chdir("/tmp") < 0)

err sys("chdir failed");

printf("chdir to /tmp succeeded\n");
exit(0);

}

Figure 4.23 Example of chdir function
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If we compile this program, call the executable mycd, and run it, we get the following;:

$ pwd

/usr/lib

$ mycd

chdir to /tmp succeeded

$ pwd

/usr/lib
The current working directory for the shell that executed the mycd program didn’t
change. This is a side effect of the way that the shell executes programs. Each program
is run in a separate process, so the current working directory of the shell is unaffected
by the call to chdir in the program. For this reason, the chdir function has to be
called directly from the shell, so the cd command is built into the shells. ]

Because the kernel must maintain knowledge of the current working directory, we
should be able to fetch its current value. Unfortunately, the kernel doesn’t maintain the
full pathname of the directory. Instead, the kernel keeps information about the
directory, such as a pointer to the directory’s v-node.

The Linux kernel can determine the full pathname. Its components are distributed throughout
the mount table and the dcache table, and are reassembled, for example, when you read the
/proc/self/cwd symbolic link.

What we need is a function that starts at the current working directory (dot) and
works its way up the directory hierarchy, using dot-dot to move up one level. At each
level, the function reads the directory entries until it finds the name that corresponds to
the i-node of the directory that it just came from. Repeating this procedure until the
root is encountered yields the entire absolute pathname of the current working
directory. Fortunately, a function already exists that does this work for us.

#include <unistd.h>

char *getcwd(char *buf, size_t size);

Returns: buf if OK, NULL on error

We must pass to this function the address of a buffer, buf, and its size (in bytes). The
buffer must be large enough to accommodate the absolute pathname plus a terminating
null byte, or else an error will be returned. (Recall the discussion of allocating space for
a maximum-sized pathname in Section 2.5.5.)

Some older implementations of getcwd allow the first argument buf to be NULL. In this case,
the function calls malloc to allocate size number of bytes dynamically. This is not part of
POSIX.1 or the Single UNIX Specification and should be avoided.

Example

The program in Figure 4.24 changes to a specific directory and then calls getcwd to
print the working directory. If we run the program, we get

$ ./a.out

cwd = /var/spool/uucppublic

$ 1s -1 /usr/spool

lrwxrwxrwx 1 root 12 Jan 31 07:57 /usr/spool -> ../var/spool
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4.24

#include "apue.h"

int
main(void)
{
char *ptr;
size t size;
if (chdir("/usr/spool/uucppublic") < 0)
err sys("chdir failed");
ptr = path alloc(&size); /* our own function */
if (getcwd(ptr, size) == NULL)
err sys("getcwd failed");
printf("cwd = %s\n", ptr);
exit(0);
}

Figure 4.24 Example of getcwd function

Note that chdir follows the symbolic link—as we expect it to, from Figure 4.17—but
when it goes up the directory tree, getcwd has no idea when it hits the /var/spool
directory that it is pointed to by the symbolic link /usr/spool. This is a characteristic
of symbolic links. O

The getcwd function is useful when we have an application that needs to return to
the location in the file system where it started out. We can save the starting location by
calling getcwd before we change our working directory. After we complete our
processing, we can pass the pathname obtained from getcwd to chdir to return to our
starting location in the file system.

The fchdir function provides us with an easy way to accomplish this task. Instead
of calling getcwd, we can open the current directory and save the file descriptor before
we change to a different location in the file system. When we want to return to where
we started, we can simply pass the file descriptor to £chdir.

Device Special Files

The two fields st_dev and st_rdev are often confused. We'll need to use these fields
in Section 18.9 when we write the ttyname function. The rules for their use are simple.

¢ Every file system is known by its major and minor device numbers, which are
encoded in the primitive system data type dev_t. The major number identifies
the device driver and sometimes encodes which peripheral board to
communicate with; the minor number identifies the specific subdevice. Recall
from Figure 4.13 that a disk drive often contains several file systems. Each file
system on the same disk drive would usually have the same major number, but
a different minor number.
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*  We can usually access the major and minor device numbers through two macros
defined by most implementations: major and minor. Consequently, we don’t
care how the two numbers are stored in a dev_t object.

Early systems stored the device number in a 16-bit integer, with 8 bits for the major
number and 8 bits for the minor number. FreeBSD 8.0 and Mac OS X 10.6.8 use a 32-bit
integer, with 8 bits for the major number and 24 bits for the minor number. On 32-bit
systems, Solaris 10 uses a 32-bit integer for dev_t, with 14 bits designated as the major
number and 18 bits designated as the minor number. On 64-bit systems, Solaris 10
represents dev_t as a 64-bit integer, with 32 bits for each number. On Linux 3.2.0,
although dev_t is a 64-bit integer, only 12 bits are used for the major number and 20 bits
are used for the minor number.

POSIX.1 states that the dev_t type exists, but doesn’t define what it contains or how to
get at its contents. The macros major and minor are defined by most implementations.
Which header they are defined in depends on the system. They can be found in
<sys/types.h> on BSD-based systems. Solaris defines their function prototypes in
<sys/mkdev.h>, because the macro definitions in <sys/sysmacros.h> are considered
obsolete in Solaris. Linux defines these macros in <sys/sysmacros.h>, which is
included by <sys/types.h>.

¢ The st_dev value for every filename on a system is the device number of the
file system containing that filename and its corresponding i-node.

* Only character special files and block special files have an st_rdev value. This
value contains the device number for the actual device.

Example

The program in Figure 4.25 prints the device number for each command-line argument.
Additionally, if the argument refers to a character special file or a block special file, the
st_rdev value for the special file is printed.

#include "apue.h"
#ifdef SOLARIS
#include <sys/mkdev.h>

#endif

int

main(int argc, char *argv[])

{

int

i;

struct stat buf;

for (i = 1; i < argc; i++) {

printf("%s:

, argv[i]);

if (stat(argv[i], &buf) < 0) {

}

err ret("stat error");
continue;

printf("dev = %d/%d", major(buf.st _dev), minor(buf.st dev));
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if (S_ISCHR(buf.st mode) || S_ISBLK(buf.st mode)) {
printf(" (%s) rdev = %d/%d",
(S_ISCHR(buf.st mode)) ? "character" : "block",
major (buf.st rdev), minor(buf.st rdev));
}
printf("\n");
}
exit(0);

Figure 4.25 Print st_dev and st_rdev values

Running this program on Linux gives us the following output:

$ ./a.out / /home/sar /dev/tty[01]

/: dev = 8/3

/home/sar: dev = 8/4

/dev/tty0: dev 0/5 (character) rdev = 4/0

/dev/ttyl: dev 0/5 (character) rdev = 4/1

$ mount which directories are mounted on which devices?
/dev/sda3 on / type ext3 (rw,errors=remount-ro,commit=0)
/dev/sda4 on /home type ext3 (rw,commit=0)

$ 1s -1 /dev/tty[01] /dev/sda[34]

brw-rw---- 1 root 8, 3 2011-07-01 11:08 /dev/sda3
brw-rw---- 1 root 8, 4 2011-07-01 11:08 /dev/sda4
crw--w---- 1 root 4, 0 2011-07-01 11:08 /dev/tty0
Crw--—-——-—-— 1 root 4, 1 2011-07-01 11:08 /dev/ttyl

The first two arguments to the program are directories (/ and /home/sar), and the
next two are the device names /dev/tty[01]. (We use the shell’s regular expression
language to shorten the amount of typing we need to do. The shell will expand the
string /dev/tty[01] to /dev/tty0 /dev/ttyl.)

We expect the devices to be character special files. The output from the program
shows that the root directory has a different device number than does the /home/sar
directory, which indicates that they are on different file systems. Running the mount(1)
command verifies this.

We then use 1s to look at the two disk devices reported by mount and the two
terminal devices. The two disk devices are block special files, and the two terminal
devices are character special files. (Normally, the only types of devices that are block
special files are those that can contain random-access file systems—disk drives, floppy
disk drives, and CD-ROMs, for example. Some older UNIX systems supported
magnetic tapes for file systems, but this was never widely used.)

Note that the filenames and i-nodes for the two terminal devices (st_dev) are on
device 0/5—the devtmpfs pseudo file system, which implements the /dev—but that
their actual device numbers are 4/0 and 4/1. O
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4.25 Summary of File Access Permission Bits

4.26

We've covered all the file access permission bits, some of which serve multiple
purposes. Figure 4.26 summarizes these permission bits and their interpretation when
applied to a regular file and a directory.

Constant Description Effect on regular file Effect on directory

S_ISUID | set-user-ID set effective user ID on execution (not used)

S_ISGID | set-group-ID if group-execute set, then set set group ID of new files created in
effective group ID on execution; directory to group ID of directory
otherwise, enable mandatory
record locking (if supported)

S_ISVTX | sticky bit control caching of file contents restrict removal and renaming of files in
(if supported) directory

S_IRUSR | user-read user permission to read file user permission to read directory

entries

S_IWUSR | user-write user permission to write file user permission to remove and create

files in directory

S_IXUSR | user-execute user permission to execute file user permission to search for given

pathname in directory

S_IRGRP | group-read group permission to read file group permission to read directory

entries

S_IWGRP | group-write group permission to write file group permission to remove and create

files in directory

S_IXGRP | group-execute | group permission to execute file group permission to search for given

pathname in directory

S_IROTH | other-read other permission to read file other permission to read directory

entries

S_IWOTH | other-write other permission to write file other permission to remove and create

files in directory

S_IXOTH | other-execute | other permission to execute file other permission to search for given

pathname in directory

Figure 4.26 Summary of file access permission bits

The final nine constants can also be grouped into threes, as follows:

S_TIRWXU
S_IRWXG
S_IRWXO

Summary

S IRUSR | S IWUSR | S _IXUSR
S_IRGRP | S_IWGRP | S_IXGRP
S _IROTH | S IWOTH | S_IXOTH

This chapter has centered on the stat function. We've gone through each member in
the stat structure in detail. This, in turn, led us to examine all the attributes of UNIX
files and directories. We’ve looked at how files and directories might be laid out in a file
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system, and we've seen how to navigate the file system namespace. A thorough
understanding of all the properties of files and directories and all the functions that
operate on them is essential to UNIX programming.

Exercises

41

4.2

4.3

44

4.5

4.6

4.7

4.8

4.9

4.10

411

4.12

4.13
4.14

Modify the program in Figure 4.3 to use stat instead of 1stat. What changes if one of the
command-line arguments is a symbolic link?

What happens if the file mode creation mask is set to 777 (octal)? Verify the results using
your shell’s umask command.

Verify that turning off user-read permission for a file that you own denies your access to
the file.

Run the program in Figure 4.9 after creating the files foo and bar. What happens?

In Section 4.12, we said that a file size of 0 is valid for a regular file. We also said that the
st_size field is defined for directories and symbolic links. Should we ever see a file size
of 0 for a directory or a symbolic link?

Write a utility like cp(1) that copies a file containing holes, without writing the bytes of 0 to
the output file.

Note in the output from the 1s command in Section 4.12 that the files core and
core.copy have different access permissions. If the umask value didn’t change between
the creation of the two files, explain how the difference could have occurred.

When running the program in Figure 4.16, we check the available disk space with the d£(1)
command. Why didn’t we use the du(1) command?

In Figure 4.20, we show the unlink function as modifying the changed-status time of the
file itself. How can this happen?

In Section 4.22, how does the system’s limit on the number of open files affect the myftw
function?

In Section 4.22, our version of £tw never changes its directory. Modify this routine so that
each time it encounters a directory, it uses the chdir function to change to that directory,
allowing it to use the filename and not the pathname for each call to 1stat. When all the
entries in a directory have been processed, execute chdir(".."). Compare the time used
by this version and the version in the text.

Each process also has a root directory that is used for resolution of absolute pathnames.
This root directory can be changed with the chroot function. Look up the description for
this function in your manuals. When might this function be useful?

How can you set only one of the two time values with the utimes function?

”

Some versions of the finger(l) command output “New mail received ...” and “unread
since ...” where ... are the corresponding times and dates. How can the program determine
these two times and dates?
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4.15

4.16

4.17

Examine the archive formats used by the cpio(l) and tar(l) commands. (These
descriptions are usually found in Section 5 of the UNIX Programmer’s Manual.) How many
of the three possible time values are saved for each file? When a file is restored, what value
do you think the access time is set to, and why?

Does the UNIX System have a fundamental limitation on the depth of a directory tree? To
find out, write a program that creates a directory and then changes to that directory, in a
loop. Make certain that the length of the absolute pathname of the leaf of this directory is
greater than your system’s PATH_MAX limit. Can you call getcwd to fetch the directory’s
pathname? How do the standard UNIX System tools deal with this long pathname? Can
you archive the directory using either tar or cpio?

In Section 3.16, we described the /dev/£fd feature. For any user to be able to access these
files, their permissions must be rw-rw-rw-. Some programs that create an output file
delete the file first, in case it already exists, ignoring the return code:

unlink(path);
if ((fd = creat(path, FILE MODE)) < 0)
err sys(...);

What happens if pathis /dev/£d/1?
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5.2

Standard 1/0O Library

Introduction

In this chapter, we describe the standard I/O library. This library is specified by the ISO
C standard because it has been implemented on many operating systems other than the
UNIX System. Additional interfaces are defined as extensions to the ISO C standard by
the Single UNIX Specification.

The standard I/O library handles such details as buffer allocation and performing
I/0 in optimal-sized chunks, obviating our need to worry about using the correct block
size (as in Section 3.9). This makes the library easy to use, but at the same time
introduces another set of problems if we’re not cognizant of what’s going on.

The standard I/O library was written by Dennis Ritchie around 1975. It was a major revision
of the Portable I/O library written by Mike Lesk. Surprisingly little has changed in the
standard 1/0 library after more than 35 years.

Streams and FILE Objects

In Chapter 3, all the I/O routines centered on file descriptors. When a file is opened, a
file descriptor is returned, and that descriptor is then used for all subsequent I/O
operations. With the standard I/O library, the discussion centers on streams. (Do not
confuse the standard I/O term stream with the STREAMS I/O system that is part of
System V and was standardized in the XSI STREAMS option in the Single UNIX
Specification, but is now marked obsolescent in SUSv4.) When we open or create a file
with the standard I/O library, we say that we have associated a stream with the file.
With the ASCII character set, a single character is represented by a single byte. With
international character sets, a character can be represented by more than one byte.

143
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Standard 1/0O file streams can be used with both single-byte and multibyte (“wide”)
character sets. A stream’s orientation determines whether the characters that are read
and written are single byte or multibyte. Initially, when a stream is created, it has no
orientation. If a multibyte I/O function (see <wchar.h>) is used on a stream without
orientation, the stream’s orientation is set to wide oriented. If a byte I/O function is
used on a stream without orientation, the stream’s orientation is set to byte oriented.
Only two functions can change the orientation once set. The freopen function
(discussed shortly) will clear a stream’s orientation; the fwide function can be used to
set a stream’s orientation.

#include <stdio.h>
#include <wchar.h>

int fwide(FILE *fp, int mode);

Returns: positive if stream is wide oriented,
negative if stream is byte oriented,
or 0 if stream has no orientation

The fwide function performs different tasks, depending on the value of the mode
argument.

¢ If the mode argument is negative, fwide will try to make the specified stream
byte oriented.

o If the mode argument is positive, fwide will try to make the specified stream
wide oriented.

o If the mode argument is zero, fwide will not try to set the orientation, but will
still return a value identifying the stream’s orientation.

Note that fwide will not change the orientation of a stream that is already oriented.
Also note that there is no error return. Consider what would happen if the stream is
invalid. The only recourse we have is to clear errno before calling fwide and check
the value of errno when we return. Throughout the rest of this book, we will deal only
with byte-oriented streams.

When we open a stream, the standard I/O function fopen (Section 5.5) returns a
pointer to a FILE object. This object is normally a structure that contains all the
information required by the standard I/O library to manage the stream: the file
descriptor used for actual I/0O, a pointer to a buffer for the stream, the size of the buffer,
a count of the number of characters currently in the buffer, an error flag, and the like.

Application software should never need to examine a FILE object. To reference the
stream, we pass its FILE pointer as an argument to each standard 1/O function.
Throughout this text, we'll refer to a pointer to a FILE object, the type FILE *, as a file
pointer.

Throughout this chapter, we describe the standard I/O library in the context of a
UNIX system. As we mentioned, this library has been ported to a wide variety of other
operating systems. To provide some insight about how this library can be
implemented, we will talk about its typical implementation on a UNIX system.
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54

Standard Input, Standard Output, and Standard Error

Three streams are predefined and automatically available to a process: standard input,
standard output, and standard error. These streams refer to the same files as the file
descriptors STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO, respectively,
which we mentioned in Section 3.2.

These three standard I/O streams are referenced through the predefined file
pointers stdin, stdout, and stderr. The file pointers are defined in the <stdio.h>
header.

Buffering

The goal of the buffering provided by the standard 1/O library is to use the minimum
number of read and write calls. (Recall Figure 3.6, which showed the amount of CPU
time required to perform I/O using various buffer sizes.) Also, this library tries to do
its buffering automatically for each I/O stream, obviating the need for the application to
worry about it. Unfortunately, the single aspect of the standard I/O library that
generates the most confusion is its buffering.

Three types of buffering are provided:

1. Fully buffered. In this case, actual I/O takes place when the standard I/O
buffer is filled. Files residing on disk are normally fully buffered by the
standard I/O library. The buffer used is usually obtained by one of the standard
I/0 functions calling malloc (Section 7.8) the first time I/O is performed on a
stream.

The term flush describes the writing of a standard I/O buffer. A buffer can be
flushed automatically by the standard I/O routines, such as when a buffer fills,
or we can call the function ££flush to flush a stream. Unfortunately, in the
UNIX environment, flush means two different things. In terms of the standard
I/0O library, it means writing out the contents of a buffer, which may be partially
filled. In terms of the terminal driver, such as the tcflush function in
Chapter 18, it means to discard the data that’s already stored in a buffer.

2. Line buffered. In this case, the standard I/O library performs I/O when a
newline character is encountered on input or output. This allows us to output a
single character at a time (with the standard I/O fputc function), knowing that
actual I/O will take place only when we finish writing each line. Line buffering
is typically used on a stream when it refers to a terminal—standard input and
standard output, for example.

Line buffering comes with two caveats. First, the size of the buffer that the
standard I/O library uses to collect each line is fixed, so I/O might take place if
we fill this buffer before writing a newline. Second, whenever input is
requested through the standard I/O library from either (a) an unbuffered stream
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or (b) a line-buffered stream (that requires data to be requested from the kernel),
all line-buffered output streams are flushed. The reason for the qualifier on (b)
is that the requested data may already be in the buffer, which doesn’t require
data to be read from the kernel. Obviously, any input from an unbuffered
stream, item (a), requires data to be obtained from the kernel.

3. Unbuffered. The standard I/O library does not buffer the characters. If we
write 15 characters with the standard I/O fputs function, for example, we
expect these 15 characters to be output as soon as possible, probably with the
write function from Section 3.8.

The standard error stream, for example, is normally unbuffered so that any error
messages are displayed as quickly as possible, regardless of whether they
contain a newline.

ISO C requires the following buffering characteristics:

¢ Standard input and standard output are fully buffered, if and only if they do not
refer to an interactive device.

e Standard error is never fully buffered.

This, however, doesn’t tell us whether standard input and standard output are
unbuffered or line buffered if they refer to an interactive device and whether standard
error should be unbuffered or line buffered. Most implementations default to the
following types of buffering:

e Standard error is always unbuffered.

¢ All other streams are line buffered if they refer to a terminal device; otherwise,
they are fully buffered.

The four platforms discussed in this book follow these conventions for standard I/O buffering:
standard error is unbuffered, streams open to terminal devices are line buffered, and all other
streams are fully buffered.

We explore standard I/O buffering in more detail in Section 5.12 and Figure 5.11.
If we don’t like these defaults for any given stream, we can change the buffering by
calling either the setbuf or setvbuf function.

#include <stdio.h>
void setbuf (FILE *restrict fp, char *restrict buf);

int setvbuf(FILE *restrict fp, char *restrict buf, int mode,
size_ t size);

Returns: 0 if OK, nonzero on error

These functions must be called after the stream has been opened (obviously, since each
requires a valid file pointer as its first argument) but before any other operation is
performed on the stream.
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With setbuf, we can turn buffering on or off. To enable buffering, buf must point
to a buffer of length BUFSIZ, a constant defined in <stdio.h>. Normally, the stream is
then fully buffered, but some systems may set line buffering if the stream is associated
with a terminal device. To disable buffering, we set buf to NULL.

With setvbuf, we specify exactly which type of buffering we want. This is done
with the mode argument:

_IOFBF fully buffered

_IOLBF line buffered
_IONBF unbuffered

If we specify an unbuffered stream, the buf and size arguments are ignored. If we
specify fully buffered or line buffered, buf and size can optionally specify a buffer and its
size. If the stream is buffered and buf is NULL, the standard I/O library will
automatically allocate its own buffer of the appropriate size for the stream. By
appropriate size, we mean the value specified by the constant BUFSIZ.

Some C library implementations use the value from the st_blksize member of the stat
structure (see Section 4.2) to determine the optimal standard I/O bulffer size. As we will see
later in this chapter, the GNU C library uses this method.

Figure 5.1 summarizes the actions of these two functions and their various options.

Function mode buf Buffer and length Type of buffering
tbuf non-null | user buf of length BUFSIZ fully buffered or line buffered
se
“ NULL (no buffer) unbuffered
-null buf of length si
ToFmF | ROmMU user buf of length size ‘ fully buffered
- NULL system buffer of appropriate length
tvbuf -null buf of length si
setvbu LOLBF non-nu user buf of length size . line buffered
- NULL system buffer of appropriate length
_IONBF | (ignored) | (no buffer) unbuffered

Figure 5.1 Summary of the setbuf and setvbuf functions

Be aware that if we allocate a standard I/O buffer as an automatic variable within a
function, we have to close the stream before returning from the function. (We’ll discuss
this point further in Section 7.8.) Also, some implementations use part of the buffer for
internal bookkeeping, so the actual number of bytes of data that can be stored in the
buffer can be less than size. In general, we should let the system choose the buffer size
and automatically allocate the buffer. When we do this, the standard 1/O library
automatically releases the buffer when we close the stream.

At any time, we can force a stream to be flushed.

#include <stdio.h>
int fflush(FILE *fp);

Returns: 0 if OK, EOF on error

The fflush function causes any unwritten data for the stream to be passed to the
kernel. As a special case, if fp is NULL, ££1ush causes all output streams to be flushed.
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5.5

Opening a Stream

The fopen, freopen, and £dopen functions open a standard I/O stream.

#include <stdio.h>
FILE *fopen(const char *restrict pathname, const char *restrict type);

FILE *freopen(const char *restrict pathname, const char *restrict fype,
FILE *restrict fp);

FILE *fdopen(int fd, const char *type);

All three return: file pointer if OK, NULL on error

The differences in these three functions are as follows:

1. The fopen function opens a specified file.

2 The freopen function opens a specified file on a specified stream, closing the
stream first if it is already open. If the stream previously had an orientation,
freopen clears it. This function is typically used to open a specified file as one
of the predefined streams: standard input, standard output, or standard error.

3. The fdopen function takes an existing file descriptor, which we could obtain
from the open, dup, dup2, fcntl, pipe, socket, socketpair, or accept
functions, and associates a standard I/O stream with the descriptor. This
function is often used with descriptors that are returned by the functions that
create pipes and network communication channels. Because these special types
of files cannot be opened with the standard I/O fopen function, we have to call
the device-specific function to obtain a file descriptor, and then associate this
descriptor with a standard 1/O stream using fdopen.

Both fopen and freopen are part of ISO C; fdopen is part of POSIX.1, since ISO C doesn’t
deal with file descriptors.

type Description open(2) Flags

r or rb open for reading O_RDONLY

w or wb truncate to 0 length or create for writing O_WRONLY | O_CREAT | O_TRUNC

a or ab append; open for writing at end of file, or O_WRONLY |O_CREAT |O_APPEND
create for writing

r+ or r+b or rb+ | open for reading and writing O_RDWR

w+ or w+b or wb+ | truncate to 0 length or create for reading and | O_RDWR|O_CREAT |O_TRUNC
writing

a+ or atb or ab+ | open or create for reading and writing at O_RDWR | O_CREAT |O_APPEND
end of file

Figure 5.2 The fype argument for opening a standard I/O stream

ISO C specifies 15 values for the type argument, shown in Figure 5.3. Using the
character b as part of the type allows the standard I/O system to differentiate between a
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text file and a binary file. Since the UNIX kernel doesn’t differentiate between these
types of files, specifying the character b as part of the type has no effect.

With fdopen, the meanings of the type argument differ slightly. The descriptor has
already been opened, so opening for writing does not truncate the file. (If the descriptor
was created by the open function, for example, and the file already existed, the
O_TRUNC flag would control whether the file was truncated. The fdopen function
cannot simply truncate any file it opens for writing.) Also, the standard I/O append
mode cannot create the file (since the file has to exist if a descriptor refers to it).

When a file is opened with a type of append, each write will take place at the then
current end of file. If multiple processes open the same file with the standard 1/0O
append mode, the data from each process will be correctly written to the file.

Versions of fopen from Berkeley before 4.4BSD and the simple version shown on page 177 of
Kernighan and Ritchie [1988] do not handle the append mode correctly. These versions do an
lseek to the end of file when the stream is opened. To correctly support the append mode
when multiple processes are involved, the file must be opened with the 0_APPEND flag, which
we discussed in Section 3.3. Doing an lseek before each write won’t work either, as we
discussed in Section 3.11.

When a file is opened for reading and writing (the plus sign in the type), two
restrictions apply.

* Output cannot be directly followed by input without an intervening ££lush,
fseek, fsetpos, or rewind.

¢ Input cannot be directly followed by output without an intervening fseek,
fsetpos, or rewind, or an input operation that encounters an end of file.

We can summarize the six ways to open a stream from Figure 5.2 in Figure 5.3.

Restriction r \ a r+ | wt | a+
file must already exist . .
previous contents of file discarded o o
stream can be read . . . .
stream can be written . . . . .
stream can be written only at end . .

Figure 5.3 Six ways to open a standard I/O stream

Note that if a new file is created by specifying a type of either w or a, we are not able to
specify the file’s access permission bits, as we were able to do with the open function
and the creat function in Chapter 3. POSIX.1 requires implementations to create the
file with the following permissions bit set:

S IRUSR | S IWUSR | S IRGRP | S IWGRP | S IROTH | S_IWOTH

Recall from Section 4.8, however, that we can restrict these permissions by adjusting our
umask value.

By default, the stream that is opened is fully buffered, unless it refers to a terminal
device, in which case it is line buffered. Once the stream is opened, but before we do
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any other operation on the stream, we can change the buffering if we want to, with the
setbuf or setvbuf functions from the previous section.
An open stream is closed by calling fclose.

#include <stdio.h>
int fclose(FILE *fp);
Returns: 0 if OK, EOF on error

Any buffered output data is flushed before the file is closed. Any input data that may
be buffered is discarded. If the standard I/O library had automatically allocated a
buffer for the stream, that buffer is released.

When a process terminates normally, either by calling the exit function directly or
by returning from the main function, all standard I/O streams with unwritten buffered
data are flushed and all open standard I/O streams are closed.

Reading and Writing a Stream
Once we open a stream, we can choose from among three types of unformatted I/O:

1. Character-at-a-time I/O. We can read or write one character at a time, with the
standard I/O functions handling all the buffering, if the stream is buffered.

2. Line-at-a-time 1/0O. If we want to read or write a line at a time, we use fgets
and fputs. Each line is terminated with a newline character, and we have to
specify the maximum line length that we can handle when we call £gets. We
describe these two functions in Section 5.7.

3. Direct I/O. This type of I/O is supported by the fread and fwrite functions.
For each I/0O operation, we read or write some number of objects, where each
object is of a specified size. These two functions are often used for binary files
where we read or write a structure with each operation. We describe these two
functions in Section 5.9.

The term direct 1/O, from the ISO C standard, is known by many names: binary I1/0,
object-at-a-time 1/0, record-oriented 1/0, or structure-oriented I/O. Don’t confuse
this feature with the O_DIRECT open flag supported by FreeBSD and Linux—they
are unrelated.

(We describe the formatted I/O functions, such as printf and scanf, in Section 5.11.)

Input Functions

Three functions allow us to read one character at a time.

#include <stdio.h>
int getc(FILE *fp);
int fgetc(FILE *fp);

int getchar(void);

All three return: next character if OK, EOF on end of file or error
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The function getchar is defined to be equivalent to getc(stdin). The difference
between getc and fgetc is that getc can be implemented as a macro, whereas fgetc
cannot be implemented as a macro. This means three things.

1. The argument to getc should not be an expression with side effects, because it
could be evaluated more than once.

2. Since fgetc is guaranteed to be a function, we can take its address. This allows
us to pass the address of fgetc as an argument to another function.

3. Calls to £getc probably take longer than calls to getc, as it usually takes more
time to call a function.

These three functions return the next character as an unsigned char converted to
an int. The reason for specifying unsigned is so that the high-order bit, if set, doesn’t
cause the return value to be negative. The reason for requiring an integer return value
is so that all possible character values can be returned, along with an indication that
either an error occurred or the end of file has been encountered. The constant EOF in
<stdio.h> is required to be a negative value. Its value is often —-1. This representation
also means that we cannot store the return value from these three functions in a
character variable and later compare this value with the constant EOF.

Note that these functions return the same value whether an error occurs or the end
of file is reached. To distinguish between the two, we must call either ferror or feof.

#include <stdio.h>
int ferror(FILE *fp);
int feof(FILE *fp);
Both return: nonzero (true) if condition is true, 0 (false) otherwise

void clearerr(FILE *fp);

In most implementations, two flags are maintained for each stream in the FILE object:

* Anerror flag
* An end-of-file flag

Both flags are cleared by calling clearerr.
After reading from a stream, we can push back characters by calling ungetc.

#include <stdio.h>
int ungetc(int ¢, FILE *fp);

Returns: ¢ if OK, EOF on error

The characters that are pushed back are returned by subsequent reads on the stream in
reverse order of their pushing. Be aware, however, that although ISO C allows an
implementation to support any amount of pushback, an implementation is required to
provide only a single character of pushback. We should not count on more than a single
character.
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The character that we push back does not have to be the same character that was
read. We are not able to push back EOF. When we reach the end of file, however, we
can push back a character. The next read will return that character, and the read after
that will return EOF. This works because a successful call to ungetc clears the end-of-
file indication for the stream.

Pushback is often used when we're reading an input stream and breaking the input
into words or tokens of some form. Sometimes we need to peek at the next character to
determine how to handle the current character. It’s then easy to push back the character
that we peeked at, for the next call to getc to return. If the standard I/0O library didn’t
provide this pushback capability, we would have to store the character in a variable of
our own, along with a flag telling us to use this character instead of calling getc the
next time we need a character.

When we push characters back with ungetc, they are not written back to the underlying file
or device. Instead, they are kept incore in the standard I/O library’s buffer for the stream.

Output Functions

5.7

Output functions are available that correspond to each of the input functions we’ve
already described.

#include <stdio.h>
int putc(int c, FILE *fp);
int fputc(int ¢, FILE *fp);

int putchar(int c);

All three return: ¢ if OK, EOF on error

As with the input functions, putchar(c) is equivalent to putc(c, stdout), and
putc can be implemented as a macro, whereas fputc cannot be implemented as a
macro.

Line-at-a-Time /O

Line-at-a-time input is provided by the two functions, £gets and gets.

#include <stdio.h>
char *fgets(char *restrict buf, int n, FILE *restrict fp);
char *gets(char *buf);

Both return: buf if OK, NULL on end of file or error

Both specify the address of the buffer to read the line into. The gets function reads
from standard input, whereas £gets reads from the specified stream.

With fgets, we have to specify the size of the buffer, n. This function reads up
through and including the next newline, but no more than n-1 characters, into the
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buffer. The buffer is terminated with a null byte. If the line, including the terminating
newline, is longer than n -1, only a partial line is returned, but the buffer is always null
terminated. Another call to £gets will read what follows on the line.

The gets function should never be used. The problem is that it doesn’t allow the
caller to specify the buffer size. This allows the buffer to overflow if the line is longer
than the buffer, writing over whatever happens to follow the buffer in memory. For a
description of how this flaw was used as part of the Internet worm of 1988, see the June
1989 issue (vol. 32, no. 6) of Communications of the ACM. An additional difference with
gets is that it doesn’t store the newline in the buffer, as f£gets does.

This difference in newline handling between the two functions goes way back in the evolution
of the UNIX System. Even the Version 7 manual (1979) states “gets deletes a newline, fgets
keeps it, all in the name of backward compatibility.”

Even though ISO C requires an implementation to provide gets, you should use

fgets instead. In fact, gets is marked as an obsolescent interface in SUSv4 and has

been omitted from the latest version of the ISO C standard (ISO/IEC 9899:2011).
Line-at-a-time output is provided by £puts and puts.

#include <stdio.h>
int fputs(const char *restrict str, FILE *restrict fp);

int puts(const char *str);

Both return: non-negative value if OK, EOF on error

The function fputs writes the null-terminated string to the specified stream. The null
byte at the end is not written. Note that this need not be line-at-a-time output, since the
string need not contain a newline as the last non-null character. Usually, this is the
case—the last non-null character is a newline—but it’s not required.

The puts function writes the null-terminated string to the standard output, without
writing the null byte. But puts then writes a newline character to the standard output.

The puts function is not unsafe, like its counterpart gets. Nevertheless, we’ll
avoid using it, to prevent having to remember whether it appends a newline. If we
always use fgets and fputs, we know that we always have to deal with the newline
character at the end of each line.

Standard 1/0 Efficiency

Using the functions from the previous section, we can get an idea of the efficiency of the
standard I/O system. The program in Figure 5.4 is like the one in Figure 3.5: it simply
copies standard input to standard output, using getc and putc. These two routines
can be implemented as macros.
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#include "apue.h"

int
main(void)
{
int Cc;
while ((c = getc(stdin)) != EOF)
if (putc(c, stdout) == EOF)
err sys("output error");
if (ferror(stdin))
err sys("input error");
exit(0);
}

Figure 5.4 Copy standard input to standard output using getc and putc

We can make another version of this program that uses fgetc and fputc, which
should be functions, not macros. (We don’t show this trivial change to the source code.)
Finally, we have a version that reads and writes lines, shown in Figure 5.5.

#include "apue.h"

int
main(void)
{
char buf [MAXLINE];
while (fgets(buf, MAXLINE, stdin) != NULL)
if (fputs(buf, stdout) == EOF)
err sys("output error");
if (ferror(stdin))
err_sys("input error");
exit(0);
}

Figure 5.5 Copy standard input to standard output using fgets and fputs

Note that we do not close the standard I/O streams explicitly in either Figure 5.4 or
Figure 5.5. Instead, we know that the exit function will flush any unwritten data and
then close all open streams. (We'll discuss this in Section 8.5.) It is interesting to
compare the timing of these three programs with the timing data from Figure 3.6. We
show this data when operating on the same file (98.5 MB with 3 million lines) in
Figure 5.6.

For each of the three standard I/O versions, the user CPU time is larger than the
best read version from Figure 3.6, because the character-at-a-time standard I1/0
versions have a loop that is executed 100 million times, and the loop in the line-at-a-
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. User CPU | System CPU | Clock time Bytes of
Function
(seconds) (seconds) (seconds) | program text
best time from Figure 3.6 0.05 0.29 3.18
fgets, fputs 2.27 0.30 3.49 143
getc, putc 8.45 0.29 10.33 114
fgetc, fputc 8.16 0.40 10.18 114
single byte time from Figure 3.6 134.61 249.94 394.95

Figure 5.6 Timing results using standard I/O routines

time version is executed 3,144,984 times. In the read version, its loop is executed only
25,224 times (for a buffer size of 4,096). This difference in clock times stems from the
difference in user times and the difference in the times spent waiting for I/O to
complete, as the system times are comparable.

The system CPU time is about the same as before, because roughly the same
number of kernel requests are being made. One advantage of using the standard 1/0O
routines is that we don’t have to worry about buffering or choosing the optimal I/O
size. We do have to determine the maximum line size for the version that uses fgets,
but that’s easier than trying to choose the optimal I/O size.

The final column in Figure 5.6 is the number of bytes of text space—the machine
instructions generated by the C compiler—for each of the main functions. We can see
that the version using getc and putc takes the same amount of space as the one using
the fgetc and fputc functions. Usually, getc and putc are implemented as macros,
but in the GNU C library implementation the macro simply expands to a function call.

The version using line-at-a-time I/O is almost twice as fast as the version using
character-at-a-time I/O. If the fgets and fputs functions are implemented using
getc and putc (see Section 7.7 of Kernighan and Ritchie [1988], for example), then we
would expect the timing to be similar to the getc version. Actually, we might expect
the line-at-a-time version to take longer, since we would be adding the overhead of 200
million extra function calls to the existing 6 million ones. What is happening with this
example is that the line-at-a-time functions are implemented using memccpy(3). Often,
the memccpy function is implemented in assembly language instead of C, for efficiency.

The last point of interest with these timing numbers is that the fgetc version is so
much faster than the BUFFSIZE=1 version from Figure 3.6. Both involve the same
number of function calls—about 200 million—yet the £getc version is more than 16
times faster in terms of user CPU time and almost 39 times faster in terms of clock time.
The difference is that the version using read executes 200 million function calls, which
in turn execute 200 million system calls. With the £getc version, we still execute 200
million function calls, but this translates into only 25,224 system calls. System calls are
usually much more expensive than ordinary function calls.

As a disclaimer, you should be aware that these timing results are valid only on the
single system they were run on. The results depend on many implementation features
that aren’t the same on every UNIX system. Nevertheless, having a set of numbers such
as these, and explaining why the various versions differ, helps us understand the
system better. From this section and Section 3.9, we’ve learned that the standard 1/0O
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library is not much slower than calling the read and write functions directly. For
most nontrivial applications, the largest amount of user CPU time is taken by the
application, not by the standard I/O routines.

5.9 Binary I/O

The functions from Section 5.6 operated with one character at a time, and the functions
from Section 5.7 operated with one line at a time. If we're doing binary I/0O, we often
would like to read or write an entire structure at a time. To do this using getc or putc,
we have to loop through the entire structure, one byte at a time, reading or writing each
byte. We can’t use the line-at-a-time functions, since fputs stops writing when it hits a
null byte, and there might be null bytes within the structure. Similarly, fgets won't
work correctly on input if any of the data bytes are nulls or newlines. Therefore, the
following two functions are provided for binary I/O.

#include <stdio.h>

size_t fread(void *restrict ptr, size_t size, size_t nobj,
FILE *restrict fp);

size_t fwrite(const void *restrict ptr, size_t size, size_t nobj,
FILE *restrict fp);

Both return: number of objects read or written

These functions have two common uses:

1. Read or write a binary array. For example, to write elements 2 through 5 of a
floating-point array, we could write

float data[10];

if (fwrite(&data[2], sizeof(float), 4, fp) != 4)
err sys("fwrite error");

Here, we specify size as the size of each element of the array and nobj as the
number of elements.

2. Read or write a structure. For example, we could write

struct {

short count;

long total;

char name[NAMESIZE];
} item;

if (fwrite(&item, sizeof(item), 1, fp) != 1)
err sys("fwrite error");

Here, we specify size as the size of structure and nobj as 1 (the number of objects
to write).
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The obvious generalization of these two cases is to read or write an array of structures.
To do this, size would be the sizeof the structure, and nobj would be the number of
elements in the array.

Both fread and fwrite return the number of objects read or written. For the read
case, this number can be less than nobj if an error occurs or if the end of file is
encountered. In this situation, ferror or feof must be called. For the write case, if
the return value is less than the requested nobj, an error has occurred.

A fundamental problem with binary I/O is that it can be used to read only data that
has been written on the same system. This was OK many years ago, when all the UNIX
systems were PDP-11s, but the norm today is to have heterogeneous systems connected
together with networks. It is common to want to write data on one system and process
it on another. These two functions won’t work, for two reasons.

1. The offset of a member within a structure can differ between compilers and
systems because of different alignment requirements. Indeed, some compilers
have an option allowing structures to be packed tightly, to save space with a
possible runtime performance penalty, or aligned accurately, to optimize
runtime access of each member. This means that even on a single system, the
binary layout of a structure can differ, depending on compiler options.

2. The binary formats used to store multibyte integers and floating-point values
differ among machine architectures.

We'll touch on some of these issues when we discuss sockets in Chapter 16. The real
solution for exchanging binary data among different systems is to use an agreed-upon
canonical format. Refer to Section 8.2 of Rago [1993] or Section 5.18 of Stevens, Fenner,
& Rudoff [2004] for a description of some techniques various network protocols use to
exchange binary data.

We'll return to the fread function in Section 8.14 when we use it to read a binary
structure, the UNIX process accounting records.

Positioning a Stream

There are three ways to position a standard I/O stream:

1. The two functions ftell and fseek. They have been around since Version 7,
but they assume that a file’s position can be stored in a long integer.

2. The two functions ftello and fseeko. They were introduced in the Single
UNIX Specification to allow for file offsets that might not fit in a long integer.
They replace the long integer with the of£_t data type.

3. The two functions fgetpos and fsetpos. They were introduced by ISO C.
They use an abstract data type, £pos_t, that records a file’s position. This data
type can be made as big as necessary to record a file’s position.

When porting applications to non-UNIX systems, use fgetpos and fsetpos.
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#include <stdio.h>
long ftell(FILE *fp);

Returns: current file position indicator if OK, -1L on error
int fseek(FILE *fp, long offset, int whence);

Returns: 0 if OK, -1 on error

void rewind(FILE *fp);

For a binary file, a file’s position indicator is measured in bytes from the beginning of
the file. The value returned by ftell for a binary file is this byte position. To position
a binary file using fseek, we must specify a byte offset and indicate how that offset is
interpreted. The values for whence are the same as for the lseek function from
Section 3.6: SEEK_SET means from the beginning of the file, SEEK_CUR means from the
current file position, and SEEK_END means from the end of file. ISO C doesn’t require
an implementation to support the SEEK_END specification for a binary file, as some
systems require a binary file to be padded at the end with zeros to make the file size a
multiple of some magic number. Under the UNIX System, however, SEEK_END is
supported for binary files.

For text files, the file’s current position may not be measurable as a simple byte
offset. Again, this is mainly under non-UNIX systems that might store text files in a
different format. To position a text file, whence has to be SEEK_SET, and only two
values for offset are allowed: 0—meaning rewind the file to its beginning—or a value
that was returned by ftell for that file. A stream can also be set to the beginning of
the file with the rewind function.

The ftello function is the same as ftell, and the £seeko function is the same as
fseek, except that the type of the offset is of £_t instead of long.

#include <stdio.h>
off t ftello(FILE *fp);
Returns: current file position indicator if OK, (off_t)-1 on error

int fseeko(FILE *fp, off_t offset, int whence);

Returns: 0 if OK, -1 on error

Recall the discussion of the of£_t data type in Section 3.6. Implementations can define
the of £_t type to be larger than 32 bits.

As we mentioned earlier, the fgetpos and £setpos functions were introduced by
the ISO C standard.

#include <stdio.h>
int fgetpos(FILE *restrict fp, fpos_t *restrict pos);
int fsetpos(FILE *fp, const fpos_t *pos);

Both return: 0 if OK, nonzero on error
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The fgetpos function stores the current value of the file’s position indicator in the
object pointed to by pos. This value can be used in a later call to £setpos to reposition
the stream to that location.

5.11 Formatted /O

Formatted Output

Formatted output is handled by the five printf functions.

#include <stdio.h>

int printf(const char *restrict format, ...);
int fprintf(FILE *restrict fp, const char *restrict format, ...);
int dprintf(int fd, const char *restrict format, ...);

All three return: number of characters output if OK, negative value if output error
int sprintf(char *restrict buf, const char *restrict format, ...);
Returns: number of characters stored in array if OK, negative value if encoding error

int snprintf(char *restrict buf, size t n,
const char *restrict format, cee)s

Returns: number of characters that would have been stored in array
if buffer was large enough, negative value if encoding error

The printf function writes to the standard output, fprintf writes to the specified
stream, dprintf writes to the specified file descriptor, and sprintf places the
formatted characters in the array buf. The sprintf function automatically appends a
null byte at the end of the array, but this null byte is not included in the return value.

Note that it’s possible for sprintf to overflow the buffer pointed to by buf. The
caller is responsible for ensuring that the buffer is large enough. Because buffer
overflows can lead to program instability and even security violations, snprintf was
introduced. With it, the size of the buffer is an explicit parameter; any characters that
would have been written past the end of the buffer are discarded instead. The
snprintf function returns the number of characters that would have been written to
the buffer had it been big enough. As with sprintf, the return value doesn’t include
the terminating null byte. If snprintf returns a positive value less than the buffer size
n, then the output was not truncated. If an encoding error occurs, snprintf returns a
negative value.

Although dprintf doesn’t deal with a file pointer, we include it with the rest of the
related functions that handle formatted output. Note that using dprintf removes the
need to call £dopen to convert a file descriptor into a file pointer for use with fprint£.

The format specification controls how the remainder of the arguments will be
encoded and ultimately displayed. Each argument is encoded according to a
conversion specification that starts with a percent sign (%). Except for the conversion
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specifications, other characters in the format are copied unmodified. A conversion
specification has four optional components, shown in square brackets below:

$[flags][fldwidth][precision][lenmodifier]convtype

The flags are summarized in Figure 5.7.

Flag Description

¢ (apostrophe) format integer with thousands grouping characters
- left-justify the output in the field

+ always display sign of a signed conversion

(space) | prefix by a space if no sign is generated
# convert using alternative form (include Ox prefix for hexadecimal format, for example)
0 prefix with leading zeros instead of padding with spaces

Figure 5.7 The flags component of a conversion specification

The £1dwidth component specifies a minimum field width for the conversion. If
the conversion results in fewer characters, it is padded with spaces. The field width is a
non-negative decimal integer or an asterisk.

The precision component specifies the minimum number of digits to appear for
integer conversions, the minimum number of digits to appear to the right of the decimal
point for floating-point conversions, or the maximum number of bytes for string
conversions. The precision is a period (.) followed by a optional non-negative decimal
integer or an asterisk.

Either the field width or precision (or both) can be an asterisk. In this case, an
integer argument specifies the value to be used. The argument appears directly before
the argument to be converted.

The lenmodifier component specifies the size of the argument. Possible values
are summarized in Figure 5.8.

Length modifier Description

hh signed or unsigned char

h signed or unsigned short

1 signed or unsigned long or wide character
11 signed or unsigned long long

j intmax_toruintmax t

z size_t

t ptrdiff t

L long double

Figure 5.8 The length modifier component of a conversion specification

The convtype component is not optional. It controls how the argument is
interpreted. The various conversion types are summarized in Figure 5.9.

With the normal conversion specification, conversions are applied to the arguments
in the order they appear after the format argument. An alternative conversion
specification syntax allows the arguments to be named explicitly with the sequence %n$
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Conversion
type

Description

~ ~ ~
[N

~

P HE A X

MO B30T O O®Q O HX-GS O Q

signed decimal

unsigned octal

unsigned decimal

unsigned hexadecimal

double floating-point number

double floating-point number in exponential format

interpreted as f, F, e, or E, depending on value converted

double floating-point number in hexadecimal exponential format
character (with 1 length modifier, wide character)

string (with 1 length modifier, wide character string)

pointer to a void

pointer to a signed integer into which is written the number of characters written so far
a % character

wide character (XSI option, equivalent to 1c)

wide character string (XSI option, equivalent to 1s)

Figure 5.9 The conversion type component of a conversion specification

representing the nth argument. Note, however, that the two syntaxes can’t be mixed in
the same format specification. With the alternative syntax, arguments are numbered
starting at one. If either the field width or precision is to be supplied by an argument,
the asterisk syntax is modified to *m$, where m specifies the position of the argument
supplying the value.

The following five variants of the printf family are similar to the previous five,
but the variable argument list (. . .) is replaced with arg.

#include <stdarg.h>
#include <stdio.h>

int vprintf(const char *restrict format, va_list arg);

int vfprintf(FILE *restrict fp, const char *restrict format,

va_list arg);

int vdprintf(int fd, const char *restrict format, va_list arg);
All three return: number of characters output if OK, negative value if output error

int vsprintf(char *restrict buf, const char *restrict format,

va_list arg);

Returns: number of characters stored in array if OK, negative value if encoding error

int vsnprintf(char *restrict buf, size t n,

const char *restrict format, va_list arg);

Returns: number of characters that would have been stored in array
if buffer was large enough, negative value if encoding error

We use the vsnprintf function in the error routines in Appendix B.
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Refer to Section 7.3 of Kernighan and Ritchie [1988] for additional details on
handling variable-length argument lists with ISO Standard C. Be aware that the
variable-length argument list routines provided with ISO C—the <stdarg.h> header
and its associated routines—differ from the <varargs.h> routines that were provided
with older UNIX systems.

Formatted Input

Formatted input is handled by the three scanf functions.

#include <stdio.h>

int scanf(const char *restrict format, ...);

int fscanf(FILE *restrict fp, const char *restrict format, ...);

int sscanf(const char *restrict buf, const char *restrict format, ...);

All three return: number of input items assigned,
EOF if input error or end of file before any conversion

The scanf family is used to parse an input string and convert character sequences into
variables of specified types. The arguments following the format contain the addresses
of the variables to initialize with the results of the conversions.

The format specification controls how the arguments are converted for assignment.
The percent sign (%) indicates the beginning of a conversion specification. Except for
the conversion specifications and white space, other characters in the format have to
match the input. If a character doesn’t match, processing stops, leaving the remainder
of the input unread.

There are three optional components to a conversion specification, shown in square
brackets below:

$[*][fldwidth][m][lenmodifier ]convtype

The optional leading asterisk is used to suppress conversion. Input is converted as
specified by the rest of the conversion specification, but the result is not stored in an
argument.

The fldwidth component specifies the maximum field width in characters. The
lenmodifier component specifies the size of the argument to be initialized with the
result of the conversion. The same length modifiers supported by the print£ family of
functions are supported by the scanf family of functions (see Figure 5.8 for a list of the
length modifiers).

The convtype field is similar to the conversion type field used by the printf
family, but there are some differences. One difference is that results that are stored in
unsigned types can optionally be signed on input. For example, -1 will scan as
4294967295 into an unsigned integer. Figure 5.10 summarizes the conversion types
supported by the scanf family of functions.

The optional m character between the field width and the length modifier is called
the assignment-allocation character. It can be used with the %c, %s, and %[ conversion
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Conversion Description
type

signed decimal, base 10

signed decimal, base determined by format of input
unsigned octal (input optionally signed)

unsigned decimal, base 10 (input optionally signed)
unsigned hexadecimal (input optionally signed)
,e,E,f,F,g,G | floating-point number

character (with 1 length modifier, wide character)

string (with 1 length modifier, wide character string)
matches a sequence of listed characters, ending with ]
matches all characters except the ones listed, ending with ]
pointer to a void

pointer to a signed integer into which is written the number of characters read so far
a % character

wide character (XSI option, equivalent to 1c)

wide character string (XSI option, equivalent to 1s)

~

B

>
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Figure 5.10 The conversion type component of a conversion specification

specifiers to force a memory buffer to be allocated to hold the converted string. In this
case, the corresponding argument should be the address of a pointer to which the
address of the allocated buffer will be copied. If the call succeeds, the caller is
responsible for freeing the buffer by calling the free function when the buffer is no
longer needed.

The scanf family of functions also supports the alternative conversion
specification syntax allowing the arguments to be named explicitly: the sequence %n$
represents the nth argument. With the printf family of functions, the same numbered
argument can be referenced in the format string more than once. In this case, however,
the Single UNIX Specification states that the behavior is undefined with the scanf
family of functions.

Like the printf family, the scanf family supports functions that use variable
argument lists as specified by <stdarg.h>.

#include <stdarg.h>
#include <stdio.h>

int vscanf(const char *restrict format, va_list arg);

int vfscanf(FILE *restrict fp, const char *restrict format,
va_list arg);

int vsscanf(const char *restrict buf, const char *restrict format,
va_list arg);

All three return: number of input items assigned,
EOF if input error or end of file before any conversion

Refer to your UNIX system manual for additional details on the scanf family of
functions.
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5.12

Implementation Details

As we’ve mentioned, under the UNIX System, the standard I/O library ends up calling
the I/0O routines that we described in Chapter 3. Each standard 1/O stream has an
associated file descriptor, and we can obtain the descriptor for a stream by calling
fileno.

Note that fileno is not part of the ISO C standard, but rather an extension supported by
POSIX.1.

#include <stdio.h>

int fileno(FILE *fp);

Returns: the file descriptor associated with the stream

We need this function if we want to call the dup or £cnt1 functions, for example.

To look at the implementation of the standard I/O library on your system, start
with the header <stdio.h>. This will show how the FILE object is defined, the
definitions of the per-stream flags, and any standard I/O routines, such as getc, that
are defined as macros. Section 8.5 of Kernighan and Ritchie [1988] has a sample
implementation that shows the flavor of many implementations on UNIX systems.
Chapter 12 of Plauger [1992] provides the complete source code for an implementation
of the standard I/O library. The implementation of the GNU standard 1/O library is
also publicly available.

Example

The program in Figure 5.11 prints the buffering for the three standard streams and for a
stream that is associated with a regular file.

#include "apue.h"

void pr_stdio(const char *, FILE *);
int is unbuffered(FILE *);
int is linebuffered(FILE *);
int buffer size(FILE *);
int
main(void)
{
FILE *fp;

fputs("enter any character\n", stdout);
if (getchar() == EOF)
err sys("getchar error");
fputs("one line to standard error\n", stderr);

pr stdio("stdin", stdin);
pr_stdio("stdout", stdout);
pr_stdio("stderr", stderr);

www.it-ebooks.info


http://www.it-ebooks.info/

Section 5.12 Implementation Details 165

if ((fp = fopen("/etc/passwd", "r")) == NULL)
err sys("fopen error");
if (getc(fp) == EOF)

err sys("getc error");
pr_stdio("/etc/passwd", fp);

exit(0);
}
void
pr_stdio(const char *name, FILE *fp)
{
printf("stream = %s, ", name);
if (is_unbuffered(fp))
printf ("unbuffered");
else if (is_linebuffered(fp))
printf("line buffered");
else /* if neither of above */
printf("fully buffered");
printf(", buffer size = %d\n", buffer size(fp));
}
/*
* The following is nonportable.
*/

#if defined(_ IO UNBUFFERED)

int
is_unbuffered(FILE *fp)
{
return(fp->_flags & _IO_ UNBUFFERED);
}
int
is_linebuffered(FILE *fp)
{
return(fp->_flags & _IO LINE BUF);
}
int
buffer size(FILE *fp)
{
return(fp->_IO buf_end - fp->_I0 buf_ base);
}
#elif defined(__ SNBF)
int
is_unbuffered(FILE *fp)
{

return(fp->_flags & __ SNBF);
}
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int
is_linebuffered(FILE *fp)
{
return(fp->_flags & _ SLBF);
}
int
buffer size(FILE *fp)
{
return(fp->_bf. size);
}

#elif defined(_IONBF)

#ifdef LP64

#define flag _ pad[4]
#define ptr _ pad[1l]
#define _base _ pad[2]

#endif
int
is_unbuffered(FILE *fp)
{
return(fp->_flag & _IONBF);
}
int
is_linebuffered(FILE *fp)
{
return(fp->_flag & _IOLBF);
}
int
buffer size(FILE *fp)
{

#ifdef LP64

return(fp-> base - fp-> ptr);
#else

return(BUFSIZ); /* just a guess */
#endif
}

#else
#error unknown stdio implementation!

#endif

Figure 5.11 Print buffering for various standard I/O streams

Note that we perform I/O on each stream before printing its buffering status, since the
first I/ O operation usually causes the buffers to be allocated for a stream. The structure
members and the constants used in this example are defined by the implementations of
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5.13

the standard I/O library used on the four platforms described in this book. Be aware
that implementations of the standard 1/0O library vary, and programs like this example
are nonportable, since they embed knowledge specific to particular implementations.

If we run the program in Figure 5.11 twice, once with the three standard streams
connected to the terminal and once with the three standard streams redirected to files,
we get the following result:

$ ./a.out stdin, stdout, and stderr connected to terminal
enter any character
we type a newline
one line to standard error
stream = stdin, line buffered, buffer size = 1024
stream = stdout, line buffered, buffer size = 1024
stream = stderr, unbuffered, buffer size =1
stream = /etc/passwd, fully buffered, buffer size = 4096
$ ./a.out < /etc/group > std.out 2> std.err
run it again with all three streams redirected
$ cat std.err
one line to standard error
$ cat std.out
enter any character
stream = stdin, fully buffered, buffer size = 4096
stream = stdout, fully buffered, buffer size = 4096
stream = stderr, unbuffered, buffer size =1
stream /etc/passwd, fully buffered, buffer size = 4096

We can see that the default for this system is to have standard input and standard
output line buffered when they’re connected to a terminal. The line buffer is 1,024
bytes. Note that this doesn’t restrict us to 1,024-byte input and output lines; that’s just
the size of the buffer. Writing a 2,048-byte line to standard output will require two
write system calls. When we redirect these two streams to regular files, they become
fully buffered, with buffer sizes equal to the preferred I/O size—the st_blksize
value from the stat structure—for the file system. We also see that the standard error
is always unbuffered, as it should be, and that a regular file defaults to fully buffered. O

Temporary Files

The ISO C standard defines two functions that are provided by the standard I/O library
to assist in creating temporary files.

#include <stdio.h>
char *tmpnam(char *ptr);
Returns: pointer to unique pathname

FILE *tmpfile(void);

Returns: file pointer if OK, NULL on error
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The tmpnam function generates a string that is a valid pathname and that does not
match the name of any existing file. This function generates a different pathname each
time it is called, up to TMP_MAX times. TMP_MAX is defined in <stdio.h>.

Example

Although ISO C defines TMP_MAX, the C standard requires only that its value be at least 25.
The Single UNIX Specification, however, requires that XSI-conforming systems support a value
of at least 10,000. This minimum value allows an implementation to use four digits
(0000-9999), although most implementations on UNIX systems use alphanumeric characters.

The tmpnam function is marked obsolescent in SUSv4, but the ISO C standard continues to

support it.

If ptr is NULL, the generated pathname is stored in a static area, and a pointer to this
area is returned as the value of the function. Subsequent calls to tmpnam can overwrite
this static area. (Thus, if we call this function more than once and we want to save the
pathname, we have to save a copy of the pathname, not a copy of the pointer.) If ptr is
not NULL, it is assumed that it points to an array of at least I._tmpnam characters. (The
constant I_tmpnam is defined in <stdio.h>.) The generated pathname is stored in
this array, and ptr is returned as the value of the function.
The tmpfile function creates a temporary binary file (type wb+) that is
automatically removed when it is closed or on program termination. Under the UNIX
System, it makes no difference that this file is a binary file.

The program in Figure 5.12 demonstrates these two functions.

#include "apue.h"

int

main(void)

{

char name[L tmpnam], line[MAXLINE];
FILE *fp;
printf("%s\n", tmpnam(NULL)); /*

tmpnam(name) ; /*
printf("%s\n", name);

if ((fp = tmpfile()) == NULL) /*
err sys("tmpfile error");

fputs("one line of output\n", fp); /* write to temp file */
rewind(fp); /* then read it back */

first temp name */

second temp name */

create temp file */

if (fgets(line, sizeof(line), fp) == NULL)

err sys("fgets error");
fputs(line, stdout);

exit(0);

/* print the line we wrote */

Figure 5.12 Demonstrate tmpnam and tmpfile functions
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If we execute the program in Figure 5.12, we get

$ ./a.out
/tmp/fileT0Hsu6
/tmp/filekmAsYQ
one line of output

a

The standard technique often used by the tmpfile function is to create a unique
pathname by calling tmpnam, then create the file, and immediately unlink it. Recall
from Section 4.15 that unlinking a file does not delete its contents until the file is closed.
This way, when the file is closed, either explicitly or on program termination, the
contents of the file are deleted.

The Single UNIX Specification defines two additional functions as part of the XSI
option for dealing with temporary files: mkdtemp and mkstemp.

Older versions of the Single UNIX Specification defined the tempnam function as a way to
create a temporary file in a caller-specified location. It is marked obsolescent in SUSv4.

#include <stdlib.h>
char *mkdtemp(char *template);
Returns: pointer to directory name if OK, NULL on error

int mkstemp(char =template);

Returns: file descriptor if OK, -1 on error

The mkdtemp function creates a directory with a unique name, and the mkstemp
function creates a regular file with a unique name. The name is selected using the
template string. This string is a pathname whose last six characters are set to XXXXXX.
The function replaces these placeholders with different characters to create a unique
pathname. If successful, these functions modify the template string to reflect the name of
the temporary file.

The directory created by mkdtemp is created with the following access permission
bits set: S_IRUSR | S_IWUSR | S_IXUSR. Note that the file mode creation mask of the
calling process can restrict these permissions further. If directory creation is successful,
mkdtemp returns the name of the new directory.

The mkstemp function creates a regular file with a unique name and opens it. The
file descriptor returned by mkstemp is open for reading and writing. The file created by
mkstemp is created with access permissions S_IRUSR | S_IWUSR.

Unlike tmpfile, the temporary file created by mkstemp is not removed
automatically for us. If we want to remove it from the file system namespace, we need
to unlink it ourselves.

Use of tmpnam and tempnam does have at least one drawback: a window exists
between the time that the unique pathname is returned and the time that an application
creates a file with that name. During this timing window, another process can create a
file of the same name. The tmpfile and mkstemp functions should be used instead, as
they don’t suffer from this problem.
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Example

The program in Figure 5.13 shows how to use (and how not to use) the mkstemp
function.

#include "apue.h"
#include <errno.h>

void make temp(char *template);

int

main()

{
char good_template[] = "/tmp/dirXXXXXX"; /* right way */
char *bad_template = "/tmp/dirXXXXXX"; /* wrong way*/

printf("trying to create first temp file...\n");
make temp(good template);

printf("trying to create second temp file...\n");
make temp(bad template);

exit(0);
}
void
make temp(char *template)
{
int fd;
struct stat sbuf;
if ((fd = mkstemp(template)) < 0)
err sys("can’'t create temp file");
printf("temp name = %s\n", template);
close(fd);
if (stat(template, &sbuf) < 0) {
if (errno == ENOENT)
printf("file doesn’t exist\n");
else
err sys("stat failed");
} else {
printf("file exists\n");
unlink(template);
}
}

Figure 5.13 Demonstrate mkstemp function

If we execute the program in Figure 5.13, we get

$ ./a.out

trying to create first temp file...
temp name = /tmp/dirUmBT7h

file exists
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trying to create second temp file...
Segmentation fault

The difference in behavior comes from the way the two template strings are
declared. For the first template, the name is allocated on the stack, because we use an
array variable. For the second name, however, we use a pointer. In this case, only the
memory for the pointer itself resides on the stack; the compiler arranges for the string to
be stored in the read-only segment of the executable. When the mkstemp function tries
to modify the string, a segmentation fault occurs. O

Memory Streams

As we'’ve seen, the standard I/0O library buffers data in memory, so operations such as
character-at-a-time I/O and line-at-a-time I/O are more efficient. We’ve also seen that
we can provide our own bulffer for the library to use by calling setbuf or setvbuf. In
Version 4, the Single UNIX Specification added support for memory streams. These are
standard 1/O streams for which there are no underlying files, although they are still
accessed with FILE pointers. All I/O is done by transferring bytes to and from buffers
in main memory. As we shall see, even though these streams look like file streams,
several features make them more suited for manipulating character strings.
Three functions are available to create memory streams. The first is fmemopen.

#include <stdio.h>

FILE *fmemopen(void *restrict buf, size_ t size,
const char *restrict type);

Returns: stream pointer if OK, NULL on error

The fmemopen function allows the caller to provide a buffer to be used for the memory
stream: the buf argument points to the beginning of the buffer and the size argument
specifies the size of the buffer in bytes. If the buf argument is null, then the fmemopen
function allocates a buffer of size bytes. In this case, the buffer will be freed when the
stream is closed.

The type argument controls how the stream can be used. The possible values for
type are summarized in Figure 5.14.

type Description
r or rb open for reading
w or wb open for writing
a or ab append; open for writing at first null byte

r+ or r+b or rb+ | open for reading and writing
w+ or w+b or wb+ | truncate to 0 length and open for reading and writing
a+ or atb or ab+ | append; open for reading and writing at first null byte

Figure 5.14 The type argument for opening a memory stream

Note that these values correspond to the ones for file-based standard I/O streams, but
there are some subtle differences. First, whenever a memory stream is opened for
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append, the current file position is set to the first null byte in the buffer. If the buffer
contains no null bytes, then the current position is set to one byte past the end of the
buffer. When a stream is not opened for append, the current position is set to the
beginning of the buffer. Because the append mode determines the end of the data by
the first null byte, memory streams aren’t well suited for storing binary data (which
might contain null bytes before the end of the data).

Second, if the buf argument is a null pointer, it makes no sense to open the stream
for only reading or only writing. Because the buffer is allocated by fmemopen in this
case, there is no way to find the buffer’s address, so to open the stream only for writing
means we could never read what we’ve written. Similarly, to open the stream only for
reading means we can only read the contents of a buffer into which we can never write.

Third, a null byte is written at the current position in the stream whenever we
increase the amount of data in the stream’s buffer and call fclose, fflush, fseek,
fseeko, or fsetpos.

Example

It’s instructive to look at how writes to a memory stream operate on a buffer we
provide. Figure 5.15 shows a sample program that seeds the buffer with a known
pattern to see how writes to the stream behave.

#include "apue.h"
#define BSZ 48

int
main()
{
FILE *fp;
char buf[BSZ];

memset (buf, ’'a’, BSZ-2);

buf[BSZ-2] = ’'\0’;
buf[BSZ-1] = 'X’;
if ((fp = fmemopen(buf, BSZ, "w+")) == NULL)

err_sys("fmemopen failed");
printf("initial buffer contents: %s\n", buf);
fprintf(fp, "hello, world");
printf("before flush: %s\n", buf);
fflush(fp);
printf("after fflush: %s\n", buf);
printf("len of string in buf = %1d\n", (long)strlen(buf));

memset (buf, ’'b’, BSZ-2);

buf[BSz-2] = '\0’';

buf[BSz-1] "X

fprintf(fp, "hello, world");

fseek(fp, 0, SEEK_SET);

printf("after fseek: %s\n", buf);

printf("len of string in buf = %1d\n", (long)strlen(buf));
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memset (buf, ‘c’, BSZ-2);

buf[BSZ-2] '\0";

buf[BSz-1] "X’

fprintf(fp, "hello, world");

fclose(fp);

printf("after fclose: %s\n", buf);

printf("len of string in buf = %1d\n", (long)strlen(buf));

return(0);

Figure 5.15 Investigate memory stream write behavior

When we run the program on Linux, we get the following:

$ ./a.out
overwrite the buffer with a’s
initial buffer contents: fmemopen places a null byte at beginning of buffer
before flush: buffer is unchanged until stream is flushed
after fflush: hello, world
len of string in buf = 12 null byte added to end of string
now overwrite the buffer with b’s
after fseek: bbbbbbbbbbbbhello, world fseek causes flush
len of string in buf = 24 null byte appended again

now overwrite the buffer with c’s
after fclose: hello, worldcccccccccccCcCCCCCCCCCCCCCCCCCccececee
len of string in buf = 46 no null byte appended

This example shows the policy for flushing memory streams and appending null bytes.
A null byte is appended automatically whenever we write to a memory stream and
advance the stream’s notion of the size of the stream’s contents (as opposed to the size
of the buffer, which is fixed). The size of the stream’s contents is determined by how
much we write to it.

Of the four platforms covered in this book, only Linux 3.2.0 provides support for memory
streams. This is a case of the implementations not having caught up yet with the latest

standards, and will change with time. -

The other two functions that can be used to create a memory stream are
open_memstreamand open_wmemstream.

#include <stdio.h>
FILE *open_memstream(char **bufp, size t *sizep);
#include <wchar.h>

FILE *open_wmemstream(wchar_t **bufp, size_t *sizep);

Both return: stream pointer if OK, NULL on error
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The open_memstream function creates a stream that is byte oriented, and the
open wmemstream function creates a stream that is wide oriented (recall the
discussion of multibyte characters in Section 5.2). These two functions differ from
fmemopen in several ways:

® The stream created is only open for writing.

* We can’t specify our own buffer, but we can get access to the buffer’s address
and size through the bufp and sizep arguments, respectively.

* We need to free the buffer ourselves after closing the stream.

¢ The buffer will grow as we add bytes to the stream.

We must follow some rules, however, regarding the use of the buffer address and its
length. First, the buffer address and length are only valid after a call to fclose or
fflush. Second, these values are only valid until the next write to the stream or a call
to fclose. Because the buffer can grow, it may need to be reallocated. If this happens,
then we will find that the value of the buffer’s memory address will change the next
time we call fclose or £f1lush.

Memory streams are well suited for creating strings, because they prevent buffer
overflows. They can also provide a performance boost for functions that take standard
I/0 stream arguments used for temporary files, because memory streams access only
main memory instead of a file stored on disk.

Alternatives to Standard 1/0

The standard I/O library is not perfect. Korn and Vo [1991] list numerous
defects—some in the basic design, but most in the various implementations.

One inefficiency inherent in the standard I/O library is the amount of data copying
that takes place. When we use the line-at-a-time functions, f£gets and fputs, the data
is usually copied twice: once between the kernel and the standard 1/O buffer (when the
corresponding read or write is issued) and again between the standard I/O buffer
and our line buffer. The Fast I/O library [£io(3) in AT&T 1990a] gets around this by
having the function that reads a line return a pointer to the line instead of copying the
line into another buffer. Hume [1988] reports a threefold increase in the speed of a
version of the grep(1) utility simply by making this change.

Korn and Vo [1991] describe another replacement for the standard I/O library: sfio.
This package is similar in speed to the fio library and normally faster than the standard
I/0 library. The sfio package also provides some new features that aren’t found in most
other packages: I/O streams generalized to represent both files and regions of memory,
processing modules that can be written and stacked on an I/O stream to change the
operation of a stream, and better exception handling.

Krieger, Stumm, and Unrau [1992] describe another alternative that uses mapped
files—the mmap function that we describe in Section 14.8. This new package is called
ASI, the Alloc Stream Interface. The programming interface resembles the UNIX
System memory allocation functions (malloc, realloc, and free, described in
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Section 7.8). As with the sfio package, ASI attempts to minimize the amount of data
copying by using pointers.

Several implementations of the standard I/0O library are available in C libraries that
were designed for systems with small memory footprints, such as embedded systems.
These implementations emphasize modest memory requirements over portability,
speed, or functionality. Two such implementations are the uClibc C library (see
http://www.uclibc.org for more information) and the Newlib C library
(http://sources.redhat.com/newlib).

Summary

The standard I/O library is used by most UNIX applications. In this chapter, we looked
at many of the functions provided by this library, as well as at some implementation
details and efficiency considerations. Be aware of the buffering that takes place with
this library, as this is the area that generates the most problems and confusion.

Exercises

51 Implement setbuf using setvbuf.

5.2 Type in the program that copies a file using line-at-a-time I/O (fgets and fputs) from
Figure 5.5, but use a MAXLINE of 4. What happens if you copy lines that exceed this length?
Explain what is happening.

5.3 What does a return value of 0 from printf mean?

54 The following code works correctly on some machines, but not on others. What could be

the problem?
#include <stdio.h>
int
main(void)
{
char c;
while ((c = getchar()) != EOF)

putchar(c);
}
5.5 How would you use the £sync function (Section 3.13) with a standard I/O stream?

5.6 In the programs in Figures 1.7 and 1.10, the prompt that is printed does not contain a
newline, and we don’t call ££1ush. What causes the prompt to be output?

5.7 BSD-based systems provide a function called funopen that allows us to intercept read,
write, seek, and close calls on a stream. Use this function to implement fmemopen for
FreeBSD and Mac OS X.
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6.2

System Data Files and
Information

Introduction

A UNIX system requires numerous data files for normal operation: the password file
/etc/passwd and the group file /etc/group are two files that are frequently used by
various programs. For example, the password file is used every time a user logs in to a
UNIX system and every time someone executes an 1s -1 command.

Historically, these data files have been ASCII text files and were read with the
standard 1/0 library. But for larger systems, a sequential scan through the password
file becomes time consuming. We want to be able to store these data files in a format
other than ASCII text, but still provide an interface for an application program that
works with any file format. The portable interfaces to these data files are the subject of
this chapter. We also cover the system identification functions and the time and date
functions.

Password File

The UNIX System’s password file, called the user database by POSIX.1, contains the
fields shown in Figure 6.1. These fields are contained in a passwd structure that is
defined in <pwd.h>.

Note that POSIX.1 specifies only 5 of the 10 fields in the passwd structure. Most platforms
support at least 7 of the fields. The BSD-derived platforms support all 10.

177
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.. struct passwd FreeBSD  Linux MacOSX Solaris
Description member POSIX11 "5 320 1068 10

user name char *pw_name 4 . . 4 .
encrypted password char *pw_passwd . . . .
numerical user ID uid t pw_uid . . . . .
numerical group ID gid t pw_gid . . . . .
comment field char *pw_gecos o . . .
initial working directory char *pw_dir . . o . .
initial shell (user program) char *pw_shell . . . . .
user access class char *pw_class . .

next time to change password |[time_t pw_change . N

account expiration time time_t pw_expire . .

Figure 6.1 Fields in /etc/passwd file

Historically, the password file has been stored in /etc/passwd and has been an
ASCII file. Each line contains the fields described in Figure 6.1, separated by colons.
For example, four lines from the /etc/passwd file on Linux could be

root:x:0:0:root:/root:/bin/bash
squid:x:23:23::/var/spool/squid:/dev/null
nobody:x:65534:65534 :Nobody: /home: /bin/sh
sar:x:205:105:Stephen Rago:/home/sar:/bin/bash

Note the following points about these entries.

* There is usually an entry with the user name root. This entry has a user ID of 0
(the superuser).

* The encrypted password field contains a single character as a placeholder where
older versions of the UNIX System used to store the encrypted password.
Because it is a security hole to store the encrypted password in a file that is
readable by everyone, encrypted passwords are now kept elsewhere. We'll
cover this issue in more detail in the next section when we discuss passwords.

* Some fields in a password file entry can be empty. If the encrypted password
field is empty, it usually means that the user does not have a password. (This is
not recommended.) The entry for squid has one blank field: the comment field.
An empty comment field has no effect.

® The shell field contains the name of the executable program to be used as the
login shell for the user. The default value for an empty shell field is usually
/bin/sh. Note, however, that the entry for squid has /dev/null as the login
shell. Obviously, this is a device and cannot be executed, so its use here is to
prevent anyone from logging in to our system as user squid.

Many services have separate user IDs for the daemon processes (Chapter 13) that help

implement the service. The squid entry is for the processes implementing the squid proxy
cache service.
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There are several alternatives to using /dev/null to prevent a particular user
from logging in to a system. For example, /bin/false is often used as the
login shell. It simply exits with an unsuccessful (nonzero) status; the shell
evaluates the exit status as false. It is also common to see /bin/true used to
disable an account; it simply exits with a successful (zero) status. Some systems
provide the nologin command, which prints a customizable error message and
exits with a nonzero exit status.

The nobody user name can be used to allow people to log in to a system, but
with a user ID (65534) and group ID (65534) that provide no privileges. The
only files that this user ID and group ID can access are those that are readable or
writable by the world. (This approach assumes that there are no files specifically
owned by user ID 65534 or group ID 65534, which should be the case.)

Some systems that provide the finger(l) command support additional
information in the comment field. Each of these fields is separated by a comma:
the user’s name, office location, office phone number, and home phone number.
Additionally, an ampersand in the comment field is replaced with the login
name (capitalized) by some utilities. For example, we could have

sar:x:205:105:Steve Rago, SF 5-121, 555-1111, 555-2222:/home/sar:/bin/sh
Then we could use £inger to print information about Steve Rago.

$ finger -p sar

Login: sar Name: Steve Rago
Directory: /home/sar Shell: /bin/sh

Office: SF 5-121, 555-1111 Home Phone: 555-2222
On since Mon Jan 19 03:57 (EST) on ttyv0 (messages off)
No Mail.

Even if your system doesn’t support the finger command, these fields can still
go into the comment field, since that field is simply a comment and not
interpreted by system utilities.

Some systems provide the vipw command to allow administrators to edit the

password file. The vipw command serializes changes to the password file and makes
sure that any additional files are consistent with the changes made. It is also common
for systems to provide similar functionality through graphical user interfaces.

POSIX.1 defines two functions to fetch entries from the password file. These

functions allow us to look up an entry given a user’s login name or numerical user ID.

#include <pwd.h>
struct passwd *getpwuid(uid_t uid);

struct passwd *getpwnam(const char *name);

Both return: pointer if OK, NULL on error

The getpwuid function is used by the 1s(1) program to map the numerical user ID
contained in an i-node into a user’s login name. The getpwnam function is used by the
login(1l) program when we enter our login name.
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Both functions return a pointer to a passwd structure that the functions fill in. This
structure is usually a static variable within the function, so its contents are
overwritten each time we call either of these functions.

These two POSIX.1 functions are fine if we want to look up either a login name or a
user ID, but some programs need to go through the entire password file. Three
functions can be used for this purpose: getpwent, setpwent, and endpwent.

#include <pwd.h>
struct passwd *getpwent(void);
Returns: pointer if OK, NULL on error or end of file

void setpwent(void);

void endpwent(void);

These three functions are not part of the base POSIX.1 standard. They are defined as part of
the XSI option in the Single UNIX Specification. As such, all UNIX systems are expected to
provide them.

We call getpwent to return the next entry in the password file. As with the two
POSIX.1 functions, getpwent returns a pointer to a structure that it has filled in. This
structure is normally overwritten each time we call this function. If this is the first call
to this function, it opens whatever files it uses. There is no order implied when we use
this function; the entries can be in any order, because some systems use a hashed
version of the file /etc/passwd.

The function setpwent rewinds whatever files it uses, and endpwent closes these
files. When using getpwent, we must always be sure to close these files by calling
endpwent when we're through. Although getpwent is smart enough to know when it
has to open its files (the first time we call it), it never knows when we’re through.

Example

Figure 6.2 shows an implementation of the function getpwnam.

#include <pwd.h>
#include <stddef.h>
#include <string.h>

struct passwd *
getpwnam(const char *name)

{

struct passwd *ptr;

setpwent();

while ((ptr = getpwent()) != NULL)

if (strcmp(name, ptr->pw _name) == 0)
break; /* found a match */

endpwent () ;

return(ptr); /* ptr is NULL if no match found */
}

Figure 6.2 The getpwnam function

www.it-ebooks.info


http://www.it-ebooks.info/

Section 6.3 Shadow Passwords 181

6.3

The call to setpwent at the beginning of this function is self-defense: we ensure that
the files are rewound, in case the caller has already opened them by calling getpwent.
We call endpwent when we’re done, because neither getpwnam nor getpwuid should
leave any of the files open. o

Shadow Passwords

The encrypted password is a copy of the user’s password that has been put through a
one-way encryption algorithm. Because this algorithm is one-way, we can’t guess the
original password from the encrypted version.

Historically, the algorithm used always generated 13 printable characters from the
64-character set [a-zA-2Z0-9./] (see Morris and Thompson [1979]). Some newer
systems use alternative algorithms, such as MD5 or SHA-1, to generate longer
encrypted password strings. (The more characters used to store the encrypted
password, the more combinations there are, and the harder it will be to guess the
password by trying all possible variations.) When we place a single character in the
encrypted password field, we ensure that an encrypted password will never match this
value.

Given an encrypted password, we can’t apply an algorithm that inverts it and
returns the plaintext password. (The plaintext password is what we enter at the
Password: prompt.) But we could guess a password, run it through the one-way
algorithm, and compare the result to the encrypted password. If user passwords were
randomly chosen, this brute-force approach wouldn’t be too successful. Users,
however, tend to choose nonrandom passwords, such as spouse’s name, street names,
or pet names. A common experiment is for someone to obtain a copy of the password
file and try guessing the passwords. (Chapter 4 of Garfinkel et al. [2003] contains
additional details and history on passwords and the password encryption scheme used
on UNIX systems.)

To make it more difficult to obtain the raw materials (the encrypted passwords),
systems now store the encrypted password in another file, often called the shadow
password file. Minimally, this file has to contain the user name and the encrypted
password. Other information relating to the password is also stored here (Figure 6.3).

Description struct spwd
member
user login name char *sp_namp
encrypted password char *sp_pwdp
days since Epoch of last password change | int  sp_lstchg
days until change allowed int  sp_min
days before change required int  sp_max
days warning for expiration int  sp_warn
days before account inactive int  sp_inact
days since Epoch when account expires int  sp_expire
reserved unsigned int sp flag

Figure 6.3 Fields in /etc/shadow file
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The only two mandatory fields are the user’s login name and encrypted password.
The other fields control how often the password is to change—known as “password
aging”’—and how long an account is allowed to remain active.

The shadow password file should not be readable by the world. Only a few
programs need to access encrypted passwords—login(l) and passwd(l), for
example—and these programs are often set-user-ID root. With shadow passwords, the
regular password file, /etc/passwd, can be left readable by the world.

On Linux 3.2.0 and Solaris 10, a separate set of functions is available to access the
shadow password file, similar to the set of functions used to access the password file.

#include <shadow.h>

struct spwd *getspnam(const char *name);

struct spwd *getspent(void);

Both return: pointer if OK, NULL on error
void setspent(void);

void endspent(void);

On FreeBSD 8.0 and Mac OS X 10.6.8, there is no shadow password structure. The
additional account information is stored in the password file (refer back to Figure 6.1).

6.4 Group File

The UNIX System’s group file, called the group database by POSIX.1, contains the fields
shown in Figure 6.4. These fields are contained in a group structure that is defined in
<grp.h>.

. struct group FreeBSD  Linux MacOSX Solaris
Description member POSIX-11 g0 320 1068 10
group name char *gr_name 3 o o 3 3
encrypted password char *gr passwd . . . .
numerical group ID int gr_gid . . . . .
array of pointers to individual |char **gr_mem J J J J o
user names

Figure 6.4 Fields in /etc/group file

The field gr_mem is an array of pointers to the user names that belong to this group.
This array is terminated by a null pointer.

We can look up either a group name or a numerical group ID with the following
two functions, which are defined by POSIX.1.

#include <grp.h>
struct group *getgrgid(gid t gid);

struct group *getgrnam(const char *name);

Both return: pointer if OK, NULL on error
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Like the password file functions, both of these functions normally return pointers to a
static variable, which is overwritten on each call.

If we want to search the entire group file, we need some additional functions. The
following three functions are like their counterparts for the password file.

#include <grp.h>
struct group *getgrent(void);
Returns: pointer if OK, NULL on error or end of file

void setgrent(void);

void endgrent(void);

These three functions are not part of the base POSIX.1 standard. They are defined as part of
the XSI option in the Single UNIX Specification. All UNIX Systems provide them.

The setgrent function opens the group file, if it’s not already open, and rewinds
it. The getgrent function reads the next entry from the group file, opening the file
first, if it’s not already open. The endgrent function closes the group file.

Supplementary Group IDs

The use of groups in the UNIX System has changed over time. With Version 7, each
user belonged to a single group at any point in time. When we logged in, we were
assigned the real group ID corresponding to the numerical group ID in our password
file entry. We could change this at any point by executing newgrp(1). If the newgrp
command succeeded (refer to the manual page for the permission rules), our real group
ID was changed to the new group’s ID, and this value was used for all subsequent file
access permission checks. We could always go back to our original group by executing
newgrp without any arguments.

This form of group membership persisted until it was changed in 4.2BSD (circa
1983). With 4.2BSD, the concept of supplementary group IDs was introduced. Not only
did we belong to the group corresponding to the group ID in our password file entry,
but we could also belong to as many as 16 additional groups. The file access permission
checks were modified so that in addition to comparing the the file’s group ID to the
process effective group ID, it was also compared to all the supplementary group IDs.

Supplementary group IDs are a required feature of POSIX.1. (In older versions of POSIX.1,
they were optional.) The constant NGROUPS_MAX (Figure 2.11) specifies the number of
supplementary group IDs. A common value is 16 (Figure 2.15).

The advantage of using supplementary group IDs is that we no longer have to
change groups explicitly. It is not uncommon to belong to multiple groups (i.e.,
participate in multiple projects) at the same time.

Three functions are provided to fetch and set the supplementary group IDs.
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#include <unistd.h>
int getgroups(int gidsetsize, gid_t grouplist[]);
Returns: number of supplementary group IDs if OK, -1 on error

#include <grp.h> /* on Linux */
#include <unistd.h> /* on FreeBSD, Mac OS X, and Solaris */

int setgroups(int ngroups, const gid_t grouplist[]);

#include <grp.h> /* on Linux and Solaris */
#include <unistd.h> /* on FreeBSD and Mac 0S X */

int initgroups(const char *username, gid_t basegid);

Both return: 0 if OK, -1 on error

Of these three functions, only getgroups is specified by POSIX.1. Because setgroups and
initgroups are privileged operations, they are not part of POSIX.1. All four platforms
covered in this book support all three functions, but on Mac OS X 10.6.8, basegid is declared to
be of type int.

The getgroups function fills in the array grouplist with the supplementary group
IDs. Up to gidsetsize elements are stored in the array. The number of supplementary
group IDs stored in the array is returned by the function.

As a special case, if gidsetsize is 0, the function returns only the number of
supplementary group IDs. The array grouplist is not modified. (This allows the caller to
determine the size of the grouplist array to allocate.)

The setgroups function can be called by the superuser to set the supplementary
group ID list for the calling process: grouplist contains the array of group IDs, and
ngroups specifies the number of elements in the array. The value of ngroups cannot be
larger than NGROUPS_ MAX.

The setgroups function is usually called from the initgroups function, which
reads the entire group file—with the functions getgrent, setgrent, and endgrent,
which we described earlier—and determines the group membership for username. It
then calls setgroups to initialize the supplementary group ID list for the user. One
must be superuser to call initgroups, since it calls setgroups. In addition to
finding all the groups that username is a member of in the group file, initgroups
includes basegid in the supplementary group ID list; basegid is the group ID from the
password file for username.

The initgroups function is called by only a few programs. The login(l)
program, for example, calls it when we log in.

Implementation Differences
We've already discussed the shadow password file supported by Linux and Solaris.

FreeBSD and Mac OS X store encrypted passwords differently. Figure 6.5 summarizes
how the four platforms covered in this book store user and group information.
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Information FreeBSD Linux Mac OS X Solaris
8.0 3.2.0 10.6.8 10
account information /etc/passwd /etc/passwd |Directory Services| /etc/passwd
encrypted passwords |/etc/master.passwd| /etc/shadow |Directory Services| /etc/shadow
hashed password files? yes no no no
group information /etc/group /etc/group |Directory Services| /etc/group

Figure 6.5 Account implementation differences

On FreeBSD, the shadow password file is /etc/master.passwd. Special
commands are used to edit it, which in turn generate a copy of /etc/passwd from the
shadow password file. In addition, hashed versions of the files are generated:
/etc/pwd.db is the hashed version of /etc/passwd, and /etc/spwd.db is the
hashed version of /etc/master.passwd. These provide better performance for large
installations.

On Mac OS X, however, /etc/passwd and /etc/master.passwd are used only
in single-user mode (when the system is undergoing maintenance; single-user mode
usually means that no system services are enabled). In multiuser mode—during
normal operation—the Directory Services daemon provides access to account
information for users and groups.

Although Linux and Solaris support similar shadow password interfaces, there are
some subtle differences. For example, the integer fields shown in Figure 6.3 are defined
as type int on Solaris, but as long int on Linux. Another difference is the
account-inactive field: Solaris defines it to be the number of days since the user last
logged in to the system after which the account will be automatically disabled, whereas
Linux defines it to be the number of days after the maximum password age has been
reached during which the password will still be accepted.

On many systems, the user and group databases are implemented using the
Network Information Service (NIS). This allows administrators to edit a master copy of
the databases and distribute them automatically to all servers in an organization. Client
systems contact servers to look up information about users and groups. NIS+ and the
Lightweight Directory Access Protocol (LDAP) provide similar functionality. Many
systems control the method used to administer each type of information through the
/etc/nsswitch.conf configuration file.

Other Data Files

We've discussed only two of the system’s data files so far: the password file and the
group file. Numerous other files are used by UNIX systems in normal day-to-day
operation. For example, the BSD networking software has one data file for the services
provided by the various network servers (/etc/services), one for the protocols
(/etc/protocols), and one for the networks (/etc/networks). Fortunately, the
interfaces to these various files are like the ones we've already described for the
password and group files.
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The general principle is that every data file has at least three functions:

1. A get function that reads the next record, opening the file if necessary. These
functions normally return a pointer to a structure. A null pointer is returned
when the end of file is reached. Most of the get functions return a pointer to a
static structure, so we always have to copy the structure if we want to save it.

2. A set function that opens the file, if not already open, and rewinds the file. We
use this function when we know we want to start again at the beginning of the
file.

3. An end entry that closes the data file. As we mentioned earlier, we always have
to call this function when we’re done, to close all the files.

Additionally, if the data file supports some form of keyed lookup, routines are provided
to search for a record with a specific key. For example, two keyed lookup routines are
provided for the password file: getpwnam looks for a record with a specific user name,
and getpwuid looks for a record with a specific user ID.

Figure 6.6 shows some of these routines, which are common to UNIX systems. In
this figure, we show the functions for the password files and group file, which we
discussed earlier in this chapter, and some of the networking functions. There are get,
set, and end functions for all the data files in this figure.

Description Data file Header Structure Additional keyed lookup functions

passwords | /etc/passwd <pwd.h> passwd getpwnam, getpwuid
groups /etc/group <grp.h> group getgrnam, getgrgid
shadow /etc/shadow <shadow.h> | spwd getspnam

hosts /etc/hosts <netdb.h> | hostent | getnameinfo, getaddrinfo

networks /etc/networks | <netdb.h> | netent getnetbyname, getnetbyaddr
protocols /etc/protocols | <netdb.h> protoent | getprotobyname, getprotobynumber
services /etc/services <netdb.h> servent getservbyname, getservbyport

Figure 6.6 Similar routines for accessing system data files

Under Solaris, the last four data files in Figure 6.6 are symbolic links to files of the same name
in the directory /etc/inet. Most UNIX System implementations have additional functions
that are like these, but the additional functions tend to deal with system administration files
and are specific to each implementation.

Login Accounting

Two data files provided with most UNIX systems are the utmp file, which keeps track of
all the users currently logged in, and the wtmp file, which keeps track of all logins and
logouts. With Version 7, one type of record was written to both files, a binary record
consisting of the following structure:

www.it-ebooks.info


http://www.it-ebooks.info/

Section 6.9 System Identification 187

6.9

struct utmp {
char wut line[8]; /* tty line: "ttyhO", "ttydo0", "ttyp0", ... */
char ut_name[8]; /* login name */
long ut_ time; /* seconds since Epoch */

}i

On login, one of these structures was filled in and written to the utmp file by the login
program, and the same structure was appended to the wtmp file. On logout, the entry
in the utmp file was erased—filled with null bytes—by the init process, and a new
entry was appended to the wtmp file. This logout entry in the wtmp file had the
ut_name field zeroed out. Special entries were appended to the wtmp file to indicate
when the system was rebooted and right before and after the system’s time and date
was changed. The who(1) program read the utmp file and printed its contents in a
readable form. Later versions of the UNIX System provided the last(l) command,
which read through the wtmp file and printed selected entries.

Most versions of the UNIX System still provide the utmp and wtmp files, but as
expected, the amount of information in these files has grown. The 20-byte structure that
was written by Version 7 grew to 36 bytes with SVR2, and the extended utmp structure
with SVR4 takes more than 350 bytes!

The detailed format of these records in Solaris is given in the utmpx(4) manual page. With
Solaris 10, both files are in the /var/adm directory. Solaris provides numerous functions
described in getutxent(3) to read and write these two files.

On FreeBSD 8.0 and Linux 3.2.0, the utmp(5) manual page gives the format of their versions of
these login records. The pathnames of these two files are /var/run/utmp and
/var/log/wtmp. On Mac OS X 10.6.8, the utmp and wtmp files do not exist. As of Mac OS X
10.5, the information found in the wtmp file can be obtained from the system logging facility,
and the utmpx file contains information about the active login sessions.

System Identification

POSIX.1 defines the uname function to return information on the current host and
operating system.

#include <sys/utsname.h>

int uname(struct utsname *name);

Returns: non-negative value if OK, -1 on error

We pass the address of a utsname structure to this function, and the function then fills
it in. POSIX.1 defines only the minimum fields in the structure, which are all character
arrays, and it's up to each implementation to set the size of each array. Some
implementations provide additional fields in the structure.
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struct utsname {

char sysname[]; /* name of the operating system */
char nodename[]; /* name of this node */
char release[]; /* current release of operating system */
char version[]; /* current version of this release */
char machine[]; /* name of hardware type */

}i

Each string is null terminated. The maximum name lengths, including the terminating
null byte, supported by the four platforms discussed in this book are listed in Figure 6.7.
The information in the utsname structure can usually be printed with the uname(1)
command.

POSIX.1 warns that the nodename element may not be adequate to reference the host on a
communications network. This function is from System V, and in older days, the nodename
element was adequate for referencing the host on a UUCP network.

Realize also that the information in this structure does not give any information on the
POSIX.1 level. This should be obtained using _POSIX_VERSION, as described in Section 2.6.

Finally, this function gives us a way only to fetch the information in the structure; there is
nothing specified by POSIX.1 about initializing this information.

Historically, BSD-derived systems provided the gethostname function to return
only the name of the host. This name is usually the name of the host on a TCP/IP
network.

#include <unistd.h>
int gethostname(char *name, int namelen);

Returns: 0 if OK, -1 on error

The namelen argument specifies the size of the name buffer. If enough space is provided,
the string returned through name is null terminated. If insufficient room is provided,
however, it is unspecified whether the string is null terminated.

The gethostname function, which is now defined as part of POSIX.1, specifies that
the maximum host name length is HOST_NAME_MAX. Figure 6.7 summarizes the
maximum name lengths supported by the four implementations covered in this book.

Maximum name length
Interface FreeBSD Linux Mac OS X Solaris
8.0 3.2.0 10.6.8 10
uname 256 65 256 257
gethostname 256 64 256 256

Figure 6.7 System identification name limits

If the host is connected to a TCP/IP network, the host name is normally the fully
qualified domain name of the host.
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There is also a hostname(l) command that can fetch or set the host name. (The
host name is set by the superuser using a similar function, sethostname.) The host
name is normally set at bootstrap time from one of the start-up files invoked by
/etc/rcor init.

Time and Date Routines

The basic time service provided by the UNIX kernel counts the number of seconds that
have passed since the Epoch: 00:00:00 January 1, 1970, Coordinated Universal Time
(UTC). In Section 1.10, we said that these seconds are represented in a time_t data
type, and we call them calendar times. These calendar times represent both the time and
the date. The UNIX System has always differed from other operating systems in (a)
keeping time in UTC instead of the local time, (b) automatically handling conversions,
such as daylight saving time, and (c) keeping the time and date as a single quantity.
The time function returns the current time and date.

#include <time.h>

time_t time(time_t *calptr);

Returns: value of time if OK, -1 on error

The time value is always returned as the value of the function. If the argument is non-
null, the time value is also stored at the location pointed to by calptr.

The real-time extensions to POSIX.1 added support for multiple system clocks. In
Version 4 of the Single UNIX Specification, the interfaces used to control these clocks
were moved from an option group to the base. A clock is identified by the clockid_t
type. Standard values are summarized in Figure 6.8.

Identifier Option Description
CLOCK_REALTIME real system time
CLOCK_MONOTONIC _POSIX_MONOTONIC_CLOCK | real system time with no negative jumps
CLOCK_PROCESS_CPUTIME_ID | _POSIX CPUTIME CPU time for calling process
CLOCK_THREAD CPUTIME_ID |_POSIX_THREAD CPUTIME | CPU time for calling thread

Figure 6.8 Clock type identifiers

The clock_gettime function can be used to get the time of the specified clock.
The time is returned in a timespec structure, introduced in Section 4.2, which
expresses time values in terms of seconds and nanoseconds.

#include <sys/time.h>

int clock_gettime(clockid_t clock_id, struct timespec *tsp);

Returns: 0 if OK, -1 on error
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When the clock ID is set to CLOCK_REALTIME, the clock_gettime function
provides similar functionality to the time function, except with clock_gettime, we
might be able to get a higher-resolution time value if the system supports it.

We can use the clock getres function to determine the resolution of a given
system clock.

#include <sys/time.h>

int clock_getres(clockid_t clock_id, struct timespec *tsp);

Returns: 0 if OK, -1 on error

The clock_getres function initializes the timespec structure pointed to by the
tsp argument to the resolution of the clock corresponding to the clock_id argument. For
example, if the resolution is 1 millisecond, then the tv_sec field will contain 0 and the
tv_nsec field will contain the value 1000000.

To set the time for a particular clock, we can call the clock_settime function.

#include <sys/time.h>

int clock_settime(clockid_t clock_id, const struct timespec *ifsp);

Returns: 0 if OK, -1 on error

We need the appropriate privileges to change a clock’s time. Some clocks, however,
can’t be modified.

Historically, on implementations derived from System V, the stime(2) function was called to
set the system time, whereas BSD-derived systems used settimeofday(2).

Version 4 of the Single UNIX Specification specifies that the gettimeofday
function is now obsolescent. However, a lot of programs still use it, because it provides
greater resolution (up to a microsecond) than the time function.

#include <sys/time.h>

int gettimeofday(struct timeval *restrict tp, void *restrict fzp);

Returns: 0 always

The only legal value for tzp is NULL; other values result in unspecified behavior. Some
platforms support the specification of a time zone through the use of fzp, but this is
implementation specific and not defined by the Single UNIX Specification.

The gettimeofday function stores the current time as measured from the Epoch in
the memory pointed to by tp. This time is represented as a timeval structure, which
stores seconds and microseconds.

Once we have the integer value that counts the number of seconds since the Epoch,
we normally call a function to convert it to a broken-down time structure, and then call
another function to generate a human-readable time and date. Figure 6.9 shows the
relationships between the various time functions. (The three functions in this figure that
are shown with dashed lines—localtime, mktime, and strftime—are all affected
by the TZ environment variable, which we describe later in this section. The dotted
lines show how the calendar time is obtained from time-related structures.)
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Figure 6.9 Relationship of the various time functions

The two functions localtime and gmtime convert a calendar time into what’s
called a broken-down time, a tm structure.

struct tm { /* a broken-down time */
int tm_sec; /* seconds after the minute: [0 - 60] */
int tm_min; /* minutes after the hour: [0 - 59] */

int +tm hour; /* hours after midnight: [0 - 23] */

int +tm mday; /* day of the month: [1 - 31] */

int tm _mon; /* months since January: [0 - 11] */

int tm _year; /* years since 1900 */

int +tm wday; /* days since Sunday: [0 - 6] */

int tm_yday; /* days since January 1: [0 - 365] */

int tm_isdst; /* daylight saving time flag: <0, 0, >0 */
}i

The reason that the seconds can be greater than 59 is to allow for a leap second. Note
that all the fields except the day of the month are 0-based. The daylight saving time flag
is positive if daylight saving time is in effect, 0 if it's not in effect, and negative if the
information isn’t available.

In older versions of the Single UNIX Specification, double leap seconds were allowed. Thus

the valid range of values for the tm_sec member was 0—-61. The formal definition of UTC
doesn’t allow for double leap seconds, so the valid range for seconds is now 0—60.
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#include <time.h>
struct tm *gmtime(const time_t *calptr);

struct tm *localtime(const time_t *calptr);

Both return: pointer to broken-down time, NULL on error

The difference between localtime and gmtime is that the first converts the calendar
time to the local time, taking into account the local time zone and daylight saving time
flag, whereas the latter converts the calendar time into a broken-down time expressed
as UTC.

The function mktime takes a broken-down time, expressed as a local time, and
converts it into a time_t value.

#include <time.h>
time_t mktime(struct tm *tmptr);

Returns: calendar time if OK, -1 on error

The strftime function is a print£-like function for time values. It is complicated
by the multitude of arguments available to customize the string it produces.

#include <time.h>

size_t strftime(char *restrict buf, size_t maxsize,
const char *restrict format,
const struct tm *restrict tmptr);

size t strftime_l(char *restrict buf, size t maxsize,
const char *restrict format,
const struct tm *restrict tmptr, locale_t locale);

Both return: number of characters stored in array if room, 0 otherwise

Two older functions, asctime and ctime, can be used to produce a 26-byte printable string
similar to the default output of the date(l) command. However, these functions are now
marked obsolescent, because they are susceptible to buffer overflow problems.

The strftime and strftime_1 functions are the same, except that the strftime 1
function allows the caller to specify the locale as an argument. The strftime function
uses the locale specified by the TZ environment variable.

The tmptr argument is the time value to format, specified by a pointer to a broken-
down time value. The formatted result is stored in the array buf whose size is maxsize
characters. If the size of the result, including the terminating null, fits in the buffer,
these functions return the number of characters stored in buf, excluding the terminating
null. Otherwise, these functions return 0.

The format argument controls the formatting of the time value. Like the printf
functions, conversion specifiers are given as a percent sign followed by a special
character. All other characters in the format string are copied to the output. Two percent
signs in a row generate a single percent sign in the output. Unlike the printf
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functions,

each conversion specified generates

a different fixed-size output

string—there are no field widths in the format string. Figure 6.10 describes the 37 ISO C
conversion specifiers.

Format Description Example
%a abbreviated weekday name Thu
A full weekday name Thursday
%b abbreviated month name Jan
%B full month name January
gc date and time Thu Jan 19 21:24:52 2012
%C year/100: [00—99] 20
%d day of the month: [01-31] 19
%D date [MM/DD/YY] 01/19/12
%e day of month (single digit preceded by space) [1-31] | 19
3F ISO 8601 date format [YYYY-MM-DD] 2012-01-19
%9 last two digits of ISO 8601 week-based year [00—-99] 12
3G ISO 8601 week-based year 2012
%h same as $b Jan
$H hour of the day (24-hour format): [00—23] 21
%I hour of the day (12-hour format): [01-12] 09
%3 day of the year: [001-366] 019
m month: [01-12] 01
M minute: [00—59] 24
%n newline character
£3) AM/PM PM
3r locale’s time (12-hour format) 09:24:52 PM
%R same as 3H: %M 21:24
%S second: [00-60] 52
3t horizontal tab character
3T same as $H: 3¥M:3S 21:24:52
su ISO 8601 weekday [Monday =1, 1-7] 4
U Sunday week number: [00—53] 03
Y 1SO 8601 week number: [01-53] 03
W weekday: [0 = Sunday, 0-6] 4
W Monday week number: [00-53] 03
$x locale’s date 01/19/12
3$X locale’s time 21:24:52
3y last two digits of year: [00—99] 12
Y year 2012
%2z offset from UTC in ISO 8601 format -0500
%7 time zone name EST
%% translates to a percent sign %

Figure 6.10 Conversion specifiers for strftime

The third column of this figure is from the output of strftime under Mac OS X,
corresponding to the time and date Thu Jan 19 21:24:52 EST 2012.

The only specifiers that are not self-evident are 23U, 8V, and $W. The 3U specifier
represents the week number of the year, where the week containing the first Sunday is
week 1. The %W specifier represents the week number of the year, where the week
containing the first Monday is week 1. The %V specifier is different. If the week
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containing the first day in January has four or more days in the new year, then this is
treated as week 1. Otherwise, it is treated as the last week of the previous year. In both
cases, Monday is treated as the first day of the week.

As with printf, strftime supports modifiers for some of the conversion
specifiers. The E and 0 modifiers can be used to generate an alternative format if one is
supported by the locale.

Some systems support additional, nonstandard extensions to the format string for strftime.

Example

Figure 6.11 shows how to use several of the time functions discussed in this chapter. In
particular, it shows how strftime can be used to print a string containing the current
date and time.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int

main(void)

{
time_ t t;
struct tm *tmp;
char bufl[16];
char buf2[64];

time(&t);
tmp = localtime(&t);

if (strftime(bufl, 16, "time and date: %r, %a %b %d, %Y", tmp) == 0)
printf("buffer length 16 is too small\n");

else
printf("%s\n", bufl);

if (strftime(buf2, 64, "time and date: %r, %a %b %d, %Y", tmp) == 0)
printf("buffer length 64 is too small\n");

else
printf("%s\n", buf2);

exit(0);

Figure 6.11 Using the strftime function

Recall the relationship of the various time functions shown in Figure 6.9. Before we can
print the time in a human-readable format, we need to get the time and convert it into a
broken-down time structure. Sample output from Figure 6.11 is

$ ./a.out
buffer length 16 is too small
time and date: 11:12:35 PM, Thu Jan 19, 2012
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The strptime function is the inverse of strftime. It takes a string and converts
it into a broken-down time.

#include <time.h>

char *strptime(const char *restrict buf, const char *restrict format,
struct tm *restrict tmptr);

Returns: pointer to one character past last character parsed, NULL otherwise

The format argument describes the format of the string in the buffer pointed to by the buf
argument. The format specification is similar, although it differs slightly from the
specification for the strftime function. The conversion specifiers for the strptime
function are summarized in Figure 6.12.

Format Description
%a abbreviated or full weekday name
%A same as %a
b abbreviated or full month name
B same as %b
%c date and time
%C all but the last two digits of the year

%d day of the month: [01-31]

$D date [MM/DD/YY]

%e same as $d

gh same as $b

$H hour of the day (24-hour format): [00—23]
31 hour of the day (12-hour format): [01-12]
%3 day of the year: [001-366]

3m month: [01-12]

M minute: [00-59]

%n any white space

%p AM/PM

ST locale’s time (12-hour format, AM/PM notation)
%R time as $H: %M

%S second: [00—60]

st any white space

T time as $H:3%M:%S

U Sunday week number: [00—53]
W weekday: [0 = Sunday, 0-6]
W Monday week number: [00-53]

X locale’s date

X locale’s time

3y last two digits of year: [00—99]
3Y year

%% translates to a percent sign

Figure 6.12 Conversion specifiers for strptime
We mentioned that the three functions in Figure 6.9 with dashed lines were affected

by the TZ environment variable: localtime, mktime, and strftime. If defined, the
value of this environment variable is used by these functions instead of the default time
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zone. If the variable is defined to be a null string, such as Tz=, then UTC is normally
used. The value of this environment variable is often something like TZ=EST5EDT, but
POSIX.1 allows a much more detailed specification. Refer to the Environment Variables
chapter of the Single UNIX Specification [Open Group 2010] for all the details on the T2
variable.

More information on the TZ environment variable can be found in the tzset(3) manual page.

Summary

The password file and the group file are used on all UNIX systems. We’ve looked at the
various functions that read these files. We've also talked about shadow passwords,
which can enhance system security. Supplementary group IDs provide a way to
participate in multiple groups at the same time. We also looked at how similar
functions are provided by most systems to access other system-related data files. We
discussed the POSIX.1 functions that programs can use to identify the system on which
they are running. We finished the chapter by looking at the time and date functions
provided by ISO C and the Single UNIX Specification.

Exercises

6.1 If the system uses a shadow file and we need to obtain the encrypted password, how do we
do so?

6.2 If you have superuser access and your system uses shadow passwords, implement the
previous exercise.

6.3 Write a program that calls uname and prints all the fields in the utsname structure.
Compare the output to the output from the uname(1) command.

6.4 Calculate the latest time that can be represented by the time_t data type. After it wraps
around, what happens?

6.5 Write a program to obtain the current time and print it using strftime, so that it looks like
the default output from date(l). Set the TZ environment variable to different values and
see what happens.
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Process Environment

Introduction

Before looking at the process control primitives in the next chapter, we need to examine
the environment of a single process. In this chapter, we’ll see how the main function is
called when the program is executed, how command-line arguments are passed to the
new program, what the typical memory layout looks like, how to allocate additional
memory, how the process can use environment variables, and various ways for the
process to terminate. Additionally, we’ll look at the longjmp and setjmp functions
and their interaction with the stack. We finish the chapter by examining the resource
limits of a process.

main Function

A C program starts execution with a function called main. The prototype for the main
function is

int main(int argc, char *argu[1);

where argc is the number of command-line arguments, and argv is an array of pointers
to the arguments. We describe these arguments in Section 7.4.

When a C program is executed by the kernel—by one of the exec functions, which
we describe in Section 8.10—a special start-up routine is called before the main
function is called. The executable program file specifies this routine as the starting
address for the program; this is set up by the link editor when it is invoked by the C
compiler. This start-up routine takes values from the kernel—the command-line
arguments and the environment—and sets things up so that the main function is called
as shown earlier.

197
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7.3 Process Termination

There are eight ways for a process to terminate. Normal termination occurs in five

ways:
1. Return from main
2. Calling exit
3. Calling exitor_ Exit
4. Return of the last thread from its start routine (Section 11.5)
5. Calling pthread_exit (Section 11.5) from the last thread

Abnormal termination occurs in three ways:

6. Calling abort (Section 10.17)
7. Receipt of a signal (Section 10.2)
8. Response of the last thread to a cancellation request (Sections 11.5 and 12.7)

For now, we’ll ignore the three termination methods specific to threads until we discuss
threads in Chapters 11 and 12.

The start-up routine that we mentioned in the previous section is also written so that if
the main function returns, the exit function is called. If the start-up routine were
coded in C (it is often coded in assembly language) the call to main could look like

exit(main(argc, argv));

Exit Functions

Three functions terminate a program normally: _exit and _Exit, which return to the
kernel immediately, and exit, which performs certain cleanup processing and then
returns to the kernel.

#include <stdlib.h>
void exit(int status);
void _Exit(int status);

#include <unistd.h>

void _exit(int status);

We'll discuss the effect of these three functions on other processes, such as the children
and the parent of the terminating process, in Section 8.5.

The reason for the different headers is that exit and _Exit are specified by ISO C, whereas
_exit is specified by POSIX.1.
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Historically, the exit function has always performed a clean shutdown of the
standard I/O library: the fclose function is called for all open streams. Recall from
Section 5.5 that this causes all buffered output data to be flushed (written to the file).

All three exit functions expect a single integer argument, which we call the exit
status. Most UNIX System shells provide a way to examine the exit status of a process.
If (a) any of these functions is called without an exit status, (b) main does a return
without a return value, or (c) the main function is not declared to return an integer, the
exit status of the process is undefined. However, if the return type of main is an integer
and main “falls off the end” (an implicit return), the exit status of the process is 0.

This behavior is new with the 1999 version of the ISO C standard. Historically, the exit status
was undefined if the end of the main function was reached without an explicit return
statement or a call to the exit function.

Returning an integer value from the main function is equivalent to calling exit
with the same value. Thus

exit(0);
is the same as
return(0);

from the main function.

Example

The program in Figure 7.1 is the classic “hello, world” example.

#include <stdio.h>

main()

{
printf("hello, world\n");

}

Figure 7.1 Classic C program

When we compile and run the program in Figure 7.1, we see that the exit code is
random. If we compile the same program on different systems, we are likely to get
different exit codes, depending on the contents of the stack and register contents at the
time that the main function returns:

$ gcc hello.c

$ ./a.out

hello, world

$ echo $? print the exit status
13
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Now if we enable the 1999 ISO C compiler extensions, we see that the exit code changes:

$ gcec -std=c99 hello.c enable gcc’s 1999 ISO C extensions
hello.c:4: warning: return type defaults to ’'int’

$ ./a.out

hello, world

$ echo $? print the exit status

0

Note the compiler warning when we enable the 1999 ISO C extensions. This warning is
printed because the type of the main function is not explicitly declared to be an integer. If we
were to add this declaration, the message would go away. However, if we were to enable all
recommended warnings from the compiler (with the -Wall flag), then we would see a
warning message something like “control reaches end of nonvoid function.”

The declaration of main as returning an integer and the use of exit instead of return
produces needless warnings from some compilers and the 1int(1) program. The problem is
that these compilers don’t know that an exit from main is the same as a return. One way
around these warnings, which become annoying after a while, is to use return instead of
exit from main. But doing this prevents us from using the UNIX System’s grep utility to
locate all calls to exit from a program. Another solution is to declare main as returning
void, instead of int, and continue calling exit. This gets rid of the compiler warning but
doesn’t look right (especially in a programming text), and can generate other compiler
warnings, since the return type of main is supposed to be a signed integer. In this text, we
show main as returning an integer, since that is the definition specified by both ISO C and
POSIX.1.

Different compilers vary in the verbosity of their warnings. Note that the GNU C compiler
usually doesn’t emit these extraneous compiler warnings unless additional warning options

are used.
Od

In the next chapter, we’ll see how any process can cause a program to be executed, wait
for the process to complete, and then fetch its exit status.

With ISO C, a process can register at least 32 functions that are automatically called by
exit. These are called exit handlers and are registered by calling the atexit function.

#include <stdlib.h>

int atexit(void (*func)(void));

Returns: 0 if OK, nonzero on error

This declaration says that we pass the address of a function as the argument to atexit.
When this function is called, it is not passed any arguments and is not expected to
return a value. The exit function calls these functions in reverse order of their
registration. Each function is called as many times as it was registered.

www.it-ebooks.info


http://www.it-ebooks.info/

Section 7.3 Process Termination 201

These exit handlers first appeared in the ANSI C Standard in 1989. Systems that predate ANSI
C, such as SVR3 and 4.3BSD, did not provide these exit handlers.

ISO C requires that systems support at least 32 exit handlers, but implementations often
support more (see Figure 2.15). The sysconf function can be used to determine the
maximum number of exit handlers supported by a given platform, as illustrated in Figure 2.14.

With ISO C and POSIX.1, exit first calls the exit handlers and then closes (via
fclose) all open streams. POSIX.1 extends the ISO C standard by specifying that any
exit handlers installed will be cleared if the program calls any of the exec family of
functions. Figure 7.2 summarizes how a C program is started and the various ways it
can terminate.

exitr—-—-—------" """ - - - = = == = = — = B
or ! I
EXit: user :
; functions :
| |
| g A g |
exiti = = & o o
| e B & }
or. | ca exit handler |
Exit main exit exit % |
| function function e : user process
| [ |
| g \ S 4 |
: ] E , e’%, standard I/O :
| exit cleanup |
‘ C start-up or !
| . Exit |
‘ routine |
| |
| A |
Lol __________ a
exec
Yy /
kernel

Figure 7.2 How a C program is started and how it terminates

The only way a program can be executed by the kernel is if one of the exec functions is
called. The only way a process can voluntarily terminate is if _exit or _Exit is called,
either explicitly or implicitly (by calling exit). A process can also be involuntarily
terminated by a signal (not shown in Figure 7.2).
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The program in Figure 7.3 demonstrates the use of the atexit function.

#include "apue.h"

static void my exitl(void);
static void my_exit2(void);

int
main(void)
{
if (atexit(my_exit2) != 0)
err sys("can’'t register my exit2");
if (atexit(my exitl) != 0)
err _sys("can’'t register my exitl");
if (atexit(my_exitl) != 0)

err sys("can’'t register my exitl");

printf("main is done\n");
return(0);

}

static void
my_exitl(void)
{
printf("first exit handler\n");
}

static void
my_exit2(void)
{
printf("second exit handler\n");

}

Figure 7.3 Example of exit handlers

Executing the program in Figure 7.3 yields

$ ./a.out

main is done

first exit handler
first exit handler
second exit handler

An exit handler is called once for each time it is registered. In Figure 7.3, the first exit
handler is registered twice, so it is called two times. Note that we don’t call exit;
instead, we return from main. O
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7.4 Command-Line Arguments
When a program is executed, the process that does the exec can pass command-line
arguments to the new program. This is part of the normal operation of the UNIX
system shells. We have already seen this in many of the examples from earlier chapters.
Example
The program in Figure 7.4 echoes all its command-line arguments to standard output.
Note that the normal echo(1) program doesn’t echo the zeroth argument.
#include "apue.h"
int
main(int argc, char *argv[])
{
int i;
for (i = 0; i < argc; i++) /* echo all command-line args */
printf("argv[%d]: %s\n", i, argv[i]);
exit(0);
}
Figure 7.4 Echo all command-line arguments to standard output
If we compile this program and name the executable echoarg, we have
$ ./echoarg argl TEST foo
argv[0]: ./echoarg
argv[l]: argl
argv[2]: TEST
argv[3]: foo
We are guaranteed by both ISO C and POSIX.1 that argv[argc] is a null pointer. This
lets us alternatively code the argument-processing loop as
for (i = 0; argv[i] != NULL; i++) -
7.5 Environment List

Each program is also passed an environment list. Like the argument list, the
environment list is an array of character pointers, with each pointer containing the
address of a null-terminated C string. The address of the array of pointers is contained
in the global variable environ:

extern char **environ;

For example, if the environment consisted of five strings, it could look like Figure 7.5.
Here we explicitly show the null bytes at the end of each string. We'll call environ the
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environment environment environment
pointer list strings

environ: ———» HOME=/home/sar\0

—+——®» PATH=:/bin:/usr/bin\0

—1——» SHELL=/bin/bash\0

—+——» USER=sar\0

—+——» LOGNAME=sar\0

NULL

Figure 7.5 Environment consisting of five C character strings

environment pointer, the array of pointers the environment list, and the strings they point
to the environment strings.
By convention, the environment consists of

name=value

strings, as shown in Figure 7.5. Most predefined names are entirely uppercase, but this
is only a convention.

Historically, most UNIX systems have provided a third argument to the main
function that is the address of the environment list:

int main(int argc, char *argu[], char *enuvp[]);

Because ISO C specifies that the main function be written with two arguments, and
because this third argument provides no benefit over the global variable environ,
POSIX.1 specifies that environ should be used instead of the (possible) third
argument. Access to specific environment variables is normally through the getenv
and putenv functions, described in Section 7.9, instead of through the environ
variable. But to go through the entire environment, the environ pointer must be used.

Memory Layout of a C Program

Historically, a C program has been composed of the following pieces:

o Text segment, consisting of the machine instructions that the CPU executes.
Usually, the text segment is sharable so that only a single copy needs to be in
memory for frequently executed programs, such as text editors, the C compiler,
the shells, and so on. Also, the text segment is often read-only, to prevent a
program from accidentally modifying its instructions.
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¢ Initialized data segment, usually called simply the data segment, containing
variables that are specifically initialized in the program. For example, the C
declaration

int maxcount = 99;

appearing outside any function causes this variable to be stored in the initialized
data segment with its initial value.

* Uninitialized data segment, often called the “bss” segment, named after an
ancient assembler operator that stood for “block started by symbol.” Data in
this segment is initialized by the kernel to arithmetic 0 or null pointers before the
program starts executing. The C declaration

long sum[1000];

appearing outside any function causes this variable to be stored in the
uninitialized data segment.

¢ Stack, where automatic variables are stored, along with information that is saved
each time a function is called. Each time a function is called, the address of
where to return to and certain information about the caller’s environment, such
as some of the machine registers, are saved on the stack. The newly called
function then allocates room on the stack for its automatic and temporary
variables. This is how recursive functions in C can work. Each time a recursive
function calls itself, a new stack frame is used, so one set of variables doesn’t
interfere with the variables from another instance of the function.

¢ Heap, where dynamic memory allocation usually takes place. Historically, the
heap has been located between the uninitialized data and the stack.

Figure 7.6 shows the typical arrangement of these segments. This is a logical picture of
how a program looks; there is no requirement that a given implementation arrange its
memory in this fashion. Nevertheless, this gives us a typical arrangement to describe.
With Linux on a 32-bit Intel x86 processor, the text segment starts at location
0x08048000, and the bottom of the stack starts just below 0xC0000000. (The stack
grows from higher-numbered addresses to lower-numbered addresses on this particular
architecture.) The unused virtual address space between the top of the heap and the top
of the stack is large.

Several more segment types exist in an a.out, containing the symbol table, debugging
information, linkage tables for dynamic shared libraries, and the like. These additional
sections don’t get loaded as part of the program’s image executed by a process.

Note from Figure 7.6 that the contents of the uninitialized data segment are not
stored in the program file on disk, because the kernel sets the contents to 0 before the
program starts running. The only portions of the program that need to be saved in the
program file are the text segment and the initialized data.
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high address command-line arguments
and environment variables
stack
heap
uninitialized data initialized to
(bss) zero by exec
initialized data read from
program file
text b
low address y exec
Figure 7.6 Typical memory arrangement
The size(l) command reports the sizes (in bytes) of the text, data, and bss
segments. For example:
$ size /usr/bin/cc /bin/sh
text data bss dec hex filename
346919 3576 6680 357175 57337 /usr/bin/cc
102134 1776 11272 115182 1lclee /bin/sh
The fourth and fifth columns are the total of the three sizes, displayed in decimal and
hexadecimal, respectively.
7.7  Shared Libraries

Most UNIX systems today support shared libraries. Arnold [1986] describes an early
implementation under System V, and Gingell et al. [1987] describe a different
implementation under SunOS. Shared libraries remove the common library routines
from the executable file, instead maintaining a single copy of the library routine
somewhere in memory that all processes reference. This reduces the size of each
executable file but may add some runtime overhead, either when the program is first
executed or the first time each shared library function is called. Another advantage of
shared libraries is that library functions can be replaced with new versions without
having to relink edit every program that uses the library (assuming that the number and
type of arguments haven’t changed).

Different systems provide different ways for a program to say that it wants to use or
not use the shared libraries. Options for the cc(1) and 1d(1) commands are typical. As
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an example of the size differences, the following executable file—the classic hello.c
program—was first created without shared libraries:

$ gcc -static hellol.c prevent gcc from using shared libraries
$ 1s -1 a.out
-rwxr-xr-x 1 sar 879443 Sep 2 10:39 a.out
$ size a.out
text data bss dec hex filename
787775 6128 11272 805175 c4937 a.out

If we compile this program to use shared libraries, the text and data sizes of the
executable file are greatly decreased:

$ gcc hellol.c gec defaults to use shared libraries
$ 1s -1 a.out
-rwxr-xr-x 1 sar 8378 Sep 2 10:39 a.out
$ size a.out
text data bss dec hex filename
1176 504 16 1696 6a0 a.out

Memory Allocation

ISO C specifies three functions for memory allocation:

1. malloc, which allocates a specified number of bytes of memory. The initial
value of the memory is indeterminate.

2. calloc, which allocates space for a specified number of objects of a specified
size. The space is initialized to all 0 bits.

3. realloc, which increases or decreases the size of a previously allocated area.
When the size increases, it may involve moving the previously allocated area
somewhere else, to provide the additional room at the end. Also, when the size
increases, the initial value of the space between the old contents and the end of
the new area is indeterminate.

#include <stdlib.h>
void *malloc(size t size);
void *calloc(size_ t nobj, size t size);
void *realloc(void *ptr, size_t newsize);
All three return: non-null pointer if OK, NULL on error

void free(void *ptr);

The pointer returned by the three allocation functions is guaranteed to be suitably
aligned so that it can be used for any data object. For example, if the most restrictive
alignment requirement on a particular system requires that doubles must start at
memory locations that are multiples of 8, then all pointers returned by these three
functions would be so aligned.
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Because the three alloc functions return a generic void * pointer, if we
#include <stdlib.h> (to obtain the function prototypes), we do not explicitly have
to cast the pointer returned by these functions when we assign it to a pointer of a
different type. The default return value for undeclared functions is int, so using a cast
without the proper function declaration could hide an error on systems where the size
of type int differs from the size of a function’s return value (a pointer in this case).

The function free causes the space pointed to by ptr to be deallocated. This freed
space is usually put into a pool of available memory and can be allocated in a later call
to one of the three alloc functions.

The realloc function lets us change the size of a previously allocated area. (The
most common usage is to increase an area’s size.) For example, if we allocate room for
512 elements in an array that we fill in at runtime but later find that we need more
room, we can call realloc. If there is room beyond the end of the existing region for
the requested space, then realloc simply allocates this additional area at the end and
returns the same pointer that we passed it. But if there isn’t room, realloc allocates
another area that is large enough, copies the existing 512-element array to the new area,
frees the old area, and returns the pointer to the new area. Because the area may move,
we shouldn’t have any pointers into this area. Exercise 4.16 and Figure C.3 show the
use of realloc with getcwd to handle a pathname of any length. Figure 17.27 shows
an example that uses realloc to avoid arrays with fixed, compile-time sizes.

Note that the final argument to realloc is the new size of the region, not the
difference between the old and new sizes. As a special case, if ptr is a null pointer,
realloc behaves like malloc and allocates a region of the specified newsize.

Older versions of these routines allowed us to realloc a block that we had freed since the
last call to malloc, realloc, or calloc. This trick dates back to Version 7 and exploited the
search strategy of malloc to perform storage compaction. Solaris still supports this feature,
but many other platforms do not. This feature is deprecated and should not be used.

The allocation routines are usually implemented with the sbrk(2) system call. This
system call expands (or contracts) the heap of the process. (Refer to Figure 7.6.) A
sample implementation of malloc and free is given in Section 8.7 of Kernighan and
Ritchie [1988].

Although sbrk can expand or contract the memory of a process, most versions of
malloc and free never decrease their memory size. The space that we free is
available for a later allocation, but the freed space is not usually returned to the kernel;
instead, that space is kept in the malloc pool.

Most implementations allocate more space than requested and use the additional
space for record keeping—the size of the block, a pointer to the next allocated block,
and the like. As a consequence, writing past the end or before the start of an allocated
area could overwrite this record-keeping information in another block. These types of
errors are often catastrophic, but difficult to find, because the error may not show up
until much later.

Writing past the end or before the beginning of a dynamically allocated buffer can
corrupt more than internal record-keeping information. The memory before and after a
dynamically allocated buffer can potentially be used for other dynamically allocated
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objects. These objects can be unrelated to the code corrupting them, making it even
more difficult to find the source of the corruption.

Other possible errors that can be fatal are freeing a block that was already freed and
calling free with a pointer that was not obtained from one of the three alloc
functions. If a process calls malloc but forgets to call free, its memory usage will
continually increase; this is called leakage. If we do not call free to return unused
space, the size of a process’s address space will slowly increase until no free space is left.
During this time, performance can degrade from excess paging overhead.

Because memory allocation errors are difficult to track down, some systems provide
versions of these functions that do additional error checking every time one of the three
alloc functions or free is called. These versions of the functions are often specified
by including a special library for the link editor. There are also publicly available
sources that you can compile with special flags to enable additional runtime checking.

FreeBSD, Mac OS X, and Linux support additional debugging through the setting of
environment variables. In addition, options can be passed to the FreeBSD library through the
symbolic link /etc/malloc.conf.

Alternate Memory Allocators

Many replacements for malloc and free are available. Some systems already include
libraries providing alternative memory allocator implementations. Other systems
provide only the standard allocator, leaving it up to software developers to download
alternatives, if desired. We discuss some of the alternatives here.

libmalloc

SVR4-based systems, such as Solaris, include the 1ibmalloc library, which provides a
set of interfaces matching the ISO C memory allocation functions. The libmalloc
library includes mallopt, a function that allows a process to set certain variables that
control the operation of the storage allocator. A function called mallinfo is also
available to provide statistics on the memory allocator.

vmalloc

Vo [1996] describes a memory allocator that allows processes to allocate memory using
different techniques for different regions of memory. In addition to the functions
specific to vmalloc, the library provides emulations of the ISO C memory allocation
functions.

quick-fit

Historically, the standard malloc algorithm used either a best-fit or a first-fit memory
allocation strategy. Quick-fit is faster than either, but tends to use more memory.
Weinstock and Wulf [1988] describe the algorithm, which is based on splitting up
memory into buffers of various sizes and maintaining unused buffers on different free
lists, depending on the buffer sizes. Most modern allocators are based on quick-fit.
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jemalloc
The jemalloc implementation of the malloc family of library functions is the default
memory allocator in FreeBSD 8.0. It was designed to scale well when used with
multithreaded applications running on multiprocessor systems. Evans [2006] describes
the implementation and evaluates its performance.

TCMalloc

TCMalloc was designed as a replacement for the malloc family of functions to
provide high performance, scalability, and memory efficiency. It uses thread-local
caches to avoid locking overhead when allocating buffers from and releasing buffers to
the cache. It also has a heap checker and a heap profiler built in to aid in debugging
and analyzing dynamic memory usage. The TCMalloc library is available as open
source from Google. It is briefly described by Ghemawat and Menage [2005].

alloca Function

7.9

One additional function is also worth mentioning. The function alloca has the same
calling sequence as malloc; however, instead of allocating memory from the heap, the
memory is allocated from the stack frame of the current function. The advantage is that
we don’t have to free the space; it goes away automatically when the function returns.
The alloca function increases the size of the stack frame. The disadvantage is that
some systems can’t support alloca, if it’s impossible to increase the size of the stack
frame after the function has been called. Nevertheless, many software packages use it,
and implementations exist for a wide variety of systems.

All four platforms discussed in this text provide the alloca function.

Environment Variables

As we mentioned earlier, the environment strings are usually of the form

name=value

The UNIX kernel never looks at these strings; their interpretation is up to the various
applications. The shells, for example, use numerous environment variables. Some,
such as HOME and USER, are set automatically at login; others are left for us to set. We
normally set environment variables in a shell start-up file to control the shell’s actions.
If we set the environment variable MAILPATH, for example, it tells the Bourne shell,
GNU Bourne-again shell, and Korn shell where to look for mail.

ISO C defines a function that we can use to fetch values from the environment, but
this standard says that the contents of the environment are implementation defined.

#include <stdlib.h>

char *getenv(const char *mname);

Returns: pointer to value associated with name, NULL if not found
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Note that this function returns a pointer to the value of a name=value string. We should
always use getenv to fetch a specific value from the environment, instead of accessing
environ directly.

Some environment variables are defined by POSIX.1 in the Single UNIX
Specification, whereas others are defined only if the XSI option is supported. Figure 7.7
lists the environment variables defined by the Single UNIX Specification and notes
which implementations support the variables. Any environment variable defined by
POSIX.1 is marked with e; otherwise, it is part of the XSI option. Many additional
implementation-dependent environment variables are used in the four implementations
described in this book. Note that ISO C doesn’t define any environment variables.

. FreeBSD Linux Mac OS X Solaris L

Variable |POSIX.1 8.0 320 1068 10 Description
COLUMNS . . . . e |terminal width
DATEMSK XSI . . ¢ |getdate(3) template file pathname
HOME . o . . * |home directory
LANG . . . . * |name of locale
LC_ALL o . . o e |name of locale
LC_COLLATE o . o o ® |name of locale for collation
LC_CTYPE . . . . * |name of locale for character classification
LC_MESSAGES J o . . ® |name of locale for messages
LC_MONETARY o 3 o o ® |name of locale for monetary editing
LC_NUMERIC . . . . * |name of locale for numeric editing
LC_TIME . . . . ® |name of locale for date/time formatting
LINES o . o o * |terminal height
LOGNAME . . . . ¢ |login name
MSGVERB XSI . . . e |fmtmsg(3) message components to process
NLSPATH . . . . * |sequence of templates for message catalogs
PATH . . . . ¢ |list of path prefixes to search for executable file
PWD . . . . * |absolute pathname of current working directory
SHELL . . . . * |name of user’s preferred shell
TERM . . . . ¢ |terminal type
TMPDIR . U . . * |pathname of directory for creating temporary files
TZ . . . . * |time zone information

Figure 7.7 Environment variables defined in the Single UNIX Specification

In addition to fetching the value of an environment variable, sometimes we may
want to set an environment variable. We may want to change the value of an existing
variable or add a new variable to the environment. (In the next chapter, we'll see that
we can affect the environment of only the current process and any child processes that
we invoke. We cannot affect the environment of the parent process, which is often a
shell. Nevertheless, it is still useful to be able to modify the environment list.)
Unfortunately, not all systems support this capability. Figure 7.8 shows the functions
that are supported by the various standards and implementations.
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. FreeBSD Linux MacOSX  Solaris
Function ISOC POSIX.1 8.0 320 10.6.8 10
getenv [ () [ ° [ )
putenv XSI o . . .
setenv . . . .
unsetenv L o . .
clearenv .

Figure 7.8 Support for various environment list functions

The clearenv function is not part of the Single UNIX Specification. It is used to remove all
entries from the environment list.

The prototypes for the middle three functions listed in Figure 7.8 are

#include <stdlib.h>
int putenv(char *str);

Returns: 0 if OK, nonzero on error
int setenv(const char *name, const char *uvalue, int rewrite);

int unsetenv(const char *name);

Both return: 0 if OK, -1 on error

The operation of these three functions is as follows:

¢ The putenv function takes a string of the form name=value and places it in the
environment list. If name already exists, its old definition is first removed.

* The setenv function sets name to value. If name already exists in the
environment, then (a) if rewrite is nonzero, the existing definition for name is first
removed; or (b) if rewrite is 0, an existing definition for name is not removed,
name is not set to the new value, and no error occurs.

* The unsetenv function removes any definition of name. It is not an error if
such a definition does not exist.

Note the difference between putenv and setenv. Whereas setenv must allocate memory to
create the name=value string from its arguments, putenv is free to place the string passed to it
directly into the environment. Indeed, many implementations do exactly this, so it would be
an error to pass putenv a string allocated on the stack, since the memory would be reused
after we return from the current function.

It is interesting to examine how these functions must operate when modifying the
environment list. Recall Figure 7.6: the environment list—the array of pointers to the
actual name=value strings—and the environment strings are typically stored at the top
of a process’s memory space, above the stack. Deleting a string is simple; we just find
the pointer in the environment list and move all subsequent pointers down one. But
adding a string or modifying an existing string is more difficult. The space at the top of
the stack cannot be expanded, because it is often at the top of the address space of the
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process and so can’t expand upward; it can’t be expanded downward, because all the
stack frames below it can’t be moved.

1. If we're modifying an existing name:

a. If the size of the new wvalue is less than or equal to the size of the existing
value, we can just copy the new string over the old string.

b. If the size of the new wvalue is larger than the old one, however, we must
malloc to obtain room for the new string, copy the new string to this area,
and then replace the old pointer in the environment list for name with the
pointer to this allocated area.

2. If we're adding a new name, it's more complicated. First, we have to call
malloc to allocate room for the name=value string and copy the string to this
area.

a. Then, if it’s the first time we’ve added a new name, we have to call malloc
to obtain room for a new list of pointers. We copy the old environment list
to this new area and store a pointer to the name=value string at the end of
this list of pointers. We also store a null pointer at the end of this list, of
course. Finally, we set environ to point to this new list of pointers. Note
from Figure 7.6 that if the original environment list was contained above the
top of the stack, as is common, then we have moved this list of pointers to
the heap. But most of the pointers in this list still point to name=value strings
above the top of the stack.

b. If this isn’t the first time we’ve added new strings to the environment list,
then we know that we’ve already allocated room for the list on the heap, so
we just call realloc to allocate room for one more pointer. The pointer to
the new name=value string is stored at the end of the list (on top of the
previous null pointer), followed by a null pointer.

setjmp and longjmp Functions

In C, we can’t goto a label that’s in another function. Instead, we must use the setjmp
and longjmp functions to perform this type of branching. As we’ll see, these two
functions are useful for handling error conditions that occur in a deeply nested function
call.

Consider the skeleton in Figure 7.9. It consists of a main loop that reads lines from
standard input and calls the function do_1line to process each line. This function then
calls get_token to fetch the next token from the input line. The first token of a line is
assumed to be a command of some form, and a switch statement selects each
command. For the single command shown, the function cmd_add is called.

The skeleton in Figure 7.9 is typical for programs that read commands, determine
the command type, and then call functions to process each command. Figure 7.10
shows what the stack could look like after cmd_add has been called.

www.it-ebooks.info


http://www.it-ebooks.info/

214

Process Environment

Chapter 7

#include "apue.h"
#define TOK_ADD 5

void do_line(char *);
void cmd_add(void);
int get token(void);

int
main(void)
{

char line[MAXLINE];

while (fgets(line, MAXLINE, stdin) != NULL)
do_line(line);
exit(0);
}

char *tok_ptr; /* global pointer for get_ token() */

void
do_line(char *ptr) /* process one line of input */

{

int cmd;

tok ptr = ptr;

while ((cmd = get_token()) > 0) {
switch (cmd) { /* one case for each command */
case TOK_ADD:

cmd _add();
break;
}
}
}
void
cmd_add(void)
{
int token;
token = get_token();
/* rest of processing for this command */
}
int
get_ token(void)
{
/* fetch next token from line pointed to by tok ptr */
}

Figure 7.9 Typical program skeleton for command processing
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bottom of stack higher address

stack frame
for main

stack frame
fordo_line

stack frame
for cmd_add

stack growth

direction of l

lower address

Figure 7.10 Stack frames after cmd_add has been called

Storage for the automatic variables is within the stack frame for each function. The
array line is in the stack frame for main, the integer cmd is in the stack frame for
do_line, and the integer token is in the stack frame for cmd_add.

As we've said, this type of arrangement of the stack is typical, but not required.
Stacks do not have to grow toward lower memory addresses. On systems that don’t
have built-in hardware support for stacks, a C implementation might use a linked list
for its stack frames.

The coding problem that’s often encountered with programs like the one shown in
Figure 7.9 is how to handle nonfatal errors. For example, if the cmd_add function
encounters an error—say, an invalid number—it might want to print an error message,
ignore the rest of the input line, and return to the main function to read the next input
line. But when we're deeply nested numerous levels down from the main function, this
is difficult to do in C. (In this example, the cmd_add function is only two levels down
from main, but it’s not uncommon to be five or more levels down from the point to
which we want to return.) It becomes messy if we have to code each function with a
special return value that tells it to return one level.

The solution to this problem is to use a nonlocal goto: the setjmp and longjmp
functions. The adjective “nonlocal” indicates that we’re not doing a normal C goto
statement within a function; instead, we’re branching back through the call frames to a
function that is in the call path of the current function.

#include <setjmp.h>
int setjmp(jmp_buf env);

Returns: 0 if called directly, nonzero if returning from a call to Llongjmp

void longjmp(jmp_buf env, int wval);
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We call setjmp from the location that we want to return to, which in this example
is in the main function. In this case, setjmp returns 0 because we called it directly. In
the call to setjmp, the argument env is of the special type jmp_buf. This data type is
some form of array that is capable of holding all the information required to restore the
status of the stack to the state when we call longjmp. Normally, the env variable is a
global variable, since we’ll need to reference it from another function.

When we encounter an error—say, in the cmd_add function—we call longjmp
with two arguments. The first is the same env that we used in a call to set jmp, and the
second, val, is a nonzero value that becomes the return value from setjmp. The second
argument allows us to use more than one longjmp for each setjmp. For example, we
could longjmp from cmd_add with a val of 1 and also call longjmp from get token
with a val of 2. In the main function, the return value from set jmp is either 1 or 2, and
we can test this value, if we want, and determine whether the longjmp was from
cmd_add or get_token.

Let’s return to the example. Figure 7.11 shows both the main and cmd_add
functions. (The other two functions, do_1line and get_token, haven’t changed.)

#include "apue.h"
#include <setjmp.h>

#define TOK_ADD 5

jmp_buf jmpbuffer;

int
main(void)
{
char line[MAXLINE];
if (setjmp(jmpbuffer) != 0)
printf("error");
while (fgets(line, MAXLINE, stdin) != NULL)
do_line(line);
exit(0);
}
void
cmd_add(void)
{
int token;
token = get token();
if (token < 0) /* an error has occurred */
longjmp(jmpbuffer, 1);
/* rest of processing for this command */
}

Figure 7.11 Example of setjmp and longjmp
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When main is executed, we call set jmp, which records whatever information it needs
to in the variable jmpbuffer and returns 0. We then call do_line, which calls
cmd_add, and assume that an error of some form is detected. Before the call to
longjmp in cmd_add, the stack looks like that in Figure 7.10. But longjmp causes the
stack to be “unwound” back to the main function, throwing away the stack frames for
cmd_add and do_1line (Figure 7.12). Calling longjmp causes the setjmp in main to
return, but this time it returns with a value of 1 (the second argument for longjmp).

bottom of stack higher address

stack frame
for main

stack growth

direction of l

lower address

Figure 7.12 Stack frame after longjmp has been called

Automatic, Register, and Volatile Variables

We’ve seen what the stack looks like after calling longjmp. The next question is, “What
are the states of the automatic variables and register variables in the main function?”
When we return to main as a result of the longjmp, do these variables have values
corresponding to those when the setjmp was previously called (i.e., are their values
rolled back), or are their values left alone so that their values are whatever they were
when do_line was called (which caused cmd_add to be called, which caused
longjmp to be called)? Unfortunately, the answer is “It depends.” Most
implementations do not try to roll back these automatic variables and register variables,
but the standards say only that their values are indeterminate. If you have an automatic
variable that you don’t want rolled back, define it with the volatile attribute.
Variables that are declared as global or static are left alone when longjmp is executed.

Example

The program in Figure 7.13 demonstrates the different behavior that can be seen with
automatic, global, register, static, and volatile variables after calling 1longjmp.
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#include "apue.h"
#include <setjmp.h>

static void fl(int, int, int, int);
static void f2(void);

static jmp buf jmpbuffer;

static int globval;

int

main(void)

{
int autoval;
register int regival;
volatile int volaval;
static int statval;

globval = 1; autoval = 2; regival 3; volaval = 4; statval = 5;

if (setjmp(jmpbuffer) != 0) {
printf("after longjmp:\n");
printf("globval = %d, autoval = %d, regival = %d,"
" volaval = %d, statval = %d\n",
globval, autoval, regival, volaval, statval);

exit(0);
}
/*
* Change variables after setjmp, but before longjmp.
*/
globval = 95; autoval = 96; regival = 97; volaval = 98;
statval = 99;

fl(autoval, regival, volaval, statval); /* never returns */
exit(0);
}

static void
fl(int i, int j, int k, int 1)

{
printf("in £1():\n");
printf("globval = %d, autoval = %d, regival = %d,"
" volaval = %d, statval = %d\n", globval, i, j, k, 1);
£2();
}
static void
f2 (void)
{
longjmp( jmpbuffer, 1);
}

Figure 7.13 Effect of longjmp on various types of variables
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If we compile and test the program in Figure 7.13, with and without compiler
optimizations, the results are different:

$ gcc testjmp.c compile without any optimization

$ ./a.out

in f1():

globval = 95, autoval = 96, regival = 97, volaval = 98, statval
after longjmp:

globval = 95, autoval = 96, regival = 97, volaval = 98, statval = 99
$ gcc -0 testjmp.c compile with full optimization

$ ./a.out

in f1():

globval = 95, autoval = 96, regival = 97, volaval = 98, statval
after longjmp:

globval = 95, autoval = 2, regival = 3, volaval = 98, statval = 99

99

99

Note that the optimizations don’t affect the global, static, and volatile variables; their
values after the longjmp are the last values that they assumed. The setjmp(3) manual
page on one system states that variables stored in memory will have values as of the
time of the longjmp, whereas variables in the CPU and floating-point registers are
restored to their values when setjmp was called. This is indeed what we see when we
run the program in Figure 7.13. Without optimization, all five variables are stored in
memory (the register hint is ignored for regival). When we enable optimization,
both autoval and regival go into registers, even though the former wasn’t declared
register, and the volatile variable stays in memory. The important thing to realize
with this example is that you must use the volatile attribute if you're writing
portable code that uses nonlocal jumps. Anything else can change from one system to
the next.

Some printf format strings in Figure 7.13 are longer than will fit comfortably for
display in a programming text. Instead of making multiple calls to print£, we rely on
ISO C’s string concatenation feature, where the sequence

"stringl" "string2"
is equivalent to

"stringlstring2" -

We'll return to these two functions, setjmp and longjmp, in Chapter 10 when we
discuss signal handlers and their signal versions: sigsetjmp and siglongjmp.

Potential Problem with Automatic Variables

Having looked at the way stack frames are usually handled, it is worth looking at a
potential error in dealing with automatic variables. The basic rule is that an automatic
variable can never be referenced after the function that declared it returns. Numerous
warnings about this can be found throughout the UNIX System manuals.

Figure 7.14 shows a function called open_data that opens a standard I/O stream
and sets the buffering for the stream.

www.it-ebooks.info


http://www.it-ebooks.info/

220 Process Environment Chapter 7
#include <stdio.h>
FILE *
open_data(void)
{
FILE *fp;
char databuf[BUFSIZ]; /* setvbuf makes this the stdio buffer */
if ((fp = fopen("datafile", "r")) == NULL)
return(NULL) ;
if (setvbuf(fp, databuf, _IOLBF, BUFSIZ) != 0)
return(NULL) ;
return(£fp); /* error */
}
Figure 7.14 Incorrect usage of an automatic variable
The problem is that when open_data returns, the space it used on the stack will be
used by the stack frame for the next function that is called. But the standard I/0O library
will still be using that portion of memory for its stream buffer. Chaos is sure to result.
To correct this problem, the array databuf needs to be allocated from global memory,
either statically (static or extern) or dynamically (one of the alloc functions).
7.11 getrlimit and setrlimit Functions

Every process has a set of resource limits, some of which can be queried and changed by
the getrlimit and setrlimit functions.

#include <sys/resource.h>
int getrlimit(int resource, struct rlimit *riptr);

int setrlimit(int resource, const struct rlimit *riptr);

Both return: 0 if OK, -1 on error

These two functions are defined in the XSI option in the Single UNIX Specification. The
resource limits for a process are normally established by process 0 when the system is
initialized and then inherited by each successive process. Each implementation has its own
way of tuning the various limits.

Each call to these two functions specifies a single resource and a pointer to the
following structure:

struct rlimit {
rlim t rlim cur; /* soft limit: current limit */
rlim t rlim max; /* hard limit: maximum value for rlim cur */

}i
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Three rules govern the changing of the resource limits.

A process can change its soft limit to a value less than or equal to its hard limit.

2. A process can lower its hard limit to a value greater than or equal to its soft
limit. This lowering of the hard limit is irreversible for normal users.

3. Only a superuser process can raise a hard limit.

An infinite limit is specified by the constant RLIM INFINITY.
The resource argument takes on one of the following values. Figure 7.15 shows
which limits are defined by the Single UNIX Specification and supported by each

implementation.

RLIMIT AS

RLIMIT CORE

RLIMIT CPU

RLIMIT DATA

RLIMIT FSIZE

RLIMIT MEMLOCK
RLIMIT MSGQUEUE
RLIMIT NICE

RLIMIT NOFILE

RLIMIT NPROC

RLIMIT NPTS

The maximum size in bytes of a process’s total available
memory. This affects the sbrk function (Section 1.11) and the
mmap function (Section 14.8).

The maximum size in bytes of a core file. A limit of 0 prevents
the creation of a core file.

The maximum amount of CPU time in seconds. When the
soft limit is exceeded, the SIGXCPU signal is sent to the
process.

The maximum size in bytes of the data segment: the sum of
the initialized data, uninitialized data, and heap from
Figure 7.6.

The maximum size in bytes of a file that may be created.
When the soft limit is exceeded, the process is sent the
SIGXFSZ signal.

The maximum amount of memory in bytes that a process can
lock into memory using mlock(2).

The maximum amount of memory in bytes that a process can
allocate for POSIX message queues.

The limit to which a process’s nice value (Section 8.16) can be
raised to affect its scheduling priority.

The maximum number of open files per process. Changing
this limit affects the value returned by the sysconf function
for its _SC_OPEN_MAX argument (Section 2.5.4). See
Figure 2.17 also.

The maximum number of child processes per real user ID.
Changing this limit affects the value returned for
_SC_CHILD_MAX by the sysconf function (Section 2.5.4).

The maximum number of pseudo terminals (Chapter 19) that
a user can have open at one time.
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RLIMIT RSS Maximum resident set size (RSS) in bytes. If available
physical memory is low, the kernel takes memory from
processes that exceed their RSS.
RLIMIT_SBSIZE The maximum size in bytes of socket buffers that a user can
consume at any given time.
RLIMIT SIGPENDING The maximum number of signals that can be queued for a
process. This limit is enforced by the sigqueue function
(Section 10.20).
RLIMIT STACK The maximum size in bytes of the stack. See Figure 7.6.
RLIMIT SWAP The maximum amount of swap space in bytes that a user can
consume.
RLIMIT VMEM This is a synonym for RLIMIT AS.
. FreeBSD Linux Mac OS X Solaris
Limit XSl 80 320 106.8 10
RLIMIT_AS . . . .
RLIMIT_CORE . . . . .
RLIMIT_CPU . . . . .
RLIMIT_DATA . . . . .
RLIMIT_FSIZE . . . . .
RLIMIT_MEMLOCK . . .
RLIMIT_MSGQUEUE .
RLIMIT_NICE .
RLIMIT_NOFILE . . . . .
RLIMIT_NPROC . . .
RLIMIT_NPTS .
RLIMIT_RSS . . .
RLIMIT_SBSIZE .
RLIMIT_SIGPENDING .
RLIMIT_STACK . . . . .
RLIMIT_SWAP .
RLIMIT_VMEM .
Figure 7.15 Support for resource limits
The resource limits affect the calling process and are inherited by any of its children.
This means that the setting of resource limits needs to be built into the shells to affect all
our future processes. Indeed, the Bourne shell, the GNU Bourne-again shell, and the
Korn shell have the built-in ulimit command, and the C shell has the built-in 1imit
command. (The umask and chdir functions also have to be handled as shell built-ins.)
Example

The program in Figure 7.16 prints out the current soft limit and hard limit for all the
resource limits supported on the system. To compile this program on all the various
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implementations, we have conditionally included the resource names that differ. Note
that some systems define rlim t to be an unsigned long long instead of an
unsigned long. This definition can even change on the same system, depending on
whether we compile the program to support 64-bit files. Some limits apply to file size,
so the rlim t type has to be large enough to represent a file size limit. To avoid
compiler warnings that use the wrong format specification, we first copy the limit into a
64-bit integer so that we have to deal with only one format.

#include "apue.h"
#include <sys/resource.h>

#define doit(name) pr_limits(#name, name)
static void pr_limits(char *, int);

int

main(void)

{

#ifdef RLIMIT AS

doit (RLIMIT_AS);
#endif

doit (RLIMIT_CORE);
doit (RLIMIT CPU);

doit (RLIMIT_ DATA);
doit (RLIMIT FSIZE);

#ifdef RLIMIT MEMLOCK
dOit(RLIMIT_MEMLOCK);
#endif

#ifdef RLIMIT MSGQUEUE
doit (RLIMIT MSGQUEUE);
#endif

#ifdef RLIMIT NICE
dOit(RLIMIT_NICE);
#endif

doit (RLIMIT NOFILE);

#ifdef RLIMIT NPROC
doit(RLIMIT_NPROC);
#endif

#ifdef RLIMIT NPTS
doit (RLIMIT NPTS);
#endif

#ifdef RLIMIT RSS
doit (RLIMIT_RSS);
#endif

#ifdef RLIMIT SBSIZE
doit (RLIMIT SBSIZE);
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#endif

#ifdef RLIMIT SIGPENDING

doit (RLIMIT SIGPENDING);

#endif

doit (RLIMIT STACK);

#ifdef RLIMIT SWAP

doit (RLIMIT SWAP);

#endif

#ifdef RLIMIT VMEM

doit (RLIMIT VMEM);

#endif

}

exit(0);

static void
pr limits(char *name, int resource)

{

struct rlimit limit;
unsigned long long 1lim;

if (getrlimit(resource, &limit) < 0)

err sys("getrlimit error for %s", name);

printf("%-14s ", name);

if (limit.rlim cur == RLIM INFINITY) {
printf (" (infinite) ");

} else {
lim = limit.rlim cur;
printf("%1011d ", lim);

}

if (limit.rlim max == RLIM INFINITY) {
printf(" (infinite)");

} else {
lim = limit.rlim max;
printf("%1011d", 1lim);

}

putchar((int)’'\n’);

generate the string value for each resource name. When we say

Figure 7.16 Print the current resource limits

Note that we’ve used the ISO C string-creation operator (#) in the doit macro, to

doit (RLIMIT CORE);

the C preprocessor expands this into

pr_limits("RLIMIT CORE", RLIMIT_CORE);
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7.12

Running this program under FreeBSD gives us the following output:

$ ./a.out

RLIMIT AS (infinite) (infinite)
RLIMIT CORE (infinite) (infinite)
RLIMIT CPU (infinite) (infinite)
RLIMIT DATA 536870912 536870912
RLIMIT FSIZE (infinite) (infinite)
RLIMIT MEMLOCK (infinite) (infinite)
RLIMIT NOFILE 3520 3520
RLIMIT NPROC 1760 1760
RLIMIT NPTS (infinite) (infinite)
RLIMIT RSS (infinite) (infinite)
RLIMIT SBSIZE (infinite) (infinite)
RLIMIT STACK 67108864 67108864
RLIMIT_ SWAP (infinite) (infinite)
RLIMIT VMEM (infinite) (infinite)

Solaris gives us the following results:

$ ./a.out

RLIMIT AS (infinite) (infinite)
RLIMIT CORE (infinite) (infinite)
RLIMIT CPU (infinite) (infinite)
RLIMIT DATA (infinite) (infinite)
RLIMIT FSIZE (infinite) (infinite)
RLIMIT NOFILE 256 65536
RLIMIT STACK 8388608 (infinite)
RLIMIT VMEM (infinite) (infinite)

Exercise 10.11 continues the discussion of resource limits, after we’ve covered signals.

Summary

Understanding the environment of a C program within a UNIX system’s environment is
a prerequisite to understanding the process control features of the UNIX System. In this
chapter, we’ve looked at how a process is started, how it can terminate, and how it’s
passed an argument list and an environment. Although both the argument list and the
environment are uninterpreted by the kernel, it is the kernel that passes both from the
caller of exec to the new process.

We've also examined the typical memory layout of a C program and seen how a
process can dynamically allocate and free memory. It is worthwhile to look in detail at
the functions available for manipulating the environment, since they involve memory
allocation. The functions setjmp and longjmp were presented, providing a way to
perform nonlocal branching within a process. We finished the chapter by describing the
resource limits that various implementations provide.
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Exercises

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

On an Intel x86 system under Linux, if we execute the program that prints “hello, world”
and do not call exit or return, the termination status of the program—which we can
examine with the shell—is 13. Why?

When is the output from the printf£s in Figure 7.3 actually output?

Is there any way for a function that is called by main to examine the command-line
arguments without (a) passing argc and argv as arguments from main to the function or
(b) having main copy argc and argv into global variables?

Some UNIX system implementations purposely arrange that, when a program is executed,
location 0 in the data segment is not accessible. Why?

Use the typedef facility of C to define a new data type Exitfunc for an exit handler.
Redo the prototype for atexit using this data type.

If we allocate an array of longs using calloc, is the array initialized to 0? If we allocate an
array of pointers using calloc, is the array initialized to null pointers?

In the output from the size command at the end of Section 7.6, why aren’t any sizes given
for the heap and the stack?

In Section 7.7, the two file sizes (879443 and 8378) don’t equal the sums of their respective
text and data sizes. Why?

In Section 7.7, why does the size of the executable file differ so dramatically when we use
shared libraries for such a trivial program?

At the end of Section 7.10, we showed how a function can’t return a pointer to an automatic
variable. Is the following code correct?

int
fl(int val)
{
int num = 0;
int *ptr = &num;
if (val == 0) {
int val;
val = 5;
ptr = &val;
}
return(*ptr + 1);
}

www.it-ebooks.info


http://www.it-ebooks.info/

8.1

8.2

Process Control

Introduction

We now turn to the process control provided by the UNIX System. This includes the
creation of new processes, program execution, and process termination. We also look at
the various IDs that are the property of the process—real, effective, and saved; user and
group IDs—and how they’re affected by the process control primitives. Interpreter files
and the system function are also covered. We conclude the chapter by looking at the
process accounting provided by most UNIX systems. This lets us look at the process
control functions from a different perspective.

Process Identifiers

Every process has a unique process ID, a non-negative integer. Because the process ID
is the only well-known identifier of a process that is always unique, it is often used as a
piece of other identifiers, to guarantee uniqueness. For example, applications
sometimes include the process ID as part of a filename in an attempt to generate unique
filenames.

Although unique, process IDs are reused. As processes terminate, their IDs become
candidates for reuse. Most UNIX systems implement algorithms to delay reuse,
however, so that newly created processes are assigned IDs different from those used by
processes that terminated recently. This prevents a new process from being mistaken
for the previous process to have used the same ID.

There are some special processes, but the details differ from implementation to
implementation. Process ID 0 is usually the scheduler process and is often known as
the swapper. No program on disk corresponds to this process, which is part of the
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kernel and is known as a system process. Process ID 1 is usually the init process and
is invoked by the kernel at the end of the bootstrap procedure. The program file for this
process was /etc/init in older versions of the UNIX System and is /sbin/init in
newer versions. This process is responsible for bringing up a UNIX system after the
kernel has been bootstrapped. init usually reads the system-dependent initialization
files—the /etc/rc* files or /etc/inittab and the files in /etc/init.d—and
brings the system to a certain state, such as multiuser. The init process never dies. It
is a normal user process, not a system process within the kernel, like the swapper,
although it does run with superuser privileges. Later in this chapter, we’ll see how
init becomes the parent process of any orphaned child process.

In Mac OS X 10.4, the init process was replaced with the 1aunchd process, which performs
the same set of tasks as init, but has expanded functionality. See Section 5.10 in Singh [2006]
for a discussion of how launchd operates.

Each UNIX System implementation has its own set of kernel processes that provide
operating system services. For example, on some virtual memory implementations of
the UNIX System, process ID 2 is the pagedaemon. This process is responsible for
supporting the paging of the virtual memory system.

In addition to the process ID, there are other identifiers for every process. The
following functions return these identifiers.

#include <unistd.h>
pid_t getpid(void);
Returns: process ID of calling process
pid_t getppid(void);
Returns: parent process ID of calling process
uid_t getuid(void);
Returns: real user ID of calling process
uid_t geteuid(void);
Returns: effective user ID of calling process
gid t getgid(void);
Returns: real group ID of calling process

gid t getegid(void);

Returns: effective group ID of calling process

Note that none of these functions has an error return. We'll return to the parent process
ID in the next section when we discuss the fork function. The real and effective user
and group IDs were discussed in Section 4.4.
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8.3

fork Function

An existing process can create a new one by calling the fork function.

#include <unistd.h>
pid_t fork(void);

Returns: 0 in child, process ID of child in parent, -1 on error

The new process created by fork is called the child process. This function is called once
but returns twice. The only difference in the returns is that the return value in the child
is 0, whereas the return value in the parent is the process ID of the new child. The
reason the child’s process ID is returned to the parent is that a process can have more
than one child, and there is no function that allows a process to obtain the process IDs of
its children. The reason fork returns O to the child is that a process can have only a
single parent, and the child can always call getppid to obtain the process ID of its
parent. (Process ID 0 is reserved for use by the kernel, so it’s not possible for 0 to be the
process ID of a child.)

Both the child and the parent continue executing with the instruction that follows
the call to fork. The child is a copy of the parent. For example, the child gets a copy of
the parent’s data space, heap, and stack. Note that this is a copy for the child; the parent
and the child do not share these portions of memory. The parent and the child do share
the text segment, however (Section 7.6).

Modern implementations don’t perform a complete copy of the parent’s data, stack,
and heap, since a fork is often followed by an exec. Instead, a technique called
copy-on-write (COW) is used. These regions are shared by the parent and the child and
have their protection changed by the kernel to read-only. If either process tries to
modify these regions, the kernel then makes a copy of that piece of memory only,
typically a “page” in a virtual memory system. Section 9.2 of Bach [1986] and Sections
5.6 and 5.7 of McKusick et al. [1996] provide more detail on this feature.

Variations of the fork function are provided by some platforms. All four platforms discussed
in this book support the vfork(2) variant discussed in the next section.

Linux 3.2.0 also provides new process creation through the clone(2) system call. This is a
generalized form of fork that allows the caller to control what is shared between parent and
child.

FreeBSD 8.0 provides the rfork(2) system call, which is similar to the Linux clone system
call. The rfork call is derived from the Plan 9 operating system (Pike et al. [1995]).

Solaris 10 provides two threads libraries: one for POSIX threads (pthreads) and one for Solaris
threads. In previous releases, the behavior of fork differed between the two thread libraries.
For POSIX threads, fork created a process containing only the calling thread, but for Solaris
threads, fork created a process containing copies of all threads from the process of the calling
thread. In Solaris 10, this behavior has changed; fork creates a child containing a copy of the
calling thread only, regardless of which thread library is used. Solaris also provides the fork1l
function, which can be used to create a process that duplicates only the calling thread, and the
forkall function, which can be used to create a process that duplicates all the threads in the
process. Threads are discussed in detail in Chapters 11 and 12.
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Example

The program in Figure 8.1 demonstrates the fork function, showing how changes to
variables in a child process do not affect the value of the variables in the parent process.

#include "apue.h"

int globvar = 6; /* external variable in initialized data */
char buf[] = "a write to stdout\n";
int
main(void)
{
int var; /* automatic variable on the stack */

pid_t pid;

var = 88;

if (write(STDOUT_ FILENO, buf, sizeof(buf)-1) != sizeof(buf)-1)
err sys("write error");
printf("before fork\n"); /* we don’t flush stdout */

if ((pid = fork()) < 0) {
err sys("fork error");

} else if (pid == 0) { /* child */
globvar++; /* modify variables */
var++;
} else {
sleep(2); /* parent */
}
printf("pid = %1d, glob = %d, var = %d\n", (long)getpid(), globvar,
var);
exit(0);

Figure 8.1 Example of fork function

If we execute this program, we get

$ ./a.out

a write to stdout

before fork

pid = 430, glob = 7, var
pid = 429, glob = 6, var
$ ./a.out > temp.out

$ cat temp.out

a write to stdout

before fork

pid = 432, glob
before fork

pid = 431, glob = 6, var = 88

In general, we never know whether the child starts executing before the parent, or vice
versa. The order depends on the scheduling algorithm used by the kernel. If it’s
required that the child and parent synchronize their actions, some form of interprocess

89 child’s variables were changed
88 parent’s copy was not changed

7, var = 89
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communication is required. In the program shown in Figure 8.1, we simply have the
parent put itself to sleep for 2 seconds, to let the child execute. There is no guarantee
that the length of this delay is adequate, and we talk about this and other types of
synchronization in Section 8.9 when we discuss race conditions. In Section 10.16, we
show how to use signals to synchronize a parent and a child after a fork.

When we write to standard output, we subtract 1 from the size of buf to avoid
writing the terminating null byte. Although strlen will calculate the length of a string
not including the terminating null byte, sizeof calculates the size of the buffer, which
does include the terminating null byte. Another difference is that using strlen
requires a function call, whereas sizeof calculates the buffer length at compile time, as
the buffer is initialized with a known string and its size is fixed.

Note the interaction of fork with the I/O functions in the program in Figure 8.1.
Recall from Chapter 3 that the write function is not buffered. Because write is called
before the fork, its data is written once to standard output. The standard I1/0O library,
however, is buffered. Recall from Section 5.12 that standard output is line buffered if it’s
connected to a terminal device; otherwise, it’s fully buffered. When we run the
program interactively, we get only a single copy of the first printf line, because the
standard output buffer is flushed by the newline. When we redirect standard output to
a file, however, we get two copies of the printf line. In this second case, the printf
before the fork is called once, but the line remains in the buffer when fork is called.
This buffer is then copied into the child when the parent’s data space is copied to the
child. Both the parent and the child now have a standard I/O buffer with this line in it.
The second printf, right before the exit, just appends its data to the existing buffer.
When each process terminates, its copy of the buffer is finally flushed. O

File Sharing

When we redirect the standard output of the parent from the program in Figure 8.1, the
child’s standard output is also redirected. Indeed, one characteristic of fork is that all
file descriptors that are open in the parent are duplicated in the child. We say
“duplicated” because it’s as if the dup function had been called for each descriptor. The
parent and the child share a file table entry for every open descriptor (recall Figure 3.9).

Consider a process that has three different files opened for standard input, standard
output, and standard error. On return from fork, we have the arrangement shown in
Figure 8.2.

It is important that the parent and the child share the same file offset. Consider a
process that forks a child, then waits for the child to complete. Assume that both
processes write to standard output as part of their normal processing. If the parent has
its standard output redirected (by a shell, perhaps), it is essential that the parent’s file
offset be updated by the child when the child writes to standard output. In this case,
the child can write to standard output while the parent is waiting for it; on completion
of the child, the parent can continue writing to standard output, knowing that its output
will be appended to whatever the child wrote. If the parent and the child did not share
the same file offset, this type of interaction would be more difficult to accomplish and
would require explicit actions by the parent.
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parent process table entry file table v-node table
file status flags v-node information
current file offset C ™ 7§ data |
i file v-node pointer —| i
flags  pointer
fd 0: [ — i-node information
a1 =41 4L
fd 2: JH current file size
i_vnode —
file status flags

current file offset

v-node pointer e

v-node information
child process tableentry ~ / /\ o= = ===

file status flags

fd file current file offset | 00— - - - - - - -

flags  pointer 1 LT
£d.0: — v-node pointer —| i vnode ]
fd 1: —
fd 2: —

v-node information

Figure 8.2 Sharing of open files between parent and child after fork

If both parent and child write to the same descriptor, without any form of
synchronization, such as having the parent wait for the child, their output will be
intermixed (assuming it’s a descriptor that was open before the fork). Although this is
possible—we saw it in Figure 8.2—it’s not the normal mode of operation.

There are two normal cases for handling the descriptors after a fork.

1. The parent waits for the child to complete. In this case, the parent does not need
to do anything with its descriptors. When the child terminates, any of the
shared descriptors that the child read from or wrote to will have their file offsets
updated accordingly.

2. Both the parent and the child go their own ways. Here, after the fork, the
parent closes the descriptors that it doesn’t need, and the child does the same
thing. This way, neither interferes with the other’s open descriptors. This
scenario is often found with network servers.
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Besides the open files, numerous other properties of the parent are inherited by the

child:

Real user ID, real group ID, effective user ID, and effective group ID
Supplementary group IDs

Process group ID

Session ID

Controlling terminal

The set-user-ID and set-group-ID flags

Current working directory

Root directory

File mode creation mask

Signal mask and dispositions

The close-on-exec flag for any open file descriptors
Environment

Attached shared memory segments

Memory mappings

Resource limits

The differences between the parent and child are

The return values from fork are different.
The process IDs are different.

The two processes have different parent process IDs: the parent process ID of the
child is the parent; the parent process ID of the parent doesn’t change.

The child’s tms_utime, tms_ stime, tms cutime, and tms_ cstime values
are set to 0 (these times are discussed in Section 8.17).

File locks set by the parent are not inherited by the child.

Pending alarms are cleared for the child.

The set of pending signals for the child is set to the empty set.

Many of these features haven’t been discussed yet—we’ll cover them in later chapters.
The two main reasons for fork to fail are (a) if too many processes are already in

the system, which usually means that something else is wrong, or (b) if the total number

of processes for this real user ID exceeds the system’s limit. Recall from Figure 2.11 that

CHILD_ MAX specifies the maximum number of simultaneous processes per real user ID.
There are two uses for fork:

1.

When a process wants to duplicate itself so that the parent and the child can
each execute different sections of code at the same time. This is common for
network servers—the parent waits for a service request from a client. When the
request arrives, the parent calls fork and lets the child handle the request. The
parent goes back to waiting for the next service request to arrive.

When a process wants to execute a different program. This is common for
shells. In this case, the child does an exec (which we describe in Section 8.10)
right after it returns from the fork.
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Some operating systems combine the operations from step 2—a fork followed by an
exec—into a single operation called a spawn. The UNIX System separates the two, as
there are numerous cases where it is useful to fork without doing an exec. Also,
separating the two operations allows the child to change the per-process attributes
between the fork and the exec, such as I/O redirection, user ID, signal disposition,
and so on. We'll see numerous examples of this in Chapter 15.

The Single UNIX Specification does include spawn interfaces in the advanced real-time option
group. These interfaces are not intended to be replacements for fork and exec, however.
They are intended to support systems that have difficulty implementing fork efficiently,
especially systems without hardware support for memory management.

vfork Function

The function vfork has the same calling sequence and same return values as fork, but
the semantics of the two functions differ.

The vfork function originated with 2.9BSD. Some consider the function a blemish, but all the
platforms covered in this book support it. In fact, the BSD developers removed it from the
4.4BSD release, but all the open source BSD distributions that derive from 4.4BSD added
support for it back into their own releases. The vfork function was marked as an obsolescent
interface in Version 3 of the Single UNIX Specification and was removed entirely in Version 4.
We include it here for historical reasons only. Portable applications should not use it.

The vfork function was intended to create a new process for the purpose of
executing a new program (step 2 at the end of the previous section), similar to the
method used by the bare-bones shell from Figure 1.7. The vfork function creates the
new process, just like fork, without copying the address space of the parent into the
child, as the child won't reference that address space; the child simply calls exec (or
exit) right after the vfork. Instead, the child runs in the address space of the parent
until it calls either exec or exit. This optimization is more efficient on some
implementations of the UNIX System, but leads to undefined results if the child
modifies any data (except the variable used to hold the return value from vfork),
makes function calls, or returns without calling exec or exit. (As we mentioned in the
previous section, implementations use copy-on-write to improve the efficiency of a
fork followed by an exec, but no copying is still faster than some copying.)

Another difference between the two functions is that vfork guarantees that the
child runs first, until the child calls exec or exit. When the child calls either of these
functions, the parent resumes. (This can lead to deadlock if the child depends on
further actions of the parent before calling either of these two functions.)

Example

The program in Figure 8.3 is a modified version of the program from Figure 8.1. We've
replaced the call to fork with vfork and removed the write to standard output.
Also, we don’t need to have the parent call sleep, as we're guaranteed that it is put to
sleep by the kernel until the child calls either exec or exit.
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#include "apue.h"

int globvar = 6; /* external variable in initialized data */
int
main(void)
{
int var; /* automatic variable on the stack */

pid_t pid;

var = 88;
printf("before vfork\n"); /* we don’t flush stdio */
if ((pid = vfork()) < 0) {

err_sys("vfork error");

} else if (pid == 0) { /* child */
globvar++; /* modify parent’s variables */
var++;
_exit(0); /* child terminates */

}

/* parent continues here */

printf("pid = %1d, glob = %d, var = %d\n", (long)getpid(), globvar,
var);

exit(0);

Figure 8.3 Example of vfork function

Running this program gives us

$ ./a.out
before vfork
pid = 29039, glob = 7, var = 89

Here, the incrementing of the variables done by the child changes the values in the
parent. Because the child runs in the address space of the parent, this doesn’t surprise
us. This behavior, however, differs from the behavior of fork.

Note in Figure 8.3 that we call _exit instead of exit. As we described in
Section 7.3, _exit does not perform any flushing of standard I/O buffers. If we call
exit instead, the results are indeterminate. Depending on the implementation of the
standard I/0O library, we might see no difference in the output, or we might find that the
output from the first printf in the parent has disappeared.

If the child calls exit, the implementation flushes the standard I/O streams. If this
is the only action taken by the library, then we will see no difference from the output
generated if the child called _exit. If the implementation also closes the standard I/O
streams, however, the memory representing the FILE object for the standard output
will be cleared out. Because the child is borrowing the parent’s address space, when the
parent resumes and calls printf, no output will appear and printf will return -1.
Note that the parent’s STDOUT FILENO is still valid, as the child gets a copy of the
parent’s file descriptor array (refer back to Figure 8.2).
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Most modern implementations of exit do not bother to close the streams. Because the
process is about to exit, the kernel will close all the file descriptors open in the process.

Closing them in the library simply adds overhead without any benefit. -

Section 5.6 of McKusick et al. [1996] contains additional information on the
implementation issues of fork and vfork. Exercises 8.1 and 8.2 continue the
discussion of vfork.

exit Functions

As we described in Section 7.3, a process can terminate normally in five ways:

1.

Executing a return from the main function. As we saw in Section 7.3, this is
equivalent to calling exit.

Calling the exit function. This function is defined by ISO C and includes the
calling of all exit handlers that have been registered by calling atexit and
closing all standard I/O streams. Because ISO C does not deal with file
descriptors, multiple processes (parents and children), and job control, the
definition of this function is incomplete for a UNIX system.

Calling the _exit or _Exit function. ISO C defines _Exit to provide a way
for a process to terminate without running exit handlers or signal handlers.
Whether standard I/O streams are flushed depends on the implementation. On
UNIX systems, Exit and _exit are synonymous and do not flush standard
I/0 streams. The _exit function is called by exit and handles the UNIX
system-specific details; _exit is specified by POSIX.1.

In most UNIX system implementations, exit(3) is a function in the standard C
library, whereas _exit(2) is a system call.

Executing a return from the start routine of the last thread in the process. The
return value of the thread is not used as the return value of the process,
however. When the last thread returns from its start routine, the process exits
with a termination status of 0.

Calling the pthread_exit function from the last thread in the process. As
with the previous case, the exit status of the process in this situation is always 0,
regardless of the argument passed to pthread exit. We'll say more about
pthread exit in Section 11.5.

The three forms of abnormal termination are as follows:

1.

Calling abort. This is a special case of the next item, as it generates the
SIGABRT signal.

When the process receives certain signals. (We describe signals in more detail in
Chapter 10.) The signal can be generated by the process itself (e.g., by calling
the abort function), by some other process, or by the kernel. Examples of
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signals generated by the kernel include the process referencing a memory
location not within its address space or trying to divide by 0.

3. The last thread responds to a cancellation request. By default, cancellation
occurs in a deferred manner: one thread requests that another be canceled, and
sometime later the target thread terminates. We discuss cancellation requests in
detail in Sections 11.5 and 12.7.

Regardless of how a process terminates, the same code in the kernel is eventually
executed. This kernel code closes all the open descriptors for the process, releases the
memory that it was using, and so on.

For any of the preceding cases, we want the terminating process to be able to notify
its parent how it terminated. For the three exit functions (exit, _exit, and _Exit),
this is done by passing an exit status as the argument to the function. In the case of an
abnormal termination, however, the kernel—not the process—generates a termination
status to indicate the reason for the abnormal termination. In any case, the parent of the
process can obtain the termination status from either the wait or the waitpid function
(described in the next section).

Note that we differentiate between the exit status, which is the argument to one of
the three exit functions or the return value from main, and the termination status. The
exit status is converted into a termination status by the kernel when _exit is finally
called (recall Figure 7.2). Figure 8.4 describes the various ways the parent can examine
the termination status of a child. If the child terminated normally, the parent can obtain
the exit status of the child.

When we described the fork function, it was obvious that the child has a parent
process after the call to fork. Now we’re talking about returning a termination status
to the parent. But what happens if the parent terminates before the child? The answer
is that the init process becomes the parent process of any process whose parent
terminates. In such a case, we say that the process has been inherited by init. What
normally happens is that whenever a process terminates, the kernel goes through all
active processes to see whether the terminating process is the parent of any process that
still exists. If so, the parent process ID of the surviving process is changed to be 1 (the
process ID of init). This way, we're guaranteed that every process has a parent.

Another condition we have to worry about is when a child terminates before its
parent. If the child completely disappeared, the parent wouldn’t be able to fetch its
termination status when and if the parent was finally ready to check if the child had
terminated. The kernel keeps a small amount of information for every terminating
process, so that the information is available when the parent of the terminating process
calls wait or waitpid. Minimally, this information consists of the process ID, the
termination status of the process, and the amount of CPU time taken by the process.
The kernel can discard all the memory used by the process and close its open files. In
UNIX System terminology, a process that has terminated, but whose parent has not yet
waited for it, is called a zombie. The ps(1) command prints the state of a zombie process
as Z. If we write a long-running program that forks many child processes, they
become zombies unless we wait for them and fetch their termination status.

Some systems provide ways to prevent the creation of zombies, as we describe in Section 10.7.
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The final condition to consider is this: What happens when a process that has been
inherited by init terminates? Does it become a zombie? The answer is “no,” because
init is written so that whenever one of its children terminates, init calls one of the
wait functions to fetch the termination status. By doing this, init prevents the system
from being clogged by zombies. When we say “one of init’s children,” we mean
either a process that init generates directly (such as getty, which we describe in
Section 9.2) or a process whose parent has terminated and has been subsequently
inherited by init.

wait and waitpid Functions

When a process terminates, either normally or abnormally, the kernel notifies the parent
by sending the SIGCHLD signal to the parent. Because the termination of a child is an
asynchronous event—it can happen at any time while the parent is running—this
signal is the asynchronous notification from the kernel to the parent. The parent can
choose to ignore this signal, or it can provide a function that is called when the signal
occurs: a signal handler. The default action for this signal is to be ignored. We describe
these options in Chapter 10. For now, we need to be aware that a process that calls
wait orwaitpid can

¢ Block, if all of its children are still running

* Return immediately with the termination status of a child, if a child has
terminated and is waiting for its termination status to be fetched

* Return immediately with an error, if it doesn’t have any child processes

If the process is calling wait because it received the SIGCHLD signal, we expect wait to
return immediately. But if we call it at any random point in time, it can block.

#include <sys/wait.h>
pid_t wait(int *statloc);

pid_t waitpid(pid_t pid, int *statloc, int options);

Both return: process ID if OK, 0 (see later), or -1 on error

The differences between these two functions are as follows:

* The wait function can block the caller until a child process terminates, whereas
waitpid has an option that prevents it from blocking.

¢ The waitpid function doesn’t wait for the child that terminates first; it has a
number of options that control which process it waits for.

If a child has already terminated and is a zombie, wait returns immediately with that
child’s status. Otherwise, it blocks the caller until a child terminates. If the caller blocks
and has multiple children, wait returns when one terminates. We can always tell
which child terminated, because the process ID is returned by the function.
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For both functions, the argument statloc is a pointer to an integer. If this argument is
not a null pointer, the termination status of the terminated process is stored in the
location pointed to by the argument. If we don’t care about the termination status, we
simply pass a null pointer as this argument.

Traditionally, the integer status that these two functions return has been defined by
the implementation, with certain bits indicating the exit status (for a normal return),
other bits indicating the signal number (for an abnormal return), one bit indicating
whether a core file was generated, and so on. POSIX.1 specifies that the termination
status is to be looked at using various macros that are defined in <sys/wait.h>. Four
mutually exclusive macros tell us how the process terminated, and they all begin with
WIF. Based on which of these four macros is true, other macros are used to obtain the
exit status, signal number, and the like. The four mutually exclusive macros are shown

in Figure 8.4.
Macro Description
WIFEXITED (status) True if status was returned for a child that terminated normally. In this

case, we can execute
WEXITSTATUS (status)

to fetch the low-order 8 bits of the argument that the child passed to
exit, exit,or_ Exit.

WIFSIGNALED (status) True if status was returned for a child that terminated abnormally, by
receipt of a signal that it didn’t catch. In this case, we can execute

WTERMSIG (status)
to fetch the signal number that caused the termination.

Additionally, some implementations (but not the Single UNIX
Specification) define the macro

WCOREDUMP ( status)
that returns true if a core file of the terminated process was generated.

WIFSTOPPED (status) True if status was returned for a child that is currently stopped. In this
case, we can execute

WSTOPSIG (status)

to fetch the signal number that caused the child to stop.

WIFCONTINUED (status) | True if status was returned for a child that has been continued after a
job control stop (XSI option; waitpid only).

Figure 8.4 Macros to examine the termination status returned by wait and waitpid

We'll discuss how a process can be stopped in Section 9.8 when we discuss job control.

Example
The function pr_exit in Figure 8.5 uses the macros from Figure 8.4 to print a

description of the termination status. We'll call this function from numerous programs
in the text. Note that this function handles the WCOREDUMP macro, if it is defined.
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#include "apue.h"
#include <sys/wait.h>

void
pr_exit(int status)
{
if (WIFEXITED(status))
printf("normal termination, exit status = %d\n",
WEXITSTATUS (status));
else if (WIFSIGNALED(status))
printf("abnormal termination, signal number = %d%s\n",
WTERMSIG(status),
#ifdef WCOREDUMP
WCOREDUMP (status) ? " (core file generated)" : "");
#else
"My
#endif
else if (WIFSTOPPED(status))
printf("child stopped, signal number = %d\n",
WSTOPSIG(status));

Figure 8.5 Print a description of the exit status

FreeBSD 8.0, Linux 3.2.0, Mac OS X 10.6.8, and Solaris 10 all support the WCOREDUMP macro.
However, some platforms hide its definition if the _POSIX_C_SOURCE constant is defined
(recall Section 2.7).

The program shown in Figure 8.6 calls the pr_exit function, demonstrating the
various values for the termination status. If we run the program in Figure 8.6, we get

$ ./a.out

normal termination, exit status = 7

abnormal termination, signal number = 6 (core file generated)
abnormal termination, signal number = 8 (core file generated)

For now, we print the signal number from WTERMSIG. We can look at the <signal.h>
header to verify that SIGABRT has a value of 6 and that SIGFPE has a value of 8. We'll
see a portable way to map a signal number to a descriptive name in Section 10.22. ]

As we mentioned, if we have more than one child, wait returns on termination of
any of the children. But what if we want to wait for a specific process to terminate
(assuming we know which process ID we want to wait for)? In older versions of the
UNIX System, we would have to call wait and compare the returned process ID with
the one we're interested in. If the terminated process wasn’t the one we wanted, we
would have to save the process ID and termination status and call wait again. We
would need to continue doing this until the desired process terminated. The next time
we wanted to wait for a specific process, we would go through the list of already
terminated processes to see whether we had already waited for it, and if not, call wait
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#include "apue.h"
#include <sys/wait.h>

int
main(void)
{
pid_t pid;
int status;
if ((pid = fork()) < 0)
err_sys("fork error");
else if (pid == 0) /* child */
exit(7);
if (wait(&status) != pid) /* wait for child */
err sys("wait error");
pr_exit(status); /* and print its status */
if ((pid = fork()) < 0)
err sys("fork error");
else if (pid == 0) /* child */
abort(); /* generates SIGABRT */
if (wait(&status) != pid) /* wait for child */
err sys("wait error");
pr_exit(status); /* and print its status */
if ((pid = fork()) < 0)
err sys("fork error");
else if (pid == 0) /* child */
status /= 0; /* divide by 0 generates SIGFPE */
if (wait(&status) != pid) /* wait for child */
err_sys("wait error");
pr_exit(status); /* and print its status */
exit(0);
}

Figure 8.6 Demonstrate various exit statuses

again. What we need is a function that waits for a specific process. This functionality
(and more) is provided by the POSIX.1 waitpid function.
The interpretation of the pid argument for waitpid depends on its value:

pid == - Waits for any child process. In this respect, waitpid is equivalent
towait.

pid > 0 Waits for the child whose process ID equals pid.

pid == Waits for any child whose process group ID equals that of the

calling process. (We discuss process groups in Section 9.4.)

pid < -1 Waits for any child whose process group ID equals the absolute
value of pid.

www.it-ebooks.info


http://www.it-ebooks.info/

242 Process Control Chapter 8
The waitpid function returns the process ID of the child that terminated and stores the
child’s termination status in the memory location pointed to by statloc. With wait, the
only real error is if the calling process has no children. (Another error return is possible,
in case the function call is interrupted by a signal. We'll discuss this in Chapter 10.)
With waitpid, however, it’s also possible to get an error if the specified process or
process group does not exist or is not a child of the calling process.

The options argument lets us further control the operation of waitpid. This

argument either is 0 or is constructed from the bitwise OR of the constants in Figure 8.7.
FreeBSD 8.0 and Solaris 10 support one additional, but nonstandard, option constant. WNOWAIT
has the system keep the process whose termination status is returned by waitpid in a wait
state, so that it may be waited for again.

Constant Description

WCONTINUED | If the implementation supports job control, the status of any child
specified by pid that has been continued after being stopped, but
whose status has not yet been reported, is returned (XSI option).

WNOHANG The waitpid function will not block if a child specified by pid is not
immediately available. In this case, the return value is 0.

WUNTRACED If the implementation supports job control, the status of any child
specified by pid that has stopped, and whose status has not been
reported since it has stopped, is returned. The WIFSTOPPED macro
determines whether the return value corresponds to a stopped child
process.

Figure 8.7 The options constants for waitpid

The waitpid function provides three features that aren’t provided by the wait

function.

1. The waitpid function lets us wait for one particular process, whereas the wait
function returns the status of any terminated child. We’ll return to this feature
when we discuss the popen function.

2. The waitpid function provides a nonblocking version of wait. There are
times when we want to fetch a child’s status, but we don’t want to block.

3. The waitpid function provides support for job control with the WUNTRACED
and WCONTINUED options.

Example

Recall our discussion in Section 8.5 about zombie processes. If we want to write a
process so that it forks a child but we don’t want to wait for the child to complete and
we don’t want the child to become a zombie until we terminate, the trick is to call fork
twice. The program in Figure 8.8 does this.
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#include "apue.h"
#include <sys/wait.h>

int
main(void)
{
pid_t pid;

if ((pid = fork()) < 0) {
err sys("fork error");
} else if (pid == 0) { /* first child */
if ((pid = fork()) < 0)
err_sys("fork error");
else if (pid > 0)
exit(0); /* parent from second fork == first child */

/*

* We're the second child; our parent becomes init as soon
* as our real parent calls exit() in the statement above.
* Here'’'s where we’'d continue executing, knowing that when
* we’'re done, init will reap our status.

*/
sleep(2);
printf("second child, parent pid = %1d\n", (long)getppid());
exit(0);
}
if (waitpid(pid, NULL, 0) != pid) /* wait for first child */
err sys("waitpid error");
/*

* We’'re the parent (the original process); we continue executing,
* knowing that we’re not the parent of the second child.
*/

exit(0);

Figure 8.8 Avoid zombie processes by calling fork twice

We call sleep in the second child to ensure that the first child terminates before
printing the parent process ID. After a fork, either the parent or the child can continue
executing; we never know which will resume execution first. If we didn’t put the
second child to sleep, and if it resumed execution after the fork before its parent, the
parent process ID that it printed would be that of its parent, not process ID 1.

Executing the program in Figure 8.8 gives us

$ ./a.out
$ second child, parent pid =1

Note that the shell prints its prompt when the original process terminates, which is
before the second child prints its parent process ID. o
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8.7

waitid Function

The Single UNIX Specification includes an additional function to retrieve the exit status
of a process. The waitid function is similar to waitpid, but provides extra flexibility.

#include <sys/wait.h>
int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

Returns: 0 if OK, -1 on error

Like waitpid, waitid allows a process to specify which children to wait for.
Instead of encoding this information in a single argument combined with the process ID
or process group ID, two separate arguments are used. The id parameter is interpreted
based on the value of idtype. The types supported are summarized in Figure 8.9.

Constant Description

P_PID Wait for a particular process: id contains the process ID of the child to wait for.

P_PGID | Wait for any child process in a particular process group: id contains the process
group ID of the children to wait for.

P_ALL Wait for any child process: id is ignored.

Figure 8.9 The idtype constants for waitid

The options argument is a bitwise OR of the flags shown in Figure 8.10. These flags
indicate which state changes the caller is interested in.

Constant Description

WCONTINUED | Wait for a process that has previously stopped and has been continued, and
whose status has not yet been reported.

WEXITED Wait for processes that have exited.
WNOHANG Return immediately instead of blocking if there is no child exit status available.
WNOWAIT Don’t destroy the child exit status. The child’s exit status can be retrieved by a

subsequent call to wait, waitid, or waitpid.

WSTOPPED Wait for a process that has stopped and whose status has not yet been reported.

Figure 8.10 The options constants for waitid

At least one of WCONTINUED, WEXITED, or WSTOPPED must be specified in the options
argument.

The infop argument is a pointer to a siginfo structure. This structure contains
detailed information about the signal generated that caused the state change in the child
process. The siginfo structure is discussed further in Section 10.14.

Of the four platforms covered in this book, only Linux 3.2.0, Mac OS X 10.6.8, and Solaris 10

provide support for waitid. Note, however, that Mac OS X 10.6.8 doesn’t set all the
information we expect in the siginfo structure.
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8.8

8.9

wait3 and wait4 Functions

Most UNIX system implementations provide two additional functions: wait3 and
waitd4. Historically, these two variants descend from the BSD branch of the UNIX
System. The only feature provided by these two functions that isn’t provided by the
wait, waitid, and waitpid functions is an additional argument that allows the kernel
to return a summary of the resources used by the terminated process and all its child
processes.

#include <sys/types.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/resource.h>

pid_t wait3(int *statloc, int options, struct rusage *rusage);

pid_t wait4(pid_t pid, int *statloc, int options, struct rusage *rusage);

Both return: process ID if OK, 0, or -1 on error

The resource information includes such statistics as the amount of user CPU time,
amount of system CPU time, number of page faults, number of signals received, and the
like. Refer to the getrusage(2) manual page for additional details. (This resource
information differs from the resource limits we described in Section 7.11.) Figure 8.11
details the various arguments supported by the wait functions.

. . . FreeBSD  Linux MacOSX Solaris
Function pid options | rusage || POSIX.1 8.0 320 10.6.8 10
wait . . . ° °
waitid ] ] ] o . .
wai tp id . . . . . ° o
wait3 . ) . . . .
waitd . . ° . ° . .

Figure 8.11 Arguments supported by wait functions on various systems

The wait3 function was included in earlier versions of the Single UNIX Specification. In
Version 2, wait3 was moved to the legacy category; wait3 was removed from the
specification in Version 3.

Race Conditions

For our purposes, a race condition occurs when multiple processes are trying to do
something with shared data and the final outcome depends on the order in which the
processes run. The fork function is a lively breeding ground for race conditions, if any
of the logic after the fork either explicitly or implicitly depends on whether the parent
or child runs first after the fork. In general, we cannot predict which process runs first.
Even if we knew which process would run first, what happens after that process starts
running depends on the system load and the kernel’s scheduling algorithm.
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We saw a potential race condition in the program in Figure 8.8 when the second
child printed its parent process ID. If the second child runs before the first child, then
its parent process will be the first child. But if the first child runs first and has enough
time to exit, then the parent process of the second child is init. Even calling sleep,
as we did, guarantees nothing. If the system was heavily loaded, the second child could
resume after sleep returns, before the first child has a chance to run. Problems of this
form can be difficult to debug because they tend to work “most of the time.”

A process that wants to wait for a child to terminate must call one of the wait
functions. If a process wants to wait for its parent to terminate, as in the program from
Figure 8.8, a loop of the following form could be used:

while (getppid() != 1)
sleep(l);

The problem with this type of loop, called polling, is that it wastes CPU time, as the
caller is awakened every second to test the condition.

To avoid race conditions and to avoid polling, some form of signaling is required
between multiple processes. Signals can be used for this purpose, and we describe one
way to do this in Section 10.16. Various forms of interprocess communication (IPC) can
also be used. We'll discuss some of these options in Chapters 15 and 17.

For a parent and child relationship, we often have the following scenario. After the
fork, both the parent and the child have something to do. For example, the parent
could update a record in a log file with the child’s process ID, and the child might have
to create a file for the parent. In this example, we require that each process tell the other
when it has finished its initial set of operations, and that each wait for the other to
complete, before heading off on its own. The following code illustrates this scenario:

#include "apue.h"
TELL _WAIT(); /* set things up for TELL xxx & WAIT xxx */

if ((pid = fork()) < 0) {
err sys("fork error");

} else if (pid == 0) { /* child */
/* child does whatever is necessary ... */
TELL_PARENT(getppid()); /* tell parent we’'re done */
WAIT PARENT(); /* and wait for parent */
/* and the child continues on its way ... */
exit(0);

}

/* parent does whatever is necessary ... */

TELL_CHILD(pid); /* tell child we'’re done */

WAIT CHILD(); /* and wait for child */

/* and the parent continues on its way ... */

exit(0);
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We assume that the header apue.h defines whatever variables are required. The five
routines TELL_WAIT, TELL PARENT, TELL CHILD, WAIT PARENT, and WAIT CHILD
can be either macros or functions.

We'll show various ways to implement these TELL and WAIT routines in later
chapters: Section 10.16 shows an implementation using signals; Figure 15.7 shows an
implementation using pipes. Let’s look at an example that uses these five routines.

Example

The program in Figure 8.12 outputs two strings: one from the child and one from the
parent. The program contains a race condition because the output depends on the order
in which the processes are run by the kernel and the length of time for which each
process runs.

#include "apue.h"

static void charatatime(char *);

int
main(void)
{
pid_t pid;
if ((pid = fork()) < 0) {
err sys("fork error");
} else if (pid == 0) {
charatatime("output from child\n");
} else {
charatatime("output from parent\n");
}
exit(0);
}

static void
charatatime(char *str)

{
char *ptr;
int Cc;
setbuf (stdout, NULL); /* set unbuffered */
for (ptr = str; (c = *ptr++) != 0; )
putc(c, stdout);
}

Figure 8.12 Program with a race condition

We set the standard output unbuffered, so every character output generates a write.
The goal in this example is to allow the kernel to switch between the two processes as
often as possible to demonstrate the race condition. (If we didn’t do this, we might
never see the type of output that follows. Not seeing the erroneous output doesn’t
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mean that the race condition doesn’t exist; it simply means that we can’t see it on this
particular system.) The following actual output shows how the results can vary:

$ ./a.out

ooutput from child
utput from parent

$ ./a.out

ooutput from child
utput from parent

$ ./a.out

output from child

output from parent

We need to change the program in Figure 8.12 to use the TELL and WAIT functions. The
program in Figure 8.13 does this. The lines preceded by a plus sign are new lines.

#include "apue.h"

static void charatatime(char *);

int
main(void)
{
pid_t pid;
+ TELL_WAIT();
+

if ((pid = fork()) < 0) {
err sys("fork error");
} else if (pid == 0) {

+ WAIT PARENT(); /* parent goes first */
charatatime("output from child\n");
} else {
charatatime("output from parent\n");
+ TELL_CHILD(pid);
}
exit(0);
}

static void
charatatime(char *str)

{
char *ptr;
int c;
setbuf (stdout, NULL); /* set unbuffered */
for (ptr = str; (c = *ptr++) != 0; )
putc(c, stdout);
}

Figure 8.13 Modification of Figure 8.12 to avoid race condition

When we run this program, the output is as we expect; there is no intermixing of output
from the two processes.
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8.10

In the program shown in Figure 8.13, the parent goes first. The child goes first if we
change the lines following the fork to be

} else if (pid == 0) {
charatatime("output from child\n");
TELL_PARENT (getppid());

} else {
WAIT CHILD(); /* child goes first */
charatatime("output from parent\n");
}
Exercise 8.4 continues this example. o

exec Functions

We mentioned in Section 8.3 that one use of the fork function is to create a new process
(the child) that then causes another program to be executed by calling one of the exec
functions. When a process calls one of the exec functions, that process is completely
replaced by the new program, and the new program starts executing at its main
function. The process ID does not change across an exec, because a new process is not
created; exec merely replaces the current process—its text, data, heap, and stack
segments—with a brand-new program from disk.

There are seven different exec functions, but we’ll often simply refer to “the exec
function,” which means that we could use any of the seven functions. These seven
functions round out the UNIX System process control primitives. With fork, we can
create new processes; and with the exec functions, we can initiate new programs. The
exit function and the wait functions handle termination and waiting for termination.
These are the only process control primitives we need. We'll use these primitives in
later sections to build additional functions, such as popen and system.

#include <unistd.h>
int execl(const char *pathname, const char *arg0, ... /* (char *)0 */ );
int execv(const char *pathname, char *const argu[]);

int execle(const char *pathname, const char *arg0, ...
/* (char *)0, char *const envp[] */ );

int execve(const char *pathname, char *const argu[], char *const envp[]);
int execlp(const char *filename, const char *arg0, ... /* (char *)0 */ );
int execvp(const char *filename, char *const argu[]);

int fexecve(int fd, char *const argu[], char *const envp[]);

All seven return: -1 on error, no return on success

www.it-ebooks.info


http://www.it-ebooks.info/

250 Process Control Chapter 8

The first difference in these functions is that the first four take a pathname
argument, the next two take a filename argument, and the last one takes a file descriptor
argument. When a filename argument is specified,

e If filename contains a slash, it is taken as a pathname.

* Otherwise, the executable file is searched for in the directories specified by the
PATH environment variable.

The PATH variable contains a list of directories, called path prefixes, that are separated
by colons. For example, the name=value environment string

PATH=/bin:/usr/bin:/usr/local/bin/:.

specifies four directories to search. The last path prefix specifies the current directory.
(A zero-length prefix also means the current directory. It can be specified as a colon at
the beginning of the value, two colons in a row, or a colon at the end of the value.)

There are security reasons for never including the current directory in the search path. See
Garfinkel et al. [2003].

If either execlp or execvp finds an executable file using one of the path prefixes,
but the file isn’t a machine executable that was generated by the link editor, the function
assumes that the file is a shell script and tries to invoke /bin/sh with the filename as
input to the shell.

With fexecve, we avoid the issue of finding the correct executable file altogether
and rely on the caller to do this. By using a file descriptor, the caller can verify the file is
in fact the intended file and execute it without a race. Otherwise, a malicious user with
appropriate privileges could replace the executable file (or a portion of the path to the
executable file) after it has been located and verified, but before the caller can execute it
(recall the discussion of TOCTTOU errors in Section 3.3).

The next difference concerns the passing of the argument list (1 stands for list and v
stands for vector). The functions execl, execlp, and execle require each of the
command-line arguments to the new program to be specified as separate arguments.
We mark the end of the arguments with a null pointer. For the other four functions
(execv, execvp, execve, and fexecve), we have to build an array of pointers to the
arguments, and the address of this array is the argument to these three functions.

Before using ISO C prototypes, the normal way to show the command-line
arguments for the three functions execl, execle, and execlp was

char *arg0, char *argl, ..., char *argn, (char *)0

This syntax explicitly shows that the final command-line argument is followed by a null
pointer. If this null pointer is specified by the constant 0, we must cast it to a pointer; if
we don't, it’s interpreted as an integer argument. If the size of an integer is different
from the size of a char *, the actual arguments to the exec function will be wrong.

The final difference is the passing of the environment list to the new program. The
three functions whose names end in an e (execle, execve, and fexecve) allow us to
pass a pointer to an array of pointers to the environment strings. The other four
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functions, however, use the environ variable in the calling process to copy the existing
environment for the new program. (Recall our discussion of the environment strings in
Section 7.9 and Figure 7.8. We mentioned that if the system supported such functions as
setenv and putenv, we could change the current environment and the environment
of any subsequent child processes, but we couldn’t affect the environment of the parent
process.) Normally, a process allows its environment to be propagated to its children,
but in some cases, a process wants to specify a certain environment for a child. One
example of the latter is the login program when a new login shell is initiated.
Normally, login creates a specific environment with only a few variables defined and
lets us, through the shell start-up file, add variables to the environment when we log in.
Before using ISO C prototypes, the arguments to execle were shown as

char *pathname, char *arg0, ..., char *argn, (char *)0, char *envp|]

This syntax specifically shows that the final argument is the address of the array of
character pointers to the environment strings. The ISO C prototype doesn’t show this,
as all the command-line arguments, the null pointer, and the envp pointer are shown
with the ellipsis notation (. . .).

The arguments for these seven exec functions are difficult to remember. The letters
in the function names help somewhat. The letter p means that the function takes a
filename argument and uses the PATH environment variable to find the executable file.
The letter 1 means that the function takes a list of arguments and is mutually exclusive
with the letter v, which means that it takes an argu[ ] vector. Finally, the letter e means
that the function takes an envp[] array instead of using the current environment.
Figure 8.14 shows the differences among these seven functions.

Function pathname |  filename fd Arg list argu| ] environ envp| ]
execl . . .
execlp . o .
execle . . .
execv . o o
execvp . . .
execve . . .
fexecve . . .
(letter in name) P f 1 v e

Figure 8.14 Differences among the seven exec functions

Every system has a limit on the total size of the argument list and the environment
list. From Section 2.5.2 and Figure 2.8, this limit is given by ARG_MAX. This value must
be at least 4,096 bytes on a POSIX.1 system. We sometimes encounter this limit when
using the shell’s filename expansion feature to generate a list of filenames. On some
systems, for example, the command

grep getrlimit /usr/share/man/*/*
can generate a shell error of the form

Argument list too long
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Historically, the limit in older System V implementations was 5,120 bytes. Older BSD systems
had a limit of 20,480 bytes. The limit in current systems is much higher. (See the output from
the program in Figure 2.14, which is summarized in Figure 2.15.)

To get around the limitation in argument list size, we can use the xargs(1)
command to break up long argument lists. To look for all the occurrences of
getrlimit in the man pages on our system, we could use

find /usr/share/man -type f -print | xargs grep getrlimit
If the man pages on our system are compressed, however, we could try
find /usr/share/man -type f -print | xargs bzgrep getrlimit

We use the type -£ option to the £ind command to restrict the list so that it contains
only regular files, because the grep commands can’t search for patterns in directories,
and we want to avoid unnecessary error messages.

We’ve mentioned that the process ID does not change after an exec, but the new
program inherits additional properties from the calling process:

* Process ID and parent process ID

¢ Real user ID and real group ID

* Supplementary group IDs

¢ Process group ID

¢ Session ID

¢ Controlling terminal

e Time left until alarm clock

¢ Current working directory

* Root directory

¢ File mode creation mask

¢ File locks

* Process signal mask

¢ Pending signals

* Resource limits

* Nice value (on XSI-conformant systems; see Section 8.16)

* Values for tms_utime, tms_stime, tms_cutime, and tms_cstime
The handling of open files depends on the value of the close-on-exec flag for each
descriptor. Recall from Figure 3.7 and our mention of the FD_CLOEXEC flag in
Section 3.14 that every open descriptor in a process has a close-on-exec flag. If this flag
is set, the descriptor is closed across an exec. Otherwise, the descriptor is left open
across the exec. The default is to leave the descriptor open across the exec unless we

specifically set the close-on-exec flag using fcnt1.
POSIX.1 specifically requires that open directory streams (recall the opendir
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function from Section 4.22) be closed across an exec. This is normally done by the
opendir function calling fcntl to set the close-on-exec flag for the descriptor
corresponding to the open directory stream.

Note that the real user ID and the real group ID remain the same across the exec,
but the effective IDs can change, depending on the status of the set-user-ID and the set-
group-ID bits for the program file that is executed. If the set-user-ID bit is set for the
new program, the effective user ID becomes the owner ID of the program file.
Otherwise, the effective user ID is not changed (it’s not set to the real user ID). The
group ID is handled in the same way.

In many UNIX system implementations, only one of these seven functions, execve,
is a system call within the kernel. The other six are just library functions that eventually
invoke this system call. We can illustrate the relationship among these seven functions
as shown in Figure 8.15.

execlp

execvp

build argv

try each

execl

build argv

PATH prefix

execv

use

foy

execle

build argv

environ

execve
(system call)

I

build path from
/proc/self/fd
alias

fexecve

Figure 8.15 Relationship of the seven exec functions

In this arrangement, the library functions execlp and execvp process the PATH
environment variable, looking for the first path prefix that contains an executable file
named filename. The fexecve library function uses /proc to convert the file descriptor
argument into a pathname that can be used by execve to execute the program.

This describes how fexecve is implemented in FreeBSD 8.0 and Linux 3.2.0. Other systems
might take a different approach. For example, a system without /proc or /dev/fd could
implement fexecve as a system call veneer that translates the file descriptor argument into an
i-node pointer, implement execve as a system call veneer that translates the pathname
argument into an i-node pointer, and place all the rest of the exec code common to both
execve and fexecve in a separate function to be called with an i-node pointer for the file to
be executed.
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Example

The program in Figure 8.16 demonstrates the exec functions.

#include "apue.h"
#include <sys/wait.h>

char *env_init[] = { "USER=unknown", "PATH=/tmp", NULL };
int

main(void)

{

pid_t pid;

if ((pid = fork()) < 0) {
err sys("fork error");
} else if (pid == 0) { /* specify pathname, specify environment */
if (execle("/home/sar/bin/echoall", "echoall", "myargl",
"MY ARG2", (char *)0, env_init) < 0)
err_sys("execle error");

}

if (waitpid(pid, NULL, 0) < 0)
err sys("wait error");

if ((pid = fork()) < 0) {
err sys("fork error");
} else if (pid == 0) { /* specify filename, inherit environment */
if (execlp("echoall", "echoall", "only 1 arg", (char *)0) < 0)
err sys("execlp error");

}

exit(0);

Figure 8.16 Example of exec functions

We first call execle, which requires a pathname and a specific environment. The
next call is to execlp, which uses a filename and passes the caller’s environment to the
new program. The only reason the call to execlp works is that the directory
/home/sar/bin is one of the current path prefixes. Note also that we set the first
argument, argv[0] in the new program, to be the filename component of the
pathname. Some shells set this argument to be the complete pathname. This is a
convention only; we can set argv[ 0] to any string we like. The login command does
this when it executes the shell. Before executing the shell, 1login adds a dash as a prefix
to argv[ 0] to indicate to the shell that it is being invoked as a login shell. A login shell
will execute the start-up profile commands, whereas a nonlogin shell will not.

The program echoall that is executed twice in the program in Figure 8.16 is
shown in Figure 8.17. It is a trivial program that echoes all its command-line arguments
and its entire environment list.
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8.11

#include "apue.h"

int
main(int argc, char *argv[])
{
int i;
char **ptr;
extern char **environ;
for (i = 0; i < argc; i++) /* echo all command-line args */
printf("argv[%d]: %s\n", i, argv[i]);
for (ptr = environ; *ptr != 0; ptr++) /* and all env strings */
printf("%s\n", *ptr);
exit(0);
}

Figure 8.17 Echo all command-line arguments and all environment strings

When we execute the program from Figure 8.16, we get

$ ./a.out
argv[0]: echoall
argv[l]: myargl
argv[2]: MY ARG2
USER=unknown
PATH=/tmp
$ argv[0]: echoall
argv[l]: only 1 arg
USER=sar
LOGNAME=sar
SHELL=/bin/bash

47 more lines that aren’t shown
HOME=/home/sar

Note that the shell prompt appeared before the printing of argv[0] from the second
exec. This occurred because the parent did not wait for this child process to finish. O

Changing User IDs and Group IDs

In the UNIX System, privileges, such as being able to change the system’s notion of the
current date, and access control, such as being able to read or write a particular file, are
based on user and group IDs. When our programs need additional privileges or need
to gain access to resources that they currently aren’t allowed to access, they need to
change their user or group ID to an ID that has the appropriate privilege or access.
Similarly, when our programs need to lower their privileges or prevent access to certain
resources, they do so by changing either their user ID or group ID to an ID without the
privilege or ability access to the resource.
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In general, we try to use the least-privilege model when we design our applications.
According to this model, our programs should use the least privilege necessary to
accomplish any given task. This reduces the risk that security might be compromised
by a malicious user trying to trick our programs into using their privileges in
unintended ways.

We can set the real user ID and effective user ID with the setuid function.
Similarly, we can set the real group ID and the effective group ID with the setgid
function.

#include <unistd.h>
int setuid(uid_t uid);

int setgid(gid_t gid);

Both return: 0 if OK, -1 on error

There are rules for who can change the IDs. Let’s consider only the user ID for now.
(Everything we describe for the user ID also applies to the group ID.)

1. If the process has superuser privileges, the setuid function sets the real user
ID, effective user ID, and saved set-user-ID to uid.

2. If the process does not have superuser privileges, but uid equals either the real
user ID or the saved set-user-ID, setuid sets only the effective user ID to uid.
The real user ID and the saved set-user-ID are not changed.

3. If neither of these two conditions is true, errno is set to EPERM and -1 is
returned.

Here, we are assuming that POSIX SAVED_1IDS is true. If this feature isn’t provided,
then delete all preceding references to the saved set-user-ID.

The saved IDs are a mandatory feature in the 2001 version of POSIX.1. They were optional in
older versions of POSIX. To see whether an implementation supports this feature, an
application can test for the constant _POSIX_SAVED_IDS at compile time or call sysconf
with the _SC_SAVED_IDS argument at runtime.

We can make a few statements about the three user IDs that the kernel maintains.

1. Only a superuser process can change the real user ID. Normally, the real user
ID is set by the 1ogin(l) program when we log in and never changes. Because
login is a superuser process, it sets all three user IDs when it calls setuid.

2. The effective user ID is set by the exec functions only if the set-user-ID bit is set
for the program file. If the set-user-ID bit is not set, the exec functions leave the
effective user ID as its current value. We can call setuid at any time to set the
effective user ID to either the real user ID or the saved set-user-ID. Naturally,
we can’t set the effective user ID to any random value.

3. The saved set-user-ID is copied from the effective user ID by exec. If the file’s
set-user-ID bit is set, this copy is saved after exec stores the effective user ID
from the file’s user ID.
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Figure 8.18 summarizes the various ways these three user IDs can be changed.

user ID

user ID

D exec setuid(uid)
set-user-ID bit off set-user-ID bit on superuser | unprivileged user
real user ID unchanged unchanged set to uid unchanged
effective user ID | unchanged set from user ID of settouid | setto uid
program file
saved set-user ID | copied from effective copied from effective setto uid | unchanged

Figure 8.18 Ways to change the three user IDs

Note that we can obtain only the current value of the real user ID and the effective user
ID with the functions getuid and geteuid from Section 8.2. We have no portable way
to obtain the current value of the saved set-user-ID.

FreeBSD 8.0 and LINUX 3.2.0 provide the getresuid and getresgid functions, which can
be used to get the saved set-user-ID and saved set-group-ID, respectively.

setreuid and setregid Functions

Historically, BSD supported the swapping of the real user ID and the effective user 1D
with the setreuid function.

#include <unistd.h>
int setreuid(uid_t ruid, uid_t euid);

int setregid(gid_t rgid, gid t egid);

Both return: 0 if OK, -1 on error

We can supply a value of -1 for any of the arguments to indicate that the corresponding
ID should remain unchanged.

The rule is simple: an unprivileged user can always swap between the real user ID
and the effective user ID. This allows a set-user-ID program to swap to the user’s
normal permissions and swap back again later for set-user-ID operations. When the
saved set-user-ID feature was introduced with POSIX.1, the rule was enhanced to also
allow an unprivileged user to set its effective user ID to its saved set-user-ID.

Both setreuid and setregid are included in the XSI option in POSIX.1. As such, all UNIX
System implementations are expected to provide support for them.

4.3BSD didn’t have the saved set-user-ID feature described earlier; it used setreuid and
setregid instead. This allowed an unprivileged user to swap back and forth between the
two values. Be aware, however, that when programs that used this feature spawned a shell,
they had to set the real user ID to the normal user ID before the exec. If they didn’t do this,
the real user ID could be privileged (from the swap done by setreuid) and the shell process
could call setreuid to swap the two and assume the permissions of the more privileged user.
As a defensive programming measure to solve this problem, programs set both the real user ID
and the effective user ID to the normal user ID before the call to exec in the child.
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seteuid and setegid Functions

POSIX.1 includes the two functions seteuid and setegid. These functions are
similar to setuid and setgid, but only the effective user ID or effective group ID is
changed.

#include <unistd.h>
int seteuid(uid_t wuid);
int setegid(gid_t gid);
Both return: 0 if OK, -1 on error

An unprivileged user can set its effective user ID to either its real user ID or its saved
set-user-ID. For a privileged user, only the effective user ID is set to uid. (This behavior
differs from that of the setuid function, which changes all three user IDs.)

Figure 8.19 summarizes all the functions that we’ve described here that modify the
three user IDs.

superuser superuser superuser
setreuid (ruid, euid) setuid(uid) seteuid (uid)

euig W - i
M\ = uid /
ruid —
\ 7
-«

//—\ .
real unprivileged effective unprivileged saved
user ID setreuid user ID setreuid set-user-ID
‘\—/

exec of
set-user-1D

unprivileged unprivileged
setuid or seteuid setuid or seteuid

Figure 8.19 Summary of all the functions that set the various user IDs

Group IDs
Everything that we’ve said so far in this section also applies in a similar fashion to

group IDs. The supplementary group IDs are not affected by setgid, setregid, or
setegid.
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Example

To see the utility of the saved set-user-ID feature, let’s examine the operation of a
program that uses it. We'll look at the at(1) program, which we can use to schedule
commands to be run at some time in the future.

On Linux 3.2.0, the at program is installed set-user-ID to user daemon. On FreeBSD 8.0, Mac
OS X 10.6.8, and Solaris 10, the at program is installed set-user-ID to user root. This allows
the at command to write privileged files owned by the daemon that will run the commands
on behalf of the user running the at command. On Linux 3.2.0, the programs are run by the
atd(8) daemon. On FreeBSD 8.0 and Solaris 10, the programs are run by the cron(IM)
daemon. On Mac OS X 10.6.8, the programs are run by the 1aunchd(8) daemon.

To prevent being tricked into running commands that we aren’t allowed to run, or
reading or writing files that we aren’t allowed to access, the at command and the
daemon that ultimately runs the commands on our behalf have to switch between sets
of privileges: ours and those of the daemon. The following steps take place.

1. Assuming that the at program file is owned by root and has its set-user-ID bit
set, when we run it, we have

real user ID = our user ID (unchanged)
effective user ID = root
saved set-user-ID = root

2. The first thing the at command does is reduce its privileges so that it runs with
our privileges. It calls the seteuid function to set the effective user ID to our
real user ID. After this, we have

real user ID = our user ID (unchanged)
effective user ID = our user ID
saved set-user-ID = root (unchanged)

3. The at program runs with our privileges until it needs to access the
configuration files that control which commands are to be run and the time at
which they need to run. These files are owned by the daemon that will run the
commands for us. The at command calls seteuid to set the effective user ID
to root. This call is allowed because the argument to seteuid equals the
saved set-user-ID. (This is why we need the saved set-user-ID.) After this, we
have

real user ID = our user ID (unchanged)
effective user ID = root
saved set-user-ID = root (unchanged)

Because the effective user ID is root, file access is allowed.

4. After the files are modified to record the commands to be run and the time at
which they are to be run, the at command lowers its privileges by calling
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seteuid to set its effective user ID to our user ID. This prevents any accidental
misuse of privilege. At this point, we have

real user ID = our user ID (unchanged)
effective user ID = our user ID
saved set-user-ID = root (unchanged)

5. The daemon starts out running with root privileges. To run commands on our
behalf, the daemon calls fork and the child calls setuid to change its user ID
to our user ID. Because the child is running with root privileges, this changes
all of the IDs. We have

real user ID = our user ID
effective user ID = our user ID
saved set-user-ID = our user ID

Now the daemon can safely execute commands on our behalf, because it can
access only the files to which we normally have access. We have no additional
permissions.

By using the saved set-user-ID in this fashion, we can use the extra privileges granted to
us by the set-user-ID of the program file only when we need elevated privileges. Any
other time, however, the process runs with our normal permissions. If we weren't able
to switch back to the saved set-user-ID at the end, we might be tempted to retain the
extra permissions the whole time we were running (which is asking for trouble). O

Interpreter Files

All contemporary UNIX systems support interpreter files. These files are text files that
begin with a line of the form

#1 pathname [ optional-arqument ]

The space between the exclamation point and the pathname is optional. The most
common of these interpreter files begin with the line

#!/bin/sh

The pathname is normally an absolute pathname, since no special operations are
performed on it (i.e., PATH is not used). The recognition of these files is done within the
kernel as part of processing the exec system call. The actual file that gets executed by
the kernel is not the interpreter file, but rather the file specified by the pathname on the
first line of the interpreter file. Be sure to differentiate between the interpreter file—a
text file that begins with #!—and the interpreter, which is specified by the pathname on
the first line of the interpreter file.

Be aware that systems place a size limit on the first line of an interpreter file. This
limit includes the #!, the pathname, the optional argument, the terminating newline, and
any spaces.

On FreeBSD 8.0, this limit is 4,097 bytes. On Linux 3.2.0, the limit is 128 bytes. Mac OS X
10.6.8 supports a limit of 513 bytes, whereas Solaris 10 places the limit at 1,024 bytes.

www.it-ebooks.info


http://www.it-ebooks.info/

Section 8.12 Interpreter Files 261

Example

Let’s look at an example to see what the kernel does with the arguments to the exec
function when the file being executed is an interpreter file and the optional argument on
the first line of the interpreter file. The program in Figure 8.20 execs an interpreter file.

#include "apue.h"
#include <sys/wait.h>

int
main(void)
{
pid_t pid;
if ((pid = fork()) < 0) {
err sys("fork error");
} else if (pid == 0) { /* child */
if (execl("/home/sar/bin/testinterp",
"testinterp", "myargl", "MY ARG2", (char *)0) < 0)
err_sys("execl error");
}
if (waitpid(pid, NULL, 0) < 0) /* parent */
err sys("waitpid error");
exit(0);
}

Figure 8.20 A program that execs an interpreter file

The following shows the contents of the one-line interpreter file that is executed and the
result from running the program in Figure 8.20:

$ cat /home/sar/bin/testinterp
#!/home/sar/bin/echoarg foo

$ ./a.out

argv[0]: /home/sar/bin/echoarg
argv[l]: foo

argv[2]: /home/sar/bin/testinterp
argv[3]: myargl

argv[4]: MY ARG2

The program echoarg (the interpreter) just echoes each of its command-line
arguments. (This is the program from Figure 7.4.) Note that when the kernel execs the
interpreter (/home/sar/bin/echoarg), argv[0] is the pathname of the interpreter,
argv([1] is the optional argument from the interpreter file, and the remaining
arguments are the pathname (/home/sar/bin/testinterp) and the second and third
arguments from the call to execl in the program shown in Figure 8.20 (myargl and MY
ARG2). Both argv[1] and argv[2] from the call to execl have been shifted right two
positions. Note that the kernel takes the pathname from the execl call instead of the
first argument (testinterp), on the assumption that the pathname might contain more
information than the first argument. ]
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A common use for the optional argument following the interpreter pathname is to
specify the —f option for programs that support this option. For example, an awk(1)
program can be executed as

awk -f myfile

which tells awk to read the awk program from the file myfile.

Systems derived from UNIX System V often include two versions of the awk language. On
these systems, awk is often called “old awk” and corresponds to the original version
distributed with Version 7. In contrast, nawk (new awk) contains numerous enhancements and
corresponds to the language described in Aho, Kernighan, and Weinberger [1988]. This newer
version provides access to the command-line arguments, which we need for the example that
follows. Solaris 10 provides both versions.

The awk program is one of the utilities included by POSIX in its 1003.2 standard, which is now
part of the base POSIX.1 specification in the Single UNIX Specification. This utility is also
based on the language described in Aho, Kernighan, and Weinberger [1988].

The version of awk in Mac OS X 10.6.8 is based on the Bell Laboratories version, which has
been placed in the public domain. FreeBSD 8.0 and some Linux distributions ship with GNU
awk, called gawk, which is linked to the name awk. gawk conforms to the POSIX standard, but
also includes other extensions. Because they are more up-to-date, gawk and the version of awk
from Bell Laboratories are preferred to either nawk or old awk. (The Bell Labs version of awk
is available at http://cm.bell-labs.com/cm/cs/awkbook/index.html.)

Using the -£ option with an interpreter file lets us write

#!/bin/awk -f
(awk program follows in the interpreter file)

For example, Figure 8.21 shows /usr/local/bin/awkexample (an interpreter file).

#!/usr/bin/awk -f

# Note:
BEGIN {

on Solaris, use nawk instead

for (i = 0; i < ARGC; i++)

exit

printf "ARGV[%d] = %s\n", i, ARGV[i]

Figure 8.21 An awk program as an interpreter file

If one of the path prefixes is /usr/local/bin, we can execute the program in
Figure 8.21 (assuming that we’ve turned on the execute bit for the file) as

$ awkexample filel FILENAME2 f£f3
ARGV[0] = awk

ARGV[1] = filel
ARGV[2] = FILENAME2
ARGV[3] = f3
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When /bin/awk is executed, its command-line arguments are
/bin/awk -f /usr/local/bin/awkexample filel FILENAME2 f£3

The pathname of the interpreter file (/usr/local/bin/awkexample) is passed to the
interpreter. The filename portion of this pathname (what we typed to the shell) isn’t
adequate, because the interpreter (/bin/awk in this example) can’t be expected to use
the PATH variable to locate files. When it reads the interpreter file, awk ignores the first
line, since the pound sign is awk’s comment character.

We can verify these command-line arguments with the following commands:

$ /bin/su become superuser
Password: enter superuser password
# mv /usr/bin/awk /usr/bin/awk.save save the original program
# cp /home/sar/bin/echoarg /usr/bin/awk and replace it temporarily
# suspend suspend the superuser shell
[1] + Stopped /bin/su using job control

$ awkexample filel FILENAME2 f£f3
argv[0]: /bin/awk

argv[l]: -f

argv[2]: /usr/local/bin/awkexample
argv[3]: filel

argv[4]: FILENAME2

argv[5]: £3

$ fg resume superuser shell using job control
/bin/su

# mv /usr/bin/awk.save /usr/bin/awk restore the original program

# exit and exit the superuser shell

In this example, the —-£ option for the interpreter is required. As we said, this tells awk
where to look for the awk program. If we remove the -f option from the interpreter
file, an error message usually results when we try to run it. The exact text of the
message varies, depending on where the interpreter file is stored and whether the
remaining arguments represent existing files. This is because the command-line
arguments in this case are

/bin/awk /usr/local/bin/awkexample filel FILENAME2 f3

and awk is trying to interpret the string /usr/local/bin/awkexample as an awk
program. If we couldn’t pass at least a single optional argument to the interpreter (-£
in this case), these interpreter files would be usable only with the shells. O

Are interpreter files required? Not really. They provide an efficiency gain for the
user at some expense in the kernel (since it’s the kernel that recognizes these files).
Interpreter files are useful for the following reasons.

1. They hide that certain programs are scripts in some other language. For
example, to execute the program in Figure 8.21, we just say

awkexample optional-arquments
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instead of needing to know that the program is really an awk script that we
would otherwise have to execute as

awk -f awkexample optional-arguments

2. Interpreter scripts provide an efficiency gain. Consider the previous example
again. We could still hide that the program is an awk script, by wrapping it in a
shell script:

awk 'BEGIN {
for (i = 0; i < ARGC; i++)
printf "ARGV[%d] = %s\n", i, ARGV[i]
exit
prosw
The problem with this solution is that more work is required. First, the shell
reads the command and tries to execlp the filename. Because the shell script is
an executable file but isn’t a machine executable, an error is returned and
execlp assumes that the file is a shell script (which it is). Then /bin/sh is
executed with the pathname of the shell script as its argument. The shell
correctly runs our script, but to run the awk program, the shell does a fork,
exec, and wait. Thus there is more overhead involved in replacing an
interpreter script with a shell script.

3. Interpreter scripts let us write shell scripts using shells other than /bin/sh.
When it finds an executable file that isn’t a machine executable, execlp has to
choose a shell to invoke, and it always uses /bin/sh. Using an interpreter
script, however, we can simply write

#!/bin/csh
(C shell script follows in the interpreter file)

Again, we could wrap all of this in a /bin/sh script (that invokes the C shell),
as we described earlier, but more overhead is required.

None of this would work as we’ve shown here if the three shells and awk didn’t use the
pound sign as their comment character.

system Function

It is convenient to execute a command string from within a program. For example,
assume that we want to put a time-and-date stamp into a certain file. We could use the
functions described in Section 6.10 to do this: call time to get the current calendar time,
then call localtime to convert it to a broken-down time, then call strftime to format
the result, and finally write the result to the file. It is much easier, however, to say

system("date > file");

ISO C defines the system function, but its operation is strongly system dependent.
POSIX.1 includes the system interface, expanding on the ISO C definition to describe
its behavior in a POSIX environment.
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#include <stdlib.h>

int system(const char *cmdstring);

Returns: (see below)

If cmdstring is a null pointer, system returns nonzero only if a command processor
is available. This feature determines whether the system function is supported on a
given operating system. Under the UNIX System, system is always available.

Because system is implemented by calling fork, exec, and waitpid, there are
three types of return values.

1. If either the fork fails or waitpid returns an error other than EINTR, system
returns -1 with errno set to indicate the error.

2. If the exec fails, implying that the shell can’t be executed, the return value is as
if the shell had executed exit (127).

3. Otherwise, all three functions—fork, exec, and waitpid—succeed, and the
return value from system is the termination status of the shell, in the format
specified for waitpid.

Some older implementations of system returned an error (EINTR) if waitpid was
interrupted by a caught signal. Because there is no strategy that an application can use to
recover from this type of error (the process ID of the child is hidden from the caller),
POSIX later added the requirement that system not return an error in this case. (We
discuss interrupted system calls in Section 10.5.)

Figure 8.22 shows an implementation of the system function. The one feature that
it doesn’t handle is signals. We’ll update this function with signal handling in
Section 10.18.

The shell’s —c option tells it to take the next command-line argument—cmdstring, in
this case—as its command input instead of reading from standard input or from a given
file. The shell parses this null-terminated C string and breaks it up into separate
command-line arguments for the command. The actual command string that is passed
to the shell can contain any valid shell commands. For example, input and output
redirection using < and > can be used.

If we didn’t use the shell to execute the command, but tried to execute the
command ourself, it would be more difficult. First, we would want to call execlp,
instead of execl, to use the PATH variable, like the shell. We would also have to break
up the null-terminated C string into separate command-line arguments for the call to
execlp. Finally, we wouldn’t be able to use any of the shell metacharacters.

Note that we call _exit instead of exit. We do this to prevent any standard I/O
buffers, which would have been copied from the parent to the child across the fork,
from being flushed in the child.
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#include <sys/wait.h>

#include <errno.h>

#include <unistd.h>

int

system(const char *cmdstring) /* version without signal handling */
{

pid_t pid;
int status;

if (cmdstring == NULL)
return(1l); /* always a command processor with UNIX */

if ((pid = fork()) < 0) {

status = -1; /* probably out of processes */

} else if (pid == 0) { /* child */
execl("/bin/sh", "sh", "-c", cmdstring, (char *)0);
_exit(127); /* execl error */

} else { /* parent */
while (waitpid(pid, &status, 0) < 0) {

if (errno != EINTR) {
status = -1; /* error other than EINTR from waitpid() */
break;
}
}

}

return(status);

Figure 8.22 The system function, without signal handling

We can test this version of system with the program shown in Figure 8.23. (The

pr_exit function was defined in Figure 8.5.) Running the program in Figure 8.23

gives us
$ ./a.out
Sat Feb 25 19:36:59 EST 2012
normal termination, exit status = 0 for date

sh: nosuchcommand: command not found
normal termination, exit status = 127 for nosuchcommand

sar console Jan 1 14:59
sar ttys000 Feb 7 19:08
sar ttys001 Jan 15 15:28
sar ttys002 Jan 15 21:50
sar ttys003 Jan 21 16:02
normal termination, exit status = 44 for exit

The advantage in using system, instead of using fork and exec directly, is that

system does all the required error handling and (in our next version of this function in
Section 10.18) all the required signal handling.
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#include "apue.h"
#include <sys/wait.h>

int
main(void)
{
int status;
if ((status = system("date")) < 0)
err sys("system() error");
pr_exit(status);
if ((status = system("nosuchcommand")) < 0)
err sys("system() error");
pr_exit(status);
if ((status = system("who; exit 44")) < 0)
err sys("system() error");
pr_exit(status);
exit(0);
}

Figure 8.23 Calling the system function

Earlier systems, including SVR3.2 and 4.3BSD, didn’t have the waitpid function

available. Instead, the parent waited for the child, using a statement such as

while ((lastpid = wait(&status)) != pid && lastpid != -1)

r

A problem occurs if the process that calls system has spawned its own children before
calling system. Because the while statement above keeps looping until the child that
was generated by system terminates, if any children of the process terminate before the
process identified by pid, then the process ID and termination status of these other
children are discarded by the while statement. Indeed, this inability to wait for a
specific child is one of the reasons given in the POSIX.1 Rationale for including the
waitpid function. We'll see in Section 15.3 that the same problem occurs with the

popen and pclose functions if the system doesn’t provide a waitpid function.

Set-User-ID Programs

What happens if we call system from a set-user-ID program? Doing so creates a
security hole and should never be attempted. Figure 8.24 shows a simple program that

just calls system for its command-line argument.
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#include "apue.h"

int
main(int argc, char *argv[])
{

int status;

if (argc < 2)
err quit("command-line argument required");

if ((status = system(argv[l])) < 0)
err sys("system() error");

pr_exit(status);

exit(0);

Figure 8.24 Execute the command-line argument using system

We'll compile this program into the executable file tsys.
Figure 8.25 shows another simple program that prints its real and effective user IDs.

#include "apue.h"

int

main(void)

{
printf("real uid = %d, effective uid = %d\n", getuid(), geteuid());
exit(0);

Figure 8.25 Print real and effective user IDs

We’ll compile this program into the executable file printuids. Running both
programs gives us the following;:

$ tsys printuids normal execution, no special privileges
real uid = 205, effective uid = 205

normal termination, exit status = 0

$ su become superuser

Password: enter superuser password

# chown root tsys change owner

# chmod u+s tsys make set-user-ID

# 1s -1 tsys verify file’s permissions and owner
-rwsrwxr-x 1 root 7888 Feb 25 22:13 tsys

# exit leave superuser shell

$ tsys printuids

real uid = 205, effective uid = 0 oops, this is a security hole
normal termination, exit status = 0
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The superuser permissions that we gave the tsys program are retained across the fork
and exec that are done by system.

Some implementations have closed this security hole by changing /bin/sh to reset the
effective user ID to the real user ID when they don’t match. On these systems, the previous
example doesn’t work as shown. Instead, the same effective user ID will be printed regardless
of the status of the set-user-ID bit on the program calling system.

If it is running with special permissions—either set-user-ID or set-group-ID—and
wants to spawn another process, a process should use fork and exec directly, being
certain to change back to normal permissions after the fork, before calling exec. The
system function should never be used from a set-user-ID or a set-group-ID program.

One reason for this admonition is that system invokes the shell to parse the command string,
and the shell uses its IFS variable as the input field separator. Older versions of the shell
didn’t reset this variable to a normal set of characters when invoked. As a result, a malicious
user could set IFS before system was called, causing system to execute a different program.

Process Accounting

Most UNIX systems provide an option to do process accounting. When enabled, the
kernel writes an accounting record each time a process terminates. These accounting
records typically contain a small amount of binary data with the name of the command,
the amount of CPU time used, the user ID and group ID, the starting time, and so on.
We'll take a closer look at these accounting records in this section, as it gives us a chance
to look at processes again and to use the £read function from Section 5.9.

Process accounting is not specified by any of the standards. Thus all the implementations have
annoying differences. For example, the I/O counts maintained on Solaris 10 are in units of
bytes, whereas FreeBSD 8.0 and Mac OS X 10.6.8 maintain units of blocks, although there is no
distinction between different block sizes, making the counter effectively useless. Linux 3.2.0,
on the other hand, doesn’t try to maintain I/O statistics at all.

Each implementation also has its own set of administrative commands to process raw
accounting data. For example, Solaris provides runacct(lm) and acctcom(l), whereas
FreeBSD provides the sa(8) command to process and summarize the raw accounting data.

A function we haven’t described (acct) enables and disables process accounting.
The only use of this function is from the accton(8) command (which happens to be one
of the few similarities among platforms). A superuser executes accton with a
pathname argument to enable accounting. The accounting records are written to the
specified file, which is usually /var/account/acct on FreeBSD and Mac OS X,
/var/log/account/pacct on Linux, and /var/adm/pacct on Solaris. Accounting
is turned off by executing accton without any arguments.

The structure of the accounting records is defined in the header <sys/acct.h>.
Although the implementation of each system differs, the accounting records look
something like
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typedef u_short comp t; /* 3-bit base 8 exponent; 13-bit fraction */

struct acct

{

char ac_flag; /* flag (see Figure 8.26) */

char ac_stat; /* termination status (signal & core flag only) */
/* (Solaris only) */

uid t ac _uid; /* real user ID */

gid_t ac_gid; /* real group ID */

dev_t ac_tty; /* controlling terminal */

time t ac_btime; /* starting calendar time */

comp_t ac_utime; /* user CPU time */

comp t ac_stime; /* system CPU time */

comp_t ac_etime; /* elapsed time */

comp_t ac_mem; /* average memory usage */

comp t ac_io; /* bytes transferred (by read and write) */
/* "blocks" on BSD systems */

comp_t ac_rw; /* blocks read or written */

/* (not present on BSD systems) */

char ac_comm[8]; /* command name: [8] for Solaris, */
/* [10] for Mac OS X, [16] for FreeBSD, and */
/* [17] for Linux */

Times are recorded in units of clock ticks on most platforms, but FreeBSD stores
microseconds instead. The ac_flag member records certain events during the
execution of the process. These events are described in Figure 8.26.

The data required for the accounting record, such as CPU times and number of
characters transferred, is kept by the kernel in the process table and initialized
whenever a new process is created, as in the child after a fork. Each accounting record
is written when the process terminates. This has two consequences.

First, we don’t get accounting records for processes that never terminate. Processes
like init that run for the lifetime of the system don’t generate accounting records. This
also applies to kernel daemons, which normally don’t exit.

Second, the order of the records in the accounting file corresponds to the
termination order of the processes, not the order in which they were started. To know
the starting order, we would have to go through the accounting file and sort by the
starting calendar time. But this isn’t perfect, since calendar times are in units of seconds
(Section 1.10), and it’s possible for many processes to be started in any given second.
Alternatively, the elapsed time is given in clock ticks, which are usually between 60 and
128 ticks per second. But we don’t know the ending time of a process; all we know is its
starting time and ending order. Thus, even though the elapsed time is more accurate
than the starting time, we still can’t reconstruct the exact starting order of various
processes, given the data in the accounting file.

The accounting records correspond to processes, not programs. A new record is
initialized by the kernel for the child after a fork, not when a new program is executed.
Although exec doesn’t create a new accounting record, the command name changes,
and the AFORK flag is cleared. This means that if we have a chain of three programs—A
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ac flag Description FreeBSD  Linux MacOSX Solaris
- 8.0 3.2.0 10.6.8 10

AFORK process is the result of fork, but never called exec . . . .

ASU process used superuser privileges . . .

ACORE process dumped core . . o

AXSIG process was killed by a signal . . .

AEXPND expanded accounting entry .

ANVER new record format i

Figure 8.26 Values for ac_flag from accounting record

execs B, then B execs C, and C exits—only a single accounting record is written.
The command name in the record corresponds to program C, but the CPU times, for
example, are the sum for programs A, B, and C.

Example

To have some accounting data to examine, we’ll create a test program to implement the
diagram shown in Figure 8.27.

parent

sleep(2) %ﬁ first child
exit(2) £
sleep(4) &,{; second child
abort ()

&
&/& third child
&
sleep(8) wﬁ fourth child
exit(0)

sleep(6)
kill()

execl

/bin/dd

Figure 8.27 Process structure for accounting example

The source for the test program is shown in Figure 8.28. It calls fork four times. Each
child does something different and then terminates.

#include "apue.h"
int
main(void)

{
pid_t pid;

if ((pid = fork()) < 0)
err sys("fork error");
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else if (pid != 0) {

sleep(2);
exit(2);
}
if ((pid = fork()) < 0)

err_sys("fork error");
else if (pid != 0) {

sleep(4);
abort();
}
if ((pid = fork()) < 0)

err_sys("fork error");
else if (pid != 0) {

execl("/bin/dd", "dd",
exit(7);

}

if ((pid = fork()) < 0)

err sys("fork error");
else if (pid != 0) {
sleep(8);
exit(0);
}
sleep(6);

kill(getpid(), SIGKILL);
exit(6);

/* parent */

/* terminate with exit status 2 */

/* first child */

/* terminate with core dump */

/* second child */
"if=/etc/passwd",
/* shouldn’t get here */

"of=/dev/null", NULL);

/* third child */
/* normal exit */
/* fourth child */

/* terminate w/signal, no core dump */
/* shouldn’t get here */

Figure 8.28 Program to generate accounting data

We'll run the test program on Solaris and then use the program in Figure 8.29 to
print out selected fields from the accounting records.

#include "apue.h"
#include <sys/acct.h>

#if defined(BSD)
#define acct acctv2
#define ac_flag ac_trailer.ac_flag
#define FMT "%-*.*s e = %.0f, chars
#elif defined(HAS_AC_STAT)

#define FMT "%-*.*s e = %61d, chars
#else
#define FMT "%-*.*s e = %61d, chars
#endif

#if defined(LINUX)
#define acct acct v3
#endif

/* different

#if !defined(HAS ACORE)
#define ACORE 0

/* different structure in FreeBSD */

= %.0f, %c %c %c %c\n"

%c %c %c %c\n"

%$71d, stat = %3u:

%c %c %c %c\n"

%71d,

structure in Linux */
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#endif

#if !defined(HAS AXSIG)
#define AXSIG 0

#endif

#if !defined(BSD)
static unsigned long

compt2ulong(comp t comptime) /* convert comp t to unsigned long */
{

unsigned long val;

int exp;

val = comptime & Ox1fff; /* 13-bit fraction */

exp = (comptime >> 13) & 7; /* 3-bit exponent (0-7) */

while (exp-- > 0)
val *= 8;
return(val);

}
#endif
int
main(int argc, char *argv[])
{
struct acct acdata;
FILE *fp;

if (argc != 2)
err quit("usage: pracct filename");
if ((fp = fopen(argv[l], "r")) == NULL)
err sys("can’'t open %s", argv[l]);
while (fread(&acdata, sizeof(acdata), 1, fp) == 1) {
printf (FMT, (int)sizeof(acdata.ac_comm),
(int)sizeof(acdata.ac_comm), acdata.ac_comm,
#if defined(BSD)
acdata.ac_etime, acdata.ac_io,
#else
compt2ulong(acdata.ac_etime), compt2ulong(acdata.ac_io),
#endif
#if defined(HAS_AC_STAT)
(unsigned char) acdata.ac_stat,

#endif
acdata.ac_flag & ACORE ? 'D’ : ' ',
acdata.ac_flag & AXSIG ? ‘X’ : ' ',
acdata.ac_flag & AFORK ? 'F’ : ' ',
acdata.ac_flag & ASU ?2 'S’ ),
}

if (ferror(fp))
err_sys("read error");
exit(0);

Figure 8.29 Print selected fields from system’s accounting file
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BSD-derived platforms don’t support the ac_stat member, so we define the
HAS_AC_STAT constant on the platforms that do support this member. Basing the
defined symbol on the feature instead of on the platform makes the code read better and
allows us to modify the program simply by adding the new definition to our
compilation command. The alternative would be to use

#if !defined(BSD) && !defined(MACOS)

which becomes unwieldy as we port our application to additional platforms.

We define similar constants to determine whether the platform supports the ACORE
and AXSIG accounting flags. We can’t use the flag symbols themselves, because on
Linux, they are defined as enum values, which we can’t use in a #1fdef expression.

To perform our test, we do the following:

1. Become superuser and enable accounting, with the accton command. Note
that when this command terminates, accounting should be on; therefore, the
first record in the accounting file should be from this command.

2. Exit the superuser shell and run the program in Figure 8.28. This should
append six records to the accounting file: one for the superuser shell, one for the
test parent, and one for each of the four test children.

A new process is not created by the execl in the second child. There is only a
single accounting record for the second child.

3. Become superuser and turn accounting off. Since accounting is off when this
accton command terminates, it should not appear in the accounting file.

4. Run the program in Figure 8.29 to print the selected fields from the accounting
file.

The output from step 4 follows. We have appended the description of the process in
italics to selected lines, for the discussion later.

accton e 1, chars = 336, stat = 0: S

sh e = 1550, chars = 20168, stat = 0: S

dd e 2, chars = 1585, stat = 0: second child
a.out e = 202, chars = 0, stat = 0: parent
a.out e = 420, chars = 0, stat = 134: F first child
a.out e = 600, chars = 0, stat = 9: F fourth child
a.out e = 801, chars = 0, stat = 0: F third child

For this system, the elapsed time values are measured in units of clock ticks.
Figure 2.15 shows that this system generates 100 clock ticks per second. For example,
the sleep(2) in the parent corresponds to the elapsed time of 202 clock ticks. For the
first child, the sleep(4) becomes 420 clock ticks. Note that the amount of time a
process sleeps is not exact. (We'll return to the sleep function in Chapter 10.) Also, the
calls to fork and exit take some amount of time.

Note that the ac_stat member is not the true termination status of the process, but
rather corresponds to a portion of the termination status that we discussed in
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Section 8.6. The only information in this byte is a core-flag bit (usually the high-order
bit) and the signal number (usually the seven low-order bits), if the process terminated
abnormally. If the process terminated normally, we are not able to obtain the exit
status from the accounting file. For the first child, this value is 128 +6. The 128 is the
core flag bit, and 6 happens to be the value on this system for SIGABRT, which is
generated by the call to abort. The value 9 for the fourth child corresponds to the
value of SIGKILL. We can’t tell from the accounting data that the parent’s argument to
exit was 2 and that the third child’s argument to exit was 0.

The size of the file /etc/passwd that the dd process copies in the second child is
777 bytes. The number of characters of I/O is just over twice this value. It is twice the
value, as 777 bytes are read in, then 777 bytes are written out. Even though the output
goes to the null device, the bytes are still accounted for. The 31 additional bytes come
from the dd command reporting the summary of bytes read and written, which it prints
to stdout.

The ac_flag values are are what we would expect. The F flag is set for all the
child processes except the second child, which does the execl. The F flag is not set for
the parent, because the interactive shell that executed the parent did a fork and then an
exec of the a.out file. The first child process calls abort, which generates a SIGABRT
signal to generate the core dump. Note that neither the X flag nor the D flag is on, as
they are not supported on Solaris; the information they represent can be derived from
the ac_stat field. The fourth child also terminates because of a signal, but the
SIGKILL signal does not generate a core dump; it just terminates the process.

As a final note, the first child has a 0 count for the number of characters of I/O, yet
this process generated a core file. It appears that the I/O required to write the core
file is not charged to the process. O

User ldentification

Any process can find out its real and effective user ID and group ID. Sometimes,
however, we want to find out the login name of the user who’s running the program.
We could call getpwuid(getuid()), but what if a single user has multiple login
names, each with the same user ID? (A person might have multiple entries in the
password file with the same user ID to have a different login shell for each entry.) The
system normally keeps track of the name we log in under (Section 6.8), and the
getlogin function provides a way to fetch that login name.

#include <unistd.h>

char *getlogin(void);

Returns: pointer to string giving login name if OK, NULL on error

This function can fail if the process is not attached to a terminal that a user logged in to.
We normally call these processes daemons. We discuss them in Chapter 13.
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Given the login name, we can then use it to look up the user in the password
file—to determine the login shell, for example—using getpwnam.

To find the login name, UNIX systems have historically called the ttyname function
(Section 18.9) and then tried to find a matching entry in the utmp file (Section 6.8). FreeBSD
and Mac OS X store the login name in the session structure associated with the process table
entry and provide system calls to fetch and store this name.

System V provided the cuserid function to return the login name. This function called
getlogin and, if that failed, did a getpwuid(getuid()). The IEEE Standard 1003.1-1988
specified cuserid, but it called for the effective user ID to be used, instead of the real user ID.
The 1990 version of POSIX.1 dropped the cuserid function.

The environment variable LOGNAME is usually initialized with the user’s login name by
login(l) and inherited by the login shell. Realize, however, that a user can modify an
environment variable, so we shouldn’t use LOGNAME to validate the user in any way. Instead,
we should use getlogin.

Process Scheduling

Historically, the UNIX System provided processes with only coarse control over their
scheduling priority. The scheduling policy and priority were determined by the kernel.
A process could choose to run with lower priority by adjusting its nice value (thus a
process could be “nice” and reduce its share of the CPU by adjusting its nice value).
Only a privileged process was allowed to increase its scheduling priority.

The real-time extensions in POSIX added interfaces to select among multiple
scheduling classes and fine-tune their behavior. We discuss only the interfaces used to
adjust the nice value here; they are part of the XSI option in POSIX.1. Refer to
Gallmeister [1995] for more information on the real-time scheduling extensions.

In the Single UNIX Specification, nice values range from 0 to (2*NZERO)-1,
although some implementations support a range from 0 to 2*NZERO. Lower nice
values have higher scheduling priority. Although this might seem backward, it actually
makes sense: the more nice you are, the lower your scheduling priority is. NZERO is the
default nice value of the system.

Be aware that the header file defining NZERO differs among systems. In addition to the header
file, Linux 3.2.0 makes the value of NZERO accessible through a nonstandard sysconf
argument (_SC_NZERO).

A process can retrieve and change its nice value with the nice function. With this
function, a process can affect only its own nice value; it can’t affect the nice value of any
other process.

#include <unistd.h>

int nice(int incr);

Returns: new nice value — NZERO if OK, -1 on error
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The incr argument is added to the nice value of the calling process. If incr is too large,
the system silently reduces it to the maximum legal value. Similarly, if incr is too small,
the system silently increases it to the minimum legal value. Because -1 is a legal
successful return value, we need to clear errno before calling nice and check its value
if nice returns -1. If the call to nice succeeds and the return value is -1, then errno
will still be zero. If errno is nonzero, it means that the call to nice failed.

The getpriority function can be used to get the nice value for a process, just like
the nice function. However, getpriority can also get the nice value for a group of
related processes.

#include <sys/resource.h>
int getpriority(int which, id_t who);

Returns: nice value between —-NZERO and NZERO-1 if OK, -1 on error

The which argument can take on one of three values: PRIO_PROCESS to indicate a
process, PRIO_PGRP to indicate a process group, and PRIO_USER to indicate a user ID.
The which argument controls how the who argument is interpreted and the who
argument selects the process or processes of interest. If the who argument is 0, then it
indicates the calling process, process group, or user (depending on the value of the
which argument). When which is set to PRIO_USER and who is 0, the real user ID of the
calling process is used. When the which argument applies to more than one process, the
highest priority (lowest value) of all the applicable processes is returned.

The setpriority function can be used to set the priority of a process, a process
group, or all the processes belonging to a particular user ID.

#include <sys/resource.h>
int setpriority(int which, id_t who, int wvalue);

Returns: 0 if OK, -1 on error

The which and who arguments are the same as in the getpriority function. The value
is added to NZERO and this becomes the new nice value.

The nice system call originated with an early PDP-11 version of the Research UNIX System.
The getpriority and setpriority functions originated with 4.2BSD.

The Single UNIX Specification leaves it up to the implementation whether the nice
value is inherited by a child process after a fork. However, XSI-compliant systems are
required to preserve the nice value across a call to exec.

A child process inherits the nice value from its parent process in FreeBSD 8.0, Linux 3.2.0, Mac
0OS X 10.6.8, and Solaris 10.

Example
The program in Figure 8.30 measures the effect of adjusting the nice value of a process.

Two processes run in parallel, each incrementing its own counter. The parent runs with
the default nice value, and the child runs with an adjusted nice value as specified by the
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optional command argument. After running for 10 seconds, both processes print the
value of their counter and exit. By comparing the counter values for different nice

values, we can get an idea how the nice value affects process scheduling.

#include "apue.h"
#include <errno.h>
#include <sys/time.h>

#if defined(MACOS)
#include <sys/syslimits.h>
#elif defined(SOLARIS)
#include <limits.h>

#elif defined(BSD)
#include <sys/param.h>
#endif

unsigned long long count;
struct timeval end;

void
checktime(char *str)

{

struct timeval tv;

gettimeofday(&tv, NULL);

if (tv.tv_sec >= end.tv_sec && tv.tv_usec >= end.tv_usec) ({

printf("%s count = %11d\n", str, count);
exit(0);
}
}
int
main(int argc, char *argv[])
{
pid_t pid;
char *s;
int nzero, ret;
int adj = 0;
setbuf (stdout, NULL);
#if defined(NZERO)
nzero = NZERO;
#elif defined(_SC_NZERO)
nzero = sysconf(_SC_NZERO);
#else
#error NZERO undefined
#endif
printf ("NZERO = %d\n", nzero);
if (argc == 2)
adj = strtol(argv[l], NULL, 10);
gettimeofday(&end, NULL);
end.tv_sec += 10; /* run for 10 seconds */

if ((pid = fork()) < 0) {
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err_sys("fork failed");
} else if (pid == 0) { /* child */
s = "child";
printf("current nice value in child is %d, adjusting by %d\n",
nice(0)+nzero, adj);
errno = 0;
if ((ret = nice(adj)) == -1 && errno != 0)
err_sys("child set scheduling priority");
printf("now child nice value is %d\n", ret+nzero);

} else { /* parent */

s = "parent";

printf("current nice value in parent is %d\n", nice(0)+nzero);
}
for(;;) {

if (++count == 0)

err quit("%$s counter wrap", s);

checktime(s);

}

Figure 8.30 Evaluate the effect of changing the nice value

We run the program twice: once with the default nice value, and once with the
highest valid nice value (the lowest scheduling priority). We run this on a uniprocessor
Linux system to show how the scheduler shares the CPU among processes with
different nice values. With an otherwise idle system, a multiprocessor system (or a
multicore CPU) would allow both processes to run without the need to share a CPU,
and we wouldn’t see much difference between two processes with different nice values.

$ ./a.out

NZERO = 20

current nice value in parent is 20

current nice value in child is 20, adjusting by 0
now child nice value is 20

child count = 1859362

parent count = 1845338

$ ./a.out 20

NZERO = 20

current nice value in parent is 20

current nice value in child is 20, adjusting by 20
now child nice value is 39

parent count = 3595709

child count = 52111

When both processes have the same nice value, the parent process gets 50.2% of

the

CPU and the child gets 49.8% of the CPU. Note that the two processes are effectively
treated equally. The percentages aren’t exactly equal, because process scheduling isn’t
exact, and because the child and parent perform different amounts of processing
between the time that the end time is calculated and the time that the processing loop
begins.
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In contrast, when the child has the highest possible nice value (the lowest priority),
we see that the parent gets 98.5% of the CPU, while the child gets only 1.5% of the CPU.
These values will vary based on how the process scheduler uses the nice value, so a
different UNIX system will produce different ratios. O

Process Times

In Section 1.10, we described three times that we can measure: wall clock time, user
CPU time, and system CPU time. Any process can call the times function to obtain
these values for itself and any terminated children.

#include <sys/times.h>
clock_t times(struct tms *buf);

Returns: elapsed wall clock time in clock ticks if OK, -1 on error

This function fills in the tms structure pointed to by buf:

struct tms {
clock t tms_utime; /* user CPU time */
clock_t tms_stime; /* system CPU time */
clock_t tms_cutime; /* user CPU time, terminated children */
clock_t tms cstime; /* system CPU time, terminated children */

}i

Note that the structure does not contain any measurement for the wall clock time.
Instead, the function returns the wall clock time as the value of the function, each time
it’s called. This value is measured from some arbitrary point in the past, so we can’t use
its absolute value; instead, we use its relative value. For example, we call times and
save the return value. At some later time, we call times again and subtract the earlier
return value from the new return value. The difference is the wall clock time. (It is
possible, though unlikely, for a long-running process to overflow the wall clock time;
see Exercise 1.5.)

The two structure fields for child processes contain values only for children that we
have waited for with one of the wait functions discussed earlier in this chapter.

All the clock_t values returned by this function are converted to seconds using
the number of clock ticks per second—the _SC_CLK_TCK value returned by sysconf
(Section 2.5.4).

Most implementations provide the getrusage(2) function. This function returns the CPU
times and 14 other values indicating resource usage. Historically, this function originated with
the BSD operating system, so BSD-derived implementations generally support more of the
fields than do other implementations.

Example

The program in Figure 8.31 executes each command-line argument as a shell command
string, timing the command and printing the values from the tms structure.

www.it-ebooks.info


http://www.it-ebooks.info/

Section 8.17 Process Times 281

#include "apue.h"
#include <sys/times.h>

static void pr_times(clock_t, struct tms *, struct tms *);
static void do_cmd(char *);

int
main(int argc, char *argv[])
{

int i;

setbuf (stdout, NULL);
for (i = 1; i < argc; i++)
do_cmd(argv[i]); /* once for each command-line arg */
exit(0);
}

static void
do_cmd(char *cmd) /* execute and time the "cmd" */
{

struct tms tmsstart, tmsend;

clock t start, end;

int status;

printf("\ncommand: %s\n", cmd);

if ((start = times(&tmsstart)) == -1) /* starting values */
err sys("times error");

if ((status = system(cmd)) < 0) /* execute command */
err sys("system() error");

if ((end = times(&tmsend)) == -1) /* ending values */
err sys("times error");

pr_ times(end-start, &tmsstart, &tmsend);
pr_ exit(status);

}

static void
pr_times(clock t real, struct tms *tmsstart, struct tms *tmsend)

{
static long clktck = 0;

if (clktck == 0) /* fetch clock ticks per second first time */
if ((clktck = sysconf(_SC_CLK_TCK)) < 0)
err sys("sysconf error");

printf(" real: %7.2f\n", real / (double) clktck);

printf(" wuser: %7.2f\n",

(tmsend->tms_utime - tmsstart->tms_utime) / (double) clktck);
printf(" sys: $7.2f\n",

(tmsend->tms_stime - tmsstart->tms_stime) / (double) clktck);

printf(" child user: %7.2f\n",
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(tmsend->tms_cutime - tmsstart->tms_cutime) / (double) clktck);
printf(" child sys: $7.2f\n",
(tmsend->tms_cstime - tmsstart->tms_cstime) / (double) clktck);
}
Figure 8.31 Time and execute all command-line arguments
If we run this program, we get
$ ./a.out "sleep 5" "date" "man bash >/dev/null”
command: sleep 5
real: 5.01
user: 0.00
sys: 0.00
child user: 0.00
child sys: 0.00
normal termination, exit status = 0
command: date
Sun Feb 26 18:39:23 EST 2012
real: 0.00
user: 0.00
sys: 0.00
child user: 0.00
child sys: 0.00
normal termination, exit status = 0
command: man bash >/dev/null
real: 1.46
user: 0.00
sys: 0.00
child user: 1.32
child sys: 0.07
normal termination, exit status = 0
In the first two commands, execution is fast enough to avoid registering any CPU time
at the reported resolution. In the third command, however, we run a command that
takes enough processing time to note that all the CPU time appears in the child process,
which is where the shell and the command execute. O
8.18 Summary

A thorough understanding of the UNIX System’s process control is essential for
advanced programming. There are only a few functions to master: fork, the exec
family, _exit, wait, and waitpid. These primitives are used in many applications.
The fork function also gave us an opportunity to look at race conditions.

Our examination of the system function and process accounting gave us another
look at all these process control functions. We also looked at another variation of the
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exec functions: interpreter files and how they operate. An understanding of the
various user IDs and group IDs that are provided—real, effective, and saved—is
critical to writing safe set-user-ID programs.

Given an understanding of a single process and its children, in the next chapter we

examine the relationship of a process to other processes—sessions and job control. We
then complete our discussion of processes in Chapter 10 when we describe signals.

Exercises

8.1

8.2

8.3

8.4

8.5

8.6

8.7

In Figure 8.3, we said that replacing the call to _exit with a call to exit might cause the
standard output to be closed and printf to return -1. Modify the program to check
whether your implementation behaves this way. If it does not, how can you simulate this
behavior?

Recall the typical arrangement of memory in Figure 7.6. Because the stack frames
corresponding to each function call are usually stored in the stack, and because after a
vfork the child runs in the address space of the parent, what happens if the call to vfork
is from a function other than main and the child does a return from this function after the
vfork? Write a test program to verify this, and draw a picture of what’s happening.

Rewrite the program in Figure 8.6 to use waitid instead of wait. Instead of calling
pr_exit, determine the equivalent information from the siginfo structure.

When we execute the program in Figure 8.13 one time, as in
$ ./a.out

the output is correct. But if we execute the program multiple times, one right after the
other, as in

$ ./a.out ; ./a.out ; ./a.out
output from parent

ooutput from parent

ouotuptut from child

put from parent

output from child

utput from child

the output is not correct. What's happening? How can we correct this? Can this problem
happen if we let the child write its output first?

In the program shown in Figure 8.20, we call execl, specifying the pathname of the
interpreter file. If we called execlp instead, specifying a filename of testinterp, and if
the directory /home/sar/bin was a path prefix, what would be printed as argv[2] when
the program is run?

Write a program that creates a zombie, and then call system to execute the ps(1) command
to verify that the process is a zombie.

We mentioned in Section 8.10 that POSIX.1 requires open directory streams to be closed
across an exec. Verify this as follows: call opendir for the root directory, peek at your
system’s implementation of the DIR structure, and print the close-on-exec flag. Then open
the same directory for reading, and print the close-on-exec flag.
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9.1

9.2

Process Relationships

Introduction

We learned in the previous chapter that there are relationships between processes. First,
every process has a parent process (the initial kernel-level process is usually its own
parent). The parent is notified when the child terminates, and the parent can obtain the
child’s exit status. We also mentioned process groups when we described the waitpid
function (Section 8.6) and explained how we can wait for any process in a process group
to terminate.

In this chapter, we’ll look at process groups in more detail and the concept of
sessions that was introduced by POSIX.1. We'll also look at the relationship between
the login shell that is invoked for us when we log in and all the processes that we start
from our login shell.

It is impossible to describe these relationships without talking about signals, and to
talk about signals, we need many of the concepts in this chapter. If you are unfamiliar
with the UNIX System signal mechanism, you may want to skim through Chapter 10 at
this point.

Terminal Logins

Let’s start by looking at the programs that are executed when we log in to a UNIX
system. In early UNIX systems, such as Version 7, users logged in using dumb
terminals that were connected to the host with hard-wired connections. The terminals
were either local (directly connected) or remote (connected through a modem). In either
case, these logins came through a terminal device driver in the kernel. For example, the
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common devices on PDP-11s were DH-11s and DZ-11s. A host had a fixed number of
these terminal devices, so there was a known upper limit on the number of
simultaneous logins.

As bitmapped graphical terminals became available, windowing systems were
developed to provide users with new ways to interact with host computers.
Applications were developed to create “terminal windows” to emulate character-based
terminals, allowing users to interact with hosts in familiar ways (i.e., via the shell
command line).

Today, some platforms allow you to start a windowing system after logging in,
whereas other platforms automatically start the windowing system for you. In the
latter case, you might still have to log in, depending on how the windowing system is
configured (some windowing systems can be configured to log you in automatically).

The procedure that we now describe is used to log in to a UNIX system using a
terminal. The procedure is similar regardless of the type of terminal we use—it could
be a character-based terminal, a graphical terminal emulating a simple character-based
terminal, or a graphical terminal running a windowing system.

BSD Terminal Logins

The BSD terminal login procedure has not changed much over the past 35 years. The
system administrator creates a file, usually /etc/ttys, that has one line per terminal
device. Each line specifies the name of the device and other parameters that are passed
to the getty program. One parameter is the baud rate of the terminal, for example.
When the system is bootstrapped, the kernel creates process ID 1, the init process, and
itis init that brings the system up in multiuser mode. The init process reads the file
/etc/ttys and, for every terminal device that allows a login, does a fork followed by
an exec of the program getty. This gives us the processes shown in Figure 9.1.

process ID 1

forks once
per terminal

} each child
exec
execs getty

getty

Figure 9.1 Processes invoked by init to allow terminal logins
All the processes shown in Figure 9.1 have a real user ID of 0 and an effective user ID of

0 (i-e., they all have superuser privileges). The init process also execs the getty
program with an empty environment.
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It is getty that calls open for the terminal device. The terminal is opened for
reading and writing. If the device is a modem, the open may delay inside the device
driver until the modem is dialed and the call is answered. Once the device is open, file
descriptors 0, 1, and 2 are set to the device. Then getty outputs something like
login: and waits for us to enter our user name. If the terminal supports multiple
speeds, getty can detect special characters that tell it to change the terminal’s speed
(baud rate). Consult your UNIX system manuals for additional details on the getty
program and the data files (gettytab) that can drive its actions.

When we enter our user name, getty’s job is complete, and it then invokes the
login program, similar to

execle("/bin/login", "login", "-p", username, (char *)0, envp);

(There can be options in the gettytab file to have it invoke other programs, but the
default is the login program.) init invokes getty with an empty environment;
getty creates an environment for login (the envp argument) with the name of the
terminal (something like TERM=foo, where the type of terminal foo is taken from the
gettytab file) and any environment strings that are specified in the gettytab. The
-p flag to login tells it to preserve the environment that it is passed and to add to that
environment, not replace it. Figure 9.2 shows the state of these processes right after
login has been invoked.

process 1D 1

reads /etc/ttys;

init forks once per terminal;
‘ creates empty environment
’e N
Vs *‘f ork &
init
exec

opens terminal device
(file descriptors 0, 1, 2);

ett
g 4 reads user name;
initial environment set
exec
login

Figure 9.2 State of processes after 1ogin has been invoked

All the processes shown in Figure 9.2 have superuser privileges, since the original init
process has superuser privileges. The process ID of the bottom three processes in
Figure 9.2 is the same, since the process ID does not change across an exec. Also, all
the processes other than the original init process have a parent process ID of 1.

The login program does many things. Since it has our user name, it can call
getpwnam to fetch our password file entry. Then login calls getpass(3) to display
the prompt Password: and read our password (with echoing disabled, of course). It
calls crypt(3) to encrypt the password that we entered and compares the encrypted
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result to the pw_passwd field from our shadow password file entry. If the login
attempt fails because of an invalid password (after a few tries), login calls exit with
an argument of 1. This termination will be noticed by the parent (init), and it will do
another fork followed by an exec of getty, starting the procedure over again for this
terminal.

This is the traditional authentication procedure used on UNIX systems. Modern
UNIX systems, however, have evolved to support multiple authentication procedures.
For example, FreeBSD, Linux, Mac OS X, and Solaris all support a more flexible scheme
known as PAM (Pluggable Authentication Modules). PAM allows an administrator to
configure the authentication methods to be used to access services that are written to
use the PAM library.

If our application needs to verify that a user has the appropriate permission to
perform a task, we can either hard code the authentication mechanism in the
application or use the PAM library to give us the equivalent functionality. The
advantage to using PAM is that administrators can configure different ways to
authenticate users for different tasks, based on the local site policies.

If we log in correctly, login will

¢ Change to our home directory (chdir)
¢ Change the ownership of our terminal device (chown) so we own it

¢ Change the access permissions for our terminal device so we have permission to
read from and write to it

* Set our group IDs by calling setgid and initgroups

e Initialize the environment with all the information that login has: our home
directory (HOME), shell (SHELL), user name (USER and LOGNAME), and a default
path (PATH)

* Change to our user ID (setuid) and invoke our login shell, as in

execl("/bin/sh", "-sh", (char *)0);

The minus sign as the first character of argv[ 0] is a flag to all the shells that indicates they are
being invoked as a login shell. The shells can look at this character and modify their start-up
accordingly.

The login program really does more than we’ve described here. It optionally
prints the message-of-the-day file, checks for new mail, and performs other tasks. In
this chapter, we're interested only in the features that we’ve described.

Recall from our discussion of the setuid function in Section 8.11 that since it is
called by a superuser process, setuid changes all three user IDs: the real user ID,
effective user ID, and saved set-user-ID. The call to setgid that was done earlier by
login has the same effect on all three group IDs.

At this point, our login shell is running. Its parent process ID is the original init
process (process ID 1), so when our login shell terminates, init is notified (it is sent a
SIGCHLD signal) and it starts the whole procedure over again for this terminal. File
descriptors 0, 1, and 2 for our login shell are set to the terminal device. Figure 9.3 shows
this arrangement.
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process ID 1

init

Y
login shell
\

}through getty and login

fd0,1,2

terminal
device driver

user at a
terminal

Figure 9.3 Arrangement of processes after everything is set for a terminal login

} hard-wired connection

Our login shell now reads its start-up files (.profile for the Bourne shell and
Korn shell; .bash_profile, .bash_login, or .profile for the GNU Bourne-again
shell; and .cshrc and .login for the C shell). These start-up files usually change
some of the environment variables and add many other variables to the environment.
For example, most users set their own PATH and often prompt for the actual terminal
type (TERM). When the start-up files are done, we finally get the shell’s prompt and can
enter commands.

Mac OS X Terminal Logins

On Mac OS X, the terminal login process follows essentially the same steps as in the
BSD login process, since Mac OS X is based in part on FreeBSD. With Mac OS X,
however, there are some differences:

* The work of init is performed by launchd.

* We are presented with a graphical-based login screen from the start.

Linux Terminal Logins

The Linux login procedure is very similar to the BSD procedure. Indeed, the Linux
login command is derived from the 4.3BSD login command. The main difference
between the BSD login procedure and the Linux login procedure is in the way the
terminal configuration is specified.

Some Linux distributions ship with a version of the init program that uses
administrative files patterned after System V’s init file formats. On these systems,
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/etc/inittab contains the configuration information specifying the terminal devices
for which init should start a getty process.

Other Linux distributions, such as recent Ubuntu distributions, ship with a version
of init that is known as “Upstart.” It uses configuration files named *.conf that are
stored in the /etc/init directory. For example, the specifications for running getty
on /dev/ttyl might be found in the file /etc/init/ttyl.conf.

Depending on the version of getty in use, the terminal characteristics are specified
either on the command line (as with agetty) or in the file /etc/gettydefs (as with
mgetty).

Solaris Terminal Logins

9.3

Solaris supports two forms of terminal logins: (a) getty style, as described previously
for BSD, and (b) ttymon logins, a feature introduced with SVR4. Normally, getty is
used for the console, and ttymon is used for other terminal logins.

The ttymon command is part of a larger facility termed SAF, the Service Access
Facility. The goal of the SAF was to provide a consistent way to administer services that
provide access to a system. (See Chapter 6 of Rago [1993] for more details.) For our
purposes, we end up with the same picture as in Figure 9.3, with a different set of steps
between init and the login shell. init is the parent of sac (the service access
controller), which does a fork and exec of the ttymon program when the system
enters multiuser state. The ttymon program monitors all the terminal ports listed in its
configuration file and does a fork when we enter our login name. This child of
ttymon does an exec of login, and login prompts us for our password. Once this is
done, login execs our login shell, and we’re at the position shown in Figure 9.3. One
difference is that the parent of our login shell is now ttymon, whereas the parent of the
login shell from a getty login is init.

Network Logins

The main (physical) difference between logging in to a system through a serial terminal
and logging in to a system through a network is that the connection between the
terminal and the computer isn’t point-to-point. In this case, login is simply a service
available, just like any other network service, such as FTP or SMTP.

With the terminal logins that we described in the previous section, init knows
which terminal devices are enabled for logins and spawns a getty process for each
device. In the case of network logins, however, all the logins come through the kernel’s
network interface drivers (e.g., the Ethernet driver), and we don’t know ahead of time
how many of these will occur. Instead of having a process waiting for each possible
login, we now have to wait for a network connection request to arrive.

To allow the same software to process logins over both terminal logins and network
logins, a software driver called a pseudo terminal is used to emulate the behavior of a
serial terminal and map terminal operations to network operations, and vice versa. (In
Chapter 19, we'll talk about pseudo terminals in detail.)
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BSD Network Logins

In BSD, a single process waits for most network connections: the inetd process,
sometimes called the Internet superserver. In this section, we’ll look at the sequence of
processes involved in network logins for a BSD system. We are not interested in the
detailed network programming aspects of these processes; refer to Stevens, Fenner, and
Rudoff [2004] for all the details.

As part of the system start-up, init invokes a shell that executes the shell script
/etc/rc. One of the daemons that is started by this shell script is inetd. Once the
shell script terminates, the parent process of inetd becomes init; inetd waits for
TCP/IP connection requests to arrive at the host. When a connection request arrives for
it to handle, inetd does a fork and exec of the appropriate program.

Let’s assume that a TCP connection request arrives for the TELNET server.
TELNET is a remote login application that uses the TCP protocol. A user on another
host (that is connected to the server’s host through a network of some form) or on the
same host initiates the login by starting the TELNET client:

telnet hostname

The client opens a TCP connection to hostname, and the program that’s started on
hostname is called the TELNET server. The client and the server then exchange data
across the TCP connection using the TELNET application protocol. What has happened
is that the user who started the client program is now logged in to the server’s host.
(This assumes, of course, that the user has a valid account on the server’s host.)
Figure 9.4 shows the sequence of processes involved in executing the TELNET server,
called telnetd.

process ID 1

init
fork/exec of /bin/sh, which
executes shell script /etc/rc
Y when system comes up multiuser
TCP connection request .
inetd

from TELNET client

\
| fork }When connection request

arrives from TELNET client
inetd

exec

|
telnetd

Figure 9.4 Sequence of processes involved in executing TELNET server
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The telnetd process then opens a pseudo terminal device and splits into two
processes using fork. The parent handles the communication across the network
connection, and the child does an exec of the login program. The parent and the
child are connected through the pseudo terminal. Before doing the exec, the child sets
up file descriptors 0, 1, and 2 to the pseudo terminal. If we log in correctly, login
performs the same steps we described in Section 9.2: it changes to our home directory
and sets our group IDs, user ID, and our initial environment. Then login replaces
itself with our login shell by calling exec. Figure 9.5 shows the arrangement of the
processes at this point.

process ID 1

init
: }through inetd, telnetd,
: and login
Y
login shell
A
fd0,1,2

pseudo terminal
device driver

4 } network connection through

telnetd server and telnet client
user at a
terminal

Figure 9.5 Arrangement of processes after everything is set for a network login

Obviously, a lot is going on between the pseudo terminal device driver and the
actual user at the terminal. We’ll show all the processes involved in this type of
arrangement in Chapter 19 when we talk about pseudo terminals in more detail.

The important thing to understand is that whether we log in through a terminal
(Figure 9.3) or a network (Figure 9.5), we have a login shell with its standard input,
standard output, and standard error connected to either a terminal device or a pseudo
terminal device. We'll see in the coming sections that this login shell is the start of a
POSIX.1 session, and that the terminal or pseudo terminal is the controlling terminal for
the session.

Mac OS X Network Logins

Logging in to a Mac OS X system over a network is identical to logging in to a BSD
system, because Mac OS X is based partially on FreeBSD. However, on Mac OS X, the
telnet daemon is run from launchd.
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By default, the telnet daemon is disabled on Mac OS X (although it can be enabled with the
launchctl(l) command). The preferred way to perform a network login on Mac OS X is
with ssh, the secure shell command.

Linux Network Logins

Network logins under Linux are the same as under BSD, except that some distributions
use an alternative inetd process called the extended Internet services daemon,
xinetd. The xinetd process provides a finer level of control over services it starts
compared to inetd.

Solaris Network Logins

9.4

The scenario for network logins under Solaris is almost identical to the steps under BSD
and Linux. An inetd server is used that is similar in concept to the BSD version,
except that the Solaris version runs as a restarter in the Service Management Facility
(SMF). A restarter is a daemon that has the responsibility to start and monitor other
daemon processes, and restart them if they fail. Although the inetd server is started
by the master restarter in the SMF, the master restarter is started by init and we end
up with the same overall picture as in Figure 9.5.

The Solaris Service Management Facility is a framework that manages and monitors system
services and provides a way to recover from failures affecting system services. For more
details on the Service Management Facility, see Adams [2005] and the Solaris manual pages
smf(5) and inetd(1M).

Process Groups

In addition to having a process ID, each process belongs to a process group. We'll
encounter process groups again when we discuss signals in Chapter 10.

A process group is a collection of one or more processes, usually associated with the
same job (job control is discussed in Section 9.8), that can receive signals from the same
terminal. Each process group has a unique process group ID. Process group IDs are
similar to process IDs: they are positive integers and can be stored in a pid_t data type.
The function getpgrp returns the process group ID of the calling process.

#include <unistd.h>

pid_t getpgrp(void);

Returns: process group ID of calling process

In older BSD-derived systems, the getpgrp function took a pid argument and returned
the process group for that process. The Single UNIX Specification defines the getpgid
function that mimics this behavior.
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#include <unistd.h>
pid_t getpgid(pid_ t pid);

Returns: process group ID if OK, -1 on error

If pid is 0, the process group ID of the calling process is returned. Thus
getpgid(0);

is equivalent to
getpgrp();

Each process group can have a process group leader. The leader is identified by its
process group ID being equal to its process ID.

It is possible for a process group leader to create a process group, create processes in
the group, and then terminate. The process group still exists, as long as at least one
process is in the group, regardless of whether the group leader terminates. This is
called the process group lifetime—the period of time that begins when the group is
created and ends when the last remaining process leaves the group. The last remaining
process in the process group can either terminate or enter some other process group.

A process joins an existing process group or creates a new process group by calling
setpgid. (In the next section, we'll see that setsid also creates a new process group.)

#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

Returns: 0 if OK, -1 on error

This function sets the process group ID to pgid in the process whose process ID equals
pid. If the two arguments are equal, the process specified by pid becomes a process
group leader. If pid is 0, the process ID of the caller is used. Also, if pgid is 0, the process
ID specified by pid is used as the process group ID.

A process can set the process group ID of only itself or any of its children.
Furthermore, it can’t change the process group ID of one of its children after that child
has called one of the exec functions.

In most job-control shells, this function is called after a fork to have the parent set
the process group ID of the child, and to have the child set its own process group ID.
One of these calls is redundant, but by doing both, we are guaranteed that the child is
placed into its own process group before either process assumes that this has happened.
If we didn’t do this, we would have a race condition, since the child’s process group
membership would depend on which process executes first.

When we discuss signals, we’ll see how we can send a signal to either a single
process (identified by its process ID) or a process group (identified by its process group
ID). Similarly, the waitpid function from Section 8.6 lets us wait for either a single
process or one process from a specified process group.
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9.5 Sessions

A session is a collection of one or more process groups. For example, we could have the
arrangement shown in Figure 9.6. Here we have three process groups in a single

session.
Fmm— - n P~ n P n
| | | | | |
‘ : login shell : : procl proc2 : : proc3 procé : ‘
| | | |
‘ L ____ 2 Lo _______ 2 : : ‘
process group process group : :
‘ : proc5 :
| |
Lo _______ 2
process group

session

Figure 9.6 Arrangement of processes into process groups and sessions

The processes in a process group are usually placed there by a shell pipeline. For
example, the arrangement shown in Figure 9.6 could have been generated by shell
commands of the form

procl | proc2 &
proc3 | proc4 | proc5s

A process establishes a new session by calling the setsid function.

#include <unistd.h>

pid_t setsid(void);

Returns: process group ID if OK, -1 on error

If the calling process is not a process group leader, this function creates a new session.
Three things happen.

1. The process becomes the session leader of this new session. (A session leader is
the process that creates a session.) The process is the only process in this new
session.

2. The process becomes the process group leader of a new process group. The new
process group ID is the process ID of the calling process.

3. The process has no controlling terminal. (We'll discuss controlling terminals in
the next section.) If the process had a controlling terminal before calling
setsid, that association is broken.
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9.6

This function returns an error if the caller is already a process group leader. To ensure
this is not the case, the usual practice is to call fork and have the parent terminate and
the child continue. We are guaranteed that the child is not a process group leader,
because the process group ID of the parent is inherited by the child, but the child gets a
new process ID. Hence, it is impossible for the child’s process ID to equal its inherited
process group ID.

The Single UNIX Specification talks only about a “session leader”; there is no
“session ID” similar to a process ID or a process group ID. Obviously, a session leader
is a single process that has a unique process ID, so we could talk about a session ID that
is the process ID of the session leader. This concept of a session ID was introduced in
SVR4. Historically, BSD-based systems didn’t support this notion, but have since been
updated to include it. The getsid function returns the process group ID of a process’s
session leader.

Some implementations, such as Solaris, join with the Single UNIX Specification in the practice
of avoiding the use of the phrase “session ID,” opting instead to refer to this as the “process
group ID of the session leader.” The two are equivalent, since the session leader is always the
leader of a process group.

#include <unistd.h>

pid_t getsid(pid_t pid);

Returns: session leader’s process group ID if OK, -1 on error

If pid is 0, getsid returns the process group ID of the calling process’s session leader.
For security reasons, some implementations may restrict the calling process from
obtaining the process group ID of the session leader if pid doesn’t belong to the same
session as the caller.

Controlling Terminal

Sessions and process groups have a few other characteristics.

* A session can have a single controlling terminal. This is usually the terminal
device (in the case of a terminal login) or pseudo terminal device (in the case of a
network login) on which we log in.

* The session leader that establishes the connection to the controlling terminal is
called the controlling process.

* The process groups within a session can be divided into a single foreground
process group and one or more background process groups.

* If a session has a controlling terminal, it has a single foreground process group
and all other process groups in the session are background process groups.

* Whenever we press the terminal’s interrupt key (often DELETE or Control-C),
the interrupt signal is sent to all processes in the foreground process group.

www.it-ebooks.info


http://www.it-ebooks.info/

Section 9.6

Controlling Terminal 297

* Whenever we press the terminal’s quit key (often Control-backslash), the quit
signal is sent to all processes in the foreground process group.

e If a modem (or network) disconnect is detected by the terminal interface, the
hang-up signal is sent to the controlling process (the session leader).

These characteristics are shown in Figure 9.7.

- . __sesn__
rTTT T 7 FTT T T T T T T 7 rT T T T T ST T oo 7
[ [ [ [ \ [
‘ : login shell : : procl proc2 : : proc3 proc4 : ‘
[ [ [ [

Lommm o 2 Lo o oo 2 : :
background process group  background process group | | ‘
session leader = ‘ ‘

‘ controlling process : proc5 : ‘

[ [

controlling
terminal

Figure 9.7 Process groups and sessions showing controlling terminal

Usually, we don’t have to worry about the controlling terminal; it is established
automatically when we log in.

POSIX.1 leaves the choice of the mechanism used to allocate a controlling terminal up to each
individual implementation. We’ll show the actual steps in Section 19.4.

Systems derived from UNIX System V allocate the controlling terminal for a session when the
session leader opens the first terminal device that is not already associated with a session, as
long as the call to open does not specify the 0_NOCTTY flag (Section 3.3).

BSD-based systems allocate the controlling terminal for a session when the session leader calls
ioctl with a request argument of TIOCSCTTY (the third argument is a null pointer). The
session cannot already have a controlling terminal for this call to succeed. (Normally, this call
to ioctl follows a call to setsid, which guarantees that the process is a session leader
without a controlling terminal.) The POSIX.1 O_NOCTTY flag to open is not used by
BSD-based systems, except in compatibility-mode support for other systems.

Figure 9.8 summarizes the way each platform discussed in this book allocates a controlling
terminal. Note that although Mac OS X 10.6.8 is derived from BSD, it behaves like System V
when allocating a controlling terminal.
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9.7

FreeBSD  Linux MacOSX Solaris
8.0 3.2.0 10.6.8 10

open without O_NOCTTY 3 . .
TIOCSCTTY ioctl command . . . .

Method

Figure 9.8 How various implementations allocate controlling terminals

There are times when a program wants to talk to the controlling terminal, regardless
of whether the standard input or standard output is redirected. The way a program
guarantees that it is talking to the controlling terminal is to open the file /dev/tty.
This special file is a synonym within the kernel for the controlling terminal. Naturally,
if the program doesn’t have a controlling terminal, the open of this device will fail.

The classic example is the getpass(3) function, which reads a password (with
terminal echoing turned off, of course). This function is called by the crypt(1) program
and can be used in a pipeline. For example,

crypt < salaries | lpr

decrypts the file salaries and pipes the output to the print spooler. Because crypt
reads its input file on its standard input, the standard input can’t be used to enter the
password. Also, crypt is designed so that we have to enter the encryption password
each time we run the program, to prevent us from saving the password in a file (which
could be a security hole).

There are known ways to break the encoding used by the crypt program. See
Garfinkel et al. [2003] for more details on encrypting files.

tcgetpgrp, tcsetpgrp, and tcgetsid Functions
We need a way to tell the kernel which process group is the foreground process group,

so that the terminal device driver knows where to send the terminal input and the
terminal-generated signals (Figure 9.7).

#include <unistd.h>
pid_t tcgetpgrp(int fd);

Returns: process group ID of foreground process group if OK, -1 on error
int tcsetpgrp(int fd, pid_t pgrpid);

Returns: 0 if OK, -1 on error

The function tcgetpgrp returns the process group ID of the foreground process group
associated with the terminal open on fd.

If the process has a controlling terminal, the process can call tcsetpgrp to set the
foreground process group ID to pgrpid. The value of pgrpid must be the process group
ID of a process group in the same session, and fd must refer to the controlling terminal
of the session.

www.it-ebooks.info


http://www.it-ebooks.info/

Section 9.8 Job Control 299

9.8

Most applications don’t call these two functions directly. Instead, the functions are
normally called by job-control shells.

The tcgetsid function allows an application to obtain the process group ID for the
session leader given a file descriptor for the controlling TTY.

#include <termios.h>
pid_t tcgetsid(int fd);

Returns: session leader’s process group ID if OK, -1 on error

Applications that need to manage controlling terminals can use tcgetsid to
identify the session ID of the controlling terminal’s session leader (which is equivalent
to the session leader’s process group ID).

Job Control

Job control is a feature that was added to BSD around 1980. This feature allows us to
start multiple jobs (groups of processes) from a single terminal and to control which
jobs can access the terminal and which jobs are run in the background. Job control
requires three forms of support:

1. A shell that supports job control
2. The terminal driver in the kernel must support job control
3. The kernel must support certain job-control signals

SVR3 provided a different form of job control called shell layers. The BSD form of job control,
however, was selected by POSIX.1 and is what we describe here. In earlier versions of the
standard, job control support was optional, but POSIX.1 now requires platforms to support it.

From our perspective, when using job control from a shell, we can start a job in
either the foreground or the background. A job is simply a collection of processes, often
a pipeline of processes. For example,

vi main.c
starts a job consisting of one process in the foreground. The commands

pr *.c | lpr &
make all &

start two jobs in the background. All the processes invoked by these background jobs
are in the background.

As we said, to use the features provided by job control, we need to use a shell that
supports job control. With older systems, it was simple to say which shells supported
job control and which didn’t. The C shell supported job control, the Bourne shell didn’t,
and it was an option with the Korn shell, depending on whether the host supported job
control. But the C shell has been ported to systems (e.g., earlier versions of System V)
that don’t support job control, and the SVR4 Bourne shell, when invoked by the name
jsh instead of sh, supports job control. The Korn shell continues to support job control
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if the host does. The Bourne-again shell also supports job control. We'll just talk
generically about a shell that supports job control, versus one that doesn’t, when the
difference between the various shells doesn’t matter.

When we start a background job, the shell assigns it a job identifier and prints one
or more of the process IDs. The following script shows how the Korn shell handles this:

$ make all > Make.out &

[1] 1475

$ pr *.c | 1lpr &

[2] 1490

$ just press RETURN
[2] + Done pr *.c | lpr &

[1] + Done make all > Make.out &

The make is job number 1 and the starting process ID is 1475. The next pipeline is job
number 2 and the process ID of the first process is 1490. When the jobs are done and we
press RETURN, the shell tells us that the jobs are complete. The reason we have to press
RETURN is to have the shell print its prompt. The shell doesn’t print the changed
status of background jobs at any random time—only right before it prints its prompt, to
let us enter a new command line. If the shell didn’t do this, it could produce output
while we were entering an input line.

The interaction with the terminal driver arises because a special terminal character
affects the foreground job: the suspend key (typically Control-Z). Entering this
character causes the terminal driver to send the SIGTSTP signal to all processes in the
foreground process group. The jobs in any background process groups aren’t affected.
The terminal driver looks for three special characters, which generate signals to the
foreground process group.

¢ The interrupt character (typically DELETE or Control-C) generates SIGINT.
¢ The quit character (typically Control-backslash) generates SIGQUIT.
* The suspend character (typically Control-Z) generates SIGTSTP.

In Chapter 18, we’ll see how we can change these three characters to be any characters
we choose and how we can disable the terminal driver’s processing of these special
characters.

Another job control condition can arise that must be handled by the terminal driver.
Since we can have a foreground job and one or more background jobs, which of these
receives the characters that we enter at the terminal? Only the foreground job receives
terminal input. It is not an error for a background job to try to read from the terminal,
but the terminal driver detects this and sends a special signal to the background job:
SIGTTIN. This signal normally stops the background job; by using the shell, we are
notified of this event and can bring the job into the foreground so that it can read from
the terminal. The following example demonstrates this:

$ cat > temp.foo & start in background, but it’ll read from standard input
[1] 1681

$ we press RETURN

[1] + Stopped (SIGTTIN) cat > temp.foo &
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$ fg %1 bring job number 1 into the foreground

cat > temp.foo the shell tells us which job is now in the foreground
hello, world enter one line

“D type the end-of-file character

$ cat temp.foo check that the one line was put into the file

hello, world

Note that this example doesn’t work on Mac OS X 10.6.8. When we try to bring the cat
command into the foreground, the read fails with errno set to EINTR. Since Mac OS X is
based on FreeBSD, and FreeBSD works as expected, this must be a bug in Mac OS X.

The shell starts the cat process in the background, but when cat tries to read its
standard input (the controlling terminal), the terminal driver, knowing that it is a
background job, sends the SIGTTIN signal to the background job. The shell detects this
change in status of its child (recall our discussion of the wait and waitpid function in
Section 8.6) and tells us that the job has been stopped. We then move the stopped job
into the foreground with the shell’s £g command. (Refer to the manual page for the
shell that you are using for all the details on its job control commands, such as fg and
bg, and the various ways to identify the different jobs.) Doing this causes the shell to
place the job into the foreground process group (tcsetpgrp) and send the continue
signal (SIGCONT) to the process group. Since it is now in the foreground process group,
the job can read from the controlling terminal.

What happens if a background job sends its output to the controlling terminal?
This is an option that we can allow or disallow. Normally, we use the stty(1)
command to change this option. (We'll see in Chapter 18 how we can change this
option from a program.) The following example shows how this works:

$ cat temp.foo & execute in background

[1] 1719

$ hello, world the output from the background job appears after the prompt
we press RETURN

[1] + Done cat temp.foo &

$ stty tostop disable ability of background jobs to output to controlling terminal

$ cat temp.foo & try it again in the background

[1] 1721

$ we press RETURN and find the job is stopped

[1] + Stopped(SIGTTOU) cat temp.foo &

$ fg %1 resume stopped job in the foreground

cat temp.foo the shell tells us which job is now in the foreground

hello, world and here is its output

When we disallow background jobs from writing to the controlling terminal, cat will
block when it tries to write to its standard output, because the terminal driver identifies
the write as coming from a background process and sends the job the SIGTTOU signal.
As with the previous example, when we use the shell’s £g command to bring the job
into the foreground, the job completes.

Figure 9.9 summarizes some of the features of job control that we’ve been
describing. The solid lines through the terminal driver box mean that the terminal I/O
and the terminal-generated signals are always connected from the foreground process
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init, inetd, or launchd

telnetd

exec, after setsid, then
establishing controlling terminal

login

exec

login shell

background
process group(s)
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process group

tcsetpgrp to set process group
for controlling terminal

terminal
driver N

user at a
terminal

session

Figure 9.9 Summary of job control features with foreground and background jobs, and terminal driver

group to the actual terminal. The dashed line corresponding to the SIGTTOU signal
means that whether the output from a process in the background process group appears
on the terminal is an option.

Is job control necessary or desirable? Job control was originally designed and
implemented before windowing terminals were widespread. Some people claim that a
well-designed windowing system removes any need for job control. Some complain
that the implementation of job control—requiring support from the kernel, the terminal
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driver, the shell, and some applications—is a hack. Some use job control with a
windowing system, claiming a need for both. Regardless of your opinion, job control is
a required feature of POSIX.1.

Shell Execution of Programs

Let’s examine how the shells execute programs and how this relates to the concepts of
process groups, controlling terminals, and sessions. To do this, we'll use the ps
command again.

First, we’ll use a shell that doesn’t support job control—the classic Bourne shell
running on Solaris. If we execute

ps -o pid,ppid,pgid,sid,comm
the output is

PID PPID PGID SID COMMAND
949 947 949 949 sh
1774 949 949 949 ps

The parent of the ps command is the shell, which we would expect. Both the shell and
the ps command are in the same session and foreground process group (949). We say
that 949 is the foreground process group because that is what you get when you execute
a command with a shell that doesn’t support job control.

Some platforms support an option to have the ps(l) command print the process group ID
associated with the session’s controlling terminal. This value would be shown under the
TPGID column. Unfortunately, the output of the ps command often differs among versions of
the UNIX System. For example, Solaris 10 doesn’t support this option. Under FreeBSD 8.0,
Linux 3.2.0, and Mac OS X 10.6.8, the command

ps -o pid,ppid,pgid,sid,tpgid,comm
prints exactly the information we want.

Note that it is misleading to associate a process with a terminal process group ID (the TPGID
column). A process does not have a terminal process control group. A process belongs to a
process group, and the process group belongs to a session. The session may or may not have a
controlling terminal. If the session does have a controlling terminal, then the terminal device
knows the process group ID of the foreground process. This value can be set in the terminal
driver with the tcsetpgrp function, as we show in Figure 9.9. The foreground process group
ID is an attribute of the terminal, not the process. This value from the terminal device driver is
what ps prints as the TPGID. If it finds that the session doesn’t have a controlling terminal, ps
prints either 0 or -1, depending on the platform.

If we execute the command in the background,
ps -o pid,ppid,pgid,sid,comm &
the only value that changes is the process ID of the command:

PID PPID PGID SID COMMAND
949 947 949 949 sh
1812 949 949 949 ps
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This shell doesn’t know about job control, so the background job is not put into its own
process group and the controlling terminal isn’t taken away from the background job.
Now let’s look at how the Bourne shell handles a pipeline. When we execute

ps -o pid,ppid,pgid,sid,comm | catl
the output is

PID PPID PGID SID COMMAND
949 947 949 949 sh

1823 949 949 949 catl
1824 1823 949 949 ps

(The program cat1l is just a copy of the standard cat program, with a different name.
We have another copy of cat with the name cat2, which we’ll use later in this section.
When we have two copies of cat in a pipeline, the different names let us differentiate
between the two programs.) Note that the last process in the pipeline is the child of the
shell and that the first process in the pipeline is a child of the last process. It appears
that the shell forks a copy of itself and that this copy then forks to make each of the
previous processes in the pipeline.
If we execute the pipeline in the background,

ps -o pid,ppid,pgid,sid,comm | catl &

only the process IDs change. Since the shell doesn’t handle job control, the process
group ID of the background processes remains 949, as does the process group ID of the
session.

What happens in this case if a background process tries to read from its controlling
terminal? For example, suppose that we execute

cat > temp.foo &

With job control, this is handled by placing the background job into a background
process group, which causes the signal SIGTTIN to be generated if the background job
tries to read from the controlling terminal. The way this is handled without job control
is that the shell automatically redirects the standard input of a background process to
/dev/null, if the process doesn’t redirect standard input itself. A read from
/dev/null generates an end of file. This means that our background cat process
immediately reads an end of file and terminates normally.

The previous paragraph adequately handles the case of a background process
accessing the controlling terminal through its standard input, but what happens if a
background process specifically opens /dev/tty and reads from the controlling
terminal? The answer is “It depends,” but the result is probably not what we want. For
example,

crypt < salaries | lpr &

is such a pipeline. We run it in the background, but the crypt program opens
/dev/tty, changes the terminal characteristics (to disable echoing), reads from the
device, and resets the terminal characteristics. When we execute this background
pipeline, the prompt Password: from crypt is printed on the terminal, but what we
enter (the encryption password) is read by the shell, which tries to execute a command
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of that name. The next line we enter to the shell is taken as the password, and the file is
not encrypted correctly, sending junk to the printer. Here we have two processes trying
to read from the same device at the same time, and the result depends on the system.
Job control, as we described earlier, handles this multiplexing of a single terminal
between multiple processes in a better fashion.

Returning to our Bourne shell example, if we execute three processes in the
pipeline, we can examine the process control used by this shell:

ps -o pid,ppid,pgid,sid,comm | catl | cat2
This pipeline generates the following output:

PID PPID PGID SID COMMAND
949 947 949 949 sh
1988 949 949 949 cat2
1989 1988 949 949 ps

1990 1988 949 949 catl

Don’t be alarmed if the output on your system doesn’t show the proper command names.
Sometimes you might get results such as

PID PPID PGID SID COMMAND
949 947 949 949 sh
1831 949 949 949 sh
1832 1831 949 949 ps
1833 1831 949 949 sh

What's happening here is that the ps process is racing with the shell, which is forking and
executing the cat commands. In this case, the shell hasn’t yet completed the call to exec
when ps has obtained the list of processes to print.

Again, the last process in the pipeline is the child of the shell, and all previous processes
in the pipeline are children of the last process. Figure 9.10 shows what is happening.

sh exec ps
&/ (1989) (1989)
97
sh fork sh ’ S
,,,,,, :pipeline
(949) ™ (1988) PP
N 1(‘ .
>, \&‘:{. Y
"‘-’)O/. 4| sh exec catl
o,’% (1990) (1990)
Of‘.?z;é exec .
%%
Q@\@
%,
. IR
v ] R
cat2
(1988)

Figure 9.10 Processes in the pipeline ps | catl | cat2 when invoked by Bourne shell
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Since the last process in the pipeline is the child of the login shell, the shell is notified
when that process (cat2) terminates.

Now let’s examine the same examples using a job-control shell running on Linux.
This shows the way these shells handle background jobs. We’ll use the Bourne-again
shell in this example; the results with other job-control shells are almost identical.

ps -o pid,ppid,pgid,sid,tpgid, comm
gives us

PID PPID PGID SID TPGID COMMAND
2837 2818 2837 2837 5796 bash
5796 2837 5796 2837 5796 ps

(Starting with this example, we show the foreground process group in a bolder
font.) We immediately see a difference from our Bourne shell example. The
Bourne-again shell places the foreground job (ps) into its own process group (5796).
The ps command is the process group leader and the only process in this process group.
Furthermore, this process group is the foreground process group, since it has the
controlling terminal. Our login shell is a background process group while the ps
command executes. Note, however, that both process groups, 2837 and 5796, are
members of the same session. Indeed, we'll see that the session never changes through
our examples in this section.
Executing this process in the background,

ps -o pid,ppid,pgid,sid,tpgid,comm &
gives us

PID PPID PGID SID TPGID COMMAND
2837 2818 2837 2837 2837 bash
5797 2837 5797 2837 2837 ps

Again, the ps command is placed into its own process group, but this time the process
group (5797) is no longer the foreground process group—it is a background process
group. The TPGID of 2837 indicates that the foreground process group is our login
shell.

Executing two processes in a pipeline, as in

ps -o pid,ppid,pgid,sid,tpgid,comm | catl
gives us

PID PPID PGID SID TPGID COMMAND
2837 2818 2837 2837 5799 bash
5799 2837 5799 2837 5799 ps
5800 2837 5799 2837 5799 catl

Both processes, ps and catl, are placed into a new process group (5799), and this is the
foreground process group. We can also see another difference between this example
and the similar Bourne shell example. The Bourne shell created the last process in the
pipeline first, and this final process was the parent of the first process. Here, the
Bourne-again shell is the parent of both processes. If we execute this pipeline in the
background,
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ps -o pid,ppid,pgid,sid,tpgid,comm | catl &
the results are similar, but now ps and cat1 are placed in the same background process
group:
PID PPID PGID SID TPGID COMMAND
2837 2818 2837 2837 2837 bash

5801 2837 5801 2837 2837 ps
5802 2837 5801 2837 2837 catl

Note that the order in which a shell creates processes can differ depending on the
particular shell in use.

9.10 Orphaned Process Groups
We’ve mentioned that a process whose parent terminates is called an orphan and is
inherited by the init process. We now look at entire process groups that can be
orphaned and see how POSIX.1 handles this situation.

Example

Consider a process that forks a child and then terminates. Although this is nothing
abnormal (it happens all the time), what happens if the child is stopped (using job
control) when the parent terminates? How will the child ever be continued, and does
the child know that it has been orphaned? Figure 9.11 shows this situation: the parent
process has forked a child that stops, and the parent is about to exit.

mroge;sz@;%@ ]

login shell :
(PID 2837) | | ‘
1

-7
|
|
|

fork/exec

parent
(PID 6099)

session

A
child

(PID 6100)

|
|
|
|

\“[\

\01.. |
|
|
|

4
process group 6099

Figure 9.11 Example of a process group about to be orphaned
The program that creates this situation is shown in Figure 9.13. This program has some

new features. Here, we are assuming a job-control shell. Recall from the previous
section that the shell places the foreground process into its own process group (6099 in
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#include "apue.h"
#include <errno.h>

static void
sig hup(int signo)

{

printf ("SIGHUP received, pid = %1d\n", (long)getpid());

}

static void
pr_ids(char *name)

{
printf("%s: pid = %1d, ppid = %1d, pgrp = %1d, tpgrp = %ld\n",
name, (long)getpid(), (long)getppid(), (long)getpgrp(),
(long)tcgetpgrp(STDIN FILENO));
fflush(stdout);
}
int
main(void)
{
char c;
pid_t pid;
pr_ids("parent");
if ((pid = fork()) < 0) {
err_sys("fork error");
} else if (pid > 0) { /* parent */
sleep(5); /* sleep to let child stop itself */
} else { /* child */
pr_ ids("child");
signal (SIGHUP, sig hup); /* establish signal handler */
kill(getpid(), SIGTSTP); /* stop ourself */
pr_ids("child"); /* prints only if we’re continued */
if (read(STDIN FILENO, &c, 1) != 1)
printf("read error %d on controlling TTY\n", errno);
exit(0);
}

Figure 9.12 Creating an orphaned process group

this example) and that the shell stays in its own process group (2837). The child inherits
the process group of its parent (6099). After the fork,

The parent sleeps for 5 seconds. This is our (imperfect) way of letting the child
execute before the parent terminates.

The child establishes a signal handler for the hang-up signal (SIGHUP) so we can
see whether it is sent to the child. (We discuss signal handlers in Chapter 10.)
The child sends itself the stop signal (SIGTSTP) with the kill function. This
stops the child, similar to our stopping a foreground job with our terminal’s
suspend character (Control-Z).
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* When the parent terminates, the child is orphaned, so the child’s parent process
ID becomes 1, which is the init process ID.

e At this point, the child is now a member of an orphaned process group. The
POSIX.1 definition of an orphaned process group is one in which the parent of
every member is either itself a member of the group or is not a member of the
group’s session. Another way of saying this is that the process group is not
orphaned as long as a process in the group has a parent in a different process
group but in the same session. If the process group is not orphaned, there is a
chance that one of those parents in a different process group but in the same
session will restart a stopped process in the process group that is not orphaned.
Here, the parent of every process in the group (e.g., process 1 is the parent of
process 6100) belongs to another session.

e Since the process group is orphaned when the parent terminates, and the
process group contains a stopped process, POSIX.1 requires that every process in
the newly orphaned process group be sent the hang-up signal (SIGHUP)
followed by the continue signal (SIGCONT).

¢ This causes the child to be continued, after processing the hang-up signal. The
default action for the hang-up signal is to terminate the process, so we have to
provide a signal handler to catch the signal. We therefore expect the printf in
the sig_hup function to appear before the printf in the pr_ids function.

Here is the output from the program shown in Figure 9.13:

$ ./a.out

parent: pid = 6099, ppid = 2837, pgrp = 6099, tpgrp = 6099
child: pid = 6100, ppid = 6099, pgrp = 6099, tpgrp = 6099
$ SIGHUP received, pid = 6100

child: pid = 6100, ppid = 1, pgrp = 6099, tpgrp = 2837
read error 5 on controlling TTY

Note that our shell prompt appears with the output from the child, since two
processes—our login shell and the child—are writing to the terminal. As we expect,
the parent process ID of the child has become 1.

After calling pr_ids in the child, the program tries to read from standard input.
As we saw earlier in this chapter, when a process in a background process group tries to
read from its controlling terminal, SIGTTIN is generated for the background process
group. But here we have an orphaned process group; if the kernel were to stop it with
this signal, the processes in the process group would probably never be continued.
POSIX.1 specifies that the read is to return an error with errno set to EIO (whose
value is 5 on this system) in this situation.

Finally, note that our child was placed in a background process group when the
parent terminated, since the parent was executed as a foreground job by the shell. O

We'll see another example of orphaned process groups in Section 19.5 with the pty
program.
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9.11 FreeBSD Implementation

Having talked about the various attributes of a process, process group, session, and
controlling terminal, it’s worth looking at how all this can be implemented. We’ll look
briefly at the implementation used by FreeBSD. Some details of the SVR4
implementation of these features can be found in Williams [1989]. Figure 9.13 shows the
various data structures used by FreeBSD.

session structure

tty structure ~ .| s_count
s_leader
s_ttyvp
t_session [T s_ttyp vnode structure
t_pgrp % s_sid
on reé’rou
t_termios Ocegg 1d
8Foup pgrp structure v data
t_winsize ;
pg_id
pg_session [
linked list of pg_members
process group members -
proc structure proc structure proc structure
= p_pglist p_pglist = P pglist
p_pid p_pid p_pid
p_pptr p_pptr p_pptr
p_pgrp p_pgrp p_pgrp

Figure 9.13 FreeBSD implementation of sessions and process groups

Let’s look at all the fields that we’ve labeled, starting with the session structure.
One of these structures is allocated for each session (e.g., each time setsid is called).

® s_count is the number of process groups in the session. When this counter is
decremented to 0, the structure can be freed.
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s_leader is a pointer to the proc structure of the session leader.
S_ttyvp is a pointer to the vnode structure of the controlling terminal.
s_ttyp is a pointer to the tty structure of the controlling terminal.

s_sid is the session ID. Recall that the concept of a session ID is not part of the
Single UNIX Specification.

When setsid is called, a new session structure is allocated within the kernel.
Now s_count is set to 1, s_leader is set to point to the proc structure of the calling
process, s_sid is set to the process ID, and s_ttyvp and s_ttyp are set to null
pointers, since the new session doesn’t have a controlling terminal.

Let’'s move to the tty structure. The kernel contains one of these structures for
each terminal device and each pseudo terminal device. (We talk more about pseudo
terminals in Chapter 19.)

t_session points to the session structure that has this terminal as its
controlling terminal. (Note that the tty structure points to the session
structure, and vice versa.) This pointer is used by the terminal to send a hang-
up signal to the session leader if the terminal loses carrier (Figure 9.7).

t_pgrp points to the pgrp structure of the foreground process group. This field
is used by the terminal driver to send signals to the foreground process group.
The three signals generated by entering special characters (interrupt, quit, and
suspend) are sent to the foreground process group.

t_termios is a structure containing all the special characters and related
information for this terminal, such as baud rate, whether echo is enabled, and so
on. We'll return to this structure in Chapter 18.

t winsize is a winsize structure that contains the current size of the terminal
window. When the size of the terminal window changes, the SIGWINCH signal
is sent to the foreground process group. We show how to set and fetch the
terminal’s current window size in Section 18.12.

To find the foreground process group of a particular session, the kernel has to start with
the session structure, follow s_ttyp to get to the controlling terminal’s tty structure,
and then follow t_pgrp to get to the foreground process group’s pgrp structure. The
pgrp structure contains the information for a particular process group.

pg_id is the process group ID.

pg_session points to the session structure for the session to which this
process group belongs.

pg_members is a pointer to the list of proc structures that are members of this
process group. The p_pglist structure in that proc structure is a doubly
linked list entry that points to both the next process and the previous process in
the group, and so on, until a null pointer is encountered in the proc structure of
the last process in the group.
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The proc structure contains all the information for a single process.

* p_pid contains the process ID.

* p_pptr isa pointer to the proc structure of the parent process.

* p_ pgrp points to the pgrp structure of the process group to which this process

belongs.

* p pglist is a structure containing pointers to the next and previous processes

in the process group, as we mentioned earlier.

Finally, we have the vnode structure. This structure is allocated when the
controlling terminal device is opened. All references to /dev/tty in a process go
through this vnode structure.

9.12 Summary

This chapter has described the relationships between groups of processes—sessions,
which are made up of process groups. Job control is a feature supported by most UNIX
systems today, and we’ve described how it’s implemented by a shell that supports job
control. The controlling terminal for a process, /dev/tty, is also involved in these
process relationships.

We’ve made numerous references to the signals that are used in all these process
relationships. The next chapter continues the discussion of signals, looking at all the
UNIX System signals in detail.

Exercises

9.1 Refer back to our discussion of the utmp and wtmp files in Section 6.8. Why are the logout
records written by the init process? Is this handled the same way for a network login?

9.2 Write a small program that calls fork and has the child create a new session. Verify that
the child becomes a process group leader and that the child no longer has a controlling
terminal.
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Signals

Introduction

Signals are software interrupts. Most nontrivial application programs need to deal with
signals. Signals provide a way of handling asynchronous events—for example, a user
at a terminal typing the interrupt key to stop a program or the next program in a
pipeline terminating prematurely.

Signals have been provided since the early versions of the UNIX System, but the
signal model provided with systems such as Version 7 was not reliable. Signals could
get lost, and it was difficult for a process to turn off selected signals when executing
critical regions of code. Both 4.3BSD and SVR3 made changes to the signal model,
adding what are called reliable signals. But the changes made by Berkeley and AT&T
were incompatible. Fortunately, POSIX.1 standardized the reliable-signal routines, and
that is what we describe here.

In this chapter, we start with an overview of signals and a description of what each
signal is normally used for. Then we look at the problems with earlier implementations.
It is often important to understand what is wrong with an implementation before seeing
how to do things correctly. This chapter contains numerous examples that are not
entirely correct and a discussion of the defects.

Signal Concepts

First, every signal has a name. These names all begin with the three characters SIG. For
example, SIGABRT is the abort signal that is generated when a process calls the abort
function. SIGALRM is the alarm signal that is generated when the timer set by the
alarm function goes off. Version 7 had 15 different signals; SVR4 and 4.4BSD both had
31 different signals. FreeBSD 8.0 supports 32 different signals. Mac OS X 10.6.8 and

313
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Linux 3.2.0 each support 31 different signals, whereas Solaris 10 supports 40 different
signals. FreeBSD, Linux, and Solaris, however, support additional application-defined
signals introduced to support real-time applications. Although the POSIX real-time
extensions aren’t covered in this book (refer to Gallmeister [1995] for more information),
as of SUSv4 the real-time signal interfaces have moved to the base specification.

Signal names are all defined by positive integer constants (the signal number) in the
header <signal.h>.

Implementations actually define the individual signals in a different header file, but this
header file is included by <signal.h>. It is considered bad form for the kernel to include
header files meant for user-level applications, so if the applications and the kernel both need
the same definitions, the information is placed in a kernel header file that is then included by
the user-level header file. Thus both FreeBSD 8.0 and Mac OS X 10.6.8 define the signals in
<sys/signal.h>. Linux 3.2.0 defines the signals in <bits/signum.h>, and Solaris 10
defines them in <sys/iso/signal_iso.h>.

No signal has a signal number of 0. We'll see in Section 10.9 that the kill function uses
the signal number of 0 for a special case. POSIX.1 calls this value the null signal.
Numerous conditions can generate a signal:

The terminal-generated signals occur when users press certain terminal keys.
Pressing the DELETE key on the terminal (or Control-C on many systems)
normally causes the interrupt signal (SIGINT) to be generated. This is how to
stop a runaway program. (We'll see in Chapter 18 how this signal can be
mapped to any character on the terminal.)

Hardware exceptions generate signals: divide by 0, invalid memory reference,
and the like. These conditions are usually detected by the hardware, and the
kernel is notified. The kernel then generates the appropriate signal for the
process that was running at the time the condition occurred. For example,
SIGSEGV is generated for a process that executes an invalid memory reference.

The ki11(2) function allows a process to send any signal to another process or
process group. Naturally, there are limitations: we have to be the owner of the
process that we're sending the signal to, or we have to be the superuser.

The kill(l) command allows us to send signals to other processes. This
program is just an interface to the kill function. This command is often used
to terminate a runaway background process.

Software conditions can generate signals when a process should be notified of
various events. These aren’t hardware-generated conditions (as is the divide-
by-0 condition), but software conditions. Examples are SIGURG (generated
when out-of-band data arrives over a network connection), SIGPIPE (generated
when a process writes to a pipe that has no reader), and SIGALRM (generated
when an alarm clock set by the process expires).

Signals are classic examples of asynchronous events. They occur at what appear to
be random times to the process. The process can’t simply test a variable (such as
errno) to see whether a signal has occurred; instead, the process has to tell the kernel
“if and when this signal occurs, do the following.”
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We can tell the kernel to do one of three things when a signal occurs. We call this
the disposition of the signal, or the action associated with a signal.

1.

Ignore the signal. This works for most signals, but two signals can never be
ignored: SIGKILL and SIGSTOP. The reason these two signals can’t be ignored
is to provide the kernel and the superuser with a surefire way of either killing or
stopping any process. Also, if we ignore some of the signals that are generated
by a hardware exception (such as illegal memory reference or divide by 0), the
behavior of the process is undefined.

Catch the signal. To do this, we tell the kernel to call a function of ours
whenever the signal occurs. In our function, we can do whatever we want to
handle the condition. If we’re writing a command interpreter, for example,
when the user generates the interrupt signal at the keyboard, we probably want
to return to the main loop of the program, terminating whatever command we
were executing for the user. If the SIGCHLD signal is caught, it means that a
child process has terminated, so the signal-catching function can call waitpid
to fetch the child’s process ID and termination status. As another example, if
the process has created temporary files, we may want to write a signal-catching
function for the SIGTERM signal (the termination signal that is the default signal
sent by the kill command) to clean up the temporary files. Note that the two
signals SIGKILL and SIGSTOP can’t be caught.

Let the default action apply. Every signal has a default action, shown in
Figure 10.1. Note that the default action for most signals is to terminate the
process.

Figure 10.1 lists the names of all the signals, an indication of which systems support the
signal, and the default action for the signal. The SUS column contains e if the signal is
defined as part of the base POSIX.1 specification and XSI if it is defined as part of the
XSI option.

When the default action is labeled “terminate+core,” it means that a memory image
of the process is left in the file named core of the current working directory of the
process. (Because the file is named core, it shows how long this feature has been part
of the UNIX System.) This file can be used with most UNIX System debuggers to
examine the state of the process at the time it terminated.

The generation of the core file is an implementation feature of most versions of the UNIX
System. Although this feature is not part of POSIX.1, it is mentioned as a potential
implementation-specific action in the Single UNIX Specification’s XSI option.

The name of the core file varies among implementations. On FreeBSD 8.0, for example, the
core file is named cmdname.core, where cmdname is the name of the command corresponding to
the process that received the signal. On Mac OS X 10.6.8, the core file is named core.pid, where
pid is the ID of the process that received the signal. (These systems allow the core filename to
be configured via a sysctl parameter. On Linux 3.2.0, the name is configured through
/proc/sys/kernel/core_pattern.)

Most implementations leave the core file in the current working directory of the corresponding
process; Mac OS X places all core files in /cores instead.
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Name Description ISO C SUS Frege.](S)SD LSH;BX MT;?S X Soi%rls Default action
SIGABRT abnormal termination (abort) . . . . . e |terminate+core
SIGALRM timer expired (alarm) . . . . * |terminate
SIGBUS hardware fault . o J . * |terminate+core
SIGCANCEL | threads library internal use * |ignore
SIGCHLD change in status of child . . . . * |ignore
SIGCONT continue stopped process o . . . * |continue/ignore
SIGEMT hardware fault . . . * |terminate+core
SIGFPE arithmetic exception . o . o . * |terminate+core
SIGFREEZE |checkpoint freeze * |ignore
SIGHUP hangup . . . . * |terminate
SIGILL illegal instruction . . . . . * |terminate+core
SIGINFO status request from keyboard U . ignore
SIGINT terminal interrupt character . . . . . * |terminate
SIGIO asynchronous I/O . . . . terminate/ignore
SIGIOT hardware fault . . . * |terminate+core
SIGJVM1 Java virtual machine internal use * |ignore
SIGJVM2 Java virtual machine internal use * |ignore
SIGKILL termination . . . . * |terminate
SIGLOST resource lost . terminate
SIGLWP threads library internal use o * |terminate/ignore
SIGPIPE write to pipe with no readers . . J . * |terminate
SIGPOLL pollable event (poll) . ® |terminate
SIGPROF profiling time alarm (setitimer) o J J e |terminate
SIGPWR power fail /restart . * |terminate/ignore
SIGQUIT terminal quit character o . . . o terminate+core
SIGSEGV invalid memory reference . . . . . * |terminate+core
SIGSTKFLT |coprocessor stack fault . terminate
SIGSTOP stop . . . . . stop process
SIGSYS invalid system call XSI o J . ® |terminate+core
SIGTERM termination . . . . . * |terminate
SIGTHAW checkpoint thaw * |ignore
SIGTHR threads library internal use U terminate
SIGTRAP hardware fault XSI . . . e |terminate+core
SIGTSTP terminal stop character . . . . * |stop process
SIGTTIN background read from control tty . o J . ® |stop process
SIGTTOU background write to control tty . . . . ® |stop process
SIGURG urgent condition (sockets) . . . . * |ignore
SIGUSR1 user-defined signal . o J . e |terminate
SIGUSR2 user-defined signal . . . . ® |terminate
SIGVTALRM |virtual time alarm (setitimer) XSI . . . e |terminate
SIGWAITING | threads library internal use e lignore
SIGWINCH |terminal window size change . . . * |ignore
SIGXCPU CPU limit exceeded (setrlimit) XSI . . . e |terminate or
terminate+core
SIGXFSZ file size limit exceeded (setrlimit) XSI . . . ® |terminate or
terminate+core
SIGXRES resource control exceeded * |ignore

Figure 10.1 UNIX System signals
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The core file will not be generated if (a) the process was set-user-ID and the current
user is not the owner of the program file, (b) the process was set-group-ID and the
current user is not the group owner of the file, (c) the user does not have permission to
write in the current working directory, (d) the file already exists and the user does not
have permission to write to it, or (e) the file is too big (recall the RLIMIT CORE limit in
Section 7.11). The permissions of the core file (assuming that the file doesn’t already
exist) are usually user-read and user-write, although Mac OS X sets only user-read.

In Figure 10.1, the signals with a description of “hardware fault” correspond to
implementation-defined hardware faults. Many of these names are taken from the
original PDP-11 implementation of the UNIX System. Check your system’s manuals to
determine exactly which type of error these signals correspond to.

We now describe each of these signals in more detail.

SIGABRT This signal is generated by calling the abort function (Section 10.17).
The process terminates abnormally.

SIGALRM This signal is generated when a timer set with the alarm function
expires (see Section 10.10 for more details). This signal is also generated
when an interval timer set by the setitimer(2) function expires.

SIGBUS This signal indicates an implementation-defined hardware fault.
Implementations usually generate this signal on certain types of memory
faults, as we describe in Section 14.8.

SIGCANCEL This signal is used internally by the Solaris threads library. It is not
meant for general use.

SIGCHLD Whenever a process terminates or stops, the SIGCHLD signal is sent to
the parent. By default, this signal is ignored, so the parent must catch
this signal if it wants to be notified whenever a child’s status changes.
The normal action in the signal-catching function is to call one of the
wait functions to fetch the child’s process ID and termination status.

Earlier releases of System V had a similar signal named SIGCLD (without
the H). The semantics of this signal were different from those of other
signals, and as far back as SVR2, the manual page strongly discouraged
its use in new programs. (Strangely enough, this warning disappeared
in the SVR3 and SVR4 versions of the manual page.) Applications
should use the standard SIGCHLD signal, but be aware that many
systems define SIGCLD to be the same as SIGCHLD for backward
compatibility. If you maintain software that uses SIGCLD, you need to
check your system’s manual page to see which semantics it follows. We
discuss these two signals in Section 10.7.

SIGCONT This job-control signal is sent to a stopped process when it is continued.
The default action is to continue a stopped process, but to ignore the
signal if the process wasn’t stopped. A full-screen editor, for example,
might catch this signal and use the signal handler to make a note to
redraw the terminal screen. See Section 10.21 for additional details.
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SIGEMT

SIGFPE

SIGFREEZE

SIGHUP

SIGILL

SIGINFO

This indicates an implementation-defined hardware fault.

The name EMT comes from the PDP-11 “emulator trap” instruction. Not all
platforms support this signal. On Linux, for example, SIGEMT is supported
only for selected architectures, such as SPARC, MIPS, and PA-RISC.

This signals an arithmetic exception, such as divide by 0, floating-point
overflow, and so on.

This signal is defined only by Solaris. It is used to notify processes that
need to take special action before freezing the system state, such as might
happen when a system goes into hibernation or suspended mode.

This signal is sent to the controlling process (session leader) associated
with a controlling terminal if a disconnect is detected by the terminal
interface. Referring to Figure 9.13, we see that the signal is sent to the
process pointed to by the s_leader field in the session structure.
This signal is generated for this condition only if the terminal’s CLOCAL
flag is not set. (The CLOCAL flag for a terminal is set if the attached
terminal is local. The flag tells the terminal driver to ignore all modem
status lines. We describe how to set this flag in Chapter 18.)

Note that the session leader that receives this signal may be in the
background; see Figure 9.7 for an example. This differs from the normal
terminal-generated signals (interrupt, quit, and suspend), which are
always delivered to the foreground process group.

This signal is also generated if the session leader terminates. In this case,
the signal is sent to each process in the foreground process group.

This signal is commonly used to notify daemon processes (Chapter 13) to
reread their configuration files. The reason SIGHUP is chosen for this
task is that a daemon should not have a controlling terminal and would
normally never receive this signal.

This signal indicates that the process has executed an illegal hardware
instruction.

4.3BSD generated this signal from the abort function. SIGABRT is now used
for this purpose.

This BSD signal is generated by the terminal driver when we type the
status key (often Control-T). This signal is sent to all processes in the
foreground process group (refer to Figure 9.9). This signal normally
causes status information on processes in the foreground process group
to be displayed on the terminal.

Linux doesn’t provide support for SIGINFO, although the symbol is defined to

be the same value as SIGPWR on the Alpha platform. This is most likely to
provide some level of compatibility with software developed for OSF/1.
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SIGINT

SIGIO

SIGIOT

SIGJVM1
SIGJVM2

SIGKILL

SIGLOST

SIGLWP

SIGPIPE

SIGPOLL

This signal is generated by the terminal driver when we press the
interrupt key (often DELETE or Control-C). This signal is sent to all
processes in the foreground process group (refer to Figure 9.9). This
signal is often used to terminate a runaway program, especially when it’s
generating a lot of unwanted output on the screen.

This signal indicates an asynchronous I/O event. We discuss it in
Section 14.5.2.

In Figure 10.1, we labeled the default action for SIGIO as either “terminate” or
“ignore.” Unfortunately, the default depends on the system. Under System V,
SIGIO is identical to SIGPOLL, so its default action is to terminate the process.
Under BSD, the default is to ignore the signal.

Linux 3.2.0 and Solaris 10 define SIGIO to be the same value as SIGPOLL, so
the default behavior is to terminate the process. On FreeBSD 8.0 and Mac OS X
10.6.8, the default is to ignore the signal.

This indicates an implementation-defined hardware fault.

The name IOT comes from the PDP-11 mnemonic for the “input/output TRAP”
instruction. Earlier versions of System V generated this signal from the abort
function. SIGABRT is now used for this purpose.

On FreeBSD 8.0, Linux 3.2.0, Mac OS X 10.6.8, and Solaris 10, SIGIOT is defined
to be the same value as SIGABRT.

A signal reserved for use by the Java virtual machine on Solaris.
Another signal reserved for use by the Java virtual machine on Solaris.

This signal is one of the two that can’t be caught or ignored. It provides
the system administrator with a sure way to kill any process.

This signal is used to notify a process running on a Solaris NFSv4 client
system that a lock could not be reacquired during recovery.

This signal is used internally by the Solaris threads library; it is not
available for general use. On FreeBSD, SIGLWP is defined to be an alias
for SIGTHR.

If we write to a pipeline but the reader has terminated, SIGPIPE is
generated. We describe pipes in Section 15.2. This signal is also
generated when a process writes to a socket of type SOCK_STREAM that
is no longer connected. We describe sockets in Chapter 16.

This signal is marked obsolescent in SUSv4, so it might be removed in a
future version of the standard. It can be generated when a specific event
occurs on a pollable device. We describe this signal with the poll
function in Section 14.4.2. SIGPOLL originated with SVR3, and loosely
corresponds to the BSD SIGIO and SIGURG signals.

On Linux and Solaris, SIGPOLL is defined to have the same value as SIGIO.
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SIGPROF

SIGPWR

SIGQUIT

SIGSEGV

SIGSTKFLT

SIGSTOP

SIGSYS

This signal is marked obsolescent in SUSv4, so it might be removed in a
future version of the standard. This signal is generated when a profiling
interval timer set by the setitimer(2) function expires.

This signal is system dependent. Its main use is on a system that has an
uninterruptible power supply (UPS). If power fails, the UPS takes over
and the software can usually be notified. Nothing needs to be done at
this point, as the system continues running on battery power. But if the
battery gets low (for example, if the power is off for an extended period),
the software is usually notified again; at this point, it behooves the
system to shut everything down. This is when SIGPWR should be sent.
On most systems, the process that is notified of the low-battery condition
sends the SIGPWR signal to the init process, and init handles the
system shutdown.

Solaris 10 and some Linux distributions have entries in the inittab file for
this purpose: powerfail and powerwait (or powerokwait).

In Figure 10.1, we labeled the default action for SIGPWR as either “terminate”
or “ignore.” Unfortunately, the default depends on the system. The default on
Linux is to terminate the process. On Solaris, the signal is ignored by default.

This signal is generated by the terminal driver when we press the
terminal quit key (often Control-backslash). This signal is sent to all
processes in the foreground process group (refer to Figure 9.9). This
signal not only terminates the foreground process group (as does
SIGINT), but also generates a core file.

This signal indicates that the process has made an invalid memory
reference (which is usually a sign that the program has a bug, such as
dereferencing an uninitialized pointer).

The name SEGV stands for “segmentation violation.”

This signal is defined only by Linux. It showed up in the earliest
versions of Linux, where it was intended to be used for stack faults taken
by the math coprocessor. This signal is not generated by the kernel, but
remains for backward compatibility.

This job-control signal stops a process. It is similar to the interactive stop
signal (SIGTSTP), but SIGSTOP cannot be caught or ignored.

This signals an invalid system call. Somehow, the process executed a
machine instruction that the kernel thought was a system call, but the
parameter with the instruction that indicates the type of system call was
invalid. This might happen if you build a program that uses a new
system call and you then try to run the same binary on an older version
of the operating system where the system call doesn’t exist.

www.it-ebooks.info


http://www.it-ebooks.info/

Section 10.2

Signal Concepts 321

SIGTERM

SIGTHAW

SIGTHR

SIGTRAP

SIGTSTP

SIGTTIN

SIGTTOU

This is the termination signal sent by the kil1l(1) command by default.
Because it can be caught by applications, using SIGTERM gives programs
a chance to terminate gracefully by cleaning up before exiting (in
contrast to SIGKILL, which can’t be caught or ignored).

This signal is defined only by Solaris and is used to notify processes that
need to take special action when the system resumes operation after
being suspended.

This is a signal reserved for use by the thread library on FreeBSD. It is
defined to have the same value as SIGLWP.

This signal indicates an implementation-defined hardware fault.

The signal name comes from the PDP-11 TRAP instruction. Implementations
often use this signal to transfer control to a debugger when a breakpoint
instruction is executed.

This interactive stop signal is generated by the terminal driver when we
press the terminal suspend key (often Control-Z). This signal is sent to
all processes in the foreground process group (refer to Figure 9.9).

Unfortunately, the term stop has different meanings. When discussing job
control and signals, we talk about stopping and continuing jobs. The terminal
driver, however, has historically used the term stop to refer to stopping and
starting the terminal output using the Control-S and Control-Q characters.
Therefore, the terminal driver calls the character that generates the interactive
stop signal the suspend character, not the stop character.

This signal is generated by the terminal driver when a process in a
background process group tries to read from its controlling terminal.
(Refer to the discussion of this topic in Section 9.8.) As special cases, if
either (a) the reading process is ignoring or blocking this signal or (b) the
process group of the reading process is orphaned, then the signal is not
generated; instead, the read operation fails with errno set to EIO.

This signal is generated by the terminal driver when a process in a
background process group tries to write to its controlling terminal. (This
is discussed in Section 9.8.) Unlike the case with background reads, a
process can choose to allow background writes to the controlling
terminal. We describe how to modify this option in Chapter 18.

If background writes are not allowed, then like the SIGTTIN signal,
there are two special cases: if either (a) the writing process is ignoring or
blocking this signal or (b) the process group of the writing process is
orphaned, then the signal is not generated; instead, the write operation
returns an error with errno set to EIO.

Regardless of whether background writes are allowed, certain terminal
operations (other than writing) can also generate the SIGTTOU signal.

www.it-ebooks.info


http://www.it-ebooks.info/

322

Signals

Chapter 10

SIGURG

SIGUSR1
SIGUSR2

SIGVTALRM

SIGWAITING

SIGWINCH

SIGXCPU

SIGXFSZ

SIGXRES

These include tcsetattr, tcsendbreak, tcdrain, tcflush,
tcflow, and tcsetpgrp. We describe these terminal operations in
Chapter 18.

This signal notifies the process that an urgent condition has occurred. It
is optionally generated when out-of-band data is received on a network
connection.

This is a user-defined signal, for use in application programs.

This is another user-defined signal, similar to SIGUSRI1, for use in
application programs.

This signal is generated when a virtual interval timer set by the
setitimer(2) function expires.

This signal is used internally by the Solaris threads library, and is not
available for general use.

The kernel maintains the size of the window associated with each
terminal and pseudo terminal. A process can get and set the window
size with the ioctl function, which we describe in Section 18.12. If a
process changes the window size from its previous value using the
ioctl set-window-size command, the kernel generates the SIGWINCH
signal for the foreground process group.

The Single UNIX Specification supports the concept of resource limits as
part of the XSI option; refer to Section 7.11. If the process exceeds its soft
CPU time limit, the SIGXCPU signal is generated.

In Figure 10.1, we labeled the default action for SIGXCPU as either “terminate”
or “terminate with a core file.” The default depends on the operating system.
Linux 3.2.0 and Solaris 10 support a default action of terminate with a core file,
whereas FreeBSD 8.0 and Mac OS X 10.6.8 support a default action of terminate
without generating a core file. The Single UNIX Specification requires that the
default action be to terminate the process abnormally. Whether a core file is
generated is left up to the implementation.

This signal is generated if the process exceeds its soft file size limit; refer
to Section 7.11.

Just as with SIGXCPU, the default action taken with SIGXFSz depends on the
operating system. On Linux 3.2.0 and Solaris 10, the default is to terminate the
process and create a core file. On FreeBSD 8.0 and Mac OS X 10.6.8, the default
is to terminate the process without generating a core file. The Single UNIX
Specification requires that the default action be to terminate the process
abnormally. Whether a core file is generated is left up to the implementation.

This signal is defined only by Solaris. It is optionally used to notify
processes that have exceeded a preconfigured resource value. The
Solaris resource control mechanism is a general facility for controlling the
use of shared resources among independent application sets.
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10.3 signal Function

The simplest interface to the signal features of the UNIX System is the signal function.

#include <signal.h>

void (*signal(int signo, void (*func)(int)))(int);

Returns: previous disposition of signal (see following) if OK, SIG_ERR on error

The signal function is defined by ISO C, which doesn’t involve multiple processes, process
groups, terminal I/O, and the like. Therefore, its definition of signals is vague enough to be
almost useless for UNIX systems.

Implementations derived from UNIX System V support the signal function, but it provides
the old unreliable-signal semantics. (We describe these older semantics in Section 10.4.) The
signal function provides backward compatibility for applications that require the older
semantics. New applications should not use these unreliable signals.

4.4BSD also provides the signal function, but it is defined in terms of the sigaction
function (which we describe in Section 10.14), so using it under 4.4BSD provides the newer
reliable-signal semantics. Most current systems follow this strategy, but Solaris 10 follows the
System V semantics for the signal function.

Because the semantics of signal differ among implementations, we must use the sigaction
function instead. We provide an implementation of signal that uses sigaction in
Section 10.14. All the examples in this text use the signal function from Figure 10.18 to give
us consistent semantics regardless of which particular platform we use.

The signo argument is just the name of the signal from Figure 10.1. The value of
func is (a) the constant SIG_IGN, (b) the constant SIG_DFL, or (c) the address of a
function to be called when the signal occurs. If we specify SIG_IGN, we are telling the
system to ignore the signal. (Remember that we cannot ignore the two signals SIGKILL
and SIGSTOP.) When we specify SIG_DFL, we are setting the action associated with
the signal to its default value (see the final column in Figure 10.1). When we specify the
address of a function to be called when the signal occurs, we are arranging to “catch”
the signal. We call the function either the signal handler or the signal-catching function.

The prototype for the signal function states that the function requires two
arguments and returns a pointer to a function that returns nothing (void). The signal
function’s first argument, signo, is an integer. The second argument is a pointer to a
function that takes a single integer argument and returns nothing. The function whose
address is returned as the value of signal takes a single integer argument (the final
(int)). In plain English, this declaration says that the signal handler is passed a single
integer argument (the signal number) and that it returns nothing. When we call
signal to establish the signal handler, the second argument is a pointer to the function.
The return value from signal is the pointer to the previous signal handler.

Many systems call the signal handler with additional, implementation-dependent arguments.
We discuss this further in Section 10.14.

The perplexing signal function prototype shown at the beginning of this section
can be made much simpler through the use of the following typedef [Plauger 1992]:

typedef void Sigfunc(int);
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Then the prototype becomes
Sigfunc *signal(int, Sigfunc *);

We've included this typedef in apue.h (Appendix B) and use it with the functions in

this chapter.

If we examine the system’s header <signal.h>, we will probably find declarations
of the form

#define SIG_ERR  (void (*)())-1

#define SIG_DFL  (void (*)())O0

#define SIG_IGN (void (*)())1

These constants can be used in place of the “pointer to a function that takes an integer
argument and returns nothing,” the second argument to signal, and the return value
from signal. The three values used for these constants need not be -1, 0, and 1. They
must be three values that can never be the address of any declarable function. Most
UNIX systems use the values shown.

Example

Figure 10.2 shows a simple signal handler that catches either of the two user-defined
signals and prints the signal number. In Section 10.10, we describe the pause function,
which simply suspends the calling process until a signal is received.

#include "apue.h"
static void sig usr(int); /* one handler for both signals */
int
main(void)
{
if (signal(SIGUSR1l, sig usr) == SIG_ERR)
err sys("can’t catch SIGUSR1");
if (signal(SIGUSR2, sig_usr) == SIG_ERR)
err sys("can’t catch SIGUSR2");
for ( ;7 ;)

pause();
}
static void
sig _usr(int signo) /* argument is signal number */
{
if (signo == SIGUSR1)
printf("received SIGUSR1\n");
else if (signo == SIGUSR2)
printf("received SIGUSR2\n");
else
err dump("received signal %d\n", signo);
}

Figure 10.2 Simple program to catch SIGUSR1 and SIGUSR2
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We invoke the program in the background and use the ki11(1) command to send it
signals. Note that the term kill in the UNIX System is a misnomer. The kill(1)
command and the kill(2) function just send a signal to a process or process group.
Whether that signal terminates the process depends on which signal is sent and
whether the process has arranged to catch the signal.

$ ./a.out & start process in background

[1] 7216 job-control shell prints job number and process ID
$ kill -USR1l 7216 send it SIGUSR1

received SIGUSRI1

$ kill -USR2 7216 send it STGUSR2

received SIGUSR2

$ kill 7216 now send it SIGTERM

[1]+ Terminated ./a.out

When we send the SIGTERM signal, the process is terminated, since it doesn’t catch the
signal, and the default action for the signal is termination. O

Program Start-Up

When a program is executed, the status of all signals is either default or ignore.
Normally, all signals are set to their default action, unless the process that calls exec is
ignoring the signal. Specifically, the exec functions change the disposition of any
signals being caught to their default action and leave the status of all other signals
alone. (Naturally, a signal that is being caught by a process that calls exec cannot be
caught by the same function in the new program, since the address of the signal-
catching function in the caller probably has no meaning in the new program file that is
executed.)

One specific example of this signal status behavior is how an interactive shell treats
the interrupt and quit signals for a background process. With a shell that doesn’t
support job control, when we execute a process in the background, as in

cc main.c &

the shell automatically sets the disposition of the interrupt and quit signals in the
background process to be ignored. This is done so that if we type the interrupt
character, it doesn’t affect the background process. If this weren’t done and we typed
the interrupt character, it would terminate not only the foreground process, but also all
the background processes.

Many interactive programs that catch these two signals have code that looks like

void sig int(int), sig quit(int);

if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, sig _int);
if (signal(SIGQUIT, SIG_IGN) != SIG_IGN)

signal (SIGQUIT, sig quit);

Following this approach, the process catches the signal only if the signal is not currently
being ignored.
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These two calls to signal also show a limitation of the signal function: we are
not able to determine the current disposition of a signal without changing the
disposition. We’ll see later in this chapter how the sigaction function allows us to
determine a signal’s disposition without changing it.

Process Creation

10.4

When a process calls fork, the child inherits the parent’s signal dispositions. Here,
since the child starts off with a copy of the parent’s memory image, the address of a
signal-catching function has meaning in the child.

Unreliable Signals

In earlier versions of the UNIX System (such as Version 7), signals were unreliable. By
this we mean that signals could get lost: a signal could occur and the process would
never know about it. Also, a process had little control over a signal: a process could
catch the signal or ignore it. Sometimes, we would like to tell the kernel to block a
signal: don’t ignore it, just remember if it occurs, and tell us later when we’re ready.

Changes were made with 4.2BSD to provide what are called reliable signals. A different set of
changes was then made in SVR3 to provide reliable signals under System V. POSIX.1 chose the
BSD model to standardize.

One problem with these early versions was that the action for a signal was reset to
its default each time the signal occurred. (In the previous example, when we ran the
program in Figure 10.2, we avoided this detail by catching each signal only once.) The
classic example from programming books that described these earlier systems concerns
how to handle the interrupt signal. The code that was described usually looked like

int sig _int(); /* my signal handling function */

signal (SIGINT, sig int); /* establish handler */

sig_int()
{

signal (SIGINT, sig_int); /* reestablish handler for next time */

/* process the signal ... */
}

(The reason the signal handler is declared as returning an integer is that these early
systems didn’t support the ISO C void data type.)

The problem with this code fragment is that there is a window of time—after the
signal has occurred, but before the call to signal in the signal handler—when the
interrupt signal could occur another time. This second signal would cause the default
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10.5

action to occur, which for this signal terminates the process. This is one of those
conditions that works correctly most of the time, causing us to think that it is correct,
when it isn't.

Another problem with these earlier systems was that the process was unable to turn
a signal off when it didn’t want the signal to occur. All the process could do was ignore
the signal. There are times when we would like to tell the system “prevent the
following signals from interrupting me, but remember if they do occur.” The classic
example that demonstrates this flaw is shown by a piece of code that catches a signal
and sets a flag for the process that indicates that the signal occurred:

int sig_int(); /* my signal handling function */
int sig_int_flag; /* set nonzero when signal occurs */
main()

{

signal (SIGINT, sig_int); /* establish handler */

while (sig_int_ flag == 0)

pause(); /* go to sleep, waiting for signal */
}
sig int()
{
signal (SIGINT, sig int); /* reestablish handler for next time */
sig int flag = 1; /* set flag for main loop to examine */
}

Here, the process is calling the pause function to put it to sleep until a signal is caught.
When the signal is caught, the signal handler just sets the flag sig _int flag to a
nonzero value. The process is automatically awakened by the kernel after the signal
handler returns, notices that the flag is nonzero, and does whatever it needs to do. But
there is a window of time when things can go wrong. If the signal occurs after the test
of sig_int_ flag but before the call to pause, the process could go to sleep forever
(assuming that the signal is never generated again). This occurrence of the signal is lost.
This is another example of some code that isn’t right, yet it works most of the time.
Debugging this type of problem can be difficult.

Interrupted System Calls

A characteristic of earlier UNIX systems was that if a process caught a signal while the
process was blocked in a “slow” system call, the system call was interrupted. The
system call returned an error and errno was set to EINTR. This was done under the
assumption that since a signal occurred and the process caught it, there is a good chance
that something has happened that should wake up the blocked system call.

Here, we have to differentiate between a system call and a function. It is a system call within
the kernel that is interrupted when a signal is caught.
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To support this feature, the system calls are divided into two categories: the “slow”
system calls and all the others. The slow system calls are those that can block forever.
Included in this category are

Reads that can block the caller forever if data isn’t present with certain file types
(pipes, terminal devices, and network devices)

Writes that can block the caller forever if the data can’t be accepted immediately
by these same file types

Opens on certain file types that block the caller until some condition occurs
(such as a terminal device open waiting until an attached modem answers the
phone)

The pause function (which by definition puts the calling process to sleep until a
signal is caught) and the wait function

Certain ioctl operations

Some of the interprocess communication functions (Chapter 15)

The notable exception to these slow system calls is anything related to disk I/O.
Although a read or a write of a disk file can block the caller temporarily (while the disk
driver queues the request and then the request is executed), unless a hardware error
occurs, the I/O operation always returns and unblocks the caller quickly.

One condition that is handled by interrupted system calls, for example, is when a
process initiates a read from a terminal device and the user at the terminal walks away
from the terminal for an extended period. In this example, the process could be blocked
for hours or days and would remain so unless the system was taken down.

POSIX.1 semantics for interrupted reads and writes changed with the 2001 version of the
standard. Earlier versions gave implementations a choice of how to deal with reads and
writes that have processed partial amounts of data. If read has received and transferred
data to an application’s buffer, but has not yet received all that the application requested and is
then interrupted, the operating system could either fail the system call, with errno set to
EINTR, or allow the system call to succeed, returning the partial amount of data received.
Similarly, if write is interrupted after transferring some of the data in an application’s buffer,
the operation system could either fail the system call, with errno set to EINTR, or allow the
system call to succeed, returning the partial amount of data written. Historically,
implementations derived from System V fail the system call, whereas BSD-derived
implementations return partial success. With the 2001 version of the POSIX.1 standard, the
BSD-style semantics are required.

The problem with interrupted system calls is that we now have to handle the error
return explicitly. The typical code sequence (assuming a read operation and assuming
that we want to restart the read even if it’s interrupted) would be

again:

if ((n = read(fd, buf, BUFFSIZE)) < 0) {
if (errno == EINTR)
goto again; /* just an interrupted system call */

/* handle other errors */

www.it-ebooks.info


http://www.it-ebooks.info/

Section 10.5 Interrupted System Calls 329

To prevent applications from having to handle interrupted system calls, 4.2BSD
introduced the automatic restarting of certain interrupted system calls. The system calls
that were automatically restarted are ioctl, read, readv, write, writev, wait, and
waitpid. As we’ve mentioned, the first five of these functions are interrupted by a
signal only if they are operating on a slow device; wait and waitpid are always
interrupted when a signal is caught. Since this caused a problem for some applications
that didn’t want the operation restarted if it was interrupted, 4.3BSD allowed the
process to disable this feature on a per-signal basis.

POSIX.1 requires an implementation to restart system calls only when the SA_RESTART flag is
in effect for the interrupting signal. As we will see in Section 10.14, this flag is used with the
sigaction function to allow applications to request that interrupted system calls be
restarted.

Historically, when using the signal function to establish a signal handler, implementations
varied with respect to how interrupted system calls were handled. System V never restarted
system calls by default. BSD, in contrast, restarted them if the calls were interrupted by
signals. On FreeBSD 8.0, Linux 3.2.0, and Mac OS X 10.6.8, when signal handlers are installed
with the signal function, interrupted system calls will be restarted. The default on Solaris 10,
however, is to return an error (EINTR) instead when system calls are interrupted by signal
handlers installed with the signal function. By using our own implementation of the
signal function (shown in Figure 10.18), we avoid having to deal with these differences.

One of the reasons 4.2BSD introduced the automatic restart feature is that
sometimes we don’t know that the input or output device is a slow device. If the
program we write can be used interactively, then it might be reading or writing a slow
device, since terminals fall into this category. If we catch signals in this program, and if
the system doesn’t provide the restart capability, then we have to test every read or
write for the interrupted error return and reissue the read or write.

Figure 10.3 summarizes the signal functions and their semantics provided by the
various implementations.

. Signal handler Ability to Aut(?mahc restart
Functions System o : of interrupted
remains installed | block signals
system calls?
ISO C, POSIX.1 unspecified unspecified unspecified
V7,SVR2, SVR3 never
SVR4, Solaris never
signal 4.2BSD J . always
4.3BSD, 4.4BSD,
FreeBSD, Linux, . . default
Mac OS X
POSIX.1, 4.4BSD,
) £ SVR4, FreeBSD, . R " 1
sigaction | o MacOSX, optiona
Solaris

Figure 10.3 Features provided by various signal implementations
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Be aware that UNIX systems from other vendors can have values different from those
shown in this figure. For example, sigaction under SunOS 4.1.2 restarts an
interrupted system call by default, unlike the platforms listed in Figure 10.3.

In Figure 10.18, we provide our own version of the signal function that
automatically tries to restart interrupted system calls (other than for the SIGALRM
signal). In Figure 10.19, we provide another function, signal_intr, that tries to never
do the restart.

We talk more about interrupted system calls in Section 14.4 with regard to the
select and poll functions.

Reentrant Functions

When a signal that is being caught is handled by a process, the normal sequence of
instructions being executed by the process is temporarily interrupted by the signal
handler. The process then continues executing, but the instructions in the signal
handler are now executed. If the signal handler returns (instead of calling exit or
longjmp, for example), then the normal sequence of instructions that the process was
executing when the signal was caught continues executing. (This is similar to what
happens when a hardware interrupt occurs.) But in the signal handler, we can’t tell
where the process was executing when the signal was caught. What if the process was
in the middle of allocating additional memory on its heap using malloc, and we call
malloc from the signal handler? Or, what if the process was in the middle of a call to a
function, such as getpwnam (Section 6.2), that stores its result in a static location, and
we call the same function from the signal handler? In the malloc example, havoc can
result for the process, since malloc usually maintains a linked list of all its allocated
areas, and it may have been in the middle of changing this list. In the case of
getpwnam, the information returned to the normal caller can get overwritten with the
information returned to the signal handler.

The Single UNIX Specification specifies the functions that are guaranteed to be safe
to call from within a signal handler. These functions are reentrant and are called
async-signal safe by the Single UNIX Specification. Besides being reentrant, they block
any signals during operation if delivery of a signal might cause inconsistencies.
Figure 10.4 lists these async-signal safe functions. Most of the functions that are not
included in Figure 10.4 are missing because (a) they are known to use static data
structures, (b) they call malloc or free, or (c) they are part of the standard I/0O library.
Most implementations of the standard I/O library use global data structures in a
nonreentrant way. Note that even though we call printf from signal handlers in some
of our examples, it is not guaranteed to produce the expected results, since the signal
handler can interrupt a call to printf from our main program.

Be aware that even if we call a function listed in Figure 10.4 from a signal handler,
there is only one errno variable per thread (recall the discussion of errno and threads
in Section 1.7), and we might potentially modify its value. Consider a signal handler
that is invoked right after main has set errno. If the signal handler calls read, for
example, this call can change the value of errno, wiping out the value that was just
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abort faccessat linkat select socketpair
accept fchmod listen sem_post stat

access fchmodat lseek send symlink
aio_error fchown lstat sendmsg symlinkat
aio_return fchownat mkdir sendto tcdrain
aio_suspend fentl mkdirat setgid tcflow

alarm fdatasync mkfifo setpgid tcflush

bind fexecve mkfifoat setsid tcgetattr
cfgetispeed fork mknod setsockopt tcgetpgrp
cfgetospeed fstat mknodat setuid tcsendbreak
cfsetispeed fstatat open shutdown tcsetattr
cfsetospeed fsync openat sigaction tcsetpgrp
chdir ftruncate pause sigaddset time

chmod futimens pipe sigdelset timer getoverrun
chown getegid poll sigemptyset | timer gettime
clock_gettime | geteuid posix trace event | sigfillset timer settime
close getgid pselect sigismember | times

connect getgroups raise signal umask

creat getpeername | read sigpause uname

dup getpgrp readlink sigpending unlink

dup2 getpid readlinkat sigprocmask | unlinkat
execl getppid recv sigqueue utime

execle getsockname | recvfrom sigset utimensat
execv getsockopt recvmsg sigsuspend utimes

execve getuid rename sleep wait

_Exit kill renameat sockatmark waitpid
_exit link rmdir socket write

Figure 10.4 Reentrant functions that may be called from a signal handler

stored in main. Therefore, as a general rule, when calling the functions listed in
Figure 10.4 from a signal handler, we should save and restore errno. (Be aware that a
commonly caught signal is SIGCHLD, and its signal handler usually calls one of the
wait functions. All the wait functions can change errno.)

Note that longjmp (Section 7.10) and siglongjmp (Section 10.15) are missing
from Figure 10.4, because the signal may have occurred while the main routine was
updating a data structure in a nonreentrant way. This data structure could be left half
updated if we call siglongjmp instead of returning from the signal handler. If it is
going to do such things as update global data structures, as we describe here, while
catching signals that cause sigsetjmp to be executed, an application needs to block the
signals while updating the data structures.

Example
Figure 10.5 shows a program that calls the nonreentrant function getpwnam from a

signal handler that is called every second. We describe the alarm function in
Section 10.10. We use it here to generate a SIGALRM signal every second.
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#include "apue.h"
#include <pwd.h>
static void
my_alarm(int signo)
{
struct passwd *rootptr;
printf("in signal handler\n");
if ((rootptr = getpwnam("root")) == NULL)
err_sys("getpwnam(root) error");
alarm(1l);
}
int
main(void)
{
struct passwd *ptr;
signal (SIGALRM, my_alarm);
alarm(1l);
for (i ;) {
if ((ptr = getpwnam("sar")) == NULL)
err sys('"getpwnam error");
if (strcmp(ptr->pw _name, "sar") != 0)
printf("return value corrupted!, pw name = %s\n",
ptr->pw_name);
}
}
Figure 10.5 Call a nonreentrant function from a signal handler
When this program was run, the results were random. Usually, the program would
be terminated by a SIGSEGV signal when the signal handler returned after several
iterations. An examination of the core file showed that the main function had called
getpwnam, but that when getpwnam called free, the signal handler interrupted it and
called getpwnam, which in turn called free. The data structures maintained by
malloc and free had been corrupted when the signal handler (indirectly) called free
while the main function was also calling free. Occasionally, the program would run
for several seconds before crashing with a SIGSEGV error. When the main function did
run correctly after the signal had been caught, the return value was sometimes
corrupted and sometimes fine.
As shown by this example, if we call a nonreentrant function from a signal handler,
the results are unpredictable. O
10.7 sIGCLD Semantics

Two signals that continually generate confusion are SIGCLD and SIGCHLD. The name
SIGCLD (without the H) is from System V, and this signal has different semantics from
the BSD signal, named SIGCHLD. The POSIX.1 signal is also named SIGCHLD.
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The semantics of the BSD SIGCHLD signal are normal, in the sense that its semantics
are similar to those of all other signals. When the signal occurs, the status of a child has
changed, and we need to call one of the wait functions to determine what has
happened.

System V, however, has traditionally handled the SIGCLD signal differently from
other signals. SVR4-based systems continue this questionable tradition (i.e.,
compatibility constraint) if we set its disposition using either signal or sigset (the
older, SVR3-compatible functions to set the disposition of a signal). This older handling
of SIGCLD consists of the following behavior:

1. If the process specifically sets its disposition to SIG_IGN, children of the calling
process will not generate zombie processes. Note that this is different from its
default action (SIG_DFL), which from Figure 10.1 is to be ignored. Instead, on
termination, the status of these child processes is discarded. If it subsequently
calls one of the wait functions, the calling process will block until all its
children have terminated, and then wait returns -1 with errno set to ECHILD.
(The default disposition of this signal is to be ignored, but this default will not
cause the preceding semantics to occur. Instead, we specifically have to set its
disposition to SIG_IGN.)

POSIX.1 does not specify what happens when SIGCHLD is ignored, so this behavior is
allowed. The XSI option requires this behavior to be supported for SIGCHLD.

4.4BSD always generates zombies if SIGCHLD is ignored. If we want to avoid zombies,
we have to wait for our children. With SVR4, if either signal or sigset is called to set
the disposition of SIGCHLD to be ignored, zombies are never generated. All four
platforms described in this book follow SVR4 in this behavior.

With sigaction, we can set the SA_NOCLDWAIT flag (Figure 10.16) to avoid zombies.
This action is also supported on all four platforms.

2. If we set the disposition of SIGCLD to be caught, the kernel immediately checks
whether any child processes are ready to be waited for and, if so, calls the
SIGCLD handler.

Item 2 changes the way we have to write a signal handler for this signal, as illustrated in
the following example.

Example

Recall from Section 10.4 that the first thing to do on entry to a signal handler is to call
signal again, to reestablish the handler. (This action is intended to minimize the
window of time when the signal is reset back to its default and could get lost.) We show
this in Figure 10.6. This program doesn’t work on traditional System V platforms. The
output is a continual string of SIGCLD received lines. Eventually, the process runs
out of stack space and terminates abnormally.
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#include "apue.h"
#include <sys/wait.h>

static void sig cld(int);
int
main()

{
pid_t pid;

if (signal(SIGCLD, sig_cld) == SIG_ERR)
perror("signal error");

if ((pid = fork()) < 0) {
perror("fork error");

} else if (pid == 0) { /* child */
sleep(2);
_exit(0);

}

pause(); /* parent */

exit(0);

}

static void
sig _cld(int signo) /* interrupts pause() */

{
pid_t pid;
int status;
printf ("SIGCLD received\n");
if (signal(SIGCLD, sig cld) == SIG_ERR) /* reestablish handler */
perror("signal error");
if ((pid = wait(&status)) < 0) /* fetch child status */
perror("wait error");
printf("pid = %d\n", pid);
}

Figure 10.6 System V SIGCLD handler that doesn’t work

FreeBSD 8.0 and Mac OS X 10.6.8 don’t exhibit this problem, because BSD-based systems
generally don’t support historical System V semantics for SIGCLD. Linux 3.2.0 also doesn’t
exhibit this problem, because it doesn’t call the SIGCHLD signal handler when a process
arranges to catch SIGCHLD and child processes are ready to be waited for, even though
SIGCLD and SIGCHLD are defined to be the same value. Solaris 10, on the other hand, does
call the signal handler in this situation, but includes extra code in the kernel to avoid this
problem.

Although the four platforms described in this book solve this problem, realize that platforms
(such as AIX) still exist that haven’t addressed it.
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The problem with this program is that the call to signal at the beginning of the
signal handler invokes item 2 from the preceding discussion—the kernel checks
whether a child needs to be waited for (which is the case, since we're processing a
SIGCLD signal), so it generates another call to the signal handler. The signal handler
calls signal, and the whole process starts over again.

To fix this program, we have to move the call to signal after the call to wait. By
doing this, we call signal after fetching the child’s termination status; the signal is
generated again by the kernel only if some other child has since terminated.

POSIX.1 states that when we establish a signal handler for SIGCHLD and there exists a
terminated child we have not yet waited for, it is unspecified whether the signal is generated.
This allows the behavior described previously. But since POSIX.1 does not reset a signal’s
disposition to its default when the signal occurs (assuming that we’re using the POSIX.1
sigaction function to set its disposition), there is no need for us to ever establish a signal

handler for SIGCHLD within that handler. -

Be cognizant of the SIGCHLD semantics for your implementation. Be especially
aware of some systems that #define SIGCHLD to be SIGCLD, or vice versa. Changing
the name may allow you to compile a program that was written for another system, but
if that program depends on the other semantics, it may not work.

Of the four platforms described in this text, only Linux 3.2.0 and Solaris 10 define SIGCLD. On
these platforms, SIGCLD is equivalent to SIGCHLD.

Reliable-Signal Terminology and Semantics

We need to define some of the terms used throughout our discussion of signals. First, a
signal is generated for a process (or sent to a process) when the event that causes the
signal occurs. The event could be a hardware exception (e.g., divide by 0), a software
condition (e.g., an alarm timer expiring), a terminal-generated signal, or a call to the
kill function. When the signal is generated, the kernel usually sets a flag of some
form in the process table.

We say that a signal is delivered to a process when the action for a signal is taken.
During the time between the generation of a signal and its delivery, the signal is said to
be pending.

A process has the option of blocking the delivery of a signal. If a signal that is
blocked is generated for a process, and if the action for that signal is either the default
action or to catch the signal, then the signal remains pending for the process until the
process either (a) unblocks the signal or (b) changes the action to ignore the signal. The
system determines what to do with a blocked signal when the signal is delivered, not
when it’s generated. This allows the process to change the action for the signal before
it’s delivered. The sigpending function (Section 10.13) can be called by a process to
determine which signals are blocked and pending.
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10.9

What happens if a blocked signal is generated more than once before the process
unblocks the signal? POSIX.1 allows the system to deliver the signal either once or
more than once. If the system delivers the signal more than once, we say that the
signals are queued. Most UNIX systems, however, do not queue signals unless they
support the real-time extensions to POSIX.1. Instead, the UNIX kernel simply delivers
the signal once.

With SUSv4, the real-time signal functionality moved from the real-time extensions to the base
specification. As time goes on, more systems will support queueing signals even if they don’t
support the real-time extensions. We discuss queueing signals further in Section 10.20.

The manual pages for SVR2 claimed that the SIGCLD signal was queued while the process was
executing its SIGCLD signal handler. Although this might have been true on a conceptual
level, the actual implementation was different. Instead, the signal was regenerated by the
kernel as we described in Section 10.7. In SVR3, the manual was changed to indicate that the
SIGCLD signal was ignored while the process was executing its signal handler for SIGCLD.
The SVR4 manual removed any mention of what happens to SIGCLD signals that are
generated while a process is executing its SIGCLD signal handler.

The SVR4 sigaction(2) manual page in AT&T [1990e] claims that the SA_SIGINFO flag
(Figure 10.16) causes signals to be reliably queued. This is wrong. Apparently, this feature
was partially implemented within the kernel, but it is not enabled in SVR4. Curiously, the
SVID didn’t make the same claims of reliable queuing.

What happens if more than one signal is ready to be delivered to a process?
POSIX.1 does not specify the order in which the signals are delivered to the process.
The Rationale for POSIX.1 does suggest, however, that signals related to the current
state of the process be delivered before other signals. (SIGSEGV is one such signal.)

Each process has a signal mask that defines the set of signals currently blocked from
delivery to that process. We can think of this mask as having one bit for each possible
signal. If the bit is on for a given signal, that signal is currently blocked. A process can
examine and change its current signal mask by calling sigprocmask, which we
describe in Section 10.12.

Since it is possible for the number of signals to exceed the number of bits in an
integer, POSIX.1 defines a data type, called sigset_t, that holds a signal set. The
signal mask, for example, is stored in one of these signal sets. We describe five
functions that operate on signal sets in Section 10.11.

kill and raise Functions

The kill function sends a signal to a process or a group of processes. The raise
function allows a process to send a signal to itself.

The raise function was originally defined by ISO C. POSIX.1 includes it to align itself with
the ISO C standard, but POSIX.1 extends the specification of raise to deal with threads (we
discuss how threads interact with signals in Section 12.8). Since ISO C does not deal with
multiple processes, it could not define a function, such as kill, that requires a process ID
argument.
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#include <signal.h>
int kill(pid_t pid, int signo);
int raise(int signo);

Both return: 0 if OK, -1 on error

The call
raise(signo);

is equivalent to the call
kill(getpid(), signo);

There are four different conditions for the pid argument to kill.

pid > 0 The signal is sent to the process whose process ID is pid.

pid == The signal is sent to all processes whose process group ID equals the
process group ID of the sender and for which the sender has permission
to send the signal. Note that the term all processes excludes an
implementation-defined set of system processes. For most UNIX
systems, this set of system processes includes the kernel processes and
init (pid 1).

pid < 0 The signal is sent to all processes whose process group ID equals the
absolute value of pid and for which the sender has permission to send the
signal. Again, the set of all processes excludes certain system processes,
as described earlier.

pid == - The signal is sent to all processes on the system for which the sender has
permission to send the signal. As before, the set of processes excludes
certain system processes.

As we’ve mentioned, a process needs permission to send a signal to another
process. The superuser can send a signal to any process. For other users, the basic rule
is that the real or effective user ID of the sender has to equal the real or effective user ID
of the receiver. If the implementation supports _POSIX_SAVED_IDS (as POSIX.1 now
requires), the saved set-user-ID of the receiver is checked instead of its effective user ID.
One special case for the permission testing also exists: if the signal being sent is
SIGCONT, a process can send it to any other process in the same session.

POSIX.1 defines signal number 0 as the null signal. If the signo argument is 0, then
the normal error checking is performed by kill, but no signal is sent. This technique is
often used to determine if a specific process still exists. If we send the process the null
signal and it doesn’t exist, kill returns -1 and errno is set to ESRCH. Be aware,
however, that UNIX systems recycle process IDs after some amount of time, so the
existence of a process with a given process ID does not necessarily mean that it’s the
process that you think it is.
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Also understand that the test for process existence is not atomic. By the time that
kill returns the answer to the caller, the process in question might have exited, so the

answer is of limited value.

If the call to kill causes the signal to be generated for the calling process and if the
signal is not blocked, either signo or some other pending, unblocked signal is delivered
to the process before kill returns. (Additional conditions occur with threads; see
Section 12.8 for more information.)

10.10 alarm and pause Functions

The alarm function allows us to set a timer that will expire at a specified time in the
future. When the timer expires, the SIGALRM signal is generated. If we ignore or don’t
catch this signal, its default action is to terminate the process.

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

Returns: 0 or number of seconds until previously set alarm

The seconds value is the number of clock seconds in the future when the signal should
be generated. When that time occurs, the signal is generated by the kernel, although
additional time could elapse before the process gets control to handle the signal,
because of processor scheduling delays.

Earlier UNIX System implementations warned that the signal could also be sent up to 1 second
early. POSIX.1 does not allow this behavior.

There is only one of these alarm clocks per process. If, when we call alarm, a
previously registered alarm clock for the process has not yet expired, the number of
seconds left for that alarm clock is returned as the value of this function. That
previously registered alarm clock is replaced by the new value.

If a previously registered alarm clock for the process has not yet expired and if the
seconds value is 0, the previous alarm clock is canceled. The number of seconds left for
that previous alarm clock is still returned as the value of the function.

Although the default action for SIGALRM is to terminate the process, most processes
that use an alarm clock catch this signal. If the process then wants to terminate, it can
perform whatever cleanup is required before terminating. If we intend to catch
SIGALRM, we need to be careful to install its signal handler before calling alarm. If we
call alarm first and are sent SIGALRM before we can install the signal handler, our
process will terminate.

The pause function suspends the calling process until a signal is caught.

#include <unistd.h>
int pause(void);

Returns: -1 with errno set to EINTR
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The only time pause returns is if a signal handler is executed and that handler returns.
In that case, pause returns -1 with errno set to EINTR.

Example

Using alarm and pause, we can put a process to sleep for a specified amount of time.
The sleepl function in Figure 10.7 appears to do this (but it has problems, as we shall

see shortly).
#include <signal.h>
#include <unistd.h>

static void
sig alrm(int signo)
{
/* nothing to do, just return to wake up the pause */

}

unsigned int
sleepl(unsigned int seconds)

{
if (signal(SIGALRM, sig alrm) == SIG_ERR)
return(seconds);
alarm(seconds); /* start the timer */
pause(); /* next caught signal wakes us up */
return(alarm(0)); /* turn off timer, return unslept time */
}

Figure 10.7 Simple, incomplete implementation of sleep

This function looks like the s1leep function, which we describe in Section 10.19, but this
simple implementation has three problems.

1. If the caller already has an alarm set, that alarm is erased by the first call to
alarm. We can correct this by looking at alarm’s return value. If the number
of seconds until some previously set alarm is less than the argument, then we
should wait only until the existing alarm expires. If the previously set alarm
will go off after ours, then before returning we should reset this alarm to occur
at its designated time in the future.

2. We have modified the disposition for SIGALRM. If we’re writing a function for
others to call, we should save the disposition when our function is called and
restore it when we’re done. We can correct this by saving the return value from
signal and resetting the disposition before our function returns.

3. There is a race condition between the first call to alarm and the call to pause.
On a busy system, it’s possible for the alarm to go off and the signal handler to
be called before we call pause. If that happens, the caller is suspended forever
in the call to pause (assuming that some other signal isn’t caught).
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Earlier implementations of sleep looked like our program, with problems 1 and 2
corrected as described. There are two ways to correct problem 3. The first uses
setjmp, which we show in the next example. The other uses sigprocmask and
sigsuspend, and we describe it in Section 10.19. O

Example

The SVR2 implementation of sleep used setjmp and longjmp (Section 7.10) to avoid
the race condition described in problem 3 of the previous example. A simple version of
this function, called sleep2, is shown in Figure 10.8. (To reduce the size of this
example, we don’t handle problems 1 and 2 described earlier.)

#include <setjmp.h>
#include <signal.h>
#include <unistd.h>

static jmp buf env _alrm;

static void
sig alrm(int signo)
{
longjmp(env_alrm, 1);

}

unsigned int
sleep2(unsigned int seconds)

{
if (signal(SIGALRM, sig alrm) == SIG_ERR)
return(seconds);
if (setjmp(env_alrm) == 0) {
alarm(seconds); /* start the timer */
pause(); /* next caught signal wakes us up */
}
return(alarm(0)); /* turn off timer, return unslept time */
}

Figure 10.8 Another (imperfect) implementation of sleep

The sleep2 function avoids the race condition from Figure 10.7. Even if the pause is
never executed, the sleep2 function returns when the SIGALRM occurs.

There is, however, another subtle problem with the sleep2 function that involves
its interaction with other signals. If the SIGALRM interrupts some other signal handler,
then when we call longjmp, we abort the other signal handler. Figure 10.9 shows this
scenario. The loop in the SIGINT handler was written so that it executes for longer
than 5 seconds on one of the systems used by the author. We simply want it to execute
longer than the argument to sleep2. The integer k is declared as volatile to prevent
an optimizing compiler from discarding the loop.
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#include "apue.h"

unsigned int sleep2(unsigned int);
static void sig_int(int);
int
main(void)
{
unsigned int unslept;
if (signal(SIGINT, sig int) == SIG_ERR)

err sys("signal(SIGINT) error");
unslept = sleep2(5);
printf("sleep2 returned: %ul\n", unslept);
exit(0);
}

static void
sig int(int signo)

{
int ir j;
volatile int k;
/*
* Tune these loops to run for more than 5 seconds
* on whatever system this test program is run.
*/
printf("\nsig int starting\n");
for (i = 0; i < 300000; i++)
for (j = 0; Jj < 4000; j++)
k += 1 * j;
printf("sig_int finished\n");
}

Figure 10.9 Calling sleep2 from a program that catches other signals

When we execute the program shown in Figure 10.9 and interrupt the sleep by
typing the interrupt character, we get the following output:

$ ./a.out

~c we type the interrupt character
sig_int starting

sleep2 returned: 0

We can see that the longjmp from the sleep2 function aborted the other signal
handler, sig_int, even though it wasn’t finished. This is what you'll encounter if you
mix the SVR2 sleep function with other signal handling. See Exercise 10.3. ]

The purpose of the sleepl and sleep2 examples is to show the pitfalls in dealing

naively with signals. The following sections will show ways around all these problems,
so we can handle signals reliably, without interfering with other pieces of code.
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Example

A common use for alarm, in addition to implementing the s1leep function, is to put an
upper time limit on operations that can block. For example, if we have a read
operation on a device that can block (a “slow” device, as described in Section 10.5), we
might want the read to time out after some amount of time. The program in
Figure 10.10 does this, reading one line from standard input and writing it to standard
output.

#include "apue.h"

static void sig_alrm(int);

int
main(void)
{
int n;
char line[MAXLINE];
if (signal(SIGALRM, sig alrm) == SIG_ERR)
err sys("signal(SIGALRM) error");
alarm(10);
if ((n = read(STDIN FILENO, line, MAXLINE)) < 0)
err sys("read error");
alarm(0);
write(STDOUT FILENO, line, n);
exit(0);
}

static void
sig alrm(int signo)
{
/* nothing to do, just return to interrupt the read */

}

Figure 10.10 Calling read with a timeout

This sequence of code is common in UNIX applications, but this program has two
problems.

1. The program in Figure 10.10 has one of the same flaws that we described in
Figure 10.7: a race condition between the first call to alarm and the call to read.
If the kernel blocks the process between these two function calls for longer than
the alarm period, the read could block forever. Most operations of this type use
a long alarm period, such as a minute or more, making this unlikely;
nevertheless, it is a race condition.

2. If system calls are automatically restarted, the read is not interrupted when the
SIGALRM signal handler returns. In this case, the timeout does nothing.
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Here, we specifically want a slow system call to be interrupted. We'll see a portable
way to do this in Section 10.14. O

Example

Let’s redo the preceding example using longjmp. This way, we don’t need to worry
about whether a slow system call is interrupted.

#include "apue.h"
#include <setjmp.h>

static void sig alrm(int);
static jmp buf env _alrm;

int
main(void)
{
int n;
char line[MAXLINE];

if (signal(SIGALRM, sig alrm) == SIG_ERR)
err_sys("signal(SIGALRM) error");

if (setjmp(env_alrm) != 0)
err quit("read timeout");

alarm(10);

if ((n = read(STDIN FILENO, line, MAXLINE)) < 0)
err sys("read error");

alarm(0);

write(STDOUT FILENO, line, n);
exit(0);
}

static void
sig alrm(int signo)
{
longjmp(env_alrm, 1);

}

Figure 10.11 Calling read with a timeout, using longjmp

This version works as expected, regardless of whether the system restarts interrupted
system calls. Realize, however, that we still have the problem of interactions with other
signal handlers, as in Figure 10.8. O

If we want to set a time limit on an I/O operation, we need to use longjmp, as
shown previously, while recognizing its possible interaction with other signal handlers.
Another option is to use the select or poll functions, described in Sections 14.4.1 and
14.4.2.
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10.11 Signal Sets

We need a data type to represent multiple signals—a signal set. We'll use this data type
with such functions as sigprocmask (in the next section) to tell the kernel not to allow
any of the signals in the set to occur. As we mentioned earlier, the number of different
signals can exceed the number of bits in an integer, so in general we can’t use an integer
to represent the set with one bit per signal. POSIX.1 defines the data type sigset_t to
contain a signal set and the following five functions to manipulate signal sets.

#include <signal.h>
int sigemptyset(sigset t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);
All four return: 0 if OK, -1 on error

int sigismember(const sigset_t *set, int signo);

Returns: 1 if true, 0 if false, -1 on error

The function sigemptyset initializes the signal set pointed to by set so that all signals
are excluded. The function sigfillset initializes the signal set so that all signals are
included. All applications have to call either sigemptyset or sigfillset once for
each signal set, before using the signal set, because we cannot assume that the C
injtialization for external and static variables (0) corresponds to the implementation of
signal sets on a given system.

Once we have initialized a signal set, we can add and delete specific signals in the
set. The function sigaddset adds a single signal to an existing set, and sigdelset
removes a single signal from a set. In all the functions that take a signal set as an
argument, we always pass the address of the signal set as the argument.

Implementation

If the implementation has fewer signals than bits in an integer, a signal set can be
implemented using one bit per signal. For the remainder of this section, assume that an
implementation has 31 signals and 32-bit integers. The sigemptyset function zeros
the integer, and the sigfillset function turns on all the bits in the integer. These two
functions can be implemented as macros in the <signal.h> header:

#define sigemptyset(ptr) (*(ptr) = 0)
#define sigfillset(ptr) (*(ptr) “(sigset_t)0, 0)

Note that sigfillset must return 0, in addition to setting all the bits on in the signal
set, so we use C’s comma operator, which returns the value after the comma as the
value of the expression.
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Using this implementation, sigaddset turns on a single bit and sigdelset turns
off a single bit; sigismember tests a certain bit. Since no signal is ever numbered 0, we
subtract 1 from the signal number to obtain the bit to manipulate. Figure 10.12 shows
implementations of these functions.

#include <signal.h>

#include <errno.h>

/*
* <signal.h> usually defines NSIG to include signal number 0.
*/

#define SIGBAD(signo) ((signo) <= 0 || (signo) >= NSIG)

int

sigaddset(sigset t *set, int signo)

{

if (SIGBAD(signo)) {
errno = EINVAL;
return(-1);

}
*set |= 1 << (signo - 1); /* turn bit on */
return(0);
}
int
sigdelset(sigset_t *set, int signo)
{
if (SIGBAD(signo)) {
errno = EINVAL;
return(-1);
}
*set &= " (1 << (signo - 1)); /* turn bit off */
return(0);
}
int
sigismember (const sigset t *set, int signo)
{
if (SIGBAD(signo)) {
errno = EINVAL;
return(-1);
}
return((*set & (1 << (signo - 1))) != 0);
}

Figure 10.12 An implementation of sigaddset, sigdelset, and sigismember

We might be tempted to implement these three functions as one-line macros in the
<signal.h> header, but POSIX.1 requires us to check the signal number argument for
validity and to set errno if it is invalid. This is more difficult to do in a macro than in a
function.
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10.12 sigprocmask Function

Recall from Section 10.8 that the signal mask of a process is the set of signals currently
blocked from delivery to that process. A process can examine its signal mask, change its
signal mask, or perform both operations in one step by calling the following function.

#include <signal.h>

int sigprocmask(int how, const sigset t *restrict sef,
sigset t *restrict oset);

Returns: 0 if OK, -1 on error

First, if oset is a non-null pointer, the current signal mask for the process is returned
through oset.

Second, if set is a non-null pointer, the how argument indicates how the current
signal mask is modified. Figure 10.13 describes the possible values for how.
SIG_BLOCK is an inclusive-OR operation, whereas SIG_SETMASK is an assignment.
Note that SIGKILL and SIGSTOP can’t be blocked.

how Description

SIG_BLOCK The new signal mask for the process is the union of its current signal mask
and the signal set pointed to by set. That is, set contains the additional
signals that we want to block.

SIG_UNBLOCK | The new signal mask for the process is the intersection of its current signal
mask and the complement of the signal set pointed to by set. That is, set
contains the signals that we want to unblock.

SIG_SETMASK | The new signal mask for the process is replaced by the value of the signal
set pointed to by set.

Figure 10.13 Ways to change the current signal mask using sigprocmask

If set is a null pointer, the signal mask of the process is not changed, and how is
ignored.

After calling sigprocmask, if any unblocked signals are pending, at least one of
these signals is delivered to the process before sigprocmask returns.

The sigprocmask function is defined only for single-threaded processes. A separate function

is provided to manipulate a thread’s signal mask in a multithreaded process. We'll discuss this
in Section 12.8.

Example

Figure 10.14 shows a function that prints the names of the signals in the signal mask of
the calling process. We call this function from the programs shown in Figure 10.20 and
Figure 10.22.
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#include "apue.h"
#include <errno.h>

void
pr_mask(const char *str)
{
sigset t sigset;
int errno_save;
errno_save = errno; /* we can be called by signal handlers */

if (sigprocmask(0, NULL, &sigset) < 0) {
err ret("sigprocmask error");
} else {
printf("%s", str);
if (sigismember (&sigset, SIGINT))
printf(" SIGINT");
if (sigismember (&sigset, SIGQUIT))
printf(" SIGQUIT");
if (sigismember (&sigset, SIGUSR1))
printf(" SIGUSR1");
if (sigismember (&sigset, SIGALRM))
printf(" SIGALRM");

/* remaining signals can go here */

printf("\n");
}

errno = errno_save; /* restore errno */

Figure 10.14 Print the signal mask for the process

To save space, we don't test the signal mask for every signal that we listed in
Figure 10.1. (See Exercise 10.9.) O

10.13 sigpending Function

The sigpending function returns the set of signals that are blocked from delivery and
currently pending for the calling process. The set of signals is returned through the set
argument.

#include <signal.h>

int sigpending(sigset t *set);

Returns: 0 if OK, -1 on error
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Example

Figure 10.15 shows many of the signal features that we’ve been describing.

#include "apue.h"

static void sig quit(int);

int
main(void)
{
sigset t newmask, oldmask, pendmask;
if (signal(SIGQUIT, sig_quit) == SIG_ERR)
err_sys("can’t catch SIGQUIT");
/*
* Block SIGQUIT and save current signal mask.
*/

sigemptyset (&newmask) ;

sigaddset (&newmask, SIGQUIT);

if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)
err_sys("SIG_BLOCK error");

sleep(5); /* SIGQUIT here will remain pending */

if (sigpending(&pendmask) < 0)
err_sys("sigpending error");

if (sigismember (&pendmask, SIGQUIT))
printf ("\nSIGQUIT pending\n");

/*
* Restore signal mask which unblocks SIGQUIT.
*/
if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
err sys("SIG_SETMASK error");
printf ("SIGQUIT unblocked\n");

sleep(5); /* SIGQUIT here will terminate with core file */
exit(0);
}

static void
sig quit(int signo)

{
printf("caught SIGQUIT\n");
if (signal(SIGQUIT, SIG DFL) == SIG_ERR)
err sys("can’t reset SIGQUIT");
}

Figure 10.15 Example of signal sets and sigprocmask
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10.14

The process blocks SIGQUIT, saving its current signal mask (to restore later), and then
goes to sleep for 5 seconds. Any occurrence of the quit signal during this period is
blocked and won’t be delivered until the signal is unblocked. At the end of the
5-second sleep, we check whether the signal is pending and unblock the signal.

Note that we saved the old mask when we blocked the signal. To unblock the
signal, we did a SIG_SETMASK of the old mask. Alternatively, we could SIG_UNBLOCK
only the signal that we had blocked. Be aware, however, if we write a function that can
be called by others and if we need to block a signal in our function, we can’t use
SIG_UNBLOCK to unblock the signal. In this case, we have to use SIG_SETMASK and
restore the signal mask to its prior value, because it's possible that the caller had
specifically blocked this signal before calling our function. We’ll see an example of this
in the system function in Section 10.18.

If we generate the quit signal during this sleep period, the signal is now pending
and unblocked, so it is delivered before sigprocmask returns. We’ll see this occur
because the printf in the signal handler is output before the printf that follows the
call to sigprocmask.

The process then goes to sleep for another 5 seconds. If we generate the quit signal
during this sleep period, the signal should terminate the process, since we reset the
handling of the signal to its default when we caught it. In the following output, the
terminal prints ~\ when we input Control-backslash, the terminal quit character:

$ ./a.out

“\ generate signal once (before 5 seconds are up)
SIGQUIT pending after return from sleep

caught SIGQUIT in signal handler

SIGQUIT unblocked after return from sigprocmask
“\Quit(coredump) generate signal again

$ ./a.out

100 W W0 N N Nl Nl Nl N W Y generate signal 10 times (before 5 seconds are up)
SIGQUIT pending

caught SIGQUIT signal is generated only once

SIGQUIT unblocked

“\Quit (coredump) generate signal again

The message Quit(coredump) is printed by the shell when it sees that its child
terminated abnormally. Note that when we run the program the second time, we
generate the quit signal ten times while the process is asleep, yet the signal is delivered
only once to the process when it’s unblocked. This demonstrates that signals are not
queued on this system. |

sigaction Function

The sigaction function allows us to examine or modify (or both) the action associated
with a particular signal. This function supersedes the signal function from earlier
releases of the UNIX System. Indeed, at the end of this section, we show an
implementation of signal using sigaction.
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#include <signal.h>

int sigaction(int signo, const struct sigaction *restrict act,
struct sigaction *restrict oact);

Returns: 0 if OK, -1 on error

The argument signo is the signal number whose action we are examining or modifying.
If the act pointer is non-null, we are modifying the action. If the oact pointer is non-null,
the system returns the previous action for the signal through the oact pointer. This
function uses the following structure:

struct sigaction {

void (*sa_handler) (int); /* addr of signal handler, */

/* or SIG_IGN, or SIG_DFL */
sigset t sa mask; /* additional signals to block */
int sa_flags; /* signal options, Figure 10.16 */

/* alternate handler */
void (*sa_sigaction) (int, siginfo t *, void *);

}i

When changing the action for a signal, if the sa_handler field contains the
address of a signal-catching function (as opposed to either of the constants SIG_IGN or
SIG_DFL), then the sa_mask field specifies a set of signals that are added to the signal
mask of the process before the signal-catching function is called. If and when the
signal-catching function returns, the signal mask of the process is reset to its previous
value. This way, we are able to block certain signals whenever a signal handler is
invoked. The operating system includes the signal being delivered in the signal mask
when the handler is invoked. Hence, we are guaranteed that whenever we are
processing a given signal, another occurrence of that same signal is blocked until we’re
finished processing the first occurrence. Recall from Section 10.8 that additional
occurrences of the same signal are usually not queued. If the signal occurs five times
while it is blocked, when we unblock the signal, the signal-handling function for that
signal will usually be invoked only one time. (This characteristic was illustrated in the
previous example.)

Once we install an action for a given signal, that action remains installed until we
explicitly change it by calling sigaction. Unlike earlier systems with their unreliable
signals, POSIX.1 requires that a signal handler remain installed until explicitly changed.

The sa_flags field of the act structure specifies various options for the handling of
this signal. Figure 10.16 details the meaning of these options when set. The SUS
column contains e if the flag is defined as part of the base POSIX.1 specification, and
XSI if it is defined as part of the XSI option.

The sa_sigaction field is an alternative signal handler used when the
SA_SIGINFO flag is used with sigaction. Implementations might use the same
storage for both the sa_sigaction field and the sa_handler field, so applications
can use only one of these fields at a time.
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Option

SUS

FreeBSD Linux Mac OS X Solaris
8.0 320 10.6.8 10

Description

SA_INTERRUPT

SA_NOCLDSTOP

SA_NOCLDWAIT

SA_NODEFER

SA_ONSTACK

SA_RESETHAND

SA_RESTART

SA_SIGINFO

XSI

System calls interrupted by this signal are not
automatically restarted (the XSI default for
sigaction). See Section 10.5 for more
information.

1f signo is SIGCHLD, do not generate this signal
when a child process stops (job control). This
signal is still generated, of course, when a child
terminates (but see the SA_ NOCLDWALT option
below). When the XSI option is supported,
SIGCHLD won't be sent when a stopped child
continues if this flag is set.

If signo is SIGCHLD, this option prevents the
system from creating zombie processes when
children of the calling process terminate. If it
subsequently calls wait, the calling process
blocks until all its child processes have
terminated and then returns -1 with errno set
to ECHILD. (Recall Section 10.7.)

When this signal is caught, the signal is not
automatically blocked by the system while the
signal-catching function executes (unless the
signal is also included in sa_mask). Note that
this type of operation corresponds to the earlier
unreliable signals.

If an alternative stack has been declared with
sigaltstack(2), this signal is delivered to the
process on the alternative stack.

The disposition for this signal is reset to
SIG_DFL, and the SA_SIGINFO flag is cleared
on entry to the signal-catching function. Note
that this type of operation corresponds to the
earlier unreliable signals. The disposition for
the two signals SIGILL and SIGTRAP can’t be
reset automatically, however. Setting this flag
can optionally cause sigaction to behave as if
SA NODEFER is also set.

System calls interrupted by this signal are
automatically restarted. (Refer to Section 10.5.)

This option provides additional information to a
signal handler: a pointer to a siginfo structure
and a pointer to an identifier for the process
context.

Figure 10.16 Option flags (sa_flags) for the handling of each signal
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Normally, the signal handler is called as
void handler(int signo);

but if the SA_SIGINFO flag is set, the signal handler is called as
void handler(int signo, siginfo_t *info, void *context);

The siginfo structure contains information about why the signal was generated.
An example of what it might look like is shown below. All POSIX.1-compliant
implementations must include at least the si_signo and si_code members.
Additionally, implementations that are XSI compliant contain at least the following

fields:
struct siginfo {
int si signo; /* signal number */
int si errno; /* if nonzero, errno value from errno.h */
int si code; /* additional info (depends on signal) */
pid t si_pid; /* sending process ID */
uid_t si uid; /* sending process real user ID */
void *si_addr; /* address that caused the fault */
int si status; /* exit value or signal number */
union sigval si value; /* application-specific value */
/* possibly other fields also */

bi
The sigval union contains the following fields:

int sival_int;
void *sival ptr;

Applications pass an integer value in si_value.sival_int or pass a pointer value in
si_value.sival_ptr when delivering signals.

Figure 10.17 shows values of si_code for various signals, as defined by the Single
UNIX Specification. Note that implementations may define additional code values.

If the signal is SIGCHLD, then the si_pid, si_status, and si_uid fields will be
set. If the signal is SIGBUS, SIGILL, SIGFPE, or SIGSEGV, then the si_addr contains
the address responsible for the fault, although the address might not be accurate. The
si_errno field contains the error number corresponding to the condition that caused
the signal to be generated, although its use is implementation defined.

The context argument to the signal handler is a typeless pointer that can be cast to a
ucontext_t structure identifying the process context at the time of signal delivery.
This structure contains at least the following fields:

ucontext_t *uc_link; /* pointer to context resumed when */
/* this context returns */

sigset_t uc_sigmask; /* signals blocked when this context */
/* is active */

stack_t uc_stack; /* stack used by this context */

mcontext_t uc_mcontext; /* machine-specific representation of */
/* saved context */
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The uc_stack field describes the stack used by the current context. It contains at least
the following members:

/* stack base or pointer */
/* stack size */

void *ss_sp;
size t ss_size;

int ss_flags; /* flags */
When an implementation supports the real-time signal extensions, signal handlers established
with the SA_SIGINFO flag will result in signals being queued reliably. A separate range of
reserved signal numbers is available for real-time application use. Applications can pass
information along with the signal by using the sigqueue function (Section 10.20).
Signal Code Reason
ILL_ILLOPC illegal opcode
ILL_ILLOPN illegal operand
ILL_ ILLADR illegal addressing mode
ILL_ ILLTRP illegal trap
SIGILL .o
ILL_PRVOPC privileged opcode
ILL_PRVREG privileged register
ILL_COPROC COprocessor error
ILL_BADSTK internal stack error
FPE_INTDIV integer divide by zero
FPE_INTOVF integer overflow
FPE_FLTDIV floating-point divide by zero
FPE_FLTOVF floating-point overflow
SIGFPE . .
FPE_FLTUND floating-point underflow
FPE_FLTRES floating-point inexact result
FPE_FLTINV invalid floating-point operation
FPE_FLTSUB subscript out of range
sTGsEgy | SEGV_MAPERR address not mapped to object
SEGV_ACCERR invalid permissions for mapped object
BUS_ADRALN invalid address alignment
SIGBUS BUS_ADRERR nonexistent physical address
BUS_OBJERR object-specific hardware error
TRAP_BRKPT process breakpoint trap
SIGTRAP
TRAP_TRACE process trace trap
CLD_EXITED child has exited
CLD KILLED child has terminated abnormally (no core)
STGCHLD CLD_DUMPED child has terminated abnormally with core
CLD_TRAPPED traced child has trapped
CLD_STOPPED child has stopped
CLD_CONTINUED | stopped child has continued
SI_USER signal sent by kill
SI_QUEUE signal sent by sigqueue
Any SI_TIMER expiration of a timer set by timer_settime
SI_ASYNCIO completion of asynchronous 1/0 request
SI_MESGQ arrival of a message on a message queue (real-time extension)

Figure 10.17 siginfo_t code values
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Example — signal Function

Let’s now implement the signal function using sigaction. This is what many
platforms do (and what a note in the POSIX.1 Rationale states was the intent of POSIX).
Systems with binary compatibility constraints, on the other hand, might provide a
signal function that supports the older, unreliable-signal semantics. Unless you
specifically require these older, unreliable semantics (for backward compatibility), you
should use the following implementation of signal or call sigaction directly. (As
you might guess, an implementation of signal with the old semantics could call
sigaction specifying SA_RESETHAND and SA_NODEFER.) All the examples in this
text that call signal call the function shown in Figure 10.18.

#include "apue.h"

/* Reliable version of signal(), using POSIX sigaction(). */
Sigfunc *
signal(int signo, Sigfunc *func)

{
struct sigaction act, oact;
act.sa_handler = func;
sigemptyset(&act.sa mask);
act.sa_flags = 0;
if (signo == SIGALRM) {
#ifdef SA INTERRUPT
act.sa_flags |= SA INTERRUPT;
#endif
} else {
act.sa flags |= SA RESTART;
}
if (sigaction(signo, &act, &oact) < 0)
return(SIG_ERR);
return(oact.sa_handler);
}

Figure 10.18 An implementation of signal using sigaction

Note that we must use sigemptyset to initialize the sa_mask member of the
structure. We're not guaranteed that act.sa mask = 0 does the same thing.

We intentionally set the SA_ RESTART flag for all signals other than SIGALRM, so
that any system call interrupted by these other signals will be automatically restarted.
The reason we don’t want SIGALRM restarted is to allow us to set a timeout for 1/0O
operations. (Recall the discussion of Figure 10.10.)

Some older systems, such as SunOS, define the SA_INTERRUPT flag. These systems
restart interrupted system calls by default, so specifying this flag causes system calls to
be interrupted. Linux defines the SA_INTERRUPT flag for compatibility with
applications that use it, but by default does not restart system calls when the signal
handler is installed with sigaction. The Single UNIX Specification specifies that the
sigaction function not restart interrupted system calls unless the SA_RESTART flag is
specified. ]
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Example —signal_intr Function

10.15

Figure 10.19 shows a version of the signal function that tries to prevent any
interrupted system calls from being restarted.

#include "apue.h"

Sigfunc *
signal_intr(int signo, Sigfunc *func)
{

struct sigaction act, oact;

act.sa _handler = func;
sigemptyset(&act.sa_mask);
act.sa _flags = 0;

#ifdef SA INTERRUPT
act.sa_flags |= SA_INTERRUPT;

#endif
if (sigaction(signo, &act, &oact) < 0)

return(SIG_ERR);

return(oact.sa_handler);

Figure 10.19 The signal_intr function

For improved portability, we specify the SA_INTERRUPT flag, if defined by the system,
to prevent interrupted system calls from being restarted. O

sigsetjmp and siglongjmp Functions

In Section 7.10, we described the setjmp and longjmp functions, which can be used
for nonlocal branching. The longjmp function is often called from a signal handler to
return to the main loop of a program, instead of returning from the handler. We saw
this approach in Figures 10.8 and 10.11.

There is a problem in calling longjmp, however. When a signal is caught, the
signal-catching function is entered, with the current signal automatically being added to
the signal mask of the process. This prevents subsequent occurrences of that signal
from interrupting the signal handler. If we longjmp out of the signal handler, what
happens to the signal mask for the process?

Under FreeBSD 8.0 and Mac OS X 10.6.8, setjmp and longjmp save and restore the signal
mask. Linux 3.2.0 and Solaris 10, however, do not do this, although Linux supports an option
to provide BSD behavior. FreeBSD and Mac OS X provide the functions _setjmp and
_longjmp, which do not save and restore the signal mask.

To allow either form of behavior, POSIX.1 does not specify the effect of set jmp and
longjmp on signal masks. Instead, two new functions, sigsetjmp and siglongjmp,
are defined by POSIX.1. These two functions should always be used when branching
from a signal handler.
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#include <setjmp.h>
int sigsetjmp(sigjmp buf env, int savemask);
Returns: 0 if called directly, nonzero if returning from a call to siglongjmp
void siglongjmp(sigjmp_buf env, int wval);
The only difference between these functions and the setjmp and longjmp functions is
that sigsetjmp has an additional argument. If savemask is nonzero, then sigsetjmp
also saves the current signal mask of the process in env. When siglongjmp is called, if
the env argument was saved by a call to sigsetjmp with a nonzero savemask, then
siglongjmp restores the saved signal mask.
Example

The program in Figure 10.20 demonstrates how the signal mask that is installed by the
system when a signal handler is invoked automatically includes the signal being
caught. This program also illustrates the use of the sigsetjmp and siglongjmp
functions.

#include "apue.h"
#include <setjmp.h>
#include <time.h>

static void sig usrl(int);
static void sig alrm(int);
static sigjmp_buf jmpbuf;
static volatile sig atomic_t canjump;
int
main(void)
{
if (signal(SIGUSR1l, sig usrl) == SIG_ERR)
err sys("signal(SIGUSR1) error");
if (signal(SIGALRM, sig alrm) == SIG_ERR)

err sys("signal (SIGALRM) error");
pr_mask("starting main: "); /* Figure 10.14 */

if (sigsetjmp(jmpbuf, 1)) {

pr mask("ending main: ");

exit(0);
}
canjump = 1; /* now sigsetjmp() is OK */
for ( ; i)

pause();

}

static void
sig usrl(int signo)
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{
time t starttime;
if (canjump == 0)
return; /* unexpected signal, ignore */
pr_mask("starting sig usrl: ");
alarm(3); /* SIGALRM in 3 seconds */
starttime = time(NULL);
for ( ; ;) /* busy wait for 5 seconds */
if (time(NULL) > starttime + 5)
break;
pr_mask("finishing sig usrl: ");
canjump = 0;
siglongjmp(jmpbuf, 1); /* jump back to main, don’t return */
}

static void
sig alrm(int signo)
{
pr mask("in sig alrm: ");

}

Figure 10.20 Example of signal masks, sigsetjmp, and siglongjmp

This program demonstrates another technique that should be used whenever
siglongjmp is called from a signal handler. We set the variable canjump to a nonzero
value only after we've called sigsetjmp. This variable is examined in the signal
handler, and siglongjmp is called only if the flag canjump is nonzero. This technique
provides protection against the signal handler being called at some earlier or later time,
when the jump buffer hasn’t been initialized by sigsetjmp. (In this trivial program,
we terminate quickly after the siglongjmp, but in larger programs, the signal handler
may remain installed long after the siglongjmp.) Providing this type of protection
usually isn’t required with longjmp in normal C code (as opposed to a signal handler).
Since a signal can occur at any time, however, we need the added protection in a signal
handler.

Here, we use the data type sig_atomic_t, which is defined by the ISO C standard
to be the type of variable that can be written without being interrupted. By this we
mean that a variable of this type should not extend across page boundaries on a system
with virtual memory and can be accessed with a single machine instruction, for
example. We always include the ISO type qualifier volatile for these data types as
well, since the variable is being accessed by two different threads of control: the main
function and the asynchronously executing signal handler. Figure 10.21 shows a
timeline for this program. We can divide Figure 10.21 into three parts: the left part
(corresponding to main), the center part (sig_usrl), and the right part (sig_alrm).
While the process is executing in the left part, its signal mask is 0 (no signals are
blocked). While executing in the center part, its signal mask is SIGUSR1. While
executing in the right part, its signal mask is SIGUSR1 | SIGALRM.
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main

signal()
signal()
pr_mask()
sigsetjmp()
pause( )
SIGUSRI1 delivered :
pr_mask()
alarm()
time()
time()
time()
Y  SIGALRM delivered :
pr_mask()
e
: return from signal handler return()
Y
pr_mask()
sigsetjmp() --——— siglongjmp()
pr_mask()
exit()

Figure 10.21 Timeline for example program handling two signals

Let’s examine the output when the program in Figure 10.20 is executed:

$ ./a.out & start process in background

starting main:

[1] 531 the job-control shell prints its process ID
$ kill -USR1l 531 send the process SIGUSR1

starting sig usrl: SIGUSRI1
$ in sig_alrm: SIGUSR1 SIGALRM
finishing sig usrl: SIGUSRI
ending main:
just press RETURN
[1] + Done ./a.out &

The output is what we expect: when a signal handler is invoked, the signal being caught
is added to the current signal mask of the process. The original mask is restored when
the signal handler returns. Also, siglongjmp restores the signal mask that was saved
by sigsetjmp.

If we change the program in Figure 10.20 so that the calls to sigsetjmp and
siglongjmp are replaced with calls to setjmp and longjmp on Linux (or _setjmp
and _longjmp on FreeBSD), the final line of output becomes

ending main: SIGUSRI1

This means that the main function is executing with the SIGUSR1 signal blocked, after
the call to set jmp. This probably isn’t what we want. O
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10.16 sigsuspend Function

We have seen how we can change the signal mask for a process to block and unblock
selected signals. We can use this technique to protect critical regions of code that we
don’t want interrupted by a signal. But what if we want to unblock a signal and then
pause, waiting for the previously blocked signal to occur? Assuming that the signal is
SIGINT, the incorrect way to do this is

sigset_t newmask, oldmask;

sigemptyset (&newmask) ;
sigaddset (&newmask, SIGINT);

/* block SIGINT and save current signal mask */
if (sigprocmask(SIG BLOCK, &newmask, &oldmask) < 0)
err sys("SIG_BLOCK error");

/* critical region of code */

/* restore signal mask, which unblocks SIGINT */
if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
err sys("SIG_SETMASK error");

/* window is open */
pause(); /* wait for signal to occur */

/* continue processing */

If the signal is sent to the process while it is blocked, the signal delivery will be deferred
until the signal is unblocked. To the application, this can look as if the signal occurs
between the unblocking and the pause (depending on how the kernel implements
signals). If this happens, or if the signal does occur between the unblocking and the
pause, we have a problem. Any occurrence of the signal in this window of time is lost,
in the sense that we might not see the signal again, in which case the pause will block
indefinitely. This is another problem with the earlier unreliable signals.

To correct this problem, we need a way to both restore the signal mask and put the
process to sleep in a single atomic operation. This feature is provided by the
sigsuspend function.

#include <signal.h>

int sigsuspend(const sigset_t *sigmask);

Returns: -1 with errno set to EINTR

The signal mask of the process is set to the value pointed to by sigmask. Then the
process is suspended until a signal is caught or until a signal occurs that terminates the
process. If a signal is caught and if the signal handler returns, then sigsuspend
returns, and the signal mask of the process is set to its value before the call to
sigsuspend.

Note that there is no successful return from this function. If it returns to the caller, it
always returns -1 with errno set to EINTR (indicating an interrupted system call).
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Example

Figure 10.22 shows the correct way to protect a critical region of code from a specific
signal.

#include "apue.h"

static void sig int(int);

int

main(void)

{
sigset t newmask, oldmask, waitmask;
pr mask("program start: ");
if (signal(SIGINT, sig_int) == SIG_ERR)

err sys("signal(SIGINT) error");
sigemptyset (&waitmask);
sigaddset (&waitmask, SIGUSR1);
sigemptyset (&newmask) ;
sigaddset (&newmask, SIGINT);

/*
* Block SIGINT and save current signal mask.
*/
if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)
err sys("SIG BLOCK error");

/*
* Critical region of code.
*/
pr mask("in critical region: ");
/*
* Pause, allowing all signals except SIGUSRI1.
*/
if (sigsuspend(&waitmask) != -1)
err sys("sigsuspend error");
pr mask("after return from sigsuspend: ");
/*
* Reset signal mask which unblocks SIGINT.
*/

if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
err sys("SIG _SETMASK error");

/*
* And continue processing ...
*/
pr mask("program exit: ");
exit(0);
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static void
sig int(int signo)
{
pr_mask("\nin sig int: ");

}

Figure 10.22 Protecting a critical region from a signal

When sigsuspend returns, it sets the signal mask to its value before the call. In this
example, the SIGINT signal will be blocked, so we restore the signal mask to the value
that we saved earlier (o1ldmask).

Running the program from Figure 10.22 produces the following output:

$ ./a.out

program start:

in critical region: SIGINT

~c type the interrupt character
in sig_int: SIGINT SIGUSRI1

after return from sigsuspend: SIGINT

program exit:

We added SIGUSRI1 to the mask installed when we called sigsuspend so that when
the signal handler ran, we could tell that the mask had actually changed. We can see
that when sigsuspend returns, it restores the signal mask to its value before the call. O

Example

Another use of sigsuspend is to wait for a signal handler to set a global variable. In
the program shown in Figure 10.23, we catch both the interrupt signal and the quit
signal, but want to wake up the main routine only when the quit signal is caught.

#include "apue.h"
volatile sig atomic_t quitflag; /* set nonzero by signal handler */

static void
sig_int(int signo) /* one signal handler for SIGINT and SIGQUIT */

{
if (signo == SIGINT)
printf("\ninterrupt\n");
else if (signo == SIGQUIT)
quitflag = 1; /* set flag for main loop */
}
int
main(void)
{
sigset t newmask, oldmask, zeromask;
if (signal(SIGINT, sig int) == SIG_ERR)
err sys("signal(SIGINT) error");
if (signal(SIGQUIT, sig_int) == SIG_ERR)
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err_sys("signal(SIGQUIT) error");

sigemptyset (&zeromask) ;
sigemptyset (&newmask);
sigaddset (&newmask, SIGQUIT);

/*

* Block SIGQUIT and save current signal mask.

*/

if (sigprocmask(SIG BLOCK, &newmask, &oldmask) < 0)

err_sys("SIG_BLOCK error");

while (quitflag == 0)

/*

sigsuspend(&zeromask) ;

* SIGQUIT has been caught and is now blocked; do whatever.

*/

quitflag = 0;

/*

* Reset signal mask which unblocks SIGQUIT.

*/

if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)

err sys("SIG_SETMASK error");

exit(0);

Figure 10.23 Using sigsuspend to wait for a global variable to be set

Sample output from this program is

Example

$ ./a.out

“c type the interrupt character
interrupt

“c type the interrupt character again
interrupt

“c and again

interrupt

“\s now terminate with the quit character

a

For portability between non-POSIX systems that support ISO C and POSIX.1 systems, the only
thing we should do within a signal handler is assign a value to a variable of type
sig_atomic_t-—nothing else. POSIX.1 goes further and specifies a list of functions that are
safe to call from within a signal handler (Figure 10.4), but if we do this, our code may not run
correctly on non-POSIX systems.

As another example of signals, we show how signals can be used to synchronize a
parent and child. Figure 10.24 shows implementations of the five routines TELL_WAIT,
TELL_PARENT, TELL, CHILD, WAIT PARENT, and WAIT CHILD from Section 8.9.
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#include "apue.h"

static volatile sig atomic_t sigflag; /* set nonzero by sig handler */
static sigset t newmask, oldmask, zeromask;

static void
sig usr(int signo) /* one signal handler for SIGUSR1 and SIGUSR2 */

{
sigflag = 1;
}
void
TELL_WAIT(void)
{
if (signal(SIGUSR1l, sig_usr) == SIG_ERR)
err sys("signal(SIGUSR1) error");
if (signal(SIGUSR2, sig_usr) == SIG_ERR)
err_sys("signal(SIGUSR2) error");
sigemptyset (&zeromask);
sigemptyset (&newmask);
sigaddset (&newmask, SIGUSR1);
sigaddset (&newmask, SIGUSR2);
/* Block SIGUSR1 and SIGUSR2, and save current signal mask */
if (sigprocmask(SIG _BLOCK, &newmask, &oldmask) < 0)
err sys("SIG BLOCK error");
}
void
TELL_PARENT(pid_t pid)
{
kill(pid, SIGUSR2); /* tell parent we're done */
}
void
WAIT PARENT (void)
{
while (sigflag == 0)
sigsuspend(&zeromask); /* and wait for parent */
sigflag = 0;
/* Reset signal mask to original value */
if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
err_sys("SIG_SETMASK error");
}
void
TELL_CHILD(pid t pid)
{
kill(pid, SIGUSR1); /* tell child we’re done */
}
void

WAIT CHILD(void)
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{
while (sigflag == 0)
sigsuspend(&zeromask); /* and wait for child */
sigflag = 0;
/* Reset signal mask to original value */
if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
err sys("SIG_SETMASK error");
}

Figure 10.24 Routines to allow a parent and child to synchronize

We use the two user-defined signals: SIGUSR1 is sent by the parent to the child, and
SIGUSR2 is sent by the child to the parent. In Figure 15.7, we show another
implementation of these five functions using pipes. ]

The sigsuspend function is fine if we want to go to sleep while we’re waiting for a
signal to occur (as we’ve shown in the previous two examples), but what if we want to
call other system functions while we’re waiting? Unfortunately, this problem has no
bulletproof solution unless we use multiple threads and dedicate a separate thread to
handling signals, as we discuss in Section 12.8.

Without using threads, the best we can do is to set a global variable in the signal
handler when the signal occurs. For example, if we catch both SIGINT and SIGALRM
and install the signal handlers using the signal_intr function, the signals will
interrupt any slow system call that is blocked. The signals are most likely to occur
when we're blocked in a call to the read function waiting for input from a slow device.
(This is especially true for SIGALRM, since we set the alarm clock to prevent us from
waiting forever for input.) The code to handle this looks similar to the following:

if (intr_ flag) /* flag set by our SIGINT handler */
handle_intr();
if (alrm_flag) /* flag set by our SIGALRM handler */

handle_alrm();
/* signals occurring in here are lost */

while (read( ... ) < 0) {
if (errno == EINTR) {
if (alrm flag)
handle_alrm();
else if (intr_ flag)
handle_intr();
} else {
/* some other error */
}
} else if (n == 0) {
/* end of file */
} else {
/* process input */

}
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10.17

We test each of the global flags before calling read and again if read returns an
interrupted system call error. The problem occurs if either signal is caught between the
first two if statements and the subsequent call to read. Signals occurring in here are
lost, as indicated by the code comment. The signal handlers are called, and they set the
appropriate global variable, but the read never returns (unless some data is ready to be

read).
What we would like to be able to do is the following sequence of steps, in order.
Block SIGINT and SIGALRM

2. Test the two global variables to see whether either signal has occurred and, if so,
handle the condition.

3. Call read (or any other system function) and unblock the two signals, as an
atomic operation.

The sigsuspend function helps us only if step 3 is a pause operation.

abort Function

We mentioned earlier that the abort function causes abnormal program termination.

#include <stdlib.h>
void abort(void);

This function never returns

This function sends the SIGABRT signal to the caller. (Processes should not ignore this
signal.) ISO C states that calling abort will deliver an unsuccessful termination
notification to the host environment by calling raise (SIGABRT).

ISO C requires that if the signal is caught and the signal handler returns, abort still
doesn’t return to its caller. If this signal is caught, the only way the signal handler can’t
return is if it calls exit, exit, Exit, longjmp, or siglongjmp. (Section 10.15
discusses the differences between longjmp and siglongjmp.) POSIX.1 also specifies
that abort overrides the blocking or ignoring of the signal by the process.

The intent of letting the process catch the SIGABRT is to allow it to perform any
cleanup that it wants to do before the process terminates. If the process doesn’t
terminate itself from this signal handler, POSIX.1 states that, when the signal handler
returns, abort terminates the process.

The ISO C specification of this function leaves it up to the implementation as to
whether output streams are flushed and whether temporary files (Section 5.13) are
deleted. POSIX.1 goes further and allows an implementation to call f£close on open
standard I/O streams before terminating if the call to abort terminates the process.

Earlier versions of System V generated the SIGIOT signal from the abort function.

Furthermore, it was possible for a process to ignore this signal or to catch it and return from
the signal handler, in which case abort returned to its caller.
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4.3BSD generated the SIGILL signal. Before doing this, the 4.3BSD function unblocked the
signal and reset its disposition to SIG_DFL (terminate with core file). This prevented a
process from either ignoring the signal or catching it.

Historically, implementations of abort have differed in how they deal with standard 1/O
streams. For defensive programming and improved portability, if we want standard I/O
streams to be flushed, we specifically do it before calling abort. We do this in the err_dump
function (Appendix B).

Since most UNIX System implementations of tmpfile call unlink immediately after creating
the file, the ISO C warning about temporary files does not usually concern us.

Example

Figure 10.25 shows an implementation of the abort function as specified by POSIX.1.

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

void
abort (void) /* POSIX-style abort() function */
{

sigset_t mask;

struct sigaction action;

/* Caller can’'t ignore SIGABRT, if so reset to default */
sigaction(SIGABRT, NULL, &action);
if (action.sa_handler == SIG_IGN) {
action.sa handler = SIG DFL;
sigaction(SIGABRT, &action, NULL);
}
if (action.sa handler == SIG_DFL)
fflush(NULL); /* flush all open stdio streams */

/* Caller can’t block SIGABRT; make sure it’s unblocked */
sigfillset (&mask);

sigdelset (&mask, SIGABRT); /* mask has only SIGABRT turned off */
sigprocmask(SIG_SETMASK, &mask, NULL);

kill(getpid(), SIGABRT); /* send the signal */

/* 1f we're here, process caught SIGABRT and returned */
fflush(NULL); /* flush all open stdio streams */
action.sa_handler = SIG_DFL;

sigaction(SIGABRT, &action, NULL); /* reset to default */
sigprocmask(SIG_SETMASK, &mask, NULL); /* just in case ... */
kill(getpid(), SIGABRT); /* and one more time */
exit(1l); /* this should never be executed ... */

Figure 10.25 Implementation of POSIX.1 abort
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We first see whether the default action will occur; if so, we flush all the standard I/0
streams. This is not equivalent to calling fclose on all the open streams (since it just
flushes them and doesn’t close them), but when the process terminates, the system
closes all open files. If the process catches the signal and returns, we flush all the
streams again, since the process could have generated more output. The only condition
we don’t handle is the case where the process catches the signal and calls _exit or
_Exit. In this case, any unflushed standard I/O buffers in memory are discarded. We
assume that a caller that does this doesn’t want the buffers flushed.

Recall from Section 10.9 that if calling kill causes the signal to be generated for the
caller, and if the signal is not blocked (which we guarantee in Figure 10.25), then the
signal (or some other pending, unlocked signal) is delivered to the process before kill
returns. We block all signals except SIGABRT, so we know that if the call to kill
returns, the process caught the signal and the signal handler returned. O

10.18 system Function
In Section 8.13, we showed an implementation of the system function. That version,
however, did not do any signal handling. POSIX.1 requires that systemignore SIGINT
and SIGQUIT and block SIGCHLD. Before showing a version that handles these signals
correctly, let’s see why we need to worry about signal handling.

Example

The program shown in Figure 10.26 uses the version of system from Section 8.13 to
invoke the ed(1) editor. (This editor has been part of UNIX systems for a long time. We
use it here because it is an interactive program that catches the interrupt and quit
signals. If we invoke ed from a shell and type the interrupt character, it catches the
interrupt signal and prints a question mark. The ed program also sets the disposition of
the quit signal so that it is ignored.) The program in Figure 10.26 catches both SIGINT
and SIGCHLD. If we invoke the program, we get

$ ./a.out

a append text to the editor’s buffer

Here is one line of text

. period on a line by itself stops append mode

1,$p print first through last lines of buffer to see what's there
Here is one line of text

w temp.foo write the buffer to a file

25 editor says it wrote 25 bytes

q and leave the editor

caught SIGCHLD

When the editor terminates, the system sends the SIGCHLD signal to the parent (the
a.out process). We catch it and return from the signal handler. But if it is catching the
SIGCHLD signal, the parent should be doing so because it has created its own children,
so that it knows when its children have terminated. The delivery of this signal in the
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#include "apue.h"

static void
sig int(int signo)
{
printf("caught SIGINT\n");
}

static void
sig chld(int signo)

{
printf("caught SIGCHLD\n");
}
int
main(void)
{
if (signal(SIGINT, sig int) == SIG_ERR)
err sys("signal(SIGINT) error");
if (signal(SIGCHLD, sig_chld) == SIG_ERR)
err sys("signal(SIGCHLD) error");
if (system("/bin/ed") < 0)
err sys("system() error");
exit(0);
}

Figure 10.26 Using system to invoke the ed editor

parent should be blocked while the system function is executing. Indeed, this is what
POSIX.1 specifies. Otherwise, when the child created by system terminates, it would
fool the caller of system into thinking that one of its own children terminated. The
caller would then use one of the wait functions to get the termination status of the
child, thereby preventing the system function from being able to obtain the child’s
termination status for its return value.

If we run the program again, this time sending the editor an interrupt signal, we get

$ ./a.out
a append text to the editor’s buffer
hello, world
period on a line by itself stops append mode

1,$p print first through last lines to see what’s there
hello, world

w temp.foo write the buffer to a file

13 editor says it wrote 13 bytes

~c type the interrupt character

? editor catches signal, prints question mark
caught SIGINT and so does the parent process

q leave editor

caught SIGCHLD
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Recall from Section 9.6 that typing the interrupt character causes the interrupt signal to
be sent to all the processes in the foreground process group. Figure 10.27 shows the
arrangement of the processes when the editor is running.

rTT T 7 rTT T T T T T T T TS T T T T T T T T 7
[ [ \
. fork fork . fork .
" | login shell |-L—=°% a.out or /bin/sh or /bin/ed | !
} } exec | exec exec }
Lo 2 Lo b L _________ 2
background process group foreground process group

Figure 10.27 Foreground and background process groups for Figure 10.26

In this example, SIGINT is sent to all three foreground processes. (The shell ignores
it.) As we can see from the output, both the a.out process and the editor catch the
signal. But when we’re running another program with the system function, we
shouldn’t have both the parent and the child catching the two terminal-generated
signals: interrupt and quit. Instead, these two signals should be sent to the program
that is running: the child. Since the command that is executed by system can be an
interactive command (as is the ed program in this example) and since the caller of
system gives up control while the program executes, waiting for it to finish, the caller
of system should not be receiving these two terminal-generated signals. For this
reason, POSIX.1 specifies that the system function should ignore these two signals
while waiting for the command to complete. O

Example

Figure 10.28 shows an implementation of the system function with the required signal

handling.
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <unistd.h>
int
system(const char *cmdstring) /* with appropriate signal handling */
{
pid t pid;
int status;
struct sigaction ignore, saveintr, savequit;
sigset t chldmask, savemask;
if (cmdstring == NULL)
return(1l); /* always a command processor with UNIX */
ignore.sa_handler = SIG_IGN; /* ignore SIGINT and SIGQUIT */

sigemptyset(&ignore.sa_mask);
ignore.sa_flags = 0;
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if (sigaction(SIGINT, &ignore, &saveintr) < 0)
return(-1);

if (sigaction(SIGQUIT, &ignore, &savequit) < 0)
return(-1);

sigemptyset (&chldmask); /* now block SIGCHLD */

sigaddset (&chldmask, SIGCHLD);

if (sigprocmask(SIG BLOCK, &chldmask, &savemask) < 0)
return(-1);

if ((pid = fork()) < 0) {
status = -1; /* probably out of processes */

} else if (pid == 0) { /* child */
/* restore previous signal actions & reset signal mask */
sigaction(SIGINT, &saveintr, NULL);
sigaction(SIGQUIT, &savequit, NULL);
sigprocmask(SIG_SETMASK, &savemask, NULL);

execl("/bin/sh", "sh", "-c", cmdstring, (char *)0);
_exit(127); /* exec error */
} else { /* parent */
while (waitpid(pid, &status, 0) < 0)
if (errno != EINTR) {
status = -1; /* error other than EINTR from waitpid() */
break;
}

/* restore previous signal actions & reset signal mask */
if (sigaction(SIGINT, &saveintr, NULL) < 0)
return(-1);
if (sigaction(SIGQUIT, &savequit, NULL) < 0)
return(-1);
if (sigprocmask(SIG_SETMASK, &savemask, NULL) < 0)
return(-1);

return(status);

Figure 10.28 Correct POSIX.1 implementation of system function

If we link the program in Figure 10.26 with this implementation of the system function,
the resulting binary differs from the last (flawed) one in the following ways.

1. No signal is sent to the calling process when we type the interrupt or quit
character.

2. When the ed command exits, SIGCHLD is not sent to the calling process.
Instead, it is blocked until we unblock it in the last call to sigprocmask, after
the system function retrieves the child’s termination status by calling
waitpid.
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POSIX.1 states that if wait or waitpid returns the status of a child process while SIGCHLD is
pending, then SIGCHLD should not be delivered to the process unless the status of another
child process is also available. FreeBSD 8.0, Mac OS X 10.6.8, and Solaris 10 all implement this
semantic. Linux 3.2.0, however, doesn’'t—SIGCHLD remains pending after the system
function calls waitpid; when the signal is unblocked, it is delivered to the caller. If we called
wait in the sig_chld function in Figure 10.26, a Linux system would return -1 with errno
set to ECHILD, since the system function already retrieved the termination status of the child.

Many older texts show the ignoring of the interrupt and quit signals as follows:

if ((pid = fork()) < 0) {
err sys("fork error");

} else if (pid == 0) {
/* child */
execl(...);
_exit(127);

}

/* parent */

old_intr = signal(SIGINT, SIG_IGN);
old_quit = signal(SIGQUIT, SIG_IGN);
waitpid(pid, &status, 0)

signal (SIGINT, old intr);

signal (SIGQUIT, old quit);

The problem with this sequence of code is that we have no guarantee after the fork
regarding whether the parent or child runs first. If the child runs first and the parent
doesn’t run for some time after, an interrupt signal might be generated before the parent
is able to change its disposition to be ignored. For this reason, in Figure 10.28, we
change the disposition of the signals before the fork.

Note that we have to reset the dispositions of these two signals in the child before
the call to execl. This allows execl to change their dispositions to the default, based
on the caller’s dispositions, as we described in Section 8.10. O

Return Value from system

The return value from system is the termination status of the shell, which isn’t always
the termination status of the command string. We saw some examples in Figure 8.23,
and the results were as we expected: if we execute a simple command, such as date,
the termination status is 0. Executing the shell command exit 44 gave us a
termination status of 44. What happens with signals?

Let’s run the program in Figure 8.24 and send some signals to the command that’s
executing:

$ tsys "sleep 30"

“Cnormal termination, exit status = 130 we press the interrupt key
$ tsys "sleep 30"

“\sh: 946 Quit we press the quit key
normal termination, exit status = 131
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When we terminate the sleep call with the interrupt signal, the pr_exit function
(Figure 8.5) thinks that it terminated normally. The same thing happens when we kill
the sleep call with the quit key. As this example demonstrates, the Bourne shell has a
poorly documented feature in which its termination status is 128 plus the signal
number, when the command it was executing is terminated by a signal. We can see this
with the shell interactively.

$ sh

$ sh -c "sleep 30"

(o]
$ echo $?
130

$ sh -c "sleep 30"

“\sh: 962 Quit - core dumped

$ echo §$?
131
S exit

make sure we're running the Bourne shell

press the interrupt key
print termination status of last command

press the quit key
print termination status of last command

leave Bourne shell

On the system being used, SIGINT has a value of 2 and SIGQUIT has a value of 3,
giving us the shell’s termination statuses of 130 and 131.

Let’s try a similar example, but this time we’ll send a signal directly to the shell and
see what is returned by system:

$ tsys "sleep 30" &

9257

$ ps -f
UID
sar
sar
sar
sar
sar

PID
9260
9258

949
9257
9259

PPID
949
9257
947
949
9258

$ kill -KILL 9258

abnormal termination,

TTY

pts/5
pts/5
pts/5
pts/5
pts/5

TIME
:00
:00
:01
:00
:00

o O O oo

signal number

start it in background this time

look at the process IDs
CMD

ps -£f

sh -c sleep 30
/bin/sh

tsys sleep 30
sleep 30

kill the shell itself
=9

Here, we can see that the return value from system reports an abnormal termination
only when the shell itself terminates abnormally.

Other shells behave differently when handling terminal-generated signals, such as SIGINT
and SIGQUIT. With bash and dash, for example, pressing the interrupt or quit key will result
in an exit status indicating abnormal termination with the corresponding signal number.
However, if we find our process executing sleep and send it a signal directly, so that the
signal goes only to the individual process instead of the entire foreground process group, we
will find that these shells behave like the Bourne shell and exit with a normal termination

status of 128 plus the signal number.

When writing programs that use the system function, be sure to interpret the
return value correctly. If you call fork, exec, and wait yourself, the termination
status is not the same as if you call system.
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10.19 sleep, nanosleep, and clock_nanosleep Functions

We've used the sleep function in numerous examples throughout the text, and we
showed two flawed implementations of it in Figures 10.7 and 10.8.

#include <unistd.h>
unsigned int sleep(unsigned int seconds);

Returns: 0 or number of unslept seconds

This function causes the calling process to be suspended until either

1. The amount of wall clock time specified by seconds has elapsed.

2. A signal is caught by the process and the signal handler returns.

As with an alarm signal, the actual return may occur at a time later than requested
because of other system activity.

In case 1, the return value is 0. When sleep returns early because of some signal
being caught (case 2), the return value is the number of unslept seconds (the requested
time minus the actual time slept).

Although sleep can be implemented with the alarm function (Section 10.10), this
isn’t required. If alarm is used, however, there can be interactions between the two
functions. The POSIX.1 standard leaves all these interactions unspecified. For example,
if we do an alarm(10) and 3 wall clock seconds later do a sleep(5), what happens?
The sleep will return in 5 seconds (assuming that some other signal isn’t caught in the
interim), but will another SIGALRM be generated 2 seconds later? These details depend
on the implementation.

FreeBSD 8.0, Linux 3.2.0, Mac OS X 10.6.8, and Solaris 10 implement sleep using the
nanosleep function, which allows the implementation to be independent of signals and the
alarm timer. For portability, you shouldn’t make any assumptions about the implementation
of sleep, but if you have any intentions of mixing calls to sleep with any other timing
functions, you need to be aware of possible interactions.

Example

Figure 10.29 shows an implementation of the POSIX.1 sleep function. This function is
a modification of Figure 10.7, which handles signals reliably, avoiding the race condition
in the earlier implementation. We still do not handle any interactions with previously
set alarms. (As we mentioned, these interactions are explicitly undefined by POSIX.1.)

#include "apue.h"

static void
sig_alrm(int signo)
{

/* nothing to do, just returning wakes up sigsuspend() */

}

unsigned int
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sleep(unsigned int seconds)

{
struct sigaction newact, oldact;
sigset t newmask, oldmask, suspmask;
unsigned int unslept;

/* set our handler, save previous information */
newact.sa handler = sig alrm;

sigemptyset (&newact.sa mask);

newact.sa_flags = 0;

sigaction(SIGALRM, &newact, &oldact);

/* block SIGALRM and save current signal mask */
sigemptyset (&newmask);

sigaddset (&newmask, SIGALRM);
sigprocmask(SIG_BLOCK, &newmask, &oldmask);

alarm(seconds);
suspmask = oldmask;

/* make sure SIGALRM isn’t blocked */
sigdelset (&suspmask, SIGALRM);

/* wait for any signal to be caught */
sigsuspend (&suspmask) ;

/* some signal has been caught, SIGALRM is now blocked */
unslept = alarm(0);

/* reset previous action */
sigaction(SIGALRM, &oldact, NULL);

/* reset signal mask, which unblocks SIGALRM */
sigprocmask(SIG_SETMASK, &oldmask, NULL);
return(unslept);

Figure 10.29 Reliable implementation of sleep

It takes more code to write this reliable implementation than what is shown in
Figure 10.7. We don’t use any form of nonlocal branching (as we did in Figure 10.8 to
avoid the race condition between alarm and pause), so there is no effect on other
signal handlers that may be executing when the SIGALRM is handled. ]

The nanosleep function is similar to the sleep function, but provides
nanosecond-level granularity.

#include <time.h>

int nanosleep(const struct timespec *reqtp, struct timespec *remtp);

Returns: 0 if slept for requested time or -1 on error

This function suspends the calling process until either the requested time has elapsed or
the function is interrupted by a signal. The reqtp parameter specifies the amount of time
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to sleep in seconds and nanoseconds. If the sleep interval is interrupted by a signal and
the process doesn’t terminate, the timespec structure pointed to by the remtp
parameter will be set to the amount of time left in the sleep interval. We can set this
parameter to NULL if we are uninterested in the time unslept.

If the system doesn’t support nanosecond granularity, the requested time is
rounded up. Because the nanosleep function doesn’t involve the generation of any
signals, we can use it without worrying about interactions with other functions.

The nanosleep function used to belong to the Timers option in the Single UNIX Specification,
but was moved to the base in SUSv4.

With the introduction of multiple system clocks (recall Section 6.10), we need a way
to suspend the calling thread using a delay time relative to a particular clock. The
clock_nanosleep function provides us with this capability.

#include <time.h>

int clock_nanosleep(clockid t clock_id, int flags,
const struct timespec *reqtp, struct timespec *remtp);

Returns: 0 if slept for requested time or error number on failure

The clock_id argument specifies the clock against which the time delay is evaluated.
Identifiers for clocks are listed in Figure 6.8. The flags argument is used to control
whether the delay is absolute or relative. When flags is set to 0, the sleep time is relative
(i.e., how long we want to sleep). When it is set to TIMER_ABSTIME, the sleep time is
absolute (i.e., we want to sleep until the clock reaches the specified time).

The other arguments, reqtp and remtp, are the same as in the nanosleep function.
However, when we use an absolute time, the remtp argument is unused, because it isn’t
needed; we can reuse the same value for the reqtp argument for additional calls to
clock_nanosleep until the clock reaches the specified absolute time value.

Note that except for error returns, the call

clock nanosleep(CLOCK_REALTIME, 0, reqtp, remtp);
has the same effect as the call
nanosleep(reqtp, remtp);

The problem with using a relative sleep is that some applications require precision with
how long they sleep, and a relative sleep time can lead to sleeping longer than desired.
For example, if an application wants to perform a task at regular intervals, it would
have to get the current time, calculate the amount of time until the next time to execute
the task, and then call nanosleep. Between the time that the current time is obtained
and the call to nanosleep is made, processor scheduling and preemption can result in
the relative sleep time extending past the desired interval. Using an absolute time
improves the precision, even though a time-sharing process scheduler makes no
guarantee that our task will execute immediately after our sleep time has ended.

In older versions of the Single UNIX Specification, the clock_nanosleep function belonged
to the Clock Selection option. In SUSv4, it was moved to the base.
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10.20 sigqueue Function

In Section 10.8 we said that most UNIX systems don’t queue signals. With the real-time
extensions to POSIX.1, some systems began adding support for queueing signals. With
SUSv4, the queued signal functionality has moved from the real-time extensions to the
base specification.

Generally a signal carries one bit of information: the signal itself. In addition to
queueing signals, these extensions allow applications to pass more information along
with the delivery (recall Section 10.14). This information is embedded in a siginfo
structure. Along with system-provided information, applications can pass an integer or
a pointer to a buffer containing more information to the signal handler.

To use queued signals we have to do the following:

1. Specify the SA_ SIGINFO flag when we install a signal handler using the
sigaction function. If we don’t specify this flag, the signal will be posted, but
it is left up to the implementation whether the signal is queued.

2. Provide a signal handler in the sa_sigaction member of the sigaction
structure instead of using the usual sa_handler field. Implementations might
allow us to use the sa_handler field, but we won't be able to obtain the extra
information sent with the sigqueue function.

3. Use the sigqueue function to send signals.

#include <signal.h>

int sigqueue(pid_t pid, int signo, const union sigval wvalue)

Returns: 0 if OK, -1 on error

The sigqueue function is similar to the kill function, except that we can only
direct signals to a single process with sigqueue, and we can use the value argument to
transmit either an integer or a pointer value to the signal handler.

Signals can’t be queued infinitely. Recall the SIGQUEUE_MAX limit from Figure 2.9
and Figure 2.11. When this limit is reached, sigqueue can fail with errno set to
EAGAIN.

With the real-time signal enhancements, a separate set of signals was introduced for
application use. These are the signal numbers between SIGRTMIN and SIGRTMAX,
inclusive. Be aware that the default action for these signals is to terminate the process.

Figure 10.30 summarizes the way queued signals differ in behavior among the
implementations covered in this text.

. FreeBSD Linux Mac OS X Solaris
Behavior SUS 150 320 1068 10
supports sigqueue . o . .
queues other signals besides STGRTMIN to SIGRTMAX optional o .
queues signals even if the caller doesn’t use the SA_SIGINFO |optional o .
flag

Figure 10.30 Behavior of queued signals on various platforms
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Mac OS X 10.6.8 doesn’t support sigqueue or real-time signals. On Solaris 10, sigqueue is
in the real-time library, librt.

10.21 Job-Control Signals

Of the signals shown in Figure 10.1, POSIX.1 considers six to be job-control signals:
SIGCHLD Child process has stopped or terminated.
SIGCONT Continue process, if stopped.
SIGSTOP Stop signal (can’t be caught or ignored).
SIGTSTP Interactive stop signal.
SIGTTIN Read from controlling terminal by background process group member.

SIGTTOU Write to controlling terminal by a background process group member.

Except for SIGCHLD, most application programs don’t handle these signals:
interactive shells usually do all the work required to handle them. When we type the
suspend character (usually Control-Z), SIGTSTP is sent to all processes in the
foreground process group. When we tell the shell to resume a job in the foreground or
background, the shell sends all the processes in the job the SIGCONT signal. Similarly, if
SIGTTIN or SIGTTOU is delivered to a process, the process is stopped by default, and
the job-control shell recognizes this and notifies us.

An exception is a process that is managing the terminal—the vi(l) editor, for
example. It needs to know when the user wants to suspend it so that it can restore the
terminal’s state to the way it was when vi was started. Also, when it resumes in the
foreground, the vi editor needs to set the terminal state back to the way it wants it, and
it needs to redraw the terminal screen. We see how a program such as vi handles this
in the example that follows.

There are some interactions between the job-control signals. When any of the four
stop signals (SIGTSTP, SIGSTOP, SIGTTIN, or SIGTTOU) is generated for a process,
any pending SIGCONT signal for that process is discarded. Similarly, when the
SIGCONT signal is generated for a process, any pending stop signals for that same
process are discarded.

Note that the default action for SIGCONT is to continue the process, if it is stopped;
otherwise, the signal is ignored. Normally, we don’t have to do anything with this
signal. When SIGCONT is generated for a process that is stopped, the process is
continued, even if the signal is blocked or ignored.

Example

The program in Figure 10.31 demonstrates the normal sequence of code used when a
program handles job control. This program simply copies its standard input to its
standard output, but comments are given in the signal handler for typical actions
performed by a program that manages a screen.
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#include "apue.h"
#define BUFFSIZE 1024

static void
sig_tstp(int signo) /* signal handler for SIGTSTP */

{
sigset t mask;
/* ... move cursor to lower left corner, reset tty mode ... */
/*
* Unblock SIGTSTP, since it’s blocked while we’'re handling it.
*/
sigemptyset (&mask);
sigaddset (&mask, SIGTSTP);
sigprocmask(SIG_UNBLOCK, &mask, NULL);
signal (SIGTSTP, SIG_DFL); /* reset disposition to default */
kill(getpid(), SIGTSTP); /* and send the signal to ourself */
/* we won't return from the kill until we’re continued */
signal (SIGTSTP, sig tstp); /* reestablish signal handler */
/* ... reset tty mode, redraw screen ... */
}
int
main(void)
{
int n;
char buf [BUFFSIZE];
/*
* Only catch SIGTSTP if we’re running with a job-control shell.
*/
if (signal(SIGTSTP, SIG IGN) == SIG DFL)
signal (SIGTSTP, sig tstp);
while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0)
if (write(STDOUT_FILENO, buf, n) != n)
err sys("write error");
if (n < 0)
err sys("read error");
exit(0);
}

Figure 10.31 How to handle SIGTSTP
When the program in Figure 10.31 starts, it arranges to catch the SIGTSTP signal only if

the signal’s disposition is SIG_DFL. The reason is that when the program is started by a
shell that doesn’t support job control (/bin/sh, for example), the signal’s disposition
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should be set to SIG_IGN. In fact, the shell doesn’t explicitly ignore this signal; init
sets the disposition of the three job-control signals (SIGTSTP, SIGTTIN, and SIGTTOU)
to SIG_IGN. This disposition is then inherited by all login shells. Only a job-control
shell should reset the disposition of these three signals to SIG_DFL.

When we type the suspend character, the process receives the SIGTSTP signal and
the signal handler is invoked. At this point, we would do any terminal-related
processing: move the cursor to the lower-left corner, restore the terminal mode, and so
on. We then send ourself the same signal, SIGTSTP, after resetting its disposition to its
default (stop the process) and unblocking the signal. We have to unblock it since we're
currently handling that same signal, and the system blocks it automatically while it’s
being caught. At this point, the system stops the process. It is continued only when it
receives (usually from the job-control shell, in response to an interactive fg command) a
SIGCONT signal. We don’t catch SIGCONT. Its default disposition is to continue the
stopped process; when this happens, the program continues as though it returned from
the kill function. When the program is continued, we reset the disposition for the
SIGTSTP signal and do whatever terminal processing we want (we could redraw the
screen, for example). O

Signal Names and Numbers

In this section, we describe how to map between signal numbers and names. Some
systems provide the array

extern char *sys siglist[];

The array index is the signal number, giving a pointer to the character string name of
the signal.

FreeBSD 8.0, Linux 3.2.0, and Mac OS X 10.6.8 all provide this array of signal names. Solaris 10
does, too, but it uses the name _sys_siglist instead.

To print the character string corresponding to a signal number in a portable manner,
we can use the psignal function.

#include <signal.h>

void psignal(int signo, const char *msg);

The string msg (which normally includes the name of the program) is output to the
standard error, followed by a colon and a space, followed by a description of the signal,
followed by a newline. If msg is NULL, then only the description is written to the
standard error. This function is similar to perror (Section 1.7).

If you have a siginfo structure from an alternative sigaction signal handler,
you can print the signal information with the psiginfo function.

#include <signal.h>

void psiginfo(const siginfo t *info, const char *msg);
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It operates in a similar manner to the psignal function. Although this function has
access to more information than just the signal number, platforms vary in exactly what
additional information is printed.

If you only need the string description of the signal and don’t necessarily want to
write it to standard error (you might want to write it to a log file, for example), you can
use the strsignal function. This function is similar to strerror (also described in
Section 1.7).

#include <string.h>

char *strsignal(int signo);

Returns: a pointer to a string describing the signal

Given a signal number, strsignal will return a string that describes the signal. This
string can be used by applications to print error messages about signals received.

All the platforms discussed in this book provide the psignal and strsignal functions, but
differences do occur. On Solaris 10, strsignal will return a null pointer if the signal number
is invalid, whereas FreeBSD 8.0, Linux 3.2.0, and Mac OS X 10.6.8 return a string indicating
that the signal number is unrecognized.

Only Linux 3.2.0 and Solaris 10 support the psiginfo function.

Solaris provides a couple of functions to map a signal number to a signal name, and
vice versa.

#include <signal.h>
int sig2str(int signo, char *str);
int str2sig(const char *str, int *signop);

Both return: 0 if OK, -1 on error

These functions are useful when writing interactive programs that need to accept and
print signal names and numbers.

The sig2str function translates the given signal number into a string and stores
the result in the memory pointed to by str. The caller must ensure that the memory is
large enough to hold the longest string, including the terminating null byte. Solaris
provides the constant SIG2STR_MAX in <signal.h> to define the maximum string
length. The string consists of the signal name without the “SIG” prefix. For example,
translating SIGKILL would result in the string “KILL” being stored in the str memory
buffer.

The str2sig function translates the given name into a signal number. The signal
number is stored in the integer pointed to by signop. The name can be either the signal
name without the “SIG” prefix or a string representation of the decimal signal number
(i.e., “97).

Note that sig2str and str2sig depart from common practice and don’t set
errno when they fail.
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10.23 Summary

Signals are used in most nontrivial applications. An understanding of the hows and
whys of signal handling is essential to advanced UNIX System programming. This
chapter has taken a long and thorough look at UNIX System signals. We started by
looking at the warts in previous implementations of signals and how they manifest
themselves. We then proceeded to the POSIX.1 reliable-signal concept and all the
related functions. Once we covered all these details, we were able to provide
implementations of the POSIX.1 abort, system, and sleep functions. We finished
with a look at the job-control signals and the ways that we can convert between signal
names and signal numbers.

Exercises

10.1 In Figure 10.2, remove the for (; ;) statement. What happens and why?

10.2 Implement the sig2str function described in Section 10.22.

10.3 Draw pictures of the stack frames when we run the program from Figure 10.9.

10.4 In Figure 10.11, we showed a technique that’s often used to set a timeout on an I/O
operation using set jmp and longjmp. The following code has also been seen:

signal (SIGALRM, sig alrm);
alarm(60);
if (setjmp(env_alrm) != 0) {
/* handle timeout */
}
What else is wrong with this sequence of code?

10.5 Using only a single timer (either alarm or the higher-precision setitimer), provide a set
of functions that allows a process to set any number of timers.

10.6 Write the following program to test the parent—child synchronization functions in
Figure 10.24. The process creates a file and writes the integer 0 to the file. The process then
calls fork, and the parent and child alternate incrementing the counter in the file. Each
time the counter is incremented, print which process (parent or child) is doing the
increment.

10.7 In the function shown in Figure 10.25, if the caller catches SIGABRT and returns from the
signal handler, why do we go to the trouble of resetting the disposition to its default and
call kill the second time, instead of simply calling _exit?

10.8 Why do you think the siginfo structure (Section 10.14) includes the real user ID, instead
of the effective user ID, in the si_uid field?

10.9 Rewrite the function in Figure 10.14 to handle all the signals from Figure 10.1. The

function should consist of a single loop that iterates once for every signal in the current
signal mask (not once for every possible signal).
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10.10

10.11

10.12

Write a program that calls sleep(60) in an infinite loop. Every five times through the
loop (every 5 minutes), fetch the current time of day and print the tm_sec field. Run the
program overnight and explain the results. How would a program such as the cron
daemon, which runs every minute on the minute, handle this situation?

Modify Figure 3.5 as follows: (a) change BUFFSIZE to 100; (b) catch the SIGXFSZ signal
using the signal_intr function, printing a message when it’s caught, and returning
from the signal handler; and (c) print the return value from write if the requested number
of bytes wasn’t written. Modify the soft RLIMIT FSIZE resource limit (Section 7.11) to
1,024 bytes and run your new program, copying a file that is larger than 1,024 bytes. (Try
to set the soft resource limit from your shell. If you can’t do this from your shell, call
setrlimit directly from the program.) Run this program on the different systems that
you have access to. What happens and why?

Write a program that calls fwrite with a large buffer (about one gigabyte). Before calling
fwrite, call alarm to schedule a signal in 1 second. In your signal handler, print that the
signal was caught and return. Does the call to fwrite complete? What’s happening?
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Threads

Introduction

We discussed processes in earlier chapters. We learned about the environment of a
UNIX process, the relationships between processes, and ways to control processes. We
saw that a limited amount of sharing can occur between related processes.

In this chapter, we'll look inside a process further to see how we can use multiple
threads of control (or simply threads) to perform multiple tasks within the environment of
a single process. All threads within a single process have access to the same process
components, such as file descriptors and memory.

Anytime you try to share a single resource among multiple users, you have to deal
with consistency. We'll conclude this chapter with a look at the synchronization
mechanisms available to prevent multiple threads from viewing inconsistencies in their
shared resources.

Thread Concepts

A typical UNIX process can be thought of as having a single thread of control: each
process is doing only one thing at a time. With multiple threads of control, we can
design our programs to do more than one thing at a time within a single process, with
each thread handling a separate task. This approach can have several benefits.

e We can simplify code that deals with asynchronous events by assigning a
separate thread to handle each event type. Each thread can then handle its event
using a synchronous programming model. A synchronous programming model
is much simpler than an asynchronous one.

* Multiple processes have to use complex mechanisms provided by the operating
system to share memory and file descriptors, as we will see in Chapters 15

383
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and 17. Threads, in contrast, automatically have access to the same memory
address space and file descriptors.

* Some problems can be partitioned so that overall program throughput can be
improved. A single-threaded process with multiple tasks to perform implicitly
serializes those tasks, because there is only one thread of control. With multiple
threads of control, the processing of independent tasks can be interleaved by
assigning a separate thread per task. Two tasks can be interleaved only if they
don’t depend on the processing performed by each other.

e Similarly, interactive programs can realize improved response time by using
multiple threads to separate the portions of the program that deal with user
input and output from the other parts of the program.

Some people associate multithreaded programming with multiprocessor or
multicore systems. The benefits of a multithreaded programming model can be realized
even if your program is running on a uniprocessor. A program can be simplified using
threads regardless of the number of processors, because the number of processors
doesn’t affect the program structure. Furthermore, as long as your program has to
block when serializing tasks, you can still see improvements in response time and
throughput when running on a uniprocessor, because some threads might be able to run
while others are blocked.

A thread consists of the information necessary to represent an execution context
within a process. This includes a thread ID that identifies the thread within a process, a
set of register values, a stack, a scheduling priority and policy, a signal mask, an errno
variable (recall Section 1.7), and thread-specific data (Section 12.6). Everything within a
process is sharable among the threads in a process, including the text of the executable
program, the program’s global and heap memory, the stacks, and the file descriptors.

The threads interfaces we're about to see are from POSIX.1-2001. The threads
interfaces, also known as “pthreads” for “POSIX threads,” originally were optional in
POSIX.1-2001, but SUSv4 moved them to the base. The feature test macro for POSIX
threads is _POSIX_ THREADS. Applications can either use this in an #ifdef test to
determine at compile time whether threads are supported or call sysconf with the
_SC_THREADS constant to determine this at runtime. Systems conforming to SUSv4
define the symbol _POSIX_THREADS to have the value 200809L.

Thread ldentification

Just as every process has a process 1D, every thread has a thread ID. Unlike the process
ID, which is unique in the system, the thread ID has significance only within the context
of the process to which it belongs.

Recall that a process ID, represented by the pid_t data type, is a non-negative
integer. A thread ID is represented by the pthread_t data type. Implementations are
allowed to use a structure to represent the pthread_t data type, so portable
implementations can’t treat them as integers. Therefore, a function must be used to
compare two thread IDs.
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#include <pthread.h>

int pthread equal(pthread t tidl, pthread t tid2);

Returns: nonzero if equal, 0 otherwise

Linux 3.2.0 uses an unsigned long integer for the pthread_t data type. Solaris 10 represents
the pthread_t data type as an unsigned integer. FreeBSD 8.0 and Mac OS X 10.6.8 use a
pointer to the pthread structure for the pthread_t data type.

A consequence of allowing the pthread_t data type to be a structure is that there
is no portable way to print its value. Sometimes, it is useful to print thread IDs during
program debugging, but there is usually no need to do so otherwise. At worst, this
results in nonportable debug code, so it is not much of a limitation.

A thread can obtain its own thread ID by calling the pthread_self£ function.

#include <pthread.h>
pthread t pthread self(void);

Returns: the thread ID of the calling thread

This function can be used with pthread_equal when a thread needs to identify data
structures that are tagged with its thread ID. For example, a master thread might place
work assignments on a queue and use the thread ID to control which jobs go to each
worker thread. This situation is illustrated in Figure 11.1. A single master thread places
new jobs on a work queue. A pool of three worker threads removes jobs from the
queue. Instead of allowing each thread to process whichever job is at the head of the
queue, the master thread controls job assignment by placing the ID of the thread that
should process the job in each job structure. Each worker thread then removes only jobs
that are tagged with its own thread ID.

Thread Creation

The traditional UNIX process model supports only one thread of control per process.
Conceptually, this is the same as a threads-based model whereby each process is made
up of only one thread. With pthreads, when a program runs, it also starts out as a single
process with a single thread of control. As the program runs, its behavior should be
indistinguishable from the traditional process, until it creates more threads of control.
Additional threads can be created by calling the pthread_create function.

#include <pthread.h>

int pthread_create(pthread_t *restrict tidp,
const pthread attr_t *restrict attr,
void *(*start_rtn)(void *), void *restrict arg);

Returns: 0 if OK, error number on failure
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master
thread

TID 1 TID 3 TID 2 TID 3

................ work job job job job
queue

Figure 11.1 Work queue example

The memory location pointed to by tidp is set to the thread ID of the newly created
thread when pthread create returns successfully. The attr argument is used to
customize various thread attributes. We’ll cover thread attributes in Section 12.3, but
for now, we’'ll set this to NULL to create a thread with the default attributes.

The newly created thread starts running at the address of the start_rtn function.
This function takes a single argument, arg, which is a typeless pointer. If you need to
pass more than one argument to the start_rtn function, then you need to store them in a
structure and pass the address of the structure in arg.

When a thread is created, there is no guarantee which will run first: the newly
created thread or the calling thread. The newly created thread has access to the process
address space and inherits the calling thread’s floating-point environment and signal
mask; however, the set of pending signals for the thread is cleared.

Note that the pthread functions usually return an error code when they fail. They
don’t set errno like the other POSIX functions. The per-thread copy of errno is
provided only for compatibility with existing functions that use it. With threads, it is
cleaner to return the error code from the function, thereby restricting the scope of the
error to the function that caused it, instead of relying on some global state that is
changed as a side effect of the function.

Example

Although there is no portable way to print the thread ID, we can write a small test
program that does, to gain some insight into how threads work. The program in
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Figure 11.2 creates one thread and prints the process and thread IDs of the new thread
and the initial thread.

#include "apue.h"
#include <pthread.h>

pthread t ntid;

void
printids(const char *s)
{

pid_t pid;

pthread t tid;

pid = getpid();

tid = pthread _self();

printf("%s pid %lu tid %lu (0x%lx)\n", s, (unsigned long)pid,
(unsigned long)tid, (unsigned long)tid);

}
void *
thr fn(void *arg)
{
printids("new thread: ");
return((void *)0);
}
int
main(void)
{
int err;
err = pthread create(&ntid, NULL, thr fn, NULL);
if (err != 0)
err_exit(err, "can’'t create thread");
printids("main thread:");
sleep(l);
exit(0);
}

Figure 11.2  Printing thread IDs

This example has two oddities, which are necessary to handle races between the main
thread and the new thread. (We'll learn better ways to deal with these conditions later
in this chapter.) The first is the need to sleep in the main thread. If it doesn’t sleep, the
main thread might exit, thereby terminating the entire process before the new thread
gets a chance to run. This behavior is dependent on the operating system’s threads
implementation and scheduling algorithms.

The second oddity is that the new thread obtains its thread ID by calling
pthread_self instead of reading it out of shared memory or receiving it as an
argument to its thread-start routine. Recall that pthread create will return the
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thread ID of the newly created thread through the first parameter (tidp). In our
example, the main thread stores this ID in ntid, but the new thread can’t safely use it.
If the new thread runs before the main thread returns from calling pthread_create,
then the new thread will see the uninitialized contents of ntid instead of the thread ID.

Running the program in Figure 11.2 on Solaris gives us

$ ./a.out

main thread: pid 20075 tid 1 (0x1)

new thread: pid 20075 tid 2 (0x2)

As we expect, both threads have the same process ID, but different thread IDs. Running
the program in Figure 11.2 on FreeBSD gives us

$ ./a.out

main thread: pid 37396 tid 673190208 (0x28201140)

new thread: pid 37396 tid 673280320 (0x28217140)

As we expect, both threads have the same process ID. If we look at the thread IDs as
decimal integers, the values look strange, but if we look at them in hexadecimal format,
they make more sense. As we noted earlier, FreeBSD uses a pointer to the thread data
structure for its thread ID.

We would expect Mac OS X to be similar to FreeBSD; however, the thread ID for the
main thread is from a different address range than the thread IDs for threads created
with pthread create:

$ ./a.out

main thread: pid 31807 tid 140735073889440 (0x7ff£f70162cal)

new thread: pid 31807 tid 4295716864 (0x1000b7000)

Running the same program on Linux gives us

$ ./a.out

main thread: pid 17874 tid 140693894424320 (0x7££5d9996700)

new thread: pid 17874 tid 140693886129920 (0x7££5d91ad700)

The Linux thread IDs look like pointers, even though they are represented as unsigned

long integers.
The threads implementation changed between Linux 2.4 and Linux 2.6. In Linux 24,
LinuxThreads implemented each thread with a separate process. This made it difficult to
match the behavior of POSIX threads. In Linux 2.6, the Linux kernel and threads library were
overhauled to use a new threads implementation called the Native POSIX Thread Library
(NPTL). This supported a model of multiple threads within a single process and made it easier
to support POSIX threads semantics. -

11.5 Thread Termination

If any thread within a process calls exit, _Exit, or _exit, then the entire process
terminates. Similarly, when the default action is to terminate the process, a signal sent
to a thread will terminate the entire process (we’ll talk more about the interactions
between signals and threads in Section 12.8).
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A single thread can exit in three ways, thereby stopping its flow of control, without
terminating the entire process.

1. The thread can simply return from the start routine. The return value is the
thread’s exit code.

2. The thread can be canceled by another thread in the same process.
3. The thread can call pthread exit.

#include <pthread.h>

void pthread_exit(void *rval_ptr);

