

 [image: (missing alt)]

 Table of Contents

 Multimedia Programming with Pure Data

 Credits

 About the Author

 About the Reviewers

 www.PacktPub.com

 Support files, eBooks, discount offers and more

 Why Subscribe?

 Free Access for Packt account holders

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Errata

 Piracy

 Questions

 1. Getting Started with Pure Data

 Creating the first program

 Understanding the terms and interface

 Displaying messages

 Performing arithmetic calculation

 Creating a counter

 Automating the counter

 Making an animation with the interface elements

 Using the graphical interface objects

 Summary

 2. Computer Graphics with the GEM Library

 Using the GEM display window

 Drawing basic 2D graphics

 Understanding the coordinates system

 Drawing basic 3D primitive shapes

 Working with digital color

 Applying geometric transformation

 Performing translation, rotation, and scaling

 Checking the margins of the window

 Order of transformations

 Creating animation in 3D space

 Summary

 3. Image Processing

 Obtaining images from external sources

 Applying image filters

 Layering multiple images

 Working with time

 Performing background removal

 Working with chroma key

 Experimenting with advanced effects

 Layering with gemhead

 Coloring pixel data

 Creating painterly effect

 Summary

 4. Interactivity

 Obtaining the mouse position

 Responding to keyboard events

 Creating a graphical button

 Preparing a video-jockey instrument

 Creating interactive animation

 Animate the moving ball

 Bouncing the ball on the four margins

 Creating the paddle control

 Keeping and displaying the score

 Summary

 5. Motion Detection

 Obtaining the frame difference

 Detecting presence

 Detecting motion

 Creating a motion detection animation

 Comparing colors

 Performing color detection

 Making an air drum

 Summary

 6. Animation with Particle System

 Understanding a particle system

 Creating a basic particle system

 Applying forces to the particles system

 Interacting with the mouse

 Rendering particles with images

 Combining particle system with motion-tracking

 Summary

 7. Audio Programming

 Preparing for audio processing

 Using existing sound files

 Generating audio with waves

 Working with MIDI

 Obtaining audio input for interaction

 Summary

 8. Interface with the Outside World

 Communicating through the Internet

 Making the connection

 Sending messages

 Sending numbers

 Controlling the visual display of another computer

 Using Open Sound Control with mobile devices

 Connecting the TUIOpad to the host computer

 Decoding the OSC messages

 Tracking multiple points

 Drawing the graphics

 Interfacing with custom hardware through Arduino

 Digital output

 Servomotor control

 Digital input

 Analog input

 Summary

 9. Extending Pure Data

 Integrating with OpenCV

 Working with the Kinect camera

 Installation of libfreenect

 Installation of OpenNI

 Summary

 A. Communities and References

 Pure Data communities

 Pure Data events

 Pure Data artists and organizations

 Reactable

 GOTO10

 Claude Heiland-Allen

 Jun Lee

 Hans-Christoph Steiner

 Piksel

 Baran Gülesen

 Andy Farnell

 Ben Bogart

 Matthias Kronlachner

 References

 Index

Multimedia Programming with Pure Data

Multimedia Programming with Pure Data

Copyright © 2013 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: July 2013
Production Reference: 1020713
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..
ISBN 978-1-78216-464-7

www.packtpub.com

Cover Image by Suresh Mogre (<suresh.mogre.99@gmail.com>)

Credits

Author

Bryan WC Chung

Reviewers

Buron Cédric
Guy John
Antonio Roberts
Greg Surges

Acquisition Editor

Vinay Argekar

Lead Technical Editor

Ankita Shashi

Technical Editors

Sampreshita Maheshwari
Kaustubh S. Mayekar
Zafeer Rais

Project Coordinator

Anurag Banerjee

Proofreaders

Amy Guest
Elinor Perry-Smith

Indexer

Rekha Nair

Production Coordinator

Prachali Bhiwandkar

Cover Work

Prachali Bhiwandkar

About the Author

Bryan WC Chung is an interactive media artist and design consultant based in Hong Kong. His interactive media artworks have been exhibited at the World Wide Video Festival, Multimedia Art Asia Pacific, Stuttgart Film Winter Festival, Microwave International New Media Arts Festival, and the China Media Art Festival. In the former Shanghai Expo 2010, he provided interactive media design consultancy to industry leaders in Hong Kong and China. Chung received a computer science bachelor degree in Hong Kong, an interactive multimedia master degree in London, and a fine art doctoral degree in Melbourne. He has been developing software libraries for the open source programming language—Processing. Currently, he is Assistant Professor in the Academy of Visual Arts, Hong Kong Baptist University, where he teaches subjects on interactive arts, computer graphics and multimedia design. His personal website is: http://www.magicandlove.com.

I would like to thank all my students and colleagues, especially Dr. Kam Wong, who had developed the syllabus of the course—Interactivity, which adopted Pure Data as the main teaching tool. I am also grateful to my wife, Dr. Kimburley Choi for her continuous support.

About the Reviewers

Cédric Buron, also known as Human Koala and Hektor Kafka is a Electronic Music Performer and Producer, GFX Developer, Web Developer, Technical Consultant for artists, and Pure Data Teacher. Since his first Computer, an 8-bit one, Computers was for HK a music instrument, a highly adaptable tool for graphic or musical creation. After following a Pure Data Formation. he has started to teach Pure Data, Processing at CRAS (Centre de Ressource d'Art Sensitif: http://www.mainsdoeuvres.org/rubrique90.html) at St Ouen. He is also admin for the Pure Data part of the http://www.codelab.fr Forum (a French forum about creative programming). Passionate about the interface between Technology & Art, he is occasionally Technical Consultant for Artists or Company to help building Tools for performance, or installation (Emilie Pitoiset, Radio Marais, SFR).
Music Producer and Performer as Human Koala/Hektor Kafka, he has played live in several place and several Digital Art and Performance Events in Paris:
	At Batofar (Radio Broadcast: Chambre à air 2011)
	At Palais de Tokyo (Radio Broadcast: Chambre à Air 2012)
	At 104 (Digital Art Event: Open your Web)
	At Point Ephémere(radio broadcast: Chambre à Air)
	At Divan du Monde (Performance Event: Dimanche Rouge)
	At Petit Bain (Performances Event: Dimanche Rouge)

One of his trax was aired by Ryuichi Sakamoto for his radio broadcast "Radio Sakamoto" (where am i-Dr Riot and Miss Velvet (Human Koala & Miho) Shinohara) His personal website is http://www.humankoala.com.

I would like to thank Agnès Le Foulgoc from CRAS to give me the opportunity to teach this wonderful language and Benoîte my wife.

Guy John is a professional software engineer, with a heavy interest in the meeting point of music, art and technology. Originally coming from a hardware and electronics background, he moved over to using more software upon discovering the sheer range of audio programming languages available, and has continued to use a number of them in his projects. Despite always finding new tools to learn, he still finds himself regularly coming back to PureData because of its power and flexibility.

I'd like to thank everybody at Packt publishing for letting me be involved with this book, and the Pure Data community for creating such an excellent piece of software.

Antonio Roberts is a new-media artist and curator based in Birmingham, UK, whose work focuses on the errors and glitches generated by digital technology.
Since 2007 he has curated a number of exhibitions and projects including fizzPOP (2009 - 2010), GLI.TC/H Birmingham (2011), the Birmingham edition of Bring Your Own Beamer (2012), and Dirty New Media (2013).
As a performer and visual artist his work has been featured at galleries and festivals around the world including Databit.me in Arles, France, Laptops Meet Musicians Festival in Venice, Italy, Notacon in Cleavland, Ohio, US, Leeds International Film Festival in the UK, and the Barber Institute of Fine Arts in Birmingham, UK.
In 2013 he contributed the foreword to AlphabeNt: Experiments from A-Z, which is an exploration of glitch art and typography by Australian authors Daniel Purvis and Drew Taylor (ISBN 978-0-98740-070-3).

I would like to thank the Pure Data community of developers and users for their unwavering devotion to developing the software.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers and more]

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read and search across Packt's entire library of books.
Why Subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print and bookmark content
	On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.

Preface

This book will introduce the Pure Data software to visual artists, media designers, and programmers to develop multimedia applications graphically without the need to write codes. Creating interactive multimedia projects is a demanding task. The authoring process requires programming skills in addition to the techniques to prepare and edit digital media content. Proprietary software packages, such as Adobe Director and Adobe Flash are available for designers to author multimedia projects. For the web standard platform, designers can also use the HTML5, CSS, and JavaScript to author web-based multimedia content. Both cases demand the mastery of text-based programming skills such as JavaScript and ActionScript.
Pure Data is a free graphical programming environment where users can write programs by drawing visual objects on the screen and connect them together to form a program. This book will provide the step-by-step details to prepare interactive multimedia content by using Pure Data.
Miller Puckette is the main designer of Pure Data. When he worked at the IRCAM (Institut de Recherche et Coordination Acoustique/Musique) in France, he developed the software Max for interactive computer music applications. The Max/MSP software from Cycling'74 (http://cycling74.com) is the commercial derivative of the original Max. Pure Data (Pd) is the free version supported by the open source community.
Pure Data was originally written for electronic music applications. Over the years, developers contributed a lot of additional features, called externals in Pure Data terms. This book will use a major external Graphics Environment for Multimedia (GEM) for the demonstration. Towards the end of the book, it also explains how readers can add other external libraries to their own system.
What this book covers

Chapter 1, Getting Started with Pure Data, prepares the readers with the graphical programming environment and introduces various types of windows, menu items, messages, and operation modes of Pure Data.

Chapter 2, Computer Graphics with the GEM Library, starts creating 2D and 3D graphics and simple animation by using the objects in the GEM external library.

Chapter 3, Image Processing, illustrates the pixel operations in the GEM library. It includes commands to obtain external images from the still photos, digital videos, and live webcam, and also a number of imaging filters and effects that can be commonly found in an image-processing software, such as Photoshop.

Chapter 4, Interactivity, integrates the use of mouse and keyboard controls as interaction devices and introduces the mechanism to build graphical user interface with the GEM library.

Chapter 5, Motion Detection, applies a more advanced approach for interaction design. It shows the readers how to detect motion in front of a webcam and uses the information to create interactive applications.

Chapter 6, Animation with Particle System, explains the basics of particles system in the GEM library and combines the particles system to create an artwork that responds to the readers' body movement.

Chapter 7, Audio Programming, describes the use of audio in Pure Data and helps readers to integrate audio content in their multimedia production. It also uses sound input (microphone) as an interaction device.

Chapter 8, Interface with the Outside World, enables readers to connect Pure Data programs to other systems, such as computer network, mobile phone, and external hardware through microcontroller.

Chapter 9, Extending Pure Data, provides a conclusion of learning Pure Data for multimedia production, and points to the resources that readers can seek further reference. It also demonstrates how readers can install other external libraries, such as OpenCV, and Kinect libraries.

Appendix, Communities and References, provides more information on Pure Data.

What you need for this book

The main Pure Data website is http://puredata.info. Pure Data comes with two distributions: Pure Data and Pd-extended. Pure Data (vanilla) is the original version by Miller Puckette. Pd-extended contains Pure Data itself and a number of commonly used external libraries. This book will use the Pd-extended version as it already includes the GEM library. The website for GEM is http://gem.iem.at.
Download Pd-extended for your operating system from http://puredata.info/downloads/pd-extended. Pd-extended is available for Microsoft Windows, Mac OS X, and Linux. For Linux, Pd-extended comes with the binary packages for Ubuntu and Debian. At the time of writing, the latest release is 0.42.5. The beta release is 0.43.4.
The installation instructions for various platforms are:
	Windows: Download the file and start the installer. It will automatically install in the right Program Files folder.
	Mac OS X: Download the file, open the disk image, and drag the Pd-extended icon to the Applications folder. For OSX Mountain Lion users, you may need to install the XQuartz windows system first from http://xquartz.macosforge.org.
	Linux: Most Linux versions are Debian software package. Use the corresponding package manager in your Linux operating system to open it for installation.

Double-click on the Pd-extended application; you can expect to see the console window. In this book, I mainly use the Mac OSX version if platform differences are insignificant.

Who this book is for

Pure Data applications are mainly for real-time multimedia projects. Audio-visual performers (VJ) have been using Pure Data to create interactive imageries in their performance. Media designers with no programming experience can learn to prototype their ideas very quickly with Pure Data and GEM. In creative art/design curriculum, Pure Data and Processing (http://processing.org) are the two most popular free programming platforms to teach interactivity to art/design students. The book will also provide a comprehensive set of learning outcomes for interactive media educators.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Insert a new object called gemwin to create a graphics window."

New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "To create a new patch, navigate to File | New to make an empty patch".
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.

Chapter 1. Getting Started with Pure Data

In this chapter, you are going to create the first ever computer program in your life, if you have not already done so. Or, if you have been working on with other text-based programming, you will be astonished by the simplicity of the Pure Data (Pd) graphical programming environment. In the following sections:
	We will familiarize ourselves with the terms and interfaces to work with Pure Data. We will learn how to get answers to our questions.
	By the end of the chapter, we will learn to create the first animation with the use of a counter, simple arithmetic operations, and common graphical user interface items.

If you have not installed the pd-extended software, please refer to the Preface for the installation. Pure Data is a graphical programming environment. Traditional text-based programming involves writing English-like sentences to prepare a program. In Pure Data, all you need to do is draw graphical labels on a blank window and connect those labels together to define the flow of your program.
Creating the first program

Every Pure Data program is a text file with an extension (.pd). In Pure Data's term, a program is called a patch. Electronic musicians often use cables to connect different devices to produce sound. The cables are referred as patch cables. Since Pure Data is originally a piece of software to produce electronic music, the name patch refers to a Pure Data program.
To create a new patch, navigate to File | New to make an empty patch. From the menu, choose File | Save to save the patch in the folder you plan to store your Pure Data material. Pure Data does not assume a default location for your patches. You can decide where to put them.
[image: Creating the first program]
At this point, you will have an empty window with a cursor that appears to be a finger pointing to the left. Before we proceed to the notorious Hello World example, we need to go through the Pure Data interface first.
[image: Creating the first program]

Understanding the terms and interface

There are a number of terms we need to clarify before we proceed.
	Operation modes: Pure Data works in two modes: Edit Mode and Run Mode. In Edit Mode, you can create and modify your program source in the patch window. In Run Mode, you execute the patch and modify data. Nevertheless, the patch will not stop playing when you switch between Edit and Run mode. You switch between the two modes by navigating to Edit | Edit mode. In Edit Mode, the cursor is a finger. In Run Mode, the cursor is the normal pointer. You can also use the keyboard shortcuts Command + E for Mac and Ctrl + E for Windows.
	Programming elements: All programming elements in Pure Data are either object or data. Objects are functional elements that mainly perform tasks. Data will be the material that objects operate with. For example, a Pure Data object print will display text messages on screen whereas the datum message will be the text to be displayed. Programming in Pure Data involves putting objects and data in the patch window—canvas, and connecting them together.
	Input/output: Programming in Pure Data involves connecting the output from one item to the input of another item. Nevertheless, Pure Data uses the terms inlet and outlet, instead of input and output. We'll see an example in the next section.
	Windows: Each Pd patch comes with its canvas window. The other window with a lot of messages is the console window. You may need to pay attention to the console window, as it will show you the error messages in case you come into problem. To clear messages in the console window, choose Edit | Clear console. The keyboard shortcut is Shift + Command + L in Mac, Shift + Ctrl + L for Windows.

Displaying messages

The Hello World example is straightforward. It involves one piece of data—a Hello World message, and one object to print out the message in the console window.
Create a new Pure Data patch. Save it to your folder with name helloWorld.pd. Clear the console window by navigating to
Edit | Clear console. To create anything for your Pure Data patch, choose from the Put menu item.
[image: Displaying messages]
It may take a few seconds for new comers to learn the operations of the Pure Data interaction sequence. First, we select a Message box (Command + 2 or Ctrl + 2). After you select Message, move your cursor back to the empty patch window helloWorld.pd. The message icon will move along with your cursor. You can click anywhere on the empty patch to fix the position of the message icon.
[image: Displaying messages]
A data entry cursor (a blinking vertical bar) will appear in the left hand side of the message box. Now, you can type in Hello World inside this message box.
[image: Displaying messages]
Click anywhere outside the message box to confirm the text. Note that the data entry cursor will disappear after you confirm the text. You can click on the message box again if you want to change the text later. You can also click-and-drag the message box to change its position within the patch window.
Now, we create the second item. Navigate to
Put | Object (Command + 1 or Ctrl + 1) from the menu bar to create an empty object in the patch window.
[image: Displaying messages]
Type the word print inside the object box. Note that the empty object box is a regular rectangle with dotted outline. After you type print, click outside the object box. The object box now has a solid outline. A message box is a rectangle with a curved right edge.
[image: Displaying messages]
If you take a closer look at the message and object boxes, you will notice two tiny rectangles along the left edge of the message box on the top and bottom. For the object box, there is only one such rectangle on the top. They are the inlet and outlet mentioned earlier. Those on the top are inlets and those on the bottom are outlets.
[image: Displaying messages]
Connecting one outlet to another inlet is the programming in Pure Data. Now, we connect the outlet of the
Hello World message box to the inlet of the print object box. First, move your cursor towards the outlet of the Hello World message box. It will turn into a small circle.
[image: Displaying messages]
Click-and-drag to draw a line from the outlet of the Hello World message box. While dragging, move toward the inlet of the print object box. The cursor will also turn into a small circle.
[image: Displaying messages]
Release the mouse button to confirm the connection.
[image: Displaying messages]
This is your first working Pure Data patch, the Hello World program. To execute the patch, we have to switch from Edit Mode to Run Mode by choosing
Edit | Edit mode (Command + E or Ctrl + E). Note the mouse cursor changes into the regular pointer shape. Open the console window if it is hidden. You can do it by navigating to Window | Pd window (Command + R or Ctrl + R). Arrange the two windows side by side such that you can see the message in the console window when you work on the patch window. Move your cursor toward the Hello World message box. Note the cursor changes again. It is now an upward pointing arrow.
[image: Displaying messages]
Click on the message box and note what happens in the console window. A message print: Hello World appears whenever you click on the message box. Yes, it is the Hello World program you have just achieved.
[image: Displaying messages]
The message box in Run Mode functions like a button. When you click, it sends out the message text Hello World through its outlet along the connection line to the inlet of the print object box. A print object will just show the message it received onto the console window.
Note
In Edit Mode, you can also hold down the
Command key or the Ctrl key to enter the Run Mode temporarily.

Performing arithmetic calculation

Besides the print object, Pure Data includes numerous objects catered to various purposes. You can check out those objects from the Help menu. To access the general help for Pure Data, you can choose Help | Browser from the menu bar.
[image: Performing arithmetic calculation]
Within the help browser, you can further select the topics you would like to reference. Double-click on the title; you will call up the help menu for that topic.
[image: Performing arithmetic calculation]
The first two items, Manuals and Pure Data are for general Pure Data reference. The rest are for external libraries shipped with the pd-extended software.
As all digital media elements are represented in numbers, the objects to perform numeric operations are essential. This section will introduce the use of common arithmetic computation. They are addition, subtraction, multiplication, and division. The programming symbols are: +, -, *, /.
Create an empty patch as described in the previous section and save it with name calculation.pd in your folder. Put a print object in the patch window. Put another object on the patch window. Type a plus sign + inside this object. Connect the outlet of this 'plus' object to the inlet of the print object.
[image: Performing arithmetic calculation]
Note that the plus object has two inlets, one on the left, one on the right. It is intuitive to think that addition involves two numbers. You need to have two numbers supplied through the two inlets for the calculation. Now, we put two message boxes with two numbers onto the patch and connect them to the inlets .of the plus object box.
[image: Performing arithmetic calculation]
Now, switch to Run Mode by selecting
Edit | Edit mode. Click upon the right message box first and then click on the left message box. Note the message from the console window. The order of clicking matters, which we shall be covering in the coming section.
[image: Performing arithmetic calculation]
This example always adds the two numbers 7 and 11 together. Nevertheless, message boxes don't offer much flexibility when it comes to changing the numbers in real time for addition. We will replace the two message boxes with number boxes.
First, we delete the two message boxes. To delete items in Pure Data, we click-and-drag the left mouse button to draw a selection rectangle including the two message boxes and press the Delete key on the computer keyboard to delete them.
[image: Performing arithmetic calculation]
If you want to delete a connection without deleting the item, you can click upon the connection link. The cursor will change into a cross shape. Press the Delete key and you can delete the link without touching the two other objects.
[image: Performing arithmetic calculation]
Going back to our example, we can also delete the print object and replace it with a number box. The next step is to create three number boxes from
Put | Number (Command + 3 or Ctrl + 3). Connect two of them to the plus object box inlets and the last one to its outlet. Note that the initial value for the number box is zero.
[image: Performing arithmetic calculation]
Now the addition program is ready. We can switch to Run Mode to test it. First, you click on the number box connecting to the right inlet of the plus object. Type in any number inside the number box; say 11. Note there are three dots after the number. Once you are fine with the number, press Return/Enter to confirm the number. The three dots will disappear. Note that the number box connecting to the outlet remains zero.
[image: Performing arithmetic calculation]
Next, you repeat the step with the left inlet number box. Type in a number and press Return/Enter. Note that once you press Return/Enter, the result number box will show you the correct result, 18 in this case.
[image: Performing arithmetic calculation]
We can conclude that the plus object performs an addition operation between two numbers, one in the left inlet and one in the right inlet. The result will be in the number box connected to the outlet. Nevertheless, the behaviors of the two inlets are different, the sequence is extremely important in Pure Data programming. In Pd terminology, the left inlet is the hot inlet. All other inlets are cold inlets. Only change of values in the hot inlet will trigger the operation, which in this example is an addition process. Change of values in the cold inlet (the right one in this case) will only store the new value in the inlet without initiating an addition process.
Sometimes, it is counter-intuitive to change the number value of the right number box and wait for the left number to change too. Pure Data has another object to tackle this behavior. It is the trigger object.
[image: Performing arithmetic calculation]
If you do not know how to use the trigger object, you can always right-click or Ctrl-click on it to display the help message. A trigger object will pass the message it receives to its outlets from a strictly right to left order.
[image: Performing arithmetic calculation]
The two float after the trigger are parameters indicating that the trigger object will pass numeric values to its outlets. All numbers in Pure Data are floating point numbers, that is with decimal. Integer or natural number is a special kind of floating point number that it does not have digits after the decimal point. When you key in a number in the inlet number box, you will see the output from the console window. The message right: 7 appears before the left: 7.
You can also change the value of the number box by clicking-and-dragging it upward or downward to increase or decrease the value by 1. If you press the
Shift key and click-and-drag, you can increase or decrease its value by 0.01. In all cases, the right outlet always comes before the left one. With this function, we can enhance our addition operation.
[image: Performing arithmetic calculation]
The only difference is the right number box. It goes through a trigger object with two parameters: bang and float. Whenever we change the value of the right number box, its numeric value (float) will pass to the right outlet first (right to left order) and a bang message will then pass to its left outlet. The right outlet goes to the cold inlet of the plus object first with the new number value. After that, the left outlet sends a bang message to the hot inlet of the plus object to trigger the addition process to start. It will then perform immediately without waiting for the value change in the left number box.
Once you are familiar with the object, you can write trigger b f or even t b f instead of the long form trigger bang float. As an exercise, you can replace the plus sign with the minus -, multiplication *, or division / signs to try them out.

Creating a counter

Most programming languages include the facility to store values in a place, and which can be referred afterward. It is usually called a variable. Pure Data uses a graphical object box for this purpose. The most common storage objects are float, int, and symbol. The objects, float and int store floating point and integer numbers respectively. The object symbol stores text without spacing in between, for example, Hello. Note that the descriptions we put next to the objects in the following screenshot are comments. Comments are textual descriptions for you to document your patch. You can add a piece of comment by navigating to Put | Comment. It is always good practice to document your patch for easy maintenance.
[image: Creating a counter]
The following example will make use of a float object to function as a counter. Create an empty patch and save it with name counter.pd in your folder. Put the float and plus objects in the patch window.
[image: Creating a counter]
Connect the outlet of the float object to the left (hot) inlet of the plus object. Connect the outlet of the plus object to the right (cold) inlet of the float object. It looks like a cross.
[image: Creating a counter]
Add two more number boxes and connect one to the right inlet of the plus object and the other to the outlet of the float object. Note that the outlet of the float object is connected to two objects.
[image: Creating a counter]
The last step is to put a bang object to the left inlet of the float object. To do this, choose Put | Bang from the menu bar. Connect it to the left inlet of the float object. Note that bang is one of the graphical user interface object and which functions like a push button.
[image: Creating a counter]
We now switch to Run Mode. Click on the right number box and type in the number 1. Click on the bang button a few times. Each time you click on the bang button, the circle turns black and the bottom number box will increase its value by 1.
[image: Creating a counter]
Now you can change the right number box value and click on the bang button again. The value determines how much the counter will increment whenever you click on the button.
When you setup this patch, the float object has an initial value of zero in its right inlet. Every time you click on the bang button, it sends out a bang message to the float object to output its value stored in the right inlet. That is the value in the bottom number box. At the same time, there is a connection from the float object outlet to the left inlet of the plus object. It causes the plus object to add 1 (or another value in the right number box) to it and sends the result back to the right inlet of the float object for temporary storage. The next time you click on the bang button, its value will increment again.
One last point to complete this counter is how you can reset the value to zero. You can achieve it by putting a 0 message to the right inlet of the float object. By clicking on this message, it sends the value zero to reset the counter. Note that we use message instead of a number box because there is no need to change the value 0.
[image: Creating a counter]

Automating the counter

As we noticed, in the last example, you need to click on the bang button to advance the counter. Can we do it automatically? The following example will provide you with the answer. It is another important concept in Pure Data. When you work on animation in later chapters, it requires the same technique.

Save As your last example with the name autoCounter.pd. We will now modify it with the auto-counting function. The new object we are going to use is metro. It is the metronome for counting the beat when you practice musical instruments. We add a metro object with a numeric parameter of 1000. This number is the duration of each beat, with units in millisecond. 1000 milliseconds will be one second. The second new object is a toggle box. You can choose it from Put | Toggle. It is another type of button, such as an on/off switch. We connect the toggle box to the inlet of the metro object and a bang box to the outlet of the metro object.
[image: Automating the counter]
In Run Mode, click on the toggle box. You will notice a cross indicating the ON state. Note that the bang box flashes automatically once in every second. To stop, click on the toggle box again. The cross disappears.
[image: Automating the counter]
The toggle box starts and stops the metro box. A cross in the toggle box sends out a value 1. An empty toggle box sends out a value 0. The number next to the metro box is the duration in milliseconds for every count. The number 1000 means one thousand milliseconds, that is one second. For every second, the metro box sends out a bang message through its outlet. To complete the patch, we can connect the bang message from the metro box to the bang input for the float object.
We can also use a number box for the right inlet of the metro object to control the counting frequency, instead of the fixed rate of 1000 milliseconds. The smaller the value, the faster the metro counts.
[image: Automating the counter]
When there are more boxes in the patch window, the connection links grow messier. Pd provides a wireless connection for you to tidy up the links. They are the send and receive boxes. The following example makes use of send and receive boxes to eliminate the intersecting connection. The name cnt next to send and receive is a variable name you could use to describe the connection. You can use whatever appropriate name as long as it is unique and identical in both the send and receive boxes. You can imagine it is an invisible link connecting the send and receive boxes with the same variable name.
[image: Automating the counter]

Making an animation with the interface elements

Once we have the tool to automate the counting process, we can make use of it to create an animation. Since we have not learnt to draw in Pure Data, we start by using the graphical user interface elements, such as the bang object, to create the graphics.

Save As the last example with the name animation1.pd. Simplify the patch like the following screenshot. Note that we move the metro box and its connections to the left-hand side and remove the send and receive objects. In this patch, we plan to animate a number of bang objects, say six of them, one by one in a sequence. This technique can be helpful when we create an animation loop later.
[image: Making an animation with the interface elements]
Then, we put six bang objects in the patch, arranging them in a row. To work with this, we also add a new object called select. It is similar to the conditional statement IF in text based programming languages.
[image: Making an animation with the interface elements]
In Run Mode, if you change the value in the number box above the select object, you will notice the relation between the number and the behavior of the bang boxes under the select object. A number 0 will flash the first bang. A number 1 will flash the second bang. A number 5 will flash the last one. In most programming languages, we count from zero instead of one. For example, if we have a count of 5, we count from 0, 1, 2, 3, and 4. Remember that you can click-and-drag the number box upward and downward to change the number value.
You can consider the select object a multiple conditional statement. In this example, if the number from the inlet is 0, it passes a bang to the first outlet. If it is 1, it passes the bang to the second outlet. If it is 2, it passes the bang to the third outlet. If it is outside the range of 0 to 5, it passes the bang to the last outlet, which is not connected to any bang box here. You can also specify non-consecutive numbers as the parameters in the select object. In later chapters, we will also use non-numeric parameters.
To complete the patch, we connect the counter output number box to the select object. In order to reset the counter, we also need to send the bang message to the message box containing the zero value, when the counter value exceeds 5.
[image: Making an animation with the interface elements]
In this version of the patch, the animation runs from left to right sequentially. It is due to the counter value changing from 0 to 5. In the next example, we modify it such that we can have a random movement. Pd comes with a pseudorandom number object called random. We'll use it to generate a number from 0 to 5. If you right-click or Ctrl-click on it to display the help menu, you can specify other parameters to control the range of the random value.
[image: Making an animation with the interface elements]
We put the number 6 here for the parameter. It will generate a random value between 0 to a number less than 6, that is 5. Again, it is common practice in programming languages for a value to start from 0, instead of 1. The next step is to combine this random object with the last example. It is pretty straightforward. We only need to send the bang message from the metro object to the random object in order to generate the next random number. The rest remains the same.
[image: Making an animation with the interface elements]

Using the graphical interface objects

In previous sections, we came across a number of graphical interface objects such as bang, toggle. The following patch will introduce the slider and radio buttons. Slider is a numeric value represented visually. You drag the handle of the slider to alter the numeric value. Radio buttons are a group of options. You can only select one among the group.
To create a slider, navigate to Put | Hslider or Put | Vslider. To create a group of radio buttons, navigate to Put | Hradio or Put | Vradio.
Note

Hslider is a horizontal slider. Vslider is the vertical one. Hradio is a group aligned horizontally. Vradio aligns vertically.

[image: Using the graphical interface objects]
When you click on the bang object, the console window will show the bang message. When you click on the toggle object, the number box value alternates between 0 and 1. When you drag the
slider, the number box value changes from 0 to 127, that is the default range. You can change this range by right-clicking or Ctrl-clicking on the slider and opening the Properties window to modify the output range.
[image: Using the graphical interface objects]
When you click on any square of the radio button group, the number box gives you a value from 0 to 7, depending on which square you click on. It is the default number of buttons in the radio group. You can also change the number of buttons by right-click on the radio button group and open the
Properties window to modify the number.
[image: Using the graphical interface objects]
Remember that you can always right-click or Ctrl-click on the object to choose the help menu in case you would like to understand more about the object.

Summary

This chapter covers the basic elements in a Pure Data patch. We have discussed the use of data in Pure Data, such as floating-point number, integer, and symbol. We covered the use of simple arithmetic calculation. We introduced the use of the trigger object to synchronize the hot and cold inlets. By using the float object, we understood how to store numeric values as variables in Pd. We used the metro object to create loop in Pure Data. Within the loop, Pure Data provides the select object for conditional processing. We used the random object to create chance-based operations. The last section also demonstrates the commonly used graphical user interface elements in Pure Data. Until now, everything is number. In the next chapter, we start off our adventure in the graphics world with the GEM library.

Chapter 2. Computer Graphics with the GEM Library

In this chapter, we will proceed with the Graphics Environment for Multimedia (GEM) library to work with computer graphics. We will start with the basics to create the GEM display window for graphics. Within the window, we will learn to draw 2D and 3D primitive shapes. We will understand the coordinates system in GEM in order to apply geometric transformations to the graphical shapes and also learn to enhance the surfaces of the graphical shapes with color information. Furthermore, we will learn to apply the lighting information to produce more realistic images. By the end, we should be able to produce a simple animation in 3D space.
GEM is an external library for the Pure Data software. It is available at http://gem.iem.at. Nevertheless, the version of Pure Data (pd-extended) we are using already includes the GEM library. We will use the GEM library to create both 2D and 3D graphics from scratch.
The topics that we are going to cover in this chapter are:
	Using the GEM display window
	Drawing basic 2D graphics
	Understanding the coordinates system
	Drawing basic 3D graphics
	Working with digital color
	Applying geometric transformations
	Creating animation in 3D space

To get general help and tutorials for GEM, you can also use Help Browser to check out the material:
[image: Computer Graphics with the GEM Library]
Using the GEM display window

All graphics we are going to create reside in a separate window with the main patch window. It is often called the GEM display window. We use the gemwin object to create the window. With different input messages, we can customize the properties of the display window.
Create a new Pd patch. Save it to your folder with name gem001.pd. Clear the console window by choosing Edit | Clear console.
Put the object gemwin onto your patch window, together with two messages and one toggle box. Connect all the messages and toggle boxes to the inlet of the gemwin object:
[image: Using the GEM display window]
The gemwin object manages the graphics window. In this simple example, it receives two input messages:
	create: This message creates a new window for graphics display
	destroy: This message closes the graphics window

Also note the toggle box that sends the number, either 0 or 1 to the gemwin object. It is the rendering switch. Turning on the toggle will start graphics rendering within the window. Turning it off will stop it. When we work on animation by the end of this chapter, you will notice that the render switch will start/stop the playback of the animation.
Now switch to the Run mode. First, click on the create message box and then on the toggle box. You will notice a square window appearing with black background. The default title of the window is GEM. And the default size of the window is 500 x 500 pixels, as shown in the following screenshot:
[image: Using the GEM display window]
To close the window, switch off the render toggle and click on the destroy message box. If you right-click or simultaneously press Ctrl and click on the gemwin object and display the help menu, you can click on more items to check out the detailed operations of window management in GEM. We'll try out a few more options before we start drawing on the window.
To change the size of the window, we use the dimension message. The correct form is dimen 640 480 to change the size to 640 x 480 pixels. The first number is the width and the second one is the height. Both are measured in pixels. Also bear in mind that you have to first click on the dimen message before clicking on the create message and toggle:
[image: Using the GEM display window]
To change the window title, we use the title message. Note that the title text cannot have space characters. Otherwise, it just takes the first word. Again, you need to first click on the title message before clicking on the create message:
[image: Using the GEM display window]
To change the background color, of course, we use the color message. It is a bit tricky because we have to understand how we can specify color in GEM. You may have known that digital display color can be represented by the three primitive colors: red, green, and blue. All other colors are different combinations of the three primitive colors. GEM uses three numbers to denote the red (R), green (G), and blue (B) colors. The range of the numbers is from 0 to 1. For example, a red color is 1, 0, and 0; a yellow color is 1, 1, and 0. The first number is red, the second is green, and the third is blue. You can also have decimal numbers for the color values, such as 0.5, 0.1, and 0.1. The following example changes the window background to white, with the color combination as 1, 1, and 1:
[image: Using the GEM display window]
To resume the system default of the window properties, a reset message will do:
[image: Using the GEM display window]

Drawing basic 2D graphics

Before exploring more advanced properties of the window, we start working on 2D graphics. The GEM library comes with a number of 2D primitives such as circle, curve, polygon, rectangle, square, and triangle.
Create a new Pd patch. Save it to your folder with name gem002.pd. Clear the console window by choosing Edit | Clear. Create a default graphics window with the gemwin object, create message, destroy message, and the toggle render box as shown in the last section.
We will first create a 2D square in this exercise. Put an object named square onto the patch window. If you switch to the Run mode and create the window to start rendering, nothing happens. In order to render the square object, we need one more GEM object, gemhead:
[image: Drawing basic 2D graphics]
The gemhead object defines the path that GEM library uses to produce the graphics. When the GEM window starts to render any graphics, it searches all the gemhead objects in the patch. Starting from each gemhead object, it goes down the connection from gemhead to the object that defines the graphics, in this case, a square object:
[image: Drawing basic 2D graphics]
You will see that the square object has two inlets. The first one is connected to the outlet of the gemhead object that defines the rendering path. The second one defines the size of the square. We can put a number box to it to try it out:
[image: Drawing basic 2D graphics]
In the Run mode, try changing the value of the number box. Remember that you can click on a number box to type a new number value or click-and-drag it up or down to increase or decrease the value of the number:
[image: Drawing basic 2D graphics]
You will see that the size of the white square changes according to the value of the number box. The default size is 1. When you change the number value to around 4, it occupies the whole GEM window.
The normal rendering is the white solid fill color. You can also use outline and corner point to render them. By attaching messages with the text draw fill, draw line, and draw point to the square object, in real time we can alter the rendering method. In the Run mode, clicking on the messages will change the rendering method. The default one is draw fill:
[image: Drawing basic 2D graphics]
Here is the draw line image (shown in the following screenshot):
[image: Drawing basic 2D graphics]
And here is the draw point image (shown in the following screenshot):
[image: Drawing basic 2D graphics]
The square object has only one parameter, its size. For other shapes, there will be more parameters to control the dimension. Next, we take a look at the rectangle object. It has two parameters, width and height. We use two number boxes to control them:
[image: Drawing basic 2D graphics]
The triangle object will draw an equilateral triangle. It has only one parameter to control its size:
[image: Drawing basic 2D graphics]
The circle object is also straightforward. It has only one parameter for its size:
[image: Drawing basic 2D graphics]
The next shape, polygon, is a bit complicated. It has one parameter inside the object box, that is, the number of edges. The following example is a polygon of five edges. Besides the left-most hot inlet, it has five other inlets. Each of them defines one corner of the polygon. A corner is a message of three numbers, representing the x, y, and z co-ordinates of the point. The center of the window is the origin of the coordinates system (0, 0, 0). We are going to cover the coordinates system in the next section in more detail.
[image: Drawing basic 2D graphics]
Note that the coordinates are in three-dimensional space, even though we are preparing 2D graphics. All the points here have z values equal to zero. The polygon shape it generates is shown in the following screenshot:
[image: Drawing basic 2D graphics]
Similar to the polygon object, the next object (curve) also requires us to put in the points to define the curve line. With just two control points, it draws a straight line:
[image: Drawing basic 2D graphics]
The drawing is a straight line from the endpoint (-2, 1, 0) to (2, 1, 0):
[image: Drawing basic 2D graphics]
The
curve object defines bezier curve. If we have three points, the first and third points are the endpoints of the curve. The second one is the anchor point that defines the curvature of the line:
[image: Drawing basic 2D graphics]
Note the use of the message draw linestrip here. The messages draw line and draw fill will produce a closed shape. If you want an open curve line, draw linestrip will do:
[image: Drawing basic 2D graphics]
When you add more anchor points to the curve object, you can come up with a more complicated curve. It is an example of a curve with five points, two endpoints, and three anchor points:
[image: Drawing basic 2D graphics]
The first and the last messages are the two endpoints. The middle three points trace the curvature of the overall curve:
[image: Drawing basic 2D graphics]

Understanding the coordinates system

In the last section while working on the size of the graphical shapes, we understood that when a square object with size 4, it will cover the whole GEM window. In the polygon and curve examples, we learned that each point in the GEM window corresponds to a point in three-dimensional space.
The GEM window is a two-dimensional projection plane of a three-dimensional space. The origin (0, 0, 0) is the center of the window. The horizontal axis is the x axis. Toward the right-hand side is the increasing value of x. The vertical axis is the y axis. Moving upward increases the value of y. For the z axis, you have to imagine a line moving from the center of the GEM window toward your eyes:
[image: Understanding the coordinates system]
If we consider all the points with z value equal to zero, it will form a flat surface parallel to the GEM window. On this surface, when we move from the left-hand margin to right-hand margin, the x value changes from -4 to 4. When we move from the bottom margin to the top margin, the y value changes from -4 to 4. The measurement is due to the default settings of the GEM window view properties and is independent of the window's dimension in pixels.

Drawing basic 3D primitive shapes

All the 2D graphical shapes can work in the 3D environment. In addition, GEM provides a number of 3D primitives, such as cone, cube, cuboid, curve3d, cylinder, disk, sphere, teapot, torus, and tube. Let us learn it step-by-step by following a similar procedure.
Create an empty patch and save it with name gem003.pd in your folder. Put the gemwin object, create and destroy messages, and the toggle box for rendering.
We start from the simplest 3D object, cube. Put the gemhead and cube objects and connect them together. Similar to 2D shapes, we can also have the draw fill and draw line messages. Here is the patch and the resulting window. By using the draw line message, the 3D perspective projection of the cube is more obvious:
[image: Drawing basic 3D primitive shapes]
Here is the wire-frame rendering of the cube in the three-dimensional space:
[image: Drawing basic 3D primitive shapes]
Control for the cube object is simple. It has only one number inlet for its size. The next object is sphere. It has two parameters. One for the size and another for the resolution, that is, the number of straight line segments to form the circle. If you have an extremely small value for the last inlet, such as three or four, you may end up with a polygonal 3D object, instead of a sphere object:
[image: Drawing basic 3D primitive shapes]
Here is the wire-frame rendering of the sphere. Note that the last inlet of the sphere object defines its resolution:
[image: Drawing basic 3D primitive shapes]
In order to show the 3D rendering of the sphere, we can make use of lighting. In the gemwin object, we can turn on the lighting effect by the message lighting 1. To turn it off, specify the message lighting 0. We also introduce a new object world_light to light up the environment.
[image: Drawing basic 3D primitive shapes]
Here is the result without turning on the lighting:
[image: Drawing basic 3D primitive shapes]
Here is the result with lighting turned on:
[image: Drawing basic 3D primitive shapes]
In the patch, we have to use two messages to turn lighting on and off for the GEM window. Actually, we can simplify it with one message and a toggle box. In the message box, we type lighting $1, instead of putting 1 or 0, and then we connect a toggle box before it:
[image: Drawing basic 3D primitive shapes]
In the previous chapter, we learned that a toggle box sends out either 0 or 1. The lighting $1 message has one argument, similar to the use of function arguments in other programming language. The notation $1 is the first argument. This message box will package the text lighting together with 0 or 1 from the toggle box and send it out to the gemwin object to control the lighting effect.
The
world_light object defines a point light at infinity distance to the scene. Without the light, your scene will be invisible once you turn on the lighting message. Note that the world_light object has another gemhead object for it. You can also add color information in the second inlet of the world_light object. Again, the color is the RGB number values, ranging from 0 to 1:
[image: Drawing basic 3D primitive shapes]

Working with digital color

We have seen how to specify the window background color and the world light color. For all the 2D and 3D graphics, we can also individually specify the color information with RGB values. The coming example will show us how to specify color for the primitives.
Create an empty patch and save it with name gem004.pd in your folder. Put the gemwin object, create and destroy messages, and the toggle box for rendering. In addition, put a gemhead object with a sphere object.
Between the gemhead and the sphere objects, insert a color object. For color specification, it will be a message of three numbers: red, green, and blue. Clicking on the message will change the color of the sphere:
[image: Working with digital color]
We can also use another object colorRGB to specify color for the graphical shapes. It requires three (RGB) to four (RGB and alpha) number boxes to specify the color. Remember that each number ranges from 0 to 1. If you press the Shift key and click-and-drag a number box upward or downward, you can alter the number in decimal point, in a step of 0.01:
[image: Working with digital color]
Color specification is straightforward in GEM. By using color or colorRGB, you alter the default color (white) according to the number values. You can also use both the world_light color and the object color together:
[image: Working with digital color]
Some color input requires three individual numbers. Some color input requires a message list of three numbers. We can combine them together such that the user interface is consistent, that is, three number boxes:
[image: Working with digital color]
The new object is pack. It simply packs three numbers together. Note the parameters f f f. Each f represents a floating-point number. The number of f corresponds to the number of inlets of the pack object. In this example, three numbers are packed together to form a list for the right-hand inlet of the color object. Nevertheless, this patch is not perfect. If you play around with the number boxes, you will notice that only the red color box (hot inlet) will send out the color list message. The rest (green, blue) will just store the new values and wait until there is a change in the red number box. If you remember how we handled the synchronization of hot and cold inlets, we make use of the trigger object:
[image: Working with digital color]
For the green and blue color number boxes, they send out the number to a trigger object, trigger b f. Each trigger box will first send out the number to the corresponding number inlet of the pack object and then send out a bang message to the hot inlet of the pack object to output the color number list to the color object. In this case, changes in the green and blue numbers will also go immediately to the sphere object without waiting.

Applying geometric transformation

In this section, we start to move the graphical shapes in the 3D space. The operations are translation, rotation, and scale. Each operation comes with two versions. They are: translate, translateXYZ, rotate, rotateXYZ, scale, and scaleXYZ. In this book, we focus on the use of translateXYZ, rotateXYZ, and scaleXYZ. Readers can use the help menu to check the usage of translate, rotate, and scale.
Performing translation, rotation, and scaling

Create an empty patch and save it with name gem005.pd in your folder. Put the gemwin
 object, create and destroy messages, and the toggle box for rendering. In addition, put a gemhead object with a cube 3D object.
Between the gemhead and the cube objects, insert a translateXYZ object. The translateXYZ operation moves the object along each of the three axes. The three number boxes control the magnitude of the movement:
[image: Performing translation, rotation, and scaling]
Note that the cube changes position and renders with a perspective view:
[image: Performing translation, rotation, and scaling]
For rotation, insert the rotateXYZ object to replace the translateXYZ object in the last example. It also requires three number boxes for the rotations in three axes. The unit is in degree:
[image: Performing translation, rotation, and scaling]
Here is the result of the cube with the rotation in three axes:
[image: Performing translation, rotation, and scaling]
For scaling, use the object scaleXYZ. It changes the size (scale) of the cube in the X, Y, and Z dimension. The number 1 is the original size:
[image: Performing translation, rotation, and scaling]
Here is the cube with different scaling factors in the three axes:
[image: Performing translation, rotation, and scaling]
It is easy to understand the operations of translateXYZ, rotateXYZ, and scaleXYZ in GEM. By changing the values in the number boxes, you control the amount of transformation in the particular coordinates axes.

Checking the margins of the window

By using the translateXYZ object, we can verify the margins of the window, as shown in the last section about the coordinates system. Note that when the cube is translated to the x value of -4 or 4, half of it will be outside of the frame:
[image: Checking the margins of the window]
Here are the two cubes translated to the left-hand and right-hand margins of the GEM window:
[image: Checking the margins of the window]
You will observe that when we translate a cube towards the margins of the window, it looks distorted due to the perspective projection. In some game applications, we may want to maintain the 3D shape no matter where it travels across the screen. In this case, you might consider using the ortho (orthogonal) projection object. All graphical shapes under the ortho object will use parallel projection instead of perspective projection:
[image: Checking the margins of the window]
Here is the resulting image (shown in the next screenshot) where you will notice the difference between the orthogonal and perspective projection:
[image: Checking the margins of the window]

Order of transformations

Another issue we would like to cover is the order of transformation. We have covered only one transformation for each graphical shape. In fact, we can have a number of transformations for each shape. The following example illustrates how the order of transformation matters in some cases. The first one has a translation before a rotation along the y axis. The cube translates to the position (1, 1, 0) in the 3D space and then rotates around its own y axis:
[image: Order of transformations]
The second example has the same rotation along y axis first and then a translation to the same position (1, 1, 0). The cube rotates along the y axis of the window with a displacement from the center by one unit along the x axis and one unit along the y axis. By clicking-and-dragging the number box for the rotateXYZ object, the result is more obvious:
[image: Order of transformations]

Creating animation in 3D space

In Chapter 1, Getting Started with Pure Data, we have used the metro and random objects to create an animation of the graphical interface object (bang button). With the introduction of the GEM library, we can replace the bang button with other graphics. We have also used a float
 object to implement a counter. Actually, in pd-extended, we have another counter object that we can directly make use of.
Create an empty patch and save it with name Gem006.pd in your folder. Put the gemwin object, create and destroy messages, and the toggle box for rendering. In addition, create a metro object with a toggle box and connect it through a counter object.
For the counter object, it requires a number of input parameters. The three inlets we are using are for setting the minimum value, counter value, and the maximum value. In this case, I have used three message boxes for the purpose. The output of the counter object will be a number box:
[image: Creating animation in 3D space]
Before turning on the metro object, we need to click on the three message boxes to set up the minimum (third inlet), maximum (fifth inlet) values of the counter object, and reset the current count (fourth inlet) to the minimum value. Once we start counting, the number value will count from 0 to 359 and back to 0 again. We are going to use this value to control rotation of a graphical shape.
We combine the counter patch with one of the geometric transformation example to test the result. The counter number box output will be connected to the y axis rotation parameter for a rotateXYZ object:
[image: Creating animation in 3D space]
In the next example, I have added one more sphere with different size into the animation. Under the same gemhead link, there are now two sphere objects. I also put in a trigger object to send out the graphic information to both spheres in synchronized fashion. Note the parameter for trigger a a. The letter a stands for any, that is, any type of data:
[image: Creating animation in 3D space]
The resulting graphics are shown in the following screenshot:
[image: Creating animation in 3D space]
In this case, the smaller sphere object is inside the bigger one. What if I want them to be separate? One easy method is to put a
translateXYZ object for one of the sphere object. Let's try. Refer to the following screenshot:
[image: Creating animation in 3D space]
No matter how much you change the x value of the second translateXYZ number box, the two spheres always rotate together. In GEM, the transformations are common to all the graphical shapes under the same gemhead rendering path. The way to separate them is to add a new object, separator. After the
trigger object, the rendering signal splits into two. While one goes directly to the sphere object, another one goes to a translateXYZ object first. Since the two sphere objects are isolated by two separators, transformations applied on the smaller sphere will be local to it. The transformations above the separators are applicable to both spheres:
[image: Creating animation in 3D space]
After we have introduced the two separator objects, the translateXYZ object for the smaller sphere object now works properly. Now, what if I want the smaller sphere to rotate around the bigger one? An additional rotateXYZ object will do, as shown in the following screenshot:
[image: Creating animation in 3D space]
Tip
Note that we can use a multiplication object with value -1 to change the direction of rotation.

To finish, we can use lighting and color change effects for the two spheres for a nicer result, as shown in the following screenshot:
[image: Creating animation in 3D space]
In the upper-right corner, there is a new object loadbang. This object will generate a bang message when you first open the patch from hard disk. If you have any initialization that you would like to do before running the patch, it is a good practice to use a loadbang object to send out the message. In this case, I have used it to initialize the minimum, maximum, and current count values of counter:
[image: Creating animation in 3D space]
By using a
metro object, we set up a timeline for the whole scene to follow. The previous examples use the time to control the rotation of two spheres. Of course, we can use it to control translation, scaling, or even the color of the graphical shapes. The key point is how we can make use of the counter values to map into the meaningful range of numbers for the visual effects. For example, rotation is between 0 and 359 degree, translation can be between -4 and 4, color is the RGB value between 0 and 1.

Summary

This chapter explains how to create 2D and 3D graphics in the GEM library, using primitive shapes, applying geometric transformations, such as translation and rotation, and how to make use of automation to create animation. So far, we have only used the basic color rendering and world lighting for the graphical shapes. In the next chapter, we are going to import external images into the GEM window.

Chapter 3. Image Processing

Besides drawing the graphics from scratch, we can also obtain images from external sources to work in the GEM environment. Chapter 3, Image Processing, will illustrate the step-by-step process for incorporating digital images, videos, and live streams into existing Pure Data applications. We will also cover advanced topics such as background removal and background substitution effects. The topics included are as follows:
	Obtaining images from external sources
	Applying image filters
	Layering multiple images
	Working with time
	Performing background removal
	Working with chroma key
	Experimenting with advanced effects

Obtaining images from external sources

The first step is to create an empty patch with the basic GEM window setup. Create a new Pure Data patch. Save it to your folder with name Image001.pd. Put in the gemwin object, with the create and destroy messages. Use a toggle box to control the rendering. To work with the examples, you also need a few digital image files in formats such as JPEG, PNG, a few video clips in QuickTime (MOV) or MP4 formats. For live video, you also need a working webcam connected to your computer.
The following screenshot is the patch content:
[image: Obtaining images from external sources]
In the patch, we need a gemhead object. We also have a new object—pix_image. And then, we connect another new object—pix_texture, finally to a rectangle object. There is a message box for the pix_image object. It is a message to instruct the pix_image object to open an external file with name Sample01.png that resides in the same folder with the Pure Data patch. If the PNG file does exist and is a valid image document, the image will show up after you click on the message box. If the image does not exist, an error message will show up in the console window.
[image: Obtaining images from external sources]
Note
Actually, the image can be in a different folder. In this case, we have to specify the path of the file. In a later section, we can also choose the file interactively with an openpanel object.

The GEM library comes with a number of commands with pix as prefix. They are the pixel objects that handle image processing at pixel level. The pix_image object is an object that reads in a digital image file, such as JPEG, PNG, TIFF, GIF, and stores it in memory. The next object—pix_texture, will enable texture mapping with the digital image stored. Finally, the texture will map into the rectangle object.
Imagine you have a cloth printed with the image loaded from an external file, and wrap it around a rectangle. If you want to load another image file, you have to put in another message box with another file name. Alternately, we can use an openpanel object to interactively select the file from a file browser dialog box. Click on the bang object of the openpanel object. Select an image file from the location you put there. Confirm your selection. You can also observe the message from the console window to check if the loading is successful or not.
[image: Obtaining images from external sources]
Besides using a rectangle object to hold the image, you can also experiment with 3D primitives, such as cube, sphere, and so on. To highlight the 3D effect, the example also uses a rotateXYZ object to have a perspective view of the cube object.
[image: Obtaining images from external sources]
The following screenshot is the result of an image file texture-mapped onto a cube object. With the perspective projection, you will notice the X, Y, and Z dimensions of the cube surface.
[image: Obtaining images from external sources]
If you replace the cube object with a sphere object, you will have an image similar to the following screenshot:
[image: Obtaining images from external sources]
After we play around with loading external still images, we can proceed to work with digital videos. The logic is the same but the object is different. It will be the pix_film object instead of the pix_image object.
[image: Obtaining images from external sources]
Similar to the still image, the digital video appears on top of the rectangle object. We can adjust the size of the rectangle object to cater to the aspect ratio of the video. The size of the rectangle object in the example is 2 x 1.5, which is the common 4 x 3 aspect ratio. You can also put the size inside the object such as rectangle 4 3.
[image: Obtaining images from external sources]
To play back a digital video, the pix_film object uses the same open message to load the external video in the same folder with the patch. In this case, we use an MP4 video here. The video format depends on the operating system. For Mac OSX, it will mainly be QuickTime, MP4, and WMV, if you have the
Flip4Mac (http://www.telestream.net/flip4mac/) software installed. For Windows, it will be AVI, WMV, and MP4. For Linux, it depends on the video libraries installed. You can expect GEM to playback AVI, QuickTime (MOV), and MPEG. Note that the pix_film object displays only the video channel, not the audio channel.
Note
To play sound along with the video, you have to first extract the audio track from the video and use audio objects (to be covered in Chapter 7, Audio Programming) to playback the sound separately.

In addition to the open message, the object also requires an auto message. As shown in the following screenshot, we have connected a toggle box to the auto message with a $1 parameter, such that the 0 or 1 message will pass to the auto message. The message will enable and disable the automatic playback of the video. You can use it to start and stop the playback.
The pix_film object has two extra outlets, as shown in the following screenshot. The middle outlet is a list of three numbers. We use a new object called unpack to extract the list into three floating-point numbers. The first number is the number of frames in the video. The second number is the frame width. The third number is the frame height. An unpack object will split a list into different items, depending on their data types. Note the three f parameters, that indicate the unpack object, will split the list into three floating-point numbers. The right outlet of pix_film is a bang message that indicates the end of the video.
[image: Obtaining images from external sources]
One of the uses of the end-of-video bang message is to stop the playback after it plays once. Normally, with the auto message on, the video loops. We can connect the outlet of the bang message to the inlet of the toggle box for the auto message. Once the video reaches its end, it sends a bang message to change the toggle box to 0.
[image: Obtaining images from external sources]
Note
The preceding patch works only in the Version 0.42.5. The behavior of pix_film changes in the new Version 0.43.4. The video does not loop when the auto message is on. We have to reset the frame number to 0 in the right inlet of the pix_film object in order to loop the video. The following patch Film002.pd demonstrates the usage in Version 0.43.4.

[image: Obtaining images from external sources]
After image and video processing, we will proceed to live stream video with a webcam. The new object is pix_video. It will pick up the default video source from your computer system. For Mac OSX, you can use the dialog message to select other video source. For Windows and Linux, you can click on the enumerate message to list the available video devices and use the radio button to select the device.
[image: Obtaining images from external sources]
With this patch, your default live webcam image will be mapped on top of the rectangle object as shown in the following screenshot:
[image: Obtaining images from external sources]
As a review, we can group all the image, video, and webcam into one single patch. Try arranging them in a row by using the translateXYZ or translate object. Here is an example. You can create a video wall if you have a number of videos to arrange in different layout.
[image: Obtaining images from external sources]
This example has three images, one still photo on the right-hand side, a digital video in the center, and the live webcam image on the left-hand side. Each of them is mapped on a separate rectangle object. The translate object works similarly with translateXYZ. It takes two parameters. The first one is a number denotes the scaling factor. The second parameter is a list of three numbers indicating the direction in X, Y, and Z dimensions. The total translation value will be the scaling factor that multiplies the X, Y, and Z direction values.
The next image is the expected result from this patch, Image002.pd:
[image: Obtaining images from external sources]

Applying image filters

After we load the external images as input, we can start to apply effects to the images. The first few effects are image filters similar to what you can find in software such as Photoshop. We will explore a few of them.
The first one is the invert filter. It inverts the color for each pixel in the image. For testing, you can use image, video, or live stream. In the example, we use a pix_image object. The object to perform the invert filter is pix_invert. The invert filter will compute the new color for each pixel and for each RGB value by using 1 to subtract the original color value. The dark area becomes light. And the light area becomes dark.
For example, if the original pixel color is red, (1, 0, 0) in RGB, the inverted color will be (1-1, 1-0, 1-0) or (0, 1, 1). It is the color cyan.
[image: Applying image filters]
Here is what you would expect with the use of the pix_invert object. It is the same as the invert filter when you work with Photoshop.
[image: Applying image filters]
The next object is pix_2grey that converts the original image into grey tone. Here is the patch with pix_2grey:
[image: Applying image filters]
The pix_2grey object will convert the original RGB image into grayscale as shown in the following screenshot:
[image: Applying image filters]
The pix_flip object is also straightforward. It flips the image either horizontally or vertically or both. The controls are the none, horizontal, vertical, and both messages.
[image: Applying image filters]
Here is an example with the vertically flipped image:
[image: Applying image filters]
The next effect—pix_metaimage, is very interesting and useful. It makes use of a smaller copy of an image to create a mosaic of the original bigger image.
[image: Applying image filters]
There are three parameters for the pix_metaimage object. The cheap message will enable or disable smoothening when scaling the image. A value 1 for cheap will disable smoothening. The distance message will use 3D or 2D scaling of the image. A value 1 for distance will use 3D distance to scale the image. The last parameter is a horizontal slider. You have to change the range of the slider to a value between 0 and 1. Put 1 in the right box of the slider property.
[image: Applying image filters]
Here is the resulting image you would expect with the typical usage of a pix_metaimage object:
[image: Applying image filters]
The next effect is the pix_lumaoffset. It uses the brightness of the image to create an illusion of depth. The first parameter—the fill message, determines whether it uses color fill or color line to render the image. The second parameter—the smooth message, turns on and off smoothening. The third parameter—the offset number box, determines how much to offset the color lines. The last parameter—the gap number box, is the spacing between each color line.
[image: Applying image filters]
Note the illusion of depth created by the horizontal lines that changes according to the brightness of the image.
[image: Applying image filters]

Layering multiple images

The filters we learned in the previous section use only one input source. There are other GEM pixel effects that combine two images together. The logic is similar to the layer option in Photoshop layers. They are the pix_add, pix_subtract, pix_multiply, and pix_diff objects.
[image: Layering multiple images]
The following first example uses the pix_add effect that combines two images together according to their pixels' color values:
[image: Layering multiple images]
Note that the object requires two input images. The patch has two gemhead objects. Each gemhead will use a pix_image object to load its image. In the end, there is only one pix_texture object to map the resulting image to the rectangle. The pix_add object adds the color pixel values of the two images, with result clamped between 0 and 1. The pix_subtract object subtracts the color pixel value of one image by the others. The pix_multiply object multiplies the color pixel value of the two images. The pix_diff object computes the absolute value of the color pixel value difference between the two images.
You have to use two images of the same size for these objects. Again, you can use digital videos or webcam live stream instead of digital images.
The next object we look into is the pix_mix object. In addition to the two input images, the pix_mix object has the third inlet that is a number between 0 and 1. We use a horizontal slider with the output range from 0 to 1. You can refer to the last section about specifying the range.
[image: Layering multiple images]
Following is the resulting image with the pix_mix object. Note that the semi-transparent effect of the images.
[image: Layering multiple images]
When you push the slider to the left-hand side, that is with a value closer to 0, you see more of the left image. When you push the slider toward the right-hand side, with value closer to 1, you see more of the right image. It is a cross-fading effect. Again, you need two images of the same size.
All the images we displayed are rectangular in shape. If we want to have an irregular shape image, how can we do this with GEM? The following example will make use of the pix_mask object. It defines an alpha channel mask, similar to Photoshop, for another image. Here is the patch:
[image: Layering multiple images]
The pix_mask object also takes in two images through its inlets. The one on the left-hand side is the original image. The one on the right-hand side is the mask. It is a black and white image of the same size as the original one. The white area will be transparent. You can also have gradient, that is feather edge, too. You can use Photoshop or other image editing software to create the mask image file. We use another new object, alpha, to enable alpha blending in the final result.
[image: Layering multiple images]
The resulting image in GEM window is shown in the following screenshot:
[image: Layering multiple images]

Working with time

The effects we have learned so far work with spatial arrangement in a frame. There are a few objects in GEM to facilitate us to work with frame in the time domain. For example, the following patch can delay the playback of a frame. It is the pix_delay object. The parameter in the right inlet is the number of delayed frames.
[image: Working with time]
GEM also has another group of objects to store and retrieve images. They are the pix_buffer, pix_buffer_read, and pix_buffer_write objects. Imagine that you can define a number of empty boxes by using the pix_buffer object. Once the boxes are ready, you can deposit image frames onto the empty boxes using pix_buffer_write. When you need the frames, you can retrieve them by pix_buffer_read. In the following example, We define a buffer named temp of size 1 frame to store the image:
[image: Working with time]
The pix_buffer temp 1 object defines a pixel buffer temp of size 1 frame. The pix_buffer_write object receives the image frame from pix_video. Note that the pix_buffer_write object has a right inlet with a message 0. It is the index number of the storage in the buffer temp. The index starts from 0, similar to the array index in other programming language. If you need to 'write' the image to the buffer, you first have to click on the message 0 for pix_buffer_write. For the pix_buffer_read object, it works in the same way. If you need to retrieve the image from the buffer temp, you also click on the message 0 for pix_buffer_read. We do not have other index numbers in our case because the buffer has only one element. The pix_buffer_read object will then pass the image to pix_texture for texture mapping onto the rectangle object. The operation will be: first click on the message for write, and second click on the message for read. We can automate it by using the metro object.
[image: Working with time]
In this case, we can create a stop-motion effect for your digital movie or live stream video.

Performing background removal

The GEM library includes image-processing objects for us to isolate the foreground and background of a scene. The logic is simple. It takes a snapshot of a background image first. When the subject enters into the scene, it compares the current frame with the stored background image. Only the pixels with change in the color are highlighted in the resulting image. Those areas without any changes remain black.
[image: Performing background removal]
The object is pix_background. It has a parameter in its first inlet, a reset message. Clicking on this message will store a copy of the current frame as the background image. The second parameter is the list of three numbers in the right inlet. In this example, we have used a horizontal slider with a range between 0 and 1. The three numbers $1 are the red, green, blue values forming the threshold that will turn black after the frame comparison.
To operate this patch, first point your webcam to a static background, such as a wall. Click on the reset message. Move the slider from left to right to a point that the GEM window image just turns black. Wave your hand in front of the webcam. You will notice the GEM window image shows only your hand and the background remains black. The quality of the background removal depends on the specification of your webcam, the lighting condition. The result will not be comparable to those professional video effect switchers.
[image: Performing background removal]

Working with chroma key

Chroma key is the post-production technique to combine two videos by making a range of color hues transparent in foreground video to reveal the background video. In modern movie-making, you may have seen an actor/actress performing in front of a huge blue or green screen. In post-production, the blue/green background is removed and substituted by other image. The GEM library has similar function and of course the quality depends upon the camera and lighting condition. The following patch is quite straightforward:
[image: Working with chroma key]
The object is pix_chroma_key. It accepts two inputs. They can be digital image, digital video, or webcam live stream, of the same frame size. In addition to the two images, the object requires a number of control data. The value message determines the color value or that we want it to be transparent. The range message defines the range of tolerance for the color value. The
direction message determines which image, left or right, will be transparent. The number range for the horizontal sliders are between 0 and 1. And we use the same value for red, green, and blue for simplicity. We also use a pix_rgba object to ensure the webcam video stream is RGB. To illustrate the working mechanism, we include the original left and right images for reference.
Here is a snapshot of the webcam input:
[image: Working with chroma key]
Here is the background still image.
[image: Working with chroma key]
In this example, we have pushed the value slider closer to the right hand side, in order to make the white area transparent. Here is the chroma key effect in action. The white area is transparent. It uses the still image as the background.
[image: Working with chroma key]

Experimenting with advanced effects

In this last section, we will explore a number of objects to tackle some common interactive art/design situations. Most of them involve more advanced knowledge of the GEM library.
Layering with gemhead

In a lot of design scenarios, we have a background image, instead of just the black background. In this case, we can use two gemhead objects, one for the background and the other for the foreground graphics. The gemhead object has a parameter to determine its render order.
[image: Layering with gemhead]
If you have multiple gemhead objects in your patch, the render order depends on its render number, that is the number parameter in its specification. The default number is 50. The higher the number, the later it renders. In this example, the gemhead object with 50 renders first. The gemhead object with 55 renders later. In effect, the gemhead object 50 will be in the back, as a background layer. The gemhead object 55 will be in the front, as a foreground layer.
[image: Layering with gemhead]

Coloring pixel data

The color and colorRGB objects we learned in Chapter 2, Computer Graphics with the GEM Library, can also apply to the pixel data. Here is a very simple example to colorize the original image into different color values:
[image: Coloring pixel data]
Here is the resulting image where we layout the four copies of the same image with different color tints:
[image: Coloring pixel data]

Creating painterly effect

The final example of this chapter will be a bit difficult. It involves a live stream image and the way to convert it into a mosaic like painting. We shall demonstrate the process in a step-by-step way. Here we go. The first thing is to understand the number of buffers in a GEM window. Normally, a GEM window has double buffers. For every frame, new graphics are drawn at the alternate buffer and swapped for display to create an illusion of movement. We create animation in this way. To create a painting, however, we want to retain the graphics from previous frames until we explicitly clear the buffer. Hence, we switch to single buffer mode. A buffer 1 message to the gemwin object will do.
[image: Creating painterly effect]
We used a trigger
 object to first send a reset message and then a buffer 1 message, to change into single buffer display for the GEM window. You can click the create message after you click on the bang object. The next step will be the regular display for a pix_video object.
[image: Creating painterly effect]
Note that we have a bang box before gemhead. In single buffer mode, you need a bang object to force rendering the new frame from the pix_video object. To continue, we have to retain the color information for each pixel of the video image. It is the pix_data object that does the job. Given a pixel image, it will return the RGB color information for a pixel, with the X and Y co-ordinates in a range of 0 to 1. It also requires a bang message to trigger the sending of color information.
[image: Creating painterly effect]
In the preceding patch, we have used two sliders of range 0 to 1 to define the X and Y coordinates. The results are three numbers representing the red, green, and blue values for that pixel located by the two sliders. Next, we replace the two sliders with a pair of random numbers that locate a random pixel within the video image and display the color with a circle.
[image: Creating painterly effect]
The two random objects are with a parameter of 1000. They will return random numbers in the range of 0 to 999. After a division by 1000, they return two random numbers within the range of 0 to 1. They are the coordinates of a random point within the webcam video image. The color information is sent to the color object of the circle in the second gemhead object. After you create and initialize the GEM window, you can click on the second bang box, above the two gemhead objects, to notice the change in the color of the circle. In the next step, we also change the position of the circle according to the two random numbers. Remember that in the previous chapter, we have experimented that the width and height of the GEM window are from -4 to 4.
[image: Creating painterly effect]
We send the two random numbers to two trigger objects. Note that t f f is the short form for trigger float float. The coordinate values ranging from 0 to 1 are scaled to -4 to 4 for X-axis and -3 to 3 for Y-axis. It is due to the aspect ratio of the webcam video being 4:3. When you click on the second bang box, a color dot appears at random location in the screen corresponding to a color pixel at that position in the webcam image. The next natural step is to automate the process with a metro object.
[image: Creating painterly effect]
And the resulting image is like the following one. For other use of the pix_data object, we will re-visit it in Chapter 5, Motion Detection.
[image: Creating painterly effect]

Summary

In this chapter, we covered the common image processing objects in the GEM library. We understood how to combine the 2D and 3D graphics with digital images, videos, and/or live streams, using texture mapping. Similar to imaging software such as Photoshop and GIMP, we learned to apply filters to digital image, and combine multiple images with various effects. Other than the spatial effects, we also worked with temporal effects with delay and stop motion. Within one frame of image, we also learned to make sense of the content by performing background removal, or replacing part of the image with others using the chroma key effect, and producing a creative rendering of live stream video. Having learned some of the basic image processing techniques, we are now prepared to proceed with advanced image processing features on motion tracking and color tracking, that will be covered in further chapters.

Chapter 4. Interactivity

In this chapter, we start to learn about the creation of interactive computer graphics, that is the use of interactivity in Pure Data. In previous chapters, we have experimented with the use of built-in graphical interface objects, such as slider, button, and so on. Imagine the scenario where we are working with a performance or an installation where we need to go back to the patch window and work with those interface elements. We would not want the audience to see the patch window. In this case, we have to enable the use of the mouse and keyboard within the GEM window. In this chapter, we will learn:
	To obtain the mouse position within the GEM window and respond to the keyboard interaction.
	With these skills, we will learn to create graphical buttons or hotspots.
	Combined with the image processing techniques in the previous chapter, we can make a simple video-jockey instrument with the computer keyboard. Finally, we can create an interactive animation, similar to a pong game.

Obtaining the mouse position

First of all, create an empty patch with name Mouse001.pd. Put in the toggle box, the create message, and the destroy message for the gemwin object. From now on, we refer it as the gemwin basic setup. The object to report the mouse position is gemmouse. In order to make gemmouse work, you have to click on the GEM window to make it active. The gemmouse object will not work if your patch window is the active window.
[image: Obtaining the mouse position]
When you move the mouse inside the GEM window, the first two number boxes return the mouse position in X and Y coordinates. By default, the GEM window size is 500 by 500. As long as the GEM window is the active window, gemmouse will report the X and Y coordinates of the mouse, even if it extends beyond the window itself. The remaining three toggle boxes correspond to the left, middle, and right mouse buttons, respectively. When you click upon a button, the toggle box returns a 1 message, that is with a cross. When you release the button, it returns a 0 message.
It is often convenient to have a fixed range of the mouse position even with different GEM window size. If we specify two numbers after the gemmouse object, such as shown in the following screenshot, with gemmouse 1 1, the X position will be normalized to the first number 1 and the Y position will be normalized to the second number 1.
Note
Normalization is the process to map a value into a fixed range, usually between 0 and 1. For example, the original X position value is between 0 and 500 pixel. If we divide this number by 500, we can obtain a value between 0 and 1.

[image: Obtaining the mouse position]
It will be a good idea to display the numbers in the GEM window instead of the number boxes in the patch window. The GEM library includes the text2d and text3d objects to display text on screen. For the text2d object, it mainly requires a text message. For example, if you want to display the text Hello World, you put a text Hello World message to the left inlet of the text2d object. The alias $1 message specifies if we want to have anti-aliasing (edge smoothening) effect for the text display.
A value 1 in the toggle box will turn on anti-aliasing while a value 0 turns it off.
[image: Obtaining the mouse position]
The text2d object takes one text message to display. In this example, the text has two input parameters, $1 and $2, separated by a colon :. Before the message, we use a pack object to combine the two numbers representing the X and Y coordinates to form a list. And the two numbers will go to the two parameters, $1 and $2.
The number box connecting to the right inlet, is the font size of the text measured in points. You can check out more parameters for the text2d object by right-clicking or Ctrl-clicking on it to show the help menu. The result of the sample patch is as follows:
[image: Obtaining the mouse position]
For the text3d object, we do not have the anti-alias option. We can have geometric transformation in three-dimensional space, such as rotation. Here is the sample patch and the result display.
[image: Obtaining the mouse position]
The result image will be similar to the previous example except that we have the rotation in the three-dimensional space.
[image: Obtaining the mouse position]
Knowing the mouse position, we can create our first interactive patch by making a graphical shape to follow the mouse. Create another patch Mouse002.pd with the GEM window basic setup. In the patch window, we create a gemhead object with a small square object with size 0.2.
[image: Obtaining the mouse position]
The patch makes use of a translateXYZ object to follow the mouse cursor. Remember that in Chapter 2, Computer Graphics with the GEM Library, we understood that the width and height of the default GEM window in terms of its measuring units are both ranging from -4 to 4. That is, both width and height are 8 units, with origin (0, 0) at the center. In order to convert the normalized mouse position to the GEM window unit, we have to scale the interval from (0, 1) to (-4, 4). In the patch shown in the preceding screenshot, there are two sets of calculation. The first * 8 and – 4 are for the X direction. The second * -8 and + 4 are for the Y direction. We need to multiply the mouse position by 8 and subtract it by 4. For the Y-axis, the direction is reversed. Mouse position is zero on the top margin and one on the bottom margin, while the graphics is 4 on the top margin and -4 on the bottom margin. In this case, we need to multiply the mouse position by -8 and add 4 to it.
So far, we have not taken into account the mouse button. In the next example, we make use of the left mouse button to change color of the square. We create another patch Mouse003.pd to save the result.
[image: Obtaining the mouse position]
In the preceding screenshot of the patch, the third outlet of the gemmouse object is the indicator for the left mouse button. A value 1 indicates the button being pressed and a value 0 indicates the button released. We use a toggle box under the third gemmouse object outlet to show this status. Below the toggle box is the select 0 1 object. It checks the status of the toggle box. If it is 0 (button released), it sends a bang message to the blue color message, through the s blue object. If it is 1 (button pressed), it sends a bang message to the red color message, through the s red object. Since the square always follows the mouse, it has an illusion that you are clicking on the square.
In the previous example, the color change responds to the press and release actions of the left mouse button. In the following next example, Mouse004.pd, it implements a toggle switch. Clicking on it once changes to blue and remains blue even you release the mouse button. Clicking on it again changes to red and remains red until you click again.
[image: Obtaining the mouse position]
Note the use of a toggle box between two select objects. It is like an indicator that stores the status of the button. Depending on whether it is 0 or 1, the second select 0 1 object will send out a bang message to blue or red messages.
In the previous examples, Mouse004.pd we saw how the square object always follows the mouse cursor. The next challenge will be a patch to implement the mouse drag action. The square only follows the mouse cursor whenever the left mouse button is pressed down. When you release the button, the square stops following the mouse.
[image: Obtaining the mouse position]
The patch in the preceding image makes use of a new object—spigot. It is a gate. When its right inlet is non-zero, the left inlet message will pass through the object to the outlet. When its right inlet is zero, the left inlet message will be blocked. In this case, the mouse position information will only send to the translateXYZ object whenever you are clicking down the left mouse button.
If we combine the previous example in the Chapter 3, Image Processing, on the topic of single buffer, we can implement a simple drawing program. With single buffer, we use the mouse position and the left button to leave marks on the GEM window, and the right button to clear the screen.
[image: Obtaining the mouse position]
Here is a sample image where we can use the mouse to draw in the GEM window.
[image: Obtaining the mouse position]
The key object is the spigot. It is very useful in handling logic. In this example, it relies on the left mouse button status. A value one (mouse button pressed) will turn on the gemhead object rendering with the position update for the tiny circle.
Note
Note also the loadbang object to initialize the color for the circle.

Responding to keyboard events

Apart from the computer mouse, the keyboard is the other common interface that we work with a computer system. In GEM library, there are two objects: gemkeyboard and gemkeyname. In the following patch Keyboard001.pd, we take a look at the behavior of the two objects. Similar to gemmouse, we have to click upon the GEM window to make it active first, before the keyboard events can be detected.
[image: Responding to keyboard events]
The first object—gemkeyboard, will return a number when you press a key on your keyboard. It detects the key down event, not the key up. The number is the key code representing that particular key in GEM library. Please note that different operating systems, such as Windows, OSX, and Linux may have different key codes for the same key. You need to test the number before porting a patch from one platform to others.
The second object—gemkeyname, will return a symbol when you press a key. It is the actual symbol itself, for example, the character a, b. The first outlet is a toggle box. Pressing any key gives 1. Releasing any key, it gives 0. In this case, this object can detect both key down and key up events. We can add the bang boxes to illustrate this.
[image: Responding to keyboard events]
The bang box under gemkeyboard flashes only once when you press and release a key. Pressing-and-holding the key will not generate further bang messages. For gemkeyname, both the bang boxes flash twice when you press and release a key, one for the key down and one for the key up. Again, we can use the text2d or text3d objects to display the key we have pressed on the keyboard. We are going to try it in another patch, Keyboard002.pd. We display the key symbol directly through a text2d object. Using the toggle box for key down and key up events, we use it to change the color of the text.
[image: Responding to keyboard events]
In the next example Keyboard003.pd, we use the left arrow and right arrow keys to decrease and increase a number. The key numbers we use are for Mac OSX 10.8. The number is displayed in the GEM window through a text2d object.
[image: Responding to keyboard events]
Remember the counter example in Chapter 1, Getting Started with Pure Data. The float and plus objects implement a recursive adding operation. The only difference here is that we use two message boxes (right inlet) for the plus object. It can either be -1 or 1, depending on which key you press, left arrow or right arrow. The two trigger objects below the -1 and 1 messages are essential. They first route the number to the right inlet of the plus object. And they send a bang message first to the plus object to add the existing number with either -1 or 1. Finally, they send another bang message to the float object to pass the result to the text $1 message for display. We also include a 0 message to reset the number to 0.
With this keyboard-controlled counter, we can use it to rotate a 3D shape. You can see how it works in this following example Keyboard004.pd. We increase the numbers to -5 and 5 for more obvious effect.
[image: Responding to keyboard events]
You may find that it is necessary to repeatedly press-and-release the key to rotate the cube object continuously. The preceding patch does not take care of press-and-hold action for a keyboard event. To handle it, we create another patch in Keyboard005.pd. Again, we have to make use of the metro object to rotate the cube object continuously when you hold down the key.
[image: Responding to keyboard events]
We take advantage of the toggle output from the gemkeyname object. The spigot object under the metro object will route through the bang message to the counter (the float object) when either the left arrow or right arrow key is pressed.

Creating a graphical button

In this section, we prepare a graphical button that responds to a mouse click action. From previous sections, we understand how to use gemmouse and its outlets to check if buttons are clicked or not. To create a graphical button, we need to indicate if the mouse click is within the proximity of the button in the GEM window. To make it simple, we start with a square button in this Button001.pd.
[image: Creating a graphical button]
The first thing we have to check is the proximity. It is actually the distance between the center of the button and the current mouse position. In the patch, we use the GEM 3D space coordinates. The calculation following the gemmouse object is the same as the previous section. The scaling from the range of 1 to the range of 8 is dependent on the window size. In the default square window of 500 by 500 pixels, we are using the window margins from -4 to 4.
The two number boxes with label X and Y are the location of the button. The patch computes the difference between the X position of the button with the X position of the mouse, and also the difference between the Y position of the button with the Y position of the mouse. It takes the absolute values abs of the differences, since we do not concern the direction.
Note
The formulae are:
Difference in X position = abs(X position of mouse - X position of square)
Difference in Y position = abs(Y position of mouse - Y position of square)

Now try moving the mouse toward and away from the square button. Notice the changes in the two number boxes below the abs objects. If the mouse is within the boundary of the square, both number values will be less than 0.2. In this case, we can make a comparison with a threshold, say 0.2. We can use the comparison operators, such as, <, >, <=, or >=.
Note
The formulae are:
Difference in X position < 0.2
Difference in Y position < 0.2

[image: Creating a graphical button]
We use a toggle object to display the comparison result here. You will find that both the toggle boxes need to be 1 (true) for the mouse pointer to be inside the square button. In this case, we need the logical operators to combine the result of the two toggle boxes. The common logical operators are && and ||. The && is the logical AND operator. It returns 1 if both inputs are 1. The || is the logical OR operator. It returns 1 if either one input or both are 1. In the example, we need the logical AND operator. We need both values to be less than 0.2.
Note
The formula is:
(Difference in X position < 0.2) && (Difference in Y position < 0.2)

[image: Creating a graphical button]
Finally in the following image, we combine the proximity checking with the pressing of the left mouse button with a spigot object. The last toggle box is the general status of the button.
[image: Creating a graphical button]
One more feature with the button is the status feedback. We can give different colors to the square to indicate its status. In the following patch, we have three messages for the color object: white, yellow, and red. After the logical AND operator, &&, we have a select 0 1 object to detect if the mouse position is outside or within the square button. A result 0, that is outside the square, will send the white message. A result 1, that is within the square, will send the yellow message. In addition, the left mouse button status, sending through the s b object, will go to the spigot object. When the mouse position is within the square and the left button is down, the second select 0 1 object will then send the red message to the color object.
[image: Creating a graphical button]

Preparing a video-jockey instrument

In this section, we are going to create a simple video controller tool that is similar to common video jockey equipment that mixes videos and applies effects in real time. Take a look of what we have done in the Chapter 3, Image Processing, when we worked with digital video with pix_film.
[image: Preparing a video-jockey instrument]
If we want to change the video playing, we have to click on the open message. When we are working in a live performance, we would like the audience to immerse into the visual imagery. It is not a good idea to switch back and forth to the patch window to click on the messages. In this case, we can make use of the keyboard object, such as the gemkeyboard.
[image: Preparing a video-jockey instrument]
In the patch, we have assigned the numeric keys, 1, 2, and 3 to select different videos for playback. If we repeatedly press the same key, we will notice that the same video will playback from beginning again and again. In some applications, you may not want this. To handle it, we introduce another object—change.
[image: Preparing a video-jockey instrument]
The change object passes its input to the outlet only when it changes. If you repeatedly press on the same key, only the first message will pass through the change object. In this patch, the same video will play continuously. When you press a new key, it then sends the signal through. In the next version, we use the pix_mix object we have done in Chapter 3, Image Processing, to mix two videos together.
[image: Preparing a video-jockey instrument]
As shown in the previous example screenshot, the pix_mix object needs two pixel data inputs. The last inlet is a number ranges between 0 and 1. For this, we have created a horizontal slider that ranges from 0 to 1. Note that there is a moses object in the beginning of the patch. It is a routing object that sends the signal to the left outlet if the incoming signal is less than the parameter, which in this case is 21. If the incoming signal is larger or equal to the parameter, it sends the signal to the right outlet. We use it to route the left and right video signals. The numeric key 1, 2, or 3 controls the left video. The key 4, 5, or 6 controls the right video. Note also that the key code representations for key 4, 5, and 6 are 21, 23, and 22, respectively in the Mac OSX version of Pure Data. The rest of the patch is similar to the last version.
To improve this version, we have to replace the horizontal slider because it requires users intervention to switch between the GEM window and the patch window. We can use the gemmouse object to take care of it.
[image: Preparing a video-jockey instrument]
We can also use a limit object to clamp the range of the gemmouse object to strictly within 0 and 1. Moving the mouse left and right will mix the two incoming videos, similar to a cross-fader in the VJ instrument.
In the next patch, Effect001.pd, we are going to explore the ways to implement a live switching effect controller. It makes use of the pixel effects we have come across in Chapter 3, Image Processing.
[image: Preparing a video-jockey instrument]
The effects are pix_posterize, pix_metaimage, and pix_invert. In Chapter 3, Image Processing, we have learned how to use the pix_metaimage and pix_invert objects. The pix_posterize object produces a color posterization effect (color depth reduction) for the incoming image. In the preceding patch, it needs a horizontal slider with range between 0 and 1 to control the posterization amount. We use a pix_separator object to isolate each branch of the pixel effects. It is similar to the separator object that we learned in Chapter 2, Computer Graphics with the GEM Library. If we do not isolate them, the pixel effects will mix together. The core logic of the patch is the switch object. It depends on the number received in the left inlet, that is the horizontal radio buttons in the example, to determine which other inlets to send through to the outlet.
The improved version is to get rid of the radio buttons and uses keyboard to control the effect switching. The solution is the combination of the gemkeyboard and select objects again.
[image: Preparing a video-jockey instrument]
In this section, we have tried out basic functions of VJ instrument. It will be nice to combine the video switching, video mixing, and effects switching into one single patch for live performance. As an exercise, interested readers can attempt to integrate the three patches into one.

Creating interactive animation

In the last section of this chapter, we are going to create an interactive animation. It is a simplified version of the classic Pong Game.
Before we get on with the Pure Data patch, we first draft a brief plan about the steps we have to do.
	Animate the moving ball
	Bounce the ball on the four margins
	Create the paddle control
	Keep and display the score

Animate the moving ball

We start with a ball that bounces around in the GEM window. Remember that we use the metro object to animate graphics in the Chapter 2, Computer Graphics with the GEM Library. To make a ball move, we change its position within the GEM window by using the translateXYZ object. Here is the first version of the patch Pong001.pd.
[image: Animate the moving ball]
Changing the two number boxes for the translateXYZ object will move the ball around. In order to create an animation, we need to use the metro object to automate the changing of the numbers. In Chapter 2, Computer Graphics with the GEM Library, we have used a counter object to create the movement. To create a more flexible motion, such as changing speed, changing direction, we may need to use a variable to store the current position of the ball. We then add a value to the variable to increase or decrease its value, and thus create an illusion of motion. For example, if the ball is in the center of the window (0, 0) and we add 0.1 to its X position for every frame controlled by the metro object. We can create an animation of the ball moving from the center to the right-hand side with a step of 0.1 units per frame.
In this case, we need a variable—the float object, to maintain the current X position of the ball and another number to store the step.
[image: Animate the moving ball]

Bouncing the ball on the four margins

Every time you click on the bang button, the ball moves toward the right margin by 0.1 units. The 0 message box and the trigger object are for the purpose of resetting the X position to 0. You can click on the bang button until the X position reaches 4 when half of the ball is out of the right margin. We have to plan how we can let the ball rebound when it hits the right margin. Better still, we can start the bouncing process when the X position reaches 3.5, that is that the surface of the ball hits the right margin. The bouncing process is just the reversed movement of the ball. Instead of moving to the right, we have to let the ball move toward the left, once it hits the right margin. In this case, we have to decrease the X position of the ball, instead of increasing it. We can, however, add a negative number (-0.1) to the X position every time we click on the bang button.
The logic involves a decision. It has to check the current X position of the ball. If it exceeds 3.5, it has to change the step from 0.1 to -0.1. We use the 'greater than' comparison object, >.
[image: Bouncing the ball on the four margins]
This one looks complicated. We have two variables. The first one (left) is the X position of the ball. The second one is the velocity in X direction. Both are implemented by the float object. The X position variable will add the X velocity variable in every frame. It also checks the condition if it is greater than 3.5 or not. If it is, the select object will send a bang message to the X velocity variable to multiply itself with -1. Note the comment change direction. Essentially, the X velocity changes from 0.1 to -0.1. In later frames, the direction changes from right to left (negative). The 0 message resets the initial X position to 0. The number box next to the comment initial velocity sets the initial velocity of the movement. We type 0.1 in this number box. Note also the trigger object under change direction. We have to make sure that the multiplication, addition, and sending out of the X position are all completed in one frame.
When you switch on the metro box, the circle moves from the center to the right margin and bounces back to the left margin. Upon hitting the left margin, it disappears. Remember that we only implement the hit test for the right margin. We have to include the left margin in the next version.
[image: Bouncing the ball on the four margins]
Other than using two individual comparison objects, We combine the two into one single object—the expr object. It is the expression object. We can specify any mathematical expression as the parameter of the expr object. If you require external parameters outside the object, you can use the notation $f1, and which is the first extra inlet. If you have more than one parameter, you can have $f2, $f3, and so on. In our case, we have only one. The expression we have is a logical one. It first compares if the current X position is greater than 3.5 or not. It then compares if the current X position is less than -3.5 or not. If any or both of the conditions are true, that is a logical OR, it returns true (a number 1). The subsequent select object will trigger the direction change if it receives 1 from the expression.
Now, we have a ball that can bounce between the left and right margin. We can duplicate the whole set for the Y direction. Remember to change all the labels for the send and receive objects from x to y.
[image: Bouncing the ball on the four margins]
You can key in different values for the initial velocity of X and Y directions. In the example, we use 0.1 and 0.2. Start the metro object and observe the movement of the ball across the GEM window. You can adjust the parameter of the metro object to change the speed.
If we would like to introduce more interactive behavior of the ball, the patch grows too complex. The connection lines become messy. Pure Data has two ways to simplify the patch. The first one is sub-patch. The second one is abstraction. The abstraction is more versatile and we are going to look into it now. The concept is similar to the subroutine or function in other text based programming languages. To illustrate the use of abstraction, We define a simple task:
	Create a patch Test002.pd to contain this abstraction
	Give it two numeric inlets
	Add one to the left inlet to produce the left outlet
	Subtract one from the right inlet to produce the right outlet

[image: Bouncing the ball on the four margins]
There are two new objects: inlet and outlet. The abstraction will have a name Test002. We can use it just like a common object as long as it is in the same folder with your other patches. The inlet object defines an input for the abstraction Test002. Note that the order of the inlets matters. The left one corresponds to the left inlet. The right one corresponds to the right inlet. If we have more than two inlets, the order matches with the left to right position of the inlet objects. The following patch is different from the previous one in the order of the inlets.
[image: Bouncing the ball on the four margins]
Similarly, the order of the outlets matters too. The left outlet will be the left outlet of the abstraction, the right one be the right outlet. Here is the patch Test001.pd that makes use of the Test002 abstraction. Observe how the input numbers relate with the output numbers.
[image: Bouncing the ball on the four margins]
Using the concept of abstraction, we move out the details of the moving ball into an external patch named Ball.pd. The design of an abstraction is an art. We need to consider what to put inside the abstraction and what inlets and outlets to interface with the outside calling patch. We use a number of send and receive objects for the bouncing ball example. The labels x1, y1, and so on may cause trouble if you have the same labels in your calling patch. In this case, the labels inside the abstraction will have a special prefix $0-. The label x1 becomes $0-x1.
Note
For each patch, the $0 will be replaced with a unique 4 digits number. If you have multiple instances of an abstraction that contains the label $0-x1, they will essentially be different. The following patch will display the value of $0 for each instance of the same abstraction.

[image: Bouncing the ball on the four margins]
Let us go back and take a look of the Ball abstraction.
[image: Bouncing the ball on the four margins]
The abstraction Ball has four inlets. The first one is the clock bang message from metro. The second is another bang message to reset the initial position to the center (0, 0). The third and the last inlets are velocity in X and Y directions. All labels now have the prefix $0-. To use the abstraction, we include the gemhead, translateXYZ, and circle objects to display.
[image: Bouncing the ball on the four margins]
The first inlet is the bang message from metro. It causes the updates of the X and Y positions of the ball in every frame. The second inlet is the bang message to reset the ball to the center. The last two number boxes are the X and Y velocity. It greatly reduces the complexity of the main calling patch. Nevertheless, our abstraction Ball is not perfect. It makes a number of assumptions. The first is the GEM window size, that is a square with margins from -4 to 4. The second is the size of the ball, 0.5 units for the radius. Actually, we can use more inlets to take in the size of the window and the ball. At this point, we settle for this version.
If you would like to introduce one more ball in the GEM window, you can just duplicate the whole gemhead group. By using different color and initial velocity, we can have two balls moving around in the window.
[image: Bouncing the ball on the four margins]
Here is the result GEM window display with two instances of the Ball abstraction.
[image: Bouncing the ball on the four margins]

Creating the paddle control

In the previous example, the bouncing ball moves by itself. To introduce interactivity, we add another graphic for it to hit upon. To simplify the logic, we add a rectangular block that moves left and right along the bottom margin. We use the keyboard left arrow and right arrow keys to control the movement.
From the keyboard event section, we understand the key codes for the left and right keys are 123 and 124, respectively. Again, we need a temporary storage—variable to keep the current position of the rectangular block. It needs a float object again. Pressing the left key will add a negative number to the float object. Pressing the right key will add a positive number to the float object. A translateXYZ object will pick up this floating-point number to change the X position of the block. Here is the part of the patch that handles the moving rectangular block.
[image: Creating the paddle control]
The GEM window display of the paddle will be such as the following screenshot:
[image: Creating the paddle control]
Now we combine the patch with the bouncing ball one. The difficult part is to detect when the ball hits upon the top of the rectangular block. This application is a simple version as it only performs hit test on the bottom of the ball and the top of the block. Since the block only moves left and right, we can just test the following two conditions:
	The bottom of the ball hits upon the top of the block. That is, the center of the ball is less than a certain number.
	When the center of the ball is less than that number, the ball is within the range of the rectangular block. That is, the center of the ball is within a certain range in X direction, determined by the X position of the block.

In the combined patch, we click-and-drag the Y position number box for the ball until it just touches upon the rectangular block. The value is around -3.1.
[image: Creating the paddle control]
Now we can click-and-drag the X position number box for the ball to test the range in X direction of the rectangular block. The center of the block in X direction is zero. Here is the left most position for the ball. The value is -1.
[image: Creating the paddle control]
Here is the right most position for the ball. The value is 1.
[image: Creating the paddle control]
By using the figures, we rewrite the previous two conditions.
	The Y position of the ball is less than -3.1
	The X position of the ball is within the range of -1 to 1 relative to the X position of the rectangular block

To put it in Pure Data terminologies, we further rewrite the conditions.
	The Y position of the ball is less than -3.1
	The absolute value of the difference between the X position of the ball and the rectangular block is less than 1

In the following patch Pong004.pd, we put in the two conditions in one single expr object. The first parameter comes from the absolute value of the difference between the two X positions. The second parameter is the Y position of the ball. The toggle box after the expr object indicates whether there is a hit or not. You can observe the status of this toggle box when you play around with the keyboard controlled rectangular block.
[image: Creating the paddle control]
In game programming, this is called collision detection. After we implement this, the remaining part is the collision response. That is how the two graphical objects behave after the collision. In our example, the ball will bounce upward upon collision. In other words, it changes its Y direction. To achieve this, we have to modify the Ball.pd abstraction to cater for such action. Changing direction is already catered for within the abstraction. We multiply a -1 to the existing velocity. The two receive objects with labels, $0-x2 and $0-y2 are the entry points to receive a bang message for changing the X and Y directions respectively. The only missing thing is the inlet to interface with the calling patch.
The patch Pong004.pd needs to send a bang message to the Ball.pd abstraction to initiate a Y direction change when the ball hits upon the rectangular block. To achieve this, we add two more inlets for the X and Y direction changes. In our case, we only use the Y direction for the current example.
[image: Creating the paddle control]
To use the two new inlets, it is very simple. In the patch Pong004.pd, after we compute the conditional expression, we use a select object to detect the value 1. And use it to send out a bang message to the Y direction change inlet (right most) of the new Ball.pd abstraction. We also modify the patch to assign two random values for the initial velocity in X and Y directions.
[image: Creating the paddle control]

Keeping and displaying the score

One last thing you can add is a score. In the next patch Pong005.pd, we put another float object to store the score. Every time there is a hit, the select object sends out a bang message to increment the number by 1. We use another text2d object to display the number on the GEM window.
[image: Keeping and displaying the score]
You can use the number box (right inlet) of text2d to control the display size of the score. To reset the score, you can click on the 0 message above the text $1 message. You can also modify the number boxes for the translateXYZ object for the text2d object to relocate the position of the score display.
[image: Keeping and displaying the score]

Summary

In this chapter, we start to explore interactivity by using the common interaction devices, the mouse and the keyboard. By using the gemmouse and gemkeyboard objects, we implemented graphical buttons, a controller for a video-jockey application, and a cross-fader for mixing videos. We also created interactive animations that demonstrate game-like features. To avoid being too complex in one single patch, we took advantage of the abstraction in Pure Data to use a separate patch file for commonly referenced objects. The interactive features we explored so far limit to the keyboard and mouse. In Chapter 5, Motion Detection, we start using the webcam to detect whole body interaction with motion tracking features in GEM.

Chapter 5. Motion Detection

In this chapter, we plan to extend the interactivity beyond the use of mouse and keyboard. Motion detection needs the computer webcam to capture and detect the body movement of users. In Chapter 3, Image Processing, we worked with the pix_video object to obtain the live video stream. So far, we only displayed the video or applied effects on it. We have no idea about what is happening within the video image. In the coming sections, we try to make sense of the image.
In a video frame, all we know is the width, height of the frame, the number of pixels, and the red, green, and blue color components of each pixel. We have no idea whether there is a bird or pig in the frame. And we do not know whether the subject in the video frame is moving or not. In order to identify movement, we have to compare a frame with another reference frame. The following sections will introduce a number of topics including:
	Obtaining the frame difference
	Detecting presence
	Detecting motion
	Creating a motion detection animation
	Comparing colors
	Performing color detection
	Making an air drum

To work with the examples, you need to have a webcam installed on your computer.
Obtaining the frame difference

To begin with, we create a patch with name Frame001.pd. Put in all those elements for displaying the live webcam image in a rectangle. We use a dimen 800 600 message for the gemwin object to show the GEM window in 800 x 600 pixels. We plan to display the video image in the full size of the window.
From Chapter 2, Computer Graphics with the GEM Library, we understood that a square of size 4 x 4 occupied the default GEM window. The aspect ratio of the current GEM window is now 4:3. We use a rectangle of size 5.33 x 4 (4:3 aspect ratio) to cover the whole GEM window:
[image: Obtaining the frame difference]
Now we have one single frame of the video image. To make a comparison with another frame, we have to store that frame in memory. In Chapter 3, Image Processing, we learned the use of the pix_buffer object. We can store a frame by using pix_buffer_write and retrieve it for comparison by using pix_buffer_read. In the following patch, you can click on the bang box to store a copy of the current video frame in the buffer. The latest video frame will compare against the stored copy, as shown in the following screenshot:
[image: Obtaining the frame difference]
The object to compare two frames is pix_diff. It is similar to the Difference layer option in Photoshop. Those pixels that are the same in both frames are black. The color areas are those with changes across the two frames. Here is what you would expect in the GEM window:
[image: Obtaining the frame difference]
You may remember that the effect is similar to what we have done with the pix_background object in Chapter 3, Image Processing. To further simplify the image, we can get rid of the color and use only black and white to indicate the changes:
[image: Obtaining the frame difference]
The pix_grey object converts a color image into grey scale. The pix_threshold object will zero out the pixels (black) with color information lower than a threshold value supplied by the horizontal slider that has value between 0 and 1. Refer to the following screenshot:
[image: Obtaining the frame difference]
Note
Note that a default slider has a value between 0 and 127. You have to change the range to 0 and 1 using the Properties window of the slider.

In this case, we can obtain the information about those pixels that are different from the stored image.

Detecting presence

Based on the knowledge about those pixels that have changed between the stored image and the current video image, we can detect the presence of a foreground subject in front of a static background. Point your webcam in front of a relatively static background; click on the bang box, which is next to the Store comment, to store the background image in the pix_buffer object. Anything that appears in front of the background will be shown in the GEM window. Now we can ask the question: how can we know if there is anything present in front of the background? The answer will be in the pix_blob object:
[image: Detecting presence]
The pix_blob object calculates the centroid of an image.
Note
The centroid (http://en.wikipedia.org/wiki/Centroid) of an image is its center of mass. Imagine that you cut out the shape of the image in a cardboard. The centroid is the center of mass of that piece of cardboard. You can balance the cardboard by using one finger to hold it as the center of mass.

In our example, the image is mostly a black-grey scale image. The pix_blob object finds out the center of the nonblack pixels and returns its position in the first and second outlets. The third outlet indicates the size of the nonblack pixel group. To detect the presence of a foreground subject in front of the background, the first and second number boxes connected to the corresponding pix_blob outlets will return roughly the center of the foreground subject. The third number box will tell how big that foreground subject is.
If you pay attention to the changes in the three number boxes, you can guess how we will implement the way to detect presence. When you click on the store image bang button, the third number box (size) will turn zero immediately. Once you enter into the frame, in front of the background, the number increases. The bigger the portion you occupy of the frame, the larger the number is. To complete the logic, we can check whether the third number box value is greater than a predefined number. If it is, we conclude that something is present in front of the background. If it is not, there is nothing in front of the background. The following patch Frame002.pd will try to display a warning message when something is present:
[image: Detecting presence]
A comparison object > 0.002 detects the size of the grey area (blob). If it is true, it sends a value 1 to the gemhead object for the warning text to display. If it is false, it sends a value 0. We'll use a new technique to turn on/off the text. Each gemhead object can accept a toggle input to turn it on or off. A value 1 enables the rendering of that gemhead path. A value 0 disables the rendering. When you first click on the store image bang button, the third number box value drops to 0. Minor changes in the background will not trigger the text message:
[image: Detecting presence]
If there is significant change in front of the background, the size number box will have a value larger than 0.002. It thus enables the rendering of the text2d message to display the WARNING message.
After you click on the Store bang box, you can drag the horizontal slider attached to the pix_threshold object. Drag it towards the right-hand side until the image in the GEM window turns completely black. It will roughly be the threshold value. Note also that we use a number in each gemhead object. It is the rendering order. The default one is 50. The larger number will be rendered after the lower number. In this case, the gemhead object for the pix_video object will render first. The gemhead object for the text2d object will render afterwards.
In this case, we can guarantee that the text will always be on top of the video:
[image: Detecting presence]
If you remember that the pix_background object in the Chapter 3, Image Processing, the logic is the same. Actually, you can replace the previous version with a single pix_background object. A reset message will replace the bang button to store the background image. In the following patch, it will show either the clear or warning message on the screen, depending on the presence of a subject in front of the background image:
[image: Detecting presence]
The GEM window at this moment shows only a black screen when there isn't anything in front of the background. For most applications, it would be better to have the live video image on screen. In the following patch, we split the video signal into two – one to the pix_background object for detection and one to the pix_texture object for display:
[image: Detecting presence]
The patch requires two pix_separator objects to separate the two video streams from pix_video, in order not to let one affect the other. Here is the background image after clicking on the reset message:
[image: Detecting presence]
The warning message shows up after the subject entered the frame, and is triggered by the comparison object > 0.005 in the patch:
[image: Detecting presence]
We have been using the pix_blob object to detect presence in front of a static background image. The pix_blob object will also return the position of the subject (blob) in front of the webcam. We are going to look into this in the next section.

Detecting motion

We compare the current video image with a predefined background image to detect presence. To detect motion, we compare the current video image with a previous frame. To achieve this task, we have to make use of the pix_delay object to delay a video frame:
[image: Detecting motion]
The number box in the right-hand inlet of the pix_delay object specifies the number of frames to delay. The patch Motion001.pd delays the video image for a number of frames and displays it on the GEM window. To make comparison, we use the current video frame and the delayed frame with the same pix_diff object:
[image: Detecting motion]
Usually, we use the value 1 in the number box for the pix_delay object to retrieve the previous frame. The guideline is to track faster motion, use a smaller number (for example, 1) to track slower motion, use a bigger number. The image in the GEM window is the frame difference between the two frames:
[image: Detecting motion]
With this image, we can again apply the pix_blob object to obtain the tracking information:
[image: Detecting motion]
When you move in front of the webcam, notice the changes in the three number boxes, especially the first and second for the X and Y values. The two number boxes indicate the position where motion is detected. The range of values is between 0 and 1. In the GEM library, we can use the pix_movement object to serve the same purpose for motion detection:
[image: Detecting motion]
The right-hand inlet for pix_movement is a threshold number between 0 and 1. When color change between two frames is less than the threshold, the resulting pixel color will be black; otherwise, the resulting pixel color will be the difference between two frames. We can use a horizontal slider here. If you push the slider to the left-hand side, you can expect more imagery. When you push the slider to the right-hand side, you eliminate the imagery. You have to try out various positions to have just enough imagery for the tracking. It can depend on the lighting condition and the speed of the movement.
The pix_movement object detects movement between two frames and keeps the different image in the alpha channel of the pixel information. Note that we have to enable alpha blending by the alpha object to display the result. To obtain the details about the movement, we go back to the pix_blob object again:
[image: Detecting motion]
Note that the pix_blob has one more inlet that we can specify. It is a horizontal radio button with five options. The first option (default) with value 0 is using grey scale for the blob tracking. The next three options (values 1, 2, 3) correspond to red, green, and blue channels for tracking. The last option (value 4) is the alpha channel. Since the pix_movement object puts the different image in the alpha channel, we have to specify the last option in the radio button to use the alpha channel for movement tracking. Pay attention to the value that changes in the first two number boxes from the outlets of the pix_blob object. Try to relate the values with your movement in front of the webcam. The values are the X and Y position of the center of movement.
In most cases, the X value is flipped because the webcam image is not a mirror image of your own. You can handle it by using a pix_flip object to flip the image horizontally:
[image: Detecting motion]
You can verify the tracking by waving your hand from the left-hand side to the right-hand side. The first number box value, X position, will increase. If you wave your hand from top to bottom, the second number box value, Y position, will increase. The range of numbers is between 0 and 1. We now finish the first motion-tracking patch. The next challenge will be replacing the two number boxes with a graphical shape to follow the movement. That is the fun part. We work on it in the next patch Motion003.pd. Refer to the following screenshot:
[image: Detecting motion]
The patch is simple. The X and Y position returned from pix_blob will be the X and Y position of another graphic (a circle in this example). Before we send the values to translateXYZ, we have to convert the range between 0 and 1 to the screen size in GEM's measurement unit. The screen is not a square in this example. In examples from previous chapters, a square window has its coordinate values from -4 to 4. For the current window of size 800 x 600, we have the measurement of 10.66 x 8 (which is a 4:3 ratio). Based on this piece of information, we map the 0 to 1 values into the GEM's window-measurement units using a division and a subtraction object:
[image: Detecting motion]
The yellow circle follows the movement of the subject in front of the webcam. The position is the center of gravity of the moving blob object. If you have movements in every corner of the screen, the center is still in the middle of the window. If your movement is localized in a particular region of the window, the tracking will be more accurate. The yellow circle moves in a very jerky manner. To enhance the motion, we can use a new object, smooth. This object will smoothen the incoming value by averaging with former values. Its right-hand inlet is a horizontal slider with value between 0 and 1, to control the smoothness of the output value. Smaller value will provide smoother result.
Refer to the following screenshot:
[image: Detecting motion]
Both the X and Y position values use the smooth object. It smoothens the incoming numbers, and output it for the yellow circle to follow. The next step will resume the normal video display by splitting the video signal into two – one for the pix_movement object to track the motion and another one for the
pix_texture object to display:
[image: Detecting motion]
In this version, we use a piece of text to follow the movement, instead of a circle. The rest is the same as the former one for detecting presence:
[image: Detecting motion]

Creating a motion detection animation

So far in this chapter, we learned the basic tools to detect presence and motion. Detecting presence is like a binary switch that indicates the presence or absence of a subject in front of a predefined background. Detecting motion indicates the position of the center of the moving blob object. We have tried using a graphical shape and a piece of text to follow the movement. In the following patch Motion004.pd, we use an image with the pix_image object:
[image: Creating a motion detection animation]
There is no new technique here. Use the pix_image object with an open Flower001.jpg message to open the image file in the same folder with the patch. You also need the pix_texture object to map the image onto the square. In this case, the image will follow your movement:
[image: Creating a motion detection animation]
The image is itself a square. It has a white background color. In some applications, you may want to have an irregular shape with a transparent background. We have learned the use of the pix_mask object to handle it in Chapter 3, Image Processing. We can also directly make use of the alpha channel of the PNG or TIFF file to remove the background. In Photoshop, you can delete the background of an image and save the transparency information in the alpha channel. GEM library supports such image files with alpha channel. Remember to enable alpha blending with the alpha object. In the following example, the image Flower002.png that pix_image opens has a transparent background:
[image: Creating a motion detection animation]
Note that the flower does not have the white background color here:
[image: Creating a motion detection animation]
The next thing we can do is to analyze the direction of movement. The pix_blob object returns the X and Y positions of the moving blob object. To find out the direction, we have to know the X and Y positions of two consecutive frames and compute their difference. That means we have to store a pair of X and Y positions for the previous frame. We use the float object again for storage purpose:
[image: Creating a motion detection animation]
The patch computes the difference of a value that changes per frame. The float object keeps the previous value. The first number box is the current value. When it changes, it first sends a bang message to the float object to output its stored value, that is, the previous value. It then sends the current value to the subtraction object to compute the difference. Finally, it sends another copy of the current value to the right-hand inlet of the float object to be used in the next frame. The next patch Difference001.pd will use this logic to compute the changes in X position:
[image: Creating a motion detection animation]
You will observe that the value changes in the number box after the subtraction operator. When you move toward the left-hand side, the number becomes negative. When you move toward the right-hand side, it will be positive. We are going to make use of this relation to create an interactive animation in the next patch Direction002.pd:
[image: Creating a motion detection animation]
On the right-hand side of the patch, where we compute the difference in positions between two frames, we use the smooth object again to smoothen the value. We also need to increase this number as it is originally within the range of 0 to 1. In this case, we multiply it by 360, corresponding to the 360 degrees in a complete rotation.
On the left-hand side of the patch is a cube. We use the draw line message to enable the wireframe view. It is also necessary to disable the depth test by using the depth object. The horizontal movement will drive the cube to rotate along its y axis. The float object above the rotateXYZ object stores the current rotation value. The number sent from the r rot object is the amount we add to the current rotation value. It can be negative or positive, depending on which direction you wave your hand. We use a trigger b b f object because it is necessary to send the number, add it to the current value, and route the result to the rotateXYZ object in one step:
[image: Creating a motion detection animation]

Comparing colors

The next technique to detect motion is by comparing colors across different frames. Firstly, we identify a pixel in the video frame. We store the pixel color information in the Pure Data patch. In the subsequent frame, we compare the color of that pixel with the stored information. If the colors change significantly, we assume there is movement in that area. To work with these tasks, we have to know the pixel color information. The pix_data object does it. We have briefly introduced it in Chapter 3, Image Processing, in the image-processing examples. Now we make use of it for interaction design:
[image: Comparing colors]
We need to provide four inlets for the pix_data object. The first one is a bang message to trigger the reading of the pixel color. The second is the video image. The last two are the X and Y positions of the pixel in the range between 0 and 1. We use two horizontal sliders for the X and Y positions. The position (0, 0) is the top-left corner. The position (1, 1) is the bottom-right corner. The output is the second outlet that is a list of the red, green, and blue colors, also in the range between 0 and 1. It needs an unpack object to split the list into three numbers.
The next challenge is to compare two colors. We cannot check if the two colors match exactly because there will be noise in the video signal. We can only check if the two colors look similar. The similarity is a numeric threshold. In this case, we have to find a way to measure the distance between two colors. Whenever the distance is shorter than a predefined threshold, we claim that the two colors are similar.
Each color is a combination of three primary colors: red, green, and blue. We think that each color is actually one point in a three-dimensional space with the three axes: red, green, and blue. The range of each axis is from 0 to 1. To compute the distance between two points in a three-dimensional space of X, Y, and Z, we use the Pythagorean theorem:
[image: Comparing colors]
When we learned mathematics in school; for a right angle triangle with three edges as shown earlier, we understood that the length, a, b, and c have the relation:

c2 = a2 + b2

For the two points (x1, y1) and (x2, y2) in a 2D plane, we can also make use of this relation to measure the distance between them:

a = x2 – x1

b = y2 – y1

The value of c will be the distance between point (x1, y1) and point (x2, y2). We can have this formula:

c2 = (x2 – x1)2 + (y2 – y1)2

c = √((x2 – x1)2 + (y2 – y1)2)

We can generalize the case in 3D space. Assume we have two points (x1, y1, z1) and (x2, y2, z2) in space and the distance between them will be √((x2-x1)2 + (y2-y1)2 + (z2-z1)2). If we replace the X, Y and Z with R, G, and B, the two colors are (r1, g1, b1) and (r2, g2, b2). The distance between them will be √((r2-r1)2 + (g2-g1)2 + (b2-b1)2). Now we put the formula into an abstraction patch colorDistance.pd:
[image: Comparing colors]
The expr object implements the formula of the square root of the sum of the differences between the red, green, and blue components of the two colors. To validate the patch, we can use a very simple patch to check the result, which is shown in the following screenshot:
[image: Comparing colors]
Each slider has the range between 0 and 1. Each pack object will compile a list of the red, green, and blue and send to the colorDistance abstraction. At this moment, only the red component is the hot inlet. It does not matter as we just use it for validating the colorDistance result.
Now we know how to obtain the color pixel information. We understand how to compare two colors. The remaining task is to find a way to store a copy of the pixel color and compare it with the latest pixel color from the video frame. We use the spigot object. The switching function of the spigot object can allow us to store the color information or pass it for comparison. Let's have a look at the patch Color003.pd:
[image: Comparing colors]
In the patch, we put six number boxes to indicate the pixel color information. The three on the left-hand side are the current pixel color from the video image. The three on the right-hand side are the pixel colors stored for comparison. To work with the patch, click on the dimension message, create the GEM window, start the rendering, and flip the video image horizontally. Push the sliders roughly towards the center of the X and Y range. It will be a position in the center of the window. Turn on the toggle for the metro object. The three number boxes on the left-hand side will change continuously. They are the current red, green, and blue values of the pixel selected by the two sliders. To store the current pixel color for comparison, turn on the toggle labeled Store color. The three number boxes on the right-hand side start changing. They are now the same as the three on the left-hand side. Uncheck the toggle labeled Store color. The three numbers on the right-hand side will stay there. And the number box after the colorDistance abstraction will indicate the distance between this stored color and the current pixel color in the latest video frame. We can test this number with a comparison operator to see if there is significant change in that particular area of the video image.

Performing color detection

Based on the material in the last section, we continue to explore color detection. In the previous patch, we do not know exactly which pixel in the window we are checking. To provide a visual feedback, we can use a small square to indicate the position. We also remove most of the number boxes to enhance performance. One of the easy ways to improve performance of a Pure Data patch is to remove the unnecessary graphical interface units, such as bang, number box, and toggle. It takes CPU time for Pure Data to update those items in the patch window. The Color004.pd patch is a working version for performing color detection. The result will be the final number box from the colorDistance abstraction:
[image: Performing color detection]
The patch uses the same mapping logic to map the range between 0 and 1 to the width of 10.66 units and the height of 8 units. The center of the white square is the pixel we use for checking:
[image: Performing color detection]
Note that when you click on the toggle to store color, the resulting number box reduces to 0. When you click off the toggle, the number increases again. If there are no significant changes in square area, the number remains small, such as 0.035 in our example. The value depends on lighting condition, the webcam quality, and so on. When you point your finger inside the square, the number may suddenly increase significantly. It also depends on how different is the color between your finger and the original background.
In our example, the number box value increases to 0.867, which is significantly larger than the original 0.035 value. After a number of experiments, you can determine what the threshold value will be. And we use the threshold to determine whether something appears in the square with color different from the original background color:
[image: Performing color detection]
We need a comparison operator, for example, a < or > object. After the comparison, we place the result in a toggle box. We can also improve it by using a change object to send message only when there is a change in the result:
[image: Performing color detection]
The patch window can get crowded. It is good practice to put reusable items into an abstraction. We name the abstraction hotSpot.pd:
[image: Performing color detection]
The abstraction hotSpot has five inlets. The first one is a stream of bang messages from the metro object. The second one is the video image. The third and fourth ones are the X and Y positions of the pixel to track. The last inlet is the toggle switch to store the color. The following patch Color005.pd will make use of this abstraction. You can use your finger to change the size of a circle in the GEM window:
[image: Performing color detection]
Create and render the GEM window. Turn on the metro object. Use the sliders to position the square to a position for interaction. Turn on the toggle for the hotSpot abstraction to store the background color. Turn it off after you store the color information. Use your finger or other object with a color different from the background to touch the square virtually. Note what happens with the yellow circle in the center:
[image: Performing color detection]
When your finger touches the square (hotspot), the yellow circle becomes bigger:
[image: Performing color detection]

Making an air drum

To create a drum, we need to have sound. It is a new topic. Chapter 7, Audio Programming, will have a more detailed introduction to audio in Pure Data. In this example, we use a very basic feature of playing a sound file interactively. Before we start, we have to collect a few sound samples. We use a few free audio clips from the public domain, such as http://freesound.org. They will produce the sound of a kick drum, snare drum, and tom-tom. We also need to take a look at the sampling rate of the sound files. Analog sound is converted into discrete samples during digitization. Sampling rate is the number of sample units in a second. Ours is 44 kHz, which is a common standard. The sampling rate has to match the preference settings in Pure Data, otherwise they may be distorted. You can use the Get Info or Properties options to check the audio file information:
[image: Making an air drum]
For the Pure Data audio information, go to Preferences | Audio Settings...:
[image: Making an air drum]
Within the Audio Settings... option, you can specify the sample rate (44 kHz)—the audio output device for this exercise:
[image: Making an air drum]
Remember to turn on audio processing by checking the
compute audio box from the console window. By default, it is off. You will not hear anything if this box is unchecked:
[image: Making an air drum]
Assuming that we have three audio clips, snare.aif, tom.aif, and kick.aif in the same folder with the other Pure Data patches, we try out our first audio program with the Audio001.pd patch. The object is readsf~. Pay attention to the tilde character after the keyword readsf. All audio-related objects in Pure Data have ~ as suffix. This object reads in an external sound file and plays it back through the audio interface, which is the digital-to-analog converter, dac~:
[image: Making an air drum]
First, click on the open message to load the respective sound file. Then, click on the 1 message to start playing the sound. To stop the playback of the sound, click on the 0 message. Once the sound finishes, there will be an end-of-file message sent to the bang box. The left-hand outlet of the readsf~ object is the audio output. Note that the connection lines are thicker than the normal connection. The same audio signal is sent to the left-hand and right-hand channels of the
dac~ object for playback through the audio interface. We can combine the two clicks into one by using a trigger object:
[image: Making an air drum]
The trigger object first sends a bang message to the open tom.aif message. It then sends another bang to the 1 message. Receiving the open and 1 messages, the readsf~ object will playback the sound file. So much for audio processing here; we go back to the color-tracking patch Color006.pd to integrate with the audio part:
[image: Making an air drum]
In this patch, we use the hotSpot.pd abstraction. Each of them controls a separate sound file. By putting the two squares on the left-hand and right-hand sides of the screen, you can use your two hands to play an air drum. We can further simplify the patch by combining the two readsf~ objects into one, with two separate bangs for the two sound files:
[image: Making an air drum]

Summary

This completes a quick introduction to motion detection using Pure Data and the GEM library. We learned how to detect the presence of a subject in front of a static background. By comparing two consecutive frames, we identified movement in front of the webcam. Using the position given by the GEM library, we used graphical shape to follow the movement of a subject. By comparing the color information of a specific pixel, we could detect precise movement in a specific pixel in the video image. With this information, we could implement interactive hotspots that exist in virtual space. In the next chapter, we will enhance the graphical display by using particles system.

Chapter 6. Animation with Particle System

In the previous chapters, we animated only a few objects. If we have to animate a large number of graphical objects in a patch individually, it will require a lot of effort. In the GEM library, the particle system enables us to streamline the process. If we want to animate a large group of similar shapes with similar movements, we can take advantage of the particle system to do the job.
When we model everyday life objects, we use primitive shapes, such as sphere, cone, and cube to construct more sophisticated forms. It can be easy to use this approach to model a chair, a car, or even a human figure. It can be very difficult if we want to model natural phenomena such as fire, fountain, or smoke. Those phenomena do not have very precise geometrical forms and yet we have fuzzy descriptions about their physical appearance and behaviors over time. Particle system is the modeling method to describe and generate those fuzzy forms. This chapter will include the following topics on particle system:
	Understanding a particle system
	Creating a basic particle system
	Applying forces to the particle system
	Interacting with the mouse
	Rendering particles with images
	Combining particle system with motion tracking

Understanding a particle system

In 1983, William T. Reeves from Lucasfilm Ltd published a paper: Particle Systems – A Technique for Modeling a Class of Fuzzy Objects. It described the fire simulation effects applied in the film Star Trek II: The Wrath of Khan. Modeling clouds, smoke, and fire is difficult, they do not have rigid primitive surface elements that define their boundaries. They only have a fuzzy volume of particles. Their forms also change over time. Their shapes and forms are recognizable but not accurately predictable.
To model a piece of fire, for example, with particle system, we have the following questions:
	How new particles are generated. Is it by birth?
	What types of visual and physical properties the new particles have?
	How existing particles disappear over time. Is it by death?
	How do the visual and physical properties of the existing particles change over time?
	How can we render the group of particles in each frame?

By answering these questions, we can define a particle system. In 1990, Karl Sims also published a paper: Particle Animation and Rendering Using Data Parallel Computation. Together with the animation work – Particle Dreams, he demonstrated the use of particle systems to simulate phenomena such as explosions, tornado, fire, and waterfalls.
To work with a particle system animation in Pure Data and GEM, we have to do the following:
	Identify the source of the particles
	Specify the initial position and velocity of each new particle
	Compute the updated position, color, and size of each particle in the latest frame
	Apply external forces that affect each particle in the system
	Remove old particles from the system
	Render the particles in the display system

Creating a basic particle system

In the Pure Data GEM library, the objects related with particle system come with a prefix part_, a short form for particle. The part_head object initializes a particle system. The part_source object creates a source of particles. The part_velocity object specifies the initial velocity and direction for each new particle. The part_killold object removes particles that exceed a predefined age. The part_draw object renders each particle in the GEM window as shown in the following screenshot:
[image: Creating a basic particle system]
The only parameters are for the part_velocity object. This object defines the initial velocity for each particle in the system. In the example, Particle001.pd, it defines the velocity as a point with the parameters 0, 0.2, 0. It indicates that velocity has only Y direction value. For X and Z the values are zero. All particles in this case will move upward (positive value for Y direction). The three numbers correspond to the X, Y, and Z components of the initial velocity.
You can see from the following GEM window that all particles are moving upward:
[image: Creating a basic particle system]
You can also change the visual appearance of the particles in the part_draw object. Similar to other primitive shapes, it accepts the draw line and draw point message. and you can easily observe the difference. The default one is draw line as shown in the following screenshot:
[image: Creating a basic particle system]
The following screenshot shows how the particles are displayed with the draw point message:
[image: Creating a basic particle system]
For each of the particle system related object, we can modify the parameters to see what may happen. In the part_head object, we can have a speed $1 message to alter the emission speed with a number box as shown in the following screenshot:
[image: Creating a basic particle system]
The part_source object controls how many particles to generate in each frame. We can put a number box to alter it as shown in the following screenshot:
[image: Creating a basic particle system]
For the parameters for part_velocity, it is a bit complicated. The second inlet is the configuration domain. It can be a point, a sphere, a line, and so on. In our examples, it will be mostly a sphere, which is more intuitive. A sphere differs from a point by having a measurement of its radius. It generates a more scattering pattern of particles. The third inlet is the parameter to describe the initial velocity. A point has X, Y, and Z components. A sphere has X, Y, and Z components and a fourth one for the radius as shown in the following screenshot:
[image: Creating a basic particle system]
The patch has a new command. The second inlet of part_velocity is an empty symbol. To change the value of a symbol, we can either type the keyword, such as point or sphere into the symbol or use a set message to change the symbol value. If you want to change the velocity dynamically, you can modify the parameters in the list of numbers connecting to the s v2 object that will send the velocity information to the third inlet of part_velocity as shown in the following screenshot:
[image: Creating a basic particle system]
The horizontal slider has a range between 0 and 1. It sends out the number to the message with a parameter $1, which is the Y direction velocity component. The last object part_killold also comes with a number parameter. It is the age of each particle being measured in frames. Particle older than the age will disappear from the system. It controls how quickly or slowly the system removes the old particles. The larger the number, the longer the particles will stay.
Refer to the following screenshot:
[image: Creating a basic particle system]
In the next version, Particle002.pd, we change the color of the particles, by using the part_color object. It can accept two colors. The particles will be either one of the colors. Refer to the following screenshot:
[image: Creating a basic particle system]
Another object part_targetcolor can also change particles' color. Each particle changes from its original color (white, by default) to the color specified in the part_targetcolor object. The number in the right inlet controls how fast the change is, as shown in the following screenshot:
[image: Creating a basic particle system]

Applying forces to the particles system

The particles in the system come and go on their own. In fact, we can alter the ways that particles travel across the window. In this section, we introduce different ways to apply forces to the particles so that they can travel in different manners. The first object is part_damp. It is a damping force that changes the speed of each particle.
Have a look at the Particle003.pd patch in the following screenshot:
[image: Applying forces to the particles system]
The part_damp object takes three numbers representing X, Y, and Z directions of the force. Values larger than 1 speed up the particles, while values smaller than 1 slow them down. It is pretty straightforward. The second object is part_gravity. It simulates the attraction of gravity. The next patch Particle004.pd demonstrates its usage as shown in the following screenshot:
[image: Applying forces to the particles system]
The object part_gravity also comes with three numeric parameters in its right inlet. To simulate the gravity, we usually only specify the Y direction with a small negative number. It denotes a downward attraction force in the Y direction. You can experiment with other values and directions. The display will look like a fountain:
[image: Applying forces to the particles system]
The next object part_orbitpoint is more interesting. It also simulates the attraction forces among celestial bodies. The object defines a single point in the three-dimensional space that attracts particles towards it. The patch Particle005.pd shows how it works, as shown in the following screenshot:
[image: Applying forces to the particles system]
The second inlet defines the point in space. The right inlet defines the attraction force. The part_orbitpoint object attracts the particles toward it. The particles, however, do not just move in a straight line as shown in the following screenshot:
[image: Applying forces to the particles system]
It can produce complex orbital paths that revolve around the point of attraction defined in the second inlet.

Interacting with the mouse

Now we can use the mouse to play around with the particles. The two objects, part_source and part_orbitpoint contain the specification of a point in three-dimensional space. For part_source, it specifies the location where particles are emitted. For part_orbitpoint, it indicates a point where other particles are attracted. For the mouse position, we use the gemmouse object. Remember that it will give us two numbers, X and Y positions in a normalized scale between 0 and 1 as shown in the following screenshot:
[image: Interacting with the mouse]
We are using the dimension of 800 x 600 pixels. The GEM window measurement for the screen is around 10.66 x 8.0. The Y direction is reversed between the mouse measurement and the GEM graphics measurement. The computation after the gemmouse object takes care of the unit conversion. The pack object combines the three numbers into a list of positions in three-dimensional space for the part_source object, as shown in the following screenshot:
[image: Interacting with the mouse]
You may find that all the particles are moving upward in this patch. It would be nice if the particles could move in different directions depending on how you move your mouse. In the next patch Particle007.pd, we'll change the direction of the particles by moving the mouse. This logic makes use of a technique we learnt in Chapter 5, Motion Detection. In order to know the direction where the mouse goes, we compute the difference between the mouse positions in the current frame and the last frame as shown in the following screenshot:
[image: Interacting with the mouse]
This patch segment computes the changes of two numbers X and Y, across each frame. You can click-drag the input numbers. The output number boxes indicate the difference between the values in the current frame and those in the last frame. We can combine this with the gemmouse object to track the change of positions across two frames as shown in the following screenshot:
[image: Interacting with the mouse]
We can also convert the normalized range of the mouse position into the GEM window measurement unit before computing the position changes. The following version handles this as shown in the screenshot:
[image: Interacting with the mouse]
Now we are ready to combine this with the particle system patch. The two numbers from the position changes can fit into the values for the part_velocity object as shown in the following screenshot:
[image: Interacting with the mouse]
The right inlet for part_velocity takes a list of four numbers. We use the change in X positions for the X velocity component, Y positions change for the Y velocity component, zero for Z component, and a constant 0.2 for the radius. The pack object combines them into a list. Note that we have to reverse the emission direction and the mouse movement direction by a multiplication object, as shown in the following screenshot:
[image: Interacting with the mouse]
You will notice that the faster you move your mouse, the faster the emission rate of the particle system is. So far we have not used the mouse button. Try to think of a way to engage the users with the mouse button as shown in the following screenshot:
[image: Interacting with the mouse]
The patch Particle008.pd detects the left mouse button with a select object. When we press the button, it sends a bigger number (100) to the part_source object. It resumes to the number 5 when we release the button. The user can now assume the control of the particle emission rate as shown in the following screenshot:
[image: Interacting with the mouse]
We now proceed to the part_orbitpoint object with the patch Particle009.pd. Using a similar approach, we convert the gemmouse position to a point in the GEM window three-dimensional space and use it as the location in part_orbitpoint, as shown in the following screenshot:
[image: Interacting with the mouse]
All particles come from the center of the screen and revolve toward the mouse pointer. The orbital paths change dynamically as you move the mouse around, as shown in the following screenshot:
[image: Interacting with the mouse]
If we do not want the particles to always emit from the center, we can try to use the mouse button again. In the new patch, Particle010.pd, we intend to use the mouse click to register the particle point source. New particles are emitted from that point to move toward the new mouse position after the user releases the button, and the mouse moves as shown in the following screenshot:
[image: Interacting with the mouse]

Rendering particles with images

Our examples use either lines or points to render the particle system. In the GEM library, we can have other choices. With the use of the part_render object, we can use other graphical shapes we have learnt to render the particles. In the next patch, Particle011.pd, we start with a 2D square as shown in the following screenshot:
[image: Rendering particles with images]
We put the square object below the part_render object. All particles from the patch become square shapes. We also have a new object part_size to modify the size of each particle. The patch uses the speed message in the part_head object to control the speed of emission. The following screenshot is what you expect to see with the draw line message enabled:
[image: Rendering particles with images]
We can use a 3D shape, such as the sphere object with lighting on. The following is an example of the same and the resulting image in the GEM window:
[image: Rendering particles with images]
The resulting image of the particles in spheres is as follows:
[image: Rendering particles with images]
We can replace the particles by text messages. Using the text2d or text3d objects, the particles can be any text messages supplied to the objects, as shown in the following screenshot:
[image: Rendering particles with images]
The following is the resulting image of using the text Hello as particles:
[image: Rendering particles with images]
For the next version in Particle012.pd, we use the pix_image, pix_texture together with the square objects to render each particle with an external image. The logic is the same as what we did in Chapter 3, Image Processing. The following screenshot illustrates the same:
[image: Rendering particles with images]
The following is the resulting image using a sample image with white background:
[image: Rendering particles with images]
Of course, if we use an image with an alpha channel, we can remove the background by using the alpha channel as a mask. In the next display, we use a PNG image file with a transparent background as shown in the following screenshot:
[image: Rendering particles with images]
Remember to use the alpha object to enable alpha blending of the image. It is a very versatile technique to create custom graphics for the particle system, as shown in the following screenshot:
[image: Rendering particles with images]
Another useful object for particle rendering is part_info. The object lists out every particle's information in terms of its position, color, velocity, size, and age. In the GEM library examples, there is one using the part_info object. We modify it to create a piece of motion graphics work. Firstly, we extract the position information of each particle, in this patch, Particle013.pd as shown in the following screenshot:
[image: Rendering particles with images]
The three numbers next to the label Position move continuously corresponding to the position of the particles emitted from the source. The next step is to use a graphical shape to move according to those positions, as shown in the following screenshot:
[image: Rendering particles with images]
We use the draw line message for the rectangle object in order to reveal the overlapping squares. Note also the use of the separator object to display every single particle individually, as shown in the following screenshot:
[image: Rendering particles with images]
The next step is to add the size information for display with the scale object. We pass the size information directly from the part_info to the scale object with a scaling factor of 1, as shown in the following screenshot:
[image: Rendering particles with images]
In the next version, we extract the velocity information from the part_info object. It is also a list of X, Y, and Z components of the velocity. We use the unpack object to extract it into the three number boxes, as shown in the following screenshot:
[image: Rendering particles with images]
The visual display does not have anything to play with the velocity. We transform the velocity components into the rotation information for the rectangle object. Before passing it to the rotateXYZ object, we have to multiply each component by 360 degrees as shown in the following screenshot:
[image: Rendering particles with images]
The resulting image can be an interesting animation of flying squares as shown in the following screenshot:
[image: Rendering particles with images]
We can switch back to use draw fill and lighting to check out the effect. To make it more interesting, we can add texture mapping to rectangle with a pix_texture object. The texture source can be the live webcam video image from pix_video, as shown in the following screenshot:
[image: Rendering particles with images]
Instead of using pix_video, you can also use pix_image or pix_film for still images or digital videos. It can produce common motion graphics effects as shown in the following screenshot:
[image: Rendering particles with images]
The following patch, Particle014.pd, takes advantage of the other two outputs from the part_info object. The first one is the second outlet. It is a number representing the identification number of each particle. The second one is the last outlet. It is the age of the particle. The patch will display the particle ID in the three-dimensional space. It creates the perspective illusion by using the age to rotate the text along the X-axis as shown in the following screenshot:
[image: Rendering particles with images]
The effect is similar to that used in a number of movie title sequences, as shown in the following screenshot:
[image: Rendering particles with images]

Combining particle system with motion-tracking

In the previous chapter, we have experimented with the motion-tracking technique by using a graphical shape to follow the user. Earlier in this chapter, we have tested how to control the particle system with the mouse. We can combine the two methods to use the user's body movement to control the particle system. Let's revisit the motion-tracking patch as shown in the following screenshot:
[image: Combining particle system with motion-tracking]
The pix_blob object sends the movement position to the translateXYZ object for the square to display the pixel image as texture. To combine particle system with motion tracking, it is pretty straightforward. Send the X and Y positions of movement to the X and Y positions of the part_source object. In this case, the user's body movement will trigger emission of the particles. In the following patch, Motion001.pd, the movement center will generate particles as spheres. We use a pack object to pack the X and Y positions together with a 0 as Z value for the part_source, as shown in the following screenshot:
[image: Combining particle system with motion-tracking]
As expected from the previous patch, the particles will be emitted from where your body moves as shown in the following screenshot:
[image: Combining particle system with motion-tracking]
It is very easy to change the sphere object into text2d or text3d to create the particles as an animated text, as shown in the following screenshot:
[image: Combining particle system with motion-tracking]
Other than using the part_source, the next object will be the part_orbitpoint. The patch, Motion002.pd will send the X and Y positions to the point information in the part_orbitpoint object, as shown in the following screenshot:
[image: Combining particle system with motion-tracking]
In this version, the particles move toward the movement center. The user's body functions as an attraction point that draws the particles together. You may need to adjust the speed message for part_head to slow down the particles' motion. The third inlet for part_orbitpoint may also need fine tuning to have an optimal attraction force, as shown in the following screenshot:
[image: Combining particle system with motion-tracking]
We can also use the curve object instead of triangle or square to work with particles. In the next example, Motion003.pd, it uses a number of vertical lines to chase around the movement center, as shown in the following screenshot:
[image: Combining particle system with motion-tracking]
We have learnt how to use the curve object to draw a straight line in Chapter 2, Computer Graphics with the GEM Library. It needs a parameter 2 to specify two points. The lines are extremely long as they start from Y = 100 to Y = -100, in order for them to cover the whole GEM window vertically, as shown in the following screenshot:
[image: Combining particle system with motion-tracking]
Before we conclude this chapter, Let's have a look at a more complicated example. It can be a challenge how much you understand the use of a particle system in the GEM library. The patch is Motion004.pd as shown in the following screenshot:
[image: Combining particle system with motion-tracking]
It does not have any new objects in the patch. The bottom-left part of the patch is the motion-tracking component we have covered in the previous chapter. We use the movement center as the point source for the part_source object. The part_data component extracts the color of the pixel in the movement center and sends it to part_color object to colorize the particles. The patch also uses the particle age to modify the particle's alpha component in its color. Pay attention to what we have done in the color object under the part_info. When the particles come closer to our eyes, they become more transparent, as shown in the following screenshot:
[image: Combining particle system with motion-tracking]

Summary

We completed an introduction of the particle system in the GEM library. In this chapter, we learnt how to render a particle system in different ways, such as simple graphical shapes, text, 3D objects, and custom images. By using the computer mouse, we created a painterly experience with the interactive control of a particle system and with the motion-tracking technique we used our own bodies to interact with a particle system for a more playful experience. When we work on audio programming in the next chapter, we will see how to integrate the audio information in multimedia projects.

Chapter 7. Audio Programming

We have briefly encountered the use of audio programming in Chapter 5, Motion Detection, when we created the color-tracking air drum. In this chapter, we are going to have more extensive coverage of the sound basics in Pure Data.
The topics we are going to cover on audio programming are:
	Preparing for audio processing
	Using existing sound files
	Generating audio with waves
	Working with MIDI
	Obtaining audio input for interaction

Preparing for audio processing

We have covered the procedures to prepare for audio input and output in Pure Data in Chapter 5, Motion Detection. Let us revisit the key points. We have to check the compute audio box in the upper-right corner of the console window:
[image: Preparing for audio processing]
The next step is to prepare the audio settings in the Preference panel. Choose Pd-extended | Preference | Audio Settings from the menu bar. Select the input and output devices, such as Built-in Microphone and Built-in Output, and the default sample rate to 44100. When transferring analog audio signal to digital, the sample rate controls how frequently the system takes samples of the audio signal. 44100 is the commonly used standard for audio files and processing. The measurement is in Hertz. It affects the fidelity and the file size of the audio information. Refer to the following screenshot:
[image: Preparing for audio processing]
Rather than clicking on the compute audio box in the console window, we can also include this action in the patch window. We can use a toggle and a message to enable/disable the digital signal processing function in Pure Data. Here is how you can do it:
[image: Preparing for audio processing]
The semicolon message will direct the message to Pure Data itself with the value dsp 1 if you turn on the toggle box or dsp 0 if you turn it off. We shall use this option to switch on/off the audio processing from the patch window.

Using existing sound files

In the air drum exercise of Chapter 5, Motion Detection, we learned how to playback an external sound file. The Audio001.pd patch shown in the following screenshot shows how we can do so:
[image: Using existing sound files]
Remember that all audio-related objects come with the ~ character suffix. The object readsf~ reads an external sound file through the open message. The message 1 starts the playback. The message 0 stops it. Its left-hand outlet is the audio signal going to the digital-to-analog converter, the dac~ object. The dac~ object will actually play the audio signal through the computer's audio interface. The right-hand outlet of readsf~ is a bang message that will be triggered once the playback reaches the end of the sound file. Note that the line connecting audio outlet and inlet is thicker than normal data connection.
If you click on the Play button a few times before the first sound file ends, the patch will initiate a new playback every time you click. It may cause trouble in your design. To solve the problem, we can disable the Play button when the current sound file is still playing. We use a spigot object for this purpose:
[image: Using existing sound files]
Another way to play a sound file is to load the audio data into the patch and then playback later. Firstly, we have to define an area to store the audio data. We use the Array object for this purpose. The arrays in Pure Data are similar to arrays in other programming languages. You can think of it as a cabinet of drawers. Each drawer is a storage location for a number. You access each drawer by its index, a number starting from 0.
To begin with this new patch, Audio002.pd, we define an array item named snare for the snare drum sound. We choose Put | Array from the main menu bar:
[image: Using existing sound files]
Type in the name snare for the array item and keep the rest as default:
[image: Using existing sound files]
After we click on OK, we will have a graph with the label snare in the patch window. In the center of the graph (a line chart), there is a horizontal line indicating the value 0:
[image: Using existing sound files]
Next, we are going to load the snare drum sound file, snare.aif, that we used in Chapter 5, Motion Detection, into the snare array. The object is soundfiler:
[image: Using existing sound files]
The soundfiler object has the message read –resize snare.aif snare to load the external snare.aif sound file into the array named snare. The -resize parameter is to resize the array size to hold all the sample data from the sound file. The number box below the soundfiler object indicates the number of samples loaded. The graph under the label snare shows the waveform of the sound sample.
The next step is to playback the sound sample from the computer storage. We use the tabplay~ object:
[image: Using existing sound files]
The object tabplay~ plays an audio sample stored in an array. The name snare follows the tabplay~ object that is the name of the array, which we have just loaded from the sound file. A bang message triggers the playback through the dac~ object to the sound interface. Of course, we can put multiple sound samples into the patch to create a drum set.
Here is how we can have two sound samples together:
[image: Using existing sound files]
The loadbang object on the left-hand side of the patch loads the two sound samples into the arrays, snare and kick. For the tabplay~ object, it has two sets of input signals: the first one for the kick drum and the second one for the snare drum. Within each set, the trigger object first sends a bang message to the set message to designate the array name, and then another bang message to tabplay~ for the playback. You just need to click on each bang box to playback the corresponding drum sound. For usability, it will be much better if we make use of the keyboard to control the playback. Let's have a look at this version in Audio003.pd:
[image: Using existing sound files]
Remember what we have done in Chapter 4, Interactivity, about the use of keyboard for interactivity. We use the gemkeyboard object to detect which key the user is pressing. With the key code, we use the select object to find out which sound sample we should send the trigger message to.
We can also automate the playback by using another array item. In the following screenshot of the patch, Array001.pd, we explore in general how an array works:
[image: Using existing sound files]
We define an array named loop. Its size is 16. We also change the range of the Y value to a range from -1 to 5. In the beginning, all values in the array are zero. We can either manually key in the values or use a patch to input. To input the values to the array, we first right-click on the graph to choose the Properties option:
[image: Using existing sound files]
From the array panel, click the View list button:
[image: Using existing sound files]
The loop (list view) panel has 16 rows of 0. Each row is an entry in the array. The first number with the bracket is the index. The second number next to it is the value:
[image: Using existing sound files]
If you want to modify any entry, double-click on that row and type the new number. Press enter or return when you finish:
[image: Using existing sound files]
After you press enter or return to confirm, the graph in the patch window will show the new value in the line chart:
[image: Using existing sound files]
The second way to modify the array content is by using the tabwrite object. To retrieve the current content of the array, we use the tabread object. Both the tabread and tabwrite objects need to specify the array named loop in our case:
[image: Using existing sound files]
To store a value with the tabwrite object, we need to specify both the new value (left-hand inlet) and the index (right-hand inlet). First, input the index value, that is, which row in the array to update. Remember that the index starts from 0, not 1. Second, enter the new value in the left-hand inlet to update the array entry. To retrieve the latest value from the array, simply enter the index value in the inlet. The entry value will be ready in the outlet.
We can also have a third way to update an array. Right-click on the graph in the patch window and select Open. You can then interactively draw on the graph to alter the values. Nevertheless, it may not be very precise by drawing.
The next step is to automate the retrieval process. We use the metro object for the automation and the counter object to go through every single entry in the array. Here is how it works:
[image: Using existing sound files]
We go back to our Audio003.pd patch. If we have one more array loop, how can we automate the drum playback session? The array loop can only contains four numbers in its entries: 1, 2, 3, or 0. Number 1 starts the kick drum, number 2 the snare drum, and number 3 the tom-tom. Number 0 will have nothing, that is, a rest. When we loop through the array with metro and counter, it is like a drum sequencer:
[image: Using existing sound files]
The way we input the sequence to the array loop is unnatural. As we understand how the tabwrite object can alter the array in real time, we can use it to input the drum sequence on the fly. The next version, Audio005.pd, will use a horizontal radio button group to input the drum signal, that is, a number from 0 to 3 when the metro object loops through the array loop. We can have a real-time response similar to those drum machines:
[image: Using existing sound files]
We also use a longer horizontal radio button group as a visual feedback of the current beat in the sequence. We click on the shorter radio button group under the label Input here in real time when the current drum sequence is being played. Note also that we have to play the selected drum sample right after the clicks on the buttons for immediate audio feedback.

Generating audio with waves

The last section mainly uses prerecorded sound for playback. We can generate original sound from Pure Data itself. We hear sound from our computers because the speakers transmit sound waves through the air. In Pure Data, we can create a sound wave with audio objects. The digital sound wave will play through the digital-to-analog converter and become the analog vibration of the speaker membranes.
In Pure Data, we create simple waveforms, such as sine wave and sawtooth wave. We shall see the waveform displays in the following patches. When we hear a piece of sound, we identify three properties: the first one is the loudness or amplitude, the second one is the pitch or frequency, and the third one is the quality or timbre. The first two properties are easy to understand. Acoustic musical instruments or our voice usually do not contain only one frequency. A note usually contains a number of different frequencies with different amplitude. They are the overtones. Usually, they are multiples of the primary frequency, the fundamental. Different musical instruments have different combinations of overtones. This is why we can identify different instruments by just hearing a few notes.
To start with, we create the patch Wave001.pd to generate a sine or cosine wave. Sine/cosine are mathematical functions in school trigonometry. The object we use is osc~. It is the cosine wave oscillator:
[image: Generating audio with waves]
The number box inlet for osc~ is the frequency, that is, the number of oscillations per second. The unit is Hertz (Hz). The range of sound for the human ear is around 20 to 20,000 Hz. Make sure you turn on the toggle for the pd dsp message. Type a number, such as 200 in the number box to hear the sound. Change the number and hear the difference. In the following version, we visualize the waveform with an array object.
In the same patch, create an array named wave and default settings for the rest:
[image: Generating audio with waves]
The new object tabwrite~ reads as table write. It has the tilde suffix to indicate that it is for an audio signal. Its parameter wave corresponds to the array name we have just specified, and is shown in the graph in the bottom-right corner. The tabwrite~ object also needs a bang input to send the oscillation signal to the array. Of course, we can automate the bang by using a metro object as shown in the following screenshot:
[image: Generating audio with waves]
The second type of waveform Pure Data can generate is the sawtooth wave. The waveform of the saw tooth wave resembles a chain of sawtooth. The shape is sharp and has straight lines in triangular fashion. The next patch has a visual representation of the waveform. The object we use is phasor~. We can use the same patch layout and replace the osc~ object with phasor~. Take a look at the new patch, Wave002.pd:
[image: Generating audio with waves]
From the wave graph display, we will notice the visual difference between a sine/cosine wave and the sawtooth wave. We also see that the sine/cosine wave has both positive and negative values between -1 and 1, while the sawtooth wave has only positive values between 0 and 1.
The third type of waveform is the irregular signal that we call noise. In Pure Data, it is the noise~ object. To produce noise, we do not need to specify the frequency. We can try it out in the next patch, Wave003.pd:
[image: Generating audio with waves]
As shown in the graph display, the waveform is like a collection of random numbers. Pure Data also has another noise generator, the pink~ object. The noise~ object generates the white noise. The pink~ object generates the pink noise. The technical difference is that white noise has equal energy per frequency and pink noise has equal energy per octave. The pink noise is less irritating. You will also notice the visual difference in the graph display. Here is the pink noise version:
[image: Generating audio with waves]
We use the number parameter in osc~ and phasor~ to specify the frequency, that is, the pitch of an audio signal. To change the amplitude (loudness), we use the multiplication operator, *~. Note that it is the regular multiplication operator with a tilde suffix. The next patch, Wave004.pd, shows how it works:
[image: Generating audio with waves]
The multiplication operator has a number for its right-hand inlet. In the patch, we can use a horizontal slider with the range between 0 and 1. By moving the slider to the left-hand side or right-hand side, you can hear the change in the loudness of the sound. Pushing the slider to the right-hand margin will have the original sound volume. You will notice that the height of the graph also changes when you move the slider. The same technique can also be applied to the phasor~ and noise~ objects.
In the next Wave005.pd patch, we make use of the volume control with *~ to produce a short note, instead of a continuous sound:
[image: Generating audio with waves]
This is the one with continuous sound. You click on the bang object on the top. It branches out two signals: one to the 0.5 message for the volume control and another to the 440 message for the sound frequency.
Note
Note that 440 Hz is the A note in piano scale just above the middle C.

We need a new object to produce a short note. It is the delay object:
[image: Generating audio with waves]
The delay object takes one parameter in a unit of milliseconds. The example will cause a delay in routing through the bang message by 200 milliseconds. The logic of the patch is: The bang box sends out three bang messages. The first one goes to the delay object and will be delayed by 200 milliseconds before it reaches the 0 message. The second bang message goes directly to the 0.5 message. The third bang message goes to the 440 message and then the osc~ object to generate the tone. After the tone is produced for 200 milliseconds, its volume will be turned down to 0.
We can use multiple frequencies to create an octave. We are going to use the horizontal radio button group to create this simple piano scale:
[image: Generating audio with waves]
The sequence of numbers in the message boxes is the corresponding frequency in an octave.
You may notice that there may be minor glitches when you switch audio pitch or volume very quickly. It is because the Pure Data update periods for data and audio signal are different. When they are out of sync, it may result in minor disruptive sounds. When we go back to have a look at the general audio generation patch, we can further improve the quality by using more audio-related objects:
[image: Generating audio with waves]
The osc~ and *~ objects can accept both numeric and audio signal inputs. In the previous example, you may notice the glitches when you move the sliders very quickly. To avoid these out-of-sync situations, we can convert the number into audio signal by using the sig~ object:
[image: Generating audio with waves]
Both sig~ objects convert the numeric values into audio signals to synchronize with other audio signals from the osc~ and *~ objects. To further enhance this patch, we can use another object line~ to have a gradual change of the signals, rather than a sudden change:
[image: Generating audio with waves]
The line~ object creates a sequence of signals, within a predefined period, changing from the original value to the new target value. Let's take the volume control slider as an example. If you push the slider from position 0.4 to 0.6, it sends the new numeric value 0.6 to the message $1 10. The message substitutes $1 with 0.6 and relays the message 0.6 10 to the line~ object. As the former value for the line~ object is 0.4, it will create a gradual change of signals from 0.4 to 0.6 within the period of 10 milliseconds, as specified. It will essentially smoothen out the sound change, both for volume and frequency.
You can combine this with the piano scale example. In this patch, Wave008.pd, we create an instrument with more natural sound:
[image: Generating audio with waves]
To be more expressive with the piano playing, it is always a good choice to make use of the computer keyboard rather than clicking on the radio buttons. We can just combine this with the gemkeyboard usage we learned in Chapter 4, Interactivity:
[image: Generating audio with waves]
So far, we have used only one single oscillator, osc~ or phasor~ to generate the sound waves. If we have more oscillators, we can enrich the sound quality. In the following example, Wave009.pd, we include two osc~ objects and connect them together with another *~ object:
[image: Generating audio with waves]
The number box sends out two signals through the trigger object. The left-hand outlet value will be the same as the original number. It is called the fundamental frequency. The right-hand outlet doubles the original number. It is called the second harmonic. The two horizontal sliders control the volume of the two osc~ objects. They are combined together through the third *~ object. Note also that we use the send and receive commands to connect the objects in a wireless way. The send and receive commands for audio signals are s~ and r~ respectively. We can have more harmonics of higher frequency. It creates the overtone that will be more similar to a natural instrument.
The other example, Wave010.pd will replace the amplitude of the original sound wave by another osc~ oscillator. We will hear the resulting beat of the sound. Refer to the following screenshot:
[image: Generating audio with waves]
In this patch, the amplitude of the sound is actually another oscillation with a much lower frequency. We often call it as amplitude modulation. In the next example, Wave011.pd, we use another audio object +~ to combine two oscillations:
[image: Generating audio with waves]
The original frequency, 440 Hz, in this case combines with another oscillating number returned by the first osc~ object on the right-hand side of the patch. The resulting number then drives another osc~ object to produce the final audio signal. We often call its approach as frequency modulation.

Working with MIDI

Musical Instrument Digital Interface (MIDI) can be found at http://www.midi.org. It is an international standard that enables various electronic musical instruments to communicate with each other. Pure Data has an extensive support of the MIDI operations. In this section, we look into simple use of MIDI signals in audio programming. We do not, however, assume readers will have external MIDI devices to work on with our examples. There are virtual synthesizers in various platforms where Pure Data is supported. We are going to use the virtual synthesizers to generate sound, instead of using external MIDI hardware. For the inputs, we'll just use the Pure Data number boxes to create the notes, instead of using a MIDI keyboard.
For Windows, built-in Microsoft GS Wavetable Synth can handle the MIDI output. For Linux, we can install TiMidity++ through your package manager or from http://timidity.sourceforge.net. For Mac OSX, we need to install the SimpleSynth software tool from http://notahat.com/simplesynth/.
Here is the configuration process for the SimpleSynth in Mac OSX. First of all, locate the Audio MIDI Setup program in the /Applications/Utilities folder. Double-click to run the setup process:
[image: Working with MIDI]
From the menu bar, choose Window | Show MIDI Window. Double-click on the IAC Driver icon:
[image: Working with MIDI]
Check the box
Device is online for the IAC Driver.
[image: Working with MIDI]
Quit the Audio MIDI Setup program. Then locate the SimpleSynth program inside the Applications folder. Double-click to run this program. It will show the following window:
[image: Working with MIDI]
In the
MIDI Source option, choose the
IAC Driver Bus 1 option from the pull-down menu. The left-hand side of the window shows the MIDI channels. The right-hand side of the window shows various musical instrument names. You can click on the instrument and note the corresponding program number changes in the bottom part of the panel. You do not need to close the SimpleSynth program, so just proceed to start the pd-extended software as usual:
[image: Working with MIDI]
In the Pure Data main menu, we choose Preferences | MIDI settings. For the option output device 1, we choose IAC Driver Bus 1. Finally, we click on OK to confirm and leave the MIDI settings panel:
[image: Working with MIDI]
In Windows operating systems, we can choose Microsoft GS Wavetable Synth for the
Output device 1 option:
[image: Working with MIDI]
For Linux system, you can use QjackCtl (http://qjackctl.sourceforge.net) to connect the Pure Data MIDI output to the TiMidity MIDI input. From the Pure Data main menu, choose Media | ALSA MIDI:
[image: Working with MIDI]
Now we are ready to prepare our first MIDI patch as Midi001.pd. We are going to use two MIDI objects, makenote and noteout:
[image: Working with MIDI]
When you click on the bang box, you will hear the piano sound of a middle C note. The first object makenote will produce a MIDI note for a period of time. It takes three inlets. The left-hand one is the note number. The number 60 here is the middle C. MIDI uses numbers to represent the chromatic scale; the larger the number, the higher the pitch. The middle inlet is the velocity. You can consider it as the loudness of the note. The last inlet is the duration in milliseconds. Actually, the makenote object first generates a note-on signal and schedules a note-off signal after the duration expires. Usually, the MIDI note number and velocity number are within the range of 0 and 127.
The second object noteout transmits the note signal to the MIDI interface and plays the sound. Its first and second inlets take the MIDI note number and velocity number. The last inlet is the channel number that corresponds to the channel number in the SimpleSynth software.
In the next example, Midi002.pd, we introduce one more MIDI object, pgmout:
[image: Working with MIDI]
The program out object, pgmout, takes two inlets: the first one is the program number and the second one is the channel number. For the channel number, it will be the same number you used in the noteout object. For the program number, you should consider, in this case, a number that represents a different musical instrument. For example, in our patch, we use a number 7. If you go back to the SimpleSynth window and check out the instrument list, it will be the Harpsichord. You can try out different musical instruments with different program numbers.
By using these MIDI objects, we can create a piece of composition. In the next example, Midi003.pd, we will compose a piece using pure randomness:
[image: Working with MIDI]
The patch has three random objects. The first random 128 object will generate the MIDI note number representing the pitch. The second random 100 object will produce the loudness of that note. We use an additional object in order to avoid a loudness value that is too small. The last random 500 object will create the duration for that note. We also use another object to make sure the note will last at least 100 milliseconds. Note that the duration value will be sent back to the metro object to allow for a random interval for each note.
You can duplicate the whole patch and have two MIDI channels for playback. The next example, Midi004.pd, will have two channels and two different instruments. Again, they are all random notes. It can sound very much like a contemporary composition:
[image: Working with MIDI]
Note that we have made some modifications. The group on the left-hand side will generate a higher pitch by adding the random number with 40. The group on the right-hand side will produce the bass notes that are less than 50. For the best results, you can choose the bass instrument for the channel 2.
If you do not want to use the standard MIDI sound library, you can use the custom waveform that we created earlier in this section, with MIDI control. The new object mtof~ will perform the conversion:
[image: Working with MIDI]
The object mtof~ stands for MIDI to frequency. It converts a MIDI note number to its corresponding audio frequency. In this example, the note number 69 is the A note with the frequency 440 Hz. The object snapshot~ converts audio signal into a number. It needs a bang message to sample the data. With this frequency data, we can send it to an oscillator such as osc~ or phasor~ to produce the audio as before:
[image: Working with MIDI]
The Midi005.pd patch is very straightforward. The output from mtof~ is directly sent to the osc~ object to generate the sound wave. The rest is the same as before. So much for the MIDI part, we now move to the audio input in the next section.

Obtaining audio input for interaction

Pure Data can retrieve sound input data from your microphone. Before we start, we need to choose the proper sound input device from
Preferences | Audio Settings. If you have multiple sound input devices, choose the one you would like to use. It will usually be the microphone input:
[image: Obtaining audio input for interaction]
Once we select the input device, the next step is to capture the audio input data. The object is just the opposite of dac~ that we have used in previous sections. It will be the adc~, analog-to-digital converter:
[image: Obtaining audio input for interaction]
The
adc~ object, by default, produces two outlets for stereo channels. We route them to the same inlet of a *~ object. The graph named wave will display the waveform of the microphone input signal. For interactive use of the microphone input, we often need to convert the sound volume into a number so that we can test it against a threshold.
For example, we can test the sound volume if it is louder than a limit or not. If it is louder, we can trigger an effect, such as playback of a digital video. To obtain the sound volume, we use the env~ object:
[image: Obtaining audio input for interaction]
The env~ object returns the amplitude of the audio signal. The unit is decibels, normalized to 100. The number 128 is the window size of the analysis. It defines the number of samples the env~ object uses to compute the average amplitude. You can observe the value in the number box. Louder sound will produce a larger number. In the following patch, Input002.pd, we use a comparison object to test the volume and to control a graphical display:
[image: Obtaining audio input for interaction]
The logic is simple. The loudness data is sent to two objects. The first one is a division object that divides the number by 50, so that it can be used for the size of the circle object. The second one goes to a comparison object > 60. If the number is larger than 60, it changes the color of the circle to red, otherwise it will be white.
To conclude this section, let's introduce another audio object, fiddle~. It is a very complex object and yet we just make use of the simple functions. It will be based on the audio samples and detect the frequency and amplitude of sound in real time:
[image: Obtaining audio input for interaction]
The third outlet is the frequency in MIDI note number unit. The fourth outlet is the amplitude. We also use two int objects to convert the numbers into integers. In this patch, Input004.pd, we use the frequency to produce a MIDI note with the corresponding amplitude sent to a makenote object. We also refer to the former random note example to generate the music:
[image: Obtaining audio input for interaction]
The fiddle~ object sends out the frequency and amplitude of the audio signal. The first pair of int objects convert the decimal numbers into integers. The second pair of int objects temporarily store the numbers in the variables and wait for the bang message to route them out. The bang messages come from the metro object. We use the metro object to slow down the speed of generating the MIDI notes. If we just connect the fiddle~ outputs to the makenote object, it will be too speedy to sound like a real piece of music. The
metro object with its random intervals will slow down the tempo. You can play around with different values in the random object. This patch will try to pick up the audio information from the microphone. It then tries to reproduce the sound by using the MIDI notes from a musical instrument. Of course, the process may not be too accurate and there are also delays in the reproduction. Nevertheless, it demonstrates a generative approach to produce music where the original sound functions as a feedback to generate the subsequent notes.

Summary

In this chapter, we have learned to work with audio programming in the Pure Data environment. We understand how to playback an existing sound file and visualize its waveform. With the use of different oscillators, we can synthesize our own custom sounds. By using the software MIDI synthesizer, we can produce a sequence of musical notes within Pure Data. And finally, we can use a microphone as an interactive device to detect changes in sound volume in order to trigger visual feedback. In the next chapter, we investigate how to connect Pure Data with other external hardware devices.

Chapter 8. Interface with the Outside World

Pure Data provides a number of objects to connect with other computers and peripheral hardware. In this chapter, we explore the possibilities to connect two computers through a local area network. With a smart phone, we can connect it to a computer running a Pure Data application and use the phone as an interaction device. By using a micro-controller board – the Arduino, we can integrate a Pure Data application with custom electronics, such as light sensor and LED light display. It provides developers with a wide range of tools to build custom interfaces that go beyond the conventional mouse, keyboard, and webcam. In this chapter we will cover the following topics:
	Communicating through the Internet
	Controlling the visual display of another computer
	Using Open Sound Control with mobile devices
	Interfacing with custom hardware with Arduino

Communicating through the Internet

We can send and receive data between two Pure Data applications in different computers provided that they are connected in a network. Before we can start the communication, we have to know the addresses of the two computers. The address that Pure Data uses is the IP address that we often come across the Internet. Once your computer is connected to the network, either through the wired Ethernet or the wireless Wi-Fi, we can obtain the IP address by the following methods.
In Mac OSX, we use the Network Utility inside the /Applications/Utilities folder. After we double-click on it to start the Network Utility, the front panel will show the IP Address of your computer. Alternately, we can also use the ifconfig command in the Terminal window of the Unix environment in OSX. Check for the active interface to note the IP Address. In Linux, you also use the ifconfig command in the terminal window to display the IP Address as shown in the following screenshot:
[image: Communicating through the Internet]
In Windows environment, we can click on the network icon in the notification bar to start the Open Network and Sharing Center. Within the Network and Sharing Center, choose the type of network connection you have, Local Area Connection or Wireless Network Connection. In our case, we have the local area network connection. Clicking on its link will take us to the next panel. Click on the Details… button to retrieve the detailed network information.
It will show you the IP Address as follows:
[image: Communicating through the Internet]
If you do not have two computers for the exercises, you can just use one. In this case, the address name localhost will indicate the same computer that you are using.
The Pure Data objects for network communication are netsend and netreceive. If you are familiar with the Internet technology, Pure Data uses the same TCP/IP communication protocol. Pure Data can use both TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). TCP provides a more reliable and orderly communication between software programs in a network with a prior established session. UDP provides an efficient and yet unreliable communication between software programs in a network without a prior established session.
Making the connection

In our first example, we are going to use TCP connection within the same Pure Data patch, Net001.pd for testing, as shown in the following screenshot:
[image: Making the connection]
In this example, both the netsend and netreceive objects are in the same patch. The netreceive object is simple. For TCP connection, it needs just one parameter, its port number, 3000. Since a computer with one IP address can run multiple applications at the same time, we use a port number to identify which application that we would like to talk to. For example, a computer running a web server will normally use the port number 80 for communicating with the client's browser. Port numbers less than 1024 are dedicated to existing Internet applications. For individual usage, we are going to use port numbers larger than 1024.
The object netreceive 3000 will open a communication channel – a port, identified by the number 3000, and be ready to receive incoming connections. To complete the connection, the netsend object with a connect message will do the job. The connect localhost 3000 will establish the TCP connection with itself (localhost) using the port number 3000. If you are connecting to other computer, replace the localhost keyword with the IP address of that computer. Once you make the connection by clicking on the connect localhost 3000 message, you can notice the two number boxes showing a value 1. It is the number of current connection.
We can have multiple incoming connections to the netreceive 3000 object as shown in the following screenshot:
[image: Making the connection]

Sending messages

Once we establish the connection, we can send messages by clicking on the send 1234 or the send Hello messages and you will notice the response from the console window displayed as follows:
[image: Sending messages]
To end the connection, just click on the disconnect message. Now we revise the patch, Net002.pd to cater for sending and receiving numbers.

Sending numbers

The modification is straightforward. We replace the original send message with the send $1 to receive the number box value. In the receiving end, we only need to replace the print object with a number box as shown in the following screenshot:
[image: Sending numbers]
We can add one more number to send through the network. The next patch, Net003.pd, in the following screenshot will use the pack and unpack objects to send multiple numbers:
[image: Sending numbers]
We have covered the usage of pack and unpack objects. Note the use of a trigger object to ensure it will send out the message even though the second number is in the cold inlet of the pack object. Sending a list of numbers through the network is a common technique, for example, the coordinates of a graphical shape with X, Y, and Z components.
Until now, we have only one patch that handles both the send and receive processes. The following two patches, Net005.pd and Net006.pd will demonstrate the communication can be across two separate Pure Data patches.
The patch, Net005.pd, contains the netreceive object. The patch, Net006.pd, contains the netsend object and the other messages. When both of the patches are in Run Mode, the number box value changes in the sending patch will affect the corresponding changes in the number box in the receiving patch in real time. The following screenshot is the content of the two patches we use:
[image: Sending numbers]
If you have two computers in the same network, you can try to put the sending patch in one computer, and the receiving patch in the other computer. Change the connect localhost 3000 message to connect nnn.nnn.nnn.nnn 3000, where nnn.nnn.nnn.nnn is the IP address of the receiving computer. In this case, you can communicate between the two computers running Pure Data with the value in the number box.
The previous example demonstrated one-way communication between two computers. If you want to have two-way communication, we have to put the both netsend and netreceive objects in one single patch. In the first computer, we use the patch, Net005.pd. In the second computer, we use the patch, Net006.pd. Suppose the first computer has an IP address 192.168.1.10 and the second computer has an IP address 192.168.1.11. It is further explained as follows:
	Computer 1 has IP address 192.168.1.10, port 3000, patch Net005.pd
	Computer 2 has IP address 192.168.1.11, port 3001, patch Net006.pd

The patch,
Net005.pd will be as as shown in the following screenshot:
[image: Sending numbers]
The patch, Net006.pd will be as shown in the following screenshot:
[image: Sending numbers]
Computer 1 (192.168.1.10) listens to the port number 3000 for incoming connection. Computer 2 (192.168.1.11) listens to the port number 3001 for incoming connection. Computer 1 will connect to Computer 2 using the port number 3001. Computer 2 will connect to Computer 1 using the port number 3000.

Controlling the visual display of another computer

In the next example, we set up two patches, Net008.pd and Net009.pd. If you have two computers, you can execute the patches in separate computers. For demonstration, we open them on one single computer. In Net008.pd, we have the netsend object to send out the mouse position information to Net009.pd, using the gemmouse object. In Net009.pd, we decode the mouse position from the information obtained from the netreceive object, and display a square to follow the remote mouse position.
The following screenshot is Net008.pd for sending out the mouse position:
[image: Controlling the visual display of another computer]
Since we are using one computer, we put the connect localhost 3000 message for the netsend object. If you are using two computers, you need to use the connect nnn.nnn.nnn.nnn 3000 message, where nnn.nnn.nnn.nnn is the IP address of the computer running the second patch, Net009.pd.
The following screenshot is Net009.pd for receiving the mouse position and displaying it with a square:
[image: Controlling the visual display of another computer]
Before creating the GEM window in Net008.pd, you click on the connect message to establish the communication with Net009.pd. After that, create and render the GEM windows in both computers. If you are using one computer, only one GEM window will appear. When you move your mouse within the GEM window in Net008.pd, the white square in Net009.pd will move with the same path. In effect, you are controlling the mouse pointer of another computer within the Pure Data applications.
With the knowledge you gained in Chapter 4, Interactivity, you can extend the interaction by using the keyboard and mouse of one computer to interact with the media elements in another computer.

Using Open Sound Control with mobile devices

Open Sound Control (http://opensoundcontrol.org) is a communication standard among computers, audio synthesizers, and multimedia devices within a computer network. Pure Data supports the Open Sound Control (OSC) protocol through a library mrpeach packaged within the pd-extended software.
With the gaining popularity of multi-touch technology, it is common to use the versatile multi-touch devices to control the operation of the host software, in applications such as audio-visual performance, and multimedia display. Information exchange among the multi-touch devices use another protocol, TUIO (http://www.tuio.org), and the one that is based on the OSC. For example, we can use an iPhone to control the animation within a GEM window in a host computer running Pure Data. This is the method that we are going to explore.
The first thing is to download a free iPhone app that supports TUIO. One of the choices is the TUIOpad (http://code.google.com/p/tuiopad/) created by Mehmet Akten and Martin Kaltenbrunner. It is available at the iTunes store. The Android version is called TUIOdroid (http://code.google.com/p/tuiodroid) written by Tobias Schwirten and Martin Kaltenbrunner. It is available at the Android Market. In the next example, we'll use the iOS version for demonstration.
Connecting the TUIOpad to the host computer

To connect the TUIOpad with the Pure Data application, the iOS device has to have Wi-Fi connectivity to the same network with the host computer running Pure Data. We need to know the IP address of the host computer and a port number to receive the OSC data. The following screenshot shows a typical configuration setting for the TUIOpad:
[image: Connecting the TUIOpad to the host computer]
The host 192.168.11.4 is the IP address of the host computer running the Pure Data patch. The port 3333 is communication port number. We choose UDP for the communication protocol. In the host computer, we use this patch, OSC001.pd to receive the OSC data sent from the iPhone as shown in the following screenshot:
[image: Connecting the TUIOpad to the host computer]
The import object loads the mrpeach package that manages the OSC communication protocol. The udpreceive 3333 object specifies the patch will receive UDP data through the port number 3333. The unpackOSC object will unpack the incoming data into readable formats for the print object to display in the console window. Once both sides are ready, we click on the Start button from the TUIOpad. A blank screen appears where you can use your fingers to draw on the display.
When you start tapping and drawing on the iPhone screen, you will notice the OSC data stream in the console window. The following screenshot is a sample of the messages in the console window:
[image: Connecting the TUIOpad to the host computer]

Decoding the OSC messages

The next step will be the decoding of the OSC messages. The following is a typical listing of the OSC messages from the TUIOpad. It starts with a first prefix /tuio and the second prefix /2Dcur:
/tuio/2Dcur source TuioPad@158.182.188.142
/tuio/2Dcur alive 2 3
/tuio/2Dcur set 2 0.41875 0.76875 0 0 0
/tuio/2Dcur set 3 0.3 0.304167 0 0 0
/tuio/2Dcur fseq 7717
/tuio/2Dcur source TuioPad@158.182.188.142
/tuio/2Dcur alive 2 3
/tuio/2Dcur set 2 0.3875 0.7625 -0.315657 -0.0631316 3.25159
/tuio/2Dcur set 3 0.35 0.297917 0.50505 -0.0631313 5.14122
/tuio/2Dcur fseq 7723

We'll use the routeOSC object to select the types of messages we are interested in. The routeOSC object is the OSC version of the original route
 object in Pure Data. It scans through the incoming message from the inlet, looks for the OSC keywords specified as parameters in the routeOSC object, and distribute the message streams to the different outlets according to which keywords they belong to.
A regular route object performs similarly. The route
 object usually has a number of keywords as arguments. It scans through the incoming message from its inlet; identifies those keywords in the message, and routes that message to different outlets according to the keyword that prefixed it.
The first routeOSC object selects the all the TUIO messages with prefix keyword /tuio. The second routeOSC object selects the messages for 2D cursor with prefix keyword /2Dcur. Of those messages about 2D cursor, we use the regular route object to filter the set messages that define the cursor positions. The route set object will locate the set keyword in the message and route the remaining information after the set keyword to the first outlet as shown in the following screenshot:
[image: Decoding the OSC messages]
The output in the set cursor message is a list of six numbers. The first one is the cursor id. Every time you touch the screen, it is assigned with a new cursor id. The second and third number boxes are the X and Y positions of the cursor, with a normalized range between 0 and 1. The fourth and fifth number boxes are the X and Y velocity values. The last number is the acceleration value. Since the iPhone screen is a multi-touch interface, it can return multiple cursor points. For simplicity, the following example will use only one cursor point for demonstration. We are going to create a GEM window with a piece of text following your interaction on the iPhone screen. Once we acquire the X and Y positions of the cursor, we can easily send them to a translateXYZ object in the GEM environment.
The patch sends the cursor ID to the text2d object for display. The normalized X and Y positions are mapped to the -4 and 4 range of the X and Y axes in the GEM window.
The following screenshot is the OSC002.pd patch:
[image: Decoding the OSC messages]
The GEM window output together with the TUIOpad screen will look like the following screenshot:
[image: Decoding the OSC messages]
Once we have the X and Y positions of the touch point in the GEM window, we can treat the cursor as the mouse, or the motion tracking position that we learned in previous chapters. Our smartphone or tablet can now function as a control device for interactivity in the host computer.

Tracking multiple points

If we want to incorporate more touch points in the interaction, the patch can become very complex. The patch, OSC003.pd will try to track two touch points as shown in the following screenshot:
[image: Tracking multiple points]
The alive message contains a list of cursor IDs that are active in the multi-touch screen. We see from the console window that we can have multiple touch points in one single alive message. In the next step, we use the list object to determine the number of touch points. A list data structure in Pure Data is a variable length message of a sequence of items, usually of the same type. The list object manipulates the data structure with the following functions:
	list append / list prepend: These functions concatenate two lists together either at the end or at the front respectively
	list split: This function splits a list into two
	list trim: This function trims the list selector off the original list
	list length: This function returns the number of items in a list

A list object without any arguments is a container, which is like a variable of a list.
[image: Tracking multiple points]
The list length object in the previous image has a list as input and outputs the number of elements in the list through its outlet. We come across the use of list in the studies of the pack and unpack objects. Once we know the number in the list, that is the number of touch points, we can split the list into the two number boxes as shown in the following screenshot:
[image: Tracking multiple points]
The new command is the object list split 2. We first temporarily store the alive message list into a list object. Once we determined the length of the list is two, through the select 2 object, we send a bang message to the hot inlet of the list object to output the list to list split 2. It will split the list and output the first two elements from the first outlet and the rest of the list to the second outlet. We then use an unpack object to separate the list into two numbers, representing the cursor ID of the two touch points.
When we obtain the two IDs of the touch points, we can search the set message for the X and Y positions of the two touch points. Again, it will be quite complex. We'll use the list
 object again as shown in the following screenshot:
[image: Tracking multiple points]
In the route alive set object, it sends out the set message list for each touch point. We first use the list split 1 object to extract the first item from the list, and which is the cursor id. It is then compared with the two cursor ids stored from the alive message, by using the comparison operator ==. From the second outlet of the list split 1 object, another list split 2 object will extract the X and Y positions of the touch point. If the cursor ID from the set message matches with any one of the cursor ID stored from the alive message, it will turn on the spigot object to pass X and Y positions to the unpack object, and finally deposited into the two number boxes. Since we just maintain two touch points from the alive message, we use four number boxes to store the X and Y positions for the two points.

Drawing the graphics

To complete this patch, we add the graphics display with the GEM library. The patch window is now quite full. If we want to introduce more objects, we can consider using sub-patch. For example, we can put all the GEM graphics display into a sub-patch named show-graphics. To create a sub-patch, we put an empty object on the patch window and name it pd show-graphics. An empty patch window pops up where you can put your additional objects and messages. Here is the sub-patch show-graphics shown in the following screenshot:
[image: Drawing the graphics]
The sub-patch has two gemhead objects that draw two small squares with different color. We also define five inlets. The first one is a toggle that enables/disables the display of the two squares. When we have exactly two touch points on the screen, we enable the display in GEM window. The other four inlets are the X and Y positions of the two points. We use them to translate the position of the squares. For the main patch, OSC004.pd, we modify it slightly to send the corresponding information to the sub-patch's inlets as shown in the following screenshot:
[image: Drawing the graphics]
After comparing the length of the list in the alive message, we send the result to the first inlet of the sub-patch. The other four inlets are for the X and Y positions of the two touch points. We also include the gemwin setup in the patch. Now, when you connect your TUIOpad from iPhone, and use two fingers to touch on the screen, the GEM window will have two squares following the movement of your two fingers.
We have just done the communication between a mobile device and the Pure Data application in a host computer. In the next section, we try to use Pure Data to control an external micro-controller board.

Interfacing with custom hardware through Arduino

When we design the interface for an interactive artwork or product, we may need to use physical objects for the interaction design, such as a touch sensitive paper, a weight sensing chair, or a motor-controlled device. In this case, we have to look for a computing device that can interface with those custom hardware. A micro-controller will serve the purpose. A micro-controller is a small computer that mainly takes care of external inputs and outputs with custom electronics. Arduino (http://www.arduino.cc) is a popular choice in the creative communities, due to its simplicity and online support.
Before we start, you have to get an Arduino board with a number of accessories from its official store at http://store.arduino.cc/ww/index.php or other worldwide distributors. Besides the Arduino micro-controller, we also need a few LED lights, resistors, on-off switches, connection wires, servomotors, and photo-resistors. The following figure is of an Arduino board with a breadboard:
[image: Interfacing with custom hardware through Arduino]
The breadboard on the left-hand side is for easy connection of the wires. We do not need to solder the connection permanently. For prototyping, we can just use the connection wires to build the circuit on the breadboard. If you buy the Arduino kits, you may have the following parts supplied with the kits. Otherwise, you may need to buy the parts in local electronics stores. The resistors we use in the examples are of 330 Ohm and 10K Ohm are as shown in the following figure:
[image: Interfacing with custom hardware through Arduino]
There are more electronic parts in the kits. For our examples, we use just a few of them to demonstrate the following functionalities of Arduino:
	Digital output
	Servomotor control
	Digital input
	Analog input

The next step is to download the Arduino software. It is available at http://arduino.cc/en/Main/Software. Choose your platform; download the corresponding software and install it in your computer. Follow the installation instructions for your specific platform. If you have older Arduino board, that is other than the UNO, you may also need to install the driver for serial communication from http://www.ftdichip.com/Drivers/VCP.htm. The Arduino website has clear installation instructions.
Once the software and driver are ready, you can connect the Arduino to your computer with a USB cable. After the driver is installed, we start the Arduino application as shown in the following screenshot:
[image: Interfacing with custom hardware through Arduino]
The previous image is the default window for an empty program in Arduino. We have to check the Arduino board type and the connection before we can start using the board. To select the proper type for the Arduino board, we navigate to Tools | Board. In our example, we have an Arduino UNO, so choose Aduino Uno as shown in the following screenshot:
[image: Interfacing with custom hardware through Arduino]
The next option is the serial connection. Your computer and the Arduino board will communicate through the USB cable in serial, that is one message at a time. To specify it, choose Serial Port from the Tools menu as shown in the following screenshot:
[image: Interfacing with custom hardware through Arduino]
In Linux and Mac OSX, the serial port appears as /dev/tty… In Windows, the serial port is like, COM1, COM2, and so on. If you do not have other serial devices, your Arduino will usually be the only one you can choose from the Serial Port panel. Once we have selected the board type and serial port, we can start to use the Arduino board. In this book, we do not learn to write custom programs for the Arduino board. Instead, we are going to use the standard programs that belong to the firmata standard. Firmata (http://firmata.org/wiki/Main_Page) is a standard protocol for micro-controller to communicate with the host computer. In Arduino, we can open one of the standard firmata programs and load it to the Arduino board by navigating to File | Examples | Firmata | StandardFirmata as shown in the following screenshot:
[image: Interfacing with custom hardware through Arduino]
Then navigate to File | Upload to upload the program to your Arduino board. Or you can also click on the Upload button for the same purpose as shown in the following screenshot:
[image: Interfacing with custom hardware through Arduino]
The program will respond with a successful message Done uploading. A failure is usually due to wrong board type or serial port selections. Now, the program is residing in the Arduino's memory. Even if you disconnect the USB cable, the program will still be there. The next step will be in the Pure Data. We are going to use the Pduino library, http://at.or.at/hans/pd/objects.html from Hans-Christoph Steiner. Download the Pduino-0.5.zip file. Unzip it. Copy the files arduino.pd and arduino-help.pd into the folder where you keep your Pure Data patches for the coming exercises.
In this book, we do not cover the details of electronics and the schematic diagrams. Readers can use the reference in the Arduino website. In the following examples, we may refer to some standard examples in the Arduino website. Readers are advised to read them when appropriate. As we are using Pduino for Pure Data, it is not necessary to copy the Arduino codes in the websites. You only need to reference the hardware connection procedures.
Digital output

The first example is to use Pure Data to turn on and off an LED light in the Arduino board. We connect one LED light to the digital pin 13 of the Arduino board, in series with a 330 Ohm resistor. You can also reference the hardware connection diagram on the Arduino website at http://arduino.cc/en/Tutorial/Blink. The actual connection will be as seen in the following screenshot:
[image: Digital output]
With the arduino.pd in your folder, we create a new patch, Micro001.pd. The main component in the patch will be the Arduino abstraction. Before we control the LED light, we learn how to communicate with the Arduino board first as shown in the following screenshot:
[image: Digital output]
First of all, we use the devices message to list out all the available serial port devices in our computer. From the console window, note the index of the proper serial port device for your Arduino board as shown in the following screenshot:
[image: Digital output]
In our case, we use the number 3, /dev/tty.usbmodem4221. We have to click on the number 3 radio button above the open $1 message. Remember that the button value start from 0, not 1. Once the port is opened, you can click on other messages to check information of your Arduino board and the connection. To finish, click on the close message.
Then we include other details for the LED light control in the new patch, Micro002.pd as shown in the following screenshot:
[image: Digital output]
The pinMode 13 output message tells the patch that pin 13 will be used for output. To begin, we click the corresponding radio button for the serial port device, in our case, the number 3. Then we click on the pinMode 13 output message. The digital 13 $1 message will take care of the actual switching on and off of the pin 13. We can turn on and off the toggle and check with status of the LED light in the Arduino board. Turning on/off the toggle will also turn on/off the LED light respectively. To finish, click on the close message.
As an exercise, try to connect a metro object to flash the LED light automatically. If you remember what we have learnt in the color tracking examples, it would be wonderful that you can extend the virtual hotspot to trigger a real LED display.

Servomotor control

The second example is to use a Pure Data slider to control the direction of a servomotor in the Arduino board. Servomotor is a type of electric motor that changes and maintains a direction. The Arduino website has the detailed connection diagram and explanation at http://arduino.cc/en/Tutorial/Sweep. A typical servomotor has three wires. The red one goes to the supply voltage, 5V in our case. Other servomotor may use 6V instead. You need to check the specification before wiring it. The black wire goes to the ground input. The white one goes to the pwm pin, 9 in our case. The actual connection is as shown in the following screenshot:
[image: Servomotor control]
Similarly we have to inform the Arduino abstraction that the pin will be used for servomotor control as shown in the following screenshot:
[image: Servomotor control]
Again, with this patch, Micro004.pd, select the proper serial port device and click on the pinMode 9 servo message. The analog 9 $1 message will inform the Arduino that the data value will be for analog output. The horizontal slider range is between 0 and 1. Moving the slider will change the direction of the servomotor. The range of the motor rotation is usually a bit less than 180 degree. You can also note that the motor will hold at a position even though you stop moving the slider.
Remember what we have done with the motion tracking examples. If we use the X position of the tracked position and send it to the servomotor direction control, we can implement a physical object that can always point to you wherever you move in front of the webcam.

Digital input

The third example is to use an on/off switch from the Arduino board to control a toggle in Pure Data. The switch is like a push button. It turns on when you push it down. It turns off when you release your finger. A similar reference can be found in the Arduino website at http://arduino.cc/en/Tutorial/DigitalReadSerial. You can ignore the serial part and the Arduino codes. Let's first connect the 5V power supply to one leg of the switch, while the other leg of the switch will connect first to a 10K resistor and finally to the ground. In the second leg of the switch, we also connect it to the digital pin 2 of the Arduino board. The following figure gives the connection in detail:
[image: Digital input]
Similarly, we need to inform the Arduino abstraction that the digital pin 2 is for input. The following screenshot shows the patch, Micro005.pd, for digital input:
[image: Digital input]
Click on the pinMode 2 input message to let the Arduino board know that the pin 2 is for input. Note that digital pins in the Arduino can be configured as either input or output, with the pinMode message. Now, you can turn to the Arduino board and press the on/off switch. Pressing the switch will turn on the toggle. Releasing it will turn it off. It is the opposite direction of digital output. Note the use of the two route objects. The first one will pick up the digital input message. The second one picks up only those for the pin 2.
Referring to our previous VJ equipment, we use the keyboard to control the video effects selection. With this patch, we can actually build our own buttons for such devices.

Analog input

The fourth example is to use a photo-resistor (light sensor) from the Arduino board to control a slider in Pure Data. It is similar to the previous example for digital input, except that we use a photo-resistor, instead of a switch. A photo-resistor is a resistor that changes its resistance value according to the lighting condition. With its light sensitive property, we can use it as a light sensor. A similar example can be found in the Arduino playground website at http://playground.arduino.cc/Learning/PhotoResistor. We connect the 5V power supply to a 10K resistor. The other end of the 10K resistor will connect to the first leg of the photo-resistor. The second leg of the photo-resistor will go to the ground. The analog pin 0 from the Arduino board will connect to the first leg of the photo-resistor. The following is a figure of the wiring:
[image: Analog input]
The analog input example, Micro006.pd is a bit different from the previous one. We can turn on and off the detection of an analog pin of the Arduino as shown in the following screenshot:
[image: Analog input]
After we choose the serial port device, we turn on the toggle for the detection of the analog pin 0, by the analogIns 0 $1 message. A number between 0 and 1 will be returned from the Arduino abstraction. It is the normalized voltage detected by the analog pin 0. In our case, it will be a measurement of the resistance value of the photo-resistor. You can try to cover and reveal the photo-resistor to observe the changes in value of the slider. It may not cover the whole 0 to 1 range. The value indicates how much light is shed on the photo-resistor. We can use it as a proximity sensor or non-contact touch sensor. Imagine we can use the light intensity to change the frequency of the audio signal. It will be like a pitch bend device with just your hands waving in the air.

Summary

We have gone through a long and complex chapter. In this chapter we tried to extend the use of Pure Data beyond a desktop computer. We made use of the Ethernet or Wi-Fi network to connect two computers for information exchange. A mobile device, such as a smartphone or a tablet computer can communicate with a Pure Data application through the OSC protocol. We can take advantage of the multi-touch screen to control applications in the host computer. Finally, we introduce the use of micro-controller, a small piece of computer interfacing with sensors, motor, and LED light. With the Arduino platform, we can extend a Pure Data application to control LED light display and motor rotation. It also enables Pure Data to use physical switch and light sensor as input devices. We have covered more or less all the essential elements in Pure Data for multimedia programming. In the next chapter, we'll have a short conclusion of what we have learnt and also the explanation on how we can use other libraries that the pd-extended package does not include, for more advanced applications.

Chapter 9. Extending Pure Data

We have learned basic concepts and techniques for multimedia programming with Pure Data in the previous chapters. It covers the major tasks that interactive media artists/designers may encounter in their creative practices. Before we conclude the book, we present a number of external libraries that are not included in the standard pd-extended package. The libraries are common in the interactive media communities that greatly enhance the capabilities of Pure Data. We'll cover the topics on:
	Integrating with OpenCV
	Working with the Microsoft Kinect camera

To work on with the OpenCV examples, you need a webcam for your computer. For the Kinect examples, you need to have the Microsoft Xbox Kinect camera (http://www.xbox.com/en-US/kinect) together with the A/C power adapter.
Tip
Please also note that the libraries we are going to use only come with the handy pre-built versions for the Mac OSX platform. In order to work in the latest operating systems and Pure Data, the Windows and Linux versions have to be built from source, and which is beyond the scope of this book. As a result, the following sections cover only the Mac OSX platform.

Integrating with OpenCV

OpenCV, Open Source Computer Vision, http://opencv.org, is an established free library for computer vision applications on various platforms. Typical computer vision applications are visual pattern recognition, face detection, motion tracking, and so on. The original OpenCV has interfaces for programming languages such as C++, C, Python, and Java. Pure Data also has an external library that interfaces with OpenCV to include a subset of the functions. The version that integrates with GEM is pix_opencv. The original project page for pix_opencv is at http://hangar.org/wikis/lab/doku.php?id=start:puredata_opencv.
For the Mac OSX environment, you can have a precompiled version at http://puredata.info/downloads/opencv/releases/0.2. It includes the necessary dependencies, such as the OpenCV framework. After you unzip the downloaded file, it includes the following three items:
	OpenCV-Private-Framework-1.2.dmg
	pix_opencv folder
	puredata_opencv.pdf

The OpenCV-Private-Framework-1.2.dmg file is the disk image for the OpenCV framework. You can mount the disk image and extract the framework as OpenCV.framework. The pix_opencv folder contains everything we need to run the OpenCV library in Pure Data. The puredata_opencv.pdf file is the documentation of the library. To install the library, we need to put them into the ~/Library folder, and which is the personal folder for each user account in the Mac OSX system. Normally, the folder is invisible. To locate it, you have to hold down the Option key and click on Go from the main menu bar.
Within the ~/Library folder, locate the Frameworks folder and place the OpenCV.framework folder into it. If the Frameworks folder is not available, create a new one.
[image: Integrating with OpenCV]
Within the ~/Library folder, locate the Pd folder. If it does not exist, create it. Copy the pix_opencv folder into it.
The OpenCV library works with the GEM library at Version 0.93.3. The pd-extended program we have been using does not meet the minimum requirement. By the time of writing this chapter, the latest pd-extended program has already upgraded to 0.43.4 that can fulfill the GEM library requirement. In order to work with the OpenCV library, we have to upgrade our pd-extended installation to the latest 0.43.4. The steps are the same as what we have mentioned in the Preface.
Now we are ready for our first patch with the OpenCV library, OpenCV001.pd. Here it is the patch with the pix_opencv_threshold object.
[image: Integrating with OpenCV]
Before we can use the pix_opencv functions, we use the path object to inform Pure Data that it has to search the folder ~/Library/Pd/pix_opencv for the library files. The pix_opencv_threshold object is like a threshold filter in image processing. The number box in the right inlet defines the threshold value that turns the pixels black.
The next example, OpenCV002.pd is the famous face detection program in OpenCV. The object is pix_opencv_haarcascade. It requires a parameter file that is the trained data for recognition of various facial features. In the pix_opencv folder, there is a subfolder haarcascades that contains all the available parameter files for face and body recognition. In the following patch, we are going to use an openpanel object to select the appropriate parameter file for face detection.
[image: Integrating with OpenCV]
To run the patch, we click on the bang object and choose the parameter file for the face detection program. Again, within the file choosing panel, type slash /, to invoke the data entry box, and type in ~/Library/Pd/pix_opencv/haarcascades, that is the folder containing all the trained parameter files.
[image: Integrating with OpenCV]
Choose one of those files for frontal face, such as haarcascade_frontalface_alt.xml. Go back to your patch window and start the GEM window and rendering process as usual. The GEM window display will be as what follows.
[image: Integrating with OpenCV]
The GEM window will show a circle to indicate a face. The number inside the circle is the index for the face detected. If you have more faces in the scene, the numbers count from 0, 1, 2, and so on. In your application, you may want to have your own graphics to follow the face. In that case, you can make use of the second and third outlets from the pix_opencv_haarcascade object.
[image: Integrating with OpenCV]
In the preceding patch, the second outlet from the pix_opencv_haarcascade object is the total number of faces detected. The third outlet is a list of all faces information in a format of id x-position y-position radius. We use a route object to extract only the first face data with the ID 0. Of course, you can extract more faces data by specifying more numbers after the route object. After the route object, we use a unpack object to split into three numbers. The first one is the X position of the face. The second one is the Y position. The last one is the radius of the face detected. The unit of measurement is pixel. Since we use the default video size with the message dimen 320 240, the X and Y positions of the face are measured against this dimension. The two expr objects convert the 320 x 240 range into the 10.66 x 8 range for the GEM window size. Note that the Y direction is reversed between the two measurements. These scaled position values are sent to the translateXYZ object to alter the position of a piece of text—Hello. For the radius value, we send it directly to the point size value of the text2d object. It can roughly match with each other. The result display in GEM window is like the following screenshot:
[image: Integrating with OpenCV]
There are a lot more examples in the OpenCV library. Interested readers can follow the help file for each object to try out the effects. We do not intend to cover all the functions here.

Working with the Kinect camera

The Microsoft Kinect camera is a consumer 3D depth-sensing device. The use of a 3D camera will greatly enhance the effectiveness of body tracking. The official Microsoft SDK runs only in the Windows environment. There are, however, a few open source alternatives, that support multiple platforms, such as Mac OSX and Linux. They are as follows:
	The OpenKinect software, http://openkinect.org/wiki/Main_Page
	The OpenNI software, http://www.openni.org/

For Pure Data, Matthias Kronlachner, http://www.matthiaskronlachner.com, has developed a number of external libraries that support both OpenKinect and OpenNI. The pix_freenect object supports the use of OpenKinect driver—libfreenect. The pix_openni object supports the use of the OpenNI driver. A Kinect camera will give you two images, one normal RGB color image and one depth image. The depth image will provide you the depth information of each pixel in the color image. The pix_freenect object will give you both the RGB color image and the depth image as normal GEM pixel data. In addition, the pix_openni object can give you body information about the positions of the skeleton, such as head, neck, hip, arm, leg, and so on.
The pd-extended version we are going to use is 43.4. Before we can use the Pure Data libraries, we have to install both the OpenKinect driver—libfreenect and the OpenNI software. The installation process demands a little working knowledge of the Unix environment in Mac OSX. We'll go back to the command line environment by using the Terminal application. To invoke the Terminal application, go to the folder /Applications/Utilities. Double-click on the Terminal icon to start the command line window.
[image: Working with the Kinect camera]
Installation of libfreenect

The OpenKinect website has detailed instructions for the installation of libfreenect. If you do not want to do it yourself, you can use the Homebrew installation method. Homebrew is a friendly way to install software packages in the Mac OSX environment. The Homebrew software is available at http://mxcl.github.io/homebrew/. Firstly, you need to have a password for your account. The Homebrew installation process will ask for your Mac OSX user password later. To install Homebrew, just type the following in the Terminal window:

ruby -e "$(curl -fsSL https://raw.github.com/mxcl/homebrew/go)"

Note
Starting from Mac OSX 10.4 Tiger, the operating system pre-installed the Ruby programming language. You can just run the preceding command line in the Terminal window. Other Ruby distributions can also be found at http://rubyosx.rubyforge.org/.

It is simple. The preceding command will install the Homebrew software in your computer. Follow the steps to continue the libfreenect driver installation:
	Type brew update to update all the software package formulae.
	Type brew info libfreenect to check the information of this package.
	Type brew install libfreenect to install the package.
	Plug in your Kinect power supply and the USB cable to your computer.
	Type glview in the Terminal window to verify.[image: Installation of libfreenect]

The preceding screenshot is a typical display of the glview program. The left windowpane is the depth image. The right windowpane is the normal RGB color image. It will be the indication of a successful installation of the libfreenect driver.
In the next step, we install the Pure Data external library for the libfreenect driver. The location is at https://github.com/kronihias/pix_freenect. Click on the ZIP icon to download the package. Unzip the file pix_freenect-master.zip you have just downloaded. It will create a folder pix_freenect-master. Open the folder and have a look of the content. It contains a folder named build and a Pure Data help patch pix_freenect-help.pd. We have to copy these into our Pure Data external library folder, located at ~/Library/Pd/, similar to what we have done with the OpenCV library. We then double-click on the build folder to check out its content. The build folder contains four files. Three of them are as follows:
	libfreenect.0.1.2.dylib
	libusb-1.0.0.dylib
	pix_freenect.pd_darwin

These are the essential components for the library. We are going to copy them together with the help file, pix_freenect-help.pd, into the folder at ~/Library/Pd/pix_freenect/. Remember what we have done to create the external library folder for OpenCV. We have to click on the Go | Library from the Finder menu bar with the
Option key pressed down. Double-click the Pd folder inside Library. Create a new folder named pix_freenect. Copy the following four files into this folder, like what shown in the following screenshot.
	libfreenect.0.1.2.dylib
	libusb-1.0.0.dylib
	pix_freenect-help.pd
	pix_freenect.pd_darwin[image: Installation of libfreenect]

Now we complete the lengthy installation process and will be ready to proceed with the testing. Here is our first patch with Kinect, Freenect001.pd.
[image: Installation of libfreenect]
The new object is pix_freenect. It has three parameters. The first one 0 is the first Kinect. It can support up to two Kinect cameras. The second parameter 1 is the indicator to turn on the RGB color image. The third parameter 1 is the indicator to turn on the depth image. The object has two inlets, one for each image stream. We use a gemhead object to connect to each. The pix_freenect object has three outlets. The first and second are the GEM pixel images. We use the translate objects to align them in the left and right halves of the screen. The right outlet is for status message. It contains information about the tilt sensor data and the tilt angle of the motor. The result display in the GEM window is as follows:
[image: Installation of libfreenect]
It may not make a lot of sense by just showing the RGB and depth images. To use the depth image, we may need to extract the depth data for each pixel in the RGB image. The next patch, Freenect002.pd, will use the pix_data object we learned before to achieve this purpose.
[image: Installation of libfreenect]
The preceding patch makes use of a pix_data object to extract the RGB information from a pixel image. In this patch, we use the mouse to navigate around the color image; the number moving along the mouse pointer is the depth information for that pixel, measured in the unit of a meter. The red and green components of the depth image make up the depth data. The unpack object and the following calculation extract the depth data from each pixel. The result GEM window display will be as what follows:
[image: Installation of libfreenect]
So much for the pix_freenect object, in the next section, we move to a more high level external library for the Kinect camera, the pix_openni object. It can detect the presence of human body and is able to extract the skeleton data from the depth image.

Installation of OpenNI

At the time of writing, OpenNI has upgraded to Version 2. The Pure Data library, however, uses the Version 1. On the OpenNI website, you can still download the former version in the archive at http://www.openni.org/openni-sdk/openni-sdk-history-2/. Download the following two files, OpenNI SDK v1.5.4.0 and NITE v1.5.2.21, for the Mac OSX platform. We do not need to download the OpenNI-Compliant Sensor Driver v5.1.2.1. Instead, we have to download the hacked OpenNI driver from other source at https://github.com/avin2/SensorKinect. Click on the ZIP icon to download the zipped files. All together, we have downloaded the following three files:
	SensorKinect-unstable.zip
	OpenNI-Bin-Dev-MacOSX-v1.5.4.0.tar.zip
	NITE-Bin-MacOSX-v1.5.2.21.tar.zip

Move all the files into a folder, say OpenNI inside your Documents folder. Unzip them within the folder.
We need to go inside the SensorKinect-unstable folder to find the Bin folder. Within the Bin folder, copy the zipped file SensorKinect093-Bin-MacOSX-v5.1.2.1.tar.bz2 to the outside OpenNI folder. Unzip it within the OpenNI folder. It will create the folder Sensor-Bin-MacOSX-v5.1.2.1. We are going to use the following three folders for the installation process:
	OpenNI-Bin-Dev-MacOSX-v1.5.4.0
	Sensor-Bin-MacOSX-v5.1.2.1
	NITE-Bin-Dev-MacOSX-v1.5.2.21

Next, we move to the Terminal program again to use the command line interface. When you open the Terminal program, it will go to your root folder. You can now proceed to the folder where you keep the OpenNI installation programs. Type from the terminal window the following change directory cd command.

cd Documents/OpenNI

Install the OpenNI SDK with the following commands:

cd OpenNI-Bin-Dev-MacOSX-v1.5.4.0
sudo ./install.sh

Type your password when you are prompted to enter the password, because we have used the sudo command to run the step in super user mode. Next, we proceed to install the Kinect sensor driver.

cd ..
cd Sensor-Bin-MacOSX-v5.1.2.1
sudo ./install.sh

Finally, we install the NITE package that provides the hand and skeleton tracking functions.

cd ..
cd NITE-Bin-Dev-MacOSX-v1.5.2.21
sudo ./install.sh

Now we finished the installation of the OpenNI software for Kinect in our computer. The next step is to install the Pure Data external library, pix_openni. Its download location is at https://github.com/kronihias/pix_openni. Click on the
ZIP icon to start the download. Unzip the file to create the pix_openni-master folder.
Identify the following files in the folder that we are going to copy to the Pure Data external library folder.
	filter.pd
	gem_selection.pd
	joint.pd
	pix_openni-help.pd
	vera.ttf

We also need to double-click inside the build folder to copy another file:
	pix_openni.pd_darwin

These files need to be copied to the ~/Library/Pd/ folder for Pure Data to use the OpenNI software. We can again, press the
Option key and click on the Go | Library from the main menu bar to open the ~/Library/ folder. Double-click on the Pd folder, and create the pix_openni folder inside it. Copy the six files just listed into the newly created pix_openni folder.
The installation process is now completed. We can proceed to test the external library, with this patch, OpenNI001.pd.
[image: Installation of OpenNI]
The preceding patch is similar to the one we use in the pix_freenect version. The object here is pix_openni. It requires five parameters, 0 1 1 0 0. The first 0 identifies the first Kinect. It can support two Kinect cameras. The second parameter 1 turns on the RGB color image. The third parameter 1 turns on the depth image. The fourth parameter 0 turns off the skeleton tracking. The fifth parameter 0 turns off the hand tracking. We are going to turn on skeleton and hand tracking in later examples. The preceding patch, OpenNI001.pd, will show the color and depth displays similar with the one for pix_freenect.
Next, we move on with the new features in pix_openni. In the following patch, OpenNI002.pd, we experiment with the hand-tracking feature:
[image: Installation of OpenNI]
The right outlet of the pix_openni object sends out the status message. If we enable the hand-tracking by the pix_openni parameter or the hand $1 message, the right outlet will send out the tracking result with a prefix of hand and the number 1. The rest will the X, Y, and Z positions of the hand tracked. Here is what you can expect from the patch.
[image: Installation of OpenNI]
The last example we work on will be for human body tracking. In this patch, OpenNI004.pd, we enable skeleton tracking feature in OpenNI. In the same way we work with hand tracking, we use the right outlet of the pix_openni object to obtain the body information.
[image: Installation of OpenNI]
In the preceding patch, OpenNI004.pd, we specify the pix_openni object with the parameters 0 1 1 1 0. The fourth parameter turns on the skeleton tracking. We can also enable it by using the skeleton $1 message. The right outlet of pix_openni first goes to a route joint object to pass only the joint data of the skeleton. The second route object specifies the parameter head to pass only the position data for the head of the skeleton. The
pix_openni object will produce the following 24 joint data:
	head, neck, and torso
	l_collar, l_shoulder, l_elbow, l_wrist, l_hand, l_fingertip, r_collar, r_shoulder, r_elbow, r_wrist, r_hand, and r_fingertip
	l_hip, l_knee, l_ankle, l_foot, r_hip, r_knee, r_ankle, and r_foot

Each piece of joint data contains five numbers: the first one is the user identification. The next three numbers are the X, Y, and Z positions of the joint. The fifth one is the confidence value. A value 0 for the confidence indicates it can be a duplicate and invalid. We should use the data with confidence value 1.
In the last patch of this chapter, OpenNI005.pd, we use the pix_openni object to track three joints: head, left elbow, and right elbow of the body. There are three gemhead and each with a white square to follow the movement of the joints. Here is the screenshot of the patch.
[image: Installation of OpenNI]
The second route object has parameters head l_elbow r_elbow. Each joint will send out the X and Y positions mapped in the range of GEM window coordinates. In order to have more accurate display, we enable the registration $1 message in order to align the depth and RGB image from the Kinect camera. Here is a sample display from the GEM window.
[image: Installation of OpenNI]

Summary

Besides the features in the pd-extended package, we can further enhance the functionalities of Pure Data through the use of external libraries. In these sections, we learned how to install external libraries, with the examples of OpenCV and the Microsoft Kinect camera. The OpenCV library provides us with a lot of functions to work on computer vision applications that feature live object tracking. With the Kinect camera, we can obtain depth information from live video image. It can facilitate more flexible body part tracking for interactive applications.
We have worked on most multimedia programming tasks with Pure Data and the GEM library: starting from the basic data types and logics, 2D and 3D graphics, digital image, audio and video content, particles system graphics, interactivity with keyboard, mouse and motion tracking, network programming, interfacing with mobile devices, and electronic components and the depth-sensing camera. The skills and knowledge can prepare multimedia artists/designers for applications in interactive multimedia productions.

Appendix A. Communities and References

Pure Data is an open source software. There are online communities that provide development and support for the software. In the following sections, we would like to introduce the various communities, events, documentation that readers can obtain for further reference, and support.
Pure Data communities

The major communities are the official Pure Data website at http://puredata.info and the related website from the author Miller Puckette at http://www-crca.ucsd.edu/~msp. There are also a number of regional Pure Data information websites in different countries.
	Pure Data Japan at http://puredatajapan.info/
	Pure Data Taipei at http://pdtaipei.blogspot.hk/
	Pure Data at IEM, http://pd.iem.at/

Pure Data events

The International Pure Data Convention (Pd-con) has been around for a few years. The first one was in 2004. Besides the presentation of academic papers, there were performances, demonstrations, and exhibitions in the convention. The Pure Data website maintains the documentation for each of the conventions.
The Austrian association Pd~graz ,http://pd-graz.mur.at, organized the First International Pure Data Convention in 2004. Documentation of the convention can be accessed at http://puredata.info/community/conventions/convention04.
In 2007, the 2nd International Pure Data Convention was held in Montreal, Canada. The information is available at http://pure-data.artengine.ca/en/.
In 2009, the 3rd International Pure Data Convention was in Sao Paulo, Brazil. In the Pure Data website, http://puredata.info/community/conventions/convention09/, you can find the complete documentation.
In 2011, the 4th International Pure Data Convention took place in Weimar, Germany. The documentation is now available at the website http://www.uni-weimar.de/medien/wiki/PDCON:Start.

Pure Data artists and organizations

There are a number of individual artists and institutions that either employ Pure Data as a major creative tool or contribute extra functionalities to the Pure Data communities. Here are a few of them for reference.
Reactable

Sergi Jordà, Günter Geiger, Martin Kaltenbrunner, and Marcos Alonso of the Music Technology Group (MTG) in the Universitat of Pompeu Fabra, Spain, designed and built the first Reactable, http://mtg.upf.es/project/reactable, with the audio engine created with Pure Data. It is a tangible musical instrument taking the form of a table. Users move around small pieces of rubber block—the puck, to generate electronic music. At the bottom of the puck is a piece of printed marker, called the fiducial marker. Here are samples of the fiducial markers.
[image: Reactable]
A camera underneath the table tracks the markers' position and orientation to generate the music. In the Pure Data GEM library, we have the object pix_fiducialtrack that performs a similar tracking function.

GOTO10

It is a collective of international artists and programmers, focusing on Free Libre Open Source Software—FLOSS, and digital arts. GOTO10, http://goto10.org/, aims to support and develop digital art projects and software tools for artistic creation with software programming.

Claude Heiland-Allen

Claude is a London media artist using free software, including Pure Data for artistic creation. His website is at http://mathr.co.uk/blog.
[image: Claude Heiland-Allen]

Jun Lee

Jun Lee is a London based Taiwanese sound and media artist who has been using Pure Data for exhibition, live performance, and education. His information related to the GOTO10 is available at http://sonicvariable.goto10.org/.

Hans-Christoph Steiner

Hans-Christoph Steiner has been developing interactive software and composing music. He is one of the primary developers of Pure Data. His works and information can be found at http://at.or.at/hans.

Piksel

Piksel, http://piksel.no, is an annual event in Norway for artists and software developers to meet, present, and develop artistic and software projects, with focus on open source free software.

Baran Gülesen

Baran Gülesen created software, music composition, and musical instruments for media arts installation, performance, and video. The website http://barangulesen.com documents the creative works and education material.
[image: Baran Gülesen]

Andy Farnell

Andy Farnell is the author of the book, Designing Sound. The book is one of the few books on Pure Data. It is mainly written for sound designers and uses Pure Data as the main software tool to create the sound samples. The official website of the book is at http://aspress.co.uk/ds/ and it comes with the sample Pure Data patches for reference. Andy Farnell's personal website is at http://obiwannabe.co.uk/index.html.
[image: Andy Farnell]

Ben Bogart

Ben Bogart created a number of artworks using his ideas of memory association machines and self-organizing systems, which had been presented in various Pure Data conventions. His website is http://www.ekran.org.
[image: Ben Bogart]

Matthias Kronlachner

In the last chapter, we used the Pure Data external libraries, such as, pix_openni and pix_freenect. Matthias Kronlachner was the author of them. Besides writing software, he works with sound programming and audio-visual performance, mainly with the use of Pure Data and GEM. His website is at http://www.matthiaskronlachner.com.
[image: Matthias Kronlachner]

References

Kreidler, Johannes. Loadbang—Programming Electronic Music in Pure Data. Hofheim: Volke Verlag, 2009.
Pd-graz. Bang. Hofheim: Volke Verlag, 2006.
Farnell, Andy. Designing Sound: Practical Synthetic Sound Design for Film, Games, and Interactive Media Using Dataflow. London: Applied Scientific Press, 2008.
Puckette, Miller. The Theory and Technique of Electronic Music. Singapore: World Scientific Publishing Company, 2007.
Barkl, Michael. Pure Data as a Meta-Compositional Instrument. Germany: LAP Lambert Academic Publishing, 2009.
Matsumura, Sei. Pd Recipe Book. Tokyo: BNN, Inc., 2012.
Pure Data FLOSS online manual—http://flossmanuals.net/pure-data/.

 Index

 A

 	adc~ object / Obtaining audio input for interaction

 	advanced effects	experimenting with / Experimenting with advanced effects
	gemhead, layering / Layering with gemhead
	pixel data, coloring / Coloring pixel data
	painterly effect, creating / Creating painterly effect

 	air drum	creating / Making an air drum

 	analog input / Analog input

 	Andy Farnell / Andy Farnell

 	animation	creating, in 3D space / Creating animation in 3D space

 	Arduino	about / Interfacing with custom hardware through Arduino
	functionalities / Interfacing with custom hardware through Arduino
	downloding / Interfacing with custom hardware through Arduino

 	Arduino, functionalities	digital output / Digital output
	servomotor control / Servomotor control
	digital input / Digital input
	analog input / Analog input

 	arithmetic calculation	, performing / Performing arithmetic calculation

 	artists, Pure Data	Reactable / Reactable
	GOTO10 / GOTO10
	Claude Heiland-Allen / Claude Heiland-Allen
	Jun Lee / Jun Lee
	Hans-Christoph Steiner / Hans-Christoph Steiner
	Piksel / Piksel
	Baran Gülesen / Baran Gülesen
	Andy Farnell / Andy Farnell
	Ben Bogart / Ben Bogart
	Matthias Kronlachner / Matthias Kronlachner

 	audio	generating, waves used / Generating audio with waves

 	audio input	obtaining, for interaction / Obtaining audio input for interaction

 	audio processing	preparing / Preparing for audio processing

 	Audio Settings... option / Making an air drum

 B

 	background removal	performing / Performing background removal

 	bang box / Responding to keyboard events

 	bang button / Automating the counter

 	bang object / Obtaining images from external sources

 	Baran Gülesen / Baran Gülesen

 	basic 2D graphics	about / Drawing basic 2D graphics
	drawing / Drawing basic 2D graphics

 	basic 3D primitive shapes	about / Drawing basic 3D primitive shapes
	drawing / Drawing basic 3D primitive shapes

 	basic particle system	creating / Creating a basic particle system

 	Ben Bogart / Ben Bogart

 C

 	chroma key	working with / Working with chroma key

 	Claude Heiland-Allen / Claude Heiland-Allen

 	color detection	performing / Performing color detection

 	color posterization effect / Preparing a video-jockey instrument

 	colors	comparing / Comparing colors

 	Command key / Displaying messages

 	communities, Pure Data	Pure Data Japan / Pure Data communities
	Pure Data Taipei / Pure Data communities
	Pure Data at IEM / Pure Data communities

 	compute audio box / Making an air drum, Preparing for audio processing

 	coordinates system	about / Understanding the coordinates system

 	counter	creating / Creating a counter
	automating / Automating the counter

 	curve object / Drawing basic 2D graphics

 	custom hardware	interfacing, Arduino used / Interfacing with custom hardware through Arduino

 D

 	3D space	animation, creating / Creating animation in 3D space

 	dac~ object / Making an air drum

 	data entry cursor / Displaying messages

 	delay object / Generating audio with waves

 	Delete key / Performing arithmetic calculation

 	digital color	working with / Working with digital color

 	digital input / Digital output, Digital input

 	direction message / Working with chroma key

 E

 	Edit Mode / Understanding the terms and interface

 	Edit | Clear console / Displaying messages

 	Edit | Edit mode / Displaying messages, Performing arithmetic calculation

 	env~ object / Obtaining audio input for interaction

 	events, Pure Data	about / Pure Data events

 	existing sound files	about / Using existing sound files
	using / Using existing sound files

 	expr object / Bouncing the ball on the four margins, Comparing colors

 	external sources	images, obtaining from / Obtaining images from external sources

 F

 	fiddle~ object / Obtaining audio input for interaction

 	fiducial marker / Reactable

 	File | Upload / Interfacing with custom hardware through Arduino

 	Firmata / Interfacing with custom hardware through Arduino

 	first program	creating / Creating the first program

 	Flip4Mac / Obtaining images from external sources

 	float object / Creating animation in 3D space, Creating a motion detection animation

 	float parameters / Performing arithmetic calculation

 	frame difference	obtaining / Obtaining the frame difference

 G

 	GEM	display window / Using the GEM display window

 	GEM display window	using / Using the GEM display window

 	gemhead	layering with / Layering with gemhead

 	gemhead object / Creating painterly effect

 	gemwin object / Using the GEM display window

 	geometric transformation	applying / Applying geometric transformation
	translation, performing / Performing translation, rotation, and scaling
	rotation, performing / Performing translation, rotation, and scaling
	scaling, performing / Performing translation, rotation, and scaling
	window, checking / Checking the margins of the window
	transformations order / Order of transformations

 	GOTO10 / GOTO10

 	graphical button	creating / Creating a graphical button

 	graphical interface objects	using / Using the graphical interface objects

 H

 	Hans-Christoph Steiner / Hans-Christoph Steiner

 	Hello World message / Displaying messages

 	Homebrew installation method / Installation of libfreenect

 	Hslider / Using the graphical interface objects

 I

 	IAC Driver Bus 1 option / Working with MIDI

 	image filters	applying / Applying image filters

 	images	obtaining, from external sources / Obtaining images from external sources
	used, for particle rendering / Rendering particles with images

 	inlet / Understanding the terms and interface

 	inlet object / Bouncing the ball on the four margins

 	Input/output / Understanding the terms and interface

 	installing	libfreenect / Installation of libfreenect
	OpenNI / Installation of OpenNI

 	interactive animation	creating / Creating interactive animation
	moving ball, animating / Animate the moving ball
	ball, bouncing / Bouncing the ball on the four margins
	paddle control, creating / Creating the paddle control
	score, keeping / Keeping and displaying the score
	score, displaying / Keeping and displaying the score

 	interface elements	used, for animation creating / Making an animation with the interface elements

 	Internet communication	about / Communicating through the Internet
	connection, creating / Making the connection
	messages, sending / Sending messages
	numbers, sending / Sending numbers

 	invert filter / Applying image filters

 J

 	Jun Lee / Jun Lee

 K

 	keyboard events	responding / Responding to keyboard events

 	Kinect camera	about / Working with the Kinect camera
	open source alternatives / Working with the Kinect camera
	working with / Working with the Kinect camera
	libfreenect, installing / Installation of libfreenect
	OpenNI, installing / Installation of OpenNI

 L

 	left key / Creating the paddle control

 	libfreenect	installing / Installation of libfreenect

 	list append / list prepend function / Tracking multiple points

 	list length function / Tracking multiple points

 	list split function / Tracking multiple points

 	list trim function / Tracking multiple points

 	loadbang object / Creating animation in 3D space

 	loop (list view) panel / Using existing sound files

 M

 	Matthias Kronlachner / Matthias Kronlachner

 	Media | ALSA MIDI / Working with MIDI

 	messages	displaying / Displaying messages

 	metro object / Creating animation in 3D space, Creating painterly effect, Obtaining audio input for interaction

 	MIDI	about / Working with MIDI
	working with / Working with MIDI

 	MIDI Source option / Working with MIDI

 	motion	detecting / Detecting motion

 	motion detection animation	creating / Creating a motion detection animation

 	mouse	interacting with / Interacting with the mouse

 	mouse position	obtaining / Obtaining the mouse position

 	MTG / Reactable

 	multiple images	layering / Layering multiple images

 N

 	noise~ object / Generating audio with waves

 	number box / Obtaining the mouse position

 O

 	*~ object / Generating audio with waves

 	OpenCV	about / Integrating with OpenCV
	integrating / Integrating with OpenCV

 	OpenKinect software / Working with the Kinect camera

 	open message / Preparing a video-jockey instrument

 	OpenNI	installing / Installation of OpenNI

 	OpenNI software / Working with the Kinect camera

 	operation modes	edit mode / Understanding the terms and interface
	run mode / Understanding the terms and interface

 	Option key / Installation of libfreenect, Installation of OpenNI

 	OSC	about / Using Open Sound Control with mobile devices
	using / Using Open Sound Control with mobile devices
	TUIOpad, connecting to host computer / Connecting the TUIOpad to the host computer
	messages, decoding / Decoding the OSC messages
	multiple points, tracking / Tracking multiple points
	graphics, drawing / Drawing the graphics

 	OSC messages	decoding / Decoding the OSC messages

 	outlet / Understanding the terms and interface, Tracking multiple points

 	Output device 1 option / Working with MIDI

 P

 	painterly effect	creating / Creating painterly effect

 	particles	rendering, with images / Rendering particles with images

 	particles system	force, applying / Applying forces to the particles system

 	particle system	about / Understanding a particle system
	working, requirements / Understanding a particle system
	combining, with motion tracking / Combining particle system with motion-tracking

 	PD	terms / Understanding the terms and interface

 	Pduino library / Interfacing with custom hardware through Arduino

 	Pd~graz / Pure Data events

 	photo-resistor / Analog input

 	Piksel / Piksel

 	pink~ object / Generating audio with waves

 	pixel data	coloring / Coloring pixel data

 	pix_add effect / Layering multiple images

 	pix_diff object / Layering multiple images

 	pix_movement object / Detecting motion

 	pix_openni object / Installation of OpenNI

 	pix_texture object / Detecting motion

 	pix_video object / Creating painterly effect

 	Play button / Using existing sound files

 	Preferences | Audio Settings / Obtaining audio input for interaction

 	Preferences | MIDI settings / Working with MIDI

 	presence	detecting / Detecting presence

 	programming elements / Understanding the terms and interface

 	Properties option / Using existing sound files

 	Properties window / Using the graphical interface objects

 	Pure Data	communities / Pure Data communities
	events / Pure Data events
	artists / Pure Data artists and organizations
	references / References

 	Pure Data Convention (Pd-con) / Pure Data events

 	Put | Number / Performing arithmetic calculation

 	Put | Object / Displaying messages

 	Put | Toggle / Automating the counter

 Q

 	QjackCtl / Working with MIDI

 R

 	-resize parameter / Using existing sound files

 	Reactable / Reactable

 	readsf~ object / Making an air drum

 	rectangle object / Obtaining images from external sources

 	references / References

 	right key / Creating the paddle control

 	run mode / Understanding the terms and interface

 S

 	servomotor control / Servomotor control

 	Shift + Command + L / Understanding the terms and interface

 	Shift + Ctrl + L / Understanding the terms and interface

 	Shift key / Performing arithmetic calculation

 	sig~ object / Generating audio with waves

 	slider / Using the graphical interface objects

 T

 	TCP	about / Communicating through the Internet

 	terms, PD	operation modes / Understanding the terms and interface
	programming elements / Understanding the terms and interface
	Input/output / Understanding the terms and interface
	windows / Understanding the terms and interface

 	time management / Working with time

 	toggle box / Creating the paddle control

 	translateXYZ object / Creating animation in 3D space

 	trigger float float / Creating painterly effect

 	trigger object / Creating animation in 3D space, Making an air drum

 	trigger parameters / Performing arithmetic calculation

 	TUIOdroid / Using Open Sound Control with mobile devices

 	TUIOpad / Using Open Sound Control with mobile devices	connecting, to host computer / Connecting the TUIOpad to the host computer

 U

 	UDP	about / Communicating through the Internet

 V

 	video-jockey instrument	preparing / Preparing a video-jockey instrument

 	View list button / Using existing sound files

 	visual display	controlling / Controlling the visual display of another computer

 W

 	waves	used, for audio generation / Generating audio with waves

 	world_light object / Drawing basic 3D primitive shapes

 Z

 	ZIP icon / Installation of OpenNI

 OEBPS/graphics/4647_05_019.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Motion002.pd

fmtemr@“

Fectangle 5.33 4

OEBPS/graphics/4647_03_028.jpg
@ Pd-extended File Edit Put Find Media Window Help

 Image004.pd

create destroy gemhead ‘gemhead

‘ ‘open Sample®08. jpg Jopen Sample@10. jpg

gemwin _image pix_image

WA,,//AJ:::::[:::::

pixCmix

Ppix_texture

rectangle 3 3

OEBPS/graphics/4647_02_021.jpg
Pd-extended File Edit Put Find Media Window Help

OEBPS/graphics/4647_03_026.jpg
@ Pd-extended File Edit Put Find Media Window Help

Image004.pd

lcreate| |destroy gemhead 'gemhead

‘ lopen Sample08. jpg lopen Sample@10. jpg

lgemwin lpix_image pix_image

Ppix_add

Ppix_texture

rectangle 3 3

OEBPS/graphics/4647_07_029.jpg
@ Pd-extended File Edit Put Find Media Window Help

8006

L
pd dsp $1

metro 100

‘tabwrite~ wave'

OEBPS/graphics/4647_05_016.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Motion001.pd

%emnead
£
-

x_video

Jtriggerag

ix_separator

i
el
s

fuﬂff
fmtexmm

ctangle 5.33 4

OEBPS/graphics/4647_03_007.jpg
@ Pd-extended File Edit Put Find Media Window Help

& Film00L.pd

create =destroy =gemhead

gemwin auto $1

Z)pen Central@02.mp4

pix_film

i)i)Ltexture:

2 5
[
rectangle

OEBPS/graphics/4647_09_033.jpg
® Pd-extended File Edit Put Find Media Window Help

8006 i Freenect002.pd

{imen 640 480

[create| destroy devtmme s1

?nem 50
‘gemwin

ix_freenect 0 1 1=

fiuemmn

Fectagie 5.3

OEBPS/graphics/4647_04_055.jpg
® Word File Edit View Insert Format Font Tools Table Window Work Help

inlet
Float $0
Zibst raction Zibst raction
outlet
low7 1018
float $0°

1016

OEBPS/graphics/4647_06_050.jpg
@ Pd-extended File Edit Put Find Media Window Help

*Motion001.pd

fmem [open Samp1e002.png f«m«
Thorizontal fuumea

ix_image
— -
[atpha
fmﬂip

1

frigger a a rigger £ £

e |

OEBPS/graphics/4647_02_038.jpg
@ Pd-extended File Edit Put Find Media Window Help

:cr'eate =destr'oy

emhead

gemwin

lighting $1 r i
] | T

gemhead ;1 10

1
‘i?.
| I | 36
world_light o o I”eI

OEBPS/graphics/4647_07_002.jpg
@ Pd-extended File Edit Put Find Media Window Help

+/ compute audio
peak meters
cup cup / console

800 audio
sample rate: 44100 | delay (msec): 20 | [] use callbacks|
™ input device 1| (0)B Microph | channels:

™ output device 1| (0)Built-in Output | channels: [2 |

[Cancel | [Apply | [OK | [Saveallsettings |

/)

OEBPS/graphics/4647_06_027.jpg

OEBPS/graphics/4647_06_047.jpg

OEBPS/graphics/4647_07_007.jpg
Find Media Window Help

@ Pd-extended File Edit Put

| ©00 aray
name | nare
size [100
Msave contents
) draw as points
@® polygon
) bezier curve
(@) innew graph
© in last graph

[Cancel | (oK |

OEBPS/graphics/4647_04_007.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Mouse002.pd

[create| [destroy
A

gemwin

T

translatexyZ

'square 0.2

OEBPS/graphics/4647_04_052.jpg
pdextended

Gemkeyboard

[genhead

color 01 1

OEBPS/graphics/4647_08_034.jpg
® Pd-extended File Edit Put Find Media Window Help

8006

Tort srpeact] [sdprecetve 3933

unpackos¢|
route0sC /tuio|
route0sC /2ocur|

route alive set

I

Erigger 11

r b1

N

Tist length Tist]

setect Tist gite 3

I

s b1 unpack f £

z

OEBPS/graphics/4647_08_037.jpg
® Pd-extended File Edit Put Find Media Window Help

8006

Tort srpeact] [sdprecetve 3933 3

unpackosc Tist split 1]
< FpLL

— =
route0sC /tuio| Tist split 2

route0sC /2ocur|

route alive set

I Sy
) ~
alive trigger 11 s pos| set

/}

s & I
Tist length Tist

L

Tise e 3

e

L
*

rigger £ £ inpack f £

& :

gt -

s b1,

OEBPS/graphics/4647_03_049.jpg

OEBPS/graphics/4647_08_023.jpg
@ Pd-extended File Edit Put Find Media Window Help

import mrpeach

udpreceive 3333

unpack0SC|

print

OEBPS/graphics/4647_07_039.jpg
@ Pd-extended File Edit Put Find Media Window Help

L

pd dsp $1

2
-

4
L

*,

*. 0

metro 100

dac~’ tabwrite~ wave

OEBPS/graphics/4647_04_051.jpg
@ Pd-extended File Edit Put Find Media Window Help

8006 *_Pong005.pd

[destroy Loadbang I

et S I

randon 100 [randon 100

>
lgemwlnl ;
p— I
2
s

Bl

200

50
200 expr $F1<1 && $f2<-3.1

select 1

L

trigger b b

‘EranslatexyZ

circle 0.5

select 123 124]

- L

trigger b b £

e

rx2

I

0.5

translatexvz 0 -3.8 0]

Fectangle 1 0.3

OEBPS/graphics/4647_05_037.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Color002.pd

colorDistance

1.559

OEBPS/graphics/4647_03_024.jpg
® Pd-extended File Edit Put Find Media Window Help (SO

i Image003.pd

'gemhead

[create| destroy lopen Sample06. jpg

‘ Ppix_image|

lgemwin

[fill 81/ [smooth $1. {7

-

[s
o

L
Ppix_lumaoffset

Ppix_texture

rectangle 3 3

OEBPS/graphics/4647_04_014.jpg
@ Pd-extended File Edit Put Find Media Window Help = &

Keyboard001.pd

e

-

%reate [destroy femkeyboard

‘gemwin 31

OEBPS/graphics/4647_04_041.jpg
@ Pd-extended File Edit Put

Find _Media_ Window Help

8.2 @1

/

iy

-2.1

D

Imz slatextZ

Girae o

T\
I

OEBPS/graphics/4647_05_003.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Frame001.pd

dimen 800 600 'gemhead Store

{cfeate destroy P
= Ppix_video
-

igemwin

{trigger b b

pix_rgba 'gemhead

[)
T

Ppix_buffer vid 1 Ppix_buffer_write vid /gix,buffer,read vi

/

pix_diff

Ppix_texture

Irectangle 5.33 4

OEBPS/graphics/4647_07_027.jpg
@ Pd-extended File Edit Put Find Media Window Help

8006

L
pd dsp $1

Imetro 100

‘tabwrite~ wave

OEBPS/graphics/4647_08_019.jpg
@ Pd-extended File Edit Put Find Media Window Help

*_Net008.pd

Connect Tocalhost 3 createl destroy

emmouse 1 1/ gemwin
trigger b £
ack f £

disconnect send $1 $2
—

etsend

Z

OEBPS/graphics/4647_07_025.jpg
@ Pd-extended File Edit Put Find Media Window Help

Imetro 100

‘tabwrite~ wave

OEBPS/graphics/4647_07_059.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Input004.pd

L r num

B L
pd dsp $1 metro 100

trigger b b b

Fandon 300
+ 100
s
rigger
P

7
I

num

OEBPS/graphics/4647_07_022.jpg
® Pd-extended File Edit Put Find

8006

Media_ Window _Help

5 Audio005.pd

Loadbang

L

irigger bbb pd dsp 1

read -resize tom.aif tom

read -fesize kick.aif kick

read -resize snare.aif snare

soundfiler

14712

1oop

Kick

Cmmn]
L

trigger f f

[]

s play tabwrite loop ‘tabread loop
s play

r play

select 123

=\

[Erigger b b| [Erigger b b)
e e

,l Wl‘.‘l““ﬁfm

OEBPS/graphics/4647_06_043.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle013.pd

Loadbang

‘dimen 800 600

I

rt_source T point,

e/:destrvy Tighting $1 |

rt_velocity sphere 0 0.1 0.2 0.3]
0.4

e

re_size
rt_killold 20
Velocity
st
gemhead

Forta tighd

OEBPS/graphics/4647_08_007.jpg
® Terminal Shell Edit View Window Help

8006 4 chungbryan — bash — 103x34

~ chungbryans ifconfig
1ags=8049<UP, LOOPBACK, RUNNING, MULTICAST> mtu 16384
options=3<RXCSUM, TXCSUM>
::1%100 prefixlen 64 scopeid 0x1
0.1 netmask 0700000
1 prefixlen 128

Flaga-2853<UP, BROADCAST, SHART, RUNNING, SIHPLEX, MULTICAST> ntu 1500
bt ions=27 RXCSUN, TXESUM, VLAN_HTU, 7S04
ether 34:15:96:08:25:22
Sncct fes0::3615:0e17: 1e08:25a2%en prefixlen 64 scopeid Oxd
inet 192.168.11. netmask OxT{111100 broadcast 192.168.11.255
nedia: autoselect (100baseTX <full-duplex, flow-controls)
Status: active
Flags-t853<Up, ROADCAST, SHART, RUNNING, SIHPLEX, MULTICAST> ntu 4078
addr 34:15:9e: 11: fe:08:25:22
nedia: autoselect <full-duplex>
Status: inactive
Flags=B823<UP, BROADCAST, SHART, SIHPLEX, HULTICAST> ntu 1500
ether 7c:64:62:75:47160
media: autoselect (<unknown type>)
Status: inactive
§200: Tlaga-5802<BROADCAST, STHPLEX, MULTICAST> mtu 2304
ether e:60:62:75:47:60
nedia: autoselect
Status: inactive
seari~ chungbryans |

OEBPS/graphics/4647_02_001.jpg
8600

Help Browser

Manuals/
Pure Data/

3dp/

Gem/
adaptive/
apple/
bassemu~/
boids/
bonk-~/
baylor/
choice/
complex-mod-~-help.pd
controctopus/
creb/

exc/

cyclone/
earplug~/
ekext/
expr-help.pd

examples/
manual/
accumrotate-help.pd
alpha-help.pd
ambient-help.pd
ambientRCB-help.pd
camera-help.pd
circle-help.pd
color-help.pd
«colorRGB-help.pd
colorSquare-help.pd
‘cone-help.pd
‘cube-help.pd
‘cuboid-help.pd
Curve-help.pd
curve3d-help.pd
cylinder-help.pd
depth-help.pd
diffuse-help.pd
diffuseRGB-help.pd

OLbasic/
02.advanced/
03lighting/
04.pix/
04.video/
05.text/
06.particle/

09.0penGL/
10glsl/
99.games/
data/

03.View_OSD.pd
04.Fog.pd

05.Stereo.pd
06.StereoParticle.pd
07.5napshot1.pd
08.5napshot2.pd
09.5napshotSave.pd
10.LinearPath.pd
11.SplinePath.pd

12 Hsv.pd
13.ModelRescale.pd
14.RenderOrder.pd
15.GemWin.pd
16.vertex_program.pd
17.fragment_program.pd
18.g1_shading_language.pd
19.pointer.pd
20.double-gemhead_vs_repe.
2Lbasic_LSystem.pd
22.double-iterative.pd

OEBPS/graphics/4647_04_010.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Mouse005.pd

[create destroy ennouse 1 1
T3
| L

‘gemwin ‘gemhead

loadbang :trigger f _fl

110

I

spigot spigot
B

{translatexyZ

'square 0.2/

OEBPS/graphics/4647_07_036.jpg
@ Pd-extended File Edit Put Find Media Window Help

. select 01234567

T e N
262 294 330 349 392 440 404 523
B s o

trigger f b

b

I =
$1 50 delay 300
=y

line< 0.5
-

osc<| [$1 50

line~

OEBPS/graphics/4647_03_047.jpg
pdextended

OEBPS/graphics/4647_04_022.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Button001.pd

eate [destroy _gemmouse 1 1

N TS

lgemwin

)

o0\

£
=
x

N

w
g
N P
g

'gemhead

AT T

©
Ny

[color

rx ry

o

id n—u;;\\—u
\
\

‘translateXYZ

]
=

@
]

1 5

'square 0.2/

OEBPS/graphics/4647_04_025.jpg
@ Pd-extended File Edit Put Find Media Window Help

[create. destroy

_—

_
gemwin

select 18 19 20 Key: 1, 2, 3

%emhead _— -

‘ open Centra .mp4

open Central©02.mp4

P

lopen Central@03.mp4

ix_film
ix_texture

rectangle 4 3

OEBPS/graphics/4647_05_014.jpg

OEBPS/graphics/4647_appendix_002.jpg
BG ABOUTI COURSEWORKS DIGTALART MUSIC VIDEO

SHAPE & FORMS, AR & ENERGY Archive for PURE DATA (PD)

image processing software

PRIL11,2013
£,

> b\ i H

OEBPS/graphics/4647_03_027.jpg
@ Pd-extended File Edit Put Find Media Window Help

pix_image

OEBPS/graphics/4647_08_017.jpg
® Pd-extended File Edit Put Find Media Window Help

000 * Net006.pd

Computer 2 with IP address 192.168.1.11

[connect 192.168.1.10 3000

etreceive 3001

In disconnect ia
o ;5

end $1

etsend

C

OEBPS/graphics/4647_02_019.jpg
@ Pd-extended File Edit Put Find Media Window Help

OEBPS/graphics/4647_04_039.jpg
@ Pd-extended File Edit Put Find Media Window Help

800 * Ball.pd

rtet] metro rtet] reset X vetoct
T Lllcis i inlet Y velocity
L I

‘trigger b b ‘trigger b

i £ rigger b £
5 50-x3 s $0-y3 s Se-reset s s0-x3) / IS So-y3 T
/
/

r So-reset

@ r $e-xz, 0 r se-yz,
I I I I
frigger b f| [triggerbbb frigger b f [trigger bbb

T i T [trigger b £ I hs rigger
s 503, T s s0-x; L~ — 593 5 50-y;
— o
TFroat
Logt
b=
trigger £ £ rigger £ £

lexpr $f1>3.5 || $fi<-3.5) fwr $F1>3.5 |1 $f1<-3.5

select 1 setect 1

I I
s s0-x2 s $0-y2

OEBPS/graphics/4647_08_052.jpg
@ Pd-extended File Edit Put Find Media Window Help

¥ Micro002.pd

digital 13 $1 /ZainMode 13 output

e

arduing|

OEBPS/graphics/4647_01_043.jpg
@ Pd-extended File Edit Put Find Media Window Help S &

© 00O |hradio] Properties
- dimensions(pix):

size: [30

Slider

[(noinit | number:

messages
send-symbol:

receive-symbol:

label

Radio button

colors
@ background () front () label]

[compose color | testlabel

OEBPS/graphics/4647_06_048.jpg
@ Pd-extended File Edit Put Find Media Window Help

rt_velocity sphere © © 0.5 0.3/

[

fansize
f

rt_killold 100]

Particle I0 [text S1 s pt

OEBPS/graphics/4647_01_033.jpg
@ Pd-extended File Edit Put Find Media Window Help (SO

metro 1000

OEBPS/graphics/4647_07_056.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Input001.pd

L

pd dsp $1

metro 100

‘tabwrite~ wave'

OEBPS/graphics/4647_02_022.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Gem002.pd

create destroy Z;emhead

gemwin draw linestrip

OEBPS/graphics/4647_03_025.jpg

OEBPS/graphics/4647_07_040.jpg
@ Pd-extended File Edit Put Find Media Window Help

iy .
metro 100

‘tabwrite~ wave

OEBPS/graphics/4647_07_023.jpg
@ Pd-extended File Edit Put Find Media Window Help

OEBPS/graphics/4647_03_051.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Buffer001.pd

= trigger b b F
\

\ destroy puffer 1/ reset
_—

emhead

_—
-
~—

pix_video

ix_texture

[
gemvin I
I

rectangle 4 3

OEBPS/graphics/4647_07_044.jpg
® SimpleSynth File Edit Window

0006 SimpleSynth

MIDI Source: [IAC Driver IAC Bus 1

Sound Set: |Apple DLS Sound Set

MIDI Channel | Instrument
Piano 1
Piano 1
Piano 1
Piano 1
Piano 1
Piano 1
Piano 1
Piano 1
Piano 1

10 Piano 1
11 Piano 1
12 Piano 1
13 Piano 1
14 Piano 1
15 Piano 1
16 Piano 1

Filter Cutoff: 10 He e) 1242

CUsages [

Piano 3
Piano 3

Honky-tonk
Honky-tonk

Harpsichord

Program Number.
Bank Select MSB:

Bank Select LSB: |0

OEBPS/graphics/4647_02_064.jpg
@ Pd-extended File Edit Put Find Media Window Help e

* Gem006.pd

[create| destroy gemhead

metro 20/

|

translateXyZ

trigger a

—

separator eparator

ranslateXYZ

@

draw line ‘ draw line
L gre

— =

I
-

Tsphere 0.8 36 sphere 0.3 36

OEBPS/graphics/4647_05_039.jpg
& Pd-extended

File Edit Put Find Media Window Help

i Color004.pd

%«memsa

fuumea

jm@a

mmp

Loadbang

horizontal

tr'lgger' aa

fmsepnmmr-

metmlm =

~ I/

[pix_data

I

fuepammr-

ix_texture| trigger a o

T Toge’
- - / zpigot]
[rectangle 5.33 4 /

cotorpistance

Store color

OEBPS/graphics/4647_05_044.jpg
@ Pd-extended File Edit Put Find Media Window Help

Clock Video X Y

inlet| [inlet| |inlet inlet

I

;mfyfﬁ Jtrigger £ ¢
Erigger a a /

/ spigot

olorDistance

0.3

hange

OEBPS/graphics/4647_06_004.jpg

OEBPS/graphics/4647_08_006.jpg
Network Connection

Network Connection Detss General
Propery Value =
oo e Dlnnforce 01001000 W Ehe Pomea s
e gl s Comecy No Intemet acess
i iy Ve States

Ouratrs: :

Pud Subret sk 256.255.255.0 Speed: 100.0Mbps
Lesse Obtaned Sunday, arch 24, 2013 30638 Al
Lesse B Tuesdey. Mach 26, 2013 10637 A
1Pva Defauk Gateway 192168111
IPUADHCP Sever 182168111
Pud DNS Server 192168111 Actuiy
1PU WINS Server .
NetBIOS over Topip .. Yes st — B recenes
Liiclocal 1Py Address fe80:b0c326655266.4783%10 4
176 Defaut Gatewy ortes: memaE | 7e0,635,058
1PuB DNS Server
< g

[Come]

OEBPS/graphics/4647_07_047.jpg
Recycle Bin

ke

TouchDesi...

(o]
2]

Arduino

&

Eclipse

OEBPS/graphics/4647_06_034.jpg
Hello

Hello Hello

Yo
Hallo Hello e
Hello Hello Hello Hello H%Ueq!o
i
Hello ello
e Pl B

mu&‘fﬂ&&l ﬂneuo He|
Hello s el

Heilello
o Heffello

Hello

OEBPS/graphics/4647_07_030.jpg
@ Pd-extended File Edit Put Find Media Window Help

pd dsp $1

trigger b b

OEBPS/graphics/4647_07_046.jpg
@ Pd-extended File Edit Put Find Media Window Help

compute audio
peak meters

cup cup / console

input device 1: [_none

out__none

OEBPS/graphics/4647_06_001.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle001.pd

loadbang g

gimen 800 600

?/éate [destroy f
st [
o

art_head

art_velocity point 0 0.2 0

art_killold

art_draw

OEBPS/graphics/4647_04_013.jpg
® Pd-extended File Edit Put Find Media Window Help 2 38

*_Keyboard001.pd

lcreate| destroy femkeyhourd ‘gemkeyname.

gemwin 12 a

OEBPS/graphics/4647_03_054.jpg
@ Pd-extended File Edit Put Find Media Window Help

B

trigger bbb b b
~
I ~~

femhead emhead .

e o .
ix_video random 1000 random 1000
f I
/

frigger b b

I I = -
buffer 1 reset ‘ f 1000 f 1000

|
tr R

translatexyZ
= f

circle 0.2/

OEBPS/graphics/4647_03_003.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Image001.pd

create aestroy Bemhead
@

;penpanel

L
open $1

gemwin

?ix_image
L .
pix_texture

}ectanale 27

OEBPS/graphics/4647_03_056.jpg
@ Pd-extended File Edit Put Find Media Window Help

7 1000

Ff

OEBPS/graphics/4647_08_047.jpg
Servo motor

OEBPS/graphics/4647_04_036.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Test002.pd

OEBPS/graphics/4647_09_034.jpg
® Pd-extended File Edit Put Find Media Window Help

OEBPS/graphics/4647_04_040.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Pong003.pd

OEBPS/graphics/4647_07_006.jpg
& Pd-extended

File

Edit

L.l Find Media

Object
Message
Number
Symbol
Comment

Bang
Toggle
Number2
Vslider
Hslider
Vradio
Hradio
vu
Canvas

Graph

%82
%3
4
EY

%8
08T
o8N
o8V
0%H
©%D
ol

o8U
£%C

Window Help

OEBPS/graphics/4647_01_027.jpg
@ Pd-extended File Edit Put Find Media Window Help [SC

+ counter.pd

OEBPS/graphics/4647_06_049.jpg

OEBPS/graphics/4647_07_009.jpg
& Pd-extended

8006

File Edit Put Find Media Window Help

b Audio002.pd

L

pd dsp $1

read -resize snare.aif snare

soundfiler:

11825

OEBPS/graphics/4647_07_013.jpg
@ Pd-extended File Edit Put Find Media Window Help

name [loop Canvas Properties
size[16 X units per pixel 0

#save contents ¥ units per pixel 0

() draw as points /graph on parent

@® polygon hide object name and arguments

O bezier curve X range: from [0 to[15 size [200 | margin [0

[delete me. |Y range: from [5 to[-1 size [140 | margin [0

t | Cancel |[Apply |[OK | Cancel Apply oK

OEBPS/graphics/4647_01_032.jpg
@ Pd-extended File Edit Put Find Media Window Help SO

- autoCounter.pd

metro 1000

@

OEBPS/graphics/4647_07_004.jpg
@ Pd-extended File Edit Put Find Media Window Help

b Audio001.pd

rigger b

b
:

pen background.aif

OEBPS/graphics/4647_01_012.jpg
ﬁe11q+wﬂr1d

print

OEBPS/graphics/4647_07_041.jpg
@ Finder File Edit View Go Window Help

806 s
1> | Z][o]=] @

FAVORITES .
%3 Dropbox y /

= LAl Elle ‘Adobe Utilties Adobe Utilties - Airport Utility Applescript Editor
D Airdrop IGSSi

[Desktop

& chungbryan M < ! \

Applications 0 f=—=]

5! Documents Bluetooth File 8ot Camp Colorsync Uity
{2 Google Drive Exchange Assistant

DEVICES .E
[Z) BOOTCAMP) v%/
=~ —

[BryanC.. &

Console DigitalColor Meter Disk Utility

¢ R

o
Grapher Keychain Access Migration Assistant Network Utility

OEBPS/graphics/4647_04_012.jpg
gger b b f select 1
4 £]

| s clear

OEBPS/graphics/4647_04_009.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Mouse004.pd

[create destroy

gemwin

s blue s red

'square 0.2/

OEBPS/graphics/4647_03_031.jpg
Preview Go_Tools Bookmark:

Window _Help

0 Mask00Ljpg
@[z

OEBPS/graphics/4647_09_045.jpg
@ Pd-extended File Edit Put Find Media Window Help

[dinen 640 480

i " il .

Create| [destroy| skeleton S1 head 50 mgimwmem 50

ix_openni 01110

lgenwin

route joinf
fiumurg

= = route head 1_elbow r_elbon,
[rectangle 5.33 4 =

= = //

k £ ffff k £ ffff k £ ffFf
ps e Brosge .7 £.¢¢ froopk 7 €0 | prpag €7 £ ¢

rx rx2 rx3

oyl ry2 ry3

[L]

Eranslatexyzl franslatexyZ [franslatexvZ

square 0.2 square 0.2 sauare 0.2

OEBPS/graphics/4647_03_048.jpg
@ Pd-extended File Edit Put

Find Media Window Help

- Image006.pd

Gemead[gpen Somp1e0i0. g
//
fum:

translate 1 -2 -2 0]

ColorRGB @ 11 1
e

L =
pitexturd]

e e &
[rectangle 2 2

-

fm/w o pen Srpios. g = Soen sarpteoto. oo

i g
Sranslas 1228
eI To T
itoxturd

Fecegie 23

pix_inage|

L
[pix2grey

translate 1 -2 2 0]
pix_texture]

Fecegie 23]

head| open Sample@10.jpg
f =

fumgen

translate 12 -2 0]

ColorRGB 10 1 1]

fuemmn

Fectangie 2 7

OEBPS/graphics/4647_04_027.jpg
@ Pd-extended File Edit Put Find Media Window Help

¥ Keyboard007.pd

%mkeﬁoard
moses 21
change hange

erhead. [select 18 19 20, select 2123 22|
—
en Cerféralgef.
o mp4.
htral002.mp4

open Central003.mp4.

XX

fmuxwm:

Fectangie 4 3]

OEBPS/graphics/4647_01_034.jpg
@ Pd-extended File Edit Put Find Media Window Help [SC

500

metro 1000

OEBPS/graphics/4647_07_042.jpg
& Audio MIDI Setup Edit View Window Help

06 MIDI Studio

—— [Default A= s 9) = ¢

Icon Size Configuration Add Device Rermove Device Show Info._Rescan MIDI Test Setup _Help

* Network

OEBPS/graphics/4647_01_031.jpg
@ Pd-extended File Edit Put Find Media Window Help (SO

OEBPS/graphics/4647_06_023.jpg

OEBPS/graphics/4647_01_010.jpg
Ael Lo wWOorLd

?r‘i nt

OEBPS/graphics/4647_06_029.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle011.pd

B.59

L
[speed s

i i

f,m;m 5 potrt
Bart_velocity sihere 0 0.3 0 0.3
51

I

rt_size

famklllold 20
lpar

rt_render.

OEBPS/graphics/4647_06_051.jpg
@ Pd-extended File Edit Put Find Media Window Help

% Motion001.pd

s

I
[Tighting 51 fnumea

i

[dimen 300 600 fu-gm Jhorizontal

| rgate| Gestroy fmﬂ;.?

\\V
Srigger a g
— L

Jgemwin

rt velocity sphere 0010 0.5
=
j.mmrg e

Fectangte 5.33 7] gipnd

¢
8

= 4
[pixblob 4 trigger f £

=1

head smootf

rd

rt_size

Fortd_tight] rt_render,

i

b
-
e
t

i

b

sohere 0.1 23]

OEBPS/graphics/4647_03_036.jpg
@ Pd-extended File

Edit _Put

Find

Media_ Window _Help

- Image005.pd

f
i
;i

ix_buffer_read tem)

ix_texture

ectangle 4 3/

create

igemwin

[destroy

femhead

)
L T
pix-videq) l

Ppix_buffer_write tem

Define a pixel buffer here.

pix_buffer temp 1

OEBPS/graphics/4647_04_030.jpg
@ Pd-extended File Edit Put Find Media Window Help

8006 *_Effect001.pd

Westmy B \gemhead
auto $1 ‘open Central@02.mp4
ey

gemwin

fix_jilnz
trigger aaaa
—

T~

g emkeyboard —

_separator _pix_separator‘ fix_sepamtor‘ x_separator

l EJ - b EI\

?ix_poéter‘ize ix_metaimage pix_invert
//2

L
switch 4
ix_texture

rectangle 4 3

OEBPS/graphics/4647_03_052.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Buffer001.pd

[create trigger b b
A\ I Erigger b
B

\\ destroy| buffer 1 reset

\ _—
‘ — /

emhead

gemwin

b,
I
I
T\ x_video

OEBPS/graphics/4647_03_009.jpg
@ Pd-extended File Edit Put

Find Media Window Help

& Film00L.pd

{create destroy 'gemhead

lgemwin

;)pen Central@02.mp4
-
Zead -
pix_film
—
—

_f
[
fnpack ffe O
2

640 | 480

Ppix_texture

s e
Irectangle

OEBPS/graphics/4647_09_032.jpg

OEBPS/graphics/4647_appendix_003.jpg
Welcome to the Obiwannabe home page. Here you will find stuff to do with sound production
using free open source software, synthesisers, sound effects, music production, games audio
and programming. Not necessarily in that order. Hopefully you'll find this a useful place to
discover things about a program called Pure Data and how to use it to make sounds and music.

Designing Sound

Puds v

New Textbook Available

Foxt{ |[[st [andon{ [previous(

OEBPS/graphics/4647_04_024.jpg
@ Pd-extended File Edit Put Find Media Window Help

[create. destroy

gemhead
o g

gemwin

Zpen Central@0l.mp4
Zpen Central@02.mp4
// lopen Centraloe3.mp4

pix film

L -
pix-texturg

rectangle 4 3

OEBPS/graphics/4647_06_024.jpg
@ Pd-extended File Edit Put Find Media Window Help

rx

Erigger £ £ b)
e

float

77%

init Select 01 trigger £ £ by

e
I/’

sn

8 |3
s
I

&,

S5

%
I
-
T
L
£

®

femhead

[part_head

110 o1

I —

Bortcotor
i o
L I

Partseures T o]

r vel

L [

Fare_vetodtey sphere

[part_killold 30]

Bart_dran

OEBPS/graphics/4647_06_052.jpg

OEBPS/graphics/4647_04_029.jpg
@ Pd-extended File Edit Put Find Media Window Help
800 + Effect001.pd

;{\ijffff/)Zestroy Eﬂ %emhead
auto $1 lopen Central002.mp4
e \VP P

igemwin

f x_film

trigggr a

ix_separator \x T {ix,separator {ix,separator
\ ix_ poster\ze | pix meta\mage | pix_invert

sw\tch ol

ix_texture

rectangle 4 3

OEBPS/graphics/4647_08_008.jpg
@ Pd-extended File Edit Put Find Media Window Help

5 Net001.pd

'send 1234/ [connect localhost 3000

disconnect

etsend

netreceive 3000 f
2

print

OEBPS/graphics/4647_01_011.jpg
@ Pd-extended File Edit Put Find Media Window Help [S]

helloWorld.pd

Hello World

l

print

OEBPS/graphics/4647_01_002.jpg
@ Pd-extended File Edit Put Find Media Window Help

Untitled-2

OEBPS/graphics/4647_06_044.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle013.pd

Tighting s1] 500

I

rt_source T point,

rt_velocity sphere 0 0.1 0.2 0.3]

Ba

I

rt_size
rt_killold 20]

ot

head

Fortatighd

OEBPS/graphics/4647_07_011.jpg
@ Pd-extended File Edit Put Find Media Window Help

b Audio002.pd

oadbang

— P
I

read -resige kick.aif kick,

read -resize snare.aif snare

OEBPS/graphics/4647_01_013.jpg
@ Pd-extended File Edit Put Find Media Window Help

*_helloWorld.pd

compute audio

peak meters

¥ console

Hello World

OEBPS/graphics/4647_07_058.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Input003.pd

L

pd dsp $1

Fiddle~

int

int
I
43

80
frequency Amplitude

OEBPS/graphics/4647_03_004.jpg
@ Pd-extended File Edit Put Find Media Window Help

¥ Image001.pd

create destroy ='gemhead

\
gemin rotatexYZ

‘open Sample@@3.png
pix_image

“pix_textur'e:

OEBPS/graphics/4647_03_032.jpg
xtended File Edit

Find Media Window _Help

lopen Mask001. jpg

ix_image

OEBPS/graphics/4647_08_036.jpg
® Pd-extended File Edit Put Find Media Window Help

show-graphics

f"

ranslatexyz]

OEBPS/graphics/4647_02_002.jpg
® Pd-extended File Edit Put Find Media Window Help (SO

gem001.pd

‘create destroy

gemwin

OEBPS/graphics/4647_03_050.jpg
@ Pd-extended File Edit Put Find Media Window Help

- Buffer00L.pd

et trigger b

[destroy |buffer 1 [reset

gemwin

OEBPS/graphics/4647_06_019.jpg
@ Pd-extended File Edit Put Find Media Window Help

- Difference001.pd

=3

ftrigger f bT

OEBPS/graphics/4647_05_015.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Motion001.pd

L

Fectangte 5.33 7

OEBPS/graphics/4647_01_045.jpg
Edit _Put Find Medi

indow__Help

Manuals/
Pure Data/

3dp/

Gem/

Gem/ (2)
adaptive/
apple/
bassemu~/
boids/
bonk~/
bsaylor/
choice/
complex-mod-~-help.pd
controctopus/
creb/

cxc/

cyclone/
earplug~/
ekext/

Help Browser.

Lmanual/
2.control.examples/
3.audio.examples/
4.data.structures/
5.reference/
6.externs/

7.stuff/

examples/
manuals/

00.INTRO.txt
OLPARTL hello.pd
02.editing.pd
03.connections.pd
04.messages.pd
05.counter.pd
06.more.counters.pd
07.time.pd
08.depthfirst.pd
09.send_receive.pd
10.more.messages.pd
11.review.pd
12.PART2.subpatch.pd
13.locality.pd
14.dollarsigns.pd
15.array.pd
15.file.txt
16.more.arrays.pd
17.PART3. midi.pd
18.conditional.pd

OEBPS/graphics/4647_04_008.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Mouse003.pd

[create| destroy gemmouse 1 1

_—

‘gemwin gemhead

r red r blue

00 001

1
I

translateXYZ

'square 0.2/

OEBPS/graphics/4647_05_032.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Direction001.pd

rx

[trigger £ £ b

OEBPS/graphics/4647_01_042.jpg
® Pd-extended File Edit Put Find Media Window Help

|© 00 lhsll Properties
iimensions(pi

width: (200
-output-range:-
right:

noinit | [steady on lick |

send-symbol:

receive-symbol

label

Radio button

@® background () front () label

|
[

compose color | [o= I=o] testlavel|

OEBPS/graphics/4647_08_012.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Net002.pd

[connect Localhost 3000

disconnect

netreceive 3000

167

OEBPS/graphics/4647_02_012.jpg
@ Pd-extended File Edit Put Find Media Window Help

i gem002.pd

create =destr‘oy

OEBPS/graphics/4647_02_040.jpg
® Pd-extended File Edit Put Find Media Window Help

*_Gem004.pd

'gemhead

.53 ?.ss 0.95
L

[estroyl trigger b f trigger b f

gemwin

OEBPS/graphics/4647_08_009.jpg
@ Pd-extended File Edit Put Find Media Window Help

5 Net001.pd

'send 1234/ [connect localhost 3000

disconnect
netreceive 3000 etsend

print

OEBPS/graphics/4647_07_051.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Midi004.pd

. B g

metro 500 metro 500

Krigser b5, Krigser b0,

Fandon 53

OEBPS/graphics/4647_09_014.jpg
Edit View Go Window Help

[Frameworks

= (&)(2] (8](0](*]

Q

FAVORITES
%3 Dropbox
Al My Files
© AirDrop
[Desktop
1} chungbryan
#\ Applications
[Documents.
{21 Google Drive
DEVICES
2 BoOTCAMP

[Bryan_C.

thumbnails
silzxjn
wapi
Xauthority
Xcode
[Adim
(3 Applications
(3 Bryanoo1
Desktop
(i3] Documents
(&2 Downloads
(& Dropbox
Google Drive
Uibrary
[focal
Movies
(il Music
Ogrelog
Pictures.
(&1 pPublic
 Radeon H...70_0CLcsv
41 send Registration
[SightSpeed Recordings
Sites
 test_binary.ped
< testgif

[compositions »
[Containers »
(1 Contextual Menu Items
[Cookies

(] Developer

[Facebook

(2 Favorites

[FontCollections

[Fonts

(] Fonts Disabled »
[Google

[teons

[imovie

[nput Methods

[Internet Plug-ins

(3 iTunes

(3 Java

(2 Keyboard Layouts

[Keychains

[LaunchAgents

[Logs

(2 mail

(1 Messages

(1 Metadata

(2] Mobile Documents

DS Store
(21 OpenCV.framework

OEBPS/graphics/4647_04_020.jpg
@ Pd-extended File Edit Put Find Media Window Help

8006 *_Button001.pd

[create. destroy

. _—
gemwin -

=3 __gemmouse 1 1

-8

L)
5
3

'gemhead 4 rx

e

3
@

TA Tl T g T w—

©
Ny

[color

rx ry

‘translateXYZ

'square 0.2/

OEBPS/graphics/4647_03_046.jpg
& Pd-extended

File Edit Put Find Media

- Image006.pd

Window Help

create

igemwin

[destroy

;emhead 55

L

ix_video

46 59

rotateXYZ|

ix_texture

lcuboid 1.6 1.2 1.2/

\gemhead 50

lopen Sample@08. jpg

Ppix_image|

Ppix_texture

e

OEBPS/graphics/4647_05_010.jpg

OEBPS/graphics/4647_05_036.jpg
@ Pd-extended File Edit Put Find Media Window Help

%npack FarT unpack f f f

L

expr sqrt(($f1-$F4)*($f1-$4) + ($F2-$F5)*($2-$f5) +
$£3-$f6)*($£3-316))

outlet

OEBPS/graphics/4647_08_033.jpg
® Pd-extended File Edit Put Find Media Window Help
800

Tort srpeact] [sdprecetve 3933

inpackosC|
route0sC /tuio]
route0SC /2dcur]
route alive set]

I

Tist length

OEBPS/graphics/4647_02_017.jpg
@ Pd-extended File Edit Put Find Media Window Help

i gem002.pd

create =destr‘oy

draw fill

OEBPS/graphics/4647_08_043.jpg
sketch_apr01a

Edit Sketch Tools

New
Open...
Sketchbook

Close

Save

Save As...

Upload

Upload Using Programmer

Page Setup
Print

Help

o
01.Basics
02.Digital
03.Analog
04.Communication
05.Control
06.Sensors
07.Display
08.Strings

09.USB

10 Starterkit
ArduinolsP

EEPROM
Esplora
Ethernet

GsM
LiquidCrystal
D

Servo
SoftwareSerial
Pl

Stepper

WiFi

Wire

YYVYYYYYVYY

vvyv

YYVYYYYVYY

AllinputsFirmata
AnalogFirmata
EchoString
12CFirmata
OldStandardFirmata
ServoFirmata
SimpleAnalogFirmata
SimpleDigitalFirmata

OEBPS/graphics/4647_08_035.jpg
® Pd-extended File Edit Put Find Media Window Help

8006

[import mrpeach udpreceive 3333 r pos|
unpackosc Tist split 1]
d 2 T

—. =

route0sC /tuio| Cumson 1d Tist split 2

route0sC /20cur,

route alive set

I
alive trigger 11 s pos| set

]

=

b1

N

Tist length Tist]

g 1

3

il
g

3

3

setect Tist gite 3

L L

s b1, unpack £

e
B
It tg

RN
:
i

g
7

f
L
2
b 1

s p1

1

2

OEBPS/graphics/4647_06_015.jpg
@ Pd-extended File Edit Put Find Media Window Help

Particle005.pd

loadbang ‘gemhead

dimen 800 600
part_head

[create! destroy

Eart_usour;e 20
gemwin
Eart_velocity s;here 00.200.2

Ppart_killold 20/

f1e1 9.6
/

Ppart_orbitpoint

Ppart_draw

OEBPS/graphics/4647_05_035.jpg
@ Pd-extended File Edit Put Find Media Window Help

[rorizontal

pix flip]

trigger a o
_rigger

fmtexmm

ctangle 5.33 4

OEBPS/graphics/4647_04_049.jpg
@ Pd-extended File Edit Put Find Media Window

8006 + Ball.pd

Help

inlet| metro intet| X velocity

L L

rigger b b] rigger b £

i
5303 s $0-y3 s So-reset s s0-x;

r So-reset
I

e r $0-x2

L

rigger b £

i | Fuod

r 50-3 L

Srigger bbb
= % [erigger b #|

s so-y3
[so-3

~_
trigger f f

expr $71>3.5 11 $f1<-3.5
setect 1

I
s $0-x2

rigger b £
I

inlet| Y velocity |inlet linlet

I
trigger b £
s $0-x2| s $0-y2

s 50-y3)
S0y change directions

£ -2
L
trigger b b b

I/ptr'lgger' b f|

trigger f f

expr $71>3.5 11 $f1<-3.5

select 1

I
s so-y2

OEBPS/graphics/4647_05_033.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Direction002.pd.

inen 800 600 Genhead 50 X
[trigger £ £ b

e/ [destroy

g
\/ e
=t

gemin =

fmﬂ;pn

Emhead 55
depth i e “I

- ix_separator| pix_separator
Color 110 = f

I

r rot =
ix_texture

I

frigger b b £

by | e

Sesyz rotation _ _ _
rotatel ctangle 5.33 4| [pix’blob
-

fiumement

‘alphal

OEBPS/graphics/4647_06_017.jpg
@ Pd-extended File Edit Put Find Media Window Help

*_Particle006.pd

loadbang [gemhead

gimen 800 600

lpart_head loadbang

=cr,«éate destroy
7

110 101
lgemwin !
lpart _color
r pt

lpart_source 10 point
lpart_velocity sphere @ 0.3 0 0.2

lpart_killold 20/

lpart_draw

OEBPS/graphics/4647_06_020.jpg
@ Pd-extended File Edit Put Find Media Window Help

dimen 800 600
emmouse 1 1/

[create| [destroy

T
l

.388 X 0.498 Y

rigger f bT trigger f f b

float!

OEBPS/graphics/4647_02_037.jpg
@ Pd-extended File Edit Put Find Media Window Help

;cr'eate =destr'oy ;gemhead

OEBPS/graphics/4647_02_011.jpg
@ Pd-extended File Edit Put Find Media Window Help

gemhead

OEBPS/graphics/4647_02_059.jpg
@ Pd-extended File Edit Put Find Media Window Help

Gem006.pd

create =destr'oy

Znetr'o 100

gemwin

[
I

L.l /o

counter:

°

OEBPS/graphics/4647_03_018.jpg
& pdextended (WO

OEBPS/graphics/4647_08_015.jpg
@ Pd-extended File Edit

etreceive 3000

a5

.28 1

Put

Find _Media

Window Help

5 Net006.pd

[connect Localhost 3000 %.zs
disconnect | send st
etsend

Isr—is

OEBPS/graphics/4647_02_007.jpg
® Pd-extended File Edit Put Find Media Window Help [S]

gem001L.pd

:gestroy :color 111
\ /

\
\\ tit‘/e Pure_Data

/
/'y
/

dimen 640 480

OEBPS/graphics/4647_01_016.jpg
@ Pd-extended File Edit Put Find Media Window Help

cup

print: 18

calculation.pd

compute audio|

peak meters

cup v console

OEBPS/graphics/4647_02_056.jpg
= b

%emhend

L

|]

translateXYZ

'sphere 1 36

OEBPS/graphics/4647_02_013.jpg
@ Pd-extended File Edit Put Find Media

OEBPS/graphics/4647_02_031.jpg
@ Pd-extended File Edit Put Find Media Window Help

;cr'eate =destr'oy

zlighting 1| ;gemhead

gemhead

world_light

OEBPS/graphics/4647_06_041.jpg

OEBPS/graphics/4647_05_030.jpg

OEBPS/graphics/4647_04_031.jpg
@ Pd-extended File Edit Put Find Media Window Help

8006 *_Pong001.pd

[create| [destroy

lgemwin

emhead

anslateXYZ

ircle 0.5

r
L

OEBPS/graphics/4647_04_021.jpg
® Pd-extended File Edit Put Find Media Window Help

8006 *_Button001.pd

[create| destroy gemmouse 1 1

A\
\

N el
=

gemwin

x

'gemhead

S
@

0.2

©
Ny

(color’ rigger b f

\

A g 7 T

1

r x| [ry

Ooe

Z:v'unslatcéxvi=

'square 0.2

OEBPS/graphics/4647_07_021.jpg
@ Pd-extended File Edit Put Find Media Window Help

8006 *_ Audio004.pd

Loadbang

trigger b b xi
T read -resize tom.aif tom
read -fesize kick.aif kick

read -resize snare.aif snare

TErigger b b
- e

Isaumfller' \ e /Eﬂ{u

14712

Kick

,l Wl‘.‘l““ﬁfm

OEBPS/graphics/4647_05_052.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Audio001.pd

Zpen tom.aif

open snare.aif

readsf~

OEBPS/graphics/4647_09_022.jpg
® Pd-extended File Edit Put Find Media Window Help

006

<>z Go to the folder:

FAVORITES ~/Library/Pd/pix_opencv/haarcascades/

£ Dot (Gt | [0)

[Desktop
., TTTETDropboY
I.u_muuu_ B8 Coosic b
Applications (3 local
[Documents Movies.
i Music
2] Google Dr N o
DEVICES Pictures

1 Bear & Public

=l " Radeon H...0_OCL.csv
g O X
I{EQOTCAME Send Registration

[Bryan_Ch.. {1 SightSpeed Recordings
Sites.
§ " test_binary.ped
43 Music & testgif
@ Photos (£ trunk

MEDIA

(CCancel] [Open

OEBPS/graphics/4647_09_031.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Freenect001.pd

/gmfr@erfn 011

translate 1 -2.66 0 @ ftranslate 1 2.6 0 0|

fiuemrg fiumurg

Fectangie 2.66 7 fectangis 2.66 7

OEBPS/graphics/4647_02_018.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Gem002.pd

create =destr‘oy

gemwin draw fill

OEBPS/graphics/4647_08_051.jpg
@ Pd-extended File Edit Put Find Media Window Help

Pd-extended

() compute audio

() peak meters

cup cup ™ console

[comport]: available serial ports:
1 /dev/tty.Bluetooth-PDA-Sync
3 /dev/tty.usbmoden14221

OEBPS/graphics/4647_01_029.jpg
@ Pd-extended File Edit Put Find Media Window Help. [SNC

OEBPS/graphics/4647_04_005.jpg
@ Pd-extended File Edit Put Find Media Window Help

[create. destroy lgemhead emmouse 1 1

i6 | [s7

Jgemwin 0.252 0.142

IrotateXYzZ
i 1
r

ack f f

(colo

text $1 : $2

3

1

#

L
d

‘text3,

OEBPS/graphics/4647_03_022.jpg
@ Pd-extended File Edit Put Find Media Window Help ©

--output-range:-

imp1le@07. jpg

lin noinit | [steady on click

messages
send-symbol:
receive-symbol:

label 1 distance $1

xoffset [2 y offset [

Wonaco size [10
colors

@ background () front () label

compose color | [o=11=0] testlavel

OEBPS/graphics/4647_04_037.jpg
@ Pd-extended File Edit Put Find Media Window Help

Test002.pd

OEBPS/graphics/4647_05_017.jpg

OEBPS/graphics/4647_06_045.jpg

OEBPS/graphics/4647_08_045.jpg
ELECTRONICS

OEBPS/graphics/4647_02_015.jpg
@ Pd-extended File Edit Put Find Media Window Help

 gem002.pd

create aestroy

gemwin draw fill

rectangle

OEBPS/graphics/4647_07_008.jpg
@ Pd-extended File Edit Put Find Media Window Help

b Audio002.pd

pd dsp $1

OEBPS/graphics/4647_02_039.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Gem004.pd

create destroy gemhead

OEBPS/graphics/4647_07_003.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Audio001.pd

pd dsp $1

OEBPS/graphics/4647_08_050.jpg
® Pd-extended File Edit Put Find Media Window Help

i Micro001.pd

version

firmware

arduino

print| print

OEBPS/graphics/4647_07_054.jpg
® Pd-extended File Edit

Put Find Media Window Help

o

cup

compute audio
peak meters

/ console

audio

sample rate:

™ input device 1/ |

™ output device 1|

| [Aeely

delay (msec): |20 | (] use callbacks

bs: 2

(0)Built-in Input
(0)PrimeSense Device

oK Save all settings

Is: 2

OEBPS/graphics/4647_07_020.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Array00L.pd

metro 500
tabwrite loop

[counter @ 0 15

index

‘tabread loop

OEBPS/graphics/4647_06_025.jpg

OEBPS/graphics/4647_07_024.jpg
@ Pd-extended File Edit Put Find Media Window Help

osc~ F

‘tabwrite~ wave'

OEBPS/graphics/4647_07_035.jpg
@ Pd-extended File Edit Put Find Media Window Help

8 006

L 100-1000 Hz
pd dsp $1

OEBPS/graphics/4647_07_057.jpg
® Pd-extended File Edit Put Find Media

Window Help

* Input002.pd

s [gemhead
pd dsp $1

env~ 128

[create| [destroy trigger f
<

i . .

lgemwin / 50 60

el 1

4
i
!
>
I
s
L
s

ect @
I
1 sh

circle

OEBPS/graphics/4647_05_012.jpg
@ Pd-extended File Edit Put Find Media Window Help

- Background002.pd

%mheadsﬂ

fnumeg

ix_rgba

e [T

Ix_backgr'oum

fmsepammr- flurey

f.mm.g B

LN

Tecwnge 537 §n Bew Gam

> 0.005]

select 01

Eext CLEAR

OEBPS/graphics/4647_03_023.jpg
b
2
g
%
3

<
2|

oy

pbpiT o

G aguY E.Eu.mu‘

“““ hohoh e) 5
T gy
T Idu Yy

il

“““““ WYYy uYy
“““““ papii

pRip]
“““ 1) el
o pppp i b g i]
Uiy
Yt

4 & i}

OEBPS/graphics/4647_09_044.jpg
® Pd-extended File Edit Put Find Media Window Help

*_OpenNI004.pd

L - -

skeleton $1 thead 50 f«mem 50

fmq;enmn 01110

fmtexmmn route joint

Fectgie 5394 [route el

unpack £ f £ £

I

i

1 | b.428 p.as2 0.4vs 0

OEBPS/graphics/4647_05_057.jpg
(x2,y2)

x1,y1)

OEBPS/graphics/4647_03_005.jpg
@ Pd-extended File Edit Put Find Media Window Help

ple@@3.png

OEBPS/graphics/4647_05_021.jpg
@ Pd-extended File Edit Put Find Media Window Help

% Motion002.pd

ix_video

[cfeate| [destroy
. 4

_—

8 fhorizontal fix,rgba
gemwin T

dimen 800 600 %emhead

) fix,ﬂi;
ix_movement.
flph;
ix_ blob
-
0.414 .40

fix,texture:

Irectangle 5.33 4

OEBPS/graphics/4647_04_028.jpg
@ Pd-extended File Edit Put Find Media Window Help

800 i Keyboard007.pd

[create| [estroy %emkeybﬂam

T

— ~
geman change change

L

select 2123 22|

moses 21]

OEBPS/graphics/4647_07_005.jpg
@ Pd-extended File Edit Put Find Media Window Help
*_Audio001.pd

1oadbang

r

Play Egj///P

sp\got
Stop tr\gger bb b
% open background. aif
rigger b f =

readsf~

iﬁ
|

@
=

OEBPS/graphics/4647_07_053.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Midi005.pd

| pd dsp $1

metro 100

dac~ ‘tabwrite~ wave

OEBPS/graphics/4647_02_036.jpg
@ Pd-extended File Edit Put Find Media Window Help

OEBPS/graphics/4647_02_020.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Gem002.pd

create destroy Z;emhead

‘ 210

gemwin draw fill
10

f
|

curve 2

OEBPS/graphics/4647_07_038.jpg
@ Pd-extended File Edit Put Find Media Window Help

L _
metro 100

dac~’ tabwrite~ wave

OEBPS/graphics/4647_04_006.jpg
Pd-extended File Edit Put Find Media Window Help

Jgemmouse 1 1

246 9.108 (] [J O

OEBPS/graphics/4647_04_023.jpg
@ Pd-extended File Edit Put Find Media Window Help

8006 ¥ Button001.pd

lcreate destroy
£

//

gemwin

e
ESRC
-

\

zemheud

AR
s
&

=

.

R

trigger f
I

£
T

& Y — pigot select
‘translateXYZ T
S

[)
e
rigger f f wh| s ye

'square 0.2/

o
L
2

e
©
-

[
S|
I
t
i
I

<
3
@
=
o

OEBPS/graphics/4647_05_020.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Motion002.pd

dimen 800 600 emhead

ix_video

[cfeate [destroy
S
. i

lgemwin Cngba

FI:I

ix_movement

1pha

‘%

ix_ texture

:
f
i
f;
| g
[
i

ectangle 5.33 4

OEBPS/graphics/4647_01_001.jpg
® Pd-extended Edit Put Find Media Window

Open

() compute audio

Close
S (] peak meters
cup cup | Save ™ console

[import] SRevision: ~ Message...
[import] is rface could change!
compiled agi Make app from patch
libdir loader SRevit Make app fr:
copiled on
compiled agt Print
Graphics Envirc,
: ver: 0.93.3
compiled: Nov 10 Zo11
maintained by Iohannes m znoelnig
Authors : Mark Danks (original version)
Chris Clepper
Cyrille Henry
Tohannes m znoelnig
With help by Guenter Geiger, Daniel Heckenberg, James Tittle, Hans-Christoph Steiner, et al.
: found a bug? miss a feature? please report it:
homepage http://gen. ien.at/
bug-tracker http://sourceforge.net/projects/pd-gen/
mailing-list http://lists.puredata.info/listinfo/gen-dev/
1 compiled for SIMD architecture: SSE2 MMX
using SSE2 optimization
Libdir_loader: added *cyclone’ to the global objectclass path
Libdir_loader: added 'zexy' to the global objectclass path
Libdir_loader: added "creb’ to the global objectclass path
Libdir_Loader: added "cxc’ to the global objectclass path
Libdir_loader: added *ienlib’ to the global objectclass path

om folder.

OEBPS/graphics/4647_04_035.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Pong002.pd

2
= bbb
friawer
f

I
i

T

trigger f f

s« fewr $F1>3.5 11 $f1<-3.5

= o
I

sx2 trigger b b b| 9.2

T I
e

trigger f
BT o $F1>3.5 11 $f1<-3.5
setect 1

I
sy2

OEBPS/graphics/4647_04_038.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Test001.pd

OEBPS/graphics/4647_07_055.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Input001.pd

L

pd dsp $1

metro 100

‘tabwrite~ wave

OEBPS/graphics/4647_08_020.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Net009.pd

[create| destroy

'gemhead

X netreceive 3000
gemwin

npack

3

'
CJ|

4

£

u
5
E
L

[}

ST R

5

‘translateXYZ

'square 0.3/

OEBPS/graphics/4647_02_058.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Gem005.pd

create destroy jgemhead

\ 218
gemwin I

rotatexYZ

I i
|

- - -
draw line translateXYZ

cube 0. 75

OEBPS/graphics/4647_01_014.jpg
® Pd-extended File Edit Put Find Media Window Help (SO

- calculation.pd

OEBPS/graphics/4647_02_016.jpg
® Pd-extended File Edit Put Find Media Window Help

9em002.pd

create destroy

gemwin draw fill

]

triangl

OEBPS/graphics/4647_01_030.jpg
@ Pd-extended File Edit Put Find Media Window Help (SO

OEBPS/graphics/4647_05_018.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Motion001.pd

head

ix_video

ix_rgba
trigger aga

ix_separator,

it
L
ay

pixde
fmmf?'
fiur‘e’y
pahol]

pix_texture| TG.424 Bu4es Boo1l

Fectmgies33® XY sie

OEBPS/graphics/4647_05_013.jpg

OEBPS/graphics/4647_05_055.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Color006.pd

T

‘trigger b b [trigger b b

Loadbang

horizontal ix_rgba

pen snare.aif|_[gpen kick.aif ix fLip

trigger a a a

fmsepammr-

fmtexmm

ctangle 5.33 4

OEBPS/graphics/4647_05_002.jpg
® Pd-extended File Edit

8006

Put

Find Media_ Window Help

i Frame001.pd

dimen 800 600
/
/

[cfeate destroy
L —

lgemwin

'gemhead
fix,video

Ppix_rgba

Ppix_texture

Irectangle 5.33 4

OEBPS/graphics/4647_05_038.jpg
@ Pd-extended File Edit Put Find Media Window Help

F

X
L — —

metro 100

pix_separator et
I ~.l
-~

croxturd i

Store color

trigger a a

Fectangs 5.3 7 - i
= 1
- o

Tnpack £ £ trigger a

S

©.674 9.478 0.466 colorbistance]

©.654 8.470 0.450
8.026 A——

OEBPS/graphics/4647_05_053.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Audio001.pd

frigge:/f/g
1

open tom.aif

open snare.aif

OEBPS/graphics/4647_02_034.jpg
@ Pd-extended File Edit Put Find Media Window Help

create =destr'oy

;gemhead

gemhead

world_light

OEBPS/graphics/4647_09_021.jpg
@ Pd-extended File Edit Put Find Media Window Help

*, OpenCV002.pd

{dimen 320 240 gemhead

Ppix.video _ openpanel

Tdestroy

fpixrgba Toad $1

pix_opency_haarcascade

Ppath ~/Library/Pd/pix_opencv

[pix_texture

Irectangle 5.33 4

OEBPS/graphics/4647_02_023.jpg
Pd-extended File Edit Put Find Media Window Help

OEBPS/graphics/4647_01_039.jpg
® Pd-extended File Edit Put Find Media Window Help

i random.pd

random 6

OEBPS/graphics/4647_07_037.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Wave008.pd

[gemkeyboard

select 18 19 20 21 23 22 26 28

L

262 294 330 349 392/ 440 ’594;23
e e

dsp $1

[create| destroy

OEBPS/graphics/4647_04_026.jpg
@ Pd-extended File Edit Put Find Media Window Help

*_Keyboard006.pd

lcreate [destroy %emkeyboard
T

- change
‘gemwin

%emhead e

/
‘ open Central0@i.mp4

select 18 19 20 Key: 1, 2, 3

open Central602.mp4

lopen Central0e3.mp4

ix_film

fix,texture:
r

ectangle 4 3/

OEBPS/graphics/4647_02_010.jpg
@ Pd-extended File Edit Put Find Media Window Help

 gem002.pd

create aestroy

gemhead

OEBPS/graphics/4647_09_030.jpg
® Finder File Edit View Go Window Help

©00 (23 pix_freenect
(«l>] e] ($-)[o][k

FAVORITES
2 Dropbox

2 All My Files o

oy AR libfreenect. libusb-1.0.0.dylib pix_freenect-
{5 Desktop 0.1.2.dylib help.pd

721 chungbryan
[Documents

(5] Google Drive | Pix_freenect.pd_da
rwin

DEVICES
2] BooTCAMP
[l Bryan_Ch... &

OEBPS/graphics/4647_02_035.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Gem003.pd

;create =destroy

f;emhead

~_lighting $1
draw fill

gemhead

world_light

OEBPS/graphics/4647_06_058.jpg
@ Pd-extended File Edit Put Find Media Window Help

8006 ¥ Motion004.pd

£ [B
lloadbang| [Tighting 51 fm
T Fare lmdmng zpeecis]
%imen 600 f

pt]

s [— e E
@

s rt_source 10 point 0 0
e

friggeraba rx [y micl] [nde2

NI e

e
B E

T rt_velocity sphere 0 0 0.1 0.1
trigger a o

1 re kittold 109
sa k< £

Color at movement center .. PG

S

%
7 et

head
Movement center =
world_light]

OEBPS/graphics/4647_01_021.jpg
@ Pd-extended File Edit Put Find Media Window Help ©

- calculation.pd

OEBPS/graphics/4647_06_013.jpg
@ Pd-extended File Edit Put Find Media Window Help

® Particle004.pd.

loadbang ‘gemhead

dimen 800 600
part_head

%Veute {destroy

Eart_usour;e 20
gemwin

;art_velocity s;here 00.200.2

Ppart_killold 20/

Z0.03
0310
I

Ppart_gravity

Ppart_draw

OEBPS/graphics/4647_04_044.jpg

OEBPS/graphics/4647_06_036.jpg

OEBPS/graphics/4647_08_031.jpg
File Edit _Puf

Find Media Window _Help

o GEM

OEBPS/graphics/4647_06_018.jpg

OEBPS/graphics/4647_08_041.jpg
® Arduino File Edit

Sketch

Auto Format £l
Archive Sketch

Fix Encoding & Reload
Serial Monitor %M

sketch_apr01

sketch_aprola
Serial Port >

Programmer >
Burn Bootloader

Arduino Uno on /dev/tty.usbmodd

Arduino Duemilanove w/ ATmega328
Arduino Diecimila or Duemilanove w/ ATme
Arduino Nano w/ ATmega328

Arduino Nano w/ ATmega168

Arduino Mega 2560 or Mega ADK

Arduino Mega (ATmega1280)

Arduino Leonardo

Arduino Esplora

Arduino Micro

Arduino Mini w/ ATmega328

Arduino Mini w/ ATmega168

Arduino Ethernet

Arduino Fio

Arduino BT w/ ATmega328

Arduino BT w/ ATmega168

LilyPad Arduino USB

LilyPad Arduino w/ ATmega328

LilyPad Arduino w/ ATmegal68

Arduino Pro or Pro Mini (5V, 16 MHz) w/ AT;
Arduino Pro or Pro Mini (5V, 16 MHz) w/ AT;
Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ AT
Arduino Pro or Pro Mini (3.3, 8 MHz) w/ AT

Arduino NG or older w/ ATmegal68
Arduino NG or older w/ ATmega8

OEBPS/graphics/4647_appendix_004.jpg
mathr

pd

tags

call drawing drone event
fractal gem graphgrow
graphics gridflow hardware
haskell hp2pretty
hyperspace konstrukt linux
livecode lua mandelbrot
mandulia maths med music
newton noise opengl opinion
pd pdlua performance physics
presentation rdex sc3 text

torrent video web

recent

Rolling torus

Stroking curves of constant width

mathr.co.uk

o12001T18457 10100
event fractal graphics hardware haskell hyperspace linux lua med

New website, new beginnings.

pdlua has a new maintainer

ontat2TI8s 1580000
lua pd pdiva

The Lua embedding for Pure-data.

Woli 2011

2011:0512711:40:50:0100

event haskell music pd rdex video
[l

Histogram equalization

20101215T15:48:3040000

it WWIW

TAY

graphics gridflow pd

OEBPS/graphics/4647_03_002.jpg
& pdextended ©

OEBPS/graphics/4647_01_037.jpg
@ Pd-extended File Edit Put Find Media Window Help

*_animationl.pd

a

oo

OEBPS/graphics/4647_02_009.jpg
@ Pd-extended File Edit Put Find

OEBPS/graphics/4647_01_035.jpg
@ Pd-extended File Edit Put Find Media Window Help

8006

receive cnt

J
f b
-

metro 1000

send cnt

OEBPS/graphics/4647_09_041.jpg

OEBPS/graphics/4647_06_008.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle001.pd

loadbang Genhead]
dimen 800 600 I
s

225

peed $1

[cheate [destroy
e 4

/

lgemwin

lpart_source
03100.2

lpart_velocity sphere

draw line

lpart_killold

lpart_draw

OEBPS/graphics/4647_07_018.jpg
@ Pd-extended File Edit Put Find Media Window Help

© 0.0 loop i
15 Canvas Properties
58 X units per pixel 0

B o ¥ units per pixel 0
[o v
5o ‘graph on parent

6 4 hide object name and arguments
I e
;,, X range: from [0 to[15|size 200 | margin [0
(2K ¥ range: from |5 to[1|size[140 | margin [0
1) 0
1) o Cancel Apply oK
h2) o
13) 0
) 0
s> o

OEBPS/graphics/4647_05_034.jpg

OEBPS/graphics/4647_05_024.jpg
@ Pd-extended File Edit Put Find Media Window Help

% Motion003.pd

s T

horizontal

o119
Snooth parameter
Tracking threshotd

trigger f

rx

I

smooth

I

* 10.66

533

e

[franslatexyZ

fnuexmmn

Fectangte 5,33 7

ircte 0.3

OEBPS/graphics/4647_05_027.jpg
® Pd-extended File Edit Put Find Media Window Help

Motion004.pd

e 0 Ww ss

Fortzomat pocvioey
o ot

ix_rgba -
[aipha

fikﬂw Smooth paraneter

trigger a g trigger £ £

x

i

i £ Tracking threshold I 19:66

oy
£ S5

o o] 1]

alpha

EranslatexyZ

Fectangte 5,33 7
- [pix_texture]

OEBPS/graphics/4647_05_047.jpg

OEBPS/graphics/4647_05_006.jpg
@ Pd-extended File Edit Put Find Media Window Help

OEBPS/graphics/4647_06_039.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle013.pd

Tighting s1. [r pt] e

I

rt_source T point

rt_velocity sphere 0 0.1 0.2 0.3]
.13
Position 1-0.02 0.27 [8.100 T
rt_size

rt_killold 20]

pt]

head

Horld_tignt

OEBPS/graphics/4647_02_044.jpg
& pdextended ©

OEBPS/graphics/4647_04_032.jpg
@ Pd-extended File Edit Put Find Media Window Help

8606 * Pong00L.pd

[create destroy

= trigger b f

emhead

ranslatexyZ

|
i
L

ircle 0.5

OEBPS/graphics/4647_05_048.jpg
@ Finder File Edit View Go Window Help

tom.aif Info

tomaaif @
55| Modified: Today 2:26 P L] modifid: Today 2:24 P

c

» General » General

¥ More Info: ¥ More Info:

Authors: www.drumbits.biz Sample rate
sample rate: 44,100 Bits per sample
Bits per sample: 16 Duration:
Duration: 00:00 Audio channels:
Audio channels: 1
¥ Name & Extension
¥ Name & Extension —_—
—_— kick.aif
tom.aif

= (] Hide extension
) Hide extension

(@ iTunes

8. e m— Use this application to open all documents
Use this application o open all documents ke this one.
ke this one.

Change All
Change All

F-11-1

OEBPS/graphics/4647_04_048.jpg
@ Pd-extended File Edit Put Find Media Window Help

gemkeyboard

select 123 124]

expr $F1<1 8% $F2<-3.1

[genhead I-a.s ;s
b .

color 011 triggerbb f

rx2

lz L J: %;

e translatexvz ¢ -3.8 0
ranslate

Sracos Fectargte 1 0.7

OEBPS/graphics/4647_08_030.jpg
® Pd-extended File Edit

8006

Put Find Media Window Help

Towort srpecct]

udpreceive 3333
unpackos¢|
route0sC /tuio

route0sC /2Dcur,
route set

unpack £ £ £ 1]

A

1

r]

[

ranslatexyz]

olor 11 0]

Loadbang

32

I

OEBPS/graphics/4647_02_042.jpg
File Edi

Put Find Media Window Help

OEBPS/graphics/4647_01_005.jpg
® Pd-extended File Edit Put Find Media Window Help [SWC

helloWorld.pd

OEBPS/graphics/4647_03_016.jpg
& pdextended © -

OEBPS/graphics/4647_03_020.jpg
& pdextended

OEBPS/graphics/4647_01_017.jpg
@ Pd-extended File Edit Put Find Media Window Help [S]

calculation.pd

l1

OEBPS/graphics/4647_04_047.jpg
destroy.

[

circte 0.5

OEBPS/graphics/4647_08_028.jpg
8006 Pd-extended
N out

Pd-extended

Put

Find Media Window Help

() compute audio
o o DIo (] peak meters

cup cup ™ console

print: /tuio/ZDblb alive
print: /tuio/2Dblb Fseq -1

print: /tuio/ZDcur source TuioPade192.168.11.3 e
print: /tuio/Zcur alive 0
print: /tuio/ZDcur set 0 0.521875 0.629167 0 0 0 EAVORHE
print: /tuio/2Dcur fseq 157
print: /tuio/2Dcur source TuioPade192.168.11.3 3 Dropl

print
print

/tuio/ZDcur alive 0
/tuio/ZDcur set © 0.53125 0.625 0.0624998 -0.0277778 0.455965

print: /tuio/zDcur fseq 166 D AirDr|
print: /tulo/ZDeur source TuioPade192.168.11.3

print: /tuio/2Dcur alive @ [Desk
print: /tulo/ZDcur set 0 0.5375 0.622917 0.367648 -0.122551 18.773 & chun
print: /tulo/Zbcur fseq 167

print: /tuio/ZDcur source TuioPade192.168.11.3 /A Appli
print: /tuio/Zbcur alive @ 1 Doc
print: /tulo/ZDcur set 0 0.540625 0.620833 0.19531 -0.130206 -9.55019

print: /tuio/2Dcur fseq 168 {23 Goog
print: /tulo/ZDeur source TuioPade192.168.11.3

print: /tulo/Zbcur alive @ DEVICES
print: /tulo/ZDcur set 0 0.54375 0.616667 0.195313 -0.260416 5.67426 2 8001

print: /tuio/ZDcur fseq 169
print: /tuio/ZDcur source TuioPade192.168.11.3

[Bryan

OEBPS/graphics/4647_05_022.jpg
@ Pd-extended File Edit Put Find Media Window Help

% Motion003.pd

[dinen 800 600 head

e/ [destroy| fhorizontal fuumea

g
T
y

gemvin

fmtmum?

Fectangle 5.33 4

OEBPS/graphics/4647_06_005.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle001.pd

loadbang lgemhead 0.62

dimen 800 600
i speed $1
gt

[cheate [destroy

-
art_head

igemwin

art_velocity point @ 0.2 0

farC,soErcS
i

draw line

draw-point. |part_killold
dr

lpart_draw

OEBPS/graphics/4647_02_066.jpg
@ Pd-extended File Edit Put Find Media Window Help © <

i Gem006.pd

lgemhead

Loadbang

[create| destroy

igemwin
trigger a

separator separator

color 116 color 10 %

%emhead
L

world_light = -
rotateXYZ

1.8

translatexyZ

'sphere 0.8 36 'sphere 0.3 36

OEBPS/graphics/4647_02_006.jpg
@ Pd-extended File Edit Put Find Media Window Help [S]

gem001L.pd

:gestroy color 11 ﬂ
\

\ /

. \ =
create \\ tit}/e Pure_Data

OEBPS/graphics/4647_09_040.jpg
® Pd-extended File Edit Put Find Media Window Help
% OpenNI002.pd.

%«ws« f«m«as«

fmqpenmn 01101

route hangd

fuemmﬂ
route 1

Fectangte 5,33 7

cx oy

1/,

translatexyZ
color 100

fracod

OEBPS/graphics/4647_02_041.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Gem005.pd

bemhead

create Hestroy

;1.59 0.47 @

gemwin !
translateXYZ

draw line

OEBPS/graphics/4647_01_008.jpg
@ Pd-extended File Edit Put Find Media Window Help [S]

& helloWorld.pd

inlet

Hello World
outlet

inlet
print

OEBPS/graphics/4647_02_004.jpg
® Pd-extended File Edit Put Find Media Window Help B8

) gem001.pd

create

destroy

‘ dimen 640 480

L
gemwin

OEBPS/graphics/4647_02_055.jpg
® Pd-extended File Edit Put Find Media Window Help [SNC

*_Gem005.pd

create destroy

emhead

gemwin
lgemhead

translateXYZ draw line trnnslateXYZ

uspher‘; 136 5pherz 136

OEBPS/graphics/4647_03_057.jpg
@ Pd-extended File Edit Put Find Media Window Help

Film002.pd

[create destroy

L - =
= auto $1 emhead = open Central@@2.mp4
gemwin

I

ix_film

unpack f f f

235 | B40 | 480

ix_texture |

=r'er:t«:lngl:e 255 |

OEBPS/graphics/4647_02_027.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Gem003.pd

‘create destroy femhead

gemwin draw fill

OEBPS/graphics/4647_03_017.jpg
® Pd-extended File Edit Put Find Media Window Help

- Image003.pd

gemhead

lcreate| destroy lopen Sample0@6. jpg

ix_image,

gemwin

iLtexture:

f
L
.
|

ectangle 3 3/

OEBPS/graphics/4647_02_030.jpg
@ Pd-extended File Edit Put Find Media Window Help

AN

5
R
QQ..

OEBPS/graphics/4647_01_022.jpg
® Pd-extended File Edit Put Find Media Window Help [SC

calculation.pd

OEBPS/graphics/4647_05_040.jpg

OEBPS/graphics/4647_05_049.jpg
File Edit Put Find Media Window Help

About Pd
Path
Startup.

Services > MIDI settings.

Hide Pd-extended 88H
Hide Oth X®H

Quit Pd-extended ~ %Q

OEBPS/graphics/4647_06_040.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle013.pd

Loadbang

‘dimen 800 600

L

e destroy [Tighting s1 |

I

rt_source 1 point

rt_velocity sphere 0 0.1 0.2 0.3]
.13

I

re_size
rt_killold 20]
spt

head

Fortatighd

OEBPS/graphics/4647_06_055.jpg

OEBPS/graphics/4647_07_016.jpg
@ Pd-extended File Edit Put Find Media Window Help

© O O loop (list view)

D 0 Canvas Properties
2 . !
> o X units per pixel 0

b o ¥ units per pixel 0
1 o
5; 0 V/graph on parent

o0 hide object name and arguments
X

;,, |X range: from [0 to[15|size 200 | margin [0
(2K |Y range: from [5 to[4 size [140 | margin [0
1) 0

D o Cancel Apply oK
h2) o
13) 0
) 0
s> o

OEBPS/graphics/4647_04_034.jpg
@ Pd-extended File Edit Put Find Media Window Help

000 * Pong00L.pd

[create| destroy x2 change direction

r
I
. i trigger b b b, B.1 | initial velocity
gemwin T T
s

x3 trigger b f
//

'gemhead l /ﬂm}\: -1
Ir x1 »

-1.6 0 trigger f f

!

[translateXYZ s x1 expr $f1>3.5 || $f1<-3.5

L - select 1
ircle 0.5

s x2

metro 100

s x3

OEBPS/graphics/4647_03_013.jpg
@ Pd-extended File Edit
000

Put Find Media Window Help

i Image002.pd

fﬂnheﬂd
translate 2.6 -1
Ppix_video _

[pix_texture

[rectangle 1.3 1

[create | destroy

Jauto 1

open-Central002.mpd

fmf:nm]

fiktexture

[rectangle 1.3 1

fsnheud
translate 2.6 1 0 0
[open Sample0®4.png

fimmge]

fi)gtexture

[rectangle 1.3 1

OEBPS/graphics/4647_03_042.jpg
@ Pd-extended File Edit Put Find Media Window Help §

i Back004.pd

lgemhead

lue $1 $1 o
ZatueR$1RS19Y open Sample@d4.png

ix_image

ix_texture

. = ix_chroma_key
createl |destroy f
‘gemwin f;

ectangle 4 3/

OEBPS/graphics/4647_03_044.jpg
dextended E
& pe

lgemhead

[open Sample04.png
pix_image

OEBPS/graphics/4647_02_043.jpg
® Pd-extended File Edit Put Find Media Window Help SO

- Gem00S.pd,

create destroy ‘gemhead

gemwin
-28 |50 69
draw line
}otqteXYZ

1
I
e

cub

OEBPS/graphics/4647_03_021.jpg
@ Pd-extended File Edit Put Find Media Window Help. (SO

 Image003.pd

‘gemhead

{create| destroy ‘open Sample007. jpg

‘ pix_image
gemwin
cheap $1 distance $1

;

ix_metaimage

pix_textu ré:

rectangle 3 3/

OEBPS/graphics/4647_03_037.jpg
@ Pd-extended File Edit Put Find Media Window Help

 Image005.pd

emhead

ix_texture

flx buffer_read temj
B

ectangle 4 3

‘create Tiestroy

1 .
metro 1000

trigger b b

%emhend T
L

flx,vldeq: l
L

P P

ix_buffer_write tem

Define a pixel buffer here.

pix_buffer temp 1

OEBPS/graphics/4647_01_003.jpg
® Pd-extended Find Media Window Help [S]

Versge

Number %3
Symbol =4
Comment %5

Bang oxB
Toggle 0®T
Number2 Q%N
Vslider 0%V
Hslider Q%H
Vradio 0%D
Hradio 0%
w oY
Canvas 0%C

Graph
Array

Display
GridSee

OEBPS/graphics/4647_01_019.jpg
@ Pd-extended File Edit Put Find Media Window Help ©

- calculation.pd

OEBPS/graphics/4647_04_019.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Button001.pd

eate| |destroy

\L///)emflouée)

. _—
gemwin = T

'gemhead 4 rx

e

[color
rxry

‘translateXYZ

'square 0.2/

OEBPS/graphics/4647_07_052.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Midi005.pd

L -
 pd dsp $1 69

|
—

P

snapshot-~

440

OEBPS/graphics/4647_08_044.jpg
® Arduino Edit

New
Open
Sketchbook
Examples
Stndargrms Close oW
Save S
Firat 2 o Save As. QRS ontroliers
fron softuare it
e ezt S pload Using Programmer 38U
To dountond @ Blioving tink

i open the | Page Setup oup
Print prs

Sketch Tools Help

Copyright, (C) 2086-2063 Hans-Christoph Steiner. ALL rights reserved.
Copyright, (C) 2010-2811 Poul Stoffregen. ALL rights reserved.
Copyright. (C) 2089 Shigeru Kobayashi. ALL rights reserved.

Coyright (C) 2089-2811 Jeff Hoefs. ALl rights reserved.

This Library is free softuare; you can redistribute it and/or
nodify it under the terns of the G Lesser General Public
License as published by the Free Softuare Foundation; either
version 2.1 of the License, or (at your option) ony later version.

See file LICENSE.txt for further informations on licensing terns.

Fornatted using the GNU C fornatting and indenting
.

OEBPS/graphics/4647_02_029.jpg
@ Pd-extended File Edit Put Find Media Window Help

‘create destroy femhead

gemwin

OEBPS/graphics/4647_08_042.jpg
® Arduino File

sketch_apro1a

Edit Sketch

sketch_apr0la

Help
Auto Format ®T
Archive Sketch

Fix Encoding & Reload
Serial Monitor o8M

Board >

Programmer

Burn Bootloader

/dev/tty.Bluetooth-PDA-Sync
/dev/cu Bluetooth-PDA-Sync
/dev/tty.Bluetooth-Modem
/dev/cu.Bluetooth-Modem
/dev/tty.MindWaveMobile-DevA
/dev/cu.MindWaveMobile-DevA

/dev/cu.usbmodem14221

OEBPS/graphics/4647_02_014.jpg
@ Pd-extended File Edit Put

OEBPS/graphics/4647_09_047.jpg
® Pd-extended File Edit Put Find Media Window Help

8006 _OpenCV001.pd

[dimen 800 600

create destroy

gemwin femhead
fi)gvidecr=

}ath ~/Library/Pd/pix_opencv fiLr‘gba

fiLopencvjth reshold

fiLtextur'e J

=r'er:t«:mgle= 5.334]

OEBPS/graphics/4647_01_040.jpg
@ Pd-extended File Edit Put Find Media Window Help

& animation2.pd

300

Enetro 1000

:random 6

send cnt

receive cnt

L
(]

selgct?o 12345

\
a

a

OEBPS/graphics/4647_08_011.jpg
@ Pd-extended File

Edit

Put Find Media

Pd-extended

Window

Help

N out
o o
cup cup

pIo

() compute audiol

(] peak meters

 console

connecting to port 3000
int: 1234
Hello
1234
Hello
1234
1234
1234
Hello
print: Hello
print: Helld

send 1234

send Hello
g

OEBPS/graphics/4647_04_045.jpg
destroy.

[

circte 0.5

OEBPS/graphics/4647_05_007.jpg
@ Pd-extended File Edit Put Find Media Window Help
* Frame002.pd

emhead Store

[dimen 800 600

[cfeate destroy ix_video ‘trigger b b
Nzl
pix_rgba —
L

gemwin © gemhead
T ?

)
I
Pixcbuffer vid 1] ix_buffer_write vid pix_buffer_read vid

ix_diff

ix_grey

ix_threshold

Jpixcblob]

/

fix,texturgj

- . ~ -
rectangle 5.33 4 9.475 0.597 0.005

OEBPS/graphics/4647_01_018.jpg

OEBPS/graphics/4647_05_051.jpg
@ Pd-extended File Edit Put Find Media Window Help

& compute audio

(] peak meters

cup cup ™ console

OEBPS/graphics/4647_05_011.jpg
@ Pd-extended File Edit Put Find Media Window Help

& Background001.pd

color 100

Fectangte 5,33 7

f.mm,g i R f’"
I

OEBPS/graphics/4647_08_016.jpg
@ Pd-extended File Edit Put Find Media Window Help

806 Net005.pd

Computer 1 with IP address 192.168.1.10

[connect 192.168.1.11 3001

etreceive 3000 disconnect

.28

OEBPS/graphics/4647_05_028.jpg

OEBPS/graphics/4647_06_021.jpg
@ Pd-extended File Edit Put Find Media Window Help

- Difference001.pd

Loadbang fem@;unse 13

'dimen 800 600 10 =8

;c ate destroy

lgemwin

[trigger f

OEBPS/graphics/4647_01_036.jpg
@ Pd-extended File Edit Put Find Media Window Help. [SNT

*_animationl.pd

(]

metro 1000

OEBPS/graphics/4647_08_056.jpg
@ Pd-extended File Edit Put Find Media Window Help

¥ Micro006.pd

Analog input

analogIns @ $1

arduino

route analog

route @
0.385

OEBPS/graphics/4647_02_008.jpg
@ Pd-extended File Edit Put Find Media Window Help

* gem002.pd

create =destr'oy

OEBPS/graphics/4647_08_032.jpg
® Pd-extended File Edit

Put Find Media Window Help

8006

N out
o o [import mrpeach udpreceive 3333
cup | [cup inpackosC

route0sC /tuio
route0sC /2Dcur,
route alive set

I

print

NN N NN N S N S N NN N N N S N N N N

OEBPS/graphics/4647_07_049.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Midi002.pd

trigger b b b

60 100 500

makenote

/2

noteout’

OEBPS/graphics/4647_03_015.jpg
® Pd-extended File Edit Put Find Media Window Help [SC

i Image003.pd

Zemhead

Zreate Tiestr'oy Zpen Samp1e006. jpg

pix_image

Ppix_invert

Ppix_texture

:rectan;le 33

OEBPS/graphics/4647_09_038.jpg
® Pd-extended File Edit Put Find Media Window Help

*_OpenNI001.pd

/w«wni DA

Translate 1 -2.66 0 @ translate 1 2.66 0 0]

ix_texture, ix_texture,

Fectangie 2.65 7 Fectangie 2.65 7

OEBPS/graphics/4647_02_032.jpg
@ Pd-extended File Edit Put Find Media Window Help

;emhead

OEBPS/graphics/4647_02_054.jpg
'gemhead

~4

translateXYZ

OEBPS/graphics/4647_01_015.jpg
@ Pd-extended File Edit Put Find Media Window Help S

= calculation.pd

N/

print

OEBPS/graphics/4647_01_038.jpg
® Pd-extended File Edit Put Find Media Window Help

+ testing.pd

receive reset

receive cnt

Counter value

select 0123 45

b s

'send cnt Value out
of range

OEBPS/graphics/4647_05_009.jpg

OEBPS/graphics/4647_06_012.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle003.pd

loadbang lgemhead

dimen 800 600 L
i lpart_head

[cheate| [destroy
P

= %artjsour?:e 20]
igemwin

L - -
lpart_velocity sphere @ 0.2 0 0.2
lpart_killold 20/

9.93
$1 81 $1

lpart_damp

lpart_draw

OEBPS/graphics/4647_06_016.jpg

OEBPS/graphics/4647_06_042.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle013.pd

Tighting s1 i 500

I

rt_source T point,

rt_velocity sphere 0 0.1 0.2 0.3]
o5

I

rt_size
rt_killold 20]
et

head

Fortatighd

OEBPS/graphics/4647_04_004.jpg
File Edi

Put Find Media Window Help

Jgemmouse 1 1

200 00O

OEBPS/graphics/4647_05_031.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Storage001.pd

Float Previous value

Difference

OEBPS/graphics/4647_03_043.jpg
dextended S
& pe

lopen Sample004.png

pix_image

OEBPS/graphics/4647_08_013.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Net003.pd

37
trigger b £

ack f £ [onnect localhost 3000
send $1 $2 [disconnect

netreceive 3000

FI
37

etsend

unpack £

;

165

OEBPS/graphics/4647_03_014.jpg
Pd-extended File Edit Put Find Media Window Help

hnslate™1 2.6 0 0
Jopen Samp1e@04.png
_image

_texture

tangle 1.3 1

OEBPS/graphics/4647_07_050.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Midi003.pd

r dur

Imetro 500
‘trigger b b b,
'random 128 random 100 random 500

+ 100
I

trigger f

;
;

makenote cli

Inoteout

OEBPS/graphics/4647_02_057.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Gem005.pd

create =destr'oy

lqerrmin I -

translateXYZ

ﬂgemhead

;111

draw line }otatngf

cube 0. 75

OEBPS/graphics/4647_01_041.jpg
@ Pd-extended File Edit Put Find Media Window Help

 interfaces pd

Slider

Radio button

OEBPS/graphics/4647_03_019.jpg
® Pd-extended File Edit Put Find Media Window Help. (SO

¥ Image003.pd

‘gemhead

[create| destroy ‘open Sampled07. jpg

pix_image

‘none|horizontal rtical both

pix_flip

Ppix_texture

L -
rrectangle 3 3

OEBPS/graphics/4647_01_020.jpg
@ Pd-extended File Edit Put Find Media Window Help S

= calculation.pd

OEBPS/graphics/4647_07_001.jpg
& Pd-extended

File

Edit

Put

Find Media Window Help

Pd-extended

& compute audio

(] peak meters

 console

OEBPS/graphics/4647_02_033.jpg
@ Pd-extended File Edit Put Find Media Window Help

;;emhead

OEBPS/graphics/4647_04_033.jpg
@ Pd-extended File Edit Put Find Media Window Help

606 * Pong001L.pd

create destroy. @ | reset x2 change direction

gemwin I

r
L =

trigger b Itrigger bbb 9.1 initial velocity

s x3 s

x3 trigger b f,

r x3 .

zemhend
fl
trigger f

s x1

Zranslatexvf

‘circle 0.5

metro 500/

s x3

OEBPS/graphics/4647_04_050.jpg
@ Pd-extended File Edit Put Find Media Window Help

8006 *_Pong004.pd

%m/gemw oodbang
r=n

I
— I
7
s

= -~ v
random 100 randon 100

P rxilrx2
indom

_ rigger b £
= gger

;
I !
-
L Setec 123 121

e LT

expr $F1<1 && $f2<-3.1

200

8 &

.11

&

\UFH\H‘ -

select 1

rx2

I

3

L

translatexvz 0 -3.8 0]
transiatexvz

firae o Fectarate 10,7

OEBPS/graphics/4647_06_022.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Particle007.pd.

loadbang| gemhead

rx s init parthead

[trigger £ £ b)

110 o1

I rtImlo:/ =
e rpt

art_ssires 16 potrt

Bl

3

r vel

[part_velocity sphere

T
=g |
! |

By

Fare kittold 35

Ay fF
A inni

Fare_dran

®

OEBPS/graphics/4647_04_046.jpg
I

Circle 0.5

OEBPS/graphics/4647_04_043.jpg
@ Pd-extended File Edit Put Find Media Window Help

*_Keyboard008.pd

iceyboard

select 123 124]

l

-0.5(0.5

trigger b b £

Fectangle 1 0.3

OEBPS/graphics/4647_05_054.jpg
® Pd-extended File Edit Put Find Media Window Help
* Color006.pd

rsz

select 1

rigger b b

Tl open kick.aif
o ix_flip]
readsf-
= [triggeraag

rsi

I =
select 1 f-uemmr

‘trigger b b

fmtexmm

1 ‘open snare.aif
T ctangle 5.3 4

readsf-|

OEBPS/graphics/4647_06_010.jpg
@ Pd-extended File Edit Put Find Media Window Help

*_Particle002.pd

loadbang lgemhead 0.9
dimen 800 600 speed $1

/[_ -

-
-
‘gemwin [part_source

?Véate/gestroy f;rt,head o

0$100.2
L - i
lpart_velocity sphere

is

part_killold

draw line oo B11

%art,color

lpart_draw

OEBPS/graphics/4647_02_026.jpg
@ Pd-extended File

OEBPS/graphics/4647_03_034.jpg

OEBPS/graphics/4647_08_040.jpg
Sketch Tools Help

o sketch_apr01a | Arduino 1.

sketch_aprola

1 Arduino Uno on /dev/tty.usbmodem14221

OEBPS/graphics/4647_02_046.jpg
& pdextended © -

OEBPS/graphics/4647_09_027.jpg

OEBPS/graphics/4647_03_011.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Webcam001.pd.

genhead

[dialog

[device $1

Ppix_video

print

[pix_texture

[rectangle 2 1.5

OEBPS/graphics/4647_04_042.jpg
[genhead

olor 1 0.8 0

[

Eranslatex

circle 0.5

OEBPS/graphics/4647_06_003.jpg
@ Pd-extended File Edit Put Find Media Window Help

® Particle001.pd.

I““""“"S ‘gemhead

dimen 80 !
lpart_head

;c eate| destroy

part_source
gemwin
Eart_velocityapoint 0020

draw line

draw-point part_killold

part_draw

OEBPS/graphics/4647_01_028.jpg
® Pd-extended File Edit Put Find Media Window Help L3

*_counter.pd

OEBPS/graphics/4647_06_007.jpg
® Pd-extended File Edit Put Find Media

Window _Help
000 + Particle001.pd

[loadbang

genhead .42 Eset point
dinen 800 600 speed $1 S hab

[create | [destroy [part_head is

gemwin -

lpart_source

rvi

%m e

part_velocity [set sphere

trigger b a b

lpart_killold

part_draw

OEBPS/graphics/4647_05_042.jpg
Edit

Put

Find Media_ Window Help

& Pd-extended

File

*_Color004.pd

fumum 50
foumnmg pix_video
forizontal ix_rgba

fium?

trigger a g

rxlley

ix_separator
metro 100 T
T~ 11/

fx.sepamtor pix_data
Erigger a

T I T

spigot

f)uexture:

r/ I
Cotorpistance

Fectangle 5,557

0.867

Store color

OEBPS/graphics/4647_05_045.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Color005.pd

{genhead 50

1oadbang ix_video
Jorizontal [pix_rgba
)

trigger a g

rsz

[setect 01 [Pix_separator

es 1s -
ix_texture]

Fectangie 5,53 7

OEBPS/graphics/4647_07_032.jpg
@ Pd-extended File Edit Put Find Media Window Help

trigger f b

osc~ 0.5

/

1
delay 200
L
)

OEBPS/graphics/4647_03_008.jpg
@ Pd-extended File Edit Put Find Media Window Help

OEBPS/graphics/4647_05_026.jpg

OEBPS/graphics/4647_06_053.jpg
Love

Love. Loygton
Love
Love
ovg Love

L AT

OEBPS/graphics/4647_05_023.jpg

OEBPS/graphics/4647_03_053.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Buffer001.pd

tr\g erbbbbb

gim . ﬁd Ifh\\

b -
I ix_video random 1000 random 1000
g 7 1000 [/ 1000

L
buffer 1 reset

gemwin

o
[
\
L
I

ircle

OEBPS/graphics/4647_03_029.jpg
Pd-extended File Edit Put Find Media Window Help

lopen Samp1e010. jpg

bix_image

OEBPS/graphics/4647_04_016.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Keyboard003.pd

[create| destroy

‘gemkeyboard

e select 123 124
gemwin L
ié -1 1
&

rigger b f tngger b b f trigger b b f

P e

OEBPS/graphics/4647_03_033.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Back001.pd

create destroy gemhead dialog

ix_video

ix_background

ix_texture

\gemwin
[reset
> 181 81
~—_ I$ $1 8.
r

ectangle 4 3/

OEBPS/graphics/4647_09_025.jpg

OEBPS/cover/cover.jpg
Multimedia Programming
with Pure Data

Bryan WC Chung ' PACK]Oygaiy_ircpﬁ

OEBPS/graphics/4647_04_018.jpg
@ Pd-extended File Edit Put Find Media Window Help

*_Keyboard005.pd

[create| destroy

[gemkeyboard

gemwin select T123 124T

L L
& i A s zero
Gemkeynane|

L _ er b b f trigger b b f
Imetro 50 T
T s _one

;emhead)

{draw linel |rotateXYZ
Sy
~L .

lcube

OEBPS/graphics/PacktLibLogo.jpg

OEBPS/graphics/4647_02_067.jpg
loadbang

counter.

OEBPS/graphics/4647_07_031.jpg
@ Pd-extended File Edit Put Find Media Window Help

pd dsp $1
‘trigger b b

elay 200

|
|

osc~ 0.5

OEBPS/graphics/4647_07_045.jpg
File _Edit
About Pd...
Preferences.
Services

Hide Pd-extended ~ 8H
Hide Others X®H
Show All

Quit Pd-extended ~ %Q

Put Find Media Window Help

Path...
Startup...

Audio Settings...

() compute audio
() peak meters

 console

OEBPS/graphics/4647_02_061.jpg
@ Pd-extended File Edit Put Find Media Window Help e

* Gem006.pd

lgemhead

[create| destroy

metro 20/

lgemwin L
‘translateXyZ

trigger a a

draw line

'sphere ©.8 36 sphere 0.3 36

OEBPS/graphics/4647_03_030.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Image004.pd

[create| destroy |gemhead [gemhead

‘ lopen Sample@10. jpg lopen Mask@@1. jpg

gemwin ix_image pix_image

7
-

ix_mask
alpha
ix_texture

rectangle 3 3

OEBPS/graphics/4647_03_012.jpg
File Edi

Put Find Media Window Help

OEBPS/graphics/4647_05_004.jpg

OEBPS/graphics/4647_09_024.jpg
® Pd-extended File Edit Put Find Media Window Help

8006 _OpenCV002.pd

[dinen 800 600 Gimen 320 240 head 50

== = s

oo 5

openpanel.

lgemwin

frigger a o

[path ~/Library/Pd/pix_opency| f‘“ﬂ’“mr wﬂf/,lm s

fmtexmmn [pix_opency_haarcascade

Fectangte 5,33 7

rx

[

EranslatexyZ

= expr ($£1/320)*10.66-5.33 expr ($71/240)*-8+4
Text Hello

s o sy

OEBPS/graphics/4647_07_010.jpg
& Pd-extended

8006

File Edit Put Find Media Window Help

b Audio002.pd

L

pd dsp $1

read -resize snare.aif snare

soundfiler:

11825

tabplay~ snare|

dac~

OEBPS/graphics/4647_appendix_005.jpg
ABOUT
GURRICULUM VITAE.
BIOGRAPHY
GONTAGT

ASS FEED

CATEGORIES
UNCATEGORIZED
ARTWORK
INSTALLATION
PEAFORMANCE
SELF.OFGANIZED LANDSCAPE
LMERICK
A0 PAULO
HONG KONG
VANCOUVER
SELF.OFGANIZED PORTAAITUAE
PHOTOGAAPHY
NGONG PING (517) (2008)
COLLABORATION

PRODUCTION
DREAMING MACHINE.
PHD.
PEACEPTION / SYNTHESIS
(OEPRECATED)
sou

BEN BOGART — ART & IDEAS.

“TYPOGRAPHIC ENTANGLEMENT" 2010

Jonathan Alken, Greg Comoss, Bon Bogart, Krstin Carison & Rayann Gordon

N

Tris performance represents a continuing exploraton of the role o Kinetic typography in
five_porformance. Part of a research project funded by SSHRC, the performance
explres the relaiionship between typograptic “characters” and dancers. Through the
use of nearnfrared tracking systems, the cancors aro given a measure of contol over
the movement of words—nfuncing meaning through motion. Dancers find themsalves.
2 word of words and attempt o dovelop a sharod language.

Video Documentation

(more..)

“STEP & REPEAT #2” 2009

Video Documentation

OEBPS/graphics/4647_06_035.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle012.pd

Tighting s1

rt_source 5 point,

rt_velocity sphere 0 0.3 0 0.2

ring [open Sampleool.jpg 026

I

rt_size

rt_killold 20]

ix_image
f

Jortd_tight] rt_render

fuemm?

sauare

OEBPS/graphics/4647_05_046.jpg

OEBPS/graphics/4647_05_043.jpg
@ Pd-extended File Edit Put Find Media Window Help

¥ Color004.pd

fumum 50|

Loadbang| pix_video

[horizontal ix_rgba

B fium?
trigger a a
fix_seuramr

f"‘-’m"“"' rigper a ol E] Store color
spigot
I

ey
Eotoroistance

le 5.33 4 =
[rectangle 5.33 soi

change

OEBPS/graphics/4647_01_009.jpg
geuo World

T:uri nt

OEBPS/graphics/4647_06_033.jpg
@ Pd-extended File Edit Put Find Media Window Help

Particle011.pd

o3
[
=

[part_head

Tieo fdeu
Tighting s1 et

f.mmw -
i

fam;mce 5 point

Bart_velocity sihere 0 0.3 0 0.3

0.15

rt_size

- rt_killold 20]
fﬂ

B Toxt voilo] jpart_render
Foria tight

fext3d]

OEBPS/graphics/4647_01_044.jpg
Pd-extended File Edit Put Find Media Window

Heml

puredata.info
Pdpedia
FAQ

mailing lists

forums
IRC chat

report bug

GridFlow About
GridFlow Help Index
GridFlow Examples

OEBPS/graphics/4647_02_060.jpg
® Pd-extended File Edit Put Find Media Window Help (SO

*_Gem006.pd

create destroy

gemhead

gemwin

draw line| translateXYZ

'sphere 1 36

OEBPS/graphics/4647_07_028.jpg
@ Pd-extended File Edit Put Find Media Window Help

8006

L
pd dsp $1

metro 100

‘tabwrite~ wave

OEBPS/graphics/4647_03_010.jpg
@ Pd-extended File Edit Put Find Media Window Help

*_Film001.pd

(create destroy 7u;emhead

gemwin

Ll'mpack EAGRE

235 | 640 480

Ppix_texture]

s

rrectangle

OEBPS/graphics/4647_03_055.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Buffer001.pd

metro 10/

trigger bbb b b
i

A
femhead femhead \\\\\\\\\\:\;

ix_video random 1006 [random 1000

;rigger b

b,
b,
L L
buffer 1 r

eset

B
L
/
L
t

B
L
/
3

L

translatexyZ
G T

& -
circle 0.2

OEBPS/graphics/4647_03_035.jpg
@ Pd-extended File Edit Put Find Media Window Help © -

 Image005.pd

emhead

-
!

lcreate iestroy

ix_ deluy

ix_ texture

ectangle 43

OEBPS/graphics/4647_01_025.jpg
® Pd-extended File Edit Put Find Media Window Help (SO

*_counter.pd

:ﬂoat‘=

int

symbol

Decimal number

Integer

Alphanumeric symbol

OEBPS/graphics/4647_02_062.jpg

OEBPS/graphics/4647_02_065.jpg
® Pd-extended File Edit Put Find Media Window Help

8606 *_Gem006.pd

emhead

[J [create destroy

gemwin

io
T
L

translateXYZ

trigger a q

separator separu:or/

rotateXYZ

draw line draw linel translatexyZ

'sphere 0.8 36 sphere 0.3 36

OEBPS/graphics/4647_06_046.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle013.pd

.5

[

Tighting s1] 500

I

rt_source T point,

rt_velocity sphere 0 0.1 0.2 0.3]

o5

I

rt_size
rt_killold 20]

et

head

Forta tighd

OEBPS/graphics/4647_06_054.jpg
@ Pd-extended File Edit Put Find Media Window Help

Motion002.pd

s

I
[Tighting 51 fnumea

dimen 800 600 ix_rgba horizontal = = =
f — rt_source 5 point 0 @ 0

| Tdest: ix_flip]

\\T‘ 2SSty f 2 erevoctsy sphere 00.1 0 0.7
\y/= e r—Lklllold @ exly
gemvin == I
fmsepammr- bix_separator ok F £ 0

jmtexmr? flumement “ 2

= = = rt_orbi
[rectangle 5.33 4] atpha LEPOLE

/ o1
[pix biob 4 [trigger £ I /

T riolor
Fortd_tight] mme

fﬂmr‘emr

[triangie

OEBPS/graphics/4647_06_057.jpg

OEBPS/graphics/4647_06_031.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle011.pd

o3
[
=

[part_head

Tieo fdeu
Tighting s1 et

f.mmw -
i

fam;mce 5 point

Bart_velocity sihere 0 0.3 0 0.3
5.2

rt_size

head

- famklllold 2
lpar

rt_render.
[world_1ight]

OEBPS/graphics/4647_07_015.jpg
@ Pd-extended File Edit Put Find Media Window Help

1800 array.
name 'loop Canvas Properties.

size[16 X units per pixel 0
#save contents ¥ units per pixel 0
() draw as points /graph on parent
@® polygon hide object name and arguments

() bezier curve X range: from [0 to[15|size 200 | margin [0

() delete me ¥ range: from (5 to[4 size [140 | margin [0

([Viewdlist) (Cancel |(Apply |[OK | Cancel Apply oK

OEBPS/graphics/4647_04_011.jpg
@ Pd-extended File Edit Put Find Media Window Help 2 3

" Mouse006.pd

r clear
gemhead

loadbang

[
trigéer bb

guff/{er 1 reset
\

. ‘translatexYZ
gemwin

circle 0.05

OEBPS/graphics/4647_06_026.jpg
& Pd-extended

File

Edit

Put

Find _Media

Window Help

femhend
rt_head

1

110 101

I —

frumor

fnrtjsau:ce 2
rt_velocity sphere © 0.2 0 0.2

rot| 85

I I

rt_orbitpoint,

fmkillold 40

[part_draw

OEBPS/graphics/4647_07_033.jpg
@ Pd-extended File Edit Put Find Media Window Help

pd dsp $1

100-1000 Hz

OEBPS/graphics/4647_07_048.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Midi001.pd

~~
midi number 60 9 velocity 500 duration

il

L
makenote

channel number

OEBPS/graphics/4647_07_026.jpg
@ Pd-extended File Edit Put Find Media Window Help

i -
metro 100

‘tabwrite~ wave

OEBPS/graphics/4647_08_022.jpg
®TUIOpad .,

© 2010 by Mehmet Akten & Martin Kaltenbrunner

R 10216811 m
——
- € = D

current network address is 192.168.11.3

—
automatic | Tandscape || porirait ||

send periodic updates

send full updates m
e

(shaking gesture brings you back to this screen)

OEBPS/graphics/4647_07_043.jpg
@ Audio MIDI Setup _Edit View Window Help

JAC Driver Properties

Device Name: |IAC Driver
Manufacturer: Apple Inc.

Model: | IAC Drive

(¥ Device is online

Less Information (4]

You can set up the MIDI device’s port structure here. First, et the number of ports
on the device, then indicate the number of MIDI n and out connectors for each port.

Ports Connectors for:
IAC Bus 1 IAC Bus 1

MIDI In: 1
MIDI Out: 1

Add and Remove Ports

Revert Apply

OEBPS/graphics/4647_03_006.jpg
@ Pd-extended File Edit Put Find Media Window Help

OEBPS/graphics/4647_04_002.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Mouse001.pd

;create [destroy emmouse 1 1

‘gemwin 0.562 0.322

OEBPS/graphics/4647_02_045.jpg
® Pd-extended File Edit Put Find Media Window Help (SO

* Gem005.pd

create destroy Z;emhead

gemwin
1.73 1 0.98 0.94

draw line
scaleXYZ

OEBPS/graphics/4647_08_054.jpg
® Pd-extended File Edit Put

Find Media Window Help

*_Micro004.pd

lanalog 9 $1

arduing|

Servo motor

OEBPS/graphics/4647_05_008.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Frame002.pd

Ej store

Erigger b b

£ write

read

[genhead 50
B
o

I

fmmff:r,mygmmffeum Vi

.
@ | gemhead % s read s write
= = 1

[pix_buffer vid 1 ST

furw

——r— ="
fstons r

- - color 100
i blob

P

fnuexmmn 9824 D602 9.000

Fectangte 5,33 7 S 0.007

s warn

OEBPS/graphics/4647_01_023.jpg
@ Pd-extended File Edit Put Find Media Window Help [S]

* calculation.pd

7

|

trigger float float

print left print right

OEBPS/graphics/4647_06_011.jpg
@ Pd-extended File Edit Put Find Media Window Help

*_Particle002.pd

loadbang lgemhead 0.96
dimen 800 600 speed $1

-
-

?yéaff/)gestroy f;}t,head//)éa
/)~

‘gemwin [part_source

03100.2
i

lpart_velocity sphere
16
part_killold

draw line Bo1 F:

art_targetcolor:

lpart_draw

OEBPS/graphics/4647_06_032.jpg

OEBPS/graphics/4647_08_029.jpg
@ Pd-extended File Edit Put Find Media Window Help

import mrpeach udpreceive 3333
unpack0SC|
route0SC /tuio
route0SC /2Dcur,

route set

781 ©.260 7.456

OEBPS/graphics/4647_05_025.jpg
® Pd-extended File Edit Put Find Media Window Help

- Motion003.pd

=D Fennead 55
Fertzomtat o

Smooth

[cotor 110
T paraneter

ix_rgba

fmm;

trigger f
trigger a g

T

o = Tracking

threshold

ix_texture,

Fectmgie 53514

OEBPS/graphics/4647_06_014.jpg

OEBPS/graphics/4647_01_006.jpg
® Pd-extended File Edit Put Find Media Window Help [S]

helloWorld.pd

Bello World

OEBPS/graphics/4647_05_029.jpg
& Pd-extended

File Edit Put Find Media Window Help

*Motion004a.pd

Gpen Flower0o2.png thead 55

fnumgen

oo

e

ix_rgba B
alpha
T Smooth parameter

A

fngﬂu:=
Srigger 7 £

frigger a o

// I

Ir y
fk“"“mr smooth [smooth

ix_texture

£ Tracking threshold I 1459

et =
£ e

e

EranslatexyZ

alpha
o 4 - alpha

EEL:\:\E

e)
il it

g5 9.5 B
o
s

Femgie 5]

s x y

OEBPS/graphics/4647_03_001.jpg
@ Pd-extended File Edit Put Find Media Window Help. [SK

¥ Image001.pd

;emhead

create aestroy

'open Sample@1.png

gemwin
pix_image

}ix_texturé

2
I 7

}ectangle

OEBPS/graphics/4647_04_001.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Mouse001.pd

[create. destroy emmouse
| e AN

L
‘gemwin 293 | 236

OEBPS/graphics/4647_02_024.jpg
@ Pd-extended File Edit Put Find Media Window Help

‘create destroy gemhead

300

draw linestrip

OEBPS/graphics/4647_06_030.jpg

OEBPS/graphics/4647_02_005.jpg
® Pd-extended File Edit Put Find Media Window Help [S]

:destroy

create \\ title Pure_Dat
\
\

dimen 640 480

OEBPS/graphics/4647_06_037.jpg
@ Pd-extended File Edit Put Find Media Window Help

s

I
%mm
Loadvang

Jpart_head
dinen 800 600

{destroy| lighting s1

rt_source 5 point

ring ‘open Samp1e002.png [part_velocity sphere 0 0.3 0 0.2

0.4

re_size

TGenhead rt_killold 20

Forta tighd are_render

img

OEBPS/graphics/4647_01_026.jpg
@ Pd-extended File Edit Put Find Media Window Help [SC

counter.pd

OEBPS/graphics/4647_05_005.jpg
® Pd-extended File Edit

Put

Find Media Window Help

i Frame001.pd

dimen 800 600

[cfeate [destroy

-
igemwin

pix_buffer vid 1

femhead

Store

{ix,video trigger b b

—
fix,rgba 0

ix_buffer_write vid

fikdif{

fix,grey

L -
fix,threshold

fix,texture:

Irectangle 5.33 4

e

femhead

]

pix_buffer_read vi

OEBPS/graphics/4647_06_059.jpg

OEBPS/graphics/4647_07_019.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Array00L.pd

1o

tabwrite loop

) index

tabread loop

value

OEBPS/graphics/4647_06_002.jpg
E__3

OEBPS/graphics/4647_01_004.jpg
@ Pd-extended File Edit Put Find Media Window Help [S]

helloWorld.pd

[

OEBPS/graphics/4647_08_048.jpg

OEBPS/graphics/4647_04_015.jpg
@ Pd-extended File Edit Put Find Media Window Help = &

i Keyboard002.pd

%reate destroy igemkeynarme

lgemwin

OEBPS/graphics/4647_03_045.jpg
GEM

B i ¥
destroy | |

\

‘gemwin

OEBPS/graphics/4647_02_053.jpg
@ Pd-extended File Edit Put Find Media Window Help. 5.3

i Gem005.pd

[create destroy

gemwin
gemhead ‘gemhead

draw line ftranslatexYZ draw line ftranslatexvZ

K K

cube

OEBPS/graphics/4647_02_028.jpg
xtended File Edit

Find Media_ Window Help

OEBPS/graphics/4647_02_025.jpg
@ Pd-extended File Edit Put Find Media Window Help

OEBPS/graphics/4647_09_026.jpg
® Terminal Shell Edit View Window Help

8 006 A chungbryan — bash — 80x30

Last Togin: Sat Apr 13 11:21:20 on teys000
Beari~ chungoryans |

OEBPS/graphics/4647_appendix_001.jpg
60
28

o
88

&

fducialid 0

e°0°
aP
o O

OEBPS/graphics/4647_08_039.jpg
Resistor Servo motor

LED light Photoresistor
=0 Switch

© %

OEBPS/graphics/4647_01_024.jpg
@ Pd-extended File Edit Put Find Media Window Help S

- calculation.pd

tri b float
trigger éfg/—/gg’”‘

OEBPS/graphics/4647_06_056.jpg
@ Pd-extended File

Edit Put Find Media Window Help

i Motion003.pd

oadbang

dimen 800 600

7

o/ [destroy

fmsepammr-

jmtemr?

Fectangte 5.33 7

%mw
pix_video| oadbang

fnugm Irorizontal
fl)gﬂl;

trigger a a
>

fmsepammr-

—

/

‘alphal Tinestrip

e
[pix biob 4 trigger f £

—
smooth

* 10.66]

- 5.33

x

famsau?ce 5 point 0 0 0]

rt_velocity sphere 0 0.2 0 0.2

[part_killold 10]

—
[part_orbitpoint

P11 f10

OEBPS/graphics/4647_02_063.jpg
@ Pd-extended File Edit Put Find Media Window Help e

i Gem006.pd

[create| destroy gemhead

metro 20/

draw line

'sphere 0.8 36 sphere 0.3 36

OEBPS/graphics/4647_06_006.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle001.pd

loadbang

lgemhead| 1
dimen 800 600 [
s

speed $1
-

[cneate destroy -

L _
I lpart_head 1
gemwin

lpart_source

lpart_velocity point @ 0.2 @

draw line

draw-point. |part_killold
dr

lpart_draw

OEBPS/graphics/4647_07_014.jpg
@ Pd-extended File Edit Put Find Media Window Help

Array001.pd

loop

Open
Help

OEBPS/graphics/4647_05_050.jpg
audio

sample rate: 44100 | delay (msec): (20 | [] use callbacks

 input device 1[_(0)Built-in Microph | channels: [2

™ output device 1[(0)Built-in Output | channels: [2

[Cancel | [Apply | [OK | | all settings |

OEBPS/graphics/4647_04_003.jpg
@ Pd-extended File Edit Put Find Media Window Help

* Mouse001.pd

[create[[destroy lgemhead emmouse 1 1
e

Jgemwin 0.438 0.232

OEBPS/graphics/4647_09_046.jpg
xtended File Edit Put Find Media Window Help

OEBPS/graphics/4647_09_023.jpg

OEBPS/graphics/4647_04_017.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Keyboard004.pd

[create| destroy

[gemkeyboard
e select 123 124
‘gemwin L
° -5
i =
e
t

rigger b f frigger b b f

lgemhead

draw linel [rotateXYZ

e

lcube

OEBPS/graphics/4647_08_055.jpg
@ Pd-extended File Edit Put Find Media Window Help

¥ Micro005.pd

Digital input

pinMode 2 input

arduino

foute digital

Iroute 2|

OEBPS/graphics/4647_appendix_006.jpg
matthiaskronlachner.com

/ audio visual art

Home projects recodings software tesching tutorils tavel about

SUCHERGEBNISSE FUR: PURE DATA DATES

Linux.

The Kinect distance sensor as human- il

machine-interface in audio-visual art
projects

Verofienticht am 2013/01/08

I finished my project thesis including general information about the Microsoft Kinect sensor
device as well as a detailed documentation about it's appiication in combination with Pure Lerzre

OEBPS/graphics/4647_07_017.jpg
@ Pd-extended File Edit Put Find Media Window Help

© O O loop (ist view)
D @ Canvas Properties.

b o
2 X units per pixel 0
5) o ¥ units per pixel 0
I o

5)] 3 /graph on parent

. hide object name and arguments
|X range: from [0 to[15|size 200 | margin [0

) 0
P e ¥ range: from [5 to1 size [140 | margin [0

Cancel Apply. oK

OEBPS/graphics/4647_08_038.jpg

OEBPS/graphics/4647_06_028.jpg
@ Pd-extended File Edit Put Find Media Window Help

i Particle010.pd

head

i10 1 1|

r—Lmlor
rpz

= r—Lsaur'ce 20 point 00 0
rigger b f
ftrigge

= Eﬂ
e

rt_killold 40]

rt_draw

r
r
L

OEBPS/graphics/4647_07_012.jpg
@ Pd-extended File Edit Put Find Media Window Help

6006 *_ Audio003.pd

Loadbang

frigger b b b enkeyboard

read -resize tom.aif tom select 181920 Key 1, 2, 3
822

R

trigger b b
e

kick

W -
¢' \“” ”‘““"‘““* I”{!Il"l\wwlﬂ,

OEBPS/graphics/4647_06_038.jpg

OEBPS/graphics/4647_06_009.jpg
@ Pd-extended File Edit Put Find Media Window Help

Particle001.pd

loadbang Genhead] |
dimen 800 600 I
s

peed $1

[cheate| [destroy
e 4

lgemwin

lpart_source
03100.2

lpart_velocity sphere

draw line =
1o

olntl | art_killold

lpart_draw

OEBPS/graphics/4647_07_060.jpg
in Port: out Ports: 1
Cancel | apply | ok

=

couldn't open MIDI input device 0

couldn't open MIDI output device 0

opened 0 MIDI input device(s) and 0 MIDI output device(s)
(ALSA output error (snd_pcm_open): Device o resource busy

Opened Alsa Client 131 in:1 out:1

Audio | MIDI | ALSA

Readable Clients / Output Ports ~ Writable Clients / Input Ports.
idi Through » B3 14:Midi Through
130:Virtual Piano 128:TiMidity
» B 130.virtual Piano
» 3 131:Pure Data

f Connect || X Disconnect | | 3€ Disconnect All | | € Expand All | | O Refresh |

OEBPS/graphics/4647_07_034.jpg
@ Pd-extended File Edit Put Find Media Window Help

8 006

L 100-1000 Hz
pd dsp $1

OEBPS/graphics/4647_08_049.jpg

OEBPS/graphics/4647_02_003.jpg
® pdextended [S]

OEBPS/graphics/4647_01_007.jpg
@ Pd-extended File Edit Put Find Media Window Help [S]

helloWorld.pd

Bello World

brint

